151
|
García-Rueda A, Tremblay N, Mascaró M, Díaz F, Paschke K, Caamal-Monsreal C, Rosas C. The thermal tolerance of a tropical population of blue crab (Callinectes sapidus) modulates aerobic metabolism during hypoxia. J Therm Biol 2021; 102:103078. [PMID: 34863472 DOI: 10.1016/j.jtherbio.2021.103078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 12/23/2022]
Abstract
The blue crab Callinectes sapidus is a widespread ectothermic species that supports large fisheries. Physiology of temperate and subtropical populations of blue crabs are well studied; however, a lack of information exists on tropical populations. Given the low locomotion capabilities of C. sapidus adult blue crabs, natural selection should favor traits that shape a particular thermal niche reflected through tolerance modulation to dissolved oxygen (DO). This study was designed to evaluate the thermal window and hypoxia sensitivity of the blue crab population in the southern Gulf of Mexico. The effect of acclimation temperatures from 20 °C to 34 °C on thermal preference (TP), critical thermal limits (CT), and thermal metabolic scope (TMS) was assessed in normoxia. Metabolic rate regulation over oxygen partial pressure (pO2) gradient was evaluated through oxygen consumption measurements at different degrees of acute hypoxia. Callinectes sapidus was observed tending to specialize towards higher temperatures, showing a mean TP from 26 °C to 33 °C. The lowest performance of aerobic pathways was observed at the coldest regimes and the highest at the warmest ones with mean TMS value being 35 % greater at 34 °C than 20 °C. Patterns for metabolic regulation were dependent on the interaction between environmental temperature and DO, in which the interval from 29 °C to 34 °C provoked a 50 % reduction in oxygen consumption when exposed to ∼20% air saturation levels. The results obtained showed that blue crabs distributed in the southern Gulf of Mexico could be close to their oxygen-temperature tolerance limits, which has important implications when climate change effects on species re-distribution is considered.
Collapse
Affiliation(s)
- Adriana García-Rueda
- Posgrado en Ciencias Del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, 04510, Coyoacán, Ciudad de México, Mexico
| | - Nelly Tremblay
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Shelf Sea System Ecology, Helgoland, Germany
| | - Maite Mascaró
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo S/n, Sisal, Yucatán, Mexico
| | - Fernando Díaz
- Laboratorio de Ecofisiología de Organismos Acuáticos, Departamento de Biotecnología Marina Centro de Investigación Científica y de Educación Superior de Ensenada, (CICESE), Carretera Ensenada, Tijuana #3918, Ensenada, 22860, Ensenada, Baja CA, Mexico
| | - Kurt Paschke
- Laboratorio de Ecofisiología de Crustáceos, Instituto de Acuicultura, Universidad Austral, Casilla, 1327, Puerto Montt, Chile
| | - Claudia Caamal-Monsreal
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo S/n, Sisal, Yucatán, Mexico
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo S/n, Sisal, Yucatán, Mexico; Laboratorio Nacional de Resiliencia Costera (CONACYT-Fac. de Ciencias, UNAM), Puerto de Abrigo, 97356, Sisal, Yucatán, Mexico.
| |
Collapse
|
152
|
Anderson KM, Falkenberg LJ. Variation in thermal performance curves for oxygen consumption and loss of critical behaviors in co-occurring species indicate the potential for ecosystem stability under ocean warming. MARINE ENVIRONMENTAL RESEARCH 2021; 172:105487. [PMID: 34627011 DOI: 10.1016/j.marenvres.2021.105487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/24/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Species-level differences in responses to environmental factors may increase a community's ability to retain key functions under environmental change. We compared the oxygen consumption rates and maintenance of critical behaviors for three co-occurring intertidal gastropod species over a temperature range of 30 °C. Each species exhibited a distinct thermal performance curve (TPC) for oxygen consumption. The TPC of Lunella granulata was horizontally shifted to be significantly warmer than that of Chlorostoma argyrostoma. Monodonta labio's TPC was vertically shifted compared to the other two species, reflecting greater oxygen consumption overall. L. granulata and M. labio maintained critical behaviors at temperatures 3-5 °C warmer than C. argyrostoma. These differences in the thermal tolerances of similar, co-occurring species provide space for the insurance effect of biodiversity to occur. Understanding the degree to which co-occurring species respond differently to increased temperature may help us predict community resistance in the face of climate change.
Collapse
Affiliation(s)
- Kathryn M Anderson
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Laura J Falkenberg
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
153
|
Opinion AGR, Çakir R, De Boeck G. Better together: Cross-tolerance induced by warm acclimation and nitrate exposure improved the aerobic capacity and stress tolerance of common carp Cyprinus carpio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112777. [PMID: 34534834 DOI: 10.1016/j.ecoenv.2021.112777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Climate warming is a threat of imminent concern that may exacerbate the impact of nitrate pollution on fish fitness. These stressors can individually affect the aerobic capacity and stress tolerance of fish. In combination, they may interact in unexpected ways where exposure to one stressor may heighten or reduce the resilience to another stressor and their interactive effects may not be uniform across species. Here, we examined how nitrate pollution under a warming scenario affects the aerobic scope (AS), and the hypoxia and heat stress susceptibility of a generally tolerant fish species, common carp Cyprinus carpio. We used a 3 × 2 factorial design, where fish were exposed to one of three ecologically relevant levels of nitrate (0, 50, or 200 mg NO3- L-1) and one of two temperatures (18 °C or 26 °C) for 5 weeks. Warm acclimation increased the AS by 11% due to the maintained standard metabolic rate and increased maximum metabolic rate at higher temperature, and the AS improvement seemed greater at higher nitrate concentration. Warm-acclimated fish exposed to 200 mg NO3- L-1 were less susceptible to acute hypoxia, and fish acclimated at higher temperature exhibited improved heat tolerance (critical thermal maxima, CTMax) by 5 °C. This cross-tolerance can be attributed to the hematological results including maintained haemoglobin and increased haematocrit levels that may have compensated for the initial surge in methaemoglobin at higher nitrate exposure.
Collapse
Affiliation(s)
- April Grace R Opinion
- University of Antwerp, Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Rümeysa Çakir
- University of Antwerp, Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gudrun De Boeck
- University of Antwerp, Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
154
|
Lang BJ, Donelson JM, Caballes CF, Doll PC, Pratchett MS. Metabolic Responses of Pacific Crown-of-Thorns Sea Stars ( Acanthaster sp.) to Acute Warming. THE BIOLOGICAL BULLETIN 2021; 241:347-358. [PMID: 35015619 DOI: 10.1086/717049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AbstractClimate change and population irruptions of crown-of-thorns sea stars (Acanthaster sp.) are two of the most pervasive threats to coral reefs. Yet there has been little consideration regarding the synergies between ocean warming and the coral-feeding sub-adult and adult stages of this asteroid. Here we explored the thermosensitivity of the aforementioned life stages by assessing physiological responses to acute warming. Thermal sensitivity was assessed based on the maximal activity of enzymes involved in aerobic (citrate synthase) and anaerobic (lactate dehydrogenase) metabolic pathways, as well as the standard metabolic rate of sub-adult and adult sea stars. In both life stages, citrate synthase activity declined with increasing temperature from 15 °C to 40 °C, with negligible activity occurring >35 °C. On the other hand, lactate dehydrogenase activity increased with temperature from 20 °C to 45 °C, indicating a greater reliance on anaerobic metabolism in a warmer environment. The standard metabolic rate of sub-adult sea stars increased with temperature throughout the testing range (24 °C to 36 °C). Adult sea stars exhibited evidence of thermal stress, with metabolic depression occurring from 33 °C. Here, we demonstrate that crown-of-thorns sea stars are sensitive to warming but that adults, and especially sub-adults, may have some resilience to short-term marine heatwaves in the near future.
Collapse
|
155
|
Voituron Y, Roussel D, Teulier L, Vagner M, Ternon Q, Romestaing C, Dubillot E, Lefrancois C. Warm Acclimation Increases Mitochondrial Efficiency in Fish: A Compensatory Mechanism to Reduce the Demand for Oxygen. Physiol Biochem Zool 2021; 95:15-21. [PMID: 34813413 DOI: 10.1086/716904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractIn ectotherms, it is well described that thermal acclimation induces compensatory adjustments maintaining mitochondrial functions across large shifts in temperature. However, until now, studies mostly focused on fluxes of oxygen without knowing whether mitochondrial efficiency to produce ATP (ATP/O ratio) is also dependent on temperature acclimation. We thus measured thermal reaction norms of oxidative phosphorylation activity and efficiency in isolated mitochondria from skeletal muscle of sea bass (Dicentrarchus labrax) juveniles acclimated at optimal (22°C), low (18°C), and high (26°C) temperatures. The mitochondrial fluxes (oxygen consumption and ATP synthesis) increased with increasing assay temperatures and were on the whole higher in fishes acclimated at 18°C than in the other two groups. However, these mitochondrial rates were not significantly different between experimental groups when they were compared at the acclimation temperature. In contrast, we show that acclimation to high, and not low, temperature improved mitochondrial efficiency (on average >15%). This higher efficiency in high-temperature-acclimated fishes is also apparent when compared at respective acclimation temperatures. This mitochondrial phenotype would favor an economical management of oxygen in response to harsh energetic constraints associated with warming water.
