151
|
Hagner A, Shin W, Sinha S, Alpaugh W, Workentine M, Abbasi S, Rahmani W, Agabalyan N, Sharma N, Sparks H, Yoon J, Labit E, Cobb J, Dobrinski I, Biernaskie J. Transcriptional Profiling of the Adult Hair Follicle Mesenchyme Reveals R-spondin as a Novel Regulator of Dermal Progenitor Function. iScience 2020; 23:101019. [PMID: 32289736 PMCID: PMC7155209 DOI: 10.1016/j.isci.2020.101019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/18/2019] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
The adult hair follicle (HF) undergoes successive regeneration driven by resident epithelial stem cells and neighboring mesenchyme. Recent work described the existence of HF dermal stem cells (hfDSCs), but the genetic regulation of hfDSCs and their daughter cell lineages in HF regeneration remains unknown. Here we prospectively isolate functionally distinct mesenchymal compartment in the HF (dermal cup [DC; includes hfDSCs] and dermal papilla) and define the transcriptional programs involved in hfDSC function and acquisition of divergent mesenchymal fates. From this, we demonstrate cross-compartment mesenchymal signaling within the HF niche, whereby DP-derived R-spondins act to stimulate proliferation of both hfDSCs and epithelial progenitors during HF regeneration. Our findings describe unique transcriptional programs that underlie the functional heterogeneity among specialized fibroblasts within the adult HF and identify a novel regulator of mesenchymal progenitor function during tissue regeneration.
Collapse
Affiliation(s)
- Andrew Hagner
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Wisoo Shin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Whitney Alpaugh
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew Workentine
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Sepideh Abbasi
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Waleed Rahmani
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Natacha Agabalyan
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nilesh Sharma
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Holly Sparks
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jessica Yoon
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Elodie Labit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - John Cobb
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
152
|
Choi M, Choi YM, Choi SY, An IS, Bae S, An S, Jung JH. Glucose metabolism regulates expression of hair-inductive genes of dermal papilla spheres via histone acetylation. Sci Rep 2020; 10:4887. [PMID: 32184439 PMCID: PMC7078220 DOI: 10.1038/s41598-020-61824-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cellular metabolism is one of the crucial factors to regulate epigenetic landscape in various cells including immune cells, embryonic stem cells and hair follicle stem cells. Dermal papilla cells (DP) interact with epithelial stem cells to orchestrate hair formation. Here we show that active DP exhibit robust aerobic glycolysis. We observed decrease of signature genes associated with hair induction by DP in presence of low glucose (2 mM) and glycolysis inhibitors. Moreover, hair shaft elongation was attenuated by glycolysis inhibitors. Interestingly, excessive glucose is able to increase the expression of hair inductive genes and elongation of hair shaft. We also observed glycolysis-mediated histone acetylation is increased and chemical inhibition of acetyltransferase reduces expression of the signature genes associated with hair induction in active DP. These results suggest that glucose metabolism is required for expression of signature genes associated with hair induction. This finding may be beneficial for establishing and maintaining of active DP to generate hair follicle in vitro.
Collapse
Affiliation(s)
- Mina Choi
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Yeong Min Choi
- Korea Institute of Dermatological Science, GeneCellPharm Corporation, 375 Munjeong 2(i)-dong, Songpa-gu, Seoul, 05836, South Korea
| | - Soo-Young Choi
- Korea Institute of Dermatological Science, GeneCellPharm Corporation, 375 Munjeong 2(i)-dong, Songpa-gu, Seoul, 05836, South Korea
| | - In-Sook An
- Korea Institute of Dermatological Science, GeneCellPharm Corporation, 375 Munjeong 2(i)-dong, Songpa-gu, Seoul, 05836, South Korea
| | - Seunghee Bae
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Sungkwan An
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, South Korea.
| | - Jin Hyuk Jung
- Korea Institute of Dermatological Science, GeneCellPharm Corporation, 375 Munjeong 2(i)-dong, Songpa-gu, Seoul, 05836, South Korea.
| |
Collapse
|
153
|
Yao B, Wang R, Wang Y, Zhang Y, Hu T, Song W, Li Z, Huang S, Fu X. Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration. SCIENCE ADVANCES 2020; 6:eaaz1094. [PMID: 32181358 PMCID: PMC7056319 DOI: 10.1126/sciadv.aaz1094] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/10/2019] [Indexed: 05/10/2023]
Abstract
Mesenchymal stem cells (MSCs) encapsulation by three-dimensionally (3D) printed matrices were believed to provide a biomimetic microenvironment to drive differentiation into tissue-specific progeny, which made them a great therapeutic potential for regenerative medicine. Despite this potential, the underlying mechanisms of controlling cell fate in 3D microenvironments remained relatively unexplored. Here, we bioprinted a sweat gland (SG)-like matrix to direct the conversion of MSC into functional SGs and facilitated SGs recovery in mice. By extracellular matrix differential protein expression analysis, we identified that CTHRC1 was a critical biochemical regulator for SG specification. Our findings showed that Hmox1 could respond to the 3D structure activation and also be involved in MSC differentiation. Using inhibition and activation assay, CTHRC1 and Hmox1 synergistically boosted SG gene expression profile. Together, these findings indicated that biochemical and structural cues served as two critical impacts of 3D-printed matrix on MSC fate decision into the glandular lineage and functional SG recovery.
Collapse
Affiliation(s)
- Bin Yao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing 100853, P. R. China
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Rui Wang
- Chinese PLA 306 Hospital, Beijing 100000, P.R. China
| | - Yihui Wang
- Handan People’s Hospital, Hebei 056000, P.R. China
| | - Yijie Zhang
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing 100853, P. R. China
| | - Tian Hu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing 100853, P. R. China
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Wei Song
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Zhao Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing 100853, P. R. China
| | - Sha Huang
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing 100853, P. R. China
- Corresponding author. (S.H.); (X.F.)
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing 100853, P. R. China
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
- Corresponding author. (S.H.); (X.F.)
| |
Collapse
|
154
|
Zhang K, Bai X, Yuan Z, Cao X, Jiao X, Qin Y, Wen Y, Zhang X. Cellular Nanofiber Structure with Secretory Activity-Promoting Characteristics for Multicellular Spheroid Formation and Hair Follicle Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7931-7941. [PMID: 32003218 DOI: 10.1021/acsami.9b21125] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multicellular spheroids can mimic the in vivo microenvironment and maintain the unique functions of tissues, which has attracted great attention in tissue engineering. However, the traditional culture microenvironment with structural deficiencies complicates the culture and collection process and tends to lose the function of multicellular spheroids with the increase of cell passage. In order to construct efficient and functional multicellular spheroids, in this study, a chitosan/polyvinyl alcohol nanofiber sponge which has an open-cell cellular structure is obtained. The hair follicle (HF) regeneration model was employed to evaluate HF-inducing ability of dermal papilla (DP) multicellular spheroids which formed on the cellular structure nanofiber sponge. Through structural fine-tuning, the nanofiber sponge has appropriate elasticity for the creation of a three-dimensional dynamic microenvironment to regulate cellular behavior. The cellular structure nanofiber sponge tilts the balance of cell-substratum and cell-cell interactions to a state which is more conducive to the formation of controllable multicellular spheroids in a short time. More importantly, it improves the secretory activity of high-passaged dermal papilla cells and restores their intrinsic properties. Experiments using BALB/c nude mice show that cultured DP multicellular spheroids could effectively enhance HF-inducing ability. This novel system provides a simple and efficient strategy for multicellular spheroid formation and HF regeneration.
Collapse
Affiliation(s)
- Kexin Zhang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Xiufeng Bai
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Zhipeng Yuan
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Xintao Cao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiangyu Jiao
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Yan Qin
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Yongqiang Wen
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| |
Collapse
|
155
|
Jorgensen AM, Varkey M, Gorkun A, Clouse C, Xu L, Chou Z, Murphy SV, Molnar J, Lee SJ, Yoo JJ, Soker S, Atala A. Bioprinted Skin Recapitulates Normal Collagen Remodeling in Full-Thickness Wounds. Tissue Eng Part A 2020; 26:512-526. [PMID: 31861970 DOI: 10.1089/ten.tea.2019.0319] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over 1 million burn injuries are treated annually in the United States, and current tissue engineered skin fails to meet the need for full-thickness replacement. Bioprinting technology has allowed fabrication of full-thickness skin and has demonstrated the ability to close full-thickness wounds. However, analysis of collagen remodeling in wounds treated with bioprinted skin has not been reported. The purpose of this study is to demonstrate the utility of bioprinted skin for epidermal barrier formation and normal collagen remodeling in full-thickness wounds. Human keratinocytes, melanocytes, fibroblasts, dermal microvascular endothelial cells, follicle dermal papilla cells, and adipocytes were suspended in fibrinogen bioink and bioprinted to form a tri-layer skin structure. Bioprinted skin was implanted onto 2.5 × 2.5 cm full-thickness excisional wounds on athymic mice, compared with wounds treated with hydrogel only or untreated wounds. Total wound closure, epithelialization, and contraction were quantified, and skin samples were harvested at 21 days for histology. Picrosirius red staining was used to quantify collagen fiber orientation, length, and width. Immunohistochemical (IHC) staining was performed to confirm epidermal barrier formation, dermal maturation, vascularity, and human cell integration. All bioprinted skin treated wounds closed by day 21, compared with open control wounds. Wound closure in bioprinted skin treated wounds was primarily due to epithelialization. In contrast, control hydrogel and untreated groups had sparse wound coverage and incomplete closure driven primarily by contraction. Picrosirius red staining confirmed a normal basket weave collagen organization in bioprinted skin-treated wounds compared with parallel collagen fibers in hydrogel only and untreated wounds. IHC staining at day 21 demonstrated the presence of human cells in the regenerated dermis, the formation of a stratified epidermis, dermal maturation, and blood vessel formation in bioprinted skin, none of which was present in control hydrogel treated wounds. Bioprinted skin accelerated full-thickness wound closure by promoting epidermal barrier formation, without increasing contraction. This healing process is associated with human cells from the bioprinted skin laying down a healthy, basket-weave collagen network. The remodeled skin is phenotypically similar to human skin and composed of a composite of graft and infiltrating host cells. Impact statement We have demonstrated the ability of bioprinted skin to enhance closure of full-thickness wounds through epithelialization and normal collagen remodeling. To our knowledge, this article is the first to quantify collagen remodeling by bioprinted skin in full-thickness wounds. Our methods and results can be used to guide further investigation of collagen remodeling by tissue engineered skin products to improve ongoing and future bioprinting skin studies. Ultimately, our skin bioprinting technology could translate into a new treatment for full-thickness wounds in human patients with the ability to recapitulate normal collagen remodeling in full-thickness wounds.
