151
|
Herren B, Garton KJ, Coats S, Bowen-Pope DF, Ross R, Raines EW. ADAM15 overexpression in NIH3T3 cells enhances cell-cell interactions. Exp Cell Res 2001; 271:152-60. [PMID: 11697891 DOI: 10.1006/excr.2001.5353] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ADAM15 is a member of the family of metalloprotease-disintegrins that have been shown to interact with integrins in an RGD- and non-RGD-dependent manner. In the present study, we examined the effects of ADAM15 overexpression on cell-matrix and cell-cell interactions in NIH3T3 cells. Tetracycline-regulated ADAM15 overexpression in NIH3T3 cells leads to an inhibition of migration on a fibronectin-coated filter in a Boyden chamber assay and in a scratch wound model. The effects of ADAM15 overexpression on cell migration are not due to changes in matrix attachment or to the lack of extracellular signal-regulated kinase signaling response to PDGF or fibronectin. However, a decrease in monolayer permeability with ADAM15 overexpression and altered cell morphology suggest a possible increase in cell-cell interaction. Analysis of adhesion of NIH3T3 cells to a polyclonal population of cells retrovirally transduced to overexpress ADAM15 demonstrates a 45% increase in cell adhesion, compared with enhanced green fluorescent protein-expressing control cells. In addition, we demonstrate localization of HA-epitope-tagged ADAM15 to cell-cell contacts in an epithelial cell line that forms extensive cell-cell contact structures. Thus, overexpression of ADAM15 in NIH3T3 cells appears to enhance cell-cell interactions, as suggested by decreased cell migration, altered cell morphology at the wound edge, decreased monolayer permeability, and increased cell adhesion to monolayers of cells expressing ADAM15 by retroviral transduction.
Collapse
Affiliation(s)
- B Herren
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98104-2499, USA
| | | | | | | | | | | |
Collapse
|
152
|
Otero K, Martínez F, Beltrán A, González D, Herrera B, Quintero G, Delgado R, Rojas A. Albumin-derived advanced glycation end-products trigger the disruption of the vascular endothelial cadherin complex in cultured human and murine endothelial cells. Biochem J 2001; 359:567-574. [PMID: 11672430 PMCID: PMC1222177 DOI: 10.1042/0264-6021:3590567] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial cell (EC) junctions regulate in large part the integrity and barrier function of the vascular endothelium. Advanced glycation end-products (AGEs), the irreversibly formed reactive derivatives of non-enzymic glucose-protein condensation reactions, are strongly implicated in endothelial dysfunction that distinguishes diabetes- and aging-associated vascular complications. The aim of the present study was to determine whether AGEs affect EC lateral junction proteins, with particular regard to the vascular endothelial cadherin (VE-cadherin) complex. Our results indicate that AGE-modified BSA (AGE-BSA), a prototype of advanced glycated proteins, disrupts the VE-cadherin complex when administered to ECs. AGE-BSA, but not unmodified BSA, was found to induce decreases in the levels of VE-cadherin, beta-catenin and gamma-catenin in the complex and in total cell extracts, as well as a marked reduction in the amount of VE-cadherin present at the cell surface. In contrast, the level of platelet endothelial cell adhesion molecule-1 (PECAM-1), which is located at lateral junctions, was not altered. Supplementation of the cellular antioxidative defences abolished these effects. Finally, the loss of components of the VE-cadherin complex was correlated with increases in vascular permeability and in EC migration. These findings suggest that some of the AGE-induced biological effects on the endothelium could be mediated, at least in part, by the weakening of intercellular contacts caused by decreases in the amount of VE-cadherin present.
Collapse
Affiliation(s)
- K Otero
- Laboratorio de Farmacología, Centro de Química Farmacéutica, Apartado Postal 6990, La Habana, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Shaw SK, Bamba PS, Perkins BN, Luscinskas FW. Real-time imaging of vascular endothelial-cadherin during leukocyte transmigration across endothelium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2323-30. [PMID: 11490021 DOI: 10.4049/jimmunol.167.4.2323] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vascular endothelial-cadherin (VE-cadherin) is a component of the adherens junctions of endothelial cells whose role in endothelial transmigration of leukocytes has been controversial. Using a VE-cadherin/green fluorescent protein fusion construct (VEcadGFP) that mimics the native molecule, we visualized alterations in endothelial junctional structure in real time during transmigration of human neutrophils and monocytes in an in vitro flow model. We observed abundant transmigration occurring exclusively at the cell borders (paracellularly). Surprisingly, transmigration occurred both through de novo formation of transient gaps in VEcadGFP junctional distribution, and also through preexisting gaps. De novo gaps 4-6 microm in size were formed after a leukocyte arrived at a junction, whereas preexisting gaps were present even before the leukocyte had interacted with the endothelial cells contributing to a junction. Gaps rapidly resealed within 5 min after leukocyte transmigration. Migrating leukocytes appeared to push aside VEcadGFP in the plane of the junction, and this displaced material subsequently diffused back to refill the junction. To our knowledge, this is the first example where molecular events at the lateral junction have been tracked in real time during transmigration.
Collapse
Affiliation(s)
- S K Shaw
- Vascular Research Division, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
154
|
BAZZONI GIANFRANCO, DEJANA ELISABETTA. Pores in the Sieve and Channels in the Wall: Control of Paracellular Permeability by Junctional Proteins in Endothelial Cells. Microcirculation 2001. [DOI: 10.1111/j.1549-8719.2001.tb00165.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
155
|
Li JM, Mullen AM, Shah AM. Phenotypic properties and characteristics of superoxide production by mouse coronary microvascular endothelial cells. J Mol Cell Cardiol 2001; 33:1119-31. [PMID: 11444917 DOI: 10.1006/jmcc.2001.1372] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coronary microvascular endothelial cells exert (patho)physiological effects on the function of cardiac myocytes, which may be studied experimentally using pure cell populations. As an essential pre-requisite to the investigation of cells from gene-modified mice, we studied the phenotypic properties of coronary microvascular endothelial cells isolated from normal mice, and biochemically characterized the superoxide production by these cells. Microvascular endothelial cells were isolated from devitalized mouse ventricular tissue after sequential digestion with collagenase, trypsin and DNase. Coronary microvascular endothelial cells were separated from cardiac myocytes and other cells by differential centrifugation, plating and culture. Mouse coronary microvascular endothelial cells showed an irregular "cobblestone" morphology at confluence, were >98% positive for CD31 by FACS analysis, and were also positive for VE-cadherin and endothelial-type nitric oxide synthase (eNOS) by confocal microscopy. The cells took up fluorescently labelled, acetylated low-density lipoprotein, but were negative for a alpha -smooth muscle actin, desmin and cytokeratin. Unlike human endothelial cells, mouse coronary microvascular endothelial cells only weakly expressed von Willebrand factor. Immunoblotting showed that the mouse cells expressed components of a phagocyte-type NADPH oxidase. They exhibited NADPH-dependent O(2)(-)-generating activity, which was increased by angiotensin II but completely inhibited by diphenyleneiodonium. Thus, mouse coronary microvascular endothelial cells express both eNOS and NADPH oxidase, interactions between which may play a role in endothelial cell pathophysiology.
Collapse
Affiliation(s)
- J M Li
- Department of Cardiology, Guy's King's & St Thomas' School of Medicine, King's College London, SE5 9PJ, UK
| | | | | |
Collapse
|
156
|
Nguyen LL, D'Amore PA. Cellular interactions in vascular growth and differentiation. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 204:1-48. [PMID: 11243594 DOI: 10.1016/s0074-7696(01)04002-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In nature, mammalian cells do not exist in isolation, but rather are involved in interactions with other cells and matrix. In this review, several aspects of cellular interactions that are important in vascular growth and development will be highlighted. The cardiovascular system is the earliest to develop in the embryo. A number of growth factors and their receptors mediate the complex stages of migration, assembly, organization, and stabilization of developing vessels. In the adult organism, normal angiogenesis is restricted primarily to tissue growth (such as muscle and fat), the wound healing process and the female reproductive system. However, pathological angiogenesis, such as with tumor growth, diabetic retinopathy, and arthritis, is of great concern. The identification and/or development of exogenous and endogenous angiogenesis inhibitors has added to the understanding of these pathological processes. In addition to cellular interactions via ligands and receptors, cells also interact directly through physical contacts. These interactions facilitate anchorage, communication, and permeability. Since vessels serve as non-leaky conduits for blood flow as well as interfaces for molecular diffusion, the physical interactions between the cells that make up vessels must be specific for the function at hand. Permeability is a specialized function of vessels and is mediated by intracellular mechanisms and intercellular interactions. Cells also interact with the surrounding extracellular matrix. Integrin-matrix interaction is a two-way exchange critical for angiogenesis. Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases play major roles in embryonic remodeling, adult injury, and pathological conditions. Several experimental model systems have been useful in our understanding of cellular interactions. These in vitro models incorporate heterotypic cell-cell interactions and/or allow cell-matrix interactions to occur.
Collapse
Affiliation(s)
- L L Nguyen
- Schepens Eye Research Institute and Department of Surgery, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
157
|
Legrand P, Bibert S, Jaquinod M, Ebel C, Hewat E, Vincent F, Vanbelle C, Concord E, Vernet T, Gulino D. Self-assembly of the vascular endothelial cadherin ectodomain in a Ca2+-dependent hexameric structure. J Biol Chem 2001; 276:3581-8. [PMID: 11069895 DOI: 10.1074/jbc.m002667200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial cadherin (VE-cadherin) is a transmembrane protein essential for endothelial cell monolayer integrity (Gulino, D., Delachanal, E., Concord, E., Genoux, Y., Morand, B., Valiron, M. O., Sulpice, E., Scaife, R., Alemany, M., and Vernet, T. (1998) J. Biol. Chem. 273, 29786-29793). This molecule belongs to the cadherin family of cell-cell adhesion receptors, for which molecular details of homotypic interactions are still lacking. In this study, a recombinant fragment encompassing the four N-terminal modules of VE-cadherin (VE-EC1-4) was shown to associate, in solution, as a stable Ca(2+)-dependent oligomeric structure. Cross-linking experiments combined with mass spectrometry demonstrated that this oligomer is a hexamer. Gel filtration chromatography experiments and analytical ultracentrifugation analyses revealed the existence of an equilibrium between the hexameric and monomeric species of VE-EC1-4. The concentration at which 50% of VE-EC1-4 is in its hexameric form was estimated as 1 microm. The dimensions of the hexamer, measured by cryoelectron microscopy to be 233 +/- 10 x 77 +/- 7 A, are comparable to the thickness of adherens endothelial cell-cell junctions. Altogether, the results allow us to propose a novel homotypic interaction model for the class II VE-cadherin, in which six molecules of cadherin form a hexamer.
Collapse
Affiliation(s)
- P Legrand
- Laboratoire d'Ingénierie des Macromolécules, Commissariat à l'Energie Atomique/CNRS, Institut de Biologie Structurale Jean-Pierre Ebel, 41, rue Jules Horowitz, 38027 Grenoble Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Yáñez-Mó M, Tejedor R, Rousselle P, Sánchez -Madrid F. Tetraspanins in intercellular adhesion of polarized epithelial cells: spatial and functional relationship to integrins and cadherins. J Cell Sci 2001; 114:577-87. [PMID: 11171326 DOI: 10.1242/jcs.114.3.577] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The subcellular distribution of tetraspanin molecules and their functional relationship with integrins in cell-cell adhesion was studied in detail in different polarized epithelial cell models. CD9, CD81 and CD151 tetraspanins were localized at lateral cell-cell contact sites in a similar distribution to E-cadherin. Interestingly, CD9 was partially localized at the apical microvillae of Madin-Darby canine kidney cells forming multimolecular complexes distinct from those found on the basolateral membrane, suggesting the coexistence of differential tetraspanin webs with different subcellular localization. We found that tetraspanin-associated beta1 integrins at cell-to-cell contacts were in a low-affinity conformational state, and that their localization at intercellular contacts was independent of cadherin expression and adhesion. Furthermore, integrin-tetraspanin complexes were functionally relevant in cell-cell adhesion in a cadherin-independent manner, without requiring a conformational change of the integrin moiety. Nevertheless, the integrin alpha3beta1 was ligand-binding competent and this binding did not disrupt association to tetraspanins. Moreover, Chinese hamster ovary cells treated with anti-tetraspanin mAbs or activatory anti-beta1 integrin mAbs were able to develop tubule-like structures. Together, these data support tetraspanin association as a new regulatory mechanism of integrin function and suggest a role for tetraspanins-integrin complexes in providing the cell with the spatial cues necessary for their proper polarization.
Collapse
Affiliation(s)
- M Yáñez-Mó
- Servicio de Inmunología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
159
|
Halama T, Gröger M, Pillinger M, Staffler G, Prager E, Stockinger H, Holnthoner W, Lechleitner S, Wolff K, Petzelbauer P. Platelet endothelial cell adhesion molecule-1 and vascular endothelial cadherin cooperatively regulate fibroblast growth factor-induced modulations of adherens junction functions. J Invest Dermatol 2001; 116:110-7. [PMID: 11168805 DOI: 10.1046/j.1523-1747.2001.00176.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cellular adherens junctions are formed by cadherins linked to proteins of the catenin family. In endothelial cells, not only vascular endothelial cadherin but also platelet endothelial cell adhesion molecule-1 localizes into junctions and associates with beta-catenin. To explore a putative cooperation of platelet endothelial cell adhesion molecule-1 and vascular endothelial cadherin, we analyzed transfectants expressing either platelet endothelial cell adhesion (CD31 cells) or vascular endothelial cadherin (CD144 cells) or both molecules (CD31/CD144 cells), and, for comparison, human umbilical vein endothelial cells. Basic fibroblast growth factor completely dissociated vascular endothelial cadherin/beta-catenin complexes and robustly moved beta-catenin into the nucleus in CD144 cells, whereas in CD31/CD144 cells as well as in human umbilical vein endothelial cells, fibroblast growth factor only partially dissociated the junctional complex followed by a significantly reduced nuclear translocation of beta-catenin. In contrast, in CD31 cells, the subcellular distribution of beta-catenin remained unaffected by fibroblast growth factor. As a functional consequence, fibroblast growth factor induced a complete collapse of the F-actin network in CD144 cells, a limited rearrangement of F-actin fibers in CD31/CD144 cells and no F-actin rearrangement in CD31 cells. We also analyzed the effect of fibroblast growth factor-induced rearrangement of junctions on junction permeability for leukocytes: in line with our observation that vascular endothelial cadherin was required for cells to respond to fibroblast growth factor, only in CD31/CD144 cells, but not in CD31 cells, leukocyte transmigration was significantly enhanced by fibroblast growth factor. In conclusion platelet endothelial cell adhesion molecule-1 cooperates with vascular endothelial cadherin in a mutual fashion; platelet endothelial cell adhesion molecule-1 reduces and temporarily limits fibroblast growth factor-induced dissociation of vascular endothelial cadherin/beta-catenin complexes, but requires vascular endothelial cadherin to control leukocyte transmigration in dependence of fibroblast growth factor.
Collapse
Affiliation(s)
- T Halama
- Department of Dermatology, Division of General Dermatology, University of Vienna Medical School, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Abstract
The principle of the molecular organization of adherens junctions follows a uniform pattern, which is found in epithelial, muscular, neuroneal as well as in endothelial cells and is highly conserved among species. Transmembrane molecules of the cadherin family link to catenins, which anchor the adhesion plaque to the cytoskeleton. The kind of cadherin used in adherens junctions is cell-type specific, vascular endothelial (VE)-cadherin is specific for endothelial cells. The assembly and disassembly of the cadherin/catenin complex is dynamic and regulated by growth factors. The functional status of adherens junctions controls endothelial cell-to-cell adhesion, cell scattering, vessel morphogenesis and has intracellular signaling properties, thereby playing an important role in vasculogenesis and angiogenesis.
Collapse
Affiliation(s)
- P Petzelbauer
- Department of Dermatology, University of Vienna Medical School, Austria.
| | | | | |
Collapse
|
161
|
Gao X, Kouklis P, Xu N, Minshall RD, Sandoval R, Vogel SM, Malik AB. Reversibility of increased microvessel permeability in response to VE-cadherin disassembly. Am J Physiol Lung Cell Mol Physiol 2000; 279:L1218-25. [PMID: 11076812 DOI: 10.1152/ajplung.2000.279.6.l1218] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We determined the role of vascular endothelial (VE)-cadherin complex in regulating the permeability of pulmonary microvessels. Studies were made in mouse lungs perfused with albumin-Krebs containing EDTA, a Ca(2+) chelator, added to study the VE-cadherin junctional disassembly. We then repleted the perfusate with Ca(2+) to restore VE-cadherin integrity. Confocal microscopy showed a disappearance of VE-cadherin immunostaining in a time- and dose-dependent manner after Ca(2+) chelation and reassembly of the VE-cadherin complex within 5 min after Ca(2+) repletion. We determined the (125)I-labeled albumin permeability-surface area product and capillary filtration coefficient (K(fc)) to quantify alterations in the pulmonary microvessel barrier. The addition of EDTA increased (125)I-albumin permeability-surface area product and K(fc) in a concentration-dependent manner within 5 min. The permeability response was reversed within 5 min after repletion of Ca(2+). An anti-VE-cadherin monoclonal antibody against epitopes responsible for homotypic adhesion augmented the increase in K(fc) induced by Ca(2+) chelation and prevented reversal of the response. We conclude that the disassembled VE-cadherins in endothelial cells are mobilized at the junctional plasmalemmal membrane such that VE-cadherins can rapidly form adhesive contact and restore microvessel permeability by reannealing the adherens junctions.
Collapse
Affiliation(s)
- X Gao
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
162
|
|
163
|
Cunningham SA, Arrate MP, Rodriguez JM, Bjercke RJ, Vanderslice P, Morris AP, Brock TA. A novel protein with homology to the junctional adhesion molecule. Characterization of leukocyte interactions. J Biol Chem 2000; 275:34750-6. [PMID: 10945976 DOI: 10.1074/jbc.m002718200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have cloned a novel cDNA belonging to the Ig superfamily that shows 44% similarity to the junctional adhesion molecule (JAM) and maps to chromosome 21q21.2. The open reading frame of JAM2 predicts a 34-kDa type I integral membrane protein that features two Ig-like folds and three N-linked glycosylation sites in the extracellular domain. A single protein kinase C phosphorylation consensus site and a PDZ-binding motif are present in the short intracellular tail. Heterologous expression of JAM2 in Chinese hamster ovary cells defined a 48-kDa protein that localizes predominantly to the intercellular borders. Northern blot analysis showed that JAM2 is preferentially expressed in the heart. JAM2 homotypic interactions were demonstrated by the ability of JAM2-Fc to capture JAM2-expressing Chinese hamster ovary cells. We further showed that JAM2, but not JAM1, is capable of adhering to the HSB and HPB-ALL lymphocyte cell lines. Neutralizing mouse anti-JAM2 polyclonal antibodies provided evidence against homotypic interactions in this assay. Biotinylation of HSB cell membranes revealed a 43-kDa counter-receptor that precipitates specifically with JAM2-Fc. These characteristics of JAM2 led us to hypothesize a role for this novel protein in adhesion events associated with cardiac inflammatory conditions.
Collapse
Affiliation(s)
- S A Cunningham
- Department of Pharmacology, Texas Biotechnology Corporation, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
164
|
Corvera S, DiBonaventura C, Shpetner HS. Cell confluence-dependent remodeling of endothelial membranes mediated by cholesterol. J Biol Chem 2000; 275:31414-21. [PMID: 10903311 DOI: 10.1074/jbc.m001708200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The plasma membranes of endothelial cells reaching confluence undergo profound structural and functional modifications, including the formation of adherens junctions, crucial for the regulation of vascular permeability and angiogenesis. Adherens junction formation is accompanied by the tyrosine dephosphorylation of adherens junctions proteins, which has been correlated with the strength and stability of adherens junctions. Here we show that cholesterol is a critical determinant of plasma membrane remodeling in cultures of growing cow pulmonary aortic endothelial cells. Membrane cholesterol increased dramatically at an early stage in the formation of confluent cow pulmonary aortic endothelial cell monolayers, prior to formation of intercellular junctions. This increase was accompanied by the redistribution of caveolin from a high density to a low density membrane compartment, previously shown to require cholesterol, and increased binding of the annexin II-p11 complex to membranes, consistent with other studies indicating cholesterol-dependent binding of annexin II to membranes. Furthermore, partial depletion of cholesterol from confluent cells with methyl-beta-cyclodextrin both induced tyrosine phosphorylation of multiple membrane proteins, including adherens junctions proteins, and disrupted adherens junctions. Both effects were dramatically reduced by prior complexing of methyl-beta-cyclodextrin with cholesterol. Our results reveal a novel physiological role for cholesterol regulating the formation of adherens junctions and other plasma membrane remodeling events as endothelial cells reach confluence.
Collapse
Affiliation(s)
- S Corvera
- Program in Molecular Medicine and Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
165
|
Abstract
The central nervous system (CNS) is divided into diverse embryological and functional compartments. The early embryonic CNS consists of a series of transverse subdivisions (neuromeres) and longitudinal domains. These embryonic subdivisions represent histogenetic fields in which neurons are born and aggregate in distinct cell groups (brain nuclei and layers). Different subsets of these aggregates become selectively connected by nerve fiber tracts and, finally, by synapses, thus forming the neural circuits of the functional systems in the CNS. Recent work has shown that 30 or more members of the cadherin family of morphoregulatory molecules are differentially expressed in the developing and mature brain at almost all stages of development. In a regionally specific fashion, most cadherins studied to date are expressed by the embryonic subdivisions of the early embryonic brain, by developing brain nuclei, cortical layers and regions, and by fiber tracts, neural circuits and synapses. Each cadherin shows a unique expression pattern that is distinct from that of other cadherins. Experimental evidence suggests that cadherins contribute to CNS regionalization, morphogenesis and fiber tract formation, possibly by conferring preferentially homotypic adhesiveness (or other types of interactions) between the diverse structural elements of the CNS. Cadherin-mediated adhesive specificity may thus provide a molecular code for early embryonic CNS regionalization as well as for the development and maintenance of functional structures in the CNS, from embryonic subdivisions to brain nuclei, cortical layers and neural circuits, down to the level of individual synapses.
Collapse
Affiliation(s)
- C Redies
- Institute of Anatomy, University of Essen Medical School, Hufelandstrasse 55, Germany.
| |
Collapse
|
166
|
Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem 2000; 275:20520-6. [PMID: 10877843 DOI: 10.1074/jbc.m905251199] [Citation(s) in RCA: 327] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Junctional adhesion molecule (JAM) is an integral membrane protein that has been reported to colocalize with the tight junction molecules occludin, ZO-1, and cingulin. However, evidence for the association of JAM with these molecules is missing. Transfection of Chinese hamster ovary cells with JAM (either alone or in combination with occludin) resulted in enhanced junctional localization of both endogenous ZO-1 and cotransfected occludin. Additionally, JAM was coprecipitated with ZO-1 in the detergent-insoluble fraction of Caco-2 epithelial cells. A putative PDZ-binding motif at the cytoplasmic carboxyl terminus of JAM was required for mediating the interaction of JAM with ZO-1, as assessed by in vitro binding and coprecipitation experiments. JAM was also coprecipitated with cingulin, another cytoplasmic component of tight junctions, and this association required the amino-terminal globular head of cingulin. Taken together, these data indicate that JAM is a component of the multiprotein complex of tight junctions, which may facilitate junction assembly.
Collapse
Affiliation(s)
- G Bazzoni
- Istituto di Ricerche Farmacologiche Mario Negri, 20157 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
167
|
Cruz A, DeFouw LM, DeFouw DO. Restrictive endothelial barrier function during normal angiogenesis in vivo: partial dependence on tyrosine dephosphorylation of beta-catenin. Microvasc Res 2000; 59:195-203. [PMID: 10684725 DOI: 10.1006/mvre.1999.2226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Differentiation of a restrictive endothelial barrier in the chick chorioallantoic membrane (CAM) occurs between Day 4.5 and Day 5.0 of the normal 21-day gestation. Whether molecular changes in the endothelial cell-cell junctional protein complex contribute to the ontogeny of barrier function represents the principal focus of this study. VE-cadherin has been shown to contribute to the regulation of endothelial cell monolayer permeability in vitro. Accordingly, VE-cadherin is complexed to the cytosolic catenins, and changes in monolayer permeability have been linked to alterations of the cadherin/catenin complex. Currently, a CAM endothelial VE-cadherin/beta-catenin complex was identified, and phosphotyrosine labeling of beta-catenin was decreased concurrently with the abrupt increase in CAM endothelial selectivity between Day 4.5 and Day 5.0. Further, inhibition of protein tyrosine phosphatases impeded regular tyrosine dephosphorylation of beta-catenin at Day 5.0 and this served to partially restore macromolecular extravasation to elevated levels normally present at Day 4.5. Thus, differentiation of selective barrier function in the angiogenic CAM endothelium in vivo is dependent, in part, on tyrosine dephosphorylation of beta-catenin.
Collapse
Affiliation(s)
- A Cruz
- Department of Anatomy, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
168
|
Abstract
Recent studies, particularly of genetically altered mice, have greatly improved our understanding of the molecular basis underlying the development of the vascular system. Endothelial signalling systems, such as the vascular endothelial growth factor (VEGF)/VEGF receptor system and the angiopoietin/Tie2 system, were identified as central regulators of embryonic angiogenesis. The complex interactions between these and other endothelial signalling systems are beginning to emerge. Placenta (2000), 21, Supplement A, Trophoblast Research, 14, S11-S15.
Collapse
Affiliation(s)
- G Breier
- Max-Planck Institut for Physiological and Clinical Research, Laboratory of Molecular and Cellular Biology, Bad Nauheim, Germany.
| |
Collapse
|
169
|
Allport JR, Muller WA, Luscinskas FW. Monocytes induce reversible focal changes in vascular endothelial cadherin complex during transendothelial migration under flow. J Cell Biol 2000; 148:203-16. [PMID: 10629229 PMCID: PMC2156206 DOI: 10.1083/jcb.148.1.203] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/1999] [Accepted: 12/02/1999] [Indexed: 01/12/2023] Open
Abstract
The vascular endothelial cell cadherin complex (VE-cadherin, alpha-, beta-, and gamma-catenin, and p120/p100) localizes to adherens junctions surrounding vascular endothelial cells and may play a critical role in the transendothelial migration of circulating blood leukocytes. Previously, we have reported that neutrophil adhesion to human umbilical vein endothelial cell (HUVEC) monolayers, under static conditions, results in a dramatic loss of the VE-cadherin complex. Subsequent studies by us and others (Moll, T., E. Dejana, and D. Vestweber. 1998. J. Cell Biol. 140:403-407) suggested that this phenomenon might reflect degradation by neutrophil proteases released during specimen preparation. We postulated that some form of disruption of the VE-cadherin complex might, nonetheless, be a physiological process during leukocyte transmigration. In the present study, the findings demonstrate a specific, localized effect of migrating leukocytes on the VE-cadherin complex in cytokine-activated HUVEC monolayers. Monocytes and in vitro differentiated U937 cells induce focal loss in the staining of VE-cadherin, alpha-catenin, beta-catenin, and plakoglobin during transendothelial migration under physiological flow conditions. These events are inhibited by antibodies that prevent transendothelial migration and are reversed following transmigration. Together, these data suggest that an endothelial-dependent step of transient and focal disruption of the VE-cadherin complex occurs during leukocyte transmigration.
Collapse
Affiliation(s)
- Jennifer R. Allport
- Vascular Research Division, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - William A. Muller
- Department of Pathology, Weill Medical College of Cornell University, New York, New York 10021
| | - Francis W. Luscinskas
- Vascular Research Division, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
170
|
Cruz A, DeFouw DO. Increased expression of VE-cadherin correlates temporally with differentiation of a restrictive endothelial barrier during normal angiogenesis in vivo. Tissue Cell 1999; 31:545-9. [PMID: 10669929 DOI: 10.1054/tice.1999.0066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to evaluate temporal expression of VE- and N-cadherins within the angiogenic chick chorioallantoic membrane (CAM). Whether their relative patterns of expression changed in conjunction with abrupt differentiation of the restrictive CAM endothelial barrier between days 4.5 and 5.0 of the 21 days gestation was evaluated. Immunoblots against VE-cadherin depicted an increase of VE-cadherin expression between days 4.5 and 5.0, but no change in expression was detected between days 5.0 and 6.0. N-cadherin expression, on the other hand, remained uniform from day 4.5 to day 6.0. Immunogold-labeled anti-VE-cadherin was found exclusively on the CAM endothelium, and principally along the lateral inter-endothelial junctions. Hence, VE-cadherin expression by the angiogenic endothelium was similar to that of adult endothelium. That VE-cadherin expression by the CAM endothelium was increased between days 4.5 and 5.0 serves to suggest a temporal correlation with the ontogeny of restrictive barrier function in angiogenic endothelium in vivo.
Collapse
Affiliation(s)
- A Cruz
- Department of Anatomy, Cell Biology and Injury Sciences, UMDNJ-New Jersey Medical School, Newark, USA
| | | |
Collapse
|
171
|
Abstract
An attempt is made to reveal the mechanism of homocysteine-induced vascular pathogenesis and a theory is developed on the basis of an analysis of available data. In the blood, homocysteine molecules, which possess the capacity of forming chelate complexes with metallic cations including calcium ions, interact with the calcium ions of the calcium-dependent cell adhesions/junctions of the vascular endothelium. Such an action results in the departure of calcium ions from some cell adhesions/junctions, causing the latter structures to dissociate and the vascular endothelium to be injured. While such factors as high levels of plasma calcium ion tend to restore the disrupted cell adhesions/junctions, other factors including blood pressure, bloodstream shearing force and high cholesterol/phospholipid ratio in the membranes are unfavorable to the repair. The injuries to the vascular endothelium may initiate inflammatory reactions. Over a long time, as such endothelial injuries occur repeatedly and, additionally, a small number of unrepaired cell adhesion/junction disruptions exacerbate slowly but progressively, inflammation may be constantly present. As the inflammation becomes excessive or uncontrollable, irreversible vascular pathogenesis takes place. Added to the condition is thrombosis caused by excessive coagulation activities triggered by the vascular endothelium injuries. In addition to the interference due to decreased membrane fluidity to the restoration of interrupted cell adhesions/junctions, cholesterol may further promote vascular pathogenesis (induced by either homocysteine or other factors) by impeding the detachment and departure of the foam cells from the vascular lesions. Such impediment is presumably related to an inhibitory effect on cell shape change and cell movement by the formation of a stable and rigid cytoskeleton-membrane network characterized by reduced membrane malleability and enhanced cytoskeleton-membrane association.
Collapse
Affiliation(s)
- X Wang
- Department of Pathology, Cornell University Medical College, New York, NY, USA.
| |
Collapse
|
172
|
Dejana E, Bazzoni G, Lampugnani MG. Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp Cell Res 1999; 252:13-9. [PMID: 10502395 DOI: 10.1006/excr.1999.4601] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Data collected during the past years indicate that AJ- and more specifically VE-cadherin play an important role in endothelial cell biology. VE-cadherin may transfer information intracellularly through interaction with a complex network of cytoskeletal and signaling molecules. Expression of VE-cadherin is required for the control of vascular permeability and vascular integrity. In addition, the molecule may exert a morphogenetic role modulating the capacity of endothelial cells to organize into tubular-like structures. VE-cadherin presents many structural and sequence homologies to the other members of the family and apparently binds to the same intracellular molecules. However, remarkably, VE-cadherin may transfer specific signals to endothelial cells to modulate their functional reactivity.
Collapse
Affiliation(s)
- E Dejana
- Istituto di Ricerche Farmacologiche Mario Negri, Via Eritrea 62, Milan, Italy.
| | | | | |
Collapse
|
173
|
Geyer H, Geyer R, Odenthal-Schnittler M, Schnittler HJ. Characterization of human vascular endothelial cadherin glycans. Glycobiology 1999; 9:915-25. [PMID: 10460833 PMCID: PMC7108604 DOI: 10.1093/glycob/9.9.915] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The glycosylation pattern of human vascular endothelial cadherin (VE-cadherin), purified from cultured human umbilical cord vein endothelial cells, was analyzed. VE-cadherin was metabolically radiolabeled with d-[6-(3)H]glucosamine, isolated by immunoprecipitation, purified by SDS-PAGE and in-gel digested with endoproteinase Asp N. Oligosaccharides were sequentially released from resulting glycopeptides and analyzed by chromatographic profiling. The results revealed that VE-cadherin carries predominantly sialylated diantennary and hybrid-type glycans in addition to some triantennary and high mannose-type species. Highly branched, tetraantennary oligosaccharides were found in trace amounts only. Immunohistochemical labeling of VE-cadherin and sialic acids displayed a codistribution along the intercellular junctions in endothelial cells of human umbilical arteries, veins, and cultured endothelial monolayers. Ca(2+)-depletion, performed on cultured endothelial cells, resulted in a reversible complete disappearance of VE-cadherin and of almost all sialic acid staining from the junctions. Sialidase treatment of whole cells caused a change of VE-cadherin immunofluorescence from a continuous and netlike superstructural organization to a scattered inconsistent one. Hence, cell surface sialic acids might play a role in VE-cadherin organization.
Collapse
Affiliation(s)
- H Geyer
- Institute of Biochemistry, Justus-Liebig-Universität Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
174
|
Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, Dejana E. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci U S A 1999; 96:9815-20. [PMID: 10449777 PMCID: PMC22293 DOI: 10.1073/pnas.96.17.9815] [Citation(s) in RCA: 525] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the present paper, we characterize an antibody, mAb BV13, directed to mouse vascular endothelial (VE)-cadherin, a major adhesive protein of interendothelial adherens junctions. When added to cultured endothelial cells, BV13 induces a redistribution of VE-cadherin from intercellular junctions. VE-cadherin redistribution did not change the localization of platelet endothelial cell adhesion molecule or tight junction markers such as zonula occludens 1, cingulin, and junctional adhesion molecule. Intravenous administration of mAb BV13 induced a concentration- and time-dependent increase in vascular permeability in heart and lungs. By electron microscopy, interstitial edema and accumulation of mixed types of inflammatory cells in heart and lungs were observed. Injection of (rhodamine-labeled) Ricinus communis I lectin showed focal spots of exposed basement membrane in the alveolar capillaries and in some larger pulmonary vessels. These data indicate that VE-cadherin is required for vascular integrity and normal organ functions.
Collapse
Affiliation(s)
- M Corada
- Istituto di Ricerche Farmacologiche Mario Negri, 20157 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Shafer SH, Puhl HL, Phelps SH, Williams CL. Activation of transfected M1 or M3 muscarinic acetylcholine receptors induces cell-cell adhesion of Chinese hamster ovary cells expressing endogenous cadherins. Exp Cell Res 1999; 248:148-59. [PMID: 10094822 DOI: 10.1006/excr.1998.4385] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of endogenous cadherins by Chinese hamster ovary (CHO) cells has not been previously reported. However, we observed that CHO cells adhere to one another upon activation of transfected muscarinic acetylcholine receptors (mAChR), suggesting that the cells express endogenous cadherins. A 160-base pair RT-PCR product with 100% homology to the cytoplasmic domain of human E-cadherin was amplified from CHO cells. A second RT-PCR product amplified from these cells has 92% homology to the cytoplasmic domain of human cadherin-9 and 86% homology to the cytoplasmic domain of human cadherin-6. Western blotting indicates that CHO cells express a 165-kDa protein recognized by E-cadherin antibodies and a 120-kDa protein recognized by an antibody to the cadherin C-terminus sequence. The ability of transfected mAChR subtypes to regulate cadherin-mediated adhesion of CHO cells was tested by measuring the permeation of horseradish peroxidase across confluent CHO cell monolayers, by microscopic examination of the cells, and by aggregation assays. Cell-cell adhesion is induced within 15 min of activating transfected M1 or M3 mAChR which functionally couple to protein kinase C (PKC). In contrast, CHO cell adhesion is not affected by activating transfected M2 mAChR which functionally couple to other effectors. Activation of PKC with phorbol esters also induces cell-cell adhesion of all CHO sublines tested. Immunofluorescence assays reveal that endogenous cadherins redistribute on the plasma membrane of CHO cells following mAChR or PKC activation. Inactivation of cadherins by removal of extracellular Ca2+ abrogates adhesion induced by mAChR or PKC activation. Our demonstration that activation of only odd-numbered mAChR subtypes induces cadherin-mediated adhesion suggests that the unique responses of cells to M1 or M3 mAChR stimulation may involve cadherin activation.
Collapse
Affiliation(s)
- S H Shafer
- Laboratory of Neurobiology, Guthrie Research Institute, Sayre, Pennsylvania, 18840, USA
| | | | | | | |
Collapse
|
176
|
Noë V, Willems J, Vandekerckhove J, Roy FV, Bruyneel E, Mareel M. Inhibition of adhesion and induction of epithelial cell invasion by HAV-containing E-cadherin-specific peptides. J Cell Sci 1999; 112 ( Pt 1):127-35. [PMID: 9841909 DOI: 10.1242/jcs.112.1.127] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E-cadherin/catenin complex, an organizer of epithelial structure and function, is disturbed in invasive cancer. The HAV (histidine alanine valine) sequence in the first extracellular domain of E-cadherin is crucial for homophilic interactions between cadherins. We report that specific peptides containing an HAV sequence interfere with the functions of the E-cadherin/catenin complex. Cells either expressing specific cadherins or not were challenged with both cadherin and noncadherin peptides comprising a central HAV sequence. Specific E-cadherin peptides inhibited cell aggregation, disturbed the epithelial morphotype and were able to stimulate invasion of cells expressing E-cadherins. Conditioned medium, containing E-cadherin fragments, also stimulated invasion in contrast to conditioned medium from which the E-cadherin fragments were removed. Our studies show that E-cadherin functions are inhibited by homologous proteolytic HAV-containing fragments that are released in an autocrine manner and subsequently inhibit the E-cadherin/catenin complex. In this way such cadherin fragments may induce and support cancer invasion.
Collapse
Affiliation(s)
- V Noë
- Laboratory of Experimental Cancerology, UZG, B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
177
|
Kawashima M, Kitagawa M. An immunohistochemical study of cadherin 5 (VE-cadherin) in vascular endothelial cells in placentas with gestosis. J Obstet Gynaecol Res 1998; 24:375-84. [PMID: 10063232 DOI: 10.1111/j.1447-0756.1998.tb00112.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate vascular endothelial-cell functioning in placentas with gestosis, using the monoclonal antibody to cadherin 5. METHODS The extra-cellular moiety of cadherin 5 was transfected into L-cells to enable us to examine their cell-adhesion activity. The expression of cadherin 5 was evaluated in human umbilical-vein endothelial cells and in placentas with gestosis by immunostaining using the anti-cadherin 5 antibody. A microspectrophotometric study also was conducted of the placentas with gestosis. RESULTS We determined the total base sequence for cadherin 5 and found that it is homologous with a known cadherin but is a new, unique clone. Cadherin 5 has cell-adhesion activity and is expressed in endothelial cells at the cell-adhesion surface. The expression of cadherin 5 in endothelial cells took place in the placentas with gestosis, but to a lesser extent than in normal placental endothelial cells. CONCLUSIONS The reduced expression of cadherin 5 in placentas with gestosis suggests that endothelial cell functioning is impaired in placentas with gestosis. Cadherin 5 in endothelial cells might influence placental functions and fetal development.
Collapse
Affiliation(s)
- M Kawashima
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
178
|
Bach TL, Barsigian C, Yaen CH, Martinez J. Endothelial cell VE-cadherin functions as a receptor for the beta15-42 sequence of fibrin. J Biol Chem 1998; 273:30719-28. [PMID: 9804847 DOI: 10.1074/jbc.273.46.30719] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The contact of fibrin with the apical surface of human umbilical vein endothelial cells (HUVEC) can induce capillary tube formation via the interaction of fibrin beta15-42 with a putative cell receptor (Chalupowicz, D. G., Chowdhury, Z. A., Bach, T. L., Barsigian, C., and Martinez, J. (1995) J. Cell Biol. 130, 207-215). To characterize this interaction, we studied the binding of the thrombin-cleaved N-terminal disulfide knot of fibrin (NDSK II), a dimeric fragment with exposed beta15-42, to HUVEC in three separate assay systems. Time-course binding of 125I-NDSK II to HUVEC monolayers or suspensions revealed that binding was specific at 50-60%, as determined by the addition of unlabeled NDSK II. Specific binding of 125I-NDSK II to HUVEC was 70% reversible by dilution or by competition, and was found to be divalent cation-independent. Binding plateaued after 10 min at a saturation of 15-20 nM. Scatchard analysis using the LIGAND computer program defined a single population of receptors with a KD of 7.7 +/- 1.6 nM and approximately 21,000 +/- 7000 binding sites/cell. N-terminal disulfide knot derivatives in which beta15-42 was absent (NDSK 325) or unexposed (NDSK, NDSK I) did not show specific binding. Specific binding of 125I-NDSK II could not be inhibited by RGDS or by antibodies to the alphavbeta3 or beta1 integrins, PECAM-1, ICAM-1, or N-cadherin. In contrast, a synthetic beta15-42/ovalbumin conjugate inhibited total 125I-NDSK II binding by 47 +/- 19% (corresponding to 95% of specific 125I-NDSK II bound) and a monoclonal antibody to vascular endothelial cadherin (VE-cadherin) inhibited binding by 35 +/- 8% (corresponding to 70% of specific 125I-NDSK II bound). Another assay was based on the capture of cadherins from HUVEC lysates by a polyclonal pan-cadherin antibody immobilized on plastic dishes. Binding of NDSK II to the captured cadherins was 89 +/- 5% specific, while specific binding of NDSK 325 and NDSK was negligible. An immortalized line of human adipose-derived microvascular endothelial cells, which express N-cadherin but not VE-cadherin, demonstrated no specific binding of NDSK II by the capture assay. These data define a novel interaction of fibrin with VE-cadherin, which is mediated by the fibrin N-terminal beta15-42 sequence, and may contribute to the mechanism through which fibrin induces angiogenesis.
Collapse
Affiliation(s)
- T L Bach
- Cardeza Foundation for Hematologic Research and Division of Hematology, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
179
|
Gulino D, Delachanal E, Concord E, Genoux Y, Morand B, Valiron MO, Sulpice E, Scaife R, Alemany M, Vernet T. Alteration of endothelial cell monolayer integrity triggers resynthesis of vascular endothelium cadherin. J Biol Chem 1998; 273:29786-93. [PMID: 9792693 DOI: 10.1074/jbc.273.45.29786] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although cadherins appear to be necessary for proper cell-cell contacts, the physiological role of VE-cadherin (vascular endothelium cadherin) in adult tissue has not been clearly determined. To shed some light on this question, we have disturbed the adhesive function of VE-cadherin in human endothelial cell culture using a polyclonal anti-VE-cadherin antibody. This antibody disrupts confluent endothelial cell monolayers in vitro and transiently generates numerous gaps at cell-cell junctions. The formation of these gaps correlates with a reversible increase in the monolayer permeability. We present evidence that destruction of the homotypic interactions between the extracellular domains of VE-cadherin induces a rapid resynthesis of VE-cadherin, leading to restoration of endothelial cell-cell contacts. The expression of new molecules of VE-cadherin correlates with a modest but significant increase in VE-cadherin mRNA synthesis. Altogether, these results establish a critical role for VE-cadherin in the maintenance and restoration of endothelium integrity.
Collapse
Affiliation(s)
- D Gulino
- Laboratoire d'Ingénierie des Macromolécules, Institut de Biologie Structurale Jean-Pierre Ebel (Commissariat à l'Energie Atomique/CNRS), 41, Avenue des Martyrs, 38027 Grenoble Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Smith ME, Brown JI, Fisher C. Epithelioid sarcoma: presence of vascular-endothelial cadherin and lack of epithelial cadherin. Histopathology 1998; 33:425-31. [PMID: 9839166 DOI: 10.1046/j.1365-2559.1998.00544.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To evaluate the pattern of cadherin expression in epithelioid sarcoma. METHODS AND RESULTS Seven epithelioid sarcomas were immunostained by a polyclonal antibody that detects all cadherin subtypes and by monoclonal antibodies that detect epithelial cadherin (E-cadherin) and vascular-endothelial cadherin (VE cadherin). In addition, the tumours were immunostained for a variety of epithelial (cytokeratin, EMA, AUA1) and endothelial (Factor VIII-related antigen, CD34, CD31) markers. Tumours cells of all seven epithelioid sarcomas expressed cadherins. Surprisingly, E-cadherin was not detected in any of the sarcomas. VE-cadherin was detected in five of seven cases. All seven tumours expressed cytokeratins and EMA but none expressed AUA1. CD34 was detected in six of seven cases and CD31 was detected in a single case. No case expressed Factor VIII-related antigen. CONCLUSIONS Most epithelioid sarcomas strongly express cadherins, a feature which may contribute to their epithelioid appearance. The absence of detectable E-cadherin suggests that epithelial differentiation in these tumours is, at most, incomplete. The expression of VE-cadherin by the majority of cases, in the absence of E-cadherin, is consistent with an element of mesenchymal differentiation, possibly endothelial or perineurial. The additional presence of other markers such as CD34 and CD31 in some cases favours endothelial differentiation.
Collapse
Affiliation(s)
- M E Smith
- Department of Histopathology, Derriford Hospital, Plymouth, London, UK
| | | | | |
Collapse
|
181
|
Kowalczyk AP, Navarro P, Dejana E, Bornslaeger EA, Green KJ, Kopp DS, Borgwardt JE. VE-cadherin and desmoplakin are assembled into dermal microvascular endothelial intercellular junctions: a pivotal role for plakoglobin in the recruitment of desmoplakin to intercellular junctions. J Cell Sci 1998; 111 ( Pt 20):3045-57. [PMID: 9739078 DOI: 10.1242/jcs.111.20.3045] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vascular endothelial cells assemble adhesive intercellular junctions comprising a unique cadherin, VE-cadherin, which is coupled to the actin cytoskeleton through cytoplasmic interactions with plakoglobin, beta-catenin and alpha -catenin. However, the potential linkage between VE-cadherin and the vimentin intermediate filament cytoskeleton is not well characterized. Recent evidence indicates that lymphatic and vascular endothelial cells express desmoplakin, a cytoplasmic desmosomal protein that attaches intermediate filaments to the plasma membrane in epithelial cells. In the present study, desmoplakin was localized to intercellular junctions in human dermal microvascular endothelial cells. To determine if VE-cadherin could associate with desmoplakin, VE-cadherin, plakoglobin, and a desmoplakin amino-terminal polypeptide (DP-NTP) were co-expressed in L-cell fibroblasts. In the presence of VE-cadherin, both plakoglobin and DP-NTP were recruited to cell-cell borders. Interestingly, beta-catenin could not substitute for plakoglobin in the recruitment of DP-NTP to cell borders, and DP-NTP bound to plakoglobin but not beta-catenin in the yeast two-hybrid system. In addition, DP-NTP colocalized at cell-cell borders with alpha-catenin in the L-cell lines, and endogenous desmoplakin and alpha-catenin colocalized in cultured dermal microvascular endothelial cells. This is in striking contrast to epithelial cells, where desmoplakin and alpha -+catenin are restricted to desmosomes and adherens junctions, respectively. These results suggest that endothelial cells assemble unique junctional complexes that couple VE-cadherin to both the actin and intermediate filament cytoskeleton.
Collapse
Affiliation(s)
- A P Kowalczyk
- Departments of Dermatology, Pathology, and The Robert H. Lurie Cancer Center, Northwestern University Medical School, Chicago, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
182
|
Martìn-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 1998; 142:117-27. [PMID: 9660867 PMCID: PMC2133024 DOI: 10.1083/jcb.142.1.117] [Citation(s) in RCA: 986] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/1997] [Revised: 05/27/1998] [Indexed: 02/08/2023] Open
Abstract
Tight junctions are the most apical components of endothelial and epithelial intercellular cleft. In the endothelium these structures play an important role in the control of paracellular permeability to circulating cells and solutes. The only known integral membrane protein localized at sites of membrane-membrane interaction of tight junctions is occludin, which is linked inside the cells to a complex network of cytoskeletal and signaling proteins. We report here the identification of a novel protein (junctional adhesion molecule [JAM]) that is selectively concentrated at intercellular junctions of endothelial and epithelial cells of different origins. Confocal and immunoelectron microscopy shows that JAM codistributes with tight junction components at the apical region of the intercellular cleft. A cDNA clone encoding JAM defines a novel immunoglobulin gene superfamily member that consists of two V-type Ig domains. An mAb directed to JAM (BV11) was found to inhibit spontaneous and chemokine-induced monocyte transmigration through an endothelial cell monolayer in vitro. Systemic treatment of mice with BV11 mAb blocked monocyte infiltration upon chemokine administration in subcutaneous air pouches. Thus, JAM is a new component of endothelial and epithelial junctions that play a role in regulating monocyte transmigration.
Collapse
Affiliation(s)
- I Martìn-Padura
- Istituto di Ricerche Farmacologiche Mario Negri, 20157 Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Telo' P, Breviario F, Huber P, Panzeri C, Dejana E. Identification of a novel cadherin (vascular endothelial cadherin-2) located at intercellular junctions in endothelial cells. J Biol Chem 1998; 273:17565-72. [PMID: 9651350 DOI: 10.1074/jbc.273.28.17565] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells express two major cadherins, VE- and N-cadherins, but only the former consistently participates in adherens junction organization. In heart microvascular endothelial cells, we identified a new member of the cadherin superfamily using polymerase chain reaction. The entire putative coding sequence was determined. Similarly to protocadherins, while the extracellular domain presented homology with other members of the cadherin superfamily, the intracellular region was unrelated either to cadherins or to any other known protein. We propose for this new protein the name of vascular endothelial cadherin-2. By Northern blot analysis, the mRNA was present only in cultured endothelial cell lines but not in other cell types such as NIH 3T3, Chinese hamster ovary, or L cells. In addition, mRNA was particularly abundant in highly vascularized organs such as lung or kidney. In endothelial cells and transfectants, this cadherin was unable to bind catenins and presented a weak association with the cytoskeleton. This new molecule shares some functional properties with VE-cadherin and other members of the cadherin family. In Chinese hamster ovary transfectants it promoted homotypic Ca2+ dependent aggregation and adhesion and clustered at intercellular junctions. However, in contrast to VE-cadherin, it did not modify paracellular permeability, cell migration, and density-dependent cell growth. These observations suggest that different cadherins may promote homophilic cell-to-cell adhesion but that the functional consequences of this interaction depend on their binding to specific intracellular signaling/cytoskeletal proteins.
Collapse
Affiliation(s)
- P Telo'
- Istituto di Ricerche Farmacologiche Mario Negri, Via Eritrea 62, 20157 Milano, Italy.
| | | | | | | | | |
Collapse
|
184
|
Esser S, Lampugnani MG, Corada M, Dejana E, Risau W. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 1998; 111 ( Pt 13):1853-65. [PMID: 9625748 DOI: 10.1242/jcs.111.13.1853] [Citation(s) in RCA: 463] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interendothelial junctions play an important role in the regulation of endothelial functions, such as vasculogenesis, angiogenesis, and vascular permeability. In this paper we show that vascular endothelial growth factor (VEGF), a potent inducer of new blood vessels and vascular permeability in vivo, stimulated the migration of endothelial cells after artificial monolayer wounding and induced an increase in paracellular permeability of human umbilical vein endothelial cells (HUVECs). Furthermore, VEGF increased phosphotyrosine labeling at cell-cell contacts. Biochemical analyses revealed a strong induction of VEGF-receptor-2 (flk-1/KDR) tyrosine-autophosphorylation by VEGF which was maximal after 5 minutes and was followed by receptor downregulation. 15 minutes to 1 hour after VEGF stimulation the endothelial adherens junction components VE-cadherin, beta-catenin, plakoglobin, and p120 were maximally phosphorylated on tyrosine, while alpha-catenin was not modified. PECAM-1/CD31, another cell-cell junctional adhesive molecule, was tyrosine phosphorylated with similar kinetics in response to VEGF. In contrast, activation of VEGF-receptor-1 (Flt-1) by its specific ligand placenta growth factor (PlGF) had no effect on the tyrosine phosphorylation of cadherins and catenins. Despite the rapid and transient receptor activation and the subsequent tyrosine phosphorylation of adherens junction proteins the cadherin complex remained stable and associated with junctions. Our results demonstrate that the endothelial adherens junction is a downstream target of VEGFR-2 signaling and suggest that tyrosine phosphorylation of its components may be involved in the the loosening of cell-cell contacts in established vessels to modulate transendothelial permeability and to allow sprouting and cell migration during angiogenesis.
Collapse
Affiliation(s)
- S Esser
- Max-Planck-Institut für physiologische und klinische Forschung, W.G. Kerckhoff Institut, Abteilung Molekulare Zellbiologie, Parkstrasse 1, D-61231 Bad Nauheim, Germany
| | | | | | | | | |
Collapse
|
185
|
Carmeliet P, Collen D. Vascular development and disorders: molecular analysis and pathogenic insights. Kidney Int 1998; 53:1519-49. [PMID: 9607184 DOI: 10.1046/j.1523-1755.1998.00936.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- P Carmeliet
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Belgium.
| | | |
Collapse
|
186
|
Yáñez-Mó M, Alfranca A, Cabañas C, Marazuela M, Tejedor R, Ursa MA, Ashman LK, de Landázuri MO, Sánchez-Madrid F. Regulation of endothelial cell motility by complexes of tetraspan molecules CD81/TAPA-1 and CD151/PETA-3 with alpha3 beta1 integrin localized at endothelial lateral junctions. J Cell Biol 1998; 141:791-804. [PMID: 9566977 PMCID: PMC2132738 DOI: 10.1083/jcb.141.3.791] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/1997] [Revised: 02/03/1998] [Indexed: 02/07/2023] Open
Abstract
Cell-to-cell junction structures play a key role in cell growth rate control and cell polarization. In endothelial cells (EC), these structures are also involved in regulation of vascular permeability and leukocyte extravasation. To identify novel components in EC intercellular junctions, mAbs against these cells were produced and selected using a morphological screening by immunofluorescence microscopy. Two novel mAbs, LIA1/1 and VJ1/16, specifically recognized a 25-kD protein that was selectively localized at cell-cell junctions of EC, both in the primary formation of cell monolayers and when EC reorganized in the process of wound healing. This antigen corresponded to the recently cloned platelet-endothelial tetraspan antigen CD151/PETA-3 (platelet-endothelial tetraspan antigen-3), and was consistently detected at EC cell-cell contact sites. In addition to CD151/PETA-3, two other members of the tetraspan superfamily, CD9 and CD81/ TAPA-1 (target of antiproliferative antibody-1), localized at endothelial cell-to-cell junctions. Biochemical analysis demonstrated molecular associations among tetraspan molecules themselves and those of CD151/ PETA-3 and CD9 with alpha3 beta1 integrin. Interestingly, mAbs directed to both CD151/PETA-3 and CD81/ TAPA-1 as well as mAb specific for alpha3 integrin, were able to inhibit the migration of ECs in the process of wound healing. The engagement of CD151/PETA-3 and CD81/TAPA-1 inhibited the movement of individual ECs, as determined by quantitative time-lapse video microscopy studies. Furthermore, mAbs against the CD151/PETA-3 molecule diminished the rate of EC invasion into collagen gels. In addition, these mAbs were able to increase the adhesion of EC to extracellular matrix proteins. Together these results indicate that CD81/TAPA-1 and CD151/PETA-3 tetraspan molecules are components of the endothelial lateral junctions implicated in the regulation of cell motility, either directly or by modulation of the function of the associated integrin heterodimers.
Collapse
Affiliation(s)
- M Yáñez-Mó
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Smith ME, Jones TA, Hilton D. Vascular endothelial cadherin is expressed by perineurial cells of peripheral nerve. Histopathology 1998; 32:411-3. [PMID: 9639115 DOI: 10.1046/j.1365-2559.1998.00410.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To study the distribution of vascular endothelial (VE) cadherin in peripheral nerves. METHODS AND RESULTS Using two monoclonal antibodies that detect VE-cadherin (TEA1.31 and 7B4) an immunohistochemical study of VE-cadherin expression in five common peroneal nerve biopsies and five skin specimens containing small peripheal nerves was performed. VE-cadherin was consistently expressed by the perineurium of nerves but not by other nerve elements such as Schwann cells or axons. CONCLUSION This report indicates that VE-cadherin is not. as was previously thought, a specific marker of endothelial cells and further defines the phenotype of the perineurial cell. The established role of VE-cadherin in controlling the permeability of vascular endothelium suggests that this molecule may have a similar role in the perineurium. VE-cadherin may therefore be important in the maintenance of the blood-nerve barrier, the peripheral nerve equivalent of the blood-brain barrier.
Collapse
Affiliation(s)
- M E Smith
- Department of Histopathology, Derriford Hospital, Plymouth, UK
| | | | | |
Collapse
|
188
|
Navarro P, Ruco L, Dejana E. Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization. J Cell Biol 1998; 140:1475-84. [PMID: 9508779 PMCID: PMC2132661 DOI: 10.1083/jcb.140.6.1475] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The two major cadherins of endothelial cells are neural (N)-cadherin and vascular endothelial (VE)- cadherin. Despite similar level of protein expression only VE-cadherin is located at cell-cell contacts, whereas N-cadherin is distributed over the whole cell membrane. Cotransfection of VE-cadherin and N-cadherin in CHO cells resulted in the same distribution as that observed in endothelial cells indicating that the behavior of the two cadherins was not cell specific but related to their structural characteristics. Similar amounts of alpha- and beta-catenins and plakoglobin were associated to VE- and N-cadherins, whereas p120 was higher in the VE-cadherin complex. The presence of VE-cadherin did not affect N-cadherin homotypic adhesive properties or its capacity to localize at junctions when cotransfectants were cocultured with cells transfected with N-cadherin only. To define the molecular domain responsible for the VE-cadherin-dominant activity we prepared a chimeric construct formed by VE-cadherin extracellular region linked to N-cadherin intracellular domain. The chimera lost the capacity to exclude N-cadherin from junctions indicating that the extracellular domain of VE-cadherin alone is not sufficient for the preferential localization of the molecule at the junctions. A truncated mutant of VE-cadherin retaining the full extracellular domain and a short cytoplasmic tail (Arg621-Pro702) lacking the catenin-binding region was able to exclude N-cadherin from junctions. This indicates that the Arg621-Pro702 sequence in the VE-cadherin cytoplasmic tail is required for N-cadherin exclusion from junctions. Competition between cadherins for their clustering at intercellular junctions in the same cell has never been described before. We speculate that, in the endothelium, VE- and N-cadherin play different roles; whereas VE-cadherin mostly promotes the homotypic interaction between endothelial cells, N-cadherin may be responsible for the anchorage of the endothelium to other surrounding cell types expressing N-cadherin such as vascular smooth muscle cells or pericytes.
Collapse
Affiliation(s)
- P Navarro
- Laboratory of Vascular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| | | | | |
Collapse
|
189
|
Gory S, Dalmon J, Prandini MH, Kortulewski T, de Launoit Y, Huber P. Requirement of a GT box (Sp1 site) and two Ets binding sites for vascular endothelial cadherin gene transcription. J Biol Chem 1998; 273:6750-5. [PMID: 9506975 DOI: 10.1074/jbc.273.12.6750] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial cadherin (VE cadherin) gene encodes a Ca2+-dependent cell adhesion molecule required for the organization of interendothelial junctions. This gene is exclusively and constitutively expressed in endothelial cells. Previous data with transgenic mice revealed that the transcriptional regulatory elements present within a -2486/+24 DNA fragment of mouse VE cadherin gene mimic the tissue-specific activity of the endogenous promoter. In this study, we analyzed elements implicated in the function of the proximal regulatory region. Electrophoretic mobility shift assay identified a GT-rich sequence (positions -49/-39) interacting with factors related to the Sp1 family. Point mutations abolished the binding of nuclear proteins in vitro and drastically diminished the activity of the promoter in transient transfection assay. Supershift assays with antibodies against proteins of the Sp1 family revealed that Sp1 and Sp3 interact with this region of the VE cadherin promoter. Furthermore, two GGAA motifs, located at positions -93/-90 and -109/-106, were shown to interact with nuclear factors. Site-directed mutagenesis of these sequences demonstrated that these Ets binding sites are essential for promoter activity. In vitro binding assays in the presence of various antisera suggest that Erg is one of the proteins interacting with the -109/-106 site.
Collapse
Affiliation(s)
- S Gory
- CEA, Laboratoire de Transgénèse et Différenciation Cellulaire, Département de Biologie Moléculaire et Structurale, 17 rue des Martyrs, 38054 Grenoble, France
| | | | | | | | | | | |
Collapse
|
190
|
Bach TL, Barsigian C, Chalupowicz DG, Busler D, Yaen CH, Grant DS, Martinez J. VE-Cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels. Exp Cell Res 1998; 238:324-34. [PMID: 9473340 DOI: 10.1006/excr.1997.3844] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Various cell adhesion molecules mediate the diverse functions of the vascular endothelium, such as cell adhesion, neutrophil migration, and angiogenesis. In order to identify cell adhesion molecules important for angiogenesis, we used an in vitro model (Chalupowicz, Chowdhury, Bach, Barsigian, and Martinez, J. Cell Biol. 130, 207-215, 1995) in which human umbilical vein endothelial cell monolayers are induced to form capillary-like tubes when a second gel, composed of either fibrin or collagen, is formed overlying the apical surface. In the present investigation, we observed that a monoclonal antibody directed against the first extracellular domain of human vascular endothelial cadherin (VE-cadherin, cadherin 5) inhibited the formation of capillary tubes formed between either fibrin or collagen gels. Moreover, when added to preformed capillary tubes, this antibody disrupted the capillary network. In contrast, monoclonal antibodies directed against the extracellular domain of N-cadherin, the alphavbeta3 integrin, and PECAM-1 failed to inhibit capillary tube formation. During capillary tube formation, Western blot and RT-PCR analysis revealed no marked change in VE-cadherin expression. Immunocytochemical studies demonstrated that VE-cadherin was concentrated at intercellular junctions in multicellular capillary tubes. Thus, VE-cadherin plays a specific role in fibrin-induced or collagen-induced capillary tube formation and is localized at areas of intercellular contact where it functions to maintain the tubular architecture. Moreover, its function at tubular intercellular junctions is distinct from that at intercellular junctions present in confluent monolayers, since only the former was inhibited by monoclonal antibodies.
Collapse
Affiliation(s)
- T L Bach
- Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
191
|
Lewalle JM, Bajou K, Desreux J, Mareel M, Dejana E, Noël A, Foidart JM. Alteration of interendothelial adherens junctions following tumor cell-endothelial cell interaction in vitro. Exp Cell Res 1997; 237:347-56. [PMID: 9434630 DOI: 10.1006/excr.1997.3799] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The integrity of the vascular endothelium is mainly dependent upon the organization of interendothelial adherens junctions (AJ). These junctions are formed by the homotypic interaction of a transmembrane protein, vascular endothelial cadherin (VE-cadherin), which is complexed to an intracellular protein network including alpha-, beta-, and gamma-catenin. Additional proteins such as vinculin and alpha-actinin have been suggested to link the VE-cadherin/catenin complex to the actin-based cytoskeleton. During the process of hematogenous metastasis, circulating tumor cells must disrupt these intercellular junctions in order to extravasate. In the present study, we have investigated the influence of tumor cell-endothelial cell interaction upon interendothelial AJ. We show that human breast adenocarcinoma cells (MCF-7), but not normal human mammary epithelial cells, induce a rapid endothelial cell (EC) dissociation which correlates with the loss of VE-cadherin expression at the site of tumor cell-EC contact and with profound changes in vinculin distribution and organization. This process could not be inhibited by metalloproteinase nor serine protease inhibitors. Immunoprecipitations and Western blot analysis demonstrate that the overall expression of VE-cadherin and vinculin as well as the composition of the VE-cadherin/catenins complex are not affected by tumor cells while the tyrosine phosphorylation status of proteins within the complex is significantly altered. Our data suggest that tumor cells modulate AJ protein distribution and phosphorylation in EC and may, thereby, facilitate EC dissociation.
Collapse
Affiliation(s)
- J M Lewalle
- Laboratory of Cellular Biology, University of Liége, CHU, Sart-Tilman, Belgium.
| | | | | | | | | | | | | |
Collapse
|
192
|
Allport JR, Ding H, Collins T, Gerritsen ME, Luscinskas FW. Endothelial-dependent mechanisms regulate leukocyte transmigration: a process involving the proteasome and disruption of the vascular endothelial-cadherin complex at endothelial cell-to-cell junctions. J Exp Med 1997; 186:517-27. [PMID: 9254650 PMCID: PMC2199034 DOI: 10.1084/jem.186.4.517] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/1996] [Revised: 06/09/1997] [Indexed: 02/05/2023] Open
Abstract
Although several adhesion molecules expressed on leukocytes (beta1 and beta2 integrins, platelet endothelial cell adhesion molecule 1 [PECAM-1], and CD47) and on endothelium (intercellular adhesion molecule 1, PECAM-1) have been implicated in leukocyte transendothelial migration, less is known about the role of endothelial lateral junctions during this process. We have shown previously (Read, M.A., A.S. Neish, F.W. Luscinskas, V.J. Palambella, T. Maniatis, and T. Collins. 1995. Immunity. 2:493-506) that inhibitors of the proteasome reduce lymphocyte and neutrophil adhesion and transmigration across TNF-alpha-activated human umbilical vein endothelial cell (EC) monolayers in an in vitro flow model. The current study examined EC lateral junction proteins, principally the vascular endothelial (VE)-cadherin complex and the effects of proteasome inhibitors (MG132 and lactacystin) on lateral junctions during leukocyte adhesion, to gain a better understanding of the role of EC junctions in leukocyte transmigration. Both biochemical and indirect immunofluorescence analyses of the adherens junction zone of EC monolayers revealed that neutrophil adhesion, not transmigration, induced disruption of the VE-cadherin complex and loss of its lateral junction localization. In contrast, PECAM-1, which is located at lateral junctions and is implicated in neutrophil transmigration, was not altered. These findings identify new and interrelated endothelial-dependent mechanisms for leukocyte transmigration that involve alterations in lateral junction structure and a proteasome-dependent event(s).
Collapse
Affiliation(s)
- J R Allport
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
193
|
Jankowski JA, Bedford FK, Kim YS. Changes in gene structure and regulation of E-cadherin during epithelial development, differentiation, and disease. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:187-215. [PMID: 9175434 DOI: 10.1016/s0079-6603(08)60281-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J A Jankowski
- Department of Medicine, University of Birmingham, England
| | | | | |
Collapse
|
194
|
Dejana E. Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. J Clin Invest 1996; 98:1949-53. [PMID: 8903311 PMCID: PMC507636 DOI: 10.1172/jci118997] [Citation(s) in RCA: 229] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- E Dejana
- Laboratory of Vascular Biology, Department of Human Immunology and Cell Biology, Mario Negri Institute for Pharmacological Research, Milan, Italy
| |
Collapse
|
195
|
Del Maschio A, Zanetti A, Corada M, Rival Y, Ruco L, Lampugnani MG, Dejana E. Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. J Cell Biol 1996; 135:497-510. [PMID: 8896605 PMCID: PMC2121047 DOI: 10.1083/jcb.135.2.497] [Citation(s) in RCA: 256] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Polymorphonuclear leukocytes (PMN) infiltration into tissues is frequently accompanied by increase in vascular permeability. This suggests that PMN adhesion and transmigration could trigger modifications in the architecture of endothelial cell-to-cell junctions. In the present paper, using indirect immunofluorescence, we found that PMN adhesion to tumor necrosis factor-activated endothelial cells (EC) induced the disappearance from endothelial cell-to-cell contacts of adherens junction (AJ) components: vascular endothelial (VE)-cadherin, alpha-catenin, beta-catenin, and plakoglobin. Immunoprecipitation and Western blot analysis of the VE-cadherin/catenin complex showed that the amount of beta-catenin and plakoglobin was markedly reduced from the complex and from total cell extracts. In contrast, VE-cadherin and alpha-catenin were only partially affected. Disorganization of endothelial AJ by PMN was not accompanied by EC retraction or injury and was specific for VE-cadherin/catenin complex, since platelet/endothelial cell adhesion molecule 1 (PECAM-1) distribution at cellular contacts was unchanged. PMN adhesion to EC seems to be a prerequisite for VE-cadherin/catenin complex disorganization. This phenomenon could be fully inhibited by blocking PMN adhesion with an anti-integrin beta 2 mAb, while it could be reproduced by any condition that induced increase of PMN adhesion, such as addition of PMA or an anti-beta 2-activating mAb. The effect on endothelial AJ was specific for PMN since adherent activated lymphocytes did not induce similar changes. High concentrations of protease inhibitors and oxygen metabolite scavengers were unable to prevent AJ disorganization mediated by PMN. PMN adhesion to EC was accompanied by increase in EC permeability in vitro. This effect was dependent on PMN adhesion, was not mediated by proteases and oxygen-reactive metabolites, and could be reproduced by EC treatment with EGTA. Finally, immunohistochemical analysis showed that VE-cadherin distribution was affected by PMN adhesion to the vessel wall in vivo too. This work suggests that PMN adhesion could trigger intracellular signals in EC that possibly regulate VE-cadherin /catenin complex disorganization. This effect could increase EC permeability and facilitate PMN transmigration during the acute inflammatory reaction.
Collapse
Affiliation(s)
- A Del Maschio
- Laboratory of Vascular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
196
|
Caveda L, Martin-Padura I, Navarro P, Breviario F, Corada M, Gulino D, Lampugnani MG, Dejana E. Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin). J Clin Invest 1996; 98:886-93. [PMID: 8770858 PMCID: PMC507501 DOI: 10.1172/jci118870] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Endothelial cell proliferation is inhibited by the establishment of cell to cell contacts. Adhesive molecules at junctions could therefore play a role in transferring negative growth signals. The transmembrane protein VE-cadherin (vascular endothelial cadherin/cadherin-S) is selectively expressed at intercellular clefts in the endothelium. The intracellular domain interacts with cytoplasmic proteins called catenins that transmit the adhesion signal and contribute to the anchorage of the protein to the actin cytoskeleton. Transfection of VE-cadherin in both Chinese hamster ovary (CHO) and L929 cells confers inhibition of cell growth. Truncation of VE-cadherin cytoplasmic region, responsible for linking catenins, does not affect VE-cadherin adhesive properties but abolishes its effect on cell growth. Seeding human umbilical vein endothelial cells or VE-cadherin transfectants on a recombinant VE-cadherin amino-terminal fragment inhibited their proliferation. These data show that VE-cadherin homotypic engagement at junctions participates in density dependent inhibition of cell growth. This effect requires both the extracellular adhesive domain and the intracellular catenin binding region of the molecule.
Collapse
Affiliation(s)
- L Caveda
- Istituto de Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Navarro P, Caveda L, Breviario F, Mândoteanu I, Lampugnani MG, Dejana E. Catenin-dependent and -independent functions of vascular endothelial cadherin. J Biol Chem 1995; 270:30965-72. [PMID: 8537353 DOI: 10.1074/jbc.270.52.30965] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Vascular endothelial cadherin (VE-cadherin, cadherin-5, or 7B4) is an endothelial specific cadherin that regulates cell to cell junction organization in this cell type. Cadherin linkage to intracellular catenins was found to be required for their adhesive properties and for localization at cell to cell junctions. We constructed a mutant form of VE-cadherin lacking the last 82 amino acids of the cytoplasmic domain. Surprisingly, despite any detectable association of this truncated VE-cadherin to catenin-cytoskeletal complex, the molecule was able to cluster at cell-cell contacts in a manner similar to wild type VE-cadherin. Truncated VE-cadherin was also able to promote calcium-dependent cell to cell aggregation and to partially inhibit cell detachment and migration from a confluent monolayer. In contrast, intercellular junction permeability to high molecular weight molecules was severely impaired by truncation of VE-cadherin cytoplasmic domain. These results suggest that the VE-cadherin extracellular domain is enough for early steps of cell adhesion and recognition. However, interaction of VE-cadherin with the cytoskeleton is necessary to provide strength and cohesion to the junction. The data also suggest that cadherin functional regulation might not be identical among the members of the family.
Collapse
Affiliation(s)
- P Navarro
- Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italia
| | | | | | | | | | | |
Collapse
|