151
|
Xu J, Qu J, Cao L, Sai Y, Chen C, He L, Yu L. Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. J Pathol 2008; 214:472-81. [PMID: 18213733 DOI: 10.1002/path.2302] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) can serve as a vehicle for gene therapy. Angiopoietin-1 (Ang1) is a critical factor for endothelial survival and vascular stabilization via the inhibition of endothelial permeability and leukocyte-endothelium interactions. We hypothesized that MSC-based Ang1 gene therapy might be a potential therapeutic approach for lipopolysaccharide (LPS)-induced lung injury. MSCs were isolated from 6 week-old inbred male mice and transduced with the Ang1 gene, using a lentivirus vector. The MSCs showed no significant phenotypic changes after transduction. In the in vivo mouse model, the LPS-induced lung injury was markedly alleviated in the group treated with MSCs carrying Ang1 (MSCs-Ang1), compared with groups treated with MSCs or Ang1 alone. The expression of Ang1 protein in the recipient lungs was increased after MSCs-Ang1 administration. The histopathological and biochemical indices of LPS-induced lung injury were improved after MSCs-based Ang1 gene treatment. MSCs-Ang1 administration also reduced pulmonary vascular endothelial permeability and the recruitment of inflammatory cells into the lung. Cells of MSC origin could be detected in the recipient lungs for 2 weeks after injection with MSCs. These results suggest that MSCs and Ang1 have a synergistic role in the treatment of LPS-induced lung injury. MSC-based Ang1 gene therapy may be developed as a potential novel strategy for the treatment of acute lung injury.
Collapse
Affiliation(s)
- J Xu
- Department of Pulmonary Medicine, Zhongshan Hospital, State Key Laboratory of Genetic Engineering, Shanghai Medical College, Fudan University, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
152
|
Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. THE JOURNAL OF IMMUNOLOGY 2008; 180:2581-7. [PMID: 18250469 DOI: 10.4049/jimmunol.180.4.2581] [Citation(s) in RCA: 712] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) can differentiate not only into mesenchymal lineage cells but also into various other cell lineages. As MSCs can easily be isolated from bone marrow, they can be used in various tissue engineering strategies. In this study, we assessed whether MSCs can differentiate into multiple skin cell types including keratinocytes and contribute to wound repair. First, we found keratin 14-positive cells, presumed to be keratinocytes that transdifferentiated from MSCs in vitro. Next, we assessed whether MSCs can transdifferentiate into multiple skin cell types in vivo. At sites of mouse wounds that had been i.v. injected with MSCs derived from GFP transgenic mice, we detected GFP-positive cells associated with specific markers for keratinocytes, endothelial cells, and pericytes. Because MSCs are predominantly located in bone marrow, we investigated the main MSC recruitment mechanism. MSCs expressed several chemokine receptors; especially CCR7, which is a receptor of SLC/CCL21, that enhanced MSC migration. Finally, MSC-injected mice underwent rapid wound repaired. Furthermore, intradermal injection of SLC/CCL21 increased the migration of MSCs, which resulted in an even greater acceleration of wound repair. Taken together, we have demonstrated that MSCs contribute to wound repair via processes involving MSCs differentiation various cell components of the skin.
Collapse
Affiliation(s)
- Mikako Sasaki
- Department of Dermatology, Hokkaido University Graduate School of Medicine, N 15 W 7 Kita-ku, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
153
|
Lysy PA, Campard D, Smets F, Malaise J, Mourad M, Najimi M, Sokal EM. Persistence of a chimerical phenotype after hepatocyte differentiation of human bone marrow mesenchymal stem cells. Cell Prolif 2008; 41:36-58. [PMID: 18211285 DOI: 10.1111/j.1365-2184.2007.00507.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES Recent studies have suggested the potential of mesenchymal stem cells (MSCs) to differentiate into a hepatocyte-like lineage. Here, we evaluate the efficacy of hepatocyte differentiation of MSCs by studying acquisition of hepatocyte-like features together with alteration of the native mesenchymal phenotype. MATERIAL AND METHODS In vitro, we have investigated protein and mRNA level expression of hepatocyte and mesenchymal markers of mesenchymal-derived hepatocyte-like cells (MDHLCs) and we have evaluated their functionality using metabolic assays. In vivo, we investigated co-expression of hepatocyte (albumin, alpha-foetoprotein, cytokeratin 18) and mesenchymal (fibronectin, vimentin) markers after transplantation of MSCs or MDHLCs into severe combined immune deficiency mice. RESULTS We observed that while in vitro these cells acquired some phenotypic and functional features of mature hepatocytes, they partially preserved their mesenchymal phenotype. After intrasplenic transplantation, engrafted MSCs with isolated expression of fibronectin and alpha-foetoprotein were observed. When these cells were injected into the liver, they expressed all analysed markers, confirming the chimaeric co-expression observed in vitro. Conversely, liver-engrafted MDHLCs conserved their hepatocyte-lineage markers but lost their chimaeric phenotype. CONCLUSIONS Hepatocyte differentiation of MSCs predominantly allows the acquisition of phenotypic hallmarks and provides chimaeric cells that maintain expression of initial lineage markers. However, advanced maturation to the hepatocyte-like phenotype could be obtained in vivo by conditioning MSCs prior to transplantation or by infusing cells into the liver micro-environment.
Collapse
Affiliation(s)
- P A Lysy
- Université Catholique de Louvain & Cliniques Universitaires Saint Luc, HPED Department, PEDI Unit, Laboratory of Pediatric Hepatology and Cell Therapy, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
154
|
Mukherjee S, Raje N, Schoonmaker JA, Liu JC, Hideshima T, Wein MN, Jones DC, Vallet S, Bouxsein ML, Pozzi S, Chhetri S, Seo YD, Aronson JP, Patel C, Fulciniti M, Purton LE, Glimcher LH, Lian JB, Stein G, Anderson KC, Scadden DT. Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest 2008; 118:491-504. [PMID: 18219387 DOI: 10.1172/jci33102] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 11/28/2007] [Indexed: 11/17/2022] Open
Abstract
Drug targeting of adult stem cells has been proposed as a strategy for regenerative medicine, but very few drugs are known to target stem cell populations in vivo. Mesenchymal stem/progenitor cells (MSCs) are a multipotent population of cells that can differentiate into muscle, bone, fat, and other cell types in context-specific manners. Bortezomib (Bzb) is a clinically available proteasome inhibitor used in the treatment of multiple myeloma. Here, we show that Bzb induces MSCs to preferentially undergo osteoblastic differentiation, in part by modulation of the bone-specifying transcription factor runt-related transcription factor 2 (Runx-2) in mice. Mice implanted with MSCs showed increased ectopic ossicle and bone formation when recipients received low doses of Bzb. Furthermore, this treatment increased bone formation and rescued bone loss in a mouse model of osteoporosis. Thus, we show that a tissue-resident adult stem cell population in vivo can be pharmacologically modified to promote a regenerative function in adult animals.
Collapse
Affiliation(s)
- Siddhartha Mukherjee
- Center for Regenerative Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Site-specific gene modification by oligodeoxynucleotides in mouse bone marrow-derived mesenchymal stem cells. Gene Ther 2008; 15:1035-48. [PMID: 18337839 DOI: 10.1038/gt.2008.31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Synthetic oligodeoxynucleotides (ODNs) had been employed in gene modification and represent an alternative approach to 'cure' genetic disorders caused by mutations. To test the ability of ODN-mediated gene repair in bone marrow-derived mesenchymal stem cells (MSCs), we established MSCs cell lines with stably integrated mutant neomycin resistance and enhanced green fluorescent protein reporter genes. The established cultures showed morphologically homogenous population with phenotypic and functional features of mesenchymal progenitors. Transfection with gene-specific ODNs successfully repaired targeted cells resulting in the expression of functional proteins at relatively high frequency approaching 0.2%. Direct DNA sequencing confirmed that phenotype change resulted from the designated nucleotide correction at the target site. The position of the mismatch-forming nucleotide was shown to be important structural feature for ODN repair activity. The genetically corrected MSCs were healthy and maintained an undifferentiated state. Furthermore, the genetically modified MSCs were able to engraft into many tissues of unconditioned transgenic mice making them an attractive therapeutic tool in a wide range of clinical applications.
Collapse
|
156
|
Shan L, Subramaniam M, Emanuel RL, Degan S, Johnston P, Tefft D, Warburton D, Sunday ME. Centrifugal migration of mesenchymal cells in embryonic lung. Dev Dyn 2008; 237:750-7. [PMID: 18297731 PMCID: PMC3340126 DOI: 10.1002/dvdy.21462] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Murine lung development begins at embryonic day (E) 9.5. Normal lung structure and function depend on the patterns of localization of differentiated cells. Pulmonary mesenchymal cell lineages have been relatively unexplored. Importantly, there has been no prior evidence of clonality of any lung cells. Herein we use a definitive genetic approach to demonstrate a common origin for proximal and distal pulmonary mesenchymal cells. A retroviral library with 3,400 unique inserts was microinjected into the airway lumen of E11.5 lung buds. After 7-11 days of culture, buds were stained for placental alkaline phosphatase (PLAP). Most PLAP+ cells are peribronchial smooth muscle cells, initially localized laterally near the hilum, then migrating down airways to the subpleural region. Laser-capture microdissection and polymerase chain reaction confirm the clonal identities of PLAP+ cells proximally and distally. Our observation of this fundamental process during lung development opens new avenues for investigation of maladaptive mesenchymal responses in lung diseases.
Collapse
Affiliation(s)
- Lin Shan
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
- Departments of Pathology, Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Meera Subramaniam
- Department of Medicine, Division of Respiratory Diseases, Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rodica L. Emanuel
- Department Medicine, Division of Endocrinology, Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Simone Degan
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Pamela Johnston
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Denise Tefft
- Developmental Biology Program, Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine and School of Dentistry, Los Angeles, California
| | - David Warburton
- Developmental Biology Program, Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine and School of Dentistry, Los Angeles, California
| | - Mary E. Sunday
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
- Departments of Pathology, Children’s Hospital, Brigham & Women’s Hospital, and Harvard Medical School, Boston, Massachusetts Grant sponsor: NIH; Grant number: 2RO1 HL44984
| |
Collapse
|
157
|
Lysy PA, Campard D, Smets F, Najimi M, Sokal EM. Stem cells for liver tissue repair: Current knowledge and perspectives. World J Gastroenterol 2008; 14:864-75. [PMID: 18240343 PMCID: PMC2687053 DOI: 10.3748/wjg.14.864] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stem cells from extra- or intrahepatic sources have been recently characterized and their usefulness for the generation of hepatocyte-like lineages has been demonstrated. Therefore, they are being increasingly considered for future applications in liver cell therapy. In that field, liver cell transplantation is currently regarded as a possible alternative to whole organ transplantation, while stem cells possess theoretical advantages on hepatocytes as they display higher in vitro culture performances and could be used in autologous transplant procedures. However, the current research on the hepatic fate of stem cells is still facing difficulties to demonstrate the acquisition of a full mature hepatocyte phenotype, both in vitro and in vivo. Furthermore, the lack of obvious demonstration of in vivo hepatocyte-like cell functionality remains associated to low repopulation rates obtained after current transplantation procedures. The present review focuses on the current knowledge of the stem cell potential for liver therapy. We discuss the characteristics of the principal cell candidates and the methods to demonstrate their hepatic potential in vitro and in vivo. We finally address the question of the future clinical applications of stem cells for liver tissue repair and the technical aspects that remain to be investigated.
Collapse
|
158
|
Oertel M, Shafritz DA. Stem cells, cell transplantation and liver repopulation. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1782:61-74. [PMID: 18187050 PMCID: PMC2857398 DOI: 10.1016/j.bbadis.2007.12.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 02/07/2023]
Abstract
Liver transplantation is currently the only therapeutic option for patients with end-stage chronic liver disease and for severe acute liver failure. Because of limited donor availability, attention has been focused on the possibility to restore liver mass and function through cell transplantation. Stem cells are a promising source for liver repopulation after cell transplantation, but whether or not the adult mammalian liver contains hepatic stem cells is highly controversial. Part of the problem is that proliferation of mature adult hepatocytes is sufficient to regenerate the liver after two-thirds partial hepatectomy or acute toxic liver injury and participation of stem cells is not required. However, under conditions in which hepatocyte proliferation is blocked, undifferentiated epithelial cells in the periportal areas, called "oval cells", proliferate, differentiate into hepatocytes and restore liver mass. These cells are referred to as facultative liver stem cells, but they do not repopulate the normal liver after their transplantation. In contrast, epithelial cells isolated from the early fetal liver can effectively repopulate the normal liver, but they are already traversing the hepatic lineage and may not be true stem cells. Mesenchymal stem cells and embryonic stem cells can be induced to differentiate along the hepatic lineage in culture, but at present these cells are inefficient in repopulating the liver. This review will characterize these various cell types and compare the properties of these cells and the conditions under which they do or do not repopulate the liver following their transplantation.
Collapse
Affiliation(s)
- Michael Oertel
- Marion Bessin Liver Research Center, Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
159
|
Parameswaran R, Morad V, Laronne A, Rousso-Noori L, Shani N, Naffar-Abu-Amara S, Zipori D. Targeting the Bone Marrow with Activin A-Overexpressing Embryonic Multipotent Stromal Cells Specifically Modifies B Lymphopoiesis. Stem Cells Dev 2008; 17:93-106. [DOI: 10.1089/scd.2007.0099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Reshmi Parameswaran
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vered Morad
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ayelet Laronne
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Rousso-Noori
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nir Shani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Suha Naffar-Abu-Amara
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dov Zipori
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
160
|
Lin WR, Brittan M, Alison MR. The role of bone marrow-derived cells in fibrosis. Cells Tissues Organs 2008; 188:178-188. [PMID: 18196924 DOI: 10.1159/000113530] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There is a growing realization that bone marrow-derived cells (BMDCs) are a potential therapy for many diseases including ischemic heart disease, arterial stenosis and osteogenesis imperfecta. On the other hand, the fact that BMDCs may also contribute to fibrosis in many solid organs as well as to fibrosis surrounding tumours suggests that BMDCs are also involved in disease progression. This review focuses on the contribution of bone marrow cells to organ and tumour fibrosis, noting the utility of BMDCs as a potential new portal through which to direct anti-tumour therapies. Conversely, bone marrow cell therapy has been claimed to reduce fibrosis in some organs, highlighting a seemingly beneficial as opposed to a detrimental effect of BMDCs on organ fibrosis.
Collapse
Affiliation(s)
- Wey-Ran Lin
- Diabetes and Molecular Medicine, Institute of Cell and Molecular Science, Queen Mary University of London, London, UK
| | | | | |
Collapse
|
161
|
Mesenchymal stem cells: a promising candidate in regenerative medicine. Int J Biochem Cell Biol 2008; 40:815-20. [PMID: 18295530 DOI: 10.1016/j.biocel.2008.01.007] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/01/2008] [Accepted: 01/08/2008] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells were initially characterized as plastic adherent, fibroblastoid cells. In recent years, there has been an increasing focus on mesenchymal stem cells since they have great plasticity and are potential for therapeutic applications. Mesenchymal stem cells or mesenchymal stem cell-like cells have been shown to reside within the connective tissues of most organs. These cells can differentiate into osteogenic, adipogenic and chondrogenic lineages under appropriate conditions. A number of reports have also indicated that these cells possess the capacity to trans-differentiate into epithelial cells and lineages derived from the neuro-ectoderm, and in addition, mesenchymal stem cells can migrate to the sites of injury, inflammation, and to tumors. These properties of mesenchymal stem cells make them promising candidates for use in regenerative medicine and may also serve as efficient delivery vehicles in site-specific therapy.
Collapse
|
162
|
Loebinger MR, Aguilar S, Janes SM. Therapeutic potential of stem cells in lung disease: progress and pitfalls. Clin Sci (Lond) 2008; 114:99-108. [PMID: 18062775 DOI: 10.1042/cs20070073] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There has been increasing excitement over the last few years with the suggestion that exogenous stem cells may offer new treatment options for a wide range of diseases. Within respiratory medicine, these cells have been shown to have the ability to differentiate and function as both airway and lung parenchyma epithelial cells in both in vitro and increasingly in vivo experiments. The hypothesis is that these cells may actively seek out damaged tissue to assist in the local repair, and the hope is that their use will open up new cellular and genetic treatment modalities. Such is the promise of these cells that they are being rushed from the benchside to the bedside with the commencement of early clinical trials. However, important questions over their use remain and the field is presently littered with controversy and uncertainty. This review evaluates the progress made and the pitfalls encountered to date, and critically assesses the evidence for the use of stem cells in lung disease.
Collapse
Affiliation(s)
- Michael R Loebinger
- Centre of Respiratory Research, Rayne Building, University College London, 5 University Street, London WC1E 6JJ, UK.
| | | | | |
Collapse
|
163
|
Mansilla E, Drago H, Sturla F, Bossi S, Salas E, Marín GH, Ibar R, Soratti C. Matrix superhighways configurations: new concepts for complex organ regeneration. Transplant Proc 2007; 39:2431-3. [PMID: 17889211 DOI: 10.1016/j.transproceed.2007.06.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
New ideas and experimental models for tissue and organ regeneration are urgently needed. There are several exciting challenges in the field of organogenesis that need to be defined. The integrated signals and molecular repertoires that shape the particular architecture of specific organs like the kidney or the liver are not completely understood yet. To develop a new scientific platform to be able to build up complex organs we have established a research program using basically Acellular Xenogeneic Isomorphic Matrices (AXIMs) and mesenchymal stem cells (MSCs) generating the necessary concepts for the definition, production, and application of the specific configurations of these matrices for organ regeneration. New and interesting pathways for MSC differentiation were identified. We believe that all extracellular matrices were created fundamentally equal or at least very similar in nature. We also believe that there are true "matrix superhighway configurations" with different three-dimensional geometrical architectures as well as biochemical, electrical, and molecular properties that are tissue and organ specific that influence cell differentiation and organogenesis and will be fundamental for the in vitro regeneration of complex organs for transplantation.
Collapse
Affiliation(s)
- E Mansilla
- Tissue Engineering, Regenerative Medicine and Cell Therapy Laboratory, CUCAIBA, La Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
164
|
English K, Barry FP, Mahon BP. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett 2007; 115:50-8. [PMID: 18022251 DOI: 10.1016/j.imlet.2007.10.002] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 10/04/2007] [Accepted: 10/08/2007] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSC) possess a wide range of immunosuppressive functions. Among these is the ability to inhibit CD4+ T cell proliferation. Dendritic cells (DC) play a role in initiating cell-mediated immunity; however, the immunosuppressive influence of MSC on professional antigen presenting cells remains unclear. DC exposed to TNF-alpha and cultured with murine MSC failed to show regular upregulation of maturation markers. Similarly, the presence of MSC abrogated the capacity of ovalbumin-pulsed DC to support antigen specific CD4+ T cell proliferation, or for DC to display an MHC class II- peptide complex recognizable by specific antibody. Interestingly, culture of MSC with DC resulted in reduced expression of CCR7 by DC following stimulation. Likewise, DC matured in the presence of MSC, showed significantly less migration to CCL19. In contrast, murine MSC prevented loss of expression of the tissue anchoring protein E-cadherin by DC. Modulation of DC maturation and function was not permanent and could be restored after removal of MSC. These data demonstrate that MSC modulate the three cardinal features of DC maturation, providing the first demonstration of MSC interference with DC migration.
Collapse
Affiliation(s)
- Karen English
- Mucosal Immunology Laboratory, Institute of Immunology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | | | | |
Collapse
|
165
|
Oertel M, Menthena A, Chen YQ, Shafritz DA. Comparison of hepatic properties and transplantation of Thy-1(+) and Thy-1(-) cells isolated from embryonic day 14 rat fetal liver. Hepatology 2007; 46:1236-45. [PMID: 17647294 DOI: 10.1002/hep.21775] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UNLABELLED Thy-1, a marker of hematopoietic progenitor cells, is also expressed in activated oval cells of rat liver. Thy-1(+) cells are also in rat fetal liver and exhibit properties of bipotent hepatic epithelial progenitor cells in culture. However, no information is available concerning liver repopulation by Thy-1(+) fetal liver cells. Therefore, we isolated Thy-1(+) and Thy-1(-) cells from embryonic day (ED) 14 fetal liver and compared their gene expression characteristics in vitro and proliferative and differentiation potential after transplantation into adult rat liver. Fetal liver cells selected for Thy-1 expression using immunomagnetic microbeads were enriched from 5.2%-87.2% Thy-1(+). The vast majority of alpha fetoprotein(+), albumin(+), cytokine-19(+), and E-cadherin(+) cells were found in cultured Thy-1(-) cells, whereas nearly all CD45(+) cells were in the Thy-1(+) fraction. In normal rat liver, transplanted Thy-1(+) cells produced only rare, small DPPIV(+) cell clusters, very few of which exhibited a hepatocytic phenotype. In retrorsine-treated liver, transplanted Thy-1(+) fetal liver cells achieved a 4.6%-23.5% repopulation. In contrast, Thy-1(-) fetal liver cells substantially repopulated normal adult liver and totally repopulated retrorsine-treated liver. Regarding the stromal cell-derived factor (SDF)-1/chemokine (C-X-C motif) receptor 4 (CXCR4) axis for stem cell homing, Thy-1(+) and Thy-1(-) fetal hepatic epithelial cells equally expressed CXCR4. However, SDF-1alpha expression was augmented in bile ducts and oval cells in retrorsine/partial hepatectomy-treated liver, and this correlated with liver repopulation by Thy-1(+) cells. CONCLUSION Highly enriched Thy-1(+) ED14 fetal liver cells proliferate and repopulate the liver only after extensive liver injury and represent a fetal hepatic progenitor cell population distinct from Thy-1(-) stem/progenitor cells, which repopulate the normal adult liver.
Collapse
Affiliation(s)
- Michael Oertel
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
166
|
Boomsma RA, Swaminathan PD, Geenen DL. Intravenously injected mesenchymal stem cells home to viable myocardium after coronary occlusion and preserve systolic function without altering infarct size. Int J Cardiol 2007; 122:17-28. [PMID: 17187879 DOI: 10.1016/j.ijcard.2006.11.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 09/28/2006] [Accepted: 11/02/2006] [Indexed: 01/30/2023]
Abstract
BACKGROUND The purpose of this study was to determine whether murine mesenchymal stem cells (MSC) are able to home to the viable myocardium when injected intravenously and attenuate cardiac dysfunction and ventricular remodeling associated with myocardial infarction. METHODS AND RESULTS Murine bone marrow cells were negatively selected for lineage markers and adherent MSC differentiated into adipocytes and osteocytes following treatment in culture. Two weeks after coronary occlusion that resulted in a permanent transmural infarct we observed a significant drop in LV systolic pressure, dP/dt(max), dP/dt(min), ESPVR and E(max) and a significant increase in end-diastolic volume in vivo. Femoral vein injection of MSC 1 h after occlusion attenuated the cardiac dysfunction without altering infarct size, or end-diastolic volume. Injected MSC pre-labeled with fluorescent paramagnetic microspheres were observed scattered in noninfarcted regions of the myocardium. Flow cytometry of whole heart digests after intravenous injection of MSC labeled with either fluorescent microspheres or fluorescent PKH26 dye demonstrated that infarcted hearts from mice that received MSC injections contained significantly more cells that integrated into the heart (20x) than those from uninfarcted controls. CONCLUSION We conclude that intravenously injected MSC were able to home to viable myocardium and preserve systolic function by 2 weeks following ligation. The preserved contractility is likely an MSC-mediated paracrine response since infarct morphology was unchanged and labeled cells observed at two weeks exhibited the same characteristics as the injected MSC. These data underscore the importance of using MSC as a potential therapeutic intervention in preserving cardiac function following infarction.
Collapse
Affiliation(s)
- Robert A Boomsma
- Department of Biology, Trinity Christian College, Palos Heights, IL 60463, United States
| | | | | |
Collapse
|
167
|
Li F, Wang X, Niyibizi C. Distribution of single-cell expanded marrow derived progenitors in a developing mouse model of osteogenesis imperfecta following systemic transplantation. Stem Cells 2007; 25:3183-93. [PMID: 17823236 DOI: 10.1634/stemcells.2007-0466] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We evaluated single-cell-expanded, marrow-derived progenitors for engraftment in a developing mouse model of osteogenesis imperfecta (OI) following systemic transplantation. The present study was initiated to evaluate the potential of mesenchymal stem cells to treat OI. Single-cell-derived progenitors were prepared from marrow stromal cells harvested from normal mice. Selected single-cell-expanded progenitors marked with green fluorescent protein were injected into the neonatal mouse model of OI, and the recipient mice were sacrificed at 2 and 4 weeks following cell transplantation. Examination of the tissues harvested from recipient mice at 2 and 4 weeks after cell transplantation demonstrated that the cells extravasated and engrafted in most of the bones as well as other tissues. Tissue sections made from the tibias and femurs of a selected recipient mouse showed that the cells were distributed in bone marrow, trabecular, and cortical bone as demonstrated by histology and confocal microscopy. The cells that engrafted in the bones of the recipient mouse synthesized and deposited type I collagen composed of alpha1(I) and alpha2(I) collagen heterotrimers. Genotyping and gene expression analysis of the cells retrieved from the bones of the recipient mouse at 2 and 4 weeks demonstrated that the cells expressed osteoblast-specific genes, suggesting that the donor cells differentiated into osteoblasts in vivo with no evidence of cell fusion. These data suggest that progenitors infused in developing mice will engraft in various tissues including bones, undergo differentiation, and deposit matrix and form bone in vivo. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Feng Li
- Department of Orthopaedics and Rehabilitation, Division of Musculoskeletal Sciences, Pennsylvania State University College of Medicine, H089, 500 University Drive, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
168
|
Rubinek T, Chesnokova V, Wolf I, Wawrowsky K, Vlotides G, Melmed S. Discordant proliferation and differentiation in pituitary tumor-transforming gene-null bone marrow stem cells. Am J Physiol Cell Physiol 2007; 293:C1082-92. [PMID: 17626243 DOI: 10.1152/ajpcell.00145.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian securin, pituitary tumor-transforming gene ( Pttg), regulates sister chromatid separation during mitosis. Mice deficient in Pttg expression exhibit organ-specific hypoplasia of the testis, spleen, pituitary, and postmaturity pancreatic β-cells, pointing to a possible adult stem cell defect. Bone marrow stem cells (BMSCs) contribute to bone, cartilage, and fat tissue repair and regeneration, and multipotent adult progenitor cells (MAPCs) have broader differentiation ability. Bone marrow cells derived under MAPC conditions are involved in a spectrum of tissue repair. We therefore tested whether Pttg deletion affects stem cell proliferation and differentiation. BMSCs were isolated under MAPC conditions, although unlike MAPCs, wild-type (WT) and Pttg−/− BMSCs do not express octamer-binding transcription factor 4 and are stem cell antigen-I positive. WT and Pttg−/− cells did not differ in their ability to differentiate into adipogenic, osteogenic, or hepatocyte-like cells or in phenotypic markers. Cells underwent >100 population doublings, with no observed transforming events. Pttg-null BMSCs replicated 27% slower than WT BMSCs, and under hypoxic conditions, this difference widened. Although apoptosis was not enhanced in Pttg−/− cells, Pttg−/− BMSC senescence-associated β-galactosidase activity was elevated, consistent with enhanced p21 protein levels. Using gene array assays, DNA repair genes were shown to be upregulated in Pttg−/− BMSCs, whereas genes involved in cell cycle progression, including cyclin D1, were decreased. Separase, the protease regulated by Pttg, has been implicated in DNA damage repair and was downregulated in Pttg−/− BMSCs. Separase was constitutively phosphorylated in Pttg−/− cells, a modification likely serving as a compensatory mechanism for Pttg deletion. The results indicate that Pttg deletion reduces BMSC proliferation, renders cells more sensitive to hypoxia, and enhances senescent features, thus pointing to a role for Pttg in the maintenance and proliferation of BMSCs.
Collapse
Affiliation(s)
- Tami Rubinek
- Academic Affairs, Rm. 2015, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| | | | | | | | | | | |
Collapse
|
169
|
Mei SHJ, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med 2007; 4:e269. [PMID: 17803352 PMCID: PMC1961632 DOI: 10.1371/journal.pmed.0040269] [Citation(s) in RCA: 493] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 07/25/2007] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The acute respiratory distress syndrome (ARDS), a clinical complication of severe acute lung injury (ALI) in humans, is a leading cause of morbidity and mortality in critically ill patients. ALI is characterized by disruption of the lung alveolar-capillary membrane barrier and resultant pulmonary edema associated with a proteinaceous alveolar exudate. Current specific treatment strategies for ALI/ARDS are lacking. We hypothesized that mesenchymal stem cells (MSCs), with or without transfection with the vasculoprotective gene angiopoietin 1 (ANGPT1) would have beneficial effects in experimental ALI in mice. METHODS AND FINDINGS Syngeneic MSCs with or without transfection with plasmid containing the human ANGPT1 gene (pANGPT1) were delivered through the right jugular vein of mice 30 min after intratracheal instillation of lipopolysaccharide (LPS) to induce lung injury. Administration of MSCs significantly reduced LPS-induced pulmonary inflammation, as reflected by reductions in total cell and neutrophil counts in bronchoalveolar lavage (BAL) fluid (53%, 95% confidence interval [CI] 7%-101%; and 60%, CI 4%-116%, respectively) as well as reducing levels of proinflammatory cytokines in both BAL fluid and lung parenchymal homogenates. Furthermore, administration of MSCs transfected with pANGPT1 resulted in nearly complete reversal of LPS-induced increases in lung permeability as assessed by reductions in IgM and albumin levels in BAL (96%, CI 6%-185%; and 74%, CI 23%-126%, respectively). Fluorescently tagged MSCs were detected in the lung tissues by confocal microscopy and flow cytometry in both naïve and LPS-injured animals up to 3 d. CONCLUSIONS Treatment with MSCs alone significantly reduced LPS-induced acute pulmonary inflammation in mice, while administration of pANGPT1-transfected MSCs resulted in a further improvement in both alveolar inflammation and permeability. These results suggest a potential role for cell-based ANGPT1 gene therapy to treat clinical ALI/ARDS.
Collapse
Affiliation(s)
- Shirley H. J Mei
- The Terrence Donnelly Research Laboratories, Division of Cardiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sarah D McCarter
- The Terrence Donnelly Research Laboratories, Division of Cardiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Yupu Deng
- The Terrence Donnelly Research Laboratories, Division of Cardiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Colleen H Parker
- The Terrence Donnelly Research Laboratories, Division of Cardiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - W. Conrad Liles
- Division of Infectious Diseases, McLaughlin-Rotman Centre for Global Health, Toronto General Research Institute, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Duncan J Stewart
- The Terrence Donnelly Research Laboratories, Division of Cardiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
170
|
Abedi M, Foster BM, Wood KD, Colvin GA, McLean SD, Johnson KW, Greer DA. Haematopoietic stem cells participate in muscle regeneration. Br J Haematol 2007; 138:792-801. [PMID: 17672885 DOI: 10.1111/j.1365-2141.2007.06720.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It has previously been shown that bone marrow cells contribute to skeletal muscle regeneration, but the nature of marrow cell(s) involved in this process is unknown. We used an immunocompetent and an immunocompromised model of bone marrow transplantation to characterize the type of marrow cells participating regenerating skeletal muscle fibres. Animals were transplanted with different populations of marrow cells from Green Fluorescent Protein (GFP) transgenic mice and the presence of GFP(+) muscle fibres were evaluated in the cardiotoxin-injured tibialis anterior muscles. GFP(+) muscle fibres were found mostly in animals that received either CD45(-), lineage(-), c-Kit(+), Sca-1(+) or Flk-2(+) populations of marrow cells, suggesting that haematopoietic stem cells (HSC) rather than mesenchymal cells or more differentiated haematopoietic cells are responsible for the formation of GFP(+) muscle fibres. Mac-1 positive population of marrow cells was also associated with the emergence of GFP(+) skeletal muscle fibres. However, most of this activity was limited to either Mac-1(+) Sca(+) or Mac-1(+)c-Kit(+) cells with long-term haematopoietic repopulation capabilities, indicating a stem cell phenotype for these cells. Experiments in the immunocompromised transplant model showed that participation of HSC in the skeletal muscle fibre formation could occur without haematopoietic chimerism.
Collapse
Affiliation(s)
- Mehrdad Abedi
- Roger Williams Medical Center, Department of Research, Providence, RI 02908, USA.
| | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
The restoration of functional myocardium following heart failure still remains a formidable challenge among researchers. Irreversible damage caused by myocardial infarction is followed by left ventricular remodeling. The current pharmacologic and interventional strategies fail to regenerate dead myocardium and are usually insufficient to meet the challenge caused by necrotic cardiac myocytes. There is growing evidence, suggesting that the heart has the ability to regenerate through the activation of resident cardiac stem cells or through the recruitment of a stem cell population from other tissues such as bone marrow. These new findings belie the earlier conception about the poor regenerating ability of myocardial tissue. Stem cell therapy is a promising new approach for myocardial repair. However, it has been limited by the paucity of cell sources for functional human cardiomyocytes. Moreover, cells isolated from different sources exhibit idiosyncratic characteristics including modes of isolation, ease of expansion in culture, proliferative ability, characteristic markers, etc., which are the basis for several technical manipulations to achieve successful engraftment. Clinical trials show some evidence for the successful integration of stem cells of extracardiac origin in adult human heart with an improved functional outcome. This may be attributed to the discrepancies in the methods of detection, study subject selection (early or late post transplantation), presence of inflammation, and false identification of infiltrating leukocytes. This review discusses these issues in a comprehensive manner so that their physiological significance in animal as well as in human studies can be better understood.
Collapse
Affiliation(s)
- Rishi Sharma
- Division of Pharmacology, Central Drug Research Institute, POB-173, Lucknow-226001, India
| | | |
Collapse
|
172
|
Schrepfer S, Deuse T, Lange C, Katzenberg R, Reichenspurner H, Robbins RC, Pelletier MP. Simplified protocol to isolate, purify, and culture expand mesenchymal stem cells. Stem Cells Dev 2007; 16:105-7. [PMID: 17348808 DOI: 10.1089/scd.2006.0041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are widely used for experimental regenerative strategies. Due to their differentiation capacity into mesenchymal lineages, they are a potential cellular source for tissue regeneration. Because there is no specific antigen that can be used to define MSCs directly, there is no consensus about how to isolate them. Here we describe a simple protocol to isolate, purify, and culture expand murine bone marrow MSCs using magnetic cell sorting and plastic adherence. We further show that cytokine supplementation enhances MSC proliferation without jeopardizing their pluripotency.
Collapse
Affiliation(s)
- Sonja Schrepfer
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305-5407, USA
| | | | | | | | | | | | | |
Collapse
|
173
|
Abstract
Animal experiments and analyses of human renal tissues show that regeneration of degraded renal tubules is caused by adjacent surviving tubules. Differentiation, migration, proliferation and redifferentiation are regulated by local growth factors. Renal stem cells can also participate in this process. Mesenchymal stem cells play a pivotal role in renal regeneration and if these are still present in the adult kidney, they could be the source material for repair and regeneration following injury. The exact location and role of resident mesenchymal stem cells which have been demonstrated in the kidneys is still unclear. New surface markers and a better characterisation of the many cell populations possibly participating in the regeneration process are necessary in order to clarify their complex interaction. It is also unclear whether mesenchymal stem cells from bone marrow or other organs are also involved. In addition to structural regeneration, the stem cells also play a role in the functional recovery following acute renal failure. Artificial regeneration of human kidneys is difficult due to their functional and spatial complexity. By the additional use of cells in dialysis machines it may be possible to improve the quality of filtration and also replace other renal functions. Initial results using this new technique in clinical phase I/II studies on patients with acute renal failure are promising.
Collapse
Affiliation(s)
- H Haller
- Klinik für Nieren- und Hochdruckkrankheiten, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover.
| |
Collapse
|
174
|
Abstract
Respiratory diseases remain one of the main causes of morbidity and mortality in the world. Interest has increased as to the possibility of optimizing the repair of the lung with the manipulation of stem cells. Embryonic and adult stem cells have been suggested as possibilities. Adult stem cells have traditionally been thought of as having limited differentiation ability and to be organ specific. However, a series of exciting reports over the last 5 to 10 years have suggested that adult bone marrow-derived stem cells may have more plasticity and are able to differentiate into bronchial and alveolar epithelium, vascular endothelium, and interstitial cell types, making them prime candidates for repair. This article critically reviews the evidence for this plasticity and the use of predominantly adult stem cells to help with lung regeneration and repair and assesses how this technology may be utilized in clinical medicine.
Collapse
Affiliation(s)
- Michael R Loebinger
- Centre of Respiratory Research, Rayne Building, University College London, 5 University St, London, WC1E 6JJ, UK
| | | |
Collapse
|
175
|
Aguilar S, Nye E, Chan J, Loebinger M, Spencer-Dene B, Fisk N, Stamp G, Bonnet D, Janes SM. Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem Cells 2007; 25:1586-94. [PMID: 17363552 DOI: 10.1634/stemcells.2006-0762] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Murine mesenchymal stem cells are capable of differentiation into multiple cell types both in vitro and in vivo and may be good candidates to use as cell therapy for diseased or damaged organs. We have previously reported a method of enriching a population of murine MSCs that demonstrated a diverse differentiation potential both in vitro and in vivo. In this study, we show that this enriched population of murine mesenchymal stem cells embolize within lung capillaries following systemic injection and then rapidly expand within, and invade into, the lung parenchyma, forming tumor nodules. These lesions rarely contain cells bearing the immunohistochemical characteristics of lung epithelium, but they do show the characteristics of immature bone and cartilage that resembles exuberant fracture callus or well-differentiated osteosarcoma. Our findings indicate that murine mesenchymal stem cells can behave in a manner similar to tumor cells, with dysregulated growth and aberrant differentiation within the alveolar microenvironment after four passages. We demonstrate that unlike human MSCs, MSCs from different mouse strains can acquire chromosomal abnormalities after only a few in vitro passages. Moreover, other parameters, such as mouse strain used, might also play a role in the induction of these tumors. These findings might be clinically relevant for future stem cell therapy studies. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Susana Aguilar
- Hematopoietic Stem Cell Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Rivkin R, Ben-Ari A, Kassis I, Zangi L, Gaberman E, Levdansky L, Marx G, Gorodetsky R. High-Yield Isolation, Expansion, and Differentiation of Murine Bone Marrow-Derived Mesenchymal Stem Cells Using Fibrin Microbeads (FMB). CLONING AND STEM CELLS 2007; 9:157-75. [PMID: 17579550 DOI: 10.1089/clo.2006.0039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transplantation of adult mesenchymal stem cells (MSCs) could provide a basis for tissue regeneration. MSCs are typically isolated from bone marrow (BM) based on their preferential adherence to plastic, although with low efficiency in terms of yield and purity. Extensive expansion is needed to reach a significant number of MSCs for any application. Fibrin microbeads (FMB) were designed to attach mesenchymal cells and to provide a matrix for their expansion. The current study was aimed at isolating a high yield of purified BM-derived mouse MSCs based on their preferential adherence and proliferation on FMB in suspension cultures. MSCs could be downloaded to plastics or further expanded on FMB. The yield of MSCs obtained by the FMB isolation technique was about one order of magnitude higher than that achieved by plastic adherence, suggesting that these cells are more abundant than previously reported. FMB-isolated cells were classified as MSCs by their fibroblastic morphology, self-renewal ability, and expression profile of their surface antigens, as examined by flow cytometry and immunostaining. In cell culture, the isolated MSCs could be induced to differentiate into three different mesodermal lineages, as demonstrated by histochemical stains and by RT-PCR analyses of tissue-specific genes. MSCs were also able to differentiate into osteocytes while still cultured on FMB. Our results suggest that FMB might serve as an efficient platform for the isolation, expansion, and differentiation of mouse BM-derived MSCs to be subsequently implanted for tissue regeneration.
Collapse
Affiliation(s)
- Rachel Rivkin
- Biotechnology and Radiobiology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
In this chapter we examine whether criteria usually defining adult tissue stem cells apply to mesenchymal stem cells (MSCs) that give rise to cells of the skeletal connective tissues. MSCs appear to constitute a heterogeneous population of undifferentiated and committed, lineage-primed cells, capable of: homing upon engraftment to a number of growth microenvironments, extensive proliferation, producing large numbers of differentiated progeny, and functional tissue repair after injury. In addition, MSCs are extensively distributed throughout tissues, and bone marrow MSCs provide the stromal component of the niche of hematopoietic stem cells. The capacity of apparently differentiated mesenchymal cells to shift their differentiation pathway with changing microenvironmental conditions (known as differentiation plasticity) may be due to de-differentiation and reprogramming in MSCs. Because they present several features setting them apart from other stem cells, MSCs may constitute another paradigm for stem cell systems, where self-renewal and hierarchy are no longer essential, but where plasticity is the major characteristic.
Collapse
Affiliation(s)
- Bruno Delorme
- Laboratoire d'Hématopoièse, Université François Rabelais, Faculté de medicine, Batiment Dutrochet, 10 Bvd Tonnellé, Tours 37032, France
| | | | | |
Collapse
|
178
|
Sgodda M, Aurich H, Kleist S, Aurich I, König S, Dollinger MM, Fleig WE, Christ B. Hepatocyte differentiation of mesenchymal stem cells from rat peritoneal adipose tissue in vitro and in vivo. Exp Cell Res 2007; 313:2875-86. [PMID: 17574236 DOI: 10.1016/j.yexcr.2007.05.020] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/13/2007] [Accepted: 05/15/2007] [Indexed: 02/08/2023]
Abstract
Mesenchymal tissues harbour stromal cells capable of multilineage differentiation. Here, we demonstrate the isolation of mesenchymal stem cells (MSC) from rat peritoneal adipose tissue capable of osteogenic and adipogenic differentiation. Under in vitro conditions favouring hepatocyte differentiation, these MSC gained characteristic functions of hepatocytes such as the capacity to synthesize urea or store glycogen. Hepatocyte-specific transcripts of dipeptidylpeptidase type IV (CD26), albumin, cytochrome P450 type 1A1 (CYP1A1) and connexin CX32 (CX32) were detected only in differentiated but not undifferentiated cells. Transient transgenic expression of luciferase could be stimulated by cAMP when driven by the hepatocyte-specific promoter of the cytosolic phosphoenolpyruvate carboxykinase (PCK1) gene. Finally, stem cell-derived hepatocytes from wild type (CD26+/+) rats were transplanted into the livers of CD26-deficient animals after lentiviral transduction with the GFP gene under the control of the ubiquitin promoter. GFP-positive cells engrafted in the host liver predominantly in the periportal region of the liver lobule. They continued to express CD26, a prominent feature of differentiated hepatocytes, indicating their topologically and functionally proper integration into the host liver parenchyma. Thus, MSCs from rat peritoneal adipose tissue exhibit the potential to differentiate into hepatocyte-like cells in vitro and in vivo.
Collapse
Affiliation(s)
- Malte Sgodda
- First Department of Medicine, Martin-Luther University of Halle-Wittenberg, Heinrich-Damerow-Strasse 1, Halle/Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Jaganathan BG, Ruester B, Dressel L, Stein S, Grez M, Seifried E, Henschler R. Rho inhibition induces migration of mesenchymal stromal cells. Stem Cells 2007; 25:1966-74. [PMID: 17510214 DOI: 10.1634/stemcells.2007-0167] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although mesenchymal stromal cells (MSCs) are being increasingly used as cell therapeutics in clinical trials, the mechanisms that regulate their chemotactic migration behavior are incompletely understood. We aimed to better define the ability of the GTPase regulator of cytoskeletal activation, Rho, to modulate migration induction in MSCs in a transwell chemotaxis assay. We found that culture-expanded MSCs migrate poorly toward exogenous phospholipids lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) in transwell assays. Moreover, plasma-induced chemotactic migration of MSCs was even inhibited after pretreatment with LPA. LPA treatment activated intracellular Rho and increased actin stress fibers in resident MSCs. Very similar cytoskeletal changes were observed after microinjection of a cDNA encoding constitutively active RhoA (RhoAV14) in MSCs. In contrast, microinjection of cDNA encoding Rho inhibitor C3 transferase led to resolution of actin stress fibers, appearance of a looser actin meshwork, and increased numbers of cytoplasmic extensions in the MSCs. Surprisingly, in LPA-pretreated MSCs migrating toward plasma, simultaneous addition of Rho inhibitor C2I-C3 reversed LPA-induced migration suppression and led to improved migration. Moreover, addition of Rho inhibitor C2I-C3 resulted in an approximately 3- to 10-fold enhancement of chemotactic migration toward LPA, S1P, as well as platelet-derived growth factor or hepatocyte growth factor. Thus, inhibition of Rho induces rearrangement of actin cytoskeleton in MSCs and renders them susceptible to induction of migration by physiological stimuli. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Bithiah Grace Jaganathan
- Institute of Transfusion Medicine and Immune Hematology, University Hospital Frankfurt, Sandhofstrasse 1, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
180
|
Tögel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 2007; 292:F1626-35. [PMID: 17213465 DOI: 10.1152/ajprenal.00339.2006] [Citation(s) in RCA: 467] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a major clinical problem in which a critical vascular, pathophysiological component is recognized. We demonstrated previously that mesenchymal stem cells (MSC), unlike fibroblasts, are significantly renoprotective after ischemia-reperfusion injury and concluded that this renoprotection is mediated primarily by paracrine mechanisms. In this study, we investigated whether MSC possess vasculoprotective activity that may contribute, at least in part, to an improved outcome after ischemia-reperfusion AKI. MSC-conditioned medium contains VEGF, HGF, and IGF-1 and augments aortic endothelial cell (EC) growth and survival, a response not observed with fibroblast-conditioned medium. MSC and EC share vasculotropic gene expression profiles, as both form capillary tubes in vitro on Matrigel alone or in cooperation without fusion. MSC undergo differentiation into an endothelial-like cell phenotype in culture and develop into vascular structures in vivo. Infused MSC were readily detected in the kidney early after reflow but were only rarely engrafted at 1 wk post-AKI. MSC attached in the renal microvascular circulation significantly decreased apoptosis of adjacent cells. Infusion of MSC immediately after reflow in severe ischemia-reperfusion AKI did not improve renal blood flow, renovascular resistance, or outer cortical blood flow. These data demonstrate that the unique vasculotropic, paracrine actions elicited by MSC play a significant renoprotective role after AKI, further demonstrating that cell therapy has promise as a novel intervention in AKI.
Collapse
Affiliation(s)
- Florian Tögel
- Division of Nephrology, Department of Medicine, University of Utah,Salt Lake City, Utah 84148, USA
| | | | | | | | | | | |
Collapse
|
181
|
Kunter U, Rong S, Boor P, Eitner F, Müller-Newen G, Djuric Z, van Roeyen CR, Konieczny A, Ostendorf T, Villa L, Milovanceva-Popovska M, Kerjaschki D, Floege J. Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes. J Am Soc Nephrol 2007; 18:1754-64. [PMID: 17460140 DOI: 10.1681/asn.2007010044] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glomerulonephritis (GN) is a major cause of renal failure. This study sought to determine whether intrarenal injection of rat mesenchymal stem cells (MSC) can preserve renal function in a progressive rat model of GN. Early in GN (day 10), fluorescently labeled rat MSC localized to more than 70% of glomeruli, ameliorated acute renal failure, and reduced glomerular adhesions. Fifty days later, proteinuria had progressed in controls to 40 +/- 25 mg/d but stayed low in MSC-treated rats (13 +/- 4 mg/d; P < 0.01). Renal function on day 60 in the MSC group was better than in medium controls. Kidneys of the MSC group as compared with controls on day 60 contained 11% more glomeruli per 1-mm(2) section of cortex but also significantly more collagen types I, III, and IV and alpha-smooth muscle actin. Approximately 20% of the glomeruli of MSC-treated rats contained single or clusters of large adipocytes with pronounced surrounding fibrosis. Adipocytes exhibited fluorescence in their cytoplasm and/or intracellular lipid droplets. Lipid composition in these adipocytes in vivo mirrored that of MSC that underwent adipogenic differentiation in vitro. Thus, in this GN model, the early beneficial effect of MSC of preserving damaged glomeruli and maintaining renal function was offset by a long-term partial maldifferentiation of intraglomerular MSC into adipocytes accompanied by glomerular sclerosis. These data suggest that MSC treatment can be a valuable therapeutic approach only if adipogenic maldifferentiation is prevented.
Collapse
Affiliation(s)
- Uta Kunter
- Division of Nephrology, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52057 Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Chan J, Waddington SN, O'Donoghue K, Kurata H, Guillot PV, Gotherstrom C, Themis M, Morgan JE, Fisk NM. Widespread distribution and muscle differentiation of human fetal mesenchymal stem cells after intrauterine transplantation in dystrophic mdx mouse. Stem Cells 2007; 25:875-84. [PMID: 17185606 DOI: 10.1634/stemcells.2006-0694] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a common X-linked disease resulting from the absence of dystrophin in muscle. Affected boys suffer from incurable progressive muscle weakness, leading to premature death. Stem cell transplantation may be curative, but is hampered by the need for systemic delivery and immune rejection. To address these barriers to stem cell therapy in DMD, we investigated a fetal-to-fetal transplantation strategy. We investigated intramuscular, intravascular, and intraperitoneal delivery of human fetal mesenchymal stem cells (hfMSCs) into embryonic day (E) 14-16 MF1 mice to determine the most appropriate route for systemic delivery. Intramuscular injections resulted in local engraftment, whereas both intraperitoneal and intravascular delivery led to systemic spread. However, intravascular delivery led to unexpected demise of transplanted mice. Transplantation of hfMSCs into E14-16 mdx mice resulted in widespread long-term engraftment (19 weeks) in multiple organs, with a predilection for muscle compared with nonmuscle tissues (0.71% vs. 0.15%, p < .01), and evidence of myogenic differentiation of hfMSCs in skeletal and myocardial muscle. This is the first report of intrauterine transplantation of ontologically relevant hfMSCs into fully immunocompetent dystrophic fetal mice, with systemic spread across endothelial barriers leading to widespread long-term engraftment in multiple organ compartments. Although the low-level of chimerism achieved is not curative for DMD, this approach may be useful in other severe mesenchymal or enzyme deficiency syndromes, where low-level protein expression may ameliorate disease pathology.
Collapse
Affiliation(s)
- Jerry Chan
- Experimental Fetal Medicine Group, Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Chng K, Larsen SR, Zhou S, Wright JF, Martiniello-Wilks R, Rasko JEJ. Specific adeno-associated virus serotypes facilitate efficient gene transfer into human and non-human primate mesenchymal stromal cells. J Gene Med 2007; 9:22-32. [PMID: 17154338 DOI: 10.1002/jgm.990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) show great promise for ex vivo gene and cell-mediated therapies. The immunophenotype and in vitro differentiation capacity of primary baboon MSCs was demonstrated to be near-identical to that observed in human MSCs. To optimize gene transfer efficiency, we compared the efficiency of serotypes 1, 2, 3, 4, 5, 6, and 8 of adeno-associated virus (AAV) vectors for their ability to mediate transduction of human and baboon MSCs. AAV serotype 2 vectors were the most efficient in transducing MSCs from humans and baboons. As a reference, human Ad293 cells were transduced with these seven AAV serotypes, and were found to have the highest transduction levels followed by baboon MSCs, and then human MSCs. The order of increasing transduction efficiency for the serotypes tested was similar for human and baboon MSCs, but was different for human Ad293 cells. The transduction efficiency of MSCs isolated from different individuals was comparable within the same species. We also demonstrated that baboon MSCs transduced with AAV serotype 2 vectors retain their potential to differentiate into adipocytes in vitro, and can incorporate into injured muscle tissue of NODSCID mice in vivo. We detected beta-galactosidase reporter gene expression in host muscle tissue for up to 9 weeks in this study, indicating engraftment of transduced baboon MSCs and sustained transgene expression in vivo.
Collapse
Affiliation(s)
- Keefe Chng
- Gene and Stem Cell Therapy Program, Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
184
|
Sémont A, François S, Mouiseddine M, François A, Saché A, Frick J, Thierry D, Chapel A. Mesenchymal stem cells increase self-renewal of small intestinal epithelium and accelerate structural recovery after radiation injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 585:19-30. [PMID: 17120774 DOI: 10.1007/978-0-387-34133-0_2] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Patients who undergo pelvic or abdominal radiotherapy may develop side effects that can be life threatening. Tissue complications caused by radiation-induced stem cell depletion may result in structural and functional alterations of the gastrointestinal (GI) tract. Stem cell therapy using mesenchymal stem cells (MSC) is a promising approach for replenishment of the depleted stem cell compartment during radiotherapy. There is little information on the therapeutic potential of MSC in injured-GI tract following radiation exposure. In this study, we addressed the ability of MSC to support the structural regeneration of the small intestine after abdominal irradiation. We isolated MSC from human bone marrow and human mesenchymal stem cells (hMSC) were transplanted into immunotolerent NOD/SCID mice with a dose of 5.10(6) cells via the systemic route. Using a model of radiation-induced intestinal injury, we studied the link between damage, hMSC engraftment and the capacity of hMSC to sustain structural recovery. Tissue injury was assessed by histological analysis. hMSC engraftment in tissues was quantified by PCR assay. Following abdominal irradiation, the histological analysis of small intestinal structure confirms the presence of partial and transient (three days) mucosal atrophy. PCR analysis evidences a low but significant hMSC implantation in small intestine (0.17%) but also at all the sites of local irradiation (kidney, stomach and spleen). Finally, in presence of hMSC, the small intestinal structure is already recovered at three days after abdominal radiation exposure. We show a structural recovery accompanied by an increase of small intestinal villus height, three and fifteen days following abdominal radiation exposure. In this study, we show that radiation-induced small intestinal injury may play a role in the recruitment of MSC for the improvement of tissue recovery. This work supports, the use of MSC infusion to repair damaged GI tract in patients subjected to radiotherapy. MSC therapy to avoid extended intestinal crypt sterilization is a promising approach to diminish healthy tissue alterations during the course of pelvic radiotherapy.
Collapse
|
185
|
Gharaee-Kermani M, Gyetko MR, Hu B, Phan SH. New Insights into the Pathogenesis and Treatment of Idiopathic Pulmonary Fibrosis: A Potential Role for Stem Cells in the Lung Parenchyma and Implications for Therapy. Pharm Res 2007; 24:819-41. [PMID: 17333393 DOI: 10.1007/s11095-006-9216-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 12/13/2006] [Indexed: 02/06/2023]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and often fatal form of interstitial lung disease. It is characterized by injury with loss of lung epithelial cells and abnormal tissue repair, resulting in replacement of normal functional tissue, abnormal accumulation of fibroblasts and myofibroblasts, deposition of extracellular matrix, and distortion of lung architecture which results in respiratory failure. Despite improvements in the diagnostic approach to IPF and active research in recent years, the molecular mechanisms of the disease remain poorly understood. This highly lethal lung disorder continues to pose major clinical challenges since an effective therapeutic regimen has yet to be identified and developed. For example, a treatment modality has been based on the assumption that IPF is a chronic inflammatory disease, yet most available anti-inflammatory drugs are not effective in treating it. Hence researchers are now focusing on understanding alternative underlying mechanisms involved in the pathogenesis of IPF in the hope of discovering potentially new pharmaceutical targets. This paper will focus on lung tissue repair, regeneration, remodeling, and cell types that may be important to consider in therapeutic interventions and includes a more detailed discussion of the potential targets of current therapeutic attack in pulmonary fibrosis. The discovery that adult bone marrow stem cells can contribute to the formation of differentiated cell types in other tissues, especially after injury, implies that they have the potential to participate in tissue remodeling, and perhaps regeneration. The current promise of the use of adult stem cells for tissue regeneration, and the belief that once irreversibly damaged tissue could be restored to a normal functional capacity using stem cell-based therapy, suggests a novel approach for treatment of diverse chronic diseases. However this optimism is tempered by current evidence that the pathogenesis of pulmonary fibrosis may involve the recruitment of bone marrow-derived fibroblasts, which are the key contributors to the pathogenesis of this chronic progressive disorder. Nevertheless, stem cell-related therapies are widely viewed as promising treatment options for patients suffering from various types of pulmonary diseases. Gender mismatched bone marrow or lung transplant recipients serve as natural populations in which to study the role of bone marrow-derived stem cells in recovery from pulmonary diseases. Understanding the mechanism of recruitment of stem cells to sites of injury, and their involvement in tissue repair, regeneration, and remodeling may offer a novel therapeutic target for developing more effective treatments against this fatal disorder. This article reviews the new concepts in the pathogenesis, current and future treatment options of pulmonary fibrosis, and the recent advances regarding the roles of stem cells in lung tissue repair, regeneration, and remodeling.
Collapse
Affiliation(s)
- Mehrnaz Gharaee-Kermani
- Division of Pulmonary Medicine & Critical Care, Department of Internal Medicine, University of Michigan Medical School, 2215 Fuller Rd. VAMC 11R, Ann Arbor, Michigan 48105, USA.
| | | | | | | |
Collapse
|
186
|
McTaggart SJ, Atkinson K. Mesenchymal stem cells: Immunobiology and therapeutic potential in kidney disease (Review Article). Nephrology (Carlton) 2007; 12:44-52. [PMID: 17295660 DOI: 10.1111/j.1440-1797.2006.00753.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cells (MSC) are non-haematopoietic cells that are prevalent in the adult bone marrow but can also be isolated from a variety of other postnatal tissues. MSC are non-immunogenic and are immunosuppressive, with the ability to inhibit maturation of dendritic cells and suppress the function of naïve and memory T cells, B cells and NK cells. In addition to their immunomodulatory properties, MSC are capable of differentiating into various tissues of mesenchymal and non-mesenchymal origin and migrating to sites of tissue injury and inflammation to participate in tissue repair. A number of studies in animal models of cardiac injury, stroke and ischaemic renal injury have demonstrated the clinical potential of MSC in tissue regeneration and repair. MSC are currently being evaluated in various preclinical and clinical studies in humans and offer significant potential as a novel cellular therapy for tissue regeneration and immunological conditions. The present review focuses on the unique immunomodulatory and regenerative properties of MSC and their potential role in the treatment of kidney disease.
Collapse
Affiliation(s)
- Steven J McTaggart
- Queensland Child & Adolescent Renal Service, Royal Children's Hospital, Australia.
| | | |
Collapse
|
187
|
Crisostomo PR, Wang M, Wairiuko GM, Morrell ED, Terrell AM, Seshadri P, Nam UH, Meldrum DR. High passage number of stem cells adversely affects stem cell activation and myocardial protection. Shock 2007; 26:575-80. [PMID: 17117132 DOI: 10.1097/01.shk.0000235087.45798.93] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Progenitor cell plasticity enhances positive remodeling of damaged tissue. We and others have previously shown that progenitor cells may limit apoptosis and modulate inflammation in part by the production of growth factors. However, recent studies suggest that progenitor cells senesce and lose their differentiation potential with increasing time in culture and passage. We hypothesize that murine bone marrow mesenchymal stem cells (MSCs) are cardioprotective against ischemia/reperfusion injury in the isolated perfused rat heart, and that passage number has an adverse effect on MSC activation and cardioprotection. Adult male and female Sprague-Dawley rat hearts were isolated, perfused via Langendorff model, and subjected to ischemia/reperfusion. Mouse MSCs were harvested, cultured, suspended in perfusate, and infused before global index ischemia. Hearts were assigned to controls or infusion with passage 3, 5, or 10 MSCs. In addition, MSCs in culture were stressed by hypoxia and increasing doses of endotoxin (lipopolysaccharide). Mesenchymal stem cell activation was determined by measuring vascular endothelial growth factor production with enzyme-linked immunosorbent assay. All data are reported as mean +/- SEM and were analyzed with 2-way analysis of variance. Differences are considered significant if P < 0.05. Passage 3 murine MSC infusion in hearts before ischemia reduced the depression of left ventricular developed pressure, attenuated the increase of end-diastolic pressure, and reduced the depression of +dP/dT and -dP/dT. However, the MSC protective effect disappeared in hearts infused with passage 5 and passage 10 MSCs. Although hypoxia and lipopolysaccharide resulted in significant activation of MSCs, passage 3 MSCs demonstrated significantly greater vascular endothelial growth factor release than passage 5 and 10 MSCs. Acute murine MSC infusion confers protection in isolated rat hearts. However, high passage number has an adverse effect on MSC activation and protection. This portends limited ex vivo expansion before possible therapeutic use.
Collapse
Affiliation(s)
- Paul R Crisostomo
- Department of Surgery, Center for Immunobiology, Indiana University School of Medicine, 545 Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Sottile V. Bone marrow as a source of stem cells and germ cells? Perspectives for transplantation. Cell Tissue Res 2007; 328:1-5. [PMID: 17216191 DOI: 10.1007/s00441-006-0361-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 11/08/2006] [Indexed: 10/23/2022]
Abstract
Recent publications have suggested the existence of germ stem cells in the mouse at postnatal stages. The mechanism of de novo oocyte formation is proposed to involve a contribution from the bone marrow to the germ cell pool, via the bloodstream. Critical examination of the data underpinning these contentious claims is under way from a reproductive biology perspective but little has been said about the nature of this elusive bone marrow population with germ cell potential. Furthermore, whereas the prospect of marrow-derived germ cells may appear propitious for fertility applications, its wider impact on transplantation medicine remains to be considered. This paper examines the evidence leading to the current debate and considers the implications of such findings for the field of bone marrow transplantation.
Collapse
Affiliation(s)
- Virginie Sottile
- Institute of Genetics, Medical School, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
189
|
Budinger GRS, Sznajder JI. The alveolar-epithelial barrier: a target for potential therapy. Clin Chest Med 2007; 27:655-69; abstract ix. [PMID: 17085253 DOI: 10.1016/j.ccm.2006.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
During acute lung injury (ALI), the alveolar-capillary barrier is damaged, resulting in the accumulation of fluid and protein in the alveolar space characteristic of the acute respiratory distress syndrome (ARDS). Disordered epithelial repair may contribute to the development of fibrosis and worsen outcomes in patients who have lung injury. This article discusses novel emerging therapies based on these mechanisms that are designed to preserve the function and promote the repair of the alveolar epithelium in patients who have ALI/ARDS.
Collapse
Affiliation(s)
- G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
190
|
Furuya S, Furuya K. Subepithelial fibroblasts in intestinal villi: roles in intercellular communication. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 264:165-223. [PMID: 17964923 DOI: 10.1016/s0074-7696(07)64004-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ingestion of food and water induces chemical and mechanical signals that trigger peristaltic reflexes in the gut. Intestinal villi are motile, equipped with chemosensors and mechanosensors, and transduce signaling to sensory neurons, but the exact mechanisms have not yet been elucidated. Subepithelial fibroblasts located under the villous epithelium form contractile cellular networks via gap junctions. The networks ensheathe lamina propria and are in close contact with epithelium, neural and capillary networks, smooth muscles, and immune cells. Unique characteristics of subepithelial fibroblasts have been revealed by primary cultures isolated from rat duodenal villi. They include rapid reversal changes in cell shape by cAMP reagents and endothelins, cell shape-dependent mechanosensitivity that induces ATP release as a paracrine mediator, contractile ability, and expression of various receptors for vasoactive and neuroactive substances. Herein, we review these characteristics that play a key role in the villi. They serve as a barrier/sieve, flexible mechanical frame, mechanosensor, and signal transduction machinery in the intestinal villi, which are regulated locally and dynamically by rapid cell shape conversion.
Collapse
Affiliation(s)
- Sonoko Furuya
- Section of Brain Structure, Center for Brain Experiment, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | |
Collapse
|
191
|
Wang Y, Volloch V, Pindrus MA, Blasioli DJ, Chen J, Kaplan DL. Murine osteoblasts regulate mesenchymal stem cells via WNT and cadherin pathways: mechanism depends on cell–cell contact mode. J Tissue Eng Regen Med 2007; 1:39-50. [DOI: 10.1002/term.6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
192
|
Tögel F, Westenfelder C. Adult bone marrow–derived stem cells for organ regeneration and repair. Dev Dyn 2007; 236:3321-31. [PMID: 17685479 DOI: 10.1002/dvdy.21258] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Stem cells have been recognized as a potential tool for the development of innovative therapeutic strategies. There are in general two types of stem cells, embryonic and adult stem cells. While embryonic stem cell therapy has been riddled with problems of allogeneic rejection and ethical concerns, adult stem cells have long been used in the treatment of hematological malignancies. With the recognition of additional, potentially therapeutic characteristics, bone marrow-derived stem cells have become a tool in regenerative medicine. The bone marrow is an ideal source of stem cells because it is easily accessible and harbors two types of stem cells. Hematopoietic stem cells give rise to all blood cell types and have been shown to exhibit plasticity, while multipotent marrow stromal cells are the source of osteocytes, chondrocytes, and fat cells and have been shown to support and generate a large number of different cell types. This review describes the general characteristics of these stem cell populations and their current and potential future applications in regenerative medicine.
Collapse
Affiliation(s)
- Florian Tögel
- Department of Medicine/Nephrology, University of Utah, Salt Lake City, Utah 84148, USA.
| | | |
Collapse
|
193
|
Goessler UR, Riedel K, Hormann K, Riedel F. Perspectives of Gene Therapy in Stem Cell Tissue Engineering. Cells Tissues Organs 2006; 183:169-79. [PMID: 17159343 DOI: 10.1159/000096508] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2006] [Indexed: 01/14/2023] Open
Abstract
Tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain or improve tissue function. It is hoped that forming tissue de novo will overcome many problems in plastic surgery associated with such areas as wound healing and the immunogenicity of transplanted tissue that lead to dysfunctional repair. Gene therapy is the science of the transfer of genetic material into individuals for therapeutic purposes by altering cellular function or structure at the molecular level. Recently, tissue engineering has been used in conjunction with gene therapy as a hybrid approach. This combination of stem-cell-based tissue engineering with gene therapy has the potential to provide regenerative tissue cells within an environment of optimal regulatory protein expression and would have many benefits in various areas such as the transplantation of skin, cartilage or bone. The aim of this review is to outline tissue engineering and possible applications of gene therapy in the field of biomedical engineering as well as basic principles of gene therapy, vectors and gene delivery.
Collapse
Affiliation(s)
- Ulrich Reinhart Goessler
- Department of Otolaryngology, Head and Neck Surgery, Ruprecht-Karls University Heidelberg, Faculty of Clinical Medicine, Mannheim, Germany.
| | | | | | | |
Collapse
|
194
|
Rüster B, Göttig S, Ludwig RJ, Bistrian R, Müller S, Seifried E, Gille J, Henschler R. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 2006; 108:3938-44. [PMID: 16896152 DOI: 10.1182/blood-2006-05-025098] [Citation(s) in RCA: 411] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
To explore the initial steps by which transplanted mesenchymal stem cells (MSCs) interact with the vessel wall in the course of extravasation, we studied binding of human MSCs to endothelial cells (ECs). In a parallel plate flow chamber, MSCs bound to human umbilical vein ECs (HUVECs) similar to peripheral-blood mononuclear cells (PBMCs) or CD34(+) hematopoietic progenitors at shear stresses of up to 2 dynes/cm(2). This involved rapid extension of podia, rolling, and subsequent firm adhesion that was increased when ECs were prestimulated with TNF-alpha. MSC binding was suppressed when ECs were pretreated with function-blocking anti-P-selectin antibody, and rolling of MSCs was induced on immobilized P-selectin, indicating that P-selectin was involved in this process. Preincubation of HUVECs with anti-VCAM-1 or of MSCs with anti-VLA-4 antibodies suppressed binding of MSCs to HUVECs but did not enhance inhibition by anti-P-selectin, indicating that both P-selectin and VCAM-1 are equally required for this process. Intravital microscopy demonstrated the capacity of MSCs to roll and adhere to postcapillary venules in vivo in a mouse model in a P-selectin-dependent manner. Thus, MSCs interact in a coordinated fashion with ECs under shear flow, engaging P-selectin and VCAM-1/VLA-4.
Collapse
Affiliation(s)
- Brigitte Rüster
- DRK Institute of Transfusion Medicine and Immune Hematology, Sandhofstrasse 1, 60528 Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Knight B, Matthews VB, Olynyk JK, Yeoh GC. Jekyll and Hyde: evolving perspectives on the function and potential of the adult liver progenitor (oval) cell. Bioessays 2006; 27:1192-202. [PMID: 16237666 DOI: 10.1002/bies.20311] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The liver progenitor cell (LPC) has enormous potential for use in cell therapy to treat liver disease. Since liver regenerates readily from pre-existing hepatocytes, a role for LPCs and, indeed, their existence have been questioned. Research during the last decade has established that LPCs are an important alternative source of cells for liver regeneration. Their utility for cell therapy lies in their ability to generate both hepatocytes and cholangiocytes. However, they are observed in liver diseases that often lead to cancer and there is experimental evidence that implicates LPCs as the source of tumours. This article provides a brief history of the studies that established the functional importance of LPCs in liver disease. It focuses on mouse models that have led to the identification of factors that regulate LPC growth and differentiation and discusses LPCs derived from different sources. Recent promising results from both in vitro and vivo studies suggest that LPCs could be useful for cell therapy. In the context of liver disease, LPCs may indeed be the cell of the future and understandably "our favourite cell".
Collapse
Affiliation(s)
- Belinda Knight
- School of Medicine and Pharmacology, University of Western Australia
| | | | | | | |
Collapse
|
196
|
Hannouche D, Raould A, Nizard RS, Sedel L, Petite H. Embedding of bone samples in methylmethacrylate: a suitable method for tracking LacZ mesenchymal stem cells in skeletal tissues. J Histochem Cytochem 2006; 55:255-62. [PMID: 17101724 DOI: 10.1369/jhc.6a7063.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Considerable research has been focused on the use of bone marrow-derived mesenchymal stem cells (MSCs) for the repair of non-unions and bone defects. To date, the question of whether transplanted MSCs survive and engraft within newly formed tissue remains unresolved. The development of an easy and reliable method that would allow cell fate monitoring in transplant recipients is a pressing concern for the field of tissue engineering. To demonstrate the presence of transplanted cells in newly formed bone, we established a xenograft nude rat model allowing the detection of murine LacZ MSCs in vivo. MSCs were isolated from transgenic lacZ mice, seeded onto bioabsorbable collagen sponges, and transplanted to repair a calvarial defect in nude rats. As a preliminary step, the histological procedure was adapted to optimize the detection of LacZ cells in bone tissue embedded in methylmethacrylate (MMA). Four fixatives and four fixation times were evaluated. Among all the fixatives tested, 2% formaldehyde/0.2% glutaraldehyde at 4C for 4 days gave the best results for X-gal staining at pH 7.4 on both cell cultures and bone explants. All fixatives were effective for immunodetection of beta-gal. In the chimeric LacZ/nude rat animal model, MSCs were detected in vivo for up to 4 weeks after implantation and contributed to the repair and the neovascularization of the bone defect. LacZ is a suitable phenotypic marker to track MSCs in skeletal tissues embedded in MMA.
Collapse
Affiliation(s)
- D Hannouche
- Laboratoire de Recherches Orthopédiques, CNRS, Faculté de Médecine Lariboisière Saint-Louis, Université Paris 7, 75010 Paris, France.
| | | | | | | | | |
Collapse
|
197
|
Dekel B, Zangi L, Shezen E, Reich-Zeliger S, Eventov-Friedman S, Katchman H, Jacob-Hirsch J, Amariglio N, Rechavi G, Margalit R, Reisner Y. Isolation and characterization of nontubular sca-1+lin- multipotent stem/progenitor cells from adult mouse kidney. J Am Soc Nephrol 2006; 17:3300-14. [PMID: 17093069 DOI: 10.1681/asn.2005020195] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tissue engineering and cell therapy approaches aim to take advantage of the repopulating ability and plasticity of multipotent stem cells to regenerate lost or diseased tissue. Recently, stage-specific embryonic kidney progenitor tissue was used to regenerate nephrons. Through fluorescence-activated cell sorting, microarray analysis, in vitro differentiation assays, mixed lymphocyte reaction, and a model of ischemic kidney injury, this study sought to identify and characterize multipotent organ stem/progenitor cells in the adult kidney. Herein is reported the existence of nontubular cells that express stem cell antigen-1 (Sca-1). This population of small cells includes a CD45-negative fraction that lacks hematopoietic stem cell and lineage markers and resides in the renal interstitial space. In addition, these cells are enriched for beta1-integrin, are cytokeratin negative, and show minimal expression of surface markers that typically are found on bone marrow-derived mesenchymal stem cells. Global gene profiling reveals enrichment for many genes downstream of developmental signaling molecules and self-renewal pathways, such as TGF-beta/bone morphogenic protein, Wnt, or fibroblast growth factor, as well as for those that are involved in specification of mesodermal lineages (myocyte enhancer factor 2A, YY1-associated factor 2, and filamin-beta). In vitro, they are plastic adherent and slowly proliferating and result in inhibition of alloreactive CD8(+) T cells, indicative of an immune-privileged behavior. Furthermore, clonal-derived lines can be differentiated into myogenic, osteogenic, adipogenic, and neural lineages. Finally, when injected directly into the renal parenchyma, shortly after ischemic/reperfusion injury, renal Sca-1(+)Lin(-) cells, derived from ROSA26 reporter mice, adopt a tubular phenotype and potentially could contribute to kidney repair. These data define a unique phenotype for adult kidney-derived cells, which have potential as stem cells and may contribute to the regeneration of injured kidneys.
Collapse
Affiliation(s)
- Benjamin Dekel
- Weizmann Institute of Science, Department of Immunology, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Pan YW, Scarlett JM, Luoh TT, Kurre P. Prolonged adherence of human immunodeficiency virus-derived vector particles to hematopoietic target cells leads to secondary transduction in vitro and in vivo. J Virol 2006; 81:639-49. [PMID: 17035328 PMCID: PMC1797443 DOI: 10.1128/jvi.01089-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human immunodeficiency virus type 1-derived lentivirus vectors bearing the vesicular stomatitis virus G (VSV-G) envelope glycoprotein demonstrate a wide host range and can stably transduce quiescent hematopoietic stem cells. In light of concerns about biosafety and potential germ line transmission, they have been used predominantly for ex vivo strategies, thought to ensure the removal of excess surface-bound particles and prevent in vivo dissemination. Studies presented here instead reveal prolonged particle adherence after ex vivo exposure, despite serial wash procedures, with subsequent transduction of secondary target cells in direct and transwell cocultures. We explored the critical parameters affecting particle retention and transfer and show that attachment to the cell surface selectively protects virus particles from serum complement-mediated inactivation. Moreover, studies with nonmyeloablated murine recipients show that transplantation of vector-exposed, washed hematopoietic cells results in systemic dissemination of functional VSV-G/lentivector particles. We demonstrate genetic marking by inadvertent transfer of vector particles and prolonged expression of transgene product in recipient tissues. Our findings have implications for biosafety, vector design, and cell biology research.
Collapse
Affiliation(s)
- Yung-Wei Pan
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
199
|
Anjos-Afonso F, Bonnet D. Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood 2006; 109:1298-306. [PMID: 17003364 DOI: 10.1182/blood-2006-06-030551] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is believed that a primitive cell type that maintains the mesenchymal compartment exists in the bone marrow. However, this putative mesenchymal stem/progenitor cell is yet to be identified and isolated. We are reporting the identification, isolation, and detailed characterization of the most primitive mesenchymal progenitor cells in the adult murine bone marrow, based on the expression of stage-specific embryonic antigen-1 (SSEA-1). This primitive subset can be identified in mesenchymal cell cultures and also directly in the bone marrow, thus ascertaining for the first time their existence in an adult organism. Characterization of SSEA-1+ mesenchymal cells revealed that upon purification these cells gave rise to SSEA-1- mesenchymal cells, whereas the reverse could not be observed. Also, these SSEA-1+ cells have a much higher capacity to differentiate than their negative counterparts, not only to several mesenchymal cell types but also to unconventional cell types such as astrocyte-, endothelial-, and hepatocyte-like cells in vitro. Most importantly, a single-cell-derived population was capable of differentiating abundantly into different mesenchymal cell types in vivo. Altogether we are proposing a hierarchical organization of the mesenchymal compartment, placing SSEA-1+ cells at the apex of this hierarchy.
Collapse
|
200
|
Jiang W, Ma A, Wang T, Han K, Liu Y, Zhang Y, Zhao X, Dong A, Du Y, Huang X, Wang J, Lei X, Zheng X. Intravenous transplantation of mesenchymal stem cells improves cardiac performance after acute myocardial ischemia in female rats. Transpl Int 2006; 19:570-80. [PMID: 16764636 DOI: 10.1111/j.1432-2277.2006.00307.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cells (MSCs) are potential sources of cells for tissue repairing. However, little information is available regarding the therapeutic potency of intravenously transplanted MSCs for myocardial ischemia (MI). In the present study, MSCs were isolated from bone marrow of male rats and expanded in vitro. Three hours after ligation of left anterior descending artery, the transplanted group received an infusion of MSCs through the tail vein. At the same time, a coronary-ligated control group was injected with culture medium. Homing of MSCs to the heart was assessed by expression of the Y chromosome sry gene using fluorescent in situ hybridization (FISH). At 1 week or 8 weeks after transplantation, sry positive cells were present in cardiac tissue in the transplanted group, but not in the hearts of control group. Cardiomyocytes, smooth muscle cells, and endothelial cells that bore sry gene were identified in transplanted group at 8 weeks after transplantation. Ultrastructural observation revealed that a large number of capillary and some immature myocytes were found to survive in the ischemia region. MSCs transplantation also decreased LVEDP pressure and -dP/dt, but increased LVSP and +dP/dt. The cardiac infarct size was significantly smaller in transplanted group than in control group. Our data suggest that intravenously transplanted MSCs improve cardiac performance and promote the regeneration of blood vessels and cardiomyocytes.
Collapse
Affiliation(s)
- Wenhui Jiang
- Cardiovascular Department, the First Hospital, Medical College of Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|