Collapse
Affiliation(s)
- Adam M Jorgensen
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mathew Varkey
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anastasiya Gorkun
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Cara Clouse
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Lei Xu
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Zishuai Chou
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sean V Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Joseph Molnar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Plastic and Reconstructive Surgery, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
156
|
Abstract
The establishment of primary cells from fresh tissue is a widely used method for investigating human tissue in vitro. The skin harbors different cell populations in the dermis and the hair follicle, which can be isolated for downstream analysis. Here we describe the isolation of four dermal fibroblast populations from human haired skin and their maintenance in culture. The four cell populations for which isolation is described are papillary dermal fibroblast cells, reticular dermal fibroblast cells, hair follicle dermal sheath cells, and hair follicle dermal papilla cells.
Collapse
|
157
|
Smith AJ, Sharpe PT. Biological tooth replacement and repair. PRINCIPLES OF TISSUE ENGINEERING 2020:1187-1199. [DOI: 10.1016/b978-0-12-818422-6.00066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
158
|
Castro AR, Logarinho E. Tissue engineering strategies for human hair follicle regeneration: How far from a hairy goal? Stem Cells Transl Med 2019; 9:342-350. [PMID: 31876379 PMCID: PMC7031632 DOI: 10.1002/sctm.19-0301] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
The demand for an efficient therapy for alopecia disease has fueled the hair research field in recent decades. However, despite significant improvements in the knowledge of key processes of hair follicle biology such as genesis and cycling, translation into hair follicle replacement therapies has not occurred. Great expectation has been recently put on hair follicle bioengineering, which is based on the development of fully functional hair follicles with cycling activity from an expanded population of hair‐inductive (trichogenic) cells. Most bioengineering approaches focus on in vitro reconstruction of folliculogenesis by manipulating key regulatory molecular/physical features of hair follicle growth/cycling in vivo. Despite their great potential, no cell‐based product is clinically available for hair regeneration therapy to date. This is mainly due to demanding issues that still hinder the functionality of cultured human hair cells. The present review comprehensively compares emergent strategies using different cell sources and tissue engineering approaches, aiming to successfully achieve a clinical cure for hair loss. The hurdles of these strategies are discussed, as well as the future directions to overcome the obstacles and fulfill the promise of a “hairy” feat.
Collapse
Affiliation(s)
- Ana Rita Castro
- Aging and Aneuploidy Group, IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Programa Doutoral em Engenharia Biomédica, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.,Saúde Viável - Clínica de Microtransplante Capilar, Porto, Portugal
| | - Elsa Logarinho
- Aging and Aneuploidy Group, IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Saúde Viável - Clínica de Microtransplante Capilar, Porto, Portugal
| |
Collapse
|
159
|
Su Y, Wen J, Zhu J, Xie Z, Liu C, Ma C, Zhang Q, Xu X, Wu X. Pre-aggregation of scalp progenitor dermal and epidermal stem cells activates the WNT pathway and promotes hair follicle formation in in vitro and in vivo systems. Stem Cell Res Ther 2019; 10:403. [PMID: 31856904 PMCID: PMC6921573 DOI: 10.1186/s13287-019-1504-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Billions of dollars are invested annually by pharmaceutical companies in search of new options for treating hair loss conditions; nevertheless, the challenge remains. One major limitation to hair follicle research is the lack of effective and efficient drug screening systems using human cells. Organoids, three-dimensional in vitro structures derived from stem cells, provide new opportunities for studying organ development, tissue regeneration, and disease pathogenesis. The present study focuses on the formation of human hair follicle organoids. METHODS Scalp-derived dermal progenitor cells mixed with foreskin-derived epidermal stem cells at a 2:1 ratio aggregated in suspension to form hair follicle-like organoids, which were confirmed by immunostaining of hair follicle markers and by molecular dye labeling assays to analyze dermal and epidermal cell organization in those organoids. The hair-forming potential of organoids was examined using an in vivo transplantation assay. RESULTS Pre-aggregation of dermal and epidermal cells enhanced hair follicle formation in vivo. In vitro pre-aggregation initiated the interactions of epidermal and dermal progenitor cells resulting in activation of the WNT pathway and the formation of pear-shape structures, named type I aggregates. Cell-tracing analysis showed that the dermal and epidermal cells self-assembled into distinct epidermal and dermal compartments. Histologically, the type I aggregates expressed early hair follicle markers, suggesting the hair peg-like phase of hair follicle morphogenesis. The addition of recombinant WNT3a protein to the medium enhanced the formation of these aggregates, and the Wnt effect could be blocked by the WNT inhibitor, IWP2. CONCLUSIONS In summary, our system supports the rapid formation of a large number of hair follicle organoids (type I aggregates). This system provides a platform for studying epithelial-mesenchymal interactions, for assessing inductive hair stem cells and for screening compounds that support hair follicle regeneration.
Collapse
Affiliation(s)
- Yiqun Su
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Jinan, China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Junrong Zhu
- Women and Children's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Zhiwei Xie
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Chuan Ma
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qun Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Jinan, China.
- School of Stomatology, Shandong University, 44-1 Wenhua West Road, Jinan, 250014, Shandong, China.
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
- School of Stomatology, Shandong University, 44-1 Wenhua West Road, Jinan, 250014, Shandong, China.
| |
Collapse
|
160
|
Ramot Y, Bertolini M, Boboljova M, Uchida Y, Paus R. PPAR-γ signalling as a key mediator of human hair follicle physiology and pathology. Exp Dermatol 2019; 29:312-321. [PMID: 31769892 DOI: 10.1111/exd.14062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are abundantly expressed in human skin, with PPAR-γ being the most intensively investigated isoform. In various ex vivo and in vivo models, PPAR-γ-mediated signalling has recently surfaced as an essential element of hair follicle (HF) development, growth and stem cell biology. Moreover, the availability of novel, topically applicable PPAR-γ modulators with a favourable toxicological profile has extended the range of potential applications in clinical dermatology. In this review, we synthesize where this field currently stands and sketch promising future research avenues, focussing on the role of PPAR-γ-mediated signalling in the biology and pathology of human scalp HFs, with special emphasis on scarring alopecias such as lichen planopilaris and frontal fibrosing alopecia as model human epithelial stem cell diseases. In particular, we discuss whether and how pharmacological modulation of PPAR-γ signalling may be employed for the management of hair growth disorders, for example, in scarring alopecia (by reducing HF inflammation as well as by promoting the survival and suppressing pathological epithelial-mesenchymal transition of keratin 15 + epithelial stem cells in the bulge) and in hirsutism/hypertrichosis (by promoting catagen development). Moreover, we explore the potential role of PPAR-γ in androgenetic alopecia, HF energy metabolism and HF ageing, and consider clinical perspectives that emanate from the limited data available on this so far. As this field of translational human hair research is still in its infancy, many open questions exist, for which we briefly delineate selected experimental approaches that promise to generate instructive answers in the near future.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marta Bertolini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Maria Boboljova
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Yoshikazu Uchida
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Ralf Paus
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, and NIHR Biomedical Research Centre, Manchester, UK
| |
Collapse
|
161
|
Kazi T, Niibe I, Nishikawa A, Matsuzaki T. Optimal stimulation toward the dermal papilla lineage can be promoted by combined use of osteogenic and adipogenic inducers. FEBS Open Bio 2019; 10:197-210. [PMID: 31730301 PMCID: PMC6996385 DOI: 10.1002/2211-5463.12763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 04/01/2019] [Accepted: 11/13/2019] [Indexed: 11/22/2022] Open
Abstract
Dermal papilla cells (DPCs) play crucial roles in hair regeneration, but they readily lose their hair‐forming ability during in vitro culture. Although the formation of spheroids partially restores the ability, shrinkage of the spheroids makes it difficult to maintain cellular viability. To address this problem, we stimulated DPCs with factors known to induce adipogenic and/or osteogenic differentiation, because DPCs share unique gene expression profiles with adipocytes and osteocytes. We isolated DPCs from versican (vcan)–GFP mice, in which GFP is expressed under the control of a vcan promoter, which is strongly active in DPCs of anagen hair follicles. GFP fluorescence was most intense when the spheroids were made from DPCs cultured in a half‐diluted combination of adipogenic and osteogenic media (CAO1/2), a Dulbecco’s modified Eagle’s medium‐based medium that contains 10% FBS, 275 nm dexamethasone, 2.5 mm β‐glycerol phosphate, 12.5 µg·mL−1 ascorbic acid, 0.125 µm isobutylmethylxanthine and 2.5 ng·mL−1 insulin. The dose of each additive used was less than the optimal dose for adipogenic or osteogenic differentiation, and shrinkage of the spheroids was avoided through the addition of fibroblast growth factor 2 and platelet‐derived growth factor‐AA to CAO1/2. In addition, the gene and protein expression of vcan, osteopontin, alkaline phosphatase and α‐smooth muscle actin in the spheroids were augmented to levels similar to those of the intact dermal papillae, which exhibited restored hair‐forming activity. In conclusion, a combination of certain adipogenic and osteogenic inducers, together with fibroblast growth factor 2 and platelet‐derived growth factor‐AA, can promote differentiation toward the DPC lineage.
Collapse
Affiliation(s)
- Taheruzzaman Kazi
- Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Japan
| | - Ichitaro Niibe
- Department of Biological Science, Faculty of Life and Environment Science, Shimane University, Japan
| | - Akio Nishikawa
- Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Japan.,Department of Biological Science, Faculty of Life and Environment Science, Shimane University, Japan
| | - Takashi Matsuzaki
- Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Japan.,Department of Biological Science, Faculty of Life and Environment Science, Shimane University, Japan
| |
Collapse
|
162
|
Vasserot AP, Geyfman M, Poloso NJ. Androgenetic alopecia: combing the hair follicle signaling pathways for new therapeutic targets and more effective treatment options. Expert Opin Ther Targets 2019; 23:755-771. [PMID: 31456448 DOI: 10.1080/14728222.2019.1659779] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: In the past 30 years, only two drugs have received FDA approval for the treatment of androgenetic alopecia reflecting a lack of success in unraveling novel targets for pharmacological intervention. However, as our knowledge of hair biology improves, new signaling pathways and organogenesis processes are being uncovered which have the potential to yield more effective therapeutic modalities. Areas covered: This review focuses on potential targets for drug development to treat hair loss. The physiological processes underlying the promise of regenerative medicine to recreate new functional hair follicles in bald scalp are also examined. Expert opinion: The discovery of promising new targets may soon enable treatment options that modulate the hair cycle to preserve or extend the growth phase of the hair follicle. These new targets could also be leveraged to stimulate progenitor cells and morphogenic pathways to reactivate miniaturized follicles in bald scalp or to harness the potential of wound healing and embryogenic development as an emerging paradigm to generate new hair follicles in barren skin.
Collapse
Affiliation(s)
- Alain P Vasserot
- Allergan Plc, Research and External Scientific Innovation , Irvine , CA , USA
| | - Mikhail Geyfman
- Allergan Plc, Research and External Scientific Innovation , Irvine , CA , USA
| | - Neil J Poloso
- Allergan Plc, Research and External Scientific Innovation , Irvine , CA , USA
| |
Collapse
|
163
|
Tan JJY, Common JE, Wu C, Ho PCL, Kang L. Keratinocytes maintain compartmentalization between dermal papilla and fibroblasts in 3D heterotypic tri-cultures. Cell Prolif 2019; 52:e12668. [PMID: 31379046 PMCID: PMC6797517 DOI: 10.1111/cpr.12668] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Reproducing human hair follicles in vitro is often limited by various reasons such as the lack of a systematic approach to culture distinct hair follicle cell types to reproduce their spatial relationship. Here, we reproduce hair follicle-like constructs resembling the spatial orientation of different cells in vivo, to study the role of keratinocytes in maintaining cellular compartmentalization among hair follicle-related cells. MATERIALS AND METHODS Dermal papilla (DP) cells, HaCaT keratinocytes and human dermal fibroblast (HDF) cells were seeded sequentially into three-dimensional (3D) microwells fabricated from polyethylene glycol diacrylate hydrogels. Quantitative polymerase chain reaction was used to compare inductive gene expression of 3D and two-dimensional (2D) DP. DP and HaCaT cells were transfected with green fluorescent protein and red fluorescent protein lentivirus, respectively, to enable cell visualization using confocal microscopy. RESULTS The 3D DP cultures showed significantly enhanced expression of essential DP genes as compared 2D cultures. Core-shell configurations containing keratinocytes forming the outer shell and DP forming the core were observed. Migratory polarization was mediated by cell-cell interaction between the keratinocytes and HDF cells, while preserving the aggregated state of the DP cells. CONCLUSIONS Keratinocytes may play a role in maintaining compartmentalization between the DP and the surrounding HDF residing in the dermis, and therefore maintains the aggregative state of the DP cells, necessary for hair follicle development and function.
Collapse
Affiliation(s)
- Justin J. Y. Tan
- Department of PharmacyNational University of SingaporeSingaporeSingapore
| | | | - Chunyong Wu
- Department of Pharmaceutical AnalysisChina Pharmaceutical UniversityNanjingChina
| | - Paul C. L. Ho
- Department of PharmacyNational University of SingaporeSingaporeSingapore
| | - Lifeng Kang
- School of PharmacyUniversity of SydneySydneyNSWAustralia
| |
Collapse
|
164
|
Exploring the roles of MACIT and multiplexin collagens in stem cells and cancer. Semin Cancer Biol 2019; 62:134-148. [PMID: 31479735 DOI: 10.1016/j.semcancer.2019.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is ubiquitously involved in neoplastic transformation, tumour growth and metastatic dissemination, and the interplay between tumour and stromal cells and the ECM is now considered crucial for the formation of a tumour-supporting microenvironment. The 28 different collagens (Col) form a major ECM protein family and display extraordinary functional diversity in tissue homeostasis as well as in pathological conditions, with functions ranging from structural support for tissues to regulatory binding activities and storage of biologically active cryptic domains releasable through ECM proteolysis. Two subfamilies of collagens, namely the plasma membrane-associated collagens with interrupted triple-helices (MACITs, including ColXIII, ColXXIII and ColXXV) and the basement membrane-associated collagens with multiple triple-helix domains with interruptions (multiplexins, including ColXV and ColXVIII), have highly interesting regulatory functions in tissue and organ development, as well as in various diseases, including cancer. An increasing, albeit yet sparse, data suggest that these collagens play crucial roles in conveying regulatory signals from the extracellular space to cells. We summarize here the current knowledge about MACITs and multiplexins as regulators of stemness and oncogenic processes, as well as their roles in influencing cell fate decisions in healthy and cancerous tissues. In addition, we present a bioinformatic analysis of the impacts of MACITs and multiplexins transcript levels on the prognosis of patients representing a wide array of malignant diseases, to aid future diagnostic and therapeutic efforts.
Collapse
|
165
|
Daniels G, Akram S, Westgate GE, Tamburic S. Can plant-derived phytochemicals provide symptom relief for hair loss? A critical review. Int J Cosmet Sci 2019; 41:332-345. [DOI: 10.1111/ics.12554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/23/2019] [Accepted: 06/22/2019] [Indexed: 12/16/2022]
Affiliation(s)
- G. Daniels
- Cosmetic Science Research Group; University of the Arts, London; 20 John Princes Street London U.K
| | - S. Akram
- Cosmetic Science Research Group; University of the Arts, London; 20 John Princes Street London U.K
| | - G. E. Westgate
- Gill Westgate Consultancy Ltd; Stevington Bedfordshire U.K
| | - S. Tamburic
- Cosmetic Science Research Group; University of the Arts, London; 20 John Princes Street London U.K
| |
Collapse
|
166
|
Zhang X, Xiao S, Liu B, Miao Y, Hu Z. Use of extracellular matrix hydrogel from human placenta to restore hair-inductive potential of dermal papilla cells. Regen Med 2019; 14:741-751. [PMID: 31368409 DOI: 10.2217/rme-2018-0112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To explore the feasibility of human placenta extracellular matrix (HPECM) hydrogel in restoring the hair-inductive capacity of high-passaged (P8) dermal papilla cells (DPCs) for hair follicle regeneration. Materials & methods: HPECM hydrogel was prepared following decellularization and enzymatic solubilization treatment. DPCs isolated from human scalp were cultured in 2D and 3D environments. The hair-inductive ability of DPCs was assessed by quantitative RT-PCR, immunofluorescence staining, immunoblotting and patch assay. Results: DPCs (P8) formed spheres when cultured on the HPECM hydrogel. The expression levels of Versican, ALP, and β-catenin were restored in the DP spheres. HPECM hydrogel-cultured DP spheres co-grafted with newborn mouse epidermal cells regenerated new hair follicle. Conclusion: HPECM hydrogel successfully restores the hair-inductive capacity of high-passaged DPCs.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Plastic, Cosmetic & Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'an, ShanXi, PR China.,Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Shune Xiao
- Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Bingcheng Liu
- Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yong Miao
- Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhiqi Hu
- Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| |
Collapse
|
167
|
Wnt activator CHIR99021-stimulated human dermal papilla spheroids contribute to hair follicle formation and production of reconstituted follicle-enriched human skin. Biochem Biophys Res Commun 2019; 516:599-605. [DOI: 10.1016/j.bbrc.2019.06.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
|
168
|
Kwack MH, Jang YJ, Won GH, Kim MK, Kim JC, Sung YK. Overexpression of alkaline phosphatase improves the hair-inductive capacity of cultured human dermal papilla spheres. J Dermatol Sci 2019; 95:126-129. [PMID: 31378661 DOI: 10.1016/j.jdermsci.2019.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Yae Ji Jang
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Gong Hee Won
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jung Chul Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
169
|
Zhang L, Wang WH, Jin JY, Degan S, Zhang GQ, Erdmann D, Hall RP, Zhang JY. Induction of hair follicle neogenesis with cultured mouse dermal papilla cells in de novo regenerated skin tissues. J Tissue Eng Regen Med 2019; 13:1641-1650. [PMID: 31216101 DOI: 10.1002/term.2918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 04/30/2019] [Accepted: 05/24/2019] [Indexed: 12/19/2022]
Abstract
De novo skin regeneration with human keratinocytes amplified in culture is a life-saving procedure for patients with extensive skin loss and chronic wounds. It also provides a valuable platform for gene function and therapeutic assessments. Nevertheless, tissues generated in this manner lack hair follicles that are important for skin homeostasis, barrier function, and repair. In this study, we generated skin tissues with human keratinocytes combined with dermal papilla (DP) cells isolated from mouse whisker hair. For this, cultured keratinocytes and mouse DP (mDP) cells were mixed at 10:1 ratio and seeded onto devitalized human dermal matrix derived from surgically discarded human abdominoplasty skin. After 1 week in submerged culture, the cell/matrix composites were grafted onto the skin wound beds of immunocompromised NSG.SCID mice. Histological analysis of 6-week-old skin grafts showed that tissues generated with the addition of mDP cells contained Sox2-positive dermal condensates and well-differentiated folliculoid structures that express human keratinocyte markers. These results indicate that cultured mDP cells can induce hair follicle neogenesis in the de novo regenerated skin tissues. Our method offers a new experimental system for mechanistic studies of hair follicle morphogenesis and tissue regeneration and provides insights to solving an important clinical challenge in generation of fully functional skin with a limited source of donor cells.
Collapse
Affiliation(s)
- Long Zhang
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China.,Department of Dermatology, Duke University Medical Center, Durham, NC
| | - Wen-Hui Wang
- Department of Dermatology, Duke University Medical Center, Durham, NC.,Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Jane Y Jin
- Department of Dermatology, Duke University Medical Center, Durham, NC
| | - Simone Degan
- Department of Dermatology, Duke University Medical Center, Durham, NC
| | - Guo-Qiang Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC.,Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Detlev Erdmann
- Department of Surgery, Division of Plastic, Maxillofacial and Oral Surgery, Duke University Medical Center, Durham, NC
| | - Russell P Hall
- Department of Dermatology, Duke University Medical Center, Durham, NC
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC
| |
Collapse
|
170
|
Zhao Q, Li N, Zhang H, Lei X, Cao Y, Xia G, Duan E, Liu S. Chemically induced transformation of human dermal fibroblasts to hair‐inducing dermal papilla‐like cells. Cell Prolif 2019. [DOI: doi.org/10.1111/cpr.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences China Agricultural University Beijing China
| | - Na Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Huishan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences China Agricultural University Beijing China
| | - Yujing Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences China Agricultural University Beijing China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Shuang Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| |
Collapse
|
171
|
Kwack MH, Seo CH, Gangadaran P, Ahn BC, Kim MK, Kim JC, Sung YK. Exosomes derived from human dermal papilla cells promote hair growth in cultured human hair follicles and augment the hair-inductive capacity of cultured dermal papilla spheres. Exp Dermatol 2019; 28:854-857. [PMID: 30924959 DOI: 10.1111/exd.13927] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 01/13/2023]
Abstract
Dermal papillae (DP) play key roles in hair growth and regeneration by regulating follicular cell activity. Owing to the established roles of exosomes (Exos) in the regulation of cell functions, we investigated whether DP-derived Exos, especially those from three-dimensional (3D)-cultured DP cells, affect hair growth, cycling and regeneration. Exos derived from 3D DP (3D DP-Exos) promoted the proliferation of DP cells and outer root sheath (ORS) cells and increased the expression of growth factors (IGF-1, KGF and HGF) in DP cells. 3D DP-Exo treatment also increased hair shaft elongation in cultured human hair follicles. In addition, local injections of 3D DP-Exos induced anagen from telogen and also prolonged anagen in mice. Moreover, Exo treatment in human DP spheres augmented hair follicle neogenesis when the DP spheres were implanted with mouse epidermal cells. Similar results were obtained using Exos derived from 2D-cultured DP cells (2D DP-Exo). Collectively, our data strongly suggest that Exos derived from DP cells promote hair growth and hair regeneration by regulating the activity of follicular dermal and epidermal cells; accordingly, these findings have implications for the development of therapeutic strategies for hair loss.
Collapse
Affiliation(s)
- Mi H Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Chang H Seo
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Moon K Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Jung C Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Young K Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
172
|
Zhao Q, Li N, Zhang H, Lei X, Cao Y, Xia G, Duan E, Liu S. Chemically induced transformation of human dermal fibroblasts to hair-inducing dermal papilla-like cells. Cell Prolif 2019; 52:e12652. [PMID: 31264301 PMCID: PMC6797507 DOI: 10.1111/cpr.12652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Na Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huishan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujing Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
173
|
le Riche A, Aberdam E, Marchand L, Frank E, Jahoda C, Petit I, Bordes S, Closs B, Aberdam D. Extracellular Vesicles from Activated Dermal Fibroblasts Stimulate Hair Follicle Growth Through Dermal Papilla-Secreted Norrin. Stem Cells 2019; 37:1166-1175. [DOI: 10.1002/stem.3043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Alizée le Riche
- INSERM U976; Paris France
- Université de Paris; Brive France
- SILAB R&D Department; Brive France
| | - Edith Aberdam
- INSERM U976; Paris France
- Université de Paris; Brive France
| | | | - Elie Frank
- INSERM U976; Paris France
- Université de Paris; Brive France
| | - Colin Jahoda
- Department of Biosciences; Durham University; Durham United Kingdom
| | - Isabelle Petit
- INSERM U976; Paris France
- Université de Paris; Brive France
| | | | | | - Daniel Aberdam
- INSERM U976; Paris France
- Université de Paris; Brive France
| |
Collapse
|
174
|
Regeneration of Dermis: Scarring and Cells Involved. Cells 2019; 8:cells8060607. [PMID: 31216669 PMCID: PMC6627856 DOI: 10.3390/cells8060607] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
There are many studies on certain skin cell specifications and their contribution to wound healing. In this review, we provide an overview of dermal cell heterogeneity and their participation in skin repair, scar formation, and in the composition of skin substitutes. The papillary, reticular, and hair follicle associated fibroblasts differ not only topographically, but also functionally. Human skin has a number of particular characteristics that are different from murine skin. This should be taken into account in experimental procedures. Dermal cells react differently to skin wounding, remodel the extracellular matrix in their own manner, and convert to myofibroblasts to different extents. Recent studies indicate a special role of papillary fibroblasts in the favorable outcome of wound healing and epithelial-mesenchyme interactions. Neofolliculogenesis can substantially reduce scarring. The role of hair follicle mesenchyme cells in skin repair and possible therapeutic applications is discussed. Participation of dermal cell types in wound healing is described, with the addition of possible mechanisms underlying different outcomes in embryonic and adult tissues in the context of cell population characteristics and extracellular matrix composition and properties. Dermal white adipose tissue involvement in wound healing is also overviewed. Characteristics of myofibroblasts and their activity in scar formation is extensively discussed. Cellular mechanisms of scarring and possible ways for its prevention are highlighted. Data on keloid cells are provided with emphasis on their specific characteristics. We also discuss the contribution of tissue tension to the scar formation as well as the criteria and effectiveness of skin substitutes in skin reconstruction. Special attention is given to the properties of skin substitutes in terms of cell composition and the ability to prevent scarring.
Collapse
|
175
|
Preparation of hair beads and hair follicle germs for regenerative medicine. Biomaterials 2019; 212:55-63. [PMID: 31103946 DOI: 10.1016/j.biomaterials.2019.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022]
Abstract
Hair regenerative medicine is a promising approach for hair loss, during which autologous follicular stem cells are transplanted into regions of hair loss to regenerate hairs. Because cells transplanted as a single cell suspension scarcely generate hairs, the engineering of three-dimensional (3D) tissues before transplantation has been explored to improve this process. Here, we propose an approach to fabricate collagen-enriched cell aggregates, named hair beads (HBs), through the spontaneous constriction of cell-encapsulated collagen drops. Mouse embryonic mesenchymal cells or human dermal papilla cells were encapsulated in 2-μl collagen microgels, which were concentrated >10-fold in volume during 3 days of culture. Interestingly, HB constriction was attributed to attraction forces driven by myosin II and involved the upregulation of follicular genes. Single HBs with epithelial cells seeded in U-shaped microwells formed dumbbell-like structures comprising respective aggregates (named bead-based hair follicle germs, bbHFGs), during 3 days of culture. bbHFGs efficiently generated hair follicles upon intracutaneous transplantation into the backs of nude mice. Using an automated spotter, this approach was scalable to prepare a large number of bbHFGs, which is important for clinical applications. Therefore, this could represent a robust and practical approach for the preparation of germ-like tissues for hair regenerative medicine.
Collapse
|
176
|
Zheng M, Jang Y, Choi N, Kim DY, Han TW, Yeo JH, Lee J, Sung JH. Hypoxia improves hair inductivity of dermal papilla cells via nuclear NADPH oxidase 4-mediated reactive oxygen species generation'. Br J Dermatol 2019; 181:523-534. [PMID: 30703252 DOI: 10.1111/bjd.17706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dermal papilla cells (DPCs) play a key role in hair regeneration and morphogenesis. Therefore, tremendous efforts have been made to promote DPC hair inductivity. OBJECTIVES The aim of this study was to investigate the mitogenic and hair inductive effects of hypoxia on DPCs and examine the underlying mechanism of hypoxia-induced stimulation of DPCs. METHODS DPCs' hair inductivity was examined under normoxia (20% O2 ) and hypoxia (2% O2 ). RESULTS Hypoxia significantly increased the proliferation and delayed senescence of DPCs via Akt phosphorylation and downstream pathways. Hypoxia upregulated growth factor secretion of DPCs through the mitogen-activated protein kinase pathway. Hypoxia-preconditioned DPCs induced the telogen-to-anagen transition in C3 H mice, and also enhanced hair neogenesis in a hair reconstitution assay. Injected green fluorescent protein-labelled DPCs migrated to the outer root sheath of the hair follicle, and hypoxia-preconditioning increased survival and migration of DPCs in vivo. Conditioned medium obtained from hypoxia increased the hair length of mouse vibrissa follicles via upregulation of alkaline phosphatase, vascular endothelial growth factor, and glial cell line-derived neurotrophic factor. We examined the mechanism of this hypoxia-induced stimulation, and found that reactive oxygen species (ROS) play a key role. For example, inhibition of ROS generation by N-acetylcysteine or diphenyleneiodonium treatment attenuated DPCs' hypoxia-induced stimulation, but treatment with ROS donors induced mitogenic effects and anagen transition. NADPH oxidase 4 is highly expressed in the DPC nuclear region, and NOX4 knockout by CRISPR-Cas9 attenuated the hypoxia-induced stimulation of DPCs. CONCLUSIONS Our results suggest that DPC culture under hypoxia has great advantages over normoxia, and is a novel solution for producing DPCs for cell therapy. What's already known about this topic? Dermal papilla cells (DPCs) play a key role in hair regeneration and morphogenesis, but they are difficult to isolate and expand for use in cell therapy. Tremendous efforts have been made to increase proliferation of DPCs and promote their hair formation ability. What does this study add? Hypoxia (2% O2 ) culture of DPCs increases proliferation, delays senescence and enhances hair inductivity of DPCs. Reactive oxygen species play a key role in hypoxia-induced stimulation of DPC. What is the translational message? Preconditioning DPCs under hypoxia improves their hair regenerative potential, and is a novel solution for producing DPCs for cell therapy to treat hair loss.
Collapse
Affiliation(s)
- M Zheng
- STEMORE Co. Ltd, Incheon, South Korea
| | - Y Jang
- STEMORE Co. Ltd, Incheon, South Korea
| | - N Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - D Y Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - T W Han
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - J H Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - J Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - J-H Sung
- STEMORE Co. Ltd, Incheon, South Korea.,College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| |
Collapse
|
177
|
|
178
|
Muhammad SA, Fatima N, Paracha RZ, Ali A, Chen JY. A systematic simulation-based meta-analytical framework for prediction of physiological biomarkers in alopecia. ACTA ACUST UNITED AC 2019; 26:2. [PMID: 30993080 PMCID: PMC6449998 DOI: 10.1186/s40709-019-0094-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/20/2019] [Indexed: 01/13/2023]
Abstract
Background Alopecia or hair loss is a complex polygenetic and psychologically devastating disease affecting millions of men and women globally. Since the gene annotation and environmental knowledge is limited for alopecia, a systematic analysis for the identification of candidate biomarkers is required that could provide potential therapeutic targets for hair loss therapy. Results We designed an interactive framework to perform a meta-analytical study based on differential expression analysis, systems biology, and functional proteomic investigations. We analyzed eight publicly available microarray datasets and found 12 potential candidate biomarkers including three extracellular proteins from the list of differentially expressed genes with a p-value < 0.05. After expression profiling and functional analysis, we studied protein–protein interactions and observed functional associations of source proteins including WIF1, SPON1, LYZ, GPRC5B, PTPRE, ZFP36L2, HBB, PHF15, LMCD1, KRT35 and VAV3 with target proteins including APCDD1, WNT1, WNT3A, SHH, ESRI, TGFB1, and APP. Pathway analysis of these molecules revealed their role in major physiological reactions including protein metabolism, signal transduction, WNT, BMP, EDA, NOTCH and SHH pathways. These pathways regulate hair growth, hair follicle differentiation, pigmentation, and morphogenesis. We studied the regulatory role of β-catenin, Nf-kappa B, cytokines and retinoic acid in the development of hair growth. Therefore, the differential expression of these significant proteins would affect the normal level and could cause aberrations in hair growth. Conclusion Our integrative approach helps to prioritize the biomarkers that ultimately lessen the economic burden of experimental studies. It will also be valuable to discover mutants in genomic data in order to increase the identification of new biomarkers for similar problems. Electronic supplementary material The online version of this article (10.1186/s40709-019-0094-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Syed Aun Muhammad
- 1Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | - Nighat Fatima
- 2Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060 Pakistan
| | - Rehan Zafar Paracha
- 3Research Center of Modeling and Simulation (RCMS), Department of Computational Sciences, National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Amjad Ali
- 4Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Jake Y Chen
- 5Informatics Institute, School of Medicine, The University of Alabama (UAB), Birmingham, USA
| |
Collapse
|
179
|
Weber EL, Woolley TE, Yeh CY, Ou KL, Maini PK, Chuong CM. Self-organizing hair peg-like structures from dissociated skin progenitor cells: New insights for human hair follicle organoid engineering and Turing patterning in an asymmetric morphogenetic field. Exp Dermatol 2019; 28:355-366. [PMID: 30681746 PMCID: PMC6488368 DOI: 10.1111/exd.13891] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
Human skin progenitor cells will form new hair follicles, although at a low efficiency, when injected into nude mouse skin. To better study and improve upon this regenerative process, we developed an in vitro system to analyse the morphogenetic cell behaviour in detail and modulate physical-chemical parameters to more effectively generate hair primordia. In this three-dimensional culture, dissociated human neonatal foreskin keratinocytes self-assembled into a planar epidermal layer while fetal scalp dermal cells coalesced into stripes, then large clusters, and finally small clusters resembling dermal condensations. At sites of dermal clustering, subjacent epidermal cells protruded to form hair peg-like structures, molecularly resembling hair pegs within the sequence of follicular development. The hair peg-like structures emerged in a coordinated, formative wave, moving from periphery to centre, suggesting that the droplet culture constitutes a microcosm with an asymmetric morphogenetic field. In vivo, hair follicle populations also form in a progressive wave, implying the summation of local periodic patterning events with an asymmetric global influence. To further understand this global patterning process, we developed a mathematical simulation using Turing activator-inhibitor principles in an asymmetric morphogenetic field. Together, our culture system provides a suitable platform to (a) analyse the self-assembly behaviour of hair progenitor cells into periodically arranged hair primordia and (b) identify parameters that impact the formation of hair primordia in an asymmetric morphogenetic field. This understanding will enhance our future ability to successfully engineer human hair follicle organoids.
Collapse
Affiliation(s)
- Erin L. Weber
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Thomas E. Woolley
- Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK
| | - Chao-Yuan Yeh
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Kuang-Ling Ou
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Oxford, OX2 6GG, UK
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- Integrative Stem Cell Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
180
|
Seo CH, Kwack MH, Kim MK, Kim JC, Sung YK. Impairment of Hair-Inducing Capacity of Three-Dimensionally Cultured Human Dermal Papilla Cells by the Ablation of STAT5. Ann Dermatol 2019; 31:228-231. [PMID: 33911577 PMCID: PMC7992674 DOI: 10.5021/ad.2019.31.2.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/13/2018] [Accepted: 03/21/2018] [Indexed: 11/08/2022] Open
Affiliation(s)
- Chang Hoon Seo
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jung Chul Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
181
|
Zhou X, Ma Y, Liu F, Gu C, Wang X, Xia H, Zhou G, Huang J, Luo X, Yang J. Melanocyte Chitosan/Gelatin Composite Fabrication with Human Outer Root Sheath-Derived Cells to Produce Pigment. Sci Rep 2019; 9:5198. [PMID: 30914712 PMCID: PMC6435804 DOI: 10.1038/s41598-019-41611-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/11/2019] [Indexed: 12/26/2022] Open
Abstract
The hair follicle serves as a melanocyte reservoir for both hair and skin pigmentation. Melanocyte stem cells (MelSCs) and melanocyte progenitors reside in the bulge/sub-bulge region of the lower permanent portion of the hair follicle and play a vital role for repigmentation in vitiligo. It would be beneficial to isolate MelSCs in order to further study their function in pigmentary disorders; however, due to the lack of specific molecular surface markers, this has not yet been successfully accomplished in human hair follicles (HuHF). One potential method for MelSCs isolation is the “side population” technique, which is frequently used to isolate hematopoietic and tumor stem cells. In the present study, we decided to isolate HuHF MelSCs using “side population” to investigate their melanotic function. By analyzing mRNA expression of TYR, SOX10, and MITF, melanosome structure, and immunofluorescence with melanocyte-specific markers, we revealed that the SP-fraction contained MelSCs with an admixture of differentiated melanocytes. Furthermore, our in vivo studies indicated that differentiated SP-fraction cells, when fabricated into a cell-chitosan/gelatin composite, could transiently repopulate immunologically compromised mice skin to regain pigmentation. In summary, the SP technique is capable of isolating HuHF MelSCs that can potentially be used to repopulate skin for pigmentation.
Collapse
Affiliation(s)
- Xianyu Zhou
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yan Ma
- Division of Plastic Surgery, Xinjiang Korla Bazhou People's Hospital, Xinjiang, People's Republic of China
| | - Fei Liu
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Chuan Gu
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xiuxia Wang
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Huitang Xia
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Jinny Huang
- Department of Transplantation, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xusong Luo
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
182
|
Guo L, Wang X, Yuan J, Zhu M, Fu X, Xu RH, Wu C, Wu Y. TSA restores hair follicle-inductive capacity of skin-derived precursors. Sci Rep 2019; 9:2867. [PMID: 30814580 PMCID: PMC6393485 DOI: 10.1038/s41598-019-39394-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
The genesis of the hair follicle relies on signals derived from mesenchymal cells in the dermis during skin morphogenesis and regeneration. Multipotent skin-derived precursors (SKPs), which exhibit long term proliferation potential when being cultured in spheroids, have been shown to induce hair genesis and hair follicle regeneration in mice, implying a therapeutic potential of SKPs in hair follicle regeneration and bioengineering. However, the hair-inductive property of SKPs declines progressively upon ex vivo culture expansion, suggesting that the expressions of the genes responsible for hair induction are epigenetically unstable. In this study, we found that TSA markedly alleviated culture expansion induced SKP senescence, increased the expression and activity of alkaline phosphatase (AP) in the cells and importantly restored the hair inductive capacity of SKPs. TSA increased the acetylation level of histone H3, including the K19/14 sites in the promoter regions of bone morphogenetic proteins (BMPs) genes, which were associated with elevated gene expression and BMP signaling activity, suggesting a potential attribution of BMP pathway in TSA induced recovery of the hair inductive capacity of SKPs.
Collapse
Affiliation(s)
- Ling Guo
- State Key Laboratory of Chemical Oncogenomics, and the the Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoxiao Wang
- State Key Laboratory of Chemical Oncogenomics, and the the Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Jifan Yuan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Meishu Zhu
- Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
- Stem Cell and Tissue Regeneration Laboratory, The First Affiliated Hospital, General Hospital of PLA, Beijing, China
| | - Ren-He Xu
- University of Macau, Institute of Translational Medicine, and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, Taipa, Macau, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| | - Yaojiong Wu
- State Key Laboratory of Chemical Oncogenomics, and the the Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China.
| |
Collapse
|
183
|
Abstract
Currently, no ideal in vivo skin model, to exactly mimic the native human skin, has been utilized for laboratory and clinical application. Here, we describe a method to in vivo reconstitute a human skin model, so-called hRSK, by using culture-expanded skin cells. We grafted a mixture of dissociated human epidermal and dermal cells onto an excision wound on the back of immunodeficient mouse to generate the hRSK, and the hRSK, containing epidermis, dermis, and subcutis and also appendages such as hair follicles, histologically mirrors in situ human skin.
Collapse
Affiliation(s)
- Jun Mi
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China.,Cutaneous Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Shuai Chen
- Department of General Surgery and Neonatal Surgery, Qilu Children's Hospital of Shandong University, Shandong, China
| | - Lin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Stomatology, Liaocheng People's Hospital, Shandong, China
| | - Jie Wen
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Xunwei Wu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China.,Cutaneous Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
184
|
Nilforoushzadeh MA, Zare M, Zarrintaj P, Alizadeh E, Taghiabadi E, Heidari-Kharaji M, Amirkhani MA, Saeb MR, Mozafari M. Engineering the niche for hair regeneration - A critical review. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 15:70-85. [PMID: 30201489 DOI: 10.1016/j.nano.2018.08.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/06/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
Recent progress in hair follicle regeneration and alopecia treatment necessitates revisiting the concepts and approaches. In this sense, there is a need for shedding light on the clinical and surgical therapies benefitting from nanobiomedicine. From this perspective, this review attempts to recognize requirements upon which new hair therapies are grounded; to underline shortcomings and opportunities associated with recent advanced strategies for hair regeneration; and most critically to look over hair regeneration from nanomaterials and pluripotent stem cell standpoint. It is noteworthy that nanotechnology is able to illuminate a novel path for reprogramming cells and controlled differentiation to achieve the desired performance. Undoubtedly, this strategy needs further advancement and a lot of critical questions have yet to be answered. Herein, we introduce the salient features, the hurdles that must be overcome, the hopes, and practical constraints to engineer stem cell niches for hair follicle regeneration.
Collapse
Affiliation(s)
| | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Taghiabadi
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
185
|
Abstract
Fabrication of engineered skin substitutes provides an alternative approach for the treatment of full-thickness burns and other skin injuries. Improving the functionality of current skin substitute models requires incorporation of skin appendages, including hair follicles, sebaceous glands, and sweat glands. In this chapter, methods for generating skin substitutes incorporating chimeric hair follicles are described. Isolation of human keratinocytes, human fibroblasts, and murine dermal papilla cells is first outlined. These cell types are then combined with collagen-glycosaminoglycan (GAG) scaffolds to generate human-murine chimeric grafts which are then grafted to full-thickness surgical wounds in immunodeficient mice. The methods described allow for the generation of a human-mouse follicular structure.
Collapse
Affiliation(s)
- Andrea L Lalley
- Research Department, Shriners Hospitals for Children, Cincinnati, OH, USA
| | - Steven T Boyce
- Research Department, Shriners Hospitals for Children, Cincinnati, OH, USA.
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
186
|
Abaci HE, Coffman A, Doucet Y, Chen J, Jacków J, Wang E, Guo Z, Shin JU, Jahoda CA, Christiano AM. Tissue engineering of human hair follicles using a biomimetic developmental approach. Nat Commun 2018; 9:5301. [PMID: 30546011 PMCID: PMC6294003 DOI: 10.1038/s41467-018-07579-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/25/2018] [Indexed: 01/15/2023] Open
Abstract
Human skin constructs (HSCs) have the potential to provide an effective therapy for patients with significant skin injuries and to enable human-relevant drug screening for skin diseases; however, the incorporation of engineered skin appendages, such as hair follicles (HFs), into HSCs remains a major challenge. Here, we demonstrate a biomimetic approach for generation of human HFs within HSCs by recapitulating the physiological 3D organization of cells in the HF microenvironment using 3D-printed molds. Overexpression of Lef-1 in dermal papilla cells (DPC) restores the intact DPC transcriptional signature and significantly enhances the efficiency of HF differentiation in HSCs. Furthermore, vascularization of hair-bearing HSCs prior to engraftment allows for efficient human hair growth in immunodeficient mice. The ability to regenerate an entire HF from cultured human cells will have a transformative impact on the medical management of different types of alopecia, as well as chronic wounds, which represent major unmet medical needs. Human skin constructs hold potential for regenerative medicine, but the incorporation of hair follicles into such constructs is a challenge. Here, the authors use 3D printed molds to pattern hair follicle cell types in a physiological organization, and achieve human hair growth on the back of a mouse.
Collapse
Affiliation(s)
- Hasan Erbil Abaci
- Department of Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Abigail Coffman
- Department of Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Yanne Doucet
- Department of Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - James Chen
- Department of Dermatology, Columbia University Medical Center, New York, NY, 10032, USA.,Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Joanna Jacków
- Department of Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Etienne Wang
- Department of Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Zongyou Guo
- Department of Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jung U Shin
- Department of Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Colin A Jahoda
- Department of Biosciences, Durham University, Durham, UK
| | - Angela M Christiano
- Department of Dermatology, Columbia University Medical Center, New York, NY, 10032, USA. .,Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
187
|
Chen R, Miao Y, Hu Z. Dynamic Nestin expression during hair follicle maturation and the normal hair cycle. Mol Med Rep 2018; 19:549-554. [PMID: 30483790 DOI: 10.3892/mmr.2018.9691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/03/2018] [Indexed: 11/06/2022] Open
Abstract
Nestin, a type-VI intermediate filament protein, serves as a marker for neural stem cells, and is also known to be expressed in follicle stem cells. Hair follicles go through repeated cycles of anagen (growth), catagen (regression) and telogen (quiescence) throughout the life of mammals following morphogenesis. In the present study it was demonstrated that in mice, the maturation of hair follicles includes the period between morphogenesis and the first anagen (4 weeks of age). Skin samples from Nestin‑green fluorescent protein (GFP)+ mice at different hair follicle stages were collected, and immunostaining for Nestin and Ki67 was performed. It was identified that during morphogenesis, Nestin‑GFP expression was rarely detected and it gradually increased during maturation (0‑4 weeks) in hair follicle dermal cells. In mature hair follicle dermal cells, Nestin and the proliferation marker Ki67 were highly expressed in anagen, while during telogen, they were markedly decreased. Additionally, lineage tracing data demonstrated that peri‑follicular Nestin+ cells during morphogenesis differentiated into cluster of differentiation 31+ cells.
Collapse
Affiliation(s)
- Ruosi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Guangzhou, Guangdong 510515, P.R. China
| | - Yong Miao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Guangzhou, Guangdong 510515, P.R. China
| | - Zhiqi Hu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
188
|
Hair Strengthening Evaluation of Anisotropic Osmolite Solutions (Inositol + Arginine): Cross-Talk between Dermal Papilla Fibroblast and Keratinocytes of the Outer Root Sheath Using a µHair Follicle 3D Model. COSMETICS 2018. [DOI: 10.3390/cosmetics5040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The hair follicle (HF) is a dynamic “mini-organ” which undergoes bi-continuous cycles of growth, destruction and rest. The molecular mechanisms underlying the HF cycle are complex yet not fully understood. Anyhow, it is clear that the epithelial–mesenchymal interactions, and in particular the cross-talk between dermal papilla fibroblast (DPF) and the keratinocytes of the outer root sheath (ORSK) play a pivotal role. Aim of this study is the evaluation of the biological activity of anisotropic osmolyte solutions on the HF cycle. As reported in recent studies, dermal papilla cells deeply modify their gene expression profile when cultured as monolayers, but their transcriptional pattern can be partially restored when they are cultured as 3-dimensional spheroids. This draws our attention to the discovery that the spatial distribution of cells in the growth medium is fundamental in order to produce a verisimilar model. Therefore, we used the hanging drop technology to produce a scaffold-free micro-tissue model applied to a DPF-ORSK co-culture in order to create a µHF 3-dimensional model. As a result, this system was capable of evaluating the efficacy of the anisotropic osmolyte solutions on the progressive increase of the follicle turnover and ‘health’. Moreover, an in silico model was used in order to screen the most promising combination of osmolyte molecules. In vivo objective evaluations were finally carried out on volunteers having hair disorders.
Collapse
|
189
|
Bak SS, Kwack MH, Shin HS, Kim JC, Kim MK, Sung YK. Restoration of hair-inductive activity of cultured human follicular keratinocytes by co-culturing with dermal papilla cells. Biochem Biophys Res Commun 2018; 505:360-364. [PMID: 30253942 DOI: 10.1016/j.bbrc.2018.09.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 11/15/2022]
Abstract
Hair follicle outer root sheath (ORS) cells can be expanded in vitro, but often lose receptivity to hair-inducing dermal signals. Recent studies have shown hair-inductive activity (trichogenicity) can be restored in rat ORS cells expanded with a fibroblast feeder by co-culturing with rat vibrissae dermal papilla (DP) cells. In this study, we investigated whether the trichogenicity of human ORS cells can be restored by co-culturing with human DP cells. ORS cells from human scalp hair follicles were cultured independently or with DP cells for 5 days and implanted into nude mice alongside freshly isolated neonatal mouse dermal cells. Although there was no hair induction when monocultured ORS cells were implanted, it was observed in co-cultured ORS cells. We also observed differential regulation of a number of genes in ORS cells co-cultured with DP cells compared to monocultured ORS cells as examined by microarray. Taken together, our data strongly suggest that human DP cells restore the trichogenicity of co-cultured ORS cells by influencing ORS gene expression through paracrine factors.
Collapse
Affiliation(s)
- Soon Sun Bak
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyun Su Shin
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jung Chul Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
190
|
Wei KC, Huang MS, Chang TH. Dengue Virus Infects Primary Human Hair Follicle Dermal Papilla Cells. Front Cell Infect Microbiol 2018; 8:268. [PMID: 30186771 PMCID: PMC6110916 DOI: 10.3389/fcimb.2018.00268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
During the epidemic of the dengue virus (DENV) infection in Taiwan in 2014 and 2015, we observed an abnormally high frequency of increased scalp hair shedding in infected individuals that could not be explained by telogen effluvium. In this study, the mechanism of hair loss caused by DENV was explored. Human hair follicle dermal papilla cells (HFDPCs) are essential for hair follicle morphogenesis and cycling. Thus, we established an in vitro DENV infection model in HFDPCs. On immunofluorescence analysis, HFDPCs that were susceptible to DENV infection responded to type I interferon (IFN) treatment, and the cells showed antibody-dependent enhancement (ADE) effect. The expression of the pro-inflammatory cytokines, interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α), revealed an inflammatory response in DENV-infected HFDPCs. In particular, DENV infection impaired cell viability, and it activated caspase-associated cell death signaling in HFDPCs. In conclusion, our data indicate that direct infection with DENV causes inflammation and cell death in HFDPCs, which is involved in the mechanisms of hair loss after DENV infection. The knowledge of DENV infection in an immune-privileged tissue, such as hair follicles, may suggest their use for further studies on post-dengue fatigue syndrome (PDFS).
Collapse
Affiliation(s)
- Kai-Che Wei
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Faculty of Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
| | - Mei-Shu Huang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tsung-Hsien Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| |
Collapse
|
191
|
Lineage Identity and Location within the Dermis Determine the Function of Papillary and Reticular Fibroblasts in Human Skin. J Invest Dermatol 2018; 139:342-351. [PMID: 30179601 DOI: 10.1016/j.jid.2018.07.033] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
Human skin dermis is composed of the superficial papillary dermis and the reticular dermis in the lower layers, which can easily be distinguished histologically. In vitro analyses of fibroblasts from explant cultures from superficial and lower dermal layers suggest that human skin comprises at least two fibroblast lineages with distinct morphology, expression profiles, and functions. However, while for mouse skin cell surface markers have been identified, allowing the isolation of pure populations of one lineage or the other via FACS, this has not been achieved for human skin fibroblasts. We have now discovered two cell surface markers that discriminate between papillary and reticular fibroblasts. While FAP+CD90- cells display increased proliferative potential, express PDPN and NTN1, and cannot be differentiated into adipocytes, FAP-CD90+ fibroblasts express high levels of ACTA2, MGP, PPARγ, and CD36 and readily undergo adipogenic differentiation, a hallmark of reticular fibroblasts. Flow cytometric analysis of fibroblasts isolated from superficial and lower layers of human dermis showed that FAP+CD90- cells are enriched in the papillary dermis. Altogether, functional analysis and expression profiling confirms that FAP+CD90- cells represent papillary fibroblasts, whereas FAP-CD90+ fibroblasts derive from the reticular lineage. Although papillary and reticular fibroblasts are enriched in the upper or lower dermis, respectively, they are not spatially restricted, and the microenvironment seems to affect their function.
Collapse
|
192
|
Hair Follicle Dermal Cells Support Expansion of Murine and Human Embryonic and Induced Pluripotent Stem Cells and Promote Haematopoiesis in Mouse Cultures. Stem Cells Int 2018; 2018:8631432. [PMID: 30154866 PMCID: PMC6098861 DOI: 10.1155/2018/8631432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/26/2018] [Indexed: 12/26/2022] Open
Abstract
In the hair follicle, the dermal papilla (DP) and dermal sheath (DS) support and maintain proliferation and differentiation of the epithelial stem cells that produce the hair fibre. In view of their regulatory properties, in this study, we investigated the interaction between hair follicle dermal cells (DP and DS) and embryonic stem cells (ESCs); induced pluripotent stem cells (iPSCs); and haematopoietic stem cells. We found that coculture of follicular dermal cells with ESCs or iPSCs supported their prolonged maintenance in an apparently undifferentiated state as established by differentiation assays, immunocytochemistry, and RT-PCR for markers of undifferentiated ESCs. We further showed that cytokines that are involved in ESC support are also expressed by cultured follicle dermal cells, providing a possible explanation for maintenance of ES cell stemness in cocultures. The same cytokines were expressed within follicles in situ in a pattern more consistent with a role in follicle growth activities than stem cell maintenance. Finally, we show that cultured mouse follicle dermal cells provide good stromal support for haematopoiesis in an established coculture model. Human follicular dermal cells represent an accessible and readily propagated source of feeder cells for pluripotent and haematopoietic cells and have potential for use in clinical applications.
Collapse
|
193
|
Zhou R, Wang G, Kim D, Kim S, Islam N, Chen R, Wang Z, Li A, McCarthy EF, Li L, Hu Z, Garza LA. dsRNA Sensing Induces Loss of Cell Identity. J Invest Dermatol 2018; 139:91-99. [PMID: 30120933 DOI: 10.1016/j.jid.2018.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/20/2018] [Accepted: 07/13/2018] [Indexed: 02/05/2023]
Abstract
How cell and tissue identity persist despite constant cell turnover is an important biologic question with cell therapy implications. Although many mechanisms exist, we investigated the controls for site-specific gene expression in skin, given its diverse structures and functions. For example, the transcriptome of in vivo palmoplantar (i.e., volar) epidermis is globally unique, including Keratin 9 (KRT9). Although volar fibroblasts have the capacity to induce KRT9 in nonvolar keratinocytes, we show here that volar keratinocytes continue to express KRT9 in in vitro solo cultures. Despite this, KRT9 expression is lost with volar keratinocyte passaging, despite stable hypomethylation of its promoter. Coincident with KRT9 loss is a gain of the primitive keratin 7 and a signature of dsRNA sensing, including the double-stranded RNA (dsRNA) receptor DExD/H-Box Helicase 58 (DDX58/RIG-I). Exogenous dsRNA inhibits KRT9 expression in early passage volar keratinocytes or in vivo footpads of wild-type mice. Loss of DDX58 in passaged volar keratinocytes rescues KRT9 and inhibits KRT7 expression. Additionally, DDX58-null mice are resistant to the ability of dsRNA to inhibit KRT9 expression. These results show that the sensing of dsRNA is critical for loss of cell-specific gene expression; our results have important implications for how dsRNA sensing is important outside of immune pathways.
Collapse
Affiliation(s)
- Rongying Zhou
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Gaofeng Wang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Dongwon Kim
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sooah Kim
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nasif Islam
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ruosi Chen
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zixiao Wang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ang Li
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Edward F McCarthy
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Li Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
194
|
Choi N, Choi J, Kim JH, Jang Y, Yeo JH, Kang J, Song SY, Lee J, Sung JH. Generation of trichogenic adipose-derived stem cells by expression of three factors. J Dermatol Sci 2018; 92:18-29. [PMID: 30146106 DOI: 10.1016/j.jdermsci.2018.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Previous studies demonstrated that adipose-derived stem cells (ASCs) can promote hair growth, but unmet needs exist for enhancing ASC hair inductivity. OBJECTIVE Therefore, we introduced three trichogenic factors platelet-derived growth factor-A, SOX2, and β-catenin to ASCs (tfASCs) and evaluated whether tfASCs have similar characteristics as dermal papilla (DP) cells. METHOD Global gene expression was examined using NGS analysis. Telogen-to-anagen induction, vibrissae hair follicle organ culture and patch assay were used. RESULTS tfASC cell size is smaller than that of ASCs, and they exhibit short doubling time. tfASCs also resist aging and can be expanded until passage 12. Cell proportion in S and G2/M increases in tfASCs, and tfASCs express high mRNA levels of cell cycle related genes. The mRNA expression of DP markers was notably higher in tfASCs. Moreover, NGS analysis revealed that the global gene expression of tfASCs is similar to that of DP cells. The injection of tfASCs accelerated the telogen-to-anagen transition and conditioned medium of tfASCs increased the anagen phase of vibrissal hair follicles. Finally, we found that the injection of 3D-cultured tfASCs at p 9 generated new hair follicles in nude mice. CONCLUSION Collectively, these results indicate that 1) tfASCs have similar characteristics as DP cells, 2) tfASCs have enhanced hair-regenerative potential compared with ASCs, and 3) tfASCs even at late passage can make new hair follicles in a hair reconstitution assay. Because DP cells are difficult to isolate/expand and ASCs have low hair inductivity, tfASCs and tfASC-CM are clinically good candidates for hair regeneration.
Collapse
Affiliation(s)
- Nahyun Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea; STEMORE Co. Ltd., Incheon, South Korea
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | | | | | - Joo Hye Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Juwon Kang
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Seung Yong Song
- Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea.
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea; STEMORE Co. Ltd., Incheon, South Korea.
| |
Collapse
|
195
|
Biggs LC, Mäkelä OJ, Myllymäki SM, Das Roy R, Närhi K, Pispa J, Mustonen T, Mikkola ML. Hair follicle dermal condensation forms via Fgf20 primed cell cycle exit, cell motility, and aggregation. eLife 2018; 7:36468. [PMID: 30063206 PMCID: PMC6107334 DOI: 10.7554/elife.36468] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal condensation is a critical step in organogenesis, yet the underlying molecular and cellular mechanisms remain poorly understood. The hair follicle dermal condensate is the precursor to the permanent mesenchymal unit of the hair follicle, the dermal papilla, which regulates hair cycling throughout life and bears hair inductive potential. Dermal condensate morphogenesis depends on epithelial Fibroblast Growth Factor 20 (Fgf20). Here, we combine mouse models with 3D and 4D microscopy to demonstrate that dermal condensates form de novo and via directional migration. We identify cell cycle exit and cell shape changes as early hallmarks of dermal condensate morphogenesis and find that Fgf20 primes these cellular behaviors and enhances cell motility and condensation. RNAseq profiling of immediate Fgf20 targets revealed induction of a subset of dermal condensate marker genes. Collectively, these data indicate that dermal condensation occurs via directed cell movement and that Fgf20 orchestrates the early cellular and molecular events. All mammal hair springs from hair follicles under the skin. These follicles sit in the dermis, beneath the outermost skin layer, the epidermis. In the embryo, hair follicles develop from unspecialized cells in two tissues, the epithelium and the mesenchyme, which will later develop into the dermis and epidermis, respectively. As development progresses, the cells of these tissues begin to cluster, and signals passing back and forth between the epithelium and mesenchyme instruct the cells what to do. In the mesenchyme, cells called fibroblasts squeeze up against their neighbors, forming patches called dermal condensates. These mature into so-called dermal papillae, which supply specific molecules called growth factors that regulate hair formation throughout lifetime. Fibroblasts in the developing skin respond to a signal from the epithelium called fibroblast growth factor 20 (Fgf20), but we do not yet understand its effects. It is possible that Fgf20 tells the cells to divide, forming clusters of daughter cells around their current location. Or, it could be that Fgf20 tells the cells to move, encouraging them to travel towards one another to form groups. To address this question, Biggs, Mäkelä et al. examined developing mouse skin grown in the laboratory. They traced cells marked with fluorescent tags to analyze their behavior as the condensates formed. This revealed that the Fgf20 signal acts as a rallying call, triggering fibroblast movement. The cells changed shape and moved towards one another, rather than dividing to create their own clusters. In fact, they switched off their own cell cycle as the condensates formed, halting their ability to divide. A technique called RNA sequencing revealed that Fgf20 also promotes the use of genes known to be active in dermal condensates. Dermal papillae control hair growth, and transplanting them under the skin can form new hair follicles. However, these cells lose this ability when grown in the laboratory. Understanding how they develop could be beneficial for future hair growth therapy. Further work could also address fundamental questions in embryology. Condensates of cells from the mesenchyme also precede the formation of limbs, bones, muscles and organs. Extending this work could help us to understand this critical developmental step.
Collapse
Affiliation(s)
- Leah C Biggs
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Otto Jm Mäkelä
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Satu-Marja Myllymäki
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Rishi Das Roy
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Katja Närhi
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Johanna Pispa
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tuija Mustonen
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
196
|
Endo Y, Obayashi Y, Ono T, Serizawa T, Murakoshi M, Ohyama M. Reversal of the hair loss phenotype by modulating the estradiol-ANGPT2 axis in the mouse model of female pattern hair loss. J Dermatol Sci 2018; 91:43-51. [DOI: 10.1016/j.jdermsci.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
|
197
|
Gupta AC, Chawla S, Hegde A, Singh D, Bandyopadhyay B, Lakshmanan CC, Kalsi G, Ghosh S. Establishment of an in vitro organoid model of dermal papilla of human hair follicle. J Cell Physiol 2018; 233:9015-9030. [DOI: 10.1002/jcp.26853] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/10/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Abhishak C. Gupta
- Department of Textile Technology, Regenerative Engineering Laboratory Indian Institute of Technology Delhi India
| | - Shikha Chawla
- Department of Textile Technology, Regenerative Engineering Laboratory Indian Institute of Technology Delhi India
| | - Ashok Hegde
- ITC Life Sciences and Technology Centre, ITC Ltd. Bangalore India
| | - Divya Singh
- Department of Textile Technology, Regenerative Engineering Laboratory Indian Institute of Technology Delhi India
| | | | | | - Gurpreet Kalsi
- ITC Life Sciences and Technology Centre, ITC Ltd. Bangalore India
| | - Sourabh Ghosh
- Department of Textile Technology, Regenerative Engineering Laboratory Indian Institute of Technology Delhi India
| |
Collapse
|
198
|
Fan SMY, Tsai CF, Yen CM, Lin MH, Wang WH, Chan CC, Chen CL, Phua KKL, Pan SH, Plikus MV, Yu SL, Chen YJ, Lin SJ. Inducing hair follicle neogenesis with secreted proteins enriched in embryonic skin. Biomaterials 2018; 167:121-131. [PMID: 29567388 PMCID: PMC6050066 DOI: 10.1016/j.biomaterials.2018.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 12/17/2022]
Abstract
Organ development is a sophisticated process of self-organization. However, despite growing understanding of the developmental mechanisms, little is known about how to reactivate them postnatally for regeneration. We found that treatment of adult non-hair fibroblasts with cell-free extract from embryonic skin conferred upon them the competency to regenerate hair follicles. Proteomics analysis identified three secreted proteins enriched in the embryonic skin, apolipoprotein-A1, galectin-1 and lumican that together were essential and sufficient to induce new hair follicles. These 3 proteins show a stage-specific co-enrichment in the perifolliculogenetic embryonic dermis. Mechanistically, exposure to embryonic skin extract or to the combination of the 3 proteins altered the gene expression to an inductive hair follicle dermal papilla fibroblast-like profile and activated Igf and Wnt signaling, which are crucial for the regeneration process. Therefore, a cocktail of organ-specific extracellular proteins from the embryonic environment can render adult cells competent to re-engage in developmental interactions for organ neogenesis. Identification of factors that recreate the extracellular context of respective developing tissues can become an important strategy to promote regeneration in adult organs.
Collapse
Affiliation(s)
- Sabrina Mai-Yi Fan
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Feng Tsai
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chien-Mei Yen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Miao-Hsia Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wei-Hung Wang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Chieh Chan
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chih-Lung Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Kyle K L Phua
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan; Doctoral Degree Program of Translational Medicine, National Taiwan University, Taipei, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Sung-Jan Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
199
|
Agabalyan NA, Rosin NL, Rahmani W, Biernaskie J. Hair follicle dermal stem cells and skin-derived precursor cells: Exciting tools for endogenous and exogenous therapies. Exp Dermatol 2018; 26:505-509. [PMID: 28418596 DOI: 10.1111/exd.13359] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2017] [Indexed: 12/11/2022]
Abstract
Understanding the cellular interactions and molecular signals underlying hair follicle (HF) regeneration may have significant implications for restorative therapies for skin disease that diminish hair growth, whilst also serving to provide fundamental insight into the mechanisms underlying adult tissue regeneration. One of the major, yet underappreciated, players in this process is the underlying HF mesenchyme. Here, we provide an overview of a mesenchymal progenitor pool referred to as hair follicle dermal stem cells (hfDSCs), discuss their potential functions within the skin and their relationship to skin-derived precursors (SKPs), and consider unanswered questions about the function of these specialized fibroblasts. We contend that dermal stem cells provide an important reservoir of renewable dermal progenitors that may enable development of novel restorative therapies following hair loss, skin injury or disease.
Collapse
Affiliation(s)
- Natacha A Agabalyan
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole L Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Waleed Rahmani
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
200
|
Topouzi H, Logan NJ, Williams G, Higgins CA. Methods for the isolation and 3D culture of dermal papilla cells from human hair follicles. Exp Dermatol 2018; 26:491-496. [PMID: 28418608 PMCID: PMC5519926 DOI: 10.1111/exd.13368] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 12/18/2022]
Abstract
The dermal papilla is a cluster of mesenchymal cells located at the base of the hair follicle which have a number of important roles in the regulation of hair growth. As a consequence, in vitro models of these cells are widely used to study the molecular mechanisms which underlie hair follicle induction, growth and maintenance. While dermal papilla from rodent hair follicles can be digested prior to cell isolation, the unique extracellular matrix composition found in human dermal papilla renders enzymes such as trypsin and collagenase insufficient for digestion of the dermal papilla into a single cell suspension. As such, to grow human dermal papilla cells in vitro, the papilla has to first be isolated via a micro-dissection approach from the follicle. In this article we describe the micro-dissection and culture methods, which we use within our laboratory, for the study of human dermal papilla cells.
Collapse
Affiliation(s)
- Helena Topouzi
- Department of Bioengineering, Imperial College London, London, UK
| | - Niall J Logan
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Claire A Higgins
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|