151
|
Abstract
PURPOSE OF REVIEW Williams syndrome is a multisystem disorder caused by a microdeletion on chromosome 7q. Throughout infancy, childhood, and adulthood, abnormalities in body composition and in multiple endocrine axes may arise for individuals with Williams syndrome. This review describes the current literature regarding growth, body composition, and endocrine issues in Williams syndrome with recommendations for surveillance and management by the endocrinologist, geneticist, or primary care physician. RECENT FINDINGS In addition to known abnormalities in stature, calcium metabolism, and thyroid function, individuals with Williams syndrome are increasingly recognized to have low bone mineral density, increased body fat, and decreased muscle mass. Furthermore, recent literature identifies a high prevalence of diabetes and obesity starting in adolescence, and, less commonly, a lipedema phenotype in both male and female individuals. Understanding of the mechanisms by which haploinsufficiency of genes in the Williams syndrome-deleted region contributes to the multisystem phenotype of Williams syndrome continues to evolve. SUMMARY Multiple abnormalities in growth, body composition, and endocrine axes may manifest in individuals with Williams syndrome. Individuals with Williams syndrome should have routine surveillance for these issues in either the primary care setting or by an endocrinologist or geneticist.
Collapse
Affiliation(s)
- Takara L. Stanley
- Pediatric Endocrine Division, Department of Pediatrics, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA
- Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Aaron Leong
- Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Barbara R. Pober
- Genetics Division, Department of Pediatrics, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA
| |
Collapse
|
152
|
Cao L, Ali S, Queen NJ. Hypothalamic gene transfer of BDNF promotes healthy aging. VITAMINS AND HORMONES 2021; 115:39-66. [PMID: 33706955 DOI: 10.1016/bs.vh.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aging process and age-related diseases all involve metabolic decline and impaired ability to cope with adversity. Environmental enrichment (EE)-a housing environment which recapitulates aspects of active lifestyle-exerts a wide range of health benefits in laboratory rodents. Brain-derived neurotrophic factor (BDNF) in the hypothalamus orchestrates autonomic and neuroendocrine processes, serving as one key brain mediator of EE-induced resistance to obesity, cancer, and autoimmunity. Recombinant adeno-associated virus (AAV)-mediated hypothalamic BDNF gene transfer alleviates obesity, diabetes, and metabolic syndromes in both diet-induced and genetic models. One recent study by our lab demonstrates the efficacy and safety of a built-in autoregulatory system to control transgene BDNF expression, mimicking the body's natural feedback systems in middle-age mice. Twelve-month old mice were treated with autoregulatory BDNF vector and monitored for 7months. BDNF gene transfer prevented age-associated metabolic decline by: reducing adiposity, preventing the decline of brown fat activity, increasing adiponectin while reducing leptin and insulin in circulation, improving glucose tolerance, increasing energy expenditure, alleviating hepatic steatosis, and suppressing inflammatory genes in the hypothalamus and adipose tissues. Furthermore, BDNF treatment reduced anxiety-like and depression-like behaviors. This chapter summarizes this work and discusses potential roles that hypothalamic BDNF might play in promoting healthy aging.
Collapse
Affiliation(s)
- Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States; The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.
| | - Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States; The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Nicholas J Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States; The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
153
|
Valladolid-Acebes I, Berggren PO, Juntti-Berggren L. Apolipoprotein CIII Is an Important Piece in the Type-1 Diabetes Jigsaw Puzzle. Int J Mol Sci 2021; 22:ijms22020932. [PMID: 33477763 PMCID: PMC7832341 DOI: 10.3390/ijms22020932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/05/2022] Open
Abstract
It is well known that type-2 diabetes mellitus (T2D) is increasing worldwide, but also the autoimmune form, type-1 diabetes (T1D), is affecting more people. The latest estimation from the International Diabetes Federation (IDF) is that 1.1 million children and adolescents below 20 years of age have T1D. At present, we have no primary, secondary or tertiary prevention or treatment available, although many efforts testing different strategies have been made. This review is based on the findings that apolipoprotein CIII (apoCIII) is increased in T1D and that in vitro studies revealed that healthy β-cells exposed to apoCIII became apoptotic, together with the observation that humans with higher levels of the apolipoprotein, due to mutations in the gene, are more susceptible to developing T1D. We have summarized what is known about apoCIII in relation to inflammation and autoimmunity in in vitro and in vivo studies of T1D. The aim is to highlight the need for exploring this field as we still are only seeing the top of the iceberg.
Collapse
|
154
|
Dong X, Wang F, Liu C, Ling J, Jia X, Shen F, Yang N, Zhu S, Zhong L, Li Q. Single-cell analysis reveals the intra-tumor heterogeneity and identifies MLXIPL as a biomarker in the cellular trajectory of hepatocellular carcinoma. Cell Death Discov 2021; 7:14. [PMID: 33462196 PMCID: PMC7814056 DOI: 10.1038/s41420-021-00403-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a globally prevailing cancer with a low 5-year survival rate. Little is known about its intricate gene expression profile. Single-cell RNA sequencing is an indispensable tool to explore the genetic characteristics of HCC at a more detailed level. In this study, we profiled the gene expression of single cells from human HCC tumor and para-tumor tissues using the Smart-seq 2 sequencing method. Based on differentially expressed genes, we identified heterogeneous subclones in HCC tissues, including five HCC and two hepatocyte subclones. We then carried out hub-gene co-network and functional annotations analysis followed pseudo-time analysis with regulated transcriptional factor co-networks to determine HCC cellular trajectory. We found that MLX interacting protein like (MLXIPL) was commonly upregulated in the single cells and tissues and associated with a poor survival rate in HCC. Mechanistically, MLXIPL activation is crucial for promoting cell proliferation and inhibits cell apoptosis by accelerating cell glycolysis. Taken together, our work identifies the heterogeneity of HCC subclones, and suggests MLXIPL might be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chuan Liu
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jing Ling
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xuebing Jia
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Feifei Shen
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ning Yang
- Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Sibo Zhu
- Center for Pharmacogenomics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lin Zhong
- Department of Hepatobiliary and General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
155
|
Moncan M, Mnich K, Blomme A, Almanza A, Samali A, Gorman AM. Regulation of lipid metabolism by the unfolded protein response. J Cell Mol Med 2021; 25:1359-1370. [PMID: 33398919 PMCID: PMC7875919 DOI: 10.1111/jcmm.16255] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
The endoplasmic reticulum (ER) is the site of protein folding and secretion, Ca2+ storage and lipid synthesis in eukaryotic cells. Disruption to protein folding or Ca2+ homeostasis in the ER leads to the accumulation of unfolded proteins, a condition known as ER stress. This leads to activation of the unfolded protein response (UPR) pathway in order to restore protein homeostasis. Three ER membrane proteins, namely inositol‐requiring enzyme 1 (IRE1), protein kinase RNA‐like ER kinase (PERK) and activating transcription factor 6 (ATF6), sense the accumulation of unfolded/misfolded proteins and are activated, initiating an integrated transcriptional programme. Recent literature demonstrates that activation of these sensors can alter lipid enzymes, thus implicating the UPR in the regulation of lipid metabolism. Given the presence of ER stress and UPR activation in several diseases including cancer and neurodegenerative diseases, as well as the growing recognition of altered lipid metabolism in disease, it is timely to consider the role of the UPR in the regulation of lipid metabolism. This review provides an overview of the current knowledge on the impact of the three arms of the UPR on the synthesis, function and regulation of fatty acids, triglycerides, phospholipids and cholesterol.
Collapse
Affiliation(s)
- Matthieu Moncan
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Katarzyna Mnich
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA-institute, University of Liège, Liège, Belgium
| | - Aitor Almanza
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Adrienne M Gorman
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
156
|
Chen N, Mu L, Yang Z, Du C, Wu M, Song S, Yuan C, Shi Y. Carbohydrate response element-binding protein regulates lipid metabolism via mTOR complex1 in diabetic nephropathy. J Cell Physiol 2021; 236:625-640. [PMID: 32583421 DOI: 10.1002/jcp.29890] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
Lipid deposition caused by the disorder of renal lipid metabolism is involved in diabetic nephropathy (DN). Carbohydrate response element-binding protein (ChREBP) is a key transcription factor in high glucose-induced cellular fat synthesis. At present, the regulation and mechanism of ChREBP on fat metabolism in diabetic kidneys are still unclear. In this study, we showed that lack of ChREBP significantly improved renal injury, inhibited oxidative stress, lipid deposition, fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC) and thioredoxin-interacting protein (TXNIP) expression, as well as the activity of mammalian target of rapamycin complex 1 (mTORC1) in diabetic kidneys. Meanwhile, ChREBP deficiency upregulated the expression of peroxisome proliferator-activated receptor-α (PPARα), carnitine palmitoyltransferaser 1A (CPT1A) and acyl-coenzyme A oxidase 1 (ACOX1) in diabetic kidneys. In vitro, knockdown of ChREBP attenuated lipid deposition, mTORC1 activation, and expression of FASN and ACC, increased PPARα, CPT1A, and ACOX1 expression in HK-2 cells and podocytes under high glucose (HG) conditions. Moreover, HG-induced lipid deposition, increased expression of FASN and ACC and decreased expression of PPARα, CPT1A, and ACOX1 were reversed by rapamycin, a specific inhibitor of mTORC1, in HK-2 cells. These results indicate that ChREBP deficiency alleviates diabetes-associated renal lipid accumulation by inhibiting mTORC1 activity and suggest that reduction of ChREBP is a potential therapeutic strategy to treat DN.
Collapse
Affiliation(s)
- Nan Chen
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| | - Lin Mu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
- Department of Nephrology, Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Zhifen Yang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| | - Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| | - Chen Yuan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| |
Collapse
|
157
|
López-Almela I, Romaní-Pérez M, Bullich-Vilarrubias C, Benítez-Páez A, Gómez Del Pulgar EM, Francés R, Liebisch G, Sanz Y. Bacteroides uniformis combined with fiber amplifies metabolic and immune benefits in obese mice. Gut Microbes 2021; 13:1-20. [PMID: 33499721 PMCID: PMC8018257 DOI: 10.1080/19490976.2020.1865706] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 02/04/2023] Open
Abstract
Gut microbiota represents a therapeutic target for obesity. We hypothesize that B. uniformis CECT 7771 combined with wheat bran extract (WBE), its preferred carbon source, may exert superior anti-obesity effects. We performed a 17-week intervention in diet-induced obese mice receiving either B. uniformis, WBE, or their combination to identify interactions and independent actions on metabolism and immunity. B. uniformis combined with WBE was the most effective intervention, curbing weight gain and adiposity, while exerting more modest effects separately. The combination restored insulin-dependent metabolic routes in fat and liver, although the bacterium was the primary driver for improving whole-body glucose disposal. Moreover, B. uniformis-combined with WBE caused the highest increases in butyrate and restored the proportion of induced intraepithelial lymphocytes and type-3 innate lymphoid cells in the intestinal epithelium. Thus, strengthening the first line of immune defense against unhealthy diets and associated dysbiosis in the intestine. This intervention also attenuated the altered IL22 signaling and liver inflammation. Our study shows opportunities for employing B. uniformis, combined with WBE, to aid in the treatment of obesity.
Collapse
Affiliation(s)
- Inmaculada López-Almela
- Microbial Ecology, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Marina Romaní-Pérez
- Microbial Ecology, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Clara Bullich-Vilarrubias
- Microbial Ecology, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Alfonso Benítez-Páez
- Microbial Ecology, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Eva M. Gómez Del Pulgar
- Microbial Ecology, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Rubén Francés
- CIBERehd, Hospital General Universitario, Alicante, Spain; Dpto. Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
158
|
Schlein C, Fischer AW, Sass F, Worthmann A, Tödter K, Jaeckstein MY, Behrens J, Lynes MD, Kiebish MA, Narain NR, Bussberg V, Darkwah A, Jespersen NZ, Nielsen S, Scheele C, Schweizer M, Braren I, Bartelt A, Tseng YH, Heeren J, Scheja L. Endogenous Fatty Acid Synthesis Drives Brown Adipose Tissue Involution. Cell Rep 2021; 34:108624. [PMID: 33440156 PMCID: PMC8240962 DOI: 10.1016/j.celrep.2020.108624] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/20/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Thermoneutral conditions typical for standard human living environments result in brown adipose tissue (BAT) involution, characterized by decreased mitochondrial mass and increased lipid deposition. Low BAT activity is associated with poor metabolic health, and BAT reactivation may confer therapeutic potential. However, the molecular drivers of this BAT adaptive process in response to thermoneutrality remain enigmatic. Using metabolic and lipidomic approaches, we show that endogenous fatty acid synthesis, regulated by carbohydrate-response element-binding protein (ChREBP), is the central regulator of BAT involution. By transcriptional control of lipogenesis-related enzymes, ChREBP determines the abundance and composition of both storage and membrane lipids known to regulate organelle turnover and function. Notably, ChREBP deficiency and pharmacological inhibition of lipogenesis during thermoneutral adaptation preserved mitochondrial mass and thermogenic capacity of BAT independently of mitochondrial biogenesis. In conclusion, we establish lipogenesis as a potential therapeutic target to prevent loss of BAT thermogenic capacity as seen in adult humans. Schlein et al. show that carbohydrate-response element-binding protein (ChREBP) controls de novo lipogenesis (DNL) in brown adipose tissue (BAT) and determines BAT whitening in response to thermoneutral housing. ChREBP deficiency prevents enrichment of DNL-derived lipids and mitophagy during BAT involution, which is associated with higher thermogenic capacity.
Collapse
Affiliation(s)
- Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike Sass
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Tödter
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michelle Y Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janina Behrens
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Naja Zenius Jespersen
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Søren Nielsen
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Scheele
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michaela Schweizer
- Core Facility of Electron Microscopy, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingke Braren
- Vector Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Bartelt
- Department of Molecular Metabolism & Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, 81377 Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
159
|
Effects of dietary carbohydrate sources on lipid metabolism and SUMOylation modification in the liver tissues of yellow catfish. Br J Nutr 2020; 124:1241-1250. [PMID: 32600495 DOI: 10.1017/s0007114520002408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysregulation in hepatic lipid synthesis by excess dietary carbohydrate intake is often relevant with the occurrence of fatty liver; therefore, the thorough understanding of the regulation of lipid deposition and metabolism seems crucial to search for potential regulatory targets. In the present study, we examined TAG accumulation, lipid metabolism-related gene expression, the enzyme activities of lipogenesis-related enzymes, the protein levels of transcription factors or genes involving lipogenesis in the livers of yellow catfish fed five dietary carbohydrate sources, such as glucose, maize starch, sucrose, potato starch and dextrin, respectively. Generally speaking, compared with other carbohydrate sources, dietary glucose promoted TAG accumulation, up-regulated lipogenic enzyme activities and gene expressions, and down-regulated mRNA expression of genes involved in lipolysis and small ubiquitin-related modifier (SUMO) modification pathways. Further studies found that sterol regulatory element binding protein 1 (SREBP1), a key transcriptional factor relevant to lipogenic regulation, was modified by SUMO1. Mutational analyses found two important sites for SUMOylation modification (K254R and K264R) in SREBP1. Mutant SREBP lacking lysine 264 up-regulated the transactivation capacity on an SREBP-responsive promoter. Glucose reduced the SUMOylation level of SREBP1 and promoted the protein expression of SREBP1 and its target gene stearoyl-CoA desaturase 1 (SCD1), indicating that SUMOylation of SREBP1 mediated glucose-induced hepatic lipid metabolism. Our study elucidated the molecular mechanism of dietary glucose increasing hepatic lipid deposition and found that the SREBP-dependent transactivation was regulated by SUMO1 modification, which served as a new target for the transcriptional programmes governing lipid metabolism.
Collapse
|
160
|
O’Brien P, Han G, Ganpathy P, Pitre S, Zhang Y, Ryan J, Sim PY, Harding SV, Gray R, Preedy VR, Sanders TAB, Corpe CP. Chronic Effects of a High Sucrose Diet on Murine Gastrointestinal Nutrient Sensor Gene and Protein Expression Levels and Lipid Metabolism. Int J Mol Sci 2020; 22:E137. [PMID: 33375525 PMCID: PMC7794826 DOI: 10.3390/ijms22010137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022] Open
Abstract
The gastrointestinal tract (GIT) plays a key role in regulating nutrient metabolism and appetite responses. This study aimed to identify changes in the GIT that are important in the development of diet related obesity and diabetes. GIT samples were obtained from C57BL/6J male mice chronically fed a control diet or a high sucrose diet (HSD) and analysed for changes in gene, protein and metabolite levels. In HSD mice, GIT expression levels of fat oxidation genes were reduced, and increased de novo lipogenesis was evident in ileum. Gene expression levels of the putative sugar sensor, slc5a4a and slc5a4b, and fat sensor, cd36, were downregulated in the small intestines of HSD mice. In HSD mice, there was also evidence of bacterial overgrowth and a lipopolysaccharide activated inflammatory pathway involving inducible nitric oxide synthase (iNOS). In Caco-2 cells, sucrose significantly increased the expression levels of the nos2, iNOS and nitric oxide (NO) gas levels. In conclusion, sucrose fed induced obesity/diabetes is associated with changes in GI macronutrient sensing, appetite regulation and nutrient metabolism and intestinal microflora. These may be important drivers, and thus therapeutic targets, of diet-related metabolic disease.
Collapse
Affiliation(s)
- Patrick O’Brien
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Ge Han
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Priya Ganpathy
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Shweta Pitre
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Yi Zhang
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - John Ryan
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Pei Ying Sim
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Scott V. Harding
- Department of Biochemistry, Memorial University, Elizabeth Avenue, St. John’s, NL A1C5S7, Canada;
| | - Robert Gray
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Victor R. Preedy
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Thomas A. B. Sanders
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Christopher P. Corpe
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| |
Collapse
|
161
|
Heidenreich S, Weber P, Stephanowitz H, Petricek KM, Schütte T, Oster M, Salo AM, Knauer M, Goehring I, Yang N, Witte N, Schumann A, Sommerfeld M, Muenzner M, Myllyharju J, Krause E, Schupp M. The glucose-sensing transcription factor ChREBP is targeted by proline hydroxylation. J Biol Chem 2020; 295:17158-17168. [PMID: 33023907 PMCID: PMC7863887 DOI: 10.1074/jbc.ra120.014402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/24/2020] [Indexed: 01/25/2023] Open
Abstract
Cellular energy demands are met by uptake and metabolism of nutrients like glucose. The principal transcriptional regulator for adapting glycolytic flux and downstream pathways like de novo lipogenesis to glucose availability in many cell types is carbohydrate response element-binding protein (ChREBP). ChREBP is activated by glucose metabolites and post-translational modifications, inducing nuclear accumulation and regulation of target genes. Here we report that ChREBP is modified by proline hydroxylation at several residues. Proline hydroxylation targets both ectopically expressed ChREBP in cells and endogenous ChREBP in mouse liver. Functionally, we found that specific hydroxylated prolines were dispensable for protein stability but required for the adequate activation of ChREBP upon exposure to high glucose. Accordingly, ChREBP target gene expression was rescued by re-expressing WT but not ChREBP that lacks hydroxylated prolines in ChREBP-deleted hepatocytes. Thus, proline hydroxylation of ChREBP is a novel post-translational modification that may allow for therapeutic interference in metabolic diseases.
Collapse
Affiliation(s)
- Steffi Heidenreich
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Berlin, Germany
| | - Pamela Weber
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Berlin, Germany
| | - Heike Stephanowitz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Konstantin M Petricek
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Berlin, Germany
| | - Till Schütte
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Berlin, Germany
| | - Moritz Oster
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Berlin, Germany
| | - Antti M Salo
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Miriam Knauer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Berlin, Germany
| | - Isabel Goehring
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Berlin, Germany
| | - Na Yang
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Berlin, Germany
| | - Nicole Witte
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Berlin, Germany
| | - Anne Schumann
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Berlin, Germany
| | - Manuela Sommerfeld
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Berlin, Germany
| | - Matthias Muenzner
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Berlin, Germany
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Michael Schupp
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Berlin, Germany.
| |
Collapse
|
162
|
Gonçalves AS, Andrade N, Martel F. Intestinal fructose absorption: Modulation and relation to human diseases. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
163
|
Canosa LF, Bertucci JI. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Mol Cell Endocrinol 2020; 518:111029. [PMID: 32941926 DOI: 10.1016/j.mce.2020.111029] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/03/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
This review covers the current knowledge on the regulation of the somatic growth axis and its interaction with metabolism and feeding regulation. The main endocrine and neuroendocrine factors regulating both the growth axis and feeding behavior will be briefly summarized. Recently discovered neuropeptides and peptide hormones will be mentioned in relation to feeding control as well as growth hormone regulation. In addition, the influence of nutrient and nutrient sensing mechanisms on growth axis will be highlighted. We expect that in this process gaps of knowledge will be exposed, stimulating future research in those areas.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina.
| | | |
Collapse
|
164
|
Daniel PV, Mondal P. Causative and Sanative dynamicity of ChREBP in Hepato-Metabolic disorders. Eur J Cell Biol 2020; 99:151128. [PMID: 33232883 DOI: 10.1016/j.ejcb.2020.151128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
ChREBP is the master regulator of carbohydrate dependent glycolytic and lipogenic flux within metabolic tissues. It plays a vital role in hyper-calorific milieu by activating glycolysis, lipogenesis along with pentose phosphate shunt and glycogen synthesis, fostering immediate reduction in the systemic glycemic levels. Liver being the primary organ to sense disproportionate dietary intake and linked physiological stress, stimulates ChREBP to perform the aforementioned processes. Activated ChREBP also inhibits lipolysis and encourages proper disposal of excessive triglycerides into adipocytes from the liver ablating hepatic intracellular lipid trafficking. Chronic overeating or onset of positive energy balance, hyper-activates ChREBP and signals development, intensification of hepato-metabolic disorders, and allied discrepancies in the whole-body metabolic functioning. ChREBP thus gets negatively connotated as the primary regulator of hepatic disorders, owing to its inherent features as the primary glycemic sensor and the only transcription factor that can transduce glucose-dependent glycolytic and lipogenic signals. Through this review, we - try to recapitulate and emphasize on the sanative events coordinated by ChREBP in several pathophysiological states. In totality, we aim to uncouple the disease-causing aspects of ChREBP from its positive attributes evoked during a metabolic crisis, in hepato-metabolic diseases.
Collapse
Affiliation(s)
- P Vineeth Daniel
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175001, H.P, India.
| | - Prosenjit Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175001, H.P, India.
| |
Collapse
|
165
|
Lei Y, Hoogerland JA, Bloks VW, Bos T, Bleeker A, Wolters H, Wolters JC, Hijmans BS, van Dijk TH, Thomas R, van Weeghel M, Mithieux G, Houtkooper RH, de Bruin A, Rajas F, Kuipers F, Oosterveer MH. Hepatic Carbohydrate Response Element Binding Protein Activation Limits Nonalcoholic Fatty Liver Disease Development in a Mouse Model for Glycogen Storage Disease Type 1a. Hepatology 2020; 72:1638-1653. [PMID: 32083759 PMCID: PMC7702155 DOI: 10.1002/hep.31198] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS Glycogen storage disease (GSD) type 1a is an inborn error of metabolism caused by defective glucose-6-phosphatase catalytic subunit (G6PC) activity. Patients with GSD 1a exhibit severe hepatomegaly due to glycogen and triglyceride (TG) accumulation in the liver. We have shown that the activity of carbohydrate response element binding protein (ChREBP), a key regulator of glycolysis and de novo lipogenesis, is increased in GSD 1a. In the current study, we assessed the contribution of ChREBP to nonalcoholic fatty liver disease (NAFLD) development in a mouse model for hepatic GSD 1a. APPROACH AND RESULTS Liver-specific G6pc-knockout (L-G6pc-/- ) mice were treated with adeno-associated viruses (AAVs) 2 or 8 directed against short hairpin ChREBP to normalize hepatic ChREBP activity to levels observed in wild-type mice receiving AAV8-scrambled short hairpin RNA (shSCR). Hepatic ChREBP knockdown markedly increased liver weight and hepatocyte size in L-G6pc-/- mice. This was associated with hepatic accumulation of G6P, glycogen, and lipids, whereas the expression of glycolytic and lipogenic genes was reduced. Enzyme activities, flux measurements, hepatic metabolite analysis and very low density lipoprotein (VLDL)-TG secretion assays revealed that hepatic ChREBP knockdown reduced downstream glycolysis and de novo lipogenesis but also strongly suppressed hepatic VLDL lipidation, hence promoting the storage of "old fat." Interestingly, enhanced VLDL-TG secretion in shSCR-treated L-G6pc-/- mice associated with a ChREBP-dependent induction of the VLDL lipidation proteins microsomal TG transfer protein and transmembrane 6 superfamily member 2 (TM6SF2), the latter being confirmed by ChIP-qPCR. CONCLUSIONS Attenuation of hepatic ChREBP induction in GSD 1a liver aggravates hepatomegaly because of further accumulation of glycogen and lipids as a result of reduced glycolysis and suppressed VLDL-TG secretion. TM6SF2, critical for VLDL formation, was identified as a ChREBP target in mouse liver. Altogether, our data show that enhanced ChREBP activity limits NAFLD development in GSD 1a by balancing hepatic TG production and secretion.
Collapse
Affiliation(s)
- Yu Lei
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Joanne A. Hoogerland
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Vincent W. Bloks
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Trijnie Bos
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Aycha Bleeker
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Henk Wolters
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Justina C. Wolters
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Brenda S. Hijmans
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Theo H. van Dijk
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Rachel Thomas
- Dutch Molecular Pathology CenterFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology and MetabolismAmsterdam Cardiovascular SciencesAmsterdamthe Netherlands
- Core Facility of MetabolomicsAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Gilles Mithieux
- National Institute of Health and Medical Research, U1213LyonFrance
- University of LyonLyonFrance
- University of Lyon 1VilleurbanneFrance
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology and MetabolismAmsterdam Cardiovascular SciencesAmsterdamthe Netherlands
| | - Alain de Bruin
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- Dutch Molecular Pathology CenterFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Fabienne Rajas
- National Institute of Health and Medical Research, U1213LyonFrance
- University of LyonLyonFrance
- University of Lyon 1VilleurbanneFrance
| | - Folkert Kuipers
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Maaike H. Oosterveer
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
166
|
Weger M, Weger BD, Schink A, Takamiya M, Stegmaier J, Gobet C, Parisi A, Kobitski AY, Mertes J, Krone N, Strähle U, Nienhaus GU, Mikut R, Gachon F, Gut P, Dickmeis T. MondoA regulates gene expression in cholesterol biosynthesis-associated pathways required for zebrafish epiboly. eLife 2020; 9:e57068. [PMID: 32969791 PMCID: PMC7515633 DOI: 10.7554/elife.57068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
The glucose-sensing Mondo pathway regulates expression of metabolic genes in mammals. Here, we characterized its function in the zebrafish and revealed an unexpected role of this pathway in vertebrate embryonic development. We showed that knockdown of mondoa impaired the early morphogenetic movement of epiboly in zebrafish embryos and caused microtubule defects. Expression of genes in the terpenoid backbone and sterol biosynthesis pathways upstream of pregnenolone synthesis was coordinately downregulated in these embryos, including the most downregulated gene nsdhl. Loss of Nsdhl function likewise impaired epiboly, similar to MondoA loss of function. Both epiboly and microtubule defects were partially restored by pregnenolone treatment. Maternal-zygotic mutants of mondoa showed perturbed epiboly with low penetrance and compensatory changes in the expression of terpenoid/sterol/steroid metabolism genes. Collectively, our results show a novel role for MondoA in the regulation of early vertebrate development, connecting glucose, cholesterol and steroid hormone metabolism with early embryonic cell movements.
Collapse
Affiliation(s)
- Meltem Weger
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Benjamin D Weger
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Andrea Schink
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Johannes Stegmaier
- Institute for Automation and Applied Informatics, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Cédric Gobet
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Alice Parisi
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Andrei Yu Kobitski
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Jonas Mertes
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Nils Krone
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Uwe Strähle
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Gerd Ulrich Nienhaus
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruheGermany
- Department of Physics, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Institute of Nanotechnology, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Philipp Gut
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Thomas Dickmeis
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| |
Collapse
|
167
|
The structure of importin α and the nuclear localization peptide of ChREBP, and small compound inhibitors of ChREBP-importin α interactions. Biochem J 2020; 477:3253-3269. [PMID: 32776146 PMCID: PMC7489895 DOI: 10.1042/bcj20200520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 11/17/2022]
Abstract
The carbohydrate response element binding protein (ChREBP) is a glucose-responsive transcription factor that plays a critical role in glucose-mediated induction of genes involved in hepatic glycolysis and lipogenesis. In response to fluctuating blood glucose levels ChREBP activity is regulated mainly by nucleocytoplasmic shuttling of ChREBP. Under high glucose ChREBP binds to importin α and importin β and translocates into the nucleus to initiate transcription. We have previously shown that the nuclear localization signal site (NLS) for ChREBP is bipartite with the NLS extending from Arg158 to Lys190. Here, we report the 2.5 Å crystal structure of the ChREBP-NLS peptide bound to importin α. The structure revealed that the NLS binding is monopartite, with the amino acid residues K171RRI174 from the ChREBP-NLS interacting with ARM2–ARM5 on importin α. We discovered that importin α also binds to the primary binding site of the 14-3-3 proteins with high affinity, which suggests that both importin α and 14-3-3 are each competing with the other for this broad-binding region (residues 117–196) on ChREBP. We screened a small compound library and identified two novel compounds that inhibit the ChREBP-NLS/importin α interaction, nuclear localization, and transcription activities of ChREBP. These candidate molecules support developing inhibitors of ChREBP that may be useful in treatment of obesity and the associated diseases.
Collapse
|
168
|
Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch 2020; 472:1207-1248. [PMID: 32829466 PMCID: PMC7462918 DOI: 10.1007/s00424-020-02439-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Absorption of monosaccharides is mainly mediated by Na+-D-glucose cotransporter SGLT1 and the facititative transporters GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of D-glucose and D-galactose while GLUT5 is relevant for D-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes, whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal D-glucose concentrations, respectively. At high luminal D-glucose, the abundance SGLT1 in the BBM is increased. Hence, D-glucose absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLM whereas high-capacity D-glucose absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed. Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide transporters in the small intestine. Finally, food components that decrease D-glucose absorption and drugs in development that inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose transporters, and for interplay between D-fructose transport and metabolism, are discussed.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstr 6, 97070, Würzburg, Germany.
| |
Collapse
|
169
|
Bagchi DP, Li Z, Corsa CA, Hardij J, Mori H, Learman BS, Lewis KT, Schill RL, Romanelli SM, MacDougald OA. Wntless regulates lipogenic gene expression in adipocytes and protects against diet-induced metabolic dysfunction. Mol Metab 2020; 39:100992. [PMID: 32325263 PMCID: PMC7264081 DOI: 10.1016/j.molmet.2020.100992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Obesity is a key risk factor for many secondary chronic illnesses, including type 2 diabetes and cardiovascular disease. Canonical Wnt/β-catenin signaling is established as an important endogenous inhibitor of adipogenesis. This pathway is operative in mature adipocytes; however, its roles in this context remain unclear due to complexities of Wnt signaling and differences in experimental models. In this study, we used novel cultured cell and mouse models to investigate functional roles of Wnts secreted from adipocytes. METHODS We generated adipocyte-specific Wntless (Wls) knockout mice and cultured cell models to investigate molecular and metabolic consequences of disrupting Wnt secretion from mature adipocytes. To characterize Wls-deficient cultured adipocytes, we evaluated the expression of Wnt target and lipogenic genes and the downstream functional effects on carbohydrate and lipid metabolism. We also investigated the impact of adipocyte-specific Wls deletion on adipose tissues and global glucose metabolism in mice fed normal chow or high-fat diets. RESULTS Many aspects of the Wnt signaling apparatus are expressed and operative in mature adipocytes, including the Wnt chaperone Wntless. Deletion of Wntless in cultured adipocytes results in the inhibition of de novo lipogenesis and lipid monounsaturation, likely through repression of Srebf1 (SREBP1c) and Mlxipl (ChREBP) and impaired cleavage of immature SREBP1c into its active form. Adipocyte-specific Wls knockout mice (Wls-/-) have lipogenic gene expression in adipose tissues and isolated adipocytes similar to that of controls when fed a normal chow diet. However, closer investigation reveals that a subset of Wnts and downstream signaling targets are upregulated within stromal-vascular cells of Wls-/- mice, suggesting that adipose tissues defend loss of Wnt secretion from adipocytes. Interestingly, this compensation is lost with long-term high-fat diet challenges. Thus, after six months of a high-fat diet, Wls-/- mice are characterized by decreased adipocyte lipogenic gene expression, reduced visceral adiposity, and improved glucose homeostasis. CONCLUSIONS Taken together, these studies demonstrate that adipocyte-derived Wnts regulate de novo lipogenesis and lipid desaturation and coordinate the expression of lipogenic genes in adipose tissues. In addition, we report that Wnt signaling within adipose tissues is defended, such that a loss of Wnt secretion from adipocytes is sensed and compensated for by neighboring stromal-vascular cells. With chronic overnutrition, this compensatory mechanism is lost, revealing that Wls-/- mice are resistant to diet-induced obesity, adipocyte hypertrophy, and metabolic dysfunction.
Collapse
Affiliation(s)
- Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ziru Li
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Callie A Corsa
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Julie Hardij
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Hiroyuki Mori
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Brian S Learman
- Department of Microbiology and Immunology, University of Buffalo, Buffalo, NY, USA.
| | - Kenneth T Lewis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Rebecca L Schill
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Steven M Romanelli
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
170
|
Esteves GP, Manca CS, Veida-Silva HP, Ovidio PP, Holland H, Matsuo FS, Osako MK, Jordao AA. A fish oil-rich diet leads to lower adiposity and serum triglycerides but increases liver lipid peroxidation in fructose-fed rats. EGYPTIAN LIVER JOURNAL 2020. [DOI: 10.1186/s43066-020-00045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Consumption of refined carbohydrates has risen in recent years alongside chronic diseases such as type 2 diabetes mellitus, dyslipidemia, obesity, and non-alcoholic fatty liver disease (NAFLD). Fructose is a monosaccharide made widely available in industrialized products, capable of inducing excessive weight gain and liver steatosis in animal models, while omega-3 fatty acids, present in foods such as fatty fish and fish oil, have shown to inhibit genes related to lipogenesis and decrease cardiovascular risk. Therefore, our objective was to evaluate the impact of a high-fructose diet on weight gain, biochemical and oxidative stress parameters, and liver histology and investigate fish oil’s potential protective role. Thirty male Wistar rats were divided into 3 groups: regular chow diet (CT), regular chow diet plus 20% fructose in drinking water (Fr), and a diet containing 10% fish oil plus 20% fructose in drinking water (FOFr). After 12 weeks, tissues of interest were collected for biochemical and histological analyses.
Results
Although fructose consumption did not lead to increased hepatic fat, it caused a significant increase in weight gain, white adipose tissue, and serum triglycerides in the Fr group, while fish oil promoted normalized serum triglycerides and even reduced adiposity in the FOFr group. Additionally, the inclusion of fish oil in the FOFr diet led to increased liver lipid peroxidation in the form of increased hepatic MDA.
Conclusions
It is concluded that fish oil can prevent important metabolic alterations caused by fructose consumption, but its dosage must be taken into account to prevent oxidative stress and potential liver damage.
Collapse
|
171
|
Xing S, Liu R, Zhao G, Liu L, Groenen MAM, Madsen O, Zheng M, Yang X, Crooijmans RPMA, Wen J. RNA-Seq Analysis Reveals Hub Genes Involved in Chicken Intramuscular Fat and Abdominal Fat Deposition During Development. Front Genet 2020; 11:1009. [PMID: 33117416 PMCID: PMC7493673 DOI: 10.3389/fgene.2020.01009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022] Open
Abstract
Fat traits are important in the chicken industry where there is a desire for high intramuscular fat (IMF) and low abdominal fat. However, there is limited knowledge on the relationship between the dynamic status of gene expression and the body fat deposition in chicken. Transcriptome data were obtained from breast muscle and abdominal fat of female chickens from nine developmental stages (from embryonic day 12 to hatched day 180). In total, 8,545 genes in breast muscle and 6,824 genes in abdominal fat were identified as developmentally dynamic genes. Weighted correlation network analysis was used to identify gene modules and the hub genes. Twenty-one hub genes were identified, e.g., ENSGALG00000041996, which represents a candidate for high IMF, and CREB3L1, which relates to low abdominal fat weight. The transcript factor L3MBTL1 and the transcript factor cofactors TNIP1, HAT1, and BEND6 related to both high breast muscle IMF and low abdominal fat weight. Our results provide a resource of developmental transcriptome profiles in chicken breast muscle and abdominal fat. The candidate genes can be used in the selection for increased IMF content and/or a decrease in abdominal fat weight which would contribute to the improvement of these traits.
Collapse
Affiliation(s)
- Siyuan Xing
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Liu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Martien A. M. Groenen
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinting Yang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Jie Wen
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
172
|
Villanueva-Ortega E, Méndez-García LA, Garibay-Nieto GN, Laresgoiti-Servitje E, Medina-Bravo P, Olivos-García A, Muñoz-Ortega MH, Ventura-Juárez J, Escobedo G. Growth hormone ameliorates high glucose-induced steatosis on in vitro cultured human HepG2 hepatocytes by inhibiting de novo lipogenesis via ChREBP and FAS suppression. Growth Horm IGF Res 2020; 53-54:101332. [PMID: 32698101 DOI: 10.1016/j.ghir.2020.101332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Growth hormone (GH) deficiency has been associated with increased steatosis but the molecular mechanism has not been fully elucidated. We investigated the effect of GH on lipid accumulation of HepG2 cells cultured on an in vitro steatosis model and examined the potential involvement of insulin-like growth factor 1 (IGF-1) as well as lipogenic and lipolytic molecules. METHODS Control and steatosis conditions were induced by culturing HepG2 cells with 5.5 or 25 mmol/l glucose for 24 h, respectively. Afterward, cells were exposed to 0, 5, 10 or 20 ng/ml GH for another 24 h. Lipid content was quantified as well as mRNA and protein levels of IGF-1, carbohydrate responsive element-binding protein (ChREBP), sterol regulatory element-binding protein 1c (SREBP1c), fatty acid synthase (FAS), carnitine palmitoyltransferase 1A (CPT1A), and peroxisome proliferator-activated receptor alpha (PPAR-alpha) by qPCR and western blot, respectively. Data were analyzed by one-way ANOVA and the Games-Howell post-hoc test. RESULTS In the steatosis model, HepG2 hepatocytes showed a significant 2-fold increase in lipid amount as compared to control cells. IGF-1 mRNA and protein levels were significantly increased in control cells exposed to 10 ng/ml GH, whereas high glucose abolished this effect. High glucose also significantly increased both mRNA and protein of ChREBP and FAS without having effect on SREBP1c, CPT1A and PPAR-alpha. However, GH inhibited ChREBP and FAS production, even in HepG2 hepatocytes cultured under steatosis conditions. CONCLUSIONS Growth hormone ameliorates high glucose-induced steatosis in HepG2 cells by suppressing de novo lipogenesis via ChREBP and FAS down-regulation.
Collapse
Affiliation(s)
- Eréndira Villanueva-Ortega
- Laboratory for Proteomics and Metabolomics, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico City, Mexico.; Department of Genetics, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico City, Mexico
| | - Lucia A Méndez-García
- Laboratory for Proteomics and Metabolomics, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico City, Mexico
| | - Guadalupe N Garibay-Nieto
- Department of Genetics, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico City, Mexico
| | - Estibalitz Laresgoiti-Servitje
- Clinical Medical Sciences, School of Medicine, Tecnológico de Monterrey, Campus Ciudad de México, 14380, Mexico City, Mexico
| | - Patricia Medina-Bravo
- Endocrinology Department, Hospital Infantil de México Federico Gómez, 06720, Mexico City, Mexico
| | - Alfonso Olivos-García
- Experimental Research Unit, School of Medicine, Universidad Nacional Autónoma de México, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico City, Mexico
| | - Martín H Muñoz-Ortega
- Universidad Autónoma de Aguascalientes, Departamento de Morfología, Centro de Ciencias Básicas, Edificio 202, Av. Universidad 940 Ciudad Universitaria C.P. 20130, Aguascalientes, Ags., Mexico
| | - Javier Ventura-Juárez
- Universidad Autónoma de Aguascalientes, Departamento de Morfología, Centro de Ciencias Básicas, Edificio 202, Av. Universidad 940 Ciudad Universitaria C.P. 20130, Aguascalientes, Ags., Mexico
| | - Galileo Escobedo
- Laboratory for Proteomics and Metabolomics, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico City, Mexico..
| |
Collapse
|
173
|
Shu ZP, Yi GW, Deng S, Huang K, Wang Y. Hippo pathway cooperates with ChREBP to regulate hepatic glucose utilization. Biochem Biophys Res Commun 2020; 530:115-121. [PMID: 32828272 DOI: 10.1016/j.bbrc.2020.06.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 01/21/2023]
Abstract
Hippo pathway plays a crucial role as a regulator of organ size and tumorigenesis that negatively regulates cell growth and survival. Recently lots of evidences show that Hippo pathway plays a crucial role in glucose metabolic metabolism to regulate energy status with cell growth. However, the detailed mechanism is still unclear. Here we report that Yes-associated protein (YAP), the terminal effector of Hippo pathway, interacts with carbohydrate response element binding protein (ChREBP) in the nucleus of the hepatocytes thereby promoting glycolysis and lipogenesis. A high carbohydrate (HCHO) diet could inactivate the Hippo pathway and encourage the combination of YAP and ChREBP, leading to glucose-induced hepatocyte glycolysis and lipogenesis through up-regulation of target genes such as L-PK and ACC in mice. Conversely, inhibition of YAP activity by phosphorylation or downregulation antagonized glycolysis and lipogenesis in mice fed with HCHO diet. These results suggest that YAP is a nuclear co-factor of ChREBP and that the Hippo pathway negatively affects hepatocyte glycolysis by inhibiting the function of YAP-ChREBP.
Collapse
Affiliation(s)
- Zhi-Ping Shu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Gui-Wen Yi
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shan Deng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
174
|
Lambadiari V, Korakas E, Tsimihodimos V. The Impact of Dietary Glycemic Index and Glycemic Load on Postprandial Lipid Kinetics, Dyslipidemia and Cardiovascular Risk. Nutrients 2020; 12:E2204. [PMID: 32722053 PMCID: PMC7468809 DOI: 10.3390/nu12082204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Many recent studies have acknowledged postprandial hypetriglyceridemia as a distinct risk factor for cardiovascular disease. This dysmetabolic state is the result of the hepatic overproduction of very low-density lipoproteins (VLDLs) and intestinal secretion of chylomicrons (CMs), which leads to highly atherogenic particles and endothelial inflammation. Postprandial lipid metabolism does not only depend on consumed fat but also on the other classes of nutrients that a meal contains. Various mechanisms through which carbohydrates exacerbate lipidemia have been identified, especially for fructose, which stimulates de novo lipogenesis. Glycemic index and glycemic load, despite their intrinsic limitations, have been used as markers of the postprandial glucose and insulin response, and their association with metabolic health and cardiovascular events has been extensively studied with contradictory results. This review aims to discuss the importance and pathogenesis of postprandial hypertriglyceridemia and its association with cardiovascular disease. Then, we describe the mechanisms through which carbohydrates influence lipidemia and, through a brief presentation of the available clinical studies on glycemic index/glycemic load, we discuss the association of these indices with atherogenic dyslipidemia and address possible concerns and implications for everyday practice.
Collapse
Affiliation(s)
- Vaia Lambadiari
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece;
| | - Emmanouil Korakas
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece;
| | - Vasilios Tsimihodimos
- Department of Internal Medicine, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece;
| |
Collapse
|
175
|
Fougerat A, Montagner A, Loiseau N, Guillou H, Wahli W. Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2020; 9:E1638. [PMID: 32650421 PMCID: PMC7408116 DOI: 10.3390/cells9071638] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, frequently associated with obesity and type 2 diabetes. Steatosis is the initial stage of the disease, which is characterized by lipid accumulation in hepatocytes, which can progress to non-alcoholic steatohepatitis (NASH) with inflammation and various levels of fibrosis that further increase the risk of developing cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is influenced by interactions between genetic and environmental factors and involves several biological processes in multiple organs. No effective therapy is currently available for the treatment of NAFLD. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that regulate many functions that are disturbed in NAFLD, including glucose and lipid metabolism, as well as inflammation. Thus, they represent relevant clinical targets for NAFLD. In this review, we describe the determinants and mechanisms underlying the pathogenesis of NAFLD, its progression and complications, as well as the current therapeutic strategies that are employed. We also focus on the complementary and distinct roles of PPAR isotypes in many biological processes and on the effects of first-generation PPAR agonists. Finally, we review novel and safe PPAR agonists with improved efficacy and their potential use in the treatment of NAFLD.
Collapse
Affiliation(s)
- Anne Fougerat
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Alexandra Montagner
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institute of Metabolic and Cardiovascular Diseases, UMR1048 Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, UMR1048 Toulouse, France
| | - Nicolas Loiseau
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Walter Wahli
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
176
|
Axelrod CL, King WT, Davuluri G, Noland RC, Hall J, Hull M, Dantas WS, Zunica ERM, Alexopoulos SJ, Hoehn KL, Langohr I, Stadler K, Doyle H, Schmidt E, Nieuwoudt S, Fitzgerald K, Pergola K, Fujioka H, Mey JT, Fealy C, Mulya A, Beyl R, Hoppel CL, Kirwan JP. BAM15-mediated mitochondrial uncoupling protects against obesity and improves glycemic control. EMBO Mol Med 2020; 12:e12088. [PMID: 32519812 PMCID: PMC7338798 DOI: 10.15252/emmm.202012088] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 11/09/2022] Open
Abstract
Obesity is a leading cause of preventable death worldwide. Despite this, current strategies for the treatment of obesity remain ineffective at achieving long-term weight control. This is due, in part, to difficulties in identifying tolerable and efficacious small molecules or biologics capable of regulating systemic nutrient homeostasis. Here, we demonstrate that BAM15, a mitochondrially targeted small molecule protonophore, stimulates energy expenditure and glucose and lipid metabolism to protect against diet-induced obesity. Exposure to BAM15 in vitro enhanced mitochondrial respiratory kinetics, improved insulin action, and stimulated nutrient uptake by sustained activation of AMPK. C57BL/6J mice treated with BAM15 were resistant to weight gain. Furthermore, BAM15-treated mice exhibited improved body composition and glycemic control independent of weight loss, effects attributable to drug targeting of lipid-rich tissues. We provide the first phenotypic characterization and demonstration of pre-clinical efficacy for BAM15 as a pharmacological approach for the treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Christopher L Axelrod
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Translational ServicesPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - William T King
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Translational ServicesPennington Biomedical Research CenterBaton RougeLAUSA
| | - Gangarao Davuluri
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Sarcopenia and Malnutrition LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Robert C Noland
- Skeletal Muscle Metabolism LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Jacob Hall
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Translational ServicesPennington Biomedical Research CenterBaton RougeLAUSA
| | - Michaela Hull
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Elizabeth RM Zunica
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of NutritionCase Western Reserve UniversityClevelandOHUSA
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Ingeborg Langohr
- Department of Pathobiological SciencesLouisiana State UniversityBaton RougeLAUSA
| | - Krisztian Stadler
- Oxidative Stress and Disease LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Haylee Doyle
- Oxidative Stress and Disease LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Eva Schmidt
- Oxidative Stress and Disease LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Stephan Nieuwoudt
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Kelly Fitzgerald
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Kathryn Pergola
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Translational ServicesPennington Biomedical Research CenterBaton RougeLAUSA
| | - Hisashi Fujioka
- Cryo‐Electron Microscopy CoreCase Western Reserve UniversityClevelandOHUSA
| | - Jacob T Mey
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Ciaran Fealy
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Anny Mulya
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Robbie Beyl
- Department of BiostatisticsPennington Biomedical Research CenterBaton RougeLAUSA
| | - Charles L Hoppel
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of PharmacologyCase Western Reserve UniversityClevelandOHUSA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
- Department of NutritionCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
177
|
Zhao T, Yang SB, Chen GH, Xu YH, Xu YC, Luo Z. Dietary Glucose Increases Glucose Absorption and Lipid Deposition via SGLT1/2 Signaling and Acetylated ChREBP in the Intestine and Isolated Intestinal Epithelial Cells of Yellow Catfish. J Nutr 2020; 150:1790-1798. [PMID: 32470978 DOI: 10.1093/jn/nxaa125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dietary carbohydrate affects intestinal glucose absorption and lipid deposition, but the underlying mechanisms are unknown. OBJECTIVES We used yellow catfish and their isolated intestinal epithelial cells (IECs) to test the hypothesis that sodium/glucose cotransporters (SGLTs) 1/2 and acetylated carbohydrate response element binding protein (ChREBP) mediated glucose-induced changes in glucose absorption and lipid metabolism. METHODS Yellow catfish (mean ± SEM weight: 4.68 ± 0.02 g, 3 mo old, mixed sex) were fed diets containing 250 g carbohydrates/kg from glucose (G, control), corn starch (CS), sucrose (S), potato starch (PS), or dextrin (D) for 10 wk. IECs were isolated from different yellow catfish and incubated for 24 h in a control or glucose (15 mM) solution with or without a 2-h pretreatment with an inhibitor [sotagliflozin (LX-4211) or tubastatin A (TBSA)]. Human embryonic kidney cells (HEK293T cells) were transfected with a Flag-ChREBP plasmid to explore ChREBP acetylation. Triglyceride (TG) and glucose concentrations and enzymatic activities were measured in the intestine and IECs of yellow catfish. They also were subjected to immunofluorescence, immunoprecipitation, qPCR, and immunoblotting. Immunoblotting and immunoprecipitation were performed with HEK293T cells. RESULTS The G group had greater intestine TGs (0.99- to 2.30-fold); activities of glucose 6-phospate dehydrogenase, 6-phosphogluconate dehydrogenase, and isocitrate dehydrogenase (0.12- to 2.10-fold); and expression of lipogenic genes (0.32- to 2.34-fold) than the CS, PS, and D groups. The G group had greater intestine sglt1/2 mRNA and protein expression than the CS, S and D groups (0.35- to 1.12-fold and 0.40- to 4.67-fold, respectively), but lower mRNA amounts of lipolytic genes (48.6%-65.8%) than the CS and PS groups. LX-4211 alleviated the glucose-induced increase in sglt1/2 mRNA (38.2%-47.4%) and SGLT1 protein (48.0%) expression, TGs (29.3%), and lipogenic enzyme activities (27.7%-42.1%) and gene expression (38.0%-55.5%) in the IECs. TBSA promoted the glucose-induced increase in TGs (11.3%), fatty acid synthase activity (32.6%), and lipogenic gene expression (21.6%-34.4%) in the IECs and acetylated ChREBP (10.5%) in HEK293T cells. CONCLUSIONS SGLT1/2 signaling and acetylated ChREBP mediated glucose-induced changes in glucose absorption and lipid metabolism in the intestine and IECs of yellow catfish.
Collapse
Affiliation(s)
- Tao Zhao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Shui-Bo Yang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Guang-Hui Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Yi-Huan Xu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Yi-Chuang Xu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
178
|
Azzu V, Vacca M, Virtue S, Allison M, Vidal-Puig A. Adipose Tissue-Liver Cross Talk in the Control of Whole-Body Metabolism: Implications in Nonalcoholic Fatty Liver Disease. Gastroenterology 2020; 158:1899-1912. [PMID: 32061598 DOI: 10.1053/j.gastro.2019.12.054] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/20/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Adipose tissue and the liver play significant roles in the regulation of whole-body energy homeostasis, but they have not evolved to cope with the continuous, chronic, nutrient surplus seen in obesity. In this review, we detail how prolonged metabolic stress leads to adipose tissue dysfunction, inflammation, and adipokine release that results in increased lipid flux to the liver. Overall, the upshot of hepatic fat accumulation alongside an insulin-resistant state is that hepatic lipid enzymatic pathways are modulated and overwhelmed, resulting in the selective buildup of toxic lipid species, which worsens the pro-inflammatory and pro-fibrotic shift observed in nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Vian Azzu
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital; The Liver Unit, Department of Medicine, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge.
| | - Michele Vacca
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital
| | - Samuel Virtue
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital
| | - Michael Allison
- The Liver Unit, Department of Medicine, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge
| | - Antonio Vidal-Puig
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital; Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
179
|
Shi JH, Lu JY, Chen HY, Wei CC, Xu X, Li H, Bai Q, Xia FZ, Lam SM, Zhang H, Shi YN, Cao D, Chen L, Shui G, Yang X, Lu Y, Chen YX, Zhang WJ. Liver ChREBP Protects Against Fructose-Induced Glycogenic Hepatotoxicity by Regulating L-Type Pyruvate Kinase. Diabetes 2020; 69:591-602. [PMID: 31974143 DOI: 10.2337/db19-0388] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 01/15/2020] [Indexed: 11/13/2022]
Abstract
Excessive fructose consumption is closely linked to the pathogenesis of metabolic disease. Carbohydrate response element-binding protein (ChREBP) is a transcription factor essential for fructose tolerance in mice. However, the functional significance of liver ChREBP in fructose metabolism remains unclear. Here, we show that liver ChREBP protects mice against fructose-induced hepatotoxicity by regulating liver glycogen metabolism and ATP homeostasis. Liver-specific ablation of ChREBP did not compromise fructose tolerance, but rather caused severe transaminitis and hepatomegaly with massive glycogen overload in mice fed a high-fructose diet, while no obvious inflammation, cell death, or fibrosis was detected in the liver. In addition, liver ATP contents were significantly decreased by ChREBP deficiency in the fed state, which was rendered more pronounced by fructose feeding. Mechanistically, liver contents of glucose-6-phosphate (G6P), an allosteric activator of glycogen synthase, were markedly increased in the absence of liver ChREBP, while fasting-induced glycogen breakdown was not compromised. Furthermore, hepatic overexpression of LPK, a ChREBP target gene in glycolysis, could effectively rescue glycogen overload and ATP reduction, as well as mitigate fructose-induced hepatotoxicity in ChREBP-deficient mice. Taken together, our findings establish a critical role of liver ChREBP in coping with hepatic fructose stress and protecting from hepatotoxicity by regulating LPK.
Collapse
Affiliation(s)
- Jian-Hui Shi
- Department of Pathophysiology, Obesity and Diabetes Research Center, Navy Medical University, Shanghai, China
| | - Jun-Yu Lu
- Department of Pathophysiology, Obesity and Diabetes Research Center, Navy Medical University, Shanghai, China
| | - Heng-Yu Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Chun-Chun Wei
- Department of Pathophysiology, Obesity and Diabetes Research Center, Navy Medical University, Shanghai, China
| | - Xiongfei Xu
- Department of Pathophysiology, Obesity and Diabetes Research Center, Navy Medical University, Shanghai, China
| | - Hao Li
- Department of Pathophysiology, Obesity and Diabetes Research Center, Navy Medical University, Shanghai, China
| | - Qiufang Bai
- Department of Pathophysiology, Obesity and Diabetes Research Center, Navy Medical University, Shanghai, China
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Fang-Zhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hai Zhang
- Department of Pathophysiology, Obesity and Diabetes Research Center, Navy Medical University, Shanghai, China
| | - Ya-Nan Shi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Dongmei Cao
- Department of Pathophysiology, Obesity and Diabetes Research Center, Navy Medical University, Shanghai, China
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu-Xia Chen
- Department of Pathophysiology, Obesity and Diabetes Research Center, Navy Medical University, Shanghai, China
| | - Weiping J Zhang
- Department of Pathophysiology, Obesity and Diabetes Research Center, Navy Medical University, Shanghai, China
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| |
Collapse
|
180
|
Lei Y, Hu Q, Gu J. Expressions of Carbohydrate Response Element Binding Protein and Glucose Transporters in Liver Cancer and Clinical Significance. Pathol Oncol Res 2020; 26:1331-1340. [PMID: 31407220 PMCID: PMC7242283 DOI: 10.1007/s12253-019-00708-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Carbohydrate response element binding protein (ChREBP) is a glucose-sensing transcription factor that mediates the induction of glycolytic and lipogenic genes in response to glucose. We investigated the expression patterns of ChREBP and glucose transporters (GLUTs) in human hepatocellular carcinoma (HCC) and their association with HCC progression. ChREBP, GLUT2 and GLUT1 immunohistochemistry were performed on liver tissue array containing normal liver tissue, HCC adjacent tissue and cancer tissue of different HCC stages. The effect of HCC malignancy on protein expression was analyzed with one-way ANOVA. The correlations between protein expressions were analyzed with Pearson Correlation test. We found that ChREBP protein expression tended to be positively correlated to liver malignancy. GLUT2 protein expression was significantly reduced in human HCC as compared to normal liver tissue and its expression in HCC was inversely associated to malignancy (p < 0.001). In contrast, GLUT1 was significantly increased in cancer cells and its expression was positively correlated to malignancy (p < 0.001). Furthermore, GLUT1 expression was positively associated to ChREBP expression (r = 0.481, p < 0.0001, n = 70) but negatively correlated to GLUT2 expression (r = -0.320, p = 0.007, n = 70). Notably, ChREBP-expressing hepatocytes did not express GLUT2 but GLUT1. This is the first report unveiling expressions of ChREBP and GLUT2/GLUT1 and their relations in HCC. The expression patterns are related to malignancy and this information would facilitate evaluation of clinical behavior and treatment of HCC.
Collapse
Affiliation(s)
- Yu Lei
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713, GZ, Groningen, The Netherlands
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Qiaoling Hu
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jiang Gu
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China.
- Department of Pathology, Beijing University Health Science Center, Beijing, 100083, China.
| |
Collapse
|
181
|
Suzuki S, Yokoyama A, Noro E, Aoki S, Shimizu K, Shimada H, Sugawara A. Expression and pathophysiological significance of carbohydrate response element binding protein (ChREBP) in the renal tubules of diabetic kidney. Endocr J 2020; 67:335-345. [PMID: 31813922 DOI: 10.1507/endocrj.ej19-0133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Carbohydrate response element binding protein (ChREBP), a glucose responsive transcription factor, mainly regulates expression of genes involved in glucose metabolism and lipogenesis. Recently, ChREBP is speculated to be involved in the onset and progression of diabetic nephropathy (DN). However, there exists no report regarding the localization and function of ChREBP in the kidney. Therefore, we analyzed the localization of Chrebp mRNA expression in the wild type (WT) mice kidney using laser microdissection method, and observed its dominant expression in the proximal tubules. In diabetic mice, mRNA expression of Chrebp target genes in the proximal tubules, including Chrebpβ and thioredoxin-interacting protein (Txnip), significantly increased comparing with that of WT mice. Co-overexpression of ChREBP and its partner Mlx, in the absence of glucose, also increased TXNIP mRNA expression as well as high glucose in human proximal tubular epithelial cell line HK-2. Since TXNIP is well known to be involved in the production of reactive oxygen species (ROS), we next examined the effect of ChREBP/Mlx co-overexpression, in the absence of glucose, on ROS production in HK-2 cells. Interestingly, ChREBP/Mlx co-overexpression also induced ROS production significantly as well as high glucose. Moreover, both high glucose-induced increase of TXNIP mRNA expression and ROS production were abrogated by ChREBP small interfering RNA transfection. Taken together, high glucose-activated ChREBP in the renal proximal tubules induce the expression of TXNIP mRNA, resulting in the production of ROS which may cause renal tubular damage. It is therefore speculated that ChREBP is involved in the onset and progression of DN.
Collapse
Affiliation(s)
- Susumu Suzuki
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Erika Noro
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Satoshi Aoki
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Kyoko Shimizu
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroki Shimada
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
182
|
Mejhert N, Kuruvilla L, Gabriel KR, Elliott SD, Guie MA, Wang H, Lai ZW, Lane EA, Christiano R, Danial NN, Farese RV, Walther TC. Partitioning of MLX-Family Transcription Factors to Lipid Droplets Regulates Metabolic Gene Expression. Mol Cell 2020; 77:1251-1264.e9. [PMID: 32023484 PMCID: PMC7397554 DOI: 10.1016/j.molcel.2020.01.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/05/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Lipid droplets (LDs) store lipids for energy and are central to cellular lipid homeostasis. The mechanisms coordinating lipid storage in LDs with cellular metabolism are unclear but relevant to obesity-related diseases. Here we utilized genome-wide screening to identify genes that modulate lipid storage in macrophages, a cell type involved in metabolic diseases. Among ∼550 identified screen hits is MLX, a basic helix-loop-helix leucine-zipper transcription factor that regulates metabolic processes. We show that MLX and glucose-sensing family members MLXIP/MondoA and MLXIPL/ChREBP bind LDs via C-terminal amphipathic helices. When LDs accumulate in cells, these transcription factors bind to LDs, reducing their availability for transcriptional activity and attenuating the response to glucose. Conversely, the absence of LDs results in hyperactivation of MLX target genes. Our findings uncover a paradigm for a lipid storage response in which binding of MLX transcription factors to LD surfaces adjusts the expression of metabolic genes to lipid storage levels.
Collapse
Affiliation(s)
- Niklas Mejhert
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Leena Kuruvilla
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Katlyn R Gabriel
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Shane D Elliott
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Marie-Aude Guie
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Huajin Wang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zon Weng Lai
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth A Lane
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Romain Christiano
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nika N Danial
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
183
|
Lei Y, Zhou S, Hu Q, Chen X, Gu J. Carbohydrate response element binding protein (ChREBP) correlates with colon cancer progression and contributes to cell proliferation. Sci Rep 2020; 10:4233. [PMID: 32144313 PMCID: PMC7060312 DOI: 10.1038/s41598-020-60903-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/07/2020] [Indexed: 02/05/2023] Open
Abstract
Cancers are characterized by reprogrammed glucose metabolisms to fuel cell growth and proliferation. Carbohydrate response element binding protein (ChREBP) is a glucose-mediated transcription factor that strongly regulates glycolytic and lipogenic pathways. It has been shown to associate with metabolic diseases, such as obesity, diabetes and non-alcoholic fatty liver diseases. However, how it associates with cancers has not been well understood. In this study, ChREBP expression was assessed by immunohistochemistry in colon tissue arrays containing normal colon tissue and cancer tissue at different clinical stages. Tissue mRNA levels of ChREBP were also measured in a cohort of colon cancer patients. We found that ChREBP mRNA and protein expression were significantly increased in colon cancer tissue compared to healthy colon (p < 0.001), and their expression was positively correlated to colon malignancy (for mRNA, p = 0.002; for protein p < 0.001). Expression of lipogenic genes (ELOVL6 and SCD1) in colon cancer was also positively associated with colon malignancy (for both genes, p < 0.001). In vitro, ChREBP knockdown with siRNA transfection inhibited cell proliferation and induced cell cycle arrest without changes in apoptosis in colon cancer cell lines (HT29, DLD1 and SW480). Glycolytic and lipogenic pathways were inhibited but the p53 pathway was activated after ChREBP knockdown. Taken together, ChREBP expression is associated with colon malignancy and it might contribute to cell proliferation via promoting anabolic pathways and inhibiting p53. In addition, ChREBP might represent a novel clinical useful biomarker to evaluate the malignancy of colon cancer.
Collapse
Affiliation(s)
- Yu Lei
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Shuling Zhou
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Qiaoling Hu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xueling Chen
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jiang Gu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China.
| |
Collapse
|
184
|
A Screen for Gene Paralogies Delineating Evolutionary Branching Order of Early Metazoa. G3-GENES GENOMES GENETICS 2020; 10:811-826. [PMID: 31879283 PMCID: PMC7003098 DOI: 10.1534/g3.119.400951] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The evolutionary diversification of animals is one of Earth’s greatest marvels, yet its earliest steps are shrouded in mystery. Animals, the monophyletic clade known as Metazoa, evolved wildly divergent multicellular life strategies featuring ciliated sensory epithelia. In many lineages epithelial sensoria became coupled to increasingly complex nervous systems. Currently, different phylogenetic analyses of single-copy genes support mutually-exclusive possibilities that either Porifera or Ctenophora is sister to all other animals. Resolving this dilemma would advance the ecological and evolutionary understanding of the first animals and the evolution of nervous systems. Here we describe a comparative phylogenetic approach based on gene duplications. We computationally identify and analyze gene families with early metazoan duplications using an approach that mitigates apparent gene loss resulting from the miscalling of paralogs. In the transmembrane channel-like (TMC) family of mechano-transducing channels, we find ancient duplications that define separate clades for Eumetazoa (Placozoa + Cnidaria + Bilateria) vs. Ctenophora, and one duplication that is shared only by Eumetazoa and Porifera. In the Max-like protein X (MLX and MLXIP) family of bHLH-ZIP regulators of metabolism, we find that all major lineages from Eumetazoa and Porifera (sponges) share a duplicated gene pair that is sister to the single-copy gene maintained in Ctenophora. These results suggest a new avenue for deducing deep phylogeny by choosing rather than avoiding ancient gene paralogies.
Collapse
|
185
|
Softic S, Stanhope KL, Boucher J, Divanovic S, Lanaspa MA, Johnson RJ, Kahn CR. Fructose and hepatic insulin resistance. Crit Rev Clin Lab Sci 2020; 57:308-322. [PMID: 31935149 DOI: 10.1080/10408363.2019.1711360] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excessive caloric intake in a form of high-fat diet (HFD) was long thought to be the major risk factor for development of obesity and its complications, such as fatty liver disease and insulin resistance. Recently, there has been a paradigm shift and more attention is attributed to the effects of sugar-sweetened beverages (SSBs) as one of the culprits of the obesity epidemic. In this review, we present the data invoking fructose intake with development of hepatic insulin resistance in human studies and discuss the pathways by which fructose impairs hepatic insulin action in experimental animal models. First, we described well-characterized pathways by which fructose metabolism indirectly leads to hepatic insulin resistance. These include unequivocal effects of fructose to promote de novo lipogenesis (DNL), impair fatty acid oxidation (FAO), induce endoplasmic reticulum (ER) stress and trigger hepatic inflammation. Additionally, we entertained the hypothesis that fructose can directly impede insulin signaling in the liver. This appears to be mediated by reduced insulin receptor and insulin receptor substrate 2 (IRS2) expression, increased protein-tyrosine phosphatase 1B (PTP1b) activity, whereas knockdown of ketohexokinase (KHK), the rate-limiting enzyme of fructose metabolism, increased insulin sensitivity. In summary, dietary fructose intake strongly promotes hepatic insulin resistance via complex interplay of several metabolic pathways, at least some of which are independent of increased weight gain and caloric intake. The current evidence shows that the fructose, but not glucose, component of dietary sugar drives metabolic complications and contradicts the notion that fructose is merely a source of palatable calories that leads to increased weight gain and insulin resistance.
Collapse
Affiliation(s)
- Samir Softic
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children's Hospital, Lexington, KY, USA.,Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, CO, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, CO, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| |
Collapse
|
186
|
Pioche T, Skiba F, Bernadet MD, Seiliez I, Massimino W, Houssier M, Tavernier A, Ricaud K, Davail S, Skiba-Cassy S, Gontier K. Kinetic study of the expression of genes related to hepatic steatosis, glucose and lipid metabolism, and cellular stress during overfeeding in mule ducks. Am J Physiol Regul Integr Comp Physiol 2020; 318:R453-R467. [PMID: 31913683 DOI: 10.1152/ajpregu.00198.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Induced by overfeeding, hepatic steatosis is a process exploited for the "foie gras" production in mule ducks. To better understand the mechanisms underlying its development, the physiological responses of mule ducks overfed with corn for a duration of 11 days were analyzed. A kinetic analysis of glucose and lipid metabolism and cell protection mechanisms was performed on 96 male mule ducks during overfeeding with three sampling times (after the 4th, the 12th, and the 22nd meal). Gene expression and protein analysis realized on the liver, muscle, and abdominal fat showed an activation of a cholesterol biosynthetic pathway during the complete overfeeding period mainly in livers with significant correlations between its weight and its cholesterolemia (r = 0.88; P < 0.0001) and between the liver weight and the hmgcr and soat1 expression (r = 0.4, P < 0.0001 and r = 0.67; P < 0.0001, respectively). Results also revealed an activation of insulin and amino acid cells signaling a pathway suggesting that ducks boost insulin sensitivity to raise glucose uptake and use via glycolysis and lipogenesis. Cellular stress analysis revealed an upregulation of key autophagy-related gene expression atg8 and sqstm1(P < 0.0001) during the complete overfeeding period, mainly in the liver, in contrast to an induction of cyp2e1(P < 0.0001), suggesting that autophagy could be suppressed during steatosis development. This study has highlighted different mechanisms enabling mule ducks to efficiently handle the starch overload by keeping its liver in a nonpathological state. Moreover, it has revealed potential biomarker candidates of hepatic steatosis as plasma cholesterol for the liver weight.
Collapse
Affiliation(s)
- Tracy Pioche
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Fabien Skiba
- Nutricia, Route de Saint-Sever, Haut-Mauco, France
| | - Marie-Dominique Bernadet
- Unité Expérimentale Palmipèdes à Foie Gras, Institut National de la Recherche Agronomique Bordeaux-Aquitaine, Domaine d'Artiguères, Benquet, France
| | - Iban Seiliez
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - William Massimino
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Marianne Houssier
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Annabelle Tavernier
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Karine Ricaud
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Stéphane Davail
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Sandrine Skiba-Cassy
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Karine Gontier
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
187
|
Agius L, Chachra SS, Ford BE. The Protective Role of the Carbohydrate Response Element Binding Protein in the Liver: The Metabolite Perspective. Front Endocrinol (Lausanne) 2020; 11:594041. [PMID: 33281747 PMCID: PMC7705168 DOI: 10.3389/fendo.2020.594041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
The Carbohydrate response element binding protein, ChREBP encoded by the MLXIPL gene, is a transcription factor that is expressed at high levels in the liver and has a prominent function during consumption of high-carbohydrate diets. ChREBP is activated by raised cellular levels of phosphate ester intermediates of glycolysis, gluconeogenesis and the pentose phosphate pathway. Its target genes include a wide range of enzymes and regulatory proteins, including G6pc, Gckr, Pklr, Prkaa1,2, and enzymes of lipogenesis. ChREBP activation cumulatively promotes increased disposal of phosphate ester intermediates to glucose, via glucose 6-phosphatase or to pyruvate via glycolysis with further metabolism by lipogenesis. Dietary fructose is metabolized in both the intestine and the liver and is more lipogenic than glucose. It also induces greater elevation in phosphate ester intermediates than glucose, and at high concentrations causes transient depletion of inorganic phosphate, compromised ATP homeostasis and degradation of adenine nucleotides to uric acid. ChREBP deficiency predisposes to fructose intolerance and compromised cellular phosphate ester and ATP homeostasis and thereby markedly aggravates the changes in metabolite levels caused by dietary fructose. The recent evidence that high fructose intake causes more severe hepatocyte damage in ChREBP-deficient models confirms the crucial protective role for ChREBP in maintaining intracellular phosphate homeostasis. The improved ATP homeostasis in hepatocytes isolated from mice after chronic activation of ChREBP with a glucokinase activator supports the role of ChREBP in the control of intracellular homeostasis. It is hypothesized that drugs that activate ChREBP confer a protective role in the liver particularly in compromised metabolic states.
Collapse
|
188
|
Al-attar R, Wu CW, Biggar KK, Storey KB. Carb-Loading: Freeze-Induced Activation of the Glucose-Responsive ChREBP Transcriptional Network in Wood Frogs. Physiol Biochem Zool 2020; 93:49-61. [DOI: 10.1086/706463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
189
|
Iizuka K, Takao K, Yabe D. ChREBP-Mediated Regulation of Lipid Metabolism: Involvement of the Gut Microbiota, Liver, and Adipose Tissue. Front Endocrinol (Lausanne) 2020; 11:587189. [PMID: 33343508 PMCID: PMC7744659 DOI: 10.3389/fendo.2020.587189] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
Carbohydrate response element-binding protein (ChREBP) plays an important role in the development of type 2 diabetes, dyslipidemia, and non-alcoholic fatty liver disease, as well as tumorigenesis. ChREBP is highly expressed in lipogenic organs, such as liver, intestine, and adipose tissue, in which it regulates the production of acetyl CoA from glucose by inducing Pklr and Acyl expression. It has recently been demonstrated that ChREBP plays a role in the conversion of gut microbiota-derived acetate to acetyl CoA by activating its target gene, Acss2, in the liver. ChREBP regulates fatty acid synthesis, elongation, and desaturation by inducing Acc1 and Fasn, elongation of long-chain fatty acids family member 6 (encoded by Elovl6), and Scd1 expression, respectively. ChREBP also regulates the formation of very low-density lipoprotein by inducing the expression of Mtp. Furthermore, it plays a crucial role in peripheral lipid metabolism by inducing Fgf21 expression, as well as that of Angptl3 and Angptl8, which are known to reduce peripheral lipoprotein lipase activity. In addition, ChREBP is involved in the production of palmitic-acid-5-hydroxystearic-acid, which increases insulin sensitivity in adipose tissue. Curiously, ChREBP is indirectly involved in fatty acid β-oxidation and subsequent ketogenesis. Thus, ChREBP regulates whole-body lipid metabolism by controlling the transcription of lipogenic enzymes and liver-derived cytokines.
Collapse
Affiliation(s)
- Katsumi Iizuka
- Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for Nutritional Support and Infection Control, Gifu University Hospital, Gifu, Japan
- *Correspondence: Katsumi Iizuka,
| | - Ken Takao
- Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daisuke Yabe
- Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine, Gifu, Japan
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe, Japan
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
190
|
Kikuchi K, Tsukamoto H. Stearoyl-CoA desaturase and tumorigenesis. Chem Biol Interact 2019; 316:108917. [PMID: 31838050 DOI: 10.1016/j.cbi.2019.108917] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023]
Abstract
Stearoyl-CoA desaturase (SCD) generates monounsaturated fatty acids (MUFAs) which contribute to cell growth, survival, differentiation, metabolic regulation and signal transduction. Overexpression of SCD is evident and implicated in metabolic diseases such as diabetes and non-alcoholic fatty liver disease. SCD also stimulates canonical Wnt pathway and YAP activation in support of stemness and tumorigenesis. SCD facilitates metabolic reprogramming in cancer which is mediated, at least in part, by regulation of AKT, AMPK, and NF-kB via MUFAs. Our research has revealed the novel positive loop to amplify Wnt signaling through stabilization of LRP5/6 in both hepatic stellate cells and liver tumor-initiating stem cell-like cells. As such, this loop is pivotal in promoting liver fibrosis and liver tumor development. This review summarizes the mechanisms of SCD-mediated tumor promotion described by recent studies and discusses the future prospect for SCD-mediated signaling crosstalk as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Kohtaro Kikuchi
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
191
|
Lu Z, He XF, Ma BB, Zhang L, Li JL, Jiang Y, Zhou GH, Gao F. Increased fat synthesis and limited apolipoprotein B cause lipid accumulation in the liver of broiler chickens exposed to chronic heat stress. Poult Sci 2019; 98:3695-3704. [PMID: 30809677 DOI: 10.3382/ps/pez056] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/26/2019] [Indexed: 12/28/2022] Open
Abstract
Chronic heat stress can enhance fat synthesis in broilers, and excessive triglyceride (TG) synthesized by the liver needs to be transported to extrahepatic tissues by very low density lipoprotein (VLDL) otherwise will accumulate in the liver, which may even result in hepatic steatosis. To investigate the molecular mechanisms by which chronic heat stress enhances fat synthesis and results in lipid accumulation in the liver of chickens, 144 broilers (Arbor Acres, 28-day-old) were randomly allocated to the normal control (NC, 22°C), heat stress (HS, consistent 32°C), or pair-fed (PF, 22°C) groups for a 14-D trial. The 7 D of heat exposure significantly increased the respiratory rate, relative weight of abdominal fat, the levels of glucose, TG, corticosterone, insulin, and VLDL in plasma, as well as the levels of TG, total cholesterol, acyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) in the liver, and mRNA expression levels of carbohydrate response element-binding protein (ChREBP), ACC, FAS, and microsomal triglyceride transfer protein (MTTP) in comparison with the other 2 groups. After 14 D of heat exposure, the relative weights of abdominal fat and liver and levels of TG and FAS in the liver were significantly higher in the HS group than in the other 2 groups, and there were no significant differences in the respiratory rate, plasma corticosterone concentration, apolipoprotein B (ApoB) level in the liver, and mRNA expression levels of key genes of fat synthesis among the 3 groups. In conclusion, chronic heat exposure activated LXRα pathway and enhanced fat synthesis in the liver after 7 D of heat exposure. After 14 D of heat exposure, heat-stressed broilers exhibited an adaptation to the high temperature in parameters of stress and fat synthesis gene expression levels. Moreover, chronic heat stress resulted in lipid accumulation in the liver of broilers, which is probably because the limited ApoB was not enough to transport the excessive TG synthesized by the liver in chronic heat-stressed broilers.
Collapse
Affiliation(s)
- Z Lu
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - X F He
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - B B Ma
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - L Zhang
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - J L Li
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Y Jiang
- Ginling College, Nanjing Normal University, Nanjing 210097, China
| | - G H Zhou
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - F Gao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
192
|
Abstract
PURPOSE OF REVIEW Obesity is a major risk factor for type 2 diabetes. Although adipose tissue allows storage of excess calories in periods of overnutrition, in obesity, adipose tissue metabolism becomes dysregulated and can promote metabolic diseases. This review discusses recent advances in understandings how adipocyte metabolism impacts metabolic homeostasis. RECENT FINDINGS The ability of adipocytes to synthesize lipids from glucose is a marker of metabolic fitness, e.g., low de novo lipogenesis (DNL) in adipocytes correlates with insulin resistance in obesity. Adipocyte DNL may promote synthesis of special "insulin sensitizing" signaling lipids that act hormonally. However, each metabolic intermediate in the DNL pathway (i.e., citrate, acetyl-CoA, malonyl-CoA, and palmitate) also has second messenger functions. Mounting evidence suggests these signaling functions may also be important for maintaining healthy adipocytes. While adipocyte DNL contributes to lipid storage, lipid precursors may have additional second messenger functions critical for maintaining adipocyte health, and thus systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Wen-Yu Hsiao
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
193
|
Role of farnesoid X receptor in hepatic steatosis in nonalcoholic fatty liver disease. Biomed Pharmacother 2019; 121:109609. [PMID: 31731192 DOI: 10.1016/j.biopha.2019.109609] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
With the increased incidence of obesity, nonalcoholic fatty liver disease (NAFLD) has become a major global health concern. The pathogenesis of NAFLD has not yet been fully elucidated, and as few efficient pharmaceutical treatments are available for the condition, economic and medical burdens are heavy. Hepatic steatosis, as a precursor of NAFLD, plays a vital role in the pathological process of NAFLD. Hepatic steatosis is a consequence of lipid acquisition (i.e. free fatty acid uptake and de novo lipogenesis) exceeding lipid disposal (i.e. fatty acid oxidation and export as very-low-density lipoproteins). Therefore, restoring lipid homeostasis in the liver is an important therapeutic strategy of NAFLD. Farnesoid X receptor (FXR) is a major member of the ligand-activated nuclear receptor superfamily. Previous reviews have shown that FXR is a multipurpose receptor that plays an important role in regulating bile acid homeostasis, glucose and lipid metabolism, intestinal bacterial growth, and hepatic regeneration. This review focuses on the role of FXR in individual pathways that contribute to hepatic steatosis; it further demonstrates the molecular function of FXR in the pathogenesis of NAFLD.
Collapse
|
194
|
Cheng CF, Ku HC, Cheng JJ, Chao SW, Li HF, Lai PF, Chang CC, Don MJ, Chen HH, Lin H. Adipocyte browning and resistance to obesity in mice is induced by expression of ATF3. Commun Biol 2019; 2:389. [PMID: 31667363 PMCID: PMC6813364 DOI: 10.1038/s42003-019-0624-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Billions of people have obesity-related metabolic syndromes such as diabetes and hyperlipidemia. Promoting the browning of white adipose tissue has been suggested as a potential strategy, but a drug still needs to be identified. Here, genetic deletion of activating transcription factor 3 (ATF3-/- ) in mice under a high-fat diet (HFD) resulted in obesity and insulin resistance, which was abrogated by virus-mediated ATF3 restoration. ST32da, a synthetic ATF3 inducer isolated from Salvia miltiorrhiza, promoted ATF3 expression to downregulate adipokine genes and induce adipocyte browning by suppressing the carbohydrate-responsive element-binding protein-stearoyl-CoA desaturase-1 axis. Furthermore, ST32da increased white adipose tissue browning and reduced lipogenesis in HFD-induced obese mice. The anti-obesity efficacy of oral ST32da administration was similar to that of the clinical drug orlistat. Our study identified the ATF3 inducer ST32da as a promising therapeutic drug for treating diet-induced obesity and related metabolic disorders.
Collapse
MESH Headings
- 3T3-L1 Cells
- Activating Transcription Factor 3/deficiency
- Activating Transcription Factor 3/genetics
- Activating Transcription Factor 3/metabolism
- Adipocytes, Brown/metabolism
- Adipocytes, Brown/pathology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Animals
- Anti-Obesity Agents/pharmacology
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
- Body Temperature Regulation/physiology
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Humans
- Insulin Resistance
- Lipogenesis/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/genetics
- Obesity/metabolism
- Obesity/prevention & control
- Orlistat/pharmacology
- Plant Extracts/pharmacology
- Plants, Medicinal/chemistry
- Salvia miltiorrhiza/chemistry
Collapse
Affiliation(s)
- Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien, Taiwan
| | - Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Jy Cheng
- Ph.D. Program in Clinical Drug Discovery from Botanical Herbs, Taipei Medical, University, Taipei, Taiwan
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Shi-Wei Chao
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Fen Li
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Pei-Fang Lai
- Department of Emergency Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Che-Chang Chang
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jaw Don
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Heng Lin
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
195
|
Song Z, Yang H, Zhou L, Yang F. Glucose-Sensing Transcription Factor MondoA/ChREBP as Targets for Type 2 Diabetes: Opportunities and Challenges. Int J Mol Sci 2019; 20:5132. [PMID: 31623194 PMCID: PMC6829382 DOI: 10.3390/ijms20205132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
The worldwide increase in type 2 diabetes (T2D) is becoming a major health concern, thus searching for novel preventive and therapeutic strategies has become urgent. In last decade, the paralogous transcription factors MondoA and carbohydrate response element-binding protein (ChREBP) have been revealed to be central mediators of glucose sensing in multiple metabolic organs. Under normal nutrient conditions, MondoA/ChREBP plays vital roles in maintaining glucose homeostasis. However, under chronic nutrient overload, the dysregulation of MondoA/ChREBP contributes to metabolic disorders, such as insulin resistance (IR) and T2D. In this review, we aim to provide an overview of recent advances in the understanding of MondoA/ChREBP and its roles in T2D development. Specifically, we will briefly summarize the functional similarities and differences between MondoA and ChREBP. Then, we will update the roles of MondoA/ChREBP in four T2D-associated metabolic organs (i.e., the skeletal muscle, liver, adipose tissue, and pancreas) in physiological and pathological conditions. Finally, we will discuss the opportunities and challenges of MondoA/ChREBP as drug targets for anti-diabetes. By doing so, we highlight the potential use of therapies targeting MondoA/ChREBP to counteract T2D and its complications.
Collapse
Affiliation(s)
- Ziyi Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
- Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Hao Yang
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada.
| | - Lei Zhou
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Fajun Yang
- Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
196
|
Cai Z, Liang Y, Xing C, Wang H, Hu P, Li J, Huang H, Wang W, Jiang C. Cancer‑associated adipocytes exhibit distinct phenotypes and facilitate tumor progression in pancreatic cancer. Oncol Rep 2019; 42:2537-2549. [PMID: 31638193 PMCID: PMC6826327 DOI: 10.3892/or.2019.7365] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Adipocyte infiltration in pancreatic cancer (PC) has been demonstrated to be independently associated with PC risk and an active contributor to tumor progression. However, to date, little is known about these unique pancreatic tumor-surrounding adipocytes, or their response to cancer cells. The present study utilized an in vitro indirect coculture model in which the phenotypic changes of adipocytes following exposure to PC cells were directly observed. RNA-sequencing was performed on 3T3-L1 adipocytes cultured with or without Panc-1 cancer cells, and significant changes were identified at the transcriptional level. In terms of delipidation and the impaired function of glucose and lipid metabolism, coculture with tumor cells resulted in an altered metabolic phenotype in mature adipocytes. In co-cultured adipocytes, the appearance of fibroblast-like cells was observed, and the mesenchymal cell differentiation pathway was enriched following the integrated analysis into the transcriptome. In addition, reverse transcription-quantitative PCR analyses of co-cultured adipocytes revealed a loss in gene expression of mature adipocyte markers, and a gain in gene expression of fibroblast-specific markers. It was also confirmed that newly generated cancer-associated adipocytes could facilitate the invasive capacities of the tumor, and may contribute to PC stromal remodeling. The present study supports a novel concept that reprogramming of stromal adipocytes orchestrated by PC cells may generate cancer-associated adipocytes with activated phenotypes, which may ultimately drive pancreatic tumor progression.
Collapse
Affiliation(s)
- Zhiwei Cai
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yun Liang
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chun Xing
- Key Laboratory of Metabolism and Molecular Medicine of The Chinese Ministry of Education, Fudan University, Shanghai 200032, P.R. China
| | - Hongwei Wang
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Pengfei Hu
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jialin Li
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Haiyan Huang
- Key Laboratory of Metabolism and Molecular Medicine of The Chinese Ministry of Education, Fudan University, Shanghai 200032, P.R. China
| | - Wei Wang
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chongyi Jiang
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
197
|
Lu Z, He X, Ma B, Zhang L, Li J, Jiang Y, Zhou G, Gao F. Dietary taurine supplementation decreases fat synthesis by suppressing the liver X receptor α pathway and alleviates lipid accumulation in the liver of chronic heat-stressed broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5631-5637. [PMID: 31106428 DOI: 10.1002/jsfa.9817] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chronic heat stress can enhance fat synthesis and result in lipid accumulation in the liver of broilers. To investigate the effects and molecular mechanisms of dietary taurine supplementation on fat synthesis and lipid accumulation in the liver of chronic heat-stressed broilers, 144 28 day-old chickens (Arbor Acres) were randomly distributed to normal control (NC, 22 °C, basal diet), heat stress (HS, consistent 32 °C, basal diet), or heat stress plus taurine (HS + T, consistent 32 °C, basal diet +5.00 g kg-1 taurine) groups for a 14-day feeding trial. RESULTS Compared with those of the HS group, dietary taurine supplementation significantly decreased the level of very-low-density lipoprotein and the activity of aspartate aminotransferase in plasma and the relative weight of liver in the HS + T group. In addition, dietary taurine supplementation also significantly decreased the levels of triglyceride, acyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), and suppressed the mRNA expression levels of liver X receptor α (LXRα), sterol response element-binding protein 1c, ACC and FAS in the liver of chronic heat-stressed broilers. Meanwhile, dietary taurine supplementation effectively alleviated lipid accumulation in the liver of broilers exposed to chronic heat stress. CONCLUSION Chronic heat stress significantly increased fat synthesis and resulted in excess lipid deposition in the liver of broilers. Dietary taurine supplementation can effectively decrease fat synthesis by suppressing the LXRα pathway and alleviate lipid accumulation in the liver of chronic heat-stressed broilers. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhuang Lu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaofang He
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Bingbing Ma
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
198
|
An JP, Choi JH, Huh J, Lee HJ, Han S, Noh JR, Kim YH, Lee CH, Oh WK. Anti-hepatic steatosis activity of Sicyos angulatus extract in high-fat diet-fed mice and chemical profiling study using UHPLC-qTOF-MS/MS spectrometry. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:152999. [PMID: 31280138 DOI: 10.1016/j.phymed.2019.152999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome. Recently, the inhibitory effects of flavone glycosides isolated from Sicyos angulatus extract on hepatic lipid accumulation in vitro were demonstrated. However, the effects of S. angulatus extract and its major flavonoid glycoside on in vivo hepatic steatosis induced by a high-fat diet have not yet been established. HYPOTHESIS/PURPOSE The aim of this study was to investigate the effects of S. angulatus extract and its major flavonoid glycoside, kaempferol 3-O-[α-l-rhamnopyranosyl-(1→6)]-β-d-glucopyranosyl-7-O-α-l-rhamnopyranoside, on hepatic steatosis in high-fat diet-fed mice, which serves as a model of NAFLD. In addition, attempts have been made to chemically profile the metabolites involved in the activity of the S. angulatus extract. METHODS C57BL/6 J mice were divided into vehicle, total extract of S. angulatus (SA; 50, 100 and 200 mg/kg) and major active component (20 mg/kg) groups. The mice were fed a high-fat diet (HFD) with or without S. angulatus extract or its major single compound for 10 weeks. Chemical identification was carried out using ultra-high-pressure liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-qTOF-MS/MS) and then quantified by HPLC-DAD. RESULTS Administration of S. angulatus extract significantly lowered plasma ALT and AST levels in HFD-fed mice compared to those of the vehicle group. The hepatic lipid content, as evidenced by oil-red O staining and quantification, was significantly lower in the S. angulatus-administered group, and the effect was dose dependent. These beneficial effects of S. angulatus extract were related to the decreased expression of hepatic genes involved in fatty acid (ACC1, FAS and SCD1) and triglyceride (DGAT) synthesis. The expression levels of two key transcription factors regulating lipogenesis, SREBP-1c and PPARγ, were significantly suppressed in the liver by administration of S. angulatus extract with HFD. Treatment of the HFD-fed mice with the major compound isolated from S. angulatus extract resulted in improved liver function along with an anti-steatotic effect similar to the results seen with S. angulatus extract. For the standardization of the S. angulatus extract, 23 compounds were identified based on MS/MS fragmentation and UV spectroscopy. Quantitative analysis of the major compound showed that the major component was present in 15.35 ± 0.01 mg/g of total extract. CONCLUSION These findings suggest that S. angulatus extract and its major component have the potential to improve liver function and hepatic steatosis in diet-induced obese mice.
Collapse
Affiliation(s)
- Jin-Pyo An
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji Hyun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jungmoo Huh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hee Ju Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sohee Han
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
199
|
Ramteke P, Deb A, Shepal V, Bhat MK. Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality. Cancers (Basel) 2019; 11:E1402. [PMID: 31546918 PMCID: PMC6770430 DOI: 10.3390/cancers11091402] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer and diabetes are amongst the leading causes of deaths worldwide. There is an alarming rise in cancer incidences and mortality, with approximately 18.1 million new cases and 9.6 million deaths in 2018. A major contributory but neglected factor for risk of neoplastic transformation is hyperglycemia. Epidemiologically too, lifestyle patterns resulting in high blood glucose level, with or without the role of insulin, are more often correlated with cancer risk, progression, and mortality. The two conditions recurrently exist in comorbidity, and their interplay has rendered treatment regimens more challenging by restricting the choice of drugs, affecting surgical consequences, and having associated fatal complications. Limited comprehensive literature is available on their correlation, and a lack of clarity in understanding in such comorbid conditions contributes to higher mortality rates. Hence, a critical analysis of the elements responsible for enhanced mortality due to hyperglycemia-cancer concomitance is warranted. Given the lifestyle changes in the human population, increasing metabolic disorders, and glucose addiction of cancer cells, hyperglycemia related complications in cancer underline the necessity for further in-depth investigations. This review, therefore, attempts to shed light upon hyperglycemia associated factors in the risk, progression, mortality, and treatment of cancer to highlight important mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Pranay Ramteke
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune-411 007, India.
| | - Ankita Deb
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune-411 007, India.
| | - Varsha Shepal
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune-411 007, India.
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune-411 007, India.
| |
Collapse
|
200
|
FMK, an Inhibitor of p90RSK, Inhibits High Glucose-Induced TXNIP Expression via Regulation of ChREBP in Pancreatic β Cells. Int J Mol Sci 2019; 20:ijms20184424. [PMID: 31505737 PMCID: PMC6770409 DOI: 10.3390/ijms20184424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
Hyperglycemia is the major characteristic of diabetes mellitus, and a chronically high glucose (HG) level causes β-cell glucolipotoxicity, which is characterized by lipid accumulation, impaired β-cell function, and apoptosis. TXNIP (Thioredoxin-interacting protein) is a key mediator of diabetic β-cell apoptosis and dysfunction in diabetes, and thus, its regulation represents a therapeutic target. Recent studies have reported that p90RSK is implicated in the pathogenesis of diabetic cardiomyopathy and nephropathy. In this study, we used FMK (a p90RSK inhibitor) to determine whether inhibition of p90RSK protects β-cells from chronic HG-induced TXNIP expression and to investigate the molecular mechanisms underlying the effect of FMK on its expression. In INS-1 pancreatic β-cells, HG-induced β-cell dysfunction, apoptosis, and ROS generation were significantly diminished by FMK. In contrast BI-D1870 (another p90RSK inhibitor) did not attenuate HG-induced TXNIP promoter activity or TXNIP expression. In addition, HG-induced nuclear translocation of ChREBP and its transcriptional target molecules were found to be regulated by FMK. These results demonstrate that HG-induced pancreatic β-cell dysfunction resulting in HG conditions is associated with TXNIP expression, and that FMK is responsible for HG-stimulated TXNIP gene expression by inactivating the regulation of ChREBP in pancreatic β-cells. Taken together, these findings suggest FMK may protect against HG-induced β-cell dysfunction and TXNIP expression by ChREBP regulation in pancreatic β-cells, and that FMK is a potential therapeutic reagent for the drug development of diabetes and its complications.
Collapse
|