Collapse
|
156
|
Prescott LA, Regish AM, McMahon SJ, McCormick SD, Rummer JL. Rapid embryonic development supports the early onset of gill functions in two coral reef damselfishes. J Exp Biol 2021; 224:272637. [PMID: 34708857 DOI: 10.1242/jeb.242364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022]
Abstract
The gill is one of the most important organs for growth and survival of fishes. Early life stages in coral reef fishes often exhibit extreme physiological and demographic characteristics that are linked to well-established respiratory and ionoregulatory processes. However, gill development and function in coral reef fishes is not well understood. Therefore, we investigated gill morphology, oxygen uptake and ionoregulatory systems throughout embryogenesis in two coral reef damselfishes, Acanthochromis polyacanthus and Amphiprion melanopus (Pomacentridae). In both species, we found key gill structures to develop rapidly early in the embryonic phase. Ionoregulatory cells appear on gill filaments 3-4 days post-fertilization and increase in density, whilst disappearing or shrinking in cutaneous locations. Primary respiratory tissue (lamellae) appears 5-7 days post-fertilization, coinciding with a peak in oxygen uptake rates of the developing embryos. Oxygen uptake was unaffected by phenylhydrazine across all ages (pre-hatching), indicating that haemoglobin is not yet required for oxygen uptake. This suggests that gills have limited contribution to respiratory functions during embryonic development, at least until hatching. Rapid gill development in damselfishes, when compared with that in most previously investigated fishes, may reflect preparations for a high-performance, challenging lifestyle on tropical reefs, but may also make reef fishes more vulnerable to anthropogenic stressors.
Collapse
Affiliation(s)
- Leteisha A Prescott
- ARC Centre of Excellence for Coral Reef Studies, Townsville, QLD 4811, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Amy M Regish
- US Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA
| | - Shannon J McMahon
- ARC Centre of Excellence for Coral Reef Studies, Townsville, QLD 4811, Australia
| | - Stephen D McCormick
- US Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA.,Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, Townsville, QLD 4811, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
157
|
Collins M, Peck LS, Clark MS. Large within, and between, species differences in marine cellular responses: Unpredictability in a changing environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148594. [PMID: 34225140 DOI: 10.1016/j.scitotenv.2021.148594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Predicting the impacts of altered environments on future biodiversity requires a detailed understanding of organism responses to change. To date, studies evaluating mechanisms underlying marine organism stress responses have largely concentrated on oxygen limitation and the use of heat shock proteins as biomarkers. However, whether these biomarkers represent responses that are consistent across species and different environmental stressors remains open to question. Here we show that responses to four different thermal stresses (three rates of thermal ramping (1 °C h-1, 1 °C day-1 or 1 °C 3 day-1) and a three-month acclimation to warming of 2 °C) applied to three species of Antarctic marine invertebrate produced highly individual responses in gene expression profiles, both within and between species. Mapping the gene expression profiles from each treatment for each of the three species, identified considerable difference in numbers of differentially regulated transcripts ranging from 10 to 3011. When these data were correlated across the different temperature treatments, there was no evidence for a common response with only 0-2 transcripts shared between all four treatments within any one species. There were also no shared differentially expressed genes across species, even at the same thermal ramping rates. The classical cellular stress response (CSR) i.e. up-regulation of heat shock proteins, was only strongly present in two species at the fastest ramping rate of 1 °C h-1, albeit with different sets of stress genes expressed in each species. These data demonstrate the wide variability in response to warming at the molecular level in marine species. Therefore, identification of biodiversity stress responses engendered by changing conditions will require evaluation at the species level using targeted key members of the ecosystem, strongly correlated to the local biotic and abiotic factors.
Collapse
Affiliation(s)
- Michael Collins
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK; Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK.
| |
Collapse
|
158
|
Shen Y, Zhang Y, Xiao Q, Gan Y, Wang Y, Pang G, Huang Z, Yu F, Luo X, Ke C, You W. Distinct metabolic shifts occur during the transition between normoxia and hypoxia in the hybrid and its maternal abalone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148698. [PMID: 34214815 DOI: 10.1016/j.scitotenv.2021.148698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Due to anthropogenic activities that have increased global climate change and nutrient discharges, severe hypoxic events have frequently occurred in coastal waters in recent years. Relying on coastal waters, the aquaculture area has suffered ecological and economic losses caused by hypoxia, especially in summer. In this study, to investigate the stress resistance of the Pacific abalone Haliotis discus hannai (DD) and the hybrid H. discus hannai ♀ × H. fulgens ♂ (DF), a combination of physiological, biochemical, and metabolomic methods were used to compare the metabolic responses of these two abalones to acute hypoxia (~0.5 mg O2/L, 12 h) and reoxygenation (~6.6 mg O2/L, 10-20 h). Hemolymph characteristics and aerobic/anaerobic respiratory capacity changed significantly under hypoxia or reoxygenation conditions, and they were regulated in different trends in two abalones. The contents of hepatopancreas glycogen in two abalones reached the trough after 10 h recovery, implying that short-term hypoxia leads to a long-lasting (several hours) imprint on the energy storage of abalone. In response to dissolved oxygen fluctuation, metabolic profiles of two abalones changed in distinct ways both in the hypoxia group or the reoxygenation group. The conversion of carbohydrate metabolism and amino acid metabolism indicated that hypoxia prompts abalone to change the way of energy metabolism, which may also reflect the difference in the energy utilization of DD and DF abalones. In addition, 3 metabolites (L-glutamate, 2-hydroxy-butanoic acid, and 2-methyl-3-hydroxybutyric acid) as potential biomarkers for hypoxia and reoxygenation response in abalone were determined by operating characteristic analysis (ROC). Overall, this study provides information towards understanding the damage caused by frequent hypoxic events and implies the metabolic shifts that occur under hypoxia and reoxygenation conditions in DD and DF abalones.
Collapse
Affiliation(s)
- Yawei Shen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Ying Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Qizhen Xiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Yang Gan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Yi Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Gewen Pang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Feng Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
159
|
Dezetter M, Dupoué A, Le Galliard J, Lourdais O. Additive effects of developmental acclimation and physiological syndromes on lifetime metabolic and water loss rates of a dry‐skinned ectotherm. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mathias Dezetter
- CNRS Sorbonne UniversitéUMR 7618iEES ParisUniversité Pierre et Marie Curie Paris France
- Centre d’étude Biologique de Chizé CNRSUMR 7372 Villiers en Bois France
| | - Andréaz Dupoué
- CNRS Sorbonne UniversitéUMR 7618iEES ParisUniversité Pierre et Marie Curie Paris France
| | - Jean‐François Le Galliard
- CNRS Sorbonne UniversitéUMR 7618iEES ParisUniversité Pierre et Marie Curie Paris France
- Ecole Normale SupérieurePSL Research UniversityCNRSUMS 3194Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP‐Ecotron IleDeFrance) Saint‐Pierre‐lès‐Nemours France
| | - Olivier Lourdais
- Centre d’étude Biologique de Chizé CNRSUMR 7372 Villiers en Bois France
- School of Life Sciences Arizona State University Tempe AZ USA
| |
Collapse
|
160
|
Genetic variation for upper thermal tolerance diminishes within and between populations with increasing acclimation temperature in Atlantic salmon. Heredity (Edinb) 2021; 127:455-466. [PMID: 34446857 PMCID: PMC8551234 DOI: 10.1038/s41437-021-00469-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Populations may counteract lasting temperature changes or recurrent extremes through plasticity or adaptation. However, it remains underexplored how outbreeding, either naturally, unintentionally, or facilitated, may modify a local response potential and whether genotype-by-environment interactions or between-trait correlations can restrict this potential. We quantified population differences and outbreeding effects, within-population genetic variation, and plasticity of these, for thermal performance proxy traits using 32 pedigreed wild, domesticated, and wild-domesticated Atlantic salmon families reared under common-garden conditions. Following exposure to ambient cold (11.6 °C) or ~4° and ~8° warmer summer temperatures, populations differed notably for body length and critical thermal maximum (CTmax) and for thermal plasticity of length, condition, and CTmax, but not for haematocrit. Line-cross analysis suggested mostly additive and some dominant outbreeding effects on means and solely additive outbreeding effects on plasticity. Heritability was detected for all traits. However, with increasing acclimation temperature, differences in CTmax between populations and CTmax heritability diminished, and CTmax breeding values re-ranked. Furthermore, CTmax and body size were negatively correlated at the genetic and phenotypic levels, and there was indirect evidence for a positive correlation between growth potential and thermal performance breadth for growth. Thus, population differences (including those between wild and domesticated populations) in thermal performance and plasticity may present a genetic resource in addition to the within-population genetic variance to facilitate, or impede, thermal adaptation. However, unfavourable genotype-by-environment interactions and negative between-trait correlations may generally hamper joint evolution in response to an increase in average temperature and temporary extremes.
Collapse
|
161
|
Dong YW, Liao ML, Han GD, Somero GN. An integrated, multi-level analysis of thermal effects on intertidal molluscs for understanding species distribution patterns. Biol Rev Camb Philos Soc 2021; 97:554-581. [PMID: 34713568 DOI: 10.1111/brv.12811] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Elucidating the physiological mechanisms that underlie thermal stress and discovering how species differ in capacities for phenotypic acclimatization and evolutionary adaptation to this stress is critical for understanding current latitudinal and vertical distribution patterns of species and for predicting their future state in a warming world. Such mechanistic analyses require careful choice of study systems (species and temperature-sensitive traits) and design of laboratory experiments that reflect the complexities of in situ conditions. Here, we critically review a wide range of studies of intertidal molluscs that provide mechanistic accounts of thermal effects across all levels of biological organization - behavioural, organismal, organ level, cellular, molecular, and genomic - and show how temperature-sensitive traits govern distribution patterns and capacities for coping with thermal stress. Comparisons of congeners from different thermal habitats are especially effective means for identifying adaptive variation. We employ these mechanistic analyses to illustrate how species differ in the severity of threats posed by rising temperature. Counterintuitively, we show that some of the most heat-tolerant species may be most threatened by increases in temperatures because of their small thermal safety margins and minimal abilities to acclimatize to higher temperatures. We discuss recent molecular biological and genomic studies that provide critical foundations for understanding the types of evolutionary changes in protein structure, RNA secondary structure, genome content, and gene expression capacities that underlie adaptation to temperature. Duplication of stress-related genes, as found in heat-tolerant molluscs, may provide enhanced capacity for coping with higher temperatures. We propose that the anatomical, behavioural, physiological, and genomic diversity found among intertidal molluscs, which commonly are of critical importance and high abundance in these ecosystems, makes this group of animals a highly appropriate study system for addressing questions about the mechanistic determinants of current and future distribution patterns of intertidal organisms.
Collapse
Affiliation(s)
- Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Guo-Dong Han
- College of Life Science, Yantai University, Yantai, 264005, China
| | - George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, 93950, U.S.A
| |
Collapse
|
162
|
Woods HA, Moran AL. Reconsidering the Oxygen-Temperature Hypothesis of Polar Gigantism: Successes, Failures, and Nuance. Integr Comp Biol 2021; 60:1438-1453. [PMID: 32573680 DOI: 10.1093/icb/icaa088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
"Polar gigantism" describes a biogeographic pattern in which many ectotherms in polar seas are larger than their warmer-water relatives. Although many mechanisms have been proposed, one idea-the oxygen-temperature hypothesis-has received significant attention because it emerges from basic biophysical principles and is appealingly straightforward and testable. Low temperatures depress metabolic demand for oxygen more than supply of oxygen from the environment to the organism. This creates a greater ratio of oxygen supply to demand, releasing polar organisms from oxygen-based constraints on body size. Here we review evidence for and against the oxygen-temperature hypothesis. Some data suggest that larger-bodied taxa live closer to an oxygen limit, or that rising temperatures can challenge oxygen delivery systems; other data provide no evidence for interactions between body size, temperature, and oxygen sufficiency. We propose that these findings can be partially reconciled by recognizing that the oxygen-temperature hypothesis focuses primarily on passive movement of oxygen, implicitly ignoring other important processes including ventilation of respiratory surfaces or internal transport of oxygen by distribution systems. Thus, the hypothesis may apply most meaningfully to organisms with poorly developed physiological systems (eggs, embryos, egg masses, juveniles, or adults without mechanisms for ventilating internal or external surfaces). Finally, most tests of the oxygen-temperature hypothesis have involved short-term experiments. Many organisms can mount effective responses to physiological challenges over short time periods; however, the energetic cost of doing so may have impacts that appear only in the longer term. We therefore advocate a renewed focus on long-term studies of oxygen-temperature interactions.
Collapse
Affiliation(s)
- H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Amy L Moran
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
163
|
Abstract
AbstractThe frequency, intensity, and duration of periods of extreme environmental warming are expected to rise over the next hundred years and play an increasing role in species loss resulting from climate change, and yet we know little about their potential future effects on variability in the composition of communities. This study analyzed patterns of species loss in a community of four rotifers and six ciliates exposed to different rates of extreme warming. Temperature of loss was positively correlated with warming rates for all species, consistent with theoretical frameworks suggesting that lower rates of warming increase exposure time and cumulative thermal stress at each temperature. The sequence of species loss during extreme warming depended on the environmental warming rate (i.e., warming rates had the capacity to drive reversals in the relative thermal tolerances of species), and changes in the sequence of species loss driven by the warming rate resulted in substantial variability in community composition. The results suggest that differences in warming rates across space and time may increase variability in community composition in ecosystems increasingly disturbed by extreme temperature, potentially altering interspecific interactions, the abiotic environment, and ecosystem function. Several ecological mechanisms may be responsible, singly or together, for changes in the sequence of species loss at different rates of warming, including (a) differences among species in their sensitivity to the intensity and duration of heat exposure, (b) the effects of warming rates on temperature-dependent interspecific interactions, and (c) differences in opportunities for evolution among species and across warming rates.
Collapse
|
164
|
Lavender E, Fox CJ, Burrows MT. Modelling the impacts of climate change on thermal habitat suitability for shallow-water marine fish at a global scale. PLoS One 2021; 16:e0258184. [PMID: 34606498 PMCID: PMC8489719 DOI: 10.1371/journal.pone.0258184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
Understanding and predicting the response of marine communities to climate change at large spatial scales, and distilling this information for policymakers, are prerequisites for ecosystem-based management. Changes in thermal habitat suitability across species’ distributions are especially concerning because of their implications for abundance, affecting species’ conservation, trophic interactions and fisheries. However, most predictive studies of the effects of climate change have tended to be sub-global in scale and focused on shifts in species’ range edges or commercially exploited species. Here, we develop a widely applicable methodology based on climate response curves to predict global-scale changes in thermal habitat suitability. We apply the approach across the distributions of 2,293 shallow-water fish species under Representative Concentration Pathways 4.5 and 8.5 by 2050–2100. We find a clear pattern of predicted declines in thermal habitat suitability in the tropics versus general increases at higher latitudes. The Indo-Pacific, the Caribbean and western Africa emerge as the areas of most concern, where high species richness and the strongest declines in thermal habitat suitability coincide. This reflects a pattern of consistently narrow thermal ranges, with most species in these regions already exposed to temperatures above inferred thermal optima. In contrast, in temperate regions, such as northern Europe, where most species live below thermal optima and thermal ranges are wider, positive changes in thermal habitat suitability suggest that these areas are likely to emerge as the greatest beneficiaries of climate change, despite strong predicted temperature increases.
Collapse
Affiliation(s)
- Edward Lavender
- The Scottish Association for Marine Science, Scottish Marine Institute, Dunstaffnage, Oban, Argyll, Scotland
- * E-mail:
| | - Clive J. Fox
- The Scottish Association for Marine Science, Scottish Marine Institute, Dunstaffnage, Oban, Argyll, Scotland
| | - Michael T. Burrows
- The Scottish Association for Marine Science, Scottish Marine Institute, Dunstaffnage, Oban, Argyll, Scotland
| |
Collapse
|
165
|
Cascarano MC, Stavrakidis-Zachou O, Mladineo I, Thompson KD, Papandroulakis N, Katharios P. Mediterranean Aquaculture in a Changing Climate: Temperature Effects on Pathogens and Diseases of Three Farmed Fish Species. Pathogens 2021; 10:1205. [PMID: 34578236 PMCID: PMC8466566 DOI: 10.3390/pathogens10091205] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Climate change is expected to have a drastic effect on aquaculture worldwide. As we move forward with the agenda to increase and diversify aquaculture production, rising temperatures will have a progressively relevant impact on fish farming, linked to a multitude of issues associated with fish welfare. Temperature affects the physiology of both fish and pathogens, and has the potential to lead to significant increases in disease outbreaks within aquaculture systems, resulting in severe financial impacts. Significant shifts in future temperature regimes are projected for the Mediterranean Sea. We therefore aim to review and discuss the existing knowledge relating to disease outbreaks in the context of climate change in Mediterranean finfish aquaculture. The objective is to describe the effects of temperature on the physiology of both fish and pathogens, and moreover to list and discuss the principal diseases of the three main fish species farmed in the Mediterranean, namely gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax), and meagre (Argyrosomus regius). We will attempt to link the pathology of each disease to a specific temperature range, while discussing potential future disease threats associated with the available climate change trends for the Mediterranean Sea.
Collapse
Affiliation(s)
- Maria Chiara Cascarano
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
- Department of Biology, University of Crete, 71003 Heraklion, Greece
| | - Orestis Stavrakidis-Zachou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
- Department of Biology, University of Crete, 71003 Heraklion, Greece
| | - Ivona Mladineo
- Biology Center of Czech Academy of Sciences, Laboratory of Functional Helminthology, Institute of Parasitology, 370 05 Ceske Budejovice, Czech Republic;
| | - Kim D. Thompson
- Vaccines and Diagnostics, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK;
| | - Nikos Papandroulakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
| | - Pantelis Katharios
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
| |
Collapse
|
166
|
Killen SS, Christensen EAF, Cortese D, Závorka L, Norin T, Cotgrove L, Crespel A, Munson A, Nati JJH, Papatheodoulou M, McKenzie DJ. Guidelines for reporting methods to estimate metabolic rates by aquatic intermittent-flow respirometry. J Exp Biol 2021; 224:jeb242522. [PMID: 34520540 PMCID: PMC8467026 DOI: 10.1242/jeb.242522] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interest in the measurement of metabolic rates is growing rapidly, because of the importance of metabolism in advancing our understanding of organismal physiology, behaviour, evolution and responses to environmental change. The study of metabolism in aquatic animals is undergoing an especially pronounced expansion, with more researchers utilising intermittent-flow respirometry as a research tool than ever before. Aquatic respirometry measures the rate of oxygen uptake as a proxy for metabolic rate, and the intermittent-flow technique has numerous strengths for use with aquatic animals, allowing metabolic rate to be repeatedly estimated on individual animals over several hours or days and during exposure to various conditions or stimuli. There are, however, no published guidelines for the reporting of methodological details when using this method. Here, we provide the first guidelines for reporting intermittent-flow respirometry methods, in the form of a checklist of criteria that we consider to be the minimum required for the interpretation, evaluation and replication of experiments using intermittent-flow respirometry. Furthermore, using a survey of the existing literature, we show that there has been incomplete and inconsistent reporting of methods for intermittent-flow respirometry over the past few decades. Use of the provided checklist of required criteria by researchers when publishing their work should increase consistency of the reporting of methods for studies that use intermittent-flow respirometry. With the steep increase in studies using intermittent-flow respirometry, now is the ideal time to standardise reporting of methods, so that - in the future - data can be properly assessed by other scientists and conservationists.
Collapse
Affiliation(s)
- Shaun S. Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Emil A. F. Christensen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daphne Cortese
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, 98729 Papetoai, Moorea, French Polynesia
| | - Libor Závorka
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- WasserCluster Lunz–Inter-university Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lucy Cotgrove
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amélie Crespel
- Department of Biology, University of Turku, 20500 Turku, Finland
| | - Amelia Munson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Environmental Science and Policy, University of California, Davis, CA 95615, USA
| | - Julie J. H. Nati
- MARBEC, Université Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| | - Magdalene Papatheodoulou
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- Enalia Physis Environmental Research Centre (ENALIA), 2101 Nicosia, Cyprus
| | - David J. McKenzie
- MARBEC, Université Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| |
Collapse
|
167
|
Marshall DA, Coxe NC, La Peyre MK, Walton WC, Rikard FS, Pollack JB, Kelly MW, La Peyre JF. Tolerance of northern Gulf of Mexico eastern oysters to chronic warming at extreme salinities. J Therm Biol 2021; 100:103072. [PMID: 34503809 DOI: 10.1016/j.jtherbio.2021.103072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/13/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
The eastern oyster, Crassostrea virginica, provides critical ecosystem services and supports valuable fishery and aquaculture industries in northern Gulf of Mexico (nGoM) subtropical estuaries where it is grown subtidally. Its upper critical thermal limit is not well defined, especially when combined with extreme salinities. The cumulative mortalities of the progenies of wild C. virginica from four nGoM estuaries differing in mean annual salinity, acclimated to low (4.0), moderate (20.0), and high (36.0) salinities at 28.9 °C (84 °F) and exposed to increasing target temperatures of 33.3 °C (92 °F), 35.6 °C (96 °F) or 37.8 °C (100 °F), were measured over a three-week period. Oysters of all stocks were the most sensitive to increasing temperatures at low salinity, dying quicker (i.e., lower median lethal time, LT50) than at the moderate and high salinities and resulting in high cumulative mortalities at all target temperatures. Oysters of all stocks at moderate salinity died the slowest with high cumulative mortalities only at the two highest temperatures. The F1 oysters from the more southern and hypersaline Upper Laguna Madre estuary were generally more tolerant to prolonged higher temperatures (higher LT50) than stocks originating from lower salinity estuaries, most notably at the highest salinity. Using the measured temperatures oysters were exposed to, 3-day median lethal Celsius degrees (LD50) were estimated for each stock at each salinity. The lowest 3-day LD50 (35.1-36.0 °C) for all stocks was calculated at a salinity of 4.0, while the highest 3-day LD50 (40.1-44.0 °C) was calculated at a salinity of 20.0.
Collapse
Affiliation(s)
- Danielle A Marshall
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Nicholas C Coxe
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Megan K La Peyre
- U.S. Geological Survey, Louisiana Fish and Wildlife Cooperative Research Unit, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - William C Walton
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Dauphin Island, AL, 36528, USA
| | - F Scott Rikard
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Dauphin Island, AL, 36528, USA
| | - Jennifer Beseres Pollack
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University Corpus Christi, Texas, 78412, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jerome F La Peyre
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
168
|
Stavrakidis-Zachou O, Lika K, Michail P, Tsalafouta A, Mohamed AH, Nikos P. Thermal tolerance, metabolic scope and performance of meagre, Argyrosomus regius, reared under high water temperatures. J Therm Biol 2021; 100:103063. [PMID: 34503801 DOI: 10.1016/j.jtherbio.2021.103063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/06/2021] [Accepted: 08/01/2021] [Indexed: 01/20/2023]
Abstract
This article reports on the thermal tolerance, metabolic capacity and performance of juvenile meagre (Argyrosomus regius) reared under three high water temperatures (24, 29 and 34 °C) for three months. The analysis includes the thermal effects on the growth performance, metabolism and physiology of meagre, including a range of molecular, haematological, metabolic, enzymatic and hormonal indicators, as well as the effects on the proximate composition and ingestion speed. Meagre performs best between 24 and 29 °C while the temperature of 34 °C is very close to the upper end of its temperature tolerance range. At 34 °C meagre exhibits a poor growth performance and physiological status, increased blood clotting, high mortality rates and a diminished capacity for aerobic metabolism, as indicated by its low aerobic scope (129 mg kg-1 h-1). Meagre may tolerate short exposures to high temperatures after sufficient acclimation (Critical thermal maximum of 37.5 °C after acclimation to 29 °C) but its overall performance declines under prolonged exposure, suggesting that this emerging aquaculture species may be vulnerable to global warming. Our work corroborates previous findings on the thermal preferences of the species, identifies critical biological thresholds, and provides insights into the effects of prolonged exposure to high temperature regimes.
Collapse
Affiliation(s)
- Orestis Stavrakidis-Zachou
- Department of Biology, University of Crete, Heraklion, 71003, Crete, Greece; Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, 71500, Crete, Greece.
| | - Konstadia Lika
- Department of Biology, University of Crete, Heraklion, 71003, Crete, Greece
| | - Pavlidis Michail
- Department of Biology, University of Crete, Heraklion, 71003, Crete, Greece
| | - Aleka Tsalafouta
- Department of Biology, University of Crete, Heraklion, 71003, Crete, Greece
| | - Asaad H Mohamed
- Beacon Development, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Papandroulakis Nikos
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, 71500, Crete, Greece
| |
Collapse
|
169
|
Filice M, Imbrogno S, Gattuso A, Cerra MC. Hypoxic and Thermal Stress: Many Ways Leading to the NOS/NO System in the Fish Heart. Antioxidants (Basel) 2021; 10:1401. [PMID: 34573033 PMCID: PMC8471457 DOI: 10.3390/antiox10091401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Teleost fish are often regarded with interest for the remarkable ability of several species to tolerate even dramatic stresses, either internal or external, as in the case of fluctuations in O2 availability and temperature regimes. These events are naturally experienced by many fish species under different time scales, but they are now exacerbated by growing environmental changes. This further challenges the intrinsic ability of animals to cope with stress. The heart is crucial for the stress response, since a proper modulation of the cardiac function allows blood perfusion to the whole organism, particularly to respiratory organs and the brain. In cardiac cells, key signalling pathways are activated for maintaining molecular equilibrium, thus improving stress tolerance. In fish, the nitric oxide synthase (NOS)/nitric oxide (NO) system is fundamental for modulating the basal cardiac performance and is involved in the control of many adaptive responses to stress, including those related to variations in O2 and thermal regimes. In this review, we aim to illustrate, by integrating the classic and novel literature, the current knowledge on the NOS/NO system as a crucial component of the cardiac molecular mechanisms that sustain stress tolerance and adaptation, thus providing some species, such as tolerant cyprinids, with a high resistance to stress.
Collapse
Affiliation(s)
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.F.); (M.C.C.)
| | - Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.F.); (M.C.C.)
| | | |
Collapse
|
170
|
Dwane C, Rundle SD, Tills O, Rezende EL, Galindo J, Rolán-Alvarez E, Truebano M. Divergence in Thermal Physiology Could Contribute to Vertical Segregation in Intertidal Ecotypes of Littorina saxatilis. Physiol Biochem Zool 2021; 94:353-365. [PMID: 34431748 DOI: 10.1086/716176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThermal stress is a potentially important selective agent in intertidal marine habitats, but the role that thermal tolerance might play in local adaptation across shore height has been underexplored. Northwest Spain is home to two morphologically distinct ecotypes of the periwinkle Littorina saxatilis, separated by shore height and subject to substantial differences in thermal stress exposure. However, despite other biotic and abiotic drivers of ecotype segregation being well studied, their thermal tolerance has not been previously characterized. We investigated thermal tolerance across multiple life history stages by employing the thermal death time (TDT) approach to determine (i) whether the two ecotypes differ in thermal tolerance and (ii) how any differences vary with life history stage. Adults of the two ecotypes differed in their thermal tolerance in line with their shore position: the upper-shore ecotype, which experiences more extreme temperatures, exhibited greater endurance of thermal stress compared with the lower-shore ecotype. This difference was most pronounced at the highest temperatures tested. The proximate physiological basis for these differences is unknown but likely due to a multifarious interaction of traits affecting different parts of the TDT curve. Differences in tolerance between ecotypes were less pronounced in early life history stages but increased with ontogeny, suggesting partial divergence of this trait during development. Thermal tolerance could potentially play an important role in maintaining population divergence and genetic segregation between the two ecotypes, since the increased thermal sensitivity of the lower-shore ecotype may limit its dispersal onto the upper shore and so restrict gene flow.
Collapse
|
171
|
Auer SK, Agreda E, Chen AH, Irshad M, Solowey J. Late-stage pregnancy reduces upper thermal tolerance in a live-bearing fish. J Therm Biol 2021; 99:103022. [PMID: 34420649 DOI: 10.1016/j.jtherbio.2021.103022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/23/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Upper thermal limits are considered a key determinant of a population's ability to persist in the face of extreme heat events. However, these limits differ considerably among individuals within a population, and the mechanisms underlying this differential sensitivity are not well understood. Upper thermal tolerance in aquatic ectotherms is thought to be determined by a mismatch between oxygen supply and the increased metabolic demands associated with warmer waters. As such, tolerance is expected to decline during reproduction given the heightened oxygen demand for gamete production and maintenance. Among live-bearing species, upper thermal tolerance of reproductive adults may decline even further after fertilization due to the cost of meeting the increasing oxygen demands of developing embryos. We examined the upper thermal tolerance of live-bearing female Trinidadian guppies at different stages of reproduction and found that critical thermal maximum was similar during the egg yolking and early embryos stage but then declined by almost 0.5 °C during late pregnancy when oxygen demands are the greatest. These results are consistent with the hypothesis that oxygen limitation sets thermal limits and show that reproduction is associated with a decline in upper thermal tolerance.
Collapse
|
172
|
Bouyoucos IA, Trujillo JE, Weideli OC, Nakamura N, Mourier J, Planes S, Simpfendorfer CA, Rummer JL. Investigating links between thermal tolerance and oxygen supply capacity in shark neonates from a hyperoxic tropical environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146854. [PMID: 33853007 DOI: 10.1016/j.scitotenv.2021.146854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Temperature and oxygen limit the distribution of marine ectotherms. Haematological traits underlying blood-oxygen carrying capacity are thought to be correlated with thermal tolerance in certain fishes, and this relationship is hypothesised to be explained by oxygen supply capacity. We tested this hypothesis using reef shark neonates as experimental models because they live near their upper thermal limits and are physiologically sensitive to low oxygen conditions. We first described in situ associations between temperature and oxygen at the study site (Moorea, French Polynesia) and found that the habitats for reef shark neonates (Carcharhinus melanopterus and Negaprion acutidens) were hyperoxic at the maximum recorded temperatures. Next, we tested for in situ associations between thermal habitat characteristics and haematological traits of neonates. Contrary to predictions, we only demonstrated a negative association between haemoglobin concentration and maximum habitat temperatures in C. melanopterus. Next, we tested for ex situ associations between critical thermal maximum (CTMax) and haematological traits, but only demonstrated a negative association between haematocrit and CTMax in C. melanopterus. Finally, we measured critical oxygen tension (pcrit) ex situ and estimated its temperature sensitivity to predict oxygen-dependent values of CTMax. Estimated temperature sensitivity of pcrit was similar to reported values for sharks and skates, and predicted values for CTMax equalled maximum habitat temperatures. These data demonstrate unique associations between haematological traits and thermal tolerance in a reef shark that are likely not explained by oxygen supply capacity. However, a relationship between oxygen supply capacity and thermal tolerance remains to be demonstrated empirically.
Collapse
Affiliation(s)
- Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia; PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France.
| | - José E Trujillo
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| | - Ornella C Weideli
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Nao Nakamura
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Johann Mourier
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France; Laboratoire d'Excellence "CORAIL", EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia; Université de Corse Pasquale Paoli, UMS 3514 Plateforme Marine Stella Mare, 20620 Biguglia, France
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France; Laboratoire d'Excellence "CORAIL", EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
173
|
Mackey TE, Hasler CT, Durhack T, Jeffrey JD, Macnaughton CJ, Ta K, Enders EC, Jeffries KM. Molecular and physiological responses predict acclimation limits in juvenile brook trout (Salvelinus fontinalis). J Exp Biol 2021; 224:271813. [PMID: 34382658 DOI: 10.1242/jeb.241885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/13/2021] [Indexed: 11/20/2022]
Abstract
Understanding the resilience of ectotherms to high temperatures is essential because of the influence of climate change on aquatic ecosystems. The ability of species to acclimate to high temperatures may determine whether populations can persist in their native ranges. We examined physiological and molecular responses of juvenile brook trout (Salvelinus fontinalis) to six acclimation temperatures (5, 10, 15, 20, 23 and 25°C) that span the thermal distribution of the species to predict acclimation limits. Brook trout exhibited an upregulation of stress-related mRNA transcripts (heat shock protein 90-beta, heat shock cognate 71 kDa protein, glutathione peroxidase 1) and downregulation of transcription factors and osmoregulation-related transcripts (nuclear protein 1, Na+/K+/2Cl- co-transporter-1-a) at temperatures ≥20°C. We then examined the effects of acclimation temperature on metabolic rate (MR) and physiological parameters in fish exposed to an acute exhaustive exercise and air exposure stress. Fish acclimated to temperatures ≥20°C exhibited elevated plasma cortisol and glucose, and muscle lactate after exposure to the acute stress. Fish exhibited longer MR recovery times at 15 and 20°C compared with the 5 and 10°C groups; however, cortisol levels remained elevated at temperatures ≥20°C after 24 h. Oxygen consumption in fish acclimated to 23°C recovered quickest after exposure to acute stress. Standard MR was highest and factorial aerobic scope was lowest for fish held at temperatures ≥20°C. Our findings demonstrate how molecular and physiological responses predict acclimation limits in a freshwater fish as the brook trout in the present study had a limited ability to acclimate to temperatures beyond 20°C.
Collapse
Affiliation(s)
- Theresa E Mackey
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada, R3B 2E9
| | - Caleb T Hasler
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada, R3B 2E9
| | - Travis Durhack
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2.,Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, Canada, R3T 2N6
| | - Jennifer D Jeffrey
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | | | - Kimberly Ta
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | - Eva C Enders
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, Canada, R3T 2N6
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| |
Collapse
|
174
|
Gamperl AK, Syme DA. Temperature effects on the contractile performance and efficiency of oxidative muscle from a eurythermal versus a stenothermal salmonid. J Exp Biol 2021; 224:jeb242487. [PMID: 34350949 PMCID: PMC8353165 DOI: 10.1242/jeb.242487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 01/18/2023]
Abstract
We compared the thermal sensitivity of oxidative muscle function between the eurythermal Atlantic salmon (Salmo salar) and the more stenothermal Arctic char (Salvelinus alpinus; which prefers cooler waters). Power output was measured in red skeletal muscle strips and myocardial trabeculae, and efficiency (net work/energy consumed) was measured for trabeculae, from cold (6°C) and warm (15°C) acclimated fish at temperatures from 2 to 26°C. The mass-specific net power produced by char red muscle was greater than in salmon, by 2-to 5-fold depending on test temperature. Net power first increased, then decreased, when the red muscle of 6°C-acclimated char was exposed to increasing temperature. Acclimation to 15°C significantly impaired mass-specific power in char (by ∼40-50%) from 2 to 15°C, but lessened its relative decrease between 15 and 26°C. In contrast, maximal net power increased, and then plateaued, with increasing temperature in salmon from both acclimation groups. Increasing test temperature resulted in a ∼3- to 5-fold increase in maximal net power produced by ventricular trabeculae in all groups, and this effect was not influenced by acclimation temperature. Nonetheless, lengthening power was higher in trabeculae from warm-acclimated char, and char trabeculae could not contract as fast as those from salmon. Finally, the efficiency of myocardial net work was approximately 2-fold greater in 15°C-acclimated salmon than char (∼15 versus 7%), and highest at 20°C in salmon. This study provides several mechanistic explanations as to their inter-specific difference in upper thermal tolerance, and potentially why southern char populations are being negatively impacted by climate change.
Collapse
Affiliation(s)
- A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St John's, NL, CanadaA1C 5S7
| | - Douglas A. Syme
- Department of Biological Sciences, University of Calgary, Calgary, AB, CanadaT2N 1N4
| |
Collapse
|
175
|
Prinzing TS, Zhang Y, Wegner NC, Dulvy NK. Analytical methods matter too: Establishing a framework for estimating maximum metabolic rate for fishes. Ecol Evol 2021; 11:9987-10003. [PMID: 34367554 PMCID: PMC8328417 DOI: 10.1002/ece3.7732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022] Open
Abstract
Advances in experimental design and equipment have simplified the collection of maximum metabolic rate (MMR) data for a more diverse array of water-breathing animals. However, little attention has been given to the consequences of analytical choices in the estimation of MMR. Using different analytical methods can reduce the comparability of MMR estimates across species and studies and has consequences for the burgeoning number of macroecological meta-analyses using metabolic rate data. Two key analytical choices that require standardization are the time interval, or regression window width, over which MMR is estimated, and the method used to locate that regression window within the raw oxygen depletion trace. Here, we consider the effect of both choices by estimating MMR for two shark and two salmonid species of different activity levels using multiple regression window widths and three analytical methods: rolling regression, sequential regression, and segmented regression. Shorter regression windows yielded higher metabolic rate estimates, with a risk that the shortest windows (<1-min) reflect more system noise than MMR signal. Rolling regression was the best candidate model and produced the highest MMR estimates. Sequential regression models consistently produced lower relative estimates than rolling regression models, while the segmented regression model was unable to produce consistent MMR estimates across individuals. The time-point of the MMR regression window along the oxygen consumption trace varied considerably across individuals but not across models. We show that choice of analytical method, in addition to more widely understood experimental choices, profoundly affect the resultant estimates of MMR. We recommend that researchers (1) employ a rolling regression model with a reliable regression window tailored to their experimental system and (2) explicitly report their analytical methods, including publishing raw data and code.
Collapse
Affiliation(s)
- Tanya S. Prinzing
- Earth to Ocean Research Group, Department of Biological SciencesSimon Fraser UniversityBurnabyBCCanada
| | - Yangfan Zhang
- Department of Zoology & Faculty of Land and Food SystemsUniversity of British ColumbiaVancouverBCCanada
| | - Nicholas C. Wegner
- Fisheries Resources DivisionSouthwest Fisheries Science CenterNational Marine Fisheries Service (NMFS)National Oceanic and Atmospheric Administration (NOAA)La JollaCalifornia
| | - Nicholas K. Dulvy
- Earth to Ocean Research Group, Department of Biological SciencesSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
176
|
Horn KM, Fournet MEH, Liautaud KA, Morton LN, Cyr AM, Handley AL, Dotterweich MM, Anderson KN, Zippay ML, Hardy KM. Effects of Intertidal Position on Metabolism and Behavior in the Acorn Barnacle, Balanus glandula. Integr Org Biol 2021; 3:obab010. [PMID: 34308149 PMCID: PMC8292928 DOI: 10.1093/iob/obab010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The intertidal zone is characterized by persistent, tidally-driven fluctuations in both abiotic (e.g., temperature, oxygen, and salinity) and biotic (e.g., food availability and predation) factors, which make this a physiologically challenging habitat for resident organisms. The relative magnitude and degree of variability of environmental stress differ between intertidal zones, with the most extreme physiological stress often being experienced by organisms in the high intertidal. Given that so many of the constantly shifting parameters in this habitat are primary drivers of metabolic rate (e.g., temperature, [O2], and food availability), we hypothesized that sessile conspecifics residing in different tidal zones would exhibit distinct “metabolic phenotypes,” a term we use to collectively describe the organisms’ baseline metabolic performance and capacity. To investigate this hypothesis, we collected acorn barnacles (Balanus glandula) from low, mid, and high intertidal positions in San Luis Obispo Bay, CA, and measured a suite of biochemical (whole-animal citrate synthase (CS) and lactate dehydrogenase (LDH) activity, and aerial [D-lactate]), physiological (O2 consumption rates), morphological (body size), and behavioral (e.g., cirri beat frequency and percentage of time operculum open) indices of metabolism. We found tidal zone-dependent differences in B. glandula metabolism that primarily related to anaerobic capacity, cirral activity patterns, and body size. Barnacles from the low intertidal tended to have a greater capacity for anaerobic metabolism (i.e., increased LDH activity and increased baseline [D-lactate]), have reduced cirral beating activity—and presumably reduced feeding—when submerged, and be smaller in size compared to conspecifics in the high intertidal. We did not, however, see any D-lactate accumulation in barnacles from any tidal height throughout 96 h of air exposure. This trend indicates that the enhanced capacity of low intertidal barnacles for anaerobic metabolism may have evolved to support metabolism during more prolonged episodes of emersion or during events other than emersion (e.g., coastal hypoxia and predation). There were also no significant differences in CS activity or baseline O2 consumption rates (in air or seawater at 14°C) across tidal heights, which imply that aerobic metabolic capacity may not be as sensitive to tidal position as anaerobic processes. Understanding how individuals occupying different shore heights differ in their metabolic capacity becomes increasingly interesting in the context of global climate change, given that the intertidal zone is predicted to experience even greater extremes in abiotic stress.
Collapse
Affiliation(s)
- Kali M Horn
- Department of Biological Sciences, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | | | - Kaitlin A Liautaud
- Department of Biological Sciences, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Lynsey N Morton
- Department of Biological Sciences, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Allie M Cyr
- Department of Biological Sciences, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Alyse L Handley
- Department of Biological Sciences, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Megan M Dotterweich
- Department of Biological Sciences, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kyra N Anderson
- Department of Biological Sciences, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Mackenzie L Zippay
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA
| | - Kristin M Hardy
- Department of Biological Sciences, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
177
|
Morphological response accompanying size reduction of belemnites during an Early Jurassic hyperthermal event modulated by life history. Sci Rep 2021; 11:14480. [PMID: 34262074 PMCID: PMC8280180 DOI: 10.1038/s41598-021-93850-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most common responses of marine ectotherms to rapid warming is a reduction in body size, but the underlying reasons are unclear. Body size reductions have been documented alongside rapid warming events in the fossil record, such as across the Pliensbachian-Toarcian boundary (PToB) event (~ 183 Mya). As individuals grow, parallel changes in morphology can indicate details of their ecological response to environmental crises, such as changes in resource acquisition, which may anticipate future climate impacts. Here we show that the morphological growth of a marine predator belemnite species (extinct coleoid cephalopods) changed significantly over the PToB warming event. Increasing robustness at different ontogenetic stages likely results from indirect consequences of warming, like resource scarcity or hypercalcification, pointing toward varying ecological tolerances among species. The results of this study stress the importance of taking life history into account as well as phylogeny when studying impacts of environmental stressors on marine organisms.
Collapse
|
178
|
Agyekum TP, Botwe PK, Arko-Mensah J, Issah I, Acquah AA, Hogarh JN, Dwomoh D, Robins TG, Fobil JN. A Systematic Review of the Effects of Temperature on Anopheles Mosquito Development and Survival: Implications for Malaria Control in a Future Warmer Climate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7255. [PMID: 34299706 PMCID: PMC8306597 DOI: 10.3390/ijerph18147255] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022]
Abstract
The rearing temperature of the immature stages can have a significant impact on the life-history traits and the ability of adult mosquitoes to transmit diseases. This review assessed published evidence of the effects of temperature on the immature stages, life-history traits, insecticide susceptibility, and expression of enzymes in the adult Anopheles mosquito. Original articles published through 31 March 2021 were systematically retrieved from Scopus, Google Scholar, Science Direct, PubMed, ProQuest, and Web of Science databases. After applying eligibility criteria, 29 studies were included. The review revealed that immature stages of An. arabiensis were more tolerant (in terms of survival) to a higher temperature than An. funestus and An. quadriannulatus. Higher temperatures resulted in smaller larval sizes and decreased hatching and pupation time. The development rate and survival of An. stephensi was significantly reduced at a higher temperature than a lower temperature. Increasing temperatures decreased the longevity, body size, length of the gonotrophic cycle, and fecundity of Anopheles mosquitoes. Higher rearing temperatures increased pyrethroid resistance in adults of the An. arabiensis SENN DDT strain, and increased pyrethroid tolerance in the An. arabiensis SENN strain. Increasing temperature also significantly increased Nitric Oxide Synthase (NOS) expression and decreased insecticide toxicity. Both extreme low and high temperatures affect Anopheles mosquito development and survival. Climate change could have diverse effects on Anopheles mosquitoes. The sensitivities of Anopeheles mosquitoes to temperature differ from species to species, even among the same complex. Notwithstanding, there seem to be limited studies on the effects of temperature on adult life-history traits of Anopheles mosquitoes, and more studies are needed to clarify this relationship.
Collapse
Affiliation(s)
- Thomas P. Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| | - Paul K. Botwe
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| | - Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| | - Augustine A. Acquah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| | - Jonathan N. Hogarh
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana;
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, College of Health Sciences, University of Ghana, Accra 00233, Ghana;
| | - Thomas G. Robins
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA;
| | - Julius N. Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra 00233, Ghana; (P.K.B.); (J.A.-M.); (I.I.); (A.A.A.); (J.N.F.)
| |
Collapse
|
179
|
Paul N, Novais SC, Silva CSE, Mendes S, Kunzmann A, Lemos MFL. Global warming overrides physiological anti-predatory mechanisms in intertidal rock pool fish Gobius paganellus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145736. [PMID: 33640546 DOI: 10.1016/j.scitotenv.2021.145736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
In nature, a multitude of factors influences the fitness of an organism at a given time, which makes single stressor assessments far from ecologically relevant scenarios. This study focused on the effects of water temperature and predation stress on the metabolism and body mass gain of a common intertidal rock pool fish, Gobius paganellus, addressing the following hypotheses: (1) the energy metabolism of G. paganellus under predation stress is reduced; (2) G. paganellus shows thermal compensation under heat stress; and (3) thermal stress is the dominant stressor that may override predation stress responses. Individuals were exposed to simulated predation stress and temperature increase from 20 °C to 29 °C, and both stressors combined. Physiological effects were addressed using biochemical biomarkers related with energy metabolism (isocitrate dehydrogenase, lactate dehydrogenase, energy available, energy consumption rates), oxidative stress (superoxide dismutase, catalase, DNA damage, lipid peroxidation), and biotransformation (glutathione-S-transferase). The results of this study revealed that predation stress reduced the cellular metabolism of G. paganellus, and enhanced storage of protein reserves. As hypothesized, hyperthermia decreased the aerobic mitochondrial metabolism, indicating thermal compensation mechanisms to resist against unfavourable temperatures. Hyperthermia was the dominant stressor overriding the physiological responses to predation stress. Both stressors combined might further have synergistically activated detoxification pathways, even though not strong enough to counteract lipid peroxidation and DNA damage completely. The synergistic effect of combined thermal and predation stress thus may not only increase the risk of being preyed upon, but also may indicate extra energy trade-off for the basal metabolism, which in turn may have ecologically relevant consequences for general body functions such as somatic growth and reproduction. The present findings clearly underline the ecological importance of multi-stressor assessments to provide a better and holistic picture of physiological responses towards more realistic evaluations of climate change consequences for intertidal populations.
Collapse
Affiliation(s)
- Nina Paul
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstr. 6, 28359 Bremen, Germany.
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520 - 630 Peniche, Portugal
| | - Cátia S E Silva
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520 - 630 Peniche, Portugal
| | - Susana Mendes
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520 - 630 Peniche, Portugal
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstr. 6, 28359 Bremen, Germany
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520 - 630 Peniche, Portugal.
| |
Collapse
|
180
|
Telemeco RS, Gangloff EJ. Introduction to the special issue-Beyond CT MAX and CT MIN : Advances in studying the thermal limits of reptiles and amphibians. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:5-12. [PMID: 33544981 DOI: 10.1002/jez.2447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 01/27/2023]
Abstract
Two themes emerging from the special issue "Beyond CTMAX and CTMIN : Advances in Studying the Thermal Limits of Reptiles and Amphibians" are: (1) the need to identify mechanisms that determine the shape of thermal performance curves and (2) how these curves can be best used predictively.
Collapse
Affiliation(s)
- Rory S Telemeco
- Department of Biology, California State University Fresno, Fresno, California, USA
| | - Eric J Gangloff
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio, USA
| |
Collapse
|
181
|
Summer Is Coming! Tackling Ocean Warming in Atlantic Salmon Cage Farming. Animals (Basel) 2021; 11:ani11061800. [PMID: 34208637 PMCID: PMC8234874 DOI: 10.3390/ani11061800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Atlantic salmon (Salmo salar) cage farming has traditionally been located at higher latitudes where cold seawater temperatures favor this practice. However, these regions can be impacted by ocean warming and heat waves that push seawater temperature beyond the thermo-tolerance limits of this species. As more mass mortality events are reported every year due to abnormal sea temperatures, the Atlantic salmon cage aquaculture industry acknowledges the need to adapt to a changing ocean. This paper reviews adult Atlantic salmon thermal tolerance limits, as well as the deleterious eco-physiological consequences of heat stress, with emphasis on how it negatively affects sea cage aquaculture production cycles. Biotechnological solutions targeting the phenotypic plasticity of Atlantic salmon and its genetic diversity, particularly that of its southernmost populations at the limit of its natural zoogeographic distribution, are discussed. Some of these solutions include selective breeding programs, which may play a key role in this quest for a more thermo-tolerant strain of Atlantic salmon that may help the cage aquaculture industry to adapt to climate uncertainties more rapidly, without compromising profitability. Omics technologies and precision breeding, along with cryopreservation breakthroughs, are also part of the available toolbox that includes other solutions that can allow cage farmers to continue to produce Atlantic salmon in the warmer waters of the oceans of tomorrow.
Collapse
|
182
|
Iverson ENK, Nix R, Abebe A, Havird JC. Thermal Responses Differ across Levels of Biological Organization. Integr Comp Biol 2021; 60:361-374. [PMID: 32483618 DOI: 10.1093/icb/icaa052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Temperature is one of the most important environmental factors driving the genome-to-phenome relationship. Metabolic rates and related biological processes are predicted to increase with temperature due to the biophysical laws of chemical reactions. However, selection can also act on these processes across scales of biological organization, from individual enzymes to whole organisms. Although some studies have examined thermal responses across multiple scales, there is no general consensus on how these responses vary depending on the level of organization, or whether rates actually follow predicted theoretical patterns such as Arrhenius-like exponential responses or thermal performance curves (TPCs) that show peak responses. Here, we performed a meta-analysis on studies of ectotherms where biological rates were measured across the same set of temperatures, but at multiple levels of biological organization: enzyme activities, mitochondrial respiration, and/or whole-animal metabolic rates. Our final dataset consisted of 235 pairwise comparisons between levels of organization from 13 publications. Thermal responses differed drastically across levels of biological organization, sometimes showing completely opposite patterns. We developed a new effect size metric, "organizational disagreement" (OD) to quantify the difference in responses among levels of biological organization. Overall, rates at higher levels of biological organization (e.g., whole animal metabolic rates) increased more quickly with temperature than rates at lower levels, contrary to our predictions. Responses may differ across levels due to differing consequences of biochemical laws with increasing organization or due to selection for different responses. However, taxa and tissues examined generally did not affect OD. Theoretical TPCs, where rates increase to a peak value and then drop, were only rarely observed (12%), possibly because a broad range of test temperatures was rarely investigated. Exponential increases following Arrhenius predictions were more common (29%). This result suggests a classic assumption about thermal responses in biological rates is rarely observed in empirical datasets, although our results should be interpreted cautiously due to the lack of complete thermal profiles. We advocate for authors to explicitly address OD in their interpretations and to measure thermal responses across a wider, more incremental range of temperatures. These results further emphasize the complexity of connecting the genome to the phenome when environmental plasticity is incorporated: the impact of the environment on the phenotype can depend on the scale of organization considered.
Collapse
Affiliation(s)
- Erik N K Iverson
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rachel Nix
- Hankamer School of Business, Baylor University, Waco, TX 76798, USA
| | - Ash Abebe
- Department of Mathematics & Statistics, Auburn University, Auburn, AL 36849, USA
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
183
|
McKenzie DJ, Geffroy B, Farrell AP. Effects of global warming on fishes and fisheries. JOURNAL OF FISH BIOLOGY 2021; 98:1489-1492. [PMID: 34312853 DOI: 10.1111/jfb.14762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- David J McKenzie
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Benjamin Geffroy
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
184
|
du Pontavice H, Gascuel D, Reygondeau G, Stock C, Cheung WWL. Climate-induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. GLOBAL CHANGE BIOLOGY 2021; 27:2608-2622. [PMID: 33660891 DOI: 10.1111/gcb.15576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 05/28/2023]
Abstract
Climate change impacts on marine life in the world ocean are expected to accelerate over the 21st century, affecting the structure and functioning of food webs. We analyzed a key aspect of this issue, focusing on the impact of changes in biomass flow within marine food webs and the resulting effects on ecosystem biomass and production. We used a modeling framework based on a parsimonious quasi-physical representation of biomass flow through the food web, to explore the future of marine consumer biomass and production at the global scale over the 21st century. Biomass flow is determined by three climate-related factors: primary production entering the food web, trophic transfer efficiency describing losses in biomass transfers from one trophic level (TL) to the next, and flow kinetic measuring the speed of biomass transfers within the food web. Using climate projections of three earth system models, we calculated biomass and production at each TL on a 1° latitude ×1° longitude grid of the global ocean under two greenhouse gas emission scenarios. We show that the alterations of the trophic functioning of marine ecosystems, mainly driven by faster and less efficient biomass transfers and decreasing primary production, would lead to a projected decline in total consumer biomass by 18.5% by 2090-2099 relative to 1986-2005 under the "no mitigation policy" scenario. The projected decrease in transfer efficiency is expected to amplify impacts at higher TLs, leading to a 21.3% decrease in abundance of predators and thus to a change in the overall trophic structure of marine ecosystems. Marine animal production is also projected to decline but to a lesser extent than biomass. Our study highlights that the temporal and spatial projected changes in biomass and production would imply direct repercussions on the future of world fisheries and beyond all services provided by Ocean.
Collapse
Affiliation(s)
- Hubert du Pontavice
- ESE, Ecology and Ecosystem Health, Institut Agro, Inrae, Rennes, France
- Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ, USA
| | - Didier Gascuel
- ESE, Ecology and Ecosystem Health, Institut Agro, Inrae, Rennes, France
| | - Gabriel Reygondeau
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Charles Stock
- Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ, USA
| | - William W L Cheung
- Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
185
|
McKenzie DJ, Zhang Y, Eliason EJ, Schulte PM, Claireaux G, Blasco FR, Nati JJH, Farrell AP. Intraspecific variation in tolerance of warming in fishes. JOURNAL OF FISH BIOLOGY 2021; 98:1536-1555. [PMID: 33216368 DOI: 10.1111/jfb.14620] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/09/2020] [Accepted: 11/17/2020] [Indexed: 05/12/2023]
Abstract
Intraspecific variation in key traits such as tolerance of warming can have profound effects on ecological and evolutionary processes, notably responses to climate change. The empirical evidence for three primary elements of intraspecific variation in tolerance of warming in fishes is reviewed. The first is purely mechanistic that tolerance varies across life stages and as fishes become mature. The limited evidence indicates strongly that this is the case, possibly because of universal physiological principles. The second is intraspecific variation that is because of phenotypic plasticity, also a mechanistic phenomenon that buffers individuals' sensitivity to negative impacts of global warming in their lifetime, or to some extent through epigenetic effects over successive generations. Although the evidence for plasticity in tolerance to warming is extensive, more work is required to understand underlying mechanisms and to reveal whether there are general patterns. The third element is intraspecific variation based on heritable genetic differences in tolerance, which underlies local adaptation and may define long-term adaptability of a species in the face of ongoing global change. There is clear evidence of local adaptation and some evidence of heritability of tolerance to warming, but the knowledge base is limited with detailed information for only a few model or emblematic species. There is also strong evidence of structured variation in tolerance of warming within species, which may have ecological and evolutionary significance irrespective of whether it reflects plasticity or adaptation. Although the overwhelming consensus is that having broader intraspecific variation in tolerance should reduce species vulnerability to impacts of global warming, there are no sufficient data on fishes to provide insights into particular mechanisms by which this may occur.
Collapse
Affiliation(s)
- David J McKenzie
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Yangfan Zhang
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Centre Ifremer de Bretagne, Plouzané, France
| | - Felipe R Blasco
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos - UFSCar/São Paulo State University, UNESP Campus Araraquara, Araraquara, Brazil
| | - Julie J H Nati
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
186
|
Leung JYS, Russell BD, Coleman MA, Kelaher BP, Connell SD. Long-term thermal acclimation drives adaptive physiological adjustments of a marine gastropod to reduce sensitivity to climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145208. [PMID: 33548706 DOI: 10.1016/j.scitotenv.2021.145208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Ocean warming is predicted to challenge the persistence of a variety of marine organisms, especially when combined with ocean acidification. While temperature affects virtually all physiological processes, the extent to which thermal history mediates the adaptive capacity of marine organisms to climate change has been largely overlooked. Using populations of a marine gastropod (Turbo undulatus) with different thermal histories (cool vs. warm), we compared their physiological adjustments following exposure (8-week) to ocean acidification and warming. Compared to cool-acclimated counterparts, we found that warm-acclimated individuals had a higher thermal threshold (i.e. increased CTmax by 2 °C), which was unaffected by the exposure to ocean acidification and warming. Thermal history also strongly mediated physiological effects, where warm-acclimated individuals adjusted to warming by conserving energy, suggested by lower respiration and ingestion rates, energy budget (i.e. scope for growth) and O:N ratio. After exposure to warming, warm-acclimated individuals had higher metabolic rates and greater energy budget due to boosted ingestion rates, but such compensatory feeding disappeared when combined with ocean acidification. Overall, we suggest that thermal history can be a critical mediator of physiological performance under future climatic conditions. Given the relatively gradual rate of global warming, marine organisms may be better able to adaptively adjust their physiology to future climate than what short-term experiments currently convey.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Bayden D Russell
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Melinda A Coleman
- New South Wales Department of Primary Industries, Fisheries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia
| | - Brendan P Kelaher
- National Marine Science Centre and Marine Ecology Research Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW 2450, Australia
| | - Sean D Connell
- Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
187
|
Feidantsis K, Pörtner HO, Giantsis IA, Michaelidis B. Advances in understanding the impacts of global warming on marine fishes farmed offshore: Sparus aurata as a case study. JOURNAL OF FISH BIOLOGY 2021; 98:1509-1523. [PMID: 33161577 DOI: 10.1111/jfb.14611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Monitoring variations in proteins involved in metabolic processes, oxidative stress responses, cell signalling and protein homeostasis is a powerful tool for developing hypotheses of how environmental variations affect marine organisms' physiology and biology. According to the oxygen- and capacity-limited thermal tolerance hypothesis, thermal acclimation mechanisms such as adjusting the activities of enzymes of intermediary metabolism and of antioxidant defence mechanisms, inducing heat shock proteins (Hsps) or activating mitogen-activated protein kinases may all shift tolerance windows. Few studies have, however, investigated the molecular, biochemical and organismal responses by fishes to seasonal temperature variations in the field to link these to laboratory findings. Investigation of the impacts of global warming on fishes farmed offsore, in the open sea, can provide a stepping stone towards understanding effects on wild populations because they experience similar environmental fluctuations. Over the last 30 years, farming of the gilthead sea bream Sparus aurata (Linnaeus 1758) has become widespread along the Mediterranean coastline, rendering this species a useful case study. Based on available information, the prevailing seasonal temperature variations expose the species to the upper and lower limits of its thermal range. Evidence for this includes oxygen restriction, reduced feeding, reduced responsiveness to environmental stimuli, plus a range of molecular and biochemical indicators that change across the thermal range. Additionally, close relationships between biochemical pathways and seasonal patterns of metabolism indicate a connection between energy demand and metabolic processes on the one hand, and cellular stress responses such as oxidative stress, inflammation and autophagy on the other. Understanding physiological responses to temperature fluctuations in fishes farmed offshore can provide crucial background information for the conservation and successful management of aquaculture resources in the face of global change.
Collapse
Affiliation(s)
- Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hans O Pörtner
- Alfred-Wegener-Institut für Polar-und Meeresforschung, Physiologie Mariner Tiere, Bremerhaven, Germany
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
188
|
Thermally tolerant intertidal triplefin fish (Tripterygiidae) sustain ATP dynamics better than subtidal species under acute heat stress. Sci Rep 2021; 11:11074. [PMID: 34040122 PMCID: PMC8155050 DOI: 10.1038/s41598-021-90575-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/30/2021] [Indexed: 11/18/2022] Open
Abstract
Temperature is a key factor that affects all levels of organization. Minute shifts away from thermal optima result in detrimental effects that impact growth, reproduction and survival. Metabolic rates of ectotherms are especially sensitive to temperature and for organisms exposed to high acute temperature changes, in particular intertidal species, energetic processes are often negatively impacted. Previous investigations exploring acute heat stress have implicated cardiac mitochondrial function in determining thermal tolerance. The brain, however, is by weight, one of the most metabolically active and arguably the most temperature sensitive organ. It is essentially aerobic and entirely reliant on oxidative phosphