151
|
Nag M, De Paris K, E Fogle J. Epigenetic Modulation of CD8⁺ T Cell Function in Lentivirus Infections: A Review. Viruses 2018; 10:v10050227. [PMID: 29710792 PMCID: PMC5977220 DOI: 10.3390/v10050227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/16/2023] Open
Abstract
CD8+ T cells are critical for controlling viremia during human immunodeficiency virus (HIV) infection. These cells produce cytolytic factors and antiviral cytokines that eliminate virally- infected cells. During the chronic phase of HIV infection, CD8+ T cells progressively lose their proliferative capacity and antiviral functions. These dysfunctional cells are unable to clear the productively infected and reactivated cells, representing a roadblock in HIV cure. Therefore, mechanisms to understand CD8+ T cell dysfunction and strategies to boost CD8+ T cell function need to be investigated. Using the feline immunodeficiency virus (FIV) model for lentiviral persistence, we have demonstrated that CD8+ T cells exhibit epigenetic changes such as DNA demethylation during the course of infection as compared to uninfected cats. We have also demonstrated that lentivirus-activated CD4+CD25+ T regulatory cells induce forkhead box P3 (Foxp3) expression in virus-specific CD8+ T cell targets, which binds the interleukin (IL)-2, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ promoters in these CD8+ T cells. Finally, we have reported that epigenetic modulation reduces Foxp3 binding to these promoter regions. This review compares and contrasts our current understanding of CD8+ T cell epigenetics and mechanisms of lymphocyte suppression during the course of lentiviral infection for two animal models, FIV and simian immunodeficiency virus (SIV).
Collapse
Affiliation(s)
- Mukta Nag
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jonathan E Fogle
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
152
|
Zhu Y, Du S, Zhang Y, Liu J, Guo Y, Liu C, Bai J, Wang M, Zhao F, Cao T, Xu W, Bai B, Zhang K, Ma Y, Li C, Jin N. SIV-Specific Antibodies are Elicited by a Recombinant Fowlpox Virus Co-expressing SIV Gag and envT. Indian J Microbiol 2018; 58:345-352. [PMID: 30013279 DOI: 10.1007/s12088-018-0728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/20/2018] [Indexed: 10/17/2022] Open
Abstract
Given the failures of past HIV-1 vaccine clinical trials, potential HIV-1 vaccine candidates should be rigorously screened in preclinical models including simian immunodeficiency virus (SIV) primate models and small animal models. In this study, we tested the immunogenicity of a recombinant fowlpox virus (rFPV) expressing the SIV gag and SIV envT (rFPVsg-se) proteins in BALB/c mice, to establish a foundation for further development. rFPVsg-se was constructed through homologous recombination techniques and purified through plaque screening assays using enhanced green fluorescent protein as the reporter gene. The integration, transcription, and translation of the SIV genes were measured by PCR (genomic DNA), RT-PCR (RNA), Western-blot, respectively. The levels of SIV-specific antibodies were assessed by ELISA following a single immunization (n = 18/group) or a prime-boost strategy (n = 24/group) with rFPVsg-se and compared to FPV and PBS controls. Residual virus was measured in distant organs following immunization using PCR. SIV-specific IgG titers against gag and gp120 were detected following single vaccination and the prime-boost. As expected the titers were higher following the prime-boost approach. The levels of Gag- and gp120-specific antibodies were significantly higher than controls (p < 0.01) 14 days after the booster immunization. Residual rFPVSg-Se was detected in the muscle at the site of injection, but not in distant organs, from day 1-7 post immunization. In summary, rFPVsg-se induced high levels of SIV-specific antibodies suggesting it may be a viable candidate for further development.
Collapse
Affiliation(s)
- Yilong Zhu
- 1Changchun University of Chinese Medicine, Changchun, 130117 People's Republic of China.,3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Shouwen Du
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Yang Zhang
- 4Department of Neurosurgery, First Hospital, Jilin University, Changchun, 130021 People's Republic of China
| | - Jingwei Liu
- 4Department of Neurosurgery, First Hospital, Jilin University, Changchun, 130021 People's Republic of China
| | - Yan Guo
- 1Changchun University of Chinese Medicine, Changchun, 130117 People's Republic of China
| | - Cunxia Liu
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Jieying Bai
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Maopeng Wang
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Fei Zhao
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Tingting Cao
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Wang Xu
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Bing Bai
- 1Changchun University of Chinese Medicine, Changchun, 130117 People's Republic of China.,3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Kelong Zhang
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Yizhen Ma
- 1Changchun University of Chinese Medicine, Changchun, 130117 People's Republic of China
| | - Chang Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 People's Republic of China.,3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Ningyi Jin
- 1Changchun University of Chinese Medicine, Changchun, 130117 People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 People's Republic of China.,3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| |
Collapse
|
153
|
Richardson SI, Chung AW, Natarajan H, Mabvakure B, Mkhize NN, Garrett N, Abdool Karim S, Moore PL, Ackerman ME, Alter G, Morris L. HIV-specific Fc effector function early in infection predicts the development of broadly neutralizing antibodies. PLoS Pathog 2018; 14:e1006987. [PMID: 29630668 PMCID: PMC5908199 DOI: 10.1371/journal.ppat.1006987] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/19/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022] Open
Abstract
While the induction of broadly neutralizing antibodies (bNAbs) is a major goal of HIV vaccination strategies, there is mounting evidence to suggest that antibodies with Fc effector function also contribute to protection against HIV infection. Here we investigated Fc effector functionality of HIV-specific IgG plasma antibodies over 3 years of infection in 23 individuals, 13 of whom developed bNAbs. Antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD), cellular cytotoxicity (ADCC) and cellular trogocytosis (ADCT) were detected in almost all individuals with levels of activity increasing over time. At 6 months post-infection, individuals with bNAbs had significantly higher levels of ADCD and ADCT that correlated with antibody binding to C1q and FcγRIIa respectively. In addition, antibodies from individuals with bNAbs showed more IgG subclass diversity to multiple HIV antigens which also correlated with Fc polyfunctionality. Germinal center activity represented by CXCL13 levels and expression of activation-induced cytidine deaminase (AID) was found to be associated with neutralization breadth, Fc polyfunctionality and IgG subclass diversity. Overall, multivariate analysis by random forest classification was able to group bNAb individuals with 85% sensitivity and 80% specificity based on the properties of their antibody Fc early in HIV infection. Thus, the Fc effector function profile predicted the development of neutralization breadth in this cohort, suggesting that intrinsic immune factors within the germinal center provide a mechanistic link between the Fc and Fab of HIV-specific antibodies. Some HIV-infected individuals develop antibodies that are capable of neutralizing the majority of HIV strains, a highly desirable function mediated by the antibody Fab portion. While antibodies elicited by current vaccines have failed to recreate this activity, the partial protection seen in the RV144 vaccine trial has been attributed to antibody Fc-mediated effector functions such as cell killing. In this study, we found that HIV-infected individuals who show a diversified and potent Fc response early in infection were more likely to develop broadly neutralizing antibodies later on. Examination of B cell functions associated with good germinal center activity, provided evidence for a common mechanistic link between the regulation of the Fc and Fab mediated activities in these individuals. Our finding of an Fc effector function profile that arises early and predicts neutralization breadth could be used in the evaluation of vaccine candidates designed to generate neutralizing antibodies. Common immune determinants associated with both Fab and Fc function could furthermore be exploited for vaccine design to harness the full potential of HIV-specific antibodies.
Collapse
Affiliation(s)
- Simone I. Richardson
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Harini Natarajan
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Batsirai Mabvakure
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Nonhlanhla N. Mkhize
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
| | - Penny L. Moore
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Lynn Morris
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
- * E-mail:
| |
Collapse
|
154
|
Martins MA, Watkins DI. What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans? Rigorous Simian Immunodeficiency Virus Vaccine Trials Can Be Instructive. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029504. [PMID: 28348034 DOI: 10.1101/cshperspect.a029504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Simian immunodeficiency virus (SIV) challenge of rhesus macaques provides an invaluable tool to evaluate the clinical prospects of HIV-1 vaccine concepts. However, as with any animal model of human disease, it is crucial to understand the advantages and limitations of this system to maximize the translational value of SIV vaccine studies. Here, we discuss the importance of assessing the efficacy of vaccine prototypes using stringent SIV challenge regimens that mimic HIV-1 transmission and pathogenesis. We also review some of the cautionary tales of HIV-1 vaccine research because they provide general lessons for the preclinical assessment of vaccine candidates.
Collapse
Affiliation(s)
| | - David I Watkins
- Department of Pathology, University of Miami, Miami, Florida 33136
| |
Collapse
|
155
|
Pollara J, Orlandi C, Beck C, Edwards RW, Hu Y, Liu S, Wang S, Koup RA, Denny TN, Lu S, Tomaras GD, DeVico A, Lewis GK, Ferrari G. Application of area scaling analysis to identify natural killer cell and monocyte involvement in the GranToxiLux antibody dependent cell-mediated cytotoxicity assay. Cytometry A 2018; 93:436-447. [PMID: 29498807 PMCID: PMC5969088 DOI: 10.1002/cyto.a.23348] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 01/14/2023]
Abstract
Several different assay methodologies have been described for the evaluation of HIV or SIV-specific antibody-dependent cell-mediated cytotoxicity (ADCC). Commonly used assays measure ADCC by evaluating effector cell functions, or by detecting elimination of target cells. Signaling through Fc receptors, cellular activation, cytotoxic granule exocytosis, or accumulation of cytolytic and immune signaling factors have been used to evaluate ADCC at the level of the effector cells. Alternatively, assays that measure killing or loss of target cells provide a direct assessment of the specific killing activity of antibodies capable of ADCC. Thus, each of these two distinct types of assays provides information on only one of the critical components of an ADCC event; either the effector cells involved, or the resulting effect on the target cell. We have developed a simple modification of our previously described high-throughput ADCC GranToxiLux (GTL) assay that uses area scaling analysis (ASA) to facilitate simultaneous quantification of ADCC activity at the target cell level, and assessment of the contribution of natural killer cells and monocytes to the total observed ADCC activity when whole human peripheral blood mononuclear cells are used as a source of effector cells. The modified analysis method requires no additional reagents and can, therefore, be easily included in prospective studies. Moreover, ASA can also often be applied to pre-existing ADCC-GTL datasets. Thus, incorporation of ASA to the ADCC-GTL assay provides an ancillary assessment of the ability of natural and vaccine-induced antibodies to recruit natural killer cells as well as monocytes against HIV or SIV; or to any other field of research for which this assay is applied. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.
Collapse
Affiliation(s)
- Justin Pollara
- Department of SurgeryDuke University School of MedicineDurhamNorth Carolina
| | - Chiara Orlandi
- Institute of Human VirologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Charles Beck
- Department of SurgeryDuke University School of MedicineDurhamNorth Carolina
| | - R. Whitney Edwards
- Department of SurgeryDuke University School of MedicineDurhamNorth Carolina
| | - Yi Hu
- Institute of Human VirologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Shuying Liu
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Shixia Wang
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Richard A. Koup
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaMaryland
| | - Thomas N. Denny
- Duke Human Vaccine Institute, Duke University School of MedicineDurhamNorth Carolina
| | - Shan Lu
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Georgia D. Tomaras
- Department of SurgeryDuke University School of MedicineDurhamNorth Carolina
| | - Anthony DeVico
- Institute of Human VirologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - George K. Lewis
- Institute of Human VirologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Guido Ferrari
- Department of SurgeryDuke University School of MedicineDurhamNorth Carolina
| |
Collapse
|
156
|
Gao Y, McKay PF, Mann JFS. Advances in HIV-1 Vaccine Development. Viruses 2018; 10:E167. [PMID: 29614779 PMCID: PMC5923461 DOI: 10.3390/v10040167] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 02/07/2023] Open
Abstract
An efficacious HIV-1 vaccine is regarded as the best way to halt the ongoing HIV-1 epidemic. However, despite significant efforts to develop a safe and effective vaccine, the modestly protective RV144 trial remains the only efficacy trial to provide some level of protection against HIV-1 acquisition. This review will outline the history of HIV vaccine development, novel technologies being applied to HIV vaccinology and immunogen design, as well as the studies that are ongoing to advance our understanding of vaccine-induced immune correlates of protection.
Collapse
Affiliation(s)
- Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| | - Paul F McKay
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London, W2 1PG, UK.
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
157
|
Worley MJ, Fei K, Lopez-Denman AJ, Kelleher AD, Kent SJ, Chung AW. Neutrophils mediate HIV-specific antibody-dependent phagocytosis and ADCC. J Immunol Methods 2018; 457:41-52. [PMID: 29605231 DOI: 10.1016/j.jim.2018.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/28/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022]
Abstract
There is growing evidence to support the role of Fc-mediated effector functions, such as Antibody-Dependent Cellular cytotoxicity (ADCC) and Antibody-Dependent Phagocytosis (ADP) in the protection and control of HIV. The RV144 trial and other recent HIV vaccine studies have highlighted the importance of ADCC responses in protection against HIV. The role of neutrophils, the most abundant leukocyte in the blood, has not been thoroughly evaluated for Fc-mediated effector functions to HIV. We optimized HIV-specific neutrophil ADCC and Antibody-Dependent Neutrophil Phagocytosis (ADNP) assays using freshly isolated primary human neutrophils from blood. We also developed methods to study ADP using the neutrophil-like HL-60 cell line. We found that neutrophils mediate both HIV-specific ADP and ADCC responses. In vitro, neutrophil-mediated ADCC responses peaked at 4 h, much faster than primary NK cell or monocyte-mediated responses. We detected a wide range of responses in the ADNP, HL-60 mediated ADP and ADCC across a cohort of 41 viremic antiretroviral therapy naïve HIV positive subjects. HL-60 and Neutrophil-mediated ADP and ADCC responses correlated well with each other, suggesting that they measure overlapping functions. The ADNP and HL-60 ADP inversely correlated with HIV viral load, suggesting that these antibody-mediated neutrophil-based assays should prove useful in dissecting HIV-specific immunity.
Collapse
Affiliation(s)
- Matthew J Worley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Kuangyu Fei
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; School of Medicine, Tsinghua University, Beijing, China
| | - Adam J Lopez-Denman
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | | | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; Melbourne Sexual Health Centre, Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
158
|
Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates. J Virol 2018; 92:JVI.02035-17. [PMID: 29437967 DOI: 10.1128/jvi.02035-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/23/2018] [Indexed: 11/20/2022] Open
Abstract
A preventive human immunodeficiency virus type 1 (HIV-1) vaccine is an essential part of the strategy to eradicate AIDS. A critical question is whether antibodies that do not neutralize primary isolate (tier 2) HIV-1 strains can protect from infection. In this study, we investigated the ability of an attenuated poxvirus vector (NYVAC) prime-envelope gp120 boost to elicit potentially protective antibody responses in a rhesus macaque model of mucosal simian-human immunodeficiency virus (SHIV) infection. NYVAC vector delivery of a group M consensus envelope, trivalent mosaic envelopes, or a natural clade B isolate B.1059 envelope elicited antibodies that mediated neutralization of tier 1 viruses, cellular cytotoxicity, and phagocytosis. None of the macaques made neutralizing antibodies against the tier 2 SHIV SF162P3 used for mucosal challenge. Significant protection from infection was not observed for the three groups of vaccinated macaques compared to unvaccinated macaques, although binding antibody to HIV-1 Env correlated with decreased viremia after challenge. Thus, NYVAC Env prime-gp120 boost vaccination elicited polyfunctional, nonneutralizing antibody responses with minimal protective activity against tier 2 SHIV mucosal challenge.IMPORTANCE The antibody responses that confer protection against HIV-1 infection remain unknown. Polyfunctional antibody responses correlated with time to infection in previous macaque studies. Determining the ability of vaccines to induce these types of responses is critical for understanding how to improve upon the one efficacious human HIV-1 vaccine trial completed thus far. We characterized the antibody responses induced by a NYVAC-protein vaccine and determined the protective capacity of polyfunctional antibody responses in an R5, tier 2 mucosal SHIV infection model.
Collapse
|
159
|
Alter G, Dowell KG, Brown EP, Suscovich TJ, Mikhailova A, Mahan AE, Walker BD, Nimmerjahn F, Bailey-Kellogg C, Ackerman ME. High-resolution definition of humoral immune response correlates of effective immunity against HIV. Mol Syst Biol 2018; 14:e7881. [PMID: 29581149 PMCID: PMC5868198 DOI: 10.15252/msb.20177881] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Defining correlates of immunity by comprehensively interrogating the extensive biological diversity in naturally or experimentally protected subjects may provide insights critical for guiding the development of effective vaccines and antibody-based therapies. We report advances in a humoral immunoprofiling approach and its application to elucidate hallmarks of effective HIV-1 viral control. Systematic serological analysis for a cohort of HIV-infected subjects with varying viral control was conducted using both a high-resolution, high-throughput biophysical antibody profiling approach, providing unbiased dissection of the humoral response, along with functional antibody assays, characterizing antibody-directed effector functions such as complement fixation and phagocytosis that are central to protective immunity. Profiles of subjects with varying viral control were computationally analyzed and modeled in order to deconvolute relationships among IgG Fab properties, Fc characteristics, and effector functions and to identify humoral correlates of potent antiviral antibody-directed effector activity and effective viral suppression. The resulting models reveal multifaceted and coordinated contributions of polyclonal antibodies to diverse antiviral responses, and suggest key biophysical features predictive of viral control.
Collapse
Affiliation(s)
- Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Karen G Dowell
- Department of Computer Science, Dartmouth College, Hanover, NH, USA
| | - Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | | | - Alison E Mahan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|
160
|
HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis. J Virol 2018; 92:JVI.01552-17. [PMID: 29321320 PMCID: PMC5972890 DOI: 10.1128/jvi.01552-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/03/2017] [Indexed: 02/01/2023] Open
Abstract
Vaccine-elicited humoral immune responses comprise an array of antibody forms and specificities, with only a fraction contributing to protective host immunity. Elucidation of antibody effector functions responsible for protective immunity against human immunodeficiency virus type 1 (HIV-1) acquisition is a major goal for the HIV-1 vaccine field. Immunoglobulin A (IgA) is an important part of the host defense against pathogens; however, little is known about the role of vaccine-elicited IgA and its capacity to mediate antiviral functions. To identify the antiviral functions of HIV-1-specific IgA elicited by vaccination, we cloned HIV-1 envelope-specific IgA monoclonal antibodies (MAbs) by memory B cell cultures from peripheral blood mononuclear cells from an RV144 vaccinee and produced two IgA clonal cell lines (HG129 and HG130) producing native, nonrecombinant IgA MAbs. The HG129 and HG130 MAbs mediated phagocytosis by monocytes, and HG129 blocked HIV-1 Env glycoprotein binding to galactosylceramide, an alternative HIV-1 receptor. These findings elucidate potential antiviral functions of vaccine-elicited HIV-1 envelope-specific IgA that may act to block HIV-1 acquisition at the portal of entry by preventing HIV-1 binding to galactosylceramide and mediating antibody Fc receptor-mediated virion phagocytosis. Furthermore, these findings highlight the complex and diverse interactions of vaccine-elicited IgA with pathogens that depend on IgA fine specificity and form (e.g., multimeric or monomeric) in the systemic circulation and mucosal compartments. IMPORTANCE Host-pathogen interactions in vivo involve numerous immune mechanisms that can lead to pathogen clearance. Understanding the nature of antiviral immune mechanisms can inform the design of efficacious HIV-1 vaccine strategies. Evidence suggests that both neutralizing and nonneutralizing antibodies can mediate some protection against HIV in animal models. Although numerous studies have characterized the functional properties of HIV-1-specific IgG, more studies are needed on the functional attributes of HIV-1-specific IgA, specifically for vaccine-elicited IgA. Characterization of the functional properties of HIV-1 Env-specific IgA monoclonal antibodies from human vaccine clinical trials are critical toward understanding the capacity of the host immune response to block HIV-1 acquisition.
Collapse
|
161
|
Rapid Cloning of Novel Rhesus Adenoviral Vaccine Vectors. J Virol 2018; 92:JVI.01924-17. [PMID: 29298888 PMCID: PMC5827402 DOI: 10.1128/jvi.01924-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 12/18/2017] [Indexed: 11/20/2022] Open
Abstract
Human and chimpanzee adenovirus vectors are being developed to circumvent preexisting antibodies against common adenovirus vectors such as Ad5. However, baseline immunity to these vectors still exists in human populations. Traditional cloning of new adenovirus vaccine vectors is a long and cumbersome process that takes 2 months or more and that requires rare unique restriction enzyme sites. Here we describe a novel, restriction enzyme-independent method for rapid cloning of new adenovirus vaccine vectors that reduces the total cloning procedure to 1 week. We developed 14 novel adenovirus vectors from rhesus monkeys that can be grown to high titers and that are immunogenic in mice. All vectors grouped with the unusual adenovirus species G and show extremely low seroprevalence in humans. Rapid cloning of novel adenovirus vectors is a promising approach for the development of new vector platforms. Rhesus adenovirus vectors may prove useful for clinical development.IMPORTANCE To overcome baseline immunity to human and chimpanzee adenovirus vectors, we developed 14 novel adenovirus vectors from rhesus monkeys. These vectors are immunogenic in mice and show extremely low seroprevalence in humans. Rhesus adenovirus vectors may prove useful for clinical development.
Collapse
|
162
|
Abstract
The Global Virus Network (GVN) was established in 2011 to strengthen research and responses to emerging viral causes of human disease and to prepare against new viral pandemics. There are now 40 GVN Centers of Excellence and 6 Affiliate laboratories in 24 countries. The 2017 meeting was held from September 25–27 in Melbourne, Australia, and was hosted by the Peter Doherty Institute for Infection and Immunity and the Institut Pasteur. This report highlights the recent accomplishments of GVN researchers in several important areas of medical virology, including the recent Zika epidemic, infections by human papillomavirus, influenza, HIV, hepatitis C, HTLV-1, and chikungunya viruses, and new and emerging viruses in the Australasia region. Plans for the 2018 meeting also are noted. The GVN is an international research network comprised of 40 Centers of Excellence and 6 Affiliates in 24 countries. The 2017 Global Virus Network (GVN) Meeting was held in Melbourne, Australia from September 25–27. New data were presented on various aspects of medical virology, therapies, and emerging viruses in the Australasia region. International collaboration is critical to developing new and effective viral vaccines and therapeutics. The 2018 international GVN meeting will be held on November 28–30 in Annecy, France.
Collapse
|
163
|
Hessell AJ, Malherbe DC, Haigwood NL. Passive and active antibody studies in primates to inform HIV vaccines. Expert Rev Vaccines 2018; 17:127-144. [PMID: 29307225 PMCID: PMC6587971 DOI: 10.1080/14760584.2018.1425619] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Prevention of infection remains the ultimate goal for HIV vaccination, and there is compelling evidence that antibodies directed to Envelope are necessary to block infection. Generating antibodies that are sufficiently broad, potent, and sustained to block infection by the diverse HIV-1 strains circulating worldwide remains an area of intense study. AREAS COVERED In this review, we have summarized progress from publications listed as PubMed citations in 2016-17 in the areas of passive antibody studies using human neutralizing monoclonal antibodies in nonhuman primates, HIV Envelope vaccine development and active vaccination studies to generate potent neutralizing antibodies. EXPERT COMMENTARY Passive transfer studies in nonhuman primates using human neutralizing monoclonal antibodies have informed the potency, specificity, and cooperativity of antibodies needed to prevent infection, leading to clinical studies now testing potent antibodies for prevention of HIV. Progress in understanding the structure of Envelope has led to novel vaccine constructs, including mimetics, scaffolds and native-like proteins. As yet, no single approach ensures protection against the circulating global HIV-1 strains, but there is progress in understanding why, and intense research continues in these and other areas for a solution. We offer perspectives on how this knowledge may shape the design of future HIV vaccines.
Collapse
|
164
|
Brown EP, Weiner JA, Lin S, Natarajan H, Normandin E, Barouch DH, Alter G, Sarzotti-Kelsoe M, Ackerman ME. Optimization and qualification of an Fc Array assay for assessments of antibodies against HIV-1/SIV. J Immunol Methods 2018; 455:24-33. [PMID: 29395167 PMCID: PMC5851662 DOI: 10.1016/j.jim.2018.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/28/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
The Fc Array is a multiplexed assay that assesses the Fc domain characteristics of antigen-specific antibodies with the potential to evaluate up to 500 antigen specificities simultaneously. Antigen-specific antibodies are captured on antigen-conjugated beads and their functional capacity is probed via an array of Fc-binding proteins including antibody subclassing reagents, Fcγ receptors, complement proteins, and lectins. Here we present the results of the optimization and formal qualification of the Fc Array, performed in compliance with Good Clinical Laboratory Practice (GCLP) guidelines. Assay conditions were optimized for performance and reproducibility, and the final version of the assay was then evaluated for specificity, accuracy, precision, limits of detection and quantitation, linearity, range and robustness. Standardized array-based characterization platform for polyclonal antibodies Qualification of a biophysical proxy for antibody effector function Antibody recognition of antigen and by Fc receptors is captured. Enables systematic serologic studies of NHP and human antibody samples.
Collapse
Affiliation(s)
- Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
| | - Shu Lin
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
| | - Harini Natarajan
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
| | - Erica Normandin
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
| | - Dan H Barouch
- Ragon Institute of MGH, MIT, Harvard University, 149 13th St, Charlestown, MA 02129, United States; Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Galit Alter
- Ragon Institute of MGH, MIT, Harvard University, 149 13th St, Charlestown, MA 02129, United States
| | - Marcella Sarzotti-Kelsoe
- Duke University Medical Center, 2812 Erwin Rd., Suite 301, Erwin Terrace II, Durham, NC 27705, United States
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States.
| |
Collapse
|
165
|
Abstract
INTRODUCTION Traditional inactivated and protein vaccines generate strong antibodies, but struggle to generate T cell responses. Attenuated pathogen vaccines generate both, but risk causing the disease they aim to prevent. Newer gene-based vaccines drive both responses and avoid the risk of infection. While these replication-defective (RD) vaccines work well in small animals, they can be weak in humans because they do not replicate antigen genes like more potent replication-competent (RC) vaccines. RC vaccines generate substantially stronger immune responses, but also risk causing their own infections. To circumvent these problems, we developed single-cycle adenovirus (SC-Ad) vectors that amplify vaccine genes, but that avoid the risk of infection. This review will discuss these vectors and their prospects for use as vaccines. AREAS COVERED This review provides a background of different types of vaccines. The benefits of gene-based vaccines and their ability to replicate antigen genes are described. Adenovirus vectors are discussed and compared to other vaccine types. Replication-defective, single-cycle, and replication-competent Ad vaccines are compared. EXPERT COMMENTARY The potential utility of these vaccines are discussed when used against infectious diseases and as cancer vaccines. We propose a move away from replication-defective vaccines towards more robust replication-competent or single-cycle vaccines.
Collapse
Affiliation(s)
- Michael Barry
- a Division of Infectious Diseases, Department of Medicine, Department of Immunology, Department of Molecular Medicine , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
166
|
Malherbe DC, Mendy J, Vang L, Barnette PT, Reed J, Lakhashe SK, Owuor J, Gach JS, Legasse AW, Axthelm MK, LaBranche CC, Montefiori D, Forthal DN, Park B, Wilson JM, McLinden JH, Xiang J, Stapleton JT, Sacha JB, Haynes BF, Liao HX, Ruprecht RM, Smith J, Gurwith M, Haigwood NL, Alexander J. Combination Adenovirus and Protein Vaccines Prevent Infection or Reduce Viral Burden after Heterologous Clade C Simian-Human Immunodeficiency Virus Mucosal Challenge. J Virol 2018; 92:e01092-17. [PMID: 29093095 PMCID: PMC5752948 DOI: 10.1128/jvi.01092-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/13/2017] [Indexed: 01/24/2023] Open
Abstract
HIV vaccine development is focused on designing immunogens and delivery methods that elicit protective immunity. We evaluated a combination of adenovirus (Ad) vectors expressing HIV 1086.C (clade C) envelope glycoprotein (Env), SIV Gag p55, and human pegivirus GBV-C E2 glycoprotein. We compared replicating simian (SAd7) with nonreplicating human (Ad4) adenovirus-vectored vaccines paired with recombinant proteins in a novel prime-boost regimen in rhesus macaques, with the goal of eliciting protective immunity against SHIV challenge. In both vaccine groups, plasma and buccal Env-specific IgG, tier 1 heterologous neutralizing antibodies, and antibody-dependent cell-mediated viral inhibition were readily generated. High Env-specific T cell responses elicited in all vaccinees were significantly greater than responses targeting Gag. After three intrarectal exposures to heterologous tier 1 clade C SHIV, all 10 sham-vaccinated controls were infected, whereas 4/10 SAd7- and 3/10 Ad4-vaccinated macaques remained uninfected or maintained tightly controlled plasma viremia. Time to infection was significantly delayed in SAd7-vaccinated macaques compared to the controls. Cell-associated and plasma virus levels were significantly lower in each group of vaccinated macaques compared to controls; the lowest plasma viral burden was found in animals vaccinated with the SAd7 vectors, suggesting superior immunity conferred by the replicating simian vectors. Furthermore, higher V1V2-specific binding antibody titers correlated with viral control in the SAd7 vaccine group. Thus, recombinant Ad plus protein vaccines generated humoral and cellular immunity that was effective in either protecting from SHIV acquisition or significantly reducing viremia in animals that became infected, consequently supporting additional development of replicating Ad vectors as HIV vaccines.IMPORTANCE There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV infection and limits in vivo viral replication and associated pathogenesis. Although replicating virus vectors have been advanced as HIV vaccine platforms, there have not been any direct comparisons of the replicating to the nonreplicating format. The present study directly compared the replicating SAd7 to nonreplicating Ad4 vectors in macaques and demonstrated that in the SAd7 vaccine group, the time to infection was significantly delayed compared to the control group, and V1V2 Env-specific binding antibodies correlated with viral outcomes. Viral control was significantly enhanced in vaccinated macaques compared to controls, and in infected SAd7-vaccinated macaques compared to Ad4-vaccinated macaques, suggesting that this vector may have conferred more effective immunity. Because blocking infection is so difficult with current vaccines, development of a vaccine that can limit viremia if infection occurs would be valuable. These data support further development of replicating adenovirus vectors.
Collapse
Affiliation(s)
- Delphine C Malherbe
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | | | - Lo Vang
- PaxVax, Inc., San Diego, California, USA
| | - Philip T Barnette
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Jason Reed
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Samir K Lakhashe
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Joshua Owuor
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Southwest National Primate Research Center, San Antonio, Texas, USA
| | - Johannes S Gach
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, USA
| | - Alfred W Legasse
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Michael K Axthelm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Celia C LaBranche
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - David Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, USA
| | - Byung Park
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James H McLinden
- The Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
- The University of Iowa, Iowa City, Iowa, USA
| | - Jinhua Xiang
- The Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
- The University of Iowa, Iowa City, Iowa, USA
| | - Jack T Stapleton
- The Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
- The University of Iowa, Iowa City, Iowa, USA
| | - Jonah B Sacha
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ruth M Ruprecht
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Southwest National Primate Research Center, San Antonio, Texas, USA
| | | | | | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | | |
Collapse
|
167
|
Sanders-Beer BE, Voronin Y, McDonald D, Singh A. Harnessing Novel Imaging Approaches to Guide HIV Prevention and Cure Discoveries-A National Institutes of Health and Global HIV Vaccine Enterprise 2017 Meeting Report. AIDS Res Hum Retroviruses 2018; 34:12-26. [PMID: 29145733 DOI: 10.1089/aid.2017.0216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Advances in imaging technologies have greatly increased our understanding of cellular and molecular interactions in humans and their corresponding animal models of infectious diseases. In the HIV/SIV field, imaging has provided key insights into mucosal viral transmission, local and systemic virus spread, host-virus dynamics, and chronic inflammation/immune activation and the resultant immunopathology. Recent developments in imaging applications are yielding physical, spatial, and temporal measurements to enhance insight into biological functions and disease processes, while retaining important cellular, microenvironmental, organ, and intact organism contextual details. Taking advantage of the latest advancements in imaging technologies may help answer important questions in the HIV field. The Global HIV Vaccine Enterprise in collaboration with the National Institutes of Health (NIH) sponsored a meeting on May 8 and 9, 2017 to provide a platform to review state-of-the-art imaging technologies and to foster multidisciplinary collaborations in HIV/AIDS research. The meeting covered applications of imaging in studies of early events and pathogenesis, reservoirs, and cure, as well as in vaccine development. In addition, presentations and discussions of imaging applications from non-HIV biomedical research areas were included. This report summarizes the presentations and discussions at the meeting.
Collapse
Affiliation(s)
- Brigitte E. Sanders-Beer
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - David McDonald
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Anjali Singh
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
168
|
Abstract
Since the discovery of acquired immunodeficiency syndrome (AIDS) in 1981, it has been extremely difficult to develop an effective vaccine or a therapeutic cure despite over 36 years of global efforts. One of the major reasons is due to the lack of an immune-competent animal model that supports live human immunodeficiency virus (HIV) infection and disease progression such that vaccine-induced correlates of protection and efficacy can be determined clearly before human trials. Nevertheless, rhesus macaques infected with simian immunodeficiency virus (SIV) and chimeric simian human immunodeficiency virus (SHIV) have served as invaluable models not only for understanding AIDS pathogenesis but also for studying HIV vaccine and cure. In this chapter, therefore, we summarize major scientific evidence generated in these models since the beginning of the AIDS pandemic. Hopefully, the accumulated knowledge and lessons contributed by thousands of scientists will be useful in promoting the search of an ultimate solution to end HIV/AIDS.
Collapse
|
169
|
Chung AW, Alter G. Systems serology: profiling vaccine induced humoral immunity against HIV. Retrovirology 2017; 14:57. [PMID: 29268769 PMCID: PMC5740944 DOI: 10.1186/s12977-017-0380-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023] Open
Abstract
The results of the RV144 HIV vaccine, in combination with several recent non-human primate vaccine studies continue to highlight the potentially protective role of non-neutralizing Fc functional antibodies in HIV vaccine design. For many currently licensed vaccines, assays that detect antigen-specific antibody titers or neutralization levels have been used as a correlate of protection. However, antibodies can confer protection through multiple other mechanisms beyond neutralization, or mechanisms which are not dependent on total antibody titers. Alternative strategies that allow us to further understand the precise mechanisms by which antibodies confer protection against HIV and other infectious pathogens is vitally important for the development of future vaccines. Systems serology aims to comprehensively survey a diverse array of antibody features and functions, in order to simultaneously examine the mechanisms behind and distinguish the most important antibody features required for protection, thus identifying key targets for future experimental vaccine testing. This review will focus on the technical aspects required for the application of Systems serology and summarizes the recent advances provided by application of this systemic analytical approach.
Collapse
Affiliation(s)
- Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St., Melbourne, VIC, 3000, Australia.
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
170
|
Abstract
The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. Viral vectors are the best-characterized delivery tools because of their intrinsic adjuvant capability, unique cellular tropism, and ability to trigger robust adaptive immune responses. However, a known limitation of viral vectors is preexisting immunity, and ongoing efforts are aimed at developing novel vector platforms with lower seroprevalence. It is also becoming increasingly clear that different vectors, even those derived from phylogenetically similar viruses, can elicit substantially distinct immune responses, in terms of quantity, quality, and location, which can ultimately affect immune protection. This review provides a summary of the status of viral vector development for HIV vaccines, with a particular focus on novel viral vectors and the types of adaptive immune responses that they induce.
Collapse
|
171
|
Sauermann U, Radaelli A, Stolte-Leeb N, Raue K, Bissa M, Zanotto C, Krawczak M, Tenbusch M, Überla K, Keele BF, De Giuli Morghen C, Sopper S, Stahl-Hennig C. Vector Order Determines Protection against Pathogenic Simian Immunodeficiency Virus Infection in a Triple-Component Vaccine by Balancing CD4 + and CD8 + T-Cell Responses. J Virol 2017; 91:e01120-17. [PMID: 28904195 PMCID: PMC5686736 DOI: 10.1128/jvi.01120-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
An effective AIDS vaccine should elicit strong humoral and cellular immune responses while maintaining low levels of CD4+ T-cell activation to avoid the generation of target cells for viral infection. The present study investigated two prime-boost regimens, both starting vaccination with single-cycle immunodeficiency virus, followed by two mucosal boosts with either recombinant adenovirus (rAd) or fowlpox virus (rFWPV) expressing SIVmac239 or SIVmac251 gag/pol and env genes, respectively. Finally, vectors were switched and systemically administered to the reciprocal group of animals. Only mucosal rFWPV immunizations followed by systemic rAd boost significantly protected animals against a repeated low-dose intrarectal challenge with pathogenic SIVmac251, resulting in a vaccine efficacy (i.e., risk reduction per exposure) of 68%. Delayed viral acquisition was associated with higher levels of activated CD8+ T cells and Gag-specific gamma interferon (IFN-γ)-secreting CD8+ cells, low virus-specific CD4+ T-cell responses, and low Env antibody titers. In contrast, the systemic rFWPV boost induced strong virus-specific CD4+ T-cell activity. rAd and rFWPV also induced differential patterns of the innate immune responses, thereby possibly shaping the specific immunity. Plasma CXCL10 levels after final immunization correlated directly with virus-specific CD4+ T-cell responses and inversely with the number of exposures to infection. Also, the percentage of activated CD69+ CD8+ T cells correlated with the number of exposures to infection. Differential stimulation of the immune response likely provided the basis for the diverging levels of protection afforded by the vaccine regimen.IMPORTANCE A failed phase II AIDS vaccine trial led to the hypothesis that CD4+ T-cell activation can abrogate any potentially protective effects delivered by vaccination or promote acquisition of the virus because CD4+ T helper cells, required for an effective immune response, also represent the target cells for viral infection. We compared two vaccination protocols that elicited similar levels of Gag-specific immune responses in rhesus macaques. Only the animal group that had a low level of virus-specific CD4+ T cells in combination with high levels of activated CD8+ T cells was significantly protected from infection. Notably, protection was achieved despite the lack of appreciable Env antibody titers. Moreover, we show that both the vector and the route of immunization affected the level of CD4+ T-cell responses. Thus, mucosal immunization with FWPV-based vaccines should be considered a potent prime in prime-boost vaccination protocols.
Collapse
Affiliation(s)
- Ulrike Sauermann
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Nicole Stolte-Leeb
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Katharina Raue
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Klaus Überla
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Sieghart Sopper
- Clinic for Hematology and Oncology, Medical University Innsbruck, Tyrolean Cancer Research Center, Innsbruck, Austria
| | | |
Collapse
|
172
|
Veazey RS, Lackner AA. Nonhuman Primate Models and Understanding the Pathogenesis of HIV Infection and AIDS. ILAR J 2017; 58:160-171. [PMID: 29228218 PMCID: PMC5886333 DOI: 10.1093/ilar/ilx032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/16/2022] Open
Abstract
Research using nonhuman primates (NHPs) as models for human immunodeficiency virus (HIV) infection and acquired immunodeficiency syndrome (AIDS) has resulted in tremendous achievements not only in the prevention and treatment of HIV, but also in biomedical research more broadly. Once considered a death sentence, HIV infection is now fairly well controlled with combination antiretroviral treatments, almost all of which were first tested for efficacy and safety in nonhuman primates or other laboratory animals. Research in NHP has led to "dogma changing" discoveries in immunology, infectious disease, and even our own genetics. We now know that many of our genes are retroviral remnants, or developed in response to archaic HIV-like retroviral infections. Early studies involving blood from HIV patients and in experiments in cultured tissues contributed to confusion regarding the cause of AIDS and impeded progress in the development of effective interventions. Research on the many retroviruses of different NHP species have broadened our understanding of human immunology and perhaps even our origins and evolution as a species. In combination with recent advances in molecular biology and computational analytics, research in NHPs has unique potential for discoveries that will directly lead to new cures for old human and animal diseases, including HIV/AIDS.
Collapse
Affiliation(s)
- Ronald S Veazey
- Ronald S. Veazey, DVM, PhD, is chair of the Division of Comparative Pathology at the Tulane National Primate Research Center and professor in the Department of Pathology and Laboratory Medicine at the Tulane University School of Medicine. Dr. Andrew Lackner, DVM, PhD is director of the Tulane National Primate Research Center and professor of the Department of Microbiology and Pathology and Laboratory Medicine at the Tulane University School of Medicine
| | - Andrew A Lackner
- Ronald S. Veazey, DVM, PhD, is chair of the Division of Comparative Pathology at the Tulane National Primate Research Center and professor in the Department of Pathology and Laboratory Medicine at the Tulane University School of Medicine. Dr. Andrew Lackner, DVM, PhD is director of the Tulane National Primate Research Center and professor of the Department of Microbiology and Pathology and Laboratory Medicine at the Tulane University School of Medicine
| |
Collapse
|
173
|
Arnold KB, Chung AW. Prospects from systems serology research. Immunology 2017; 153:279-289. [PMID: 29139548 PMCID: PMC5795183 DOI: 10.1111/imm.12861] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 12/28/2022] Open
Abstract
Antibodies are highly functional glycoproteins capable of providing immune protection through multiple mechanisms, including direct pathogen neutralization and the engagement of their Fc portions with surrounding effector immune cells that induce anti-pathogenic responses. Small modifications to multiple antibody biophysical features induced by vaccines can significantly alter functional immune outcomes, though it is difficult to predict which combinations confer protective immunity. In order to give insight into the highly complex and dynamic processes that drive an effective humoral immune response, here we discuss recent applications of 'Systems Serology', a new approach that uses data-driven (also called 'machine learning') computational analysis and high-throughput experimental data to infer networks of important antibody features associated with protective humoral immunity and/or Fc functional activity. This approach offers the ability to understand humoral immunity beyond single correlates of protection, assessing the relative importance of multiple biophysical modifications to antibody features with multivariate computational approaches. Systems Serology has the exciting potential to help identify novel correlates of protection from infection and may generate a more comprehensive understanding of the mechanisms behind protection, including key relationships between specific Fc functions and antibody biophysical features (e.g. antigen recognition, isotype, subclass and/or glycosylation events). Reviewed here are some of the experimental and computational technologies available for Systems Serology research and evidence that the application has broad relevance to multiple different infectious diseases including viruses, bacteria, fungi and parasites.
Collapse
Affiliation(s)
- Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
174
|
Mayr LM, Su B, Moog C. Non-Neutralizing Antibodies Directed against HIV and Their Functions. Front Immunol 2017; 8:1590. [PMID: 29209323 PMCID: PMC5701973 DOI: 10.3389/fimmu.2017.01590] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
B cells produce a plethora of anti-HIV antibodies (Abs) but only few of them exhibit neutralizing activity. This was long considered a profound limitation for the enforcement of humoral immune responses against HIV-1 infection, especially since these neutralizing Abs (nAbs) are extremely difficult to induce. However, increasing evidence shows that additional non-neutralizing Abs play a significant role in decreasing the viral load, leading to partial and sometimes even total protection. Mechanisms suspected to participate in protection are numerous. They involve the Fc domain of Abs as well as their Fab part, and consequently the induced Ab isotype will be determinant for their functions, as well as the quantity and quality of the Fc-receptors (FcRs) expressed on immune cells. Fc-mediated inhibitory functions, such as Ab-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, aggregation, and even immune activation have been proposed. However, as for nAbs, the non-neutralizing activities are limited to a subset of anti-HIV Abs. An improved in-depth characterization of the Abs displaying these functional responses is required for the development of new vaccination strategies, which aim to selectively trigger the B cells able to induce the right functional Ab combinations both at the right place and at the right time. This review summarizes our current knowledge on non-neutralizing functional inhibitory Abs and discusses the potential benefit of inducing them via vaccination. We also provide new insight into the roles of the FcγR-mediated Ab therapeutics in clinical trials for HIV diseases.
Collapse
Affiliation(s)
- Luzia M Mayr
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
175
|
Innate transcriptional effects by adjuvants on the magnitude, quality, and durability of HIV envelope responses in NHPs. Blood Adv 2017; 1:2329-2342. [PMID: 29296883 DOI: 10.1182/bloodadvances.2017011411] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/01/2017] [Indexed: 12/15/2022] Open
Abstract
Adjuvants have a critical role for improving vaccine efficacy against many pathogens, including HIV. Here, using transcriptional RNA profiling and systems serology, we assessed how distinct innate pathways altered HIV-specific antibody responses in nonhuman primates (NHPs) using 8 clinically based adjuvants. NHPs were immunized with a glycoprotein 140 HIV envelope protein (Env) and insoluble aluminum salts (alum), MF59, or adjuvant nanoemulsion (ANE) coformulated with or without Toll-like receptor 4 (TLR4) and 7 agonists. These were compared with Env administered with polyinosinic-polycytidylic acid:poly-L-lysine, carboxymethylcellulose (pIC:LC) or immune-stimulating complexes. Addition of the TLR4 agonist to alum enhanced upregulation of a set of inflammatory genes, whereas the TLR7 agonist suppressed expression of alum-responsive inflammatory genes and enhanced upregulation of antiviral and interferon (IFN) genes. Moreover, coformulation of the TLR4 or 7 agonists with alum boosted Env-binding titers approximately threefold to 10-fold compared with alum alone, but remarkably did not alter gene expression or enhance antibody titers when formulated with ANE. The hierarchy of adjuvant potency was established after the second of 4 immunizations. In terms of antibody durability, antibody titers decreased ∼10-fold after the final immunization and then remained stable after 65 weeks for all adjuvants. Last, Env-specific Fc-domain glycan structures and a series of antibody effector functions were assessed by systems serology. Antiviral/IFN gene signatures correlated with Fc-receptor binding across all adjuvant groups. This study defines the potency and durability of 8 different clinically based adjuvants in NHPs and shows how specific innate pathways can alter qualitative aspects of Env antibody function.
Collapse
|
176
|
Wijesundara DK, Ranasinghe C, Grubor-Bauk B, Gowans EJ. Emerging Targets for Developing T Cell-Mediated Vaccines for Human Immunodeficiency Virus (HIV)-1. Front Microbiol 2017; 8:2091. [PMID: 29118747 PMCID: PMC5660999 DOI: 10.3389/fmicb.2017.02091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/11/2017] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 has infected >75 million individuals globally, and, according to the UN, is responsible for ~2.1 million new infections and 1.1 million deaths each year. Currently, there are ~37 million individuals with HIV infection and the epidemic has already resulted in 35 million deaths. Despite the advances of anti-retroviral therapy (ART), a cost-effective vaccine remains the best long-term solution to end the HIV-1 epidemic especially given that the vast majority of infected individuals live in poor socio-economic regions of the world such as Sub-Saharan Africa which limits their accessibility to ART. The modest efficacy of the RV144 Thai trial provides hope that a vaccine for HIV-1 is possible, but as markers for sterilizing immunity are unknown, the design of an effective vaccine is empirical, although broadly cross-reactive neutralizing antibodies (bNAb) that can neutralize various quasispecies of HIV-1 are considered crucial. Since HIV-1 transmission often occurs at the genito-rectal mucosa and is cell-associated, there is a need to develop vaccines that can elicit CD8+ T cell immunity with the capacity to kill virus infected cells at the genito-rectal mucosa and the gut. Here we discuss the recent progress made in developing T cell-mediated vaccines for HIV-1 and emphasize the need to elicit mucosal tissue-resident memory CD8+ T (CD8+ Trm) cells. CD8+ Trm cells will likely form a robust front-line defense against HIV-1 and eliminate transmitter/founder virus-infected cells which are responsible for propagating HIV-1 infections following transmission in vast majority of cases.
Collapse
Affiliation(s)
- Danushka K Wijesundara
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
177
|
HIV DNA-Adenovirus Multiclade Envelope Vaccine Induces gp41 Antibody Immunodominance in Rhesus Macaques. J Virol 2017; 91:JVI.00923-17. [PMID: 28794027 DOI: 10.1128/jvi.00923-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/31/2017] [Indexed: 11/20/2022] Open
Abstract
Dominant antibody responses in vaccinees who received the HIV-1 multiclade (A, B, and C) envelope (Env) DNA/recombinant adenovirus virus type 5 (rAd5) vaccine studied in HIV-1 Vaccine Trials Network (HVTN) efficacy trial 505 (HVTN 505) targeted Env gp41 and cross-reacted with microbial antigens. In this study, we asked if the DNA/rAd5 vaccine induced a similar antibody response in rhesus macaques (RMs), which are commonly used as an animal model for human HIV-1 infections and for testing candidate HIV-1 vaccines. We also asked if gp41 immunodominance could be avoided by immunization of neonatal RMs during the early stages of microbial colonization. We found that the DNA/rAd5 vaccine elicited a higher frequency of gp41-reactive memory B cells than gp120-memory B cells in adult and neonatal RMs. Analysis of the vaccine-induced Env-reactive B cell repertoire revealed that the majority of HIV-1 Env-reactive antibodies in both adult and neonatal RMs were targeted to gp41. Interestingly, a subset of gp41-reactive antibodies isolated from RMs cross-reacted with host antigens, including autologous intestinal microbiota. Thus, gp41-containing DNA/rAd5 vaccine induced dominant gp41-microbiota cross-reactive antibodies derived from blood memory B cells in RMs as observed in the HVTN 505 vaccine efficacy trial. These data demonstrated that RMs can be used to investigate gp41 immunodominance in candidate HIV-1 vaccines. Moreover, colonization of neonatal RMs occurred within the first week of life, and immunization of neonatal RMs during this time also induced a dominant gp41-reactive antibody response.IMPORTANCE Our results are critical to current work in the HIV-1 vaccine field evaluating the phenomenon of gp41 immunodominance induced by HIV-1 Env gp140 in RMs and humans. Our data demonstrate that RMs are an appropriate animal model to study this phenomenon and to determine the immunogenicity in new HIV-1 Env trimer vaccine designs. The demonstration of gp41 immunodominance in memory B cells of both adult and neonatal RMs indicated that early vaccination could not overcome gp41 dominant responses.
Collapse
|
178
|
Arenas M, Araujo NM, Branco C, Castelhano N, Castro-Nallar E, Pérez-Losada M. Mutation and recombination in pathogen evolution: Relevance, methods and controversies. INFECTION GENETICS AND EVOLUTION 2017; 63:295-306. [PMID: 28951202 DOI: 10.1016/j.meegid.2017.09.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Mutation and recombination drive the evolution of most pathogens by generating the genetic variants upon which selection operates. Those variants can, for example, confer resistance to host immune systems and drug therapies or lead to epidemic outbreaks. Given their importance, diverse evolutionary studies have investigated the abundance and consequences of mutation and recombination in pathogen populations. However, some controversies persist regarding the contribution of each evolutionary force to the development of particular phenotypic observations (e.g., drug resistance). In this study, we revise the importance of mutation and recombination in the evolution of pathogens at both intra-host and inter-host levels. We also describe state-of-the-art analytical methodologies to detect and quantify these two evolutionary forces, including biases that are often ignored in evolutionary studies. Finally, we present some of our former studies involving pathogenic taxa where mutation and recombination played crucial roles in the recovery of pathogenic fitness, the generation of interspecific genetic diversity, or the design of centralized vaccines. This review also illustrates several common controversies and pitfalls in the analysis and in the evaluation and interpretation of mutation and recombination outcomes.
Collapse
Affiliation(s)
- Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Natalia M Araujo
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Catarina Branco
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Nadine Castelhano
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Eduardo Castro-Nallar
- Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Santiago, Chile.
| | - Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Ashburn, VA 20147, Washington, DC, United States; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal.
| |
Collapse
|
179
|
Wang L, Hao C, Deng Y, Liu Y, Hu S, Peng Y, He M, Fu J, Liu M, Chen J, Chen X. Screening epitopes on systemic lupus erythematosus autoantigens with a peptide array. Oncotarget 2017; 8:85559-85567. [PMID: 29156741 PMCID: PMC5689631 DOI: 10.18632/oncotarget.20994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/28/2017] [Indexed: 11/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease. Many autoantibodies are closely associated with SLE. However, the specific epitopes recognized and bound by these autoantibodies are still unclear. This study screened the binding epitopes of SLE-related autoantibodies using a high-throughput screening method. Epitope prediction on 12 SLE-related autoantigens was performed using the Immune Epitope Database and Analysis Resource (IEDB) software. The predicted epitopes were synthesized into peptides and developed into a peptide array. Serum IgG from 50 SLE patients and 25 healthy controls was detected using the peptide array. The results were then validated using an enzyme-linked immunosorbent assay (ELISA). The diagnostic efficiency of each epitope was analyzed using a ROC curve. Seventy-three potential epitopes were screened for using the IEDB software after the epitopes on the 12 SLE-related autoantigens were analyzed. Peptide array screening revealed that the levels of the autoantibodies recognized and bound by 4 peptide antigens were significantly upregulated in the serum of SLE patients (P < 0.05). The ELISA results showed that the 4 antigens with significantly increased serum autoantibodies levels in SLE patients were acidic ribosomal phosphoprotein (P0)-4, acidic ribosomal phosphoprotein (P0)-11, DNA topoisomerase 1 (full length)-1, and U1-SnRNP 68/70 KDa-1 (P < 0.05), and the areas under the ROC curve for diagnosing SLE on the basis of these peptides were 0.91, 0.90, 0.93, and 0.91, respectively. Many autoantibodies specifically expressed in the serum of patients with SLE can be detected by specific peptide fragments and may be used as markers in clinical auxiliary diagnoses.
Collapse
Affiliation(s)
- Lin Wang
- Department of Rheumatology, Shaoyang Central Hospital, 422000 Shaoyang, China
| | - Chenjun Hao
- Obstetrics and gynecology, Guangzhou Panyu Hexian Memorial Hospital, 511400 Guangzhou, China
| | - Yongqiu Deng
- Obstetrics and gynecology, Guangzhou Panyu Hexian Memorial Hospital, 511400 Guangzhou, China
| | - Yanbo Liu
- Department of Rheumatology, Shaoyang Central Hospital, 422000 Shaoyang, China
| | - Shiliang Hu
- Department of Rheumatology, Shaoyang Central Hospital, 422000 Shaoyang, China
| | - Yangang Peng
- Department of Rheumatology, Shaoyang Central Hospital, 422000 Shaoyang, China
| | - Manna He
- Department of Rheumatology, Shaoyang Central Hospital, 422000 Shaoyang, China
| | - Jinhu Fu
- Department of Rheumatology, Shaoyang Central Hospital, 422000 Shaoyang, China
| | - Ming Liu
- Department of Rheumatology, Shaoyang Central Hospital, 422000 Shaoyang, China
| | - Jia Chen
- Department of Rheumatology, Shaoyang Central Hospital, 422000 Shaoyang, China
| | - Xiaoming Chen
- Department of Rheumatology, Shaoyang Central Hospital, 422000 Shaoyang, China
| |
Collapse
|
180
|
Cross-Linking of a CD4-Mimetic Miniprotein with HIV-1 Env gp140 Alters Kinetics and Specificities of Antibody Responses against HIV-1 Env in Macaques. J Virol 2017; 91:JVI.00401-17. [PMID: 28490585 PMCID: PMC5599731 DOI: 10.1128/jvi.00401-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/03/2017] [Indexed: 01/01/2023] Open
Abstract
Evaluation of the epitope specificities, locations (systemic or mucosal), and effector functions of antibodies elicited by novel HIV-1 immunogens engineered to improve exposure of specific epitopes is critical for HIV-1 vaccine development. Utilizing an array of humoral assays, we evaluated the magnitudes, epitope specificities, avidities, and functions of systemic and mucosal immune responses elicited by a vaccine regimen containing Env cross-linked to a CD4-mimetic miniprotein (gp140-M64U1) in rhesus macaques. Cross-linking of gp140 Env to M64U1 resulted in earlier increases of both the magnitude and avidity of the IgG binding response than those with Env protein alone. Notably, IgG binding responses at an early time point correlated with antibody-dependent cellular cytotoxicity (ADCC) function at the peak immunity time point, which was higher for the cross-linked Env group than for the Env group. In addition, the cross-linked Env group developed higher IgG responses against a linear epitope in the gp120 C1 region of the HIV-1 envelope glycoprotein. These data demonstrate that structural modification of the HIV-1 envelope immunogen by cross-linking of gp140 with the CD4-mimetic M64U1 elicited an earlier increase of binding antibody responses and altered the specificity of the IgG responses, correlating with the rise of subsequent antibody-mediated antiviral functions.IMPORTANCE The development of an efficacious HIV-1 vaccine remains a global priority to prevent new cases of HIV-1 infection. Of the six HIV-1 efficacy trials to date, only one has demonstrated partial efficacy, and immune correlate analysis of that trial revealed a role for binding antibodies and antibody Fc-mediated effector functions. New HIV-1 envelope immunogens are being engineered to selectively expose the most vulnerable and conserved sites on the HIV-1 envelope, with the goal of eliciting antiviral antibodies. Evaluation of the humoral responses elicited by these novel immunogen designs in nonhuman primates is critical for understanding how to improve upon immunogen design to inform further testing in human clinical trials. Our results demonstrate that structural modifications of Env that aim to mimic the CD4-bound conformation can result in earlier antibody elicitation, altered epitope specificity, and increased antiviral function postimmunization.
Collapse
|
181
|
Chea LS, Amara RR. Immunogenicity and efficacy of DNA/MVA HIV vaccines in rhesus macaque models. Expert Rev Vaccines 2017; 16:973-985. [PMID: 28838267 DOI: 10.1080/14760584.2017.1371594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Despite 30 years of research on HIV, a vaccine to prevent infection and limit disease progression remains elusive. The RV144 trial showed moderate, but significant protection in humans and highlighted the contribution of antibody responses directed against HIV envelope as an important immune correlate for protection. Efforts to further build upon the progress include the use of a heterologous prime-boost regimen using DNA as the priming agent and the attenuated vaccinia virus, Modified Vaccinia Ankara (MVA), as a boosting vector for generating protective HIV-specific immunity. Areas covered: In this review, we summarize the immunogenicity of DNA/MVA vaccines in non-human primate models and describe the efficacy seen in SIV infection models. We discuss immunological correlates of protection determined by these studies and potential approaches for improving the protective immunity. Additionally, we describe the current progress of DNA/MVA vaccines in human trials. Expert commentary: Efforts over the past decade have provided the opportunity to better understand the dynamics of vaccine-induced immune responses and immune correlates of protection against HIV. Based on what we have learned, we outline multiple areas where the field will likely focus on in the next five years.
Collapse
Affiliation(s)
- Lynette Siv Chea
- a Emory Vaccine Center, Department of Microbiology and Immunology , Yerkes National Primate Research Center, Emory University , Atlanta , GA , USA
| | - Rama Rao Amara
- a Emory Vaccine Center, Department of Microbiology and Immunology , Yerkes National Primate Research Center, Emory University , Atlanta , GA , USA
| |
Collapse
|
182
|
Abstract
Purpose of review The present review will highlight some of the recent findings regarding the capacity of HIV-1 to replicate during antiretroviral therapy (ART). Recent findings Although ART is highly effective at inhibiting HIV replication, it is not curative. Several mechanisms contribute to HIV persistence during ART, including HIV latency, immune dysfunction, and perhaps persistent low-level spread of the virus to uninfected cells (replication). The success in curing HIV will depend on efficiently targeting these three aspects. The degree to which HIV replicates during ART remains controversial. Most studies have failed to find any evidence of HIV evolution in blood, even with samples collected over many years, although a recent very intensive study of three individuals suggested that the virus population does shift, at least during the first few months of therapy. Stronger but still not definitive evidence for replication comes from a series of studies in which standard regimens were intensified with an integration inhibitor, resulting in changes in episomal DNA (blood) and cell-associated RNA (tissue). Limited drug penetration within tissues and the presence of immune sanctuaries have been argued as potential mechanisms allowing HIV to spread during ART. Mathematical models suggest that HIV replication and evolution is possible even without the selection of fully drug-resistant variants. As persistent HIV replication could have clinical consequences and might limit the efficacy of curative interventions, determining if HIV replicates during ART and why, should remain a key focus of the HIV research community. Summary Residual viral replication likely persists in lymphoid tissues, at least in a subset of individuals. Abnormal levels of immune activation might contribute to sustain virus replication.
Collapse
|
183
|
Pox-Protein Public Private Partnership program and upcoming HIV vaccine efficacy trials. Curr Opin HIV AIDS 2017; 11:614-619. [PMID: 27636503 DOI: 10.1097/coh.0000000000000322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW The purpose of review is to provide an overview of the Pox-Protein Public Private Partnership (P5) and highlight the progress of the P5 program, including an upcoming HIV vaccine efficacy trial in South Africa. RECENT FINDINGS The RV144 Thai vaccine efficacy trial was the first to demonstrate that an HIV-1 vaccine can prevent HIV acquisition. The P5 vaccine regimen uses an ALVAC prime and protein boost modeled after the RV144 vaccine and adapted for the subtype C virus predominant in the southern African region. This regimen was recently tested in the HIV Vaccine Trials Network 100 phase 1/2a study in South Africa. Based on prospectively defined immunogenicity thresholds, criteria were met to support the launch of an efficacy study in late 2016. The aim of this phase 2b/3 trial will be to improve upon the results of RV144, with increased and more durable vaccine efficacy, to accelerate the potential licensure of a preventive vaccine in southern Africa. SUMMARY The planned P5 efficacy trial, HIV Vaccine Trials Network 702, is designed to test and prospectively define correlates of protection, if efficacious. A vaccine with modest efficacy, vaccine efficacy at least 50%, could have substantial public health impact and significantly decrease the incidence of new infections in heavily burdened areas of the world.
Collapse
|
184
|
Pegu A, Hessell AJ, Mascola JR, Haigwood NL. Use of broadly neutralizing antibodies for HIV-1 prevention. Immunol Rev 2017; 275:296-312. [PMID: 28133803 DOI: 10.1111/imr.12511] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibodies have a long history in antiviral therapy, but until recently, they have not been actively pursued for HIV-1 due to modest potency and breadth of early human monoclonal antibodies (MAbs) and perceived insurmountable technical, financial, and logistical hurdles. Recent advances in the identification and characterization of MAbs with the ability to potently neutralize diverse HIV-1 isolates have reinvigorated discussion and testing of these products in humans, since new broadly neutralizing MAbs (bnMAbs) are more likely to be effective against worldwide strains of HIV-1. In animal models, there is abundant evidence that bnMAbs can block infection in a dose-dependent manner, and the more potent bnMAbs will allow clinical testing at infusion doses that are practically achievable. Moreover, recent advances in antibody engineering are providing further improvements in MAb potency, breadth, and half-life. This review summarizes the current state of the field of bnMAb protection in animal models as well as a review of variables that are critical for antiviral activity. Several bnMAbs are currently in clinical testing, and we offer perspectives on their use as pre-exposure prophylaxis (PrEP), potential benefits beyond sterilizing immunity, and a discussion of future approaches to engineer novel molecules.
Collapse
Affiliation(s)
| | - Ann J Hessell
- Oregon National Primate Center, Oregon Health & Science University, Beaverton, OR, USA
| | | | - Nancy L Haigwood
- Oregon National Primate Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
185
|
Tomaras GD, Plotkin SA. Complex immune correlates of protection in HIV-1 vaccine efficacy trials. Immunol Rev 2017; 275:245-261. [PMID: 28133811 DOI: 10.1111/imr.12514] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development of an efficacious HIV-1 vaccine is a major priority for improving human health worldwide. Vaccine-mediated protection against human pathogens can be achieved through elicitation of protective innate, humoral, and cellular responses. Identification of specific immune responses responsible for pathogen protection enables vaccine development and provides insights into host defenses against pathogens and the immunological mechanisms that most effectively fight infection. Defining immunological correlates of transmission risk in preclinical and clinical HIV-1 vaccine trials has moved the HIV-1 vaccine development field forward and directed new candidate vaccine development. Immune correlate studies are providing novel hypotheses about immunological mechanisms that may be responsible for preventing HIV-1 acquisition. Recent results from HIV-1 immune correlates work has demonstrated that there are multiple types of immune responses that together, comprise an immune correlate-thus implicating polyfunctional immune control of HIV-1 transmission. An in depth understanding of these complex immunological mechanisms of protection against HIV-1 will accelerate the development of an efficacious HIV-1 vaccine.
Collapse
Affiliation(s)
- Georgia D Tomaras
- Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Duke Human Vaccine Institute, Durham, NC, USA
| | - Stanley A Plotkin
- Vaxconsult, Doylestown, PA, USA.,University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
186
|
Abstract
The bar is high to improve on current combination antiretroviral therapy (ART), now highly effective, safe, and simple. However, antibodies that bind the HIV envelope are able to uniquely target the virus as it seeks to enter new target cells, or as it is expressed from previously infected cells. Furthermore, the use of antibodies against HIV as a therapeutic may offer advantages. Antibodies can have long half-lives, and are being considered as partners for long-acting antiretrovirals for use in therapy or prevention of HIV infection. Early studies in animal models and in clinical trials suggest that such antibodies can have antiviral activity but, as with small-molecule antiretrovirals, the issues of viral escape and resistance will have to be addressed. Most promising, however, are the unique properties of anti-HIV antibodies: the potential ability to opsonize viral particles, to direct antibody-dependent cellular cytotoxicity (ADCC) against actively infected cells, and ultimately the ability to direct the clearance of HIV-infected cells by effector cells of the immune system. These distinctive activities suggest that HIV antibodies and their derivatives may play an important role in the next frontier of HIV therapeutics, the effort to develop treatments that could lead to an HIV cure.
Collapse
Affiliation(s)
- David M Margolis
- UNC HIV Cure Center, Departments of Medicine, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
187
|
.Thompson EA, Loré K. Non-human primates as a model for understanding the mechanism of action of toll-like receptor-based vaccine adjuvants. Curr Opin Immunol 2017; 47:1-7. [DOI: 10.1016/j.coi.2017.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/28/2017] [Indexed: 12/28/2022]
|
188
|
Horwitz JA, Bar-On Y, Lu CL, Fera D, Lockhart AAK, Lorenzi JCC, Nogueira L, Golijanin J, Scheid JF, Seaman MS, Gazumyan A, Zolla-Pazner S, Nussenzweig MC. Non-neutralizing Antibodies Alter the Course of HIV-1 Infection In Vivo. Cell 2017; 170:637-648.e10. [PMID: 28757252 DOI: 10.1016/j.cell.2017.06.048] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 11/26/2022]
Abstract
Non-neutralizing antibodies (nnAbs) to HIV-1 show little measurable activity in prevention or therapy in animal models yet were the only correlate of protection in the RV144 vaccine trial. To investigate the role of nnAbs on HIV-1 infection in vivo, we devised a replication-competent HIV-1 reporter virus that expresses a heterologous HA-tag on the surface of infected cells and virions. Anti-HA antibodies bind to, but do not neutralize, the reporter virus in vitro. However, anti-HA protects against infection in humanized mice and strongly selects for nnAb-resistant viruses in an entirely Fc-dependent manner. Similar results were also obtained with tier 2 HIV-1 viruses using a human anti-gp41 nnAb, 246D. While nnAbs are demonstrably less effective than broadly neutralizing antibodies (bNAbs) against HIV-1 in vitro and in vivo, the data show that nnAbs can protect against and alter the course of HIV-1 infection in vivo. PAPERCLIP.
Collapse
Affiliation(s)
- Joshua A Horwitz
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Laboratory of Structural Cell Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Whelan Laboratory, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yotam Bar-On
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ching-Lan Lu
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Daniela Fera
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Ainsley A K Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Johannes F Scheid
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center/Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Susan Zolla-Pazner
- Zolla-Pazner Laboratory, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.
| |
Collapse
|
189
|
Abstract
PURPOSE OF REVIEW The development and availability of new-generation adjuvants beyond aluminum and emulsion formulations, together with a deeper understanding of the mechanistic role of adjuvant formulations in stimulating innate immunity and offer opportunities to improve candidate vaccine designs intended to protect against HIV-1 acquisition. RECENT FINDINGS Currently, major efforts in vaccine development focus on improving prime-boost vaccine regimens to enhance efficacy beyond 31% observed in the RV144 phase 3 study and to develop a pathway to induce broadly reactive HIV neutralizing antibodies. Advances in HIV-1 envelope (Env) immunogen design and improved adjuvant formulations are moving at a parallel pace. This review highlights steps underway to rationally pair vaccine concepts with improved adjuvant formulations in preclinical and early phase 1 clinical evaluation. SUMMARY New adjuvants with immune-potentiating properties are currently being tested in combination with recent HIV Env-containing immunogens in prime-boost and subunit protein-only regimens. Greater emphasis is being applied to formulation science, delivery, and targeted safety and immune evaluation with these adjuvants in clinical trials. The need to develop an HIV vaccine that induces more potent and long-lived protective immunity will necessitate continued efforts to optimize adjuvanted vaccine formulations.
Collapse
|
190
|
Abstract
PURPOSE OF REVIEW Increased body of evidence gathered over time indicate that antibodies are capable of many inhibitory mechanisms, virus neutralization being just one of them. Nonneutralizing antibodyactivities interfering with HIV replication can also lead to a decrease in viral load and even in-vivo protection. RECENT FINDINGS It was previously believed that neutralizing antibodies can achieve sterilizing protection mainly by using their neutralization capacities against the infecting virus directly at the portal of virus entry. Recent findings show that protection can be obtained by neutralizing antibodiesat distal sites of virus challenge. In this case, foci of virus infection that escaped from initial inhibition of virus are eliminated presumably by additional nonneutralizing antibody activities. These data inexorably strengthen the diverse functions of antibodies and broaden their role as antiviral mediator. SUMMARY The review summarizes the current knowledge and the difficulties to encompass the numerous functions of antibodies. A complete understanding of the various facets of antibody functions is required to efficiently induce them via next-generation vaccine design.
Collapse
|
191
|
Martins MA, Shin YC, Gonzalez-Nieto L, Domingues A, Gutman MJ, Maxwell HS, Castro I, Magnani DM, Ricciardi M, Pedreño-Lopez N, Bailey V, Betancourt D, Altman JD, Pauthner M, Burton DR, von Bredow B, Evans DT, Yuan M, Parks CL, Ejima K, Allison DB, Rakasz E, Barber GN, Capuano S, Lifson JD, Desrosiers RC, Watkins DI. Vaccine-induced immune responses against both Gag and Env improve control of simian immunodeficiency virus replication in rectally challenged rhesus macaques. PLoS Pathog 2017; 13:e1006529. [PMID: 28732035 PMCID: PMC5540612 DOI: 10.1371/journal.ppat.1006529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/02/2017] [Accepted: 07/13/2017] [Indexed: 01/28/2023] Open
Abstract
The ability to control lentivirus replication may be determined, in part, by the extent to which individual viral proteins are targeted by the immune system. Consequently, defining the antigens that elicit the most protective immune responses may facilitate the design of effective HIV-1 vaccines. Here we vaccinated four groups of rhesus macaques with a heterologous vector prime/boost/boost/boost (PBBB) regimen expressing the following simian immunodeficiency virus (SIV) genes: env, gag, vif, rev, tat, and nef (Group 1); env, vif, rev, tat, and nef (Group 2); gag, vif, rev, tat, and nef (Group 3); or vif, rev, tat, and nef (Group 4). Following repeated intrarectal challenges with a marginal dose of the neutralization-resistant SIVmac239 clone, vaccinees in Groups 1-3 became infected at similar rates compared to control animals. Unexpectedly, vaccinees in Group 4 became infected at a slower pace than the other animals, although this difference was not statistically significant. Group 1 exhibited the best post-acquisition virologic control of SIV infection, with significant reductions in both peak and chronic phase viremia. Indeed, 5/8 Group 1 vaccinees had viral loads of less than 2,000 vRNA copies/mL of plasma in the chronic phase. Vaccine regimens that did not contain gag (Group 2), env (Group 3), or both of these inserts (Group 4) were largely ineffective at decreasing viremia. Thus, vaccine-induced immune responses against both Gag and Env appeared to maximize control of immunodeficiency virus replication. Collectively, these findings are relevant for HIV-1 vaccine design as they provide additional insights into which of the lentiviral proteins might serve as the best vaccine immunogens.
Collapse
Affiliation(s)
- Mauricio A. Martins
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Young C. Shin
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Lucas Gonzalez-Nieto
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Aline Domingues
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Martin J. Gutman
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Helen S. Maxwell
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Iris Castro
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Diogo M. Magnani
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Michael Ricciardi
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Nuria Pedreño-Lopez
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Varian Bailey
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Dillon Betancourt
- Department of Microbiology and Immunology, University of Miami, Miami, Florida, United States of America
| | - John D. Altman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Matthias Pauthner
- Department of Immunology and Microbiology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, United States of America
| | - Benjamin von Bredow
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Maoli Yuan
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Christopher L. Parks
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Keisuke Ejima
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David B. Allison
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eva Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Glen N. Barber
- Department of Cell Biology, University of Miami, Miami, Florida, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ronald C. Desrosiers
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - David I. Watkins
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
192
|
Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge. Nat Commun 2017; 8:15711. [PMID: 28593989 PMCID: PMC5472724 DOI: 10.1038/ncomms15711] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023] Open
Abstract
The RV144 Thai trial HIV-1 vaccine of recombinant poxvirus (ALVAC) and recombinant HIV-1 gp120 subtype B/subtype E (B/E) proteins demonstrated 31% vaccine efficacy. Here we design an ALVAC/Pentavalent B/E/E/E/E vaccine to increase the diversity of gp120 motifs in the immunogen to elicit a broader antibody response and enhance protection. We find that immunization of rhesus macaques with the pentavalent vaccine results in protection of 55% of pentavalent-vaccine-immunized macaques from simian–human immunodeficiency virus (SHIV) challenge. Systems serology of the antibody responses identifies plasma antibody binding to HIV-infected cells, peak ADCC antibody titres, NK cell-mediated ADCC and antibody-mediated activation of MIP-1β in NK cells as the four immunological parameters that best predict decreased infection risk that are improved by the pentavalent vaccine. Thus inclusion of additional gp120 immunogens to a pox-prime/protein boost regimen can augment antibody responses and enhance protection from a SHIV challenge in rhesus macaques. A previous human HIV-1 vaccine clinical trial, boosting with HIV envelope protein from two strains, demonstrated moderate vaccine efficacy. Here, Bradley et al. show that a pentavalent HIV envelope protein boost improves protection from viral challenge in non-human primates and they identify immune correlates of protection.
Collapse
|
193
|
Keele BF, Li W, Borducchi EN, Nkolola JP, Abbink P, Chen B, Seaman MS, Barouch DH. Adenovirus prime, Env protein boost vaccine protects against neutralization-resistant SIVsmE660 variants in rhesus monkeys. Nat Commun 2017; 8:15740. [PMID: 28580942 PMCID: PMC5465370 DOI: 10.1038/ncomms15740] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/24/2017] [Indexed: 02/02/2023] Open
Abstract
Previous studies have shown that DNA prime, Ad5 boost vaccines protect against neutralization-sensitive but not neutralization-resistant virus variants within the SIVsmE660 swarm. Here we show that Ad prime, Env protein boost vaccines protect against neutralization-resistant SIVsmE660 variants. We perform two studies in rhesus monkeys with Ad35/Ad26 vectors expressing SIVmac239 Gag/Pol/Env with or without an AS01B-adjuvanted SIVmac32H gp140 protein boost. In a repetitive, low-dose challenge study, we observe robust protection against acquisition of infection by both Ad Alone and Ad/Env vaccines. In a single, high-dose challenge study, only the Ad/Env vaccine affords significant protection against acquisition of infection. Analysis of transmitted/founder (T/F) viruses from this study demonstrates that the Ad/Env vaccine blocks both neutralization-sensitive and neutralization-resistant SIVsmE660 variants in rhesus monkeys with restrictive TRIM5α alleles. These data demonstrate that the adjuvanted Env protein boost is critical for protecting against high-dose SIVsmE660 challenge and for blocking neutralization-resistant viruses within the SIVsmE660 swarm.
Collapse
Affiliation(s)
- Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Wenjun Li
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Erica N. Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Joseph P. Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Bing Chen
- Children's Hospital, Boston, Massachusetts 02115, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02139, USA
| |
Collapse
|
194
|
Janes HE, Cohen KW, Frahm N, De Rosa SC, Sanchez B, Hural J, Magaret CA, Karuna S, Bentley C, Gottardo R, Finak G, Grove D, Shen M, Graham BS, Koup RA, Mulligan MJ, Koblin B, Buchbinder SP, Keefer MC, Adams E, Anude C, Corey L, Sobieszczyk M, Hammer SM, Gilbert PB, McElrath MJ. Higher T-Cell Responses Induced by DNA/rAd5 HIV-1 Preventive Vaccine Are Associated With Lower HIV-1 Infection Risk in an Efficacy Trial. J Infect Dis 2017; 215:1376-1385. [PMID: 28199679 PMCID: PMC5853653 DOI: 10.1093/infdis/jix086] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/08/2017] [Indexed: 12/15/2022] Open
Abstract
Background It is important to identify vaccine-induced immune responses that predict the preventative efficacy of a human immunodeficiency virus (HIV)-1 vaccine. We assessed T-cell response markers as correlates of risk in the HIV Vaccine Trials Network (HVTN) 505 HIV-1 vaccine efficacy trial. Methods 2504 participants were randomized to DNA/rAd5 vaccine or placebo, administered at weeks 0, 4, 8, and 24. Peripheral blood mononuclear cells were obtained at week 26 from all 25 primary endpoint vaccine cases and 125 matched vaccine controls, and stimulated with vaccine-insert-matched peptides. Primary variables were total HIV-1-specific CD4+ T-cell magnitude and Env-specific CD4+ polyfunctionality. Four secondary variables were also assessed. Immune responses were evaluated as predictors of HIV-1 infection among vaccinees using Cox proportional hazards models. Machine learning analyses identified immune response combinations best predicting HIV-1 infection. Results We observed an unexpectedly strong inverse correlation between Env-specific CD8+ immune response magnitude and HIV-1 infection risk (hazard ratio [HR] = 0.18 per SD increment; P = .04) and between Env-specific CD8+ polyfunctionality and infection risk (HR = 0.34 per SD increment; P < .01). Conclusions Further research is needed to determine if these immune responses are predictors of vaccine efficacy or markers of natural resistance to HIV-1 infection.
Collapse
Affiliation(s)
- Holly E Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Kristen W Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Brittany Sanchez
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Craig A Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Carter Bentley
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Douglas Grove
- The Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mingchao Shen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | | | - Beryl Koblin
- Laboratory of Infectious Disease Prevention, New York Blood Center, New York
| | - Susan P Buchbinder
- Departments of Medicine and Epidemiology/Biostatistics, University of California San Francisco
| | - Michael C Keefer
- University of Rochester Medical Center, School of Medicine and Dentistry, New York
| | - Elizabeth Adams
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and
| | - Chuka Anude
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Magdalena Sobieszczyk
- Division of Infectious Diseases, Columbia University College of Physicians and Surgeons, New York
| | - Scott M Hammer
- Division of Infectious Diseases, Columbia University College of Physicians and Surgeons, New York
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| |
Collapse
|
195
|
Tavano B, Tsipouri V, Hardy GAD, Royle CM, Keegan MR, Fuchs D, Patterson S, Almond N, Berry N, Ham C, Ferguson D, Boasso A. Immune Responses in the Central Nervous System Are Anatomically Segregated in a Non-Human Primate Model of Human Immunodeficiency Virus Infection. Front Immunol 2017; 8:361. [PMID: 28424694 PMCID: PMC5371826 DOI: 10.3389/fimmu.2017.00361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/14/2017] [Indexed: 12/05/2022] Open
Abstract
The human immunodeficiency virus (HIV) accesses the central nervous system (CNS) early during infection, leading to HIV-associated cognitive impairment and establishment of a viral reservoir. Here, we describe a dichotomy in inflammatory responses in different CNS regions in simian immunodeficiency virus (SIV)-infected macaques, a model for HIV infection. We found increased expression of inflammatory genes and perivascular leukocyte infiltration in the midbrain of SIV-infected macaques. Conversely, the frontal lobe showed downregulation of inflammatory genes associated with interferon-γ and interleukin-6 pathways, and absence of perivascular cuffing. These immunologic alterations were not accompanied by differences in SIV transcriptional activity within the tissue. Altered expression of genes associated with neurotoxicity was observed in both midbrain and frontal lobe. The segregation of inflammatory responses to specific regions of the CNS may both account for HIV-associated neurological symptoms and constitute a critical hurdle for HIV eradication by shielding the CNS viral reservoir from antiviral immunity.
Collapse
Affiliation(s)
- Barbara Tavano
- Centre for Immunology and Vaccinology (CIV), Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Vicky Tsipouri
- NIHR Biological Research Unit, Royal Brompton Hospital, London, UK
| | - Gareth A D Hardy
- Centre for Immunology and Vaccinology (CIV), Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Caroline M Royle
- Centre for Immunology and Vaccinology (CIV), Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Michael R Keegan
- Centre for Immunology and Vaccinology (CIV), Imperial College London, Chelsea and Westminster Hospital, London, UK.,ViiV Healthcare, Middlesex, UK
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Steven Patterson
- Centre for Immunology and Vaccinology (CIV), Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Neil Almond
- Division of Virology, National Institute for Biological Standards and Controls (NIBSC), Potters Bar, Hertfordshire, UK
| | - Neil Berry
- Division of Virology, National Institute for Biological Standards and Controls (NIBSC), Potters Bar, Hertfordshire, UK
| | - Claire Ham
- Division of Virology, National Institute for Biological Standards and Controls (NIBSC), Potters Bar, Hertfordshire, UK
| | - Deborah Ferguson
- Division of Virology, National Institute for Biological Standards and Controls (NIBSC), Potters Bar, Hertfordshire, UK
| | - Adriano Boasso
- Centre for Immunology and Vaccinology (CIV), Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
196
|
HIV/AIDS Vaccine Candidates Based on Replication-Competent Recombinant Poxvirus NYVAC-C-KC Expressing Trimeric gp140 and Gag-Derived Virus-Like Particles or Lacking the Viral Molecule B19 That Inhibits Type I Interferon Activate Relevant HIV-1-Specific B and T Cell Immune Functions in Nonhuman Primates. J Virol 2017; 91:JVI.02182-16. [PMID: 28179536 DOI: 10.1128/jvi.02182-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
The nonreplicating attenuated poxvirus vector NYVAC expressing clade C(CN54) HIV-1 Env(gp120) and Gag-Pol-Nef antigens (NYVAC-C) showed limited immunogenicity in phase I clinical trials. To enhance the capacity of the NYVAC vector to trigger broad humoral responses and a more balanced activation of CD4+ and CD8+ T cells, here we compared the HIV-1-specific immunogenicity elicited in nonhuman primates immunized with two replicating NYVAC vectors that have been modified by the insertion of the K1L and C7L vaccinia virus host range genes and express the clade C(ZM96) trimeric HIV-1 gp140 protein or a Gag(ZM96)-Pol-Nef(CN54) polyprotein as Gag-derived virus-like particles (termed NYVAC-C-KC). Additionally, one NYVAC-C-KC vector was generated by deleting the viral gene B19R, an inhibitor of the type I interferon response (NYVAC-C-KC-ΔB19R). An immunization protocol mimicking that of the RV144 phase III clinical trial was used. Two groups of macaques received two doses of the corresponding NYVAC-C-KC vectors (weeks 0 and 4) and booster doses with NYVAC-C-KC vectors plus the clade C HIV-1 gp120 protein (weeks 12 and 24). The two replicating NYVAC-C-KC vectors induced enhanced and similar HIV-1-specific CD4+ and CD8+ T cell responses, similar levels of binding IgG antibodies, low levels of IgA antibodies, and high levels of antibody-dependent cellular cytotoxicity responses and HIV-1-neutralizing antibodies. Small differences within the NYVAC-C-KC-ΔB19R group were seen in the magnitude of CD4+ and CD8+ T cells, the induction of some cytokines, and the neutralization of some HIV-1 isolates. Thus, replication-competent NYVAC-C-KC vectors acquired relevant immunological properties as vaccine candidates against HIV/AIDS, and the viral B19 molecule exerts some control of immune functions.IMPORTANCE It is of special importance to find a safe and effective HIV/AIDS vaccine that can induce strong and broad T cell and humoral immune responses correlating with HIV-1 protection. Here we developed novel replicating poxvirus NYVAC-based HIV/AIDS vaccine candidates expressing clade C HIV-1 antigens, with one of them lacking the vaccinia virus B19 protein, an inhibitor of the type I interferon response. Immunization of nonhuman primates with these novel NYVAC-C-KC vectors and the protein component gp120 elicited high levels of T cell and humoral immune responses, with the vector containing a deletion in B19R inducing a trend toward a higher magnitude of CD4+ and CD8+ T cell responses and neutralization of some HIV-1 strains. These poxvirus vectors could be considered HIV/AIDS vaccine candidates based on their activation of potential immune correlates of protection.
Collapse
|
197
|
Tang X, Guo J, Cheng L, Sun C, Liu L, Zuo T, Wang H, Chen L, Zhang L, Chen Z. Single N277A substitution in C2 of simian immunodeficiency virus envelope influences vaccine-elicited CD4i neutralizing and anti-V2 antibody responses. Vaccine 2017; 35:2582-2591. [PMID: 28366604 DOI: 10.1016/j.vaccine.2017.03.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 10/19/2022]
Abstract
An effective HIV vaccine remains elusive, and immunogens capable of eliciting protective host humoral immunity have not yet been identified. Although HIV/SIV infections result in the abundant production of CD4-induced (CD4i) antibodies (Abs), these Abs are not protective due to steric restrictions following gp120 binding to CD4 on target cells. Here we report that both DNA- and vaccinia-based vaccines encoding SIVmac239 gp160 readily elicited high levels of CD4i Abs in experimental animals. We identified a highly conserved N-linked glycosylation site N277 in the C2 region which strongly affected the immunogenicity of the CD4i Ab domain. Moreover, a single N277A substitution significantly enhanced the immunogenicity of the V2 domain yielding higher titers and frequency of anti-V2 Ab responses as determined by ELISA and yeast antigen display mapping, respectively. Importantly, immune sera elicited by the N277A-mutated gp160 exhibited elevated antibody-dependent cellular cytotoxicity (ADCC) activity. ADCC activity correlated positively with the anti-V2 Ab titer yet, inversely with CD4i Ab titer. Thus, we identified a determinant of the CD4i domain that might affect vaccine-elicited anti-V2 Ab and ADCC responses to SIVmac239. Our findings may have implications for design of immunogens to direct B cell recognition in the development of an Ab-based HIV vaccine.
Collapse
Affiliation(s)
- Xian Tang
- HKU-AIDS Institute Shenzhen Research Laboratory, Guangdong Key Lab of Emerging Infectious Diseases and Shenzhen Key Lab of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, China; AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jia Guo
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Lin Cheng
- HKU-AIDS Institute Shenzhen Research Laboratory, Guangdong Key Lab of Emerging Infectious Diseases and Shenzhen Key Lab of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, China
| | - Caijun Sun
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Li Liu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Teng Zuo
- Comprehensive AIDS Research Center and Research Center for Public Health, School of Medicine, Tsinghua University, Beijing, China
| | - Hui Wang
- HKU-AIDS Institute Shenzhen Research Laboratory, Guangdong Key Lab of Emerging Infectious Diseases and Shenzhen Key Lab of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, China
| | - Ling Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center and Research Center for Public Health, School of Medicine, Tsinghua University, Beijing, China
| | - Zhiwei Chen
- HKU-AIDS Institute Shenzhen Research Laboratory, Guangdong Key Lab of Emerging Infectious Diseases and Shenzhen Key Lab of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, China; AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
198
|
Abstract
An HIV-1 vaccine is needed to curtail the HIV epidemic. Only one (RV144) out of the 6 HIV-1 vaccine efficacy trials performed showed efficacy. A potential mechanism of protection is the induction of functional antibodies to V1V2 region of HIV envelope. The 2 main current approaches to the generation of protective immunity are through broadly neutralizing antibodies (bnAb) and induction of functional antibodies (non-neutralizing Abs with other potential anti-viral functions). Passive immunization using bnAb has advanced into phase II clinical trials. The induction of bnAb using mimics of the natural Env trimer or B-cell lineage vaccine design is still in pre-clinical phase. An attempt at optimization of protective functional antibodies will be assessed next with the efficacy trial (HVTN702) about to start. With on-going optimization of prime/boost strategies, the development of mosaic immunogens, replication competent vectors, and emergence of new strategies designed to induce bnAb, the prospects for a preventive HIV vaccine have never been more promising.
Collapse
Affiliation(s)
- Denise C Hsu
- a Armed Forces Research Institute of Medical Sciences , Bangkok , Thailand.,b US Military HIV Research Program , Silver Spring , MD , USA.,c Henry M. Jackson Foundation for the Advancement of Military Medicine , Bethesda , MD , USA
| | - Robert J O'Connell
- a Armed Forces Research Institute of Medical Sciences , Bangkok , Thailand.,b US Military HIV Research Program , Silver Spring , MD , USA
| |
Collapse
|
199
|
Xu H, Andersson AM, Ragonnaud E, Boilesen D, Tolver A, Jensen BAH, Blanchard JL, Nicosia A, Folgori A, Colloca S, Cortese R, Thomsen AR, Christensen JP, Veazey RS, Holst PJ. Mucosal Vaccination with Heterologous Viral Vectored Vaccine Targeting Subdominant SIV Accessory Antigens Strongly Inhibits Early Viral Replication. EBioMedicine 2017; 18:204-215. [PMID: 28302457 PMCID: PMC5405164 DOI: 10.1016/j.ebiom.2017.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022] Open
Abstract
Conventional HIV T cell vaccine strategies have not been successful in containing acute peak viremia, nor in providing long-term control. We immunized rhesus macaques intramuscularly and rectally using a heterologous adenovirus vectored SIV vaccine regimen encoding normally weakly immunogenic tat, vif, rev and vpr antigens fused to the MHC class II associated invariant chain. Immunizations induced broad T cell responses in all vaccinees. Following up to 10 repeated low-dose intrarectal challenges, vaccinees suppressed early viral replication (P = 0.01) and prevented the peak viremia in 5/6 animals. Despite consistently undetectable viremia in 2 out of 6 vaccinees, all animals showed evidence of infection induced immune responses indicating that infection had taken place. Vaccinees, with and without detectable viremia better preserved their rectal CD4 + T cell population and had reduced immune hyperactivation as measured by naïve T cell depletion, Ki-67 and PD-1 expression on T cells. These results indicate that vaccination towards SIV accessory antigens vaccine can provide a level of acute control of SIV replication with a suggestion of beneficial immunological consequences in infected animals of unknown long-term significance. In conclusion, our studies demonstrate that a vaccine encoding subdominant antigens not normally associated with virus control can exert a significant impact on acute peak viremia. Mucosal heterologousvirus-vectored vaccine used with MHC class II associated invariant chain linked SIV accessory antigens Mucosal vaccination targeting subdominant antigens delay SIV mac251 replication in rhesus macaques. Longterm reduction of immune hyperactivation following SIV infection of vaccinated macaques.
Mucosal immunization is used with heterologous viral vectors and a genetic adjuvant to raise responses against poorly immunogenic SIV antigens. Following repeated low-dose challenge we observed delayed establishment of chronic phase viremia and reduced immune hyperactivation 6 months after established infection. Vaccination was found to strongly reduce viremia at early, but not late time points, after detected infection and in 2 out of 6 animals infection could only observed as virus induced T cell responses. Subdominant antigen vaccines may thus be used to delay SIV mac251 infection and can enable control of chronic viremia in a minority of cases.
Collapse
Affiliation(s)
- Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Anne-Marie Andersson
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1014, Denmark
| | - Emeline Ragonnaud
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1014, Denmark
| | - Ditte Boilesen
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1014, Denmark
| | - Anders Tolver
- Department of Mathematical Sciences, University of Copenhagen, 2100, Denmark
| | | | - James L Blanchard
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Alfredo Nicosia
- ReiThera, viale Città d'Europa 679, 00144 Rome, Italy; CEINGE, via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Peter Johannes Holst
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1014, Denmark.
| |
Collapse
|
200
|
Escalona E, Sáez D, Oñate A. Immunogenicity of a Multi-Epitope DNA Vaccine Encoding Epitopes from Cu-Zn Superoxide Dismutase and Open Reading Frames of Brucella abortus in Mice. Front Immunol 2017; 8:125. [PMID: 28232837 PMCID: PMC5298974 DOI: 10.3389/fimmu.2017.00125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/25/2017] [Indexed: 01/08/2023] Open
Abstract
Brucellosis is a bacterial zoonotic disease affecting several mammalian species that is transmitted to humans by direct or indirect contact with infected animals or their products. In cattle, brucellosis is almost invariably caused by Brucella abortus. Live, attenuated Brucella vaccines are commonly used to prevent illness in cattle, but can cause abortions in pregnant animals. It is, therefore, desirable to design an effective and safer vaccine against Brucella. We have used specific Brucella antigens that induce immunity and protection against B. abortus. A novel recombinant multi-epitope DNA vaccine specific for brucellosis was developed. To design the vaccine construct, we employed bioinformatics tools to predict epitopes present in Cu-Zn superoxide dismutase and in the open reading frames of the genomic island-3 (BAB1_0260, BAB1_0270, BAB1_0273, and BAB1_0278) of Brucella. We successfully designed a multi-epitope DNA plasmid vaccine chimera that encodes and expresses 21 epitopes. This DNA vaccine induced a specific humoral and cellular immune response in BALB/c mice. It induced a typical T-helper 1 response, eliciting production of immunoglobulin G2a and IFN-γ particularly associated with the Th1 cell subset of CD4+ T cells. The production of IL-4, an indicator of Th2 activation, was not detected in splenocytes. Therefore, it is reasonable to suggest that the vaccine induced a predominantly Th1 response. The vaccine induced a statistically significant level of protection in BALB/c mice when challenged with B. abortus 2308. This is the first use of an in silico strategy to a design a multi-epitope DNA vaccine against B. abortus.
Collapse
Affiliation(s)
- Emilia Escalona
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Darwin Sáez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Angel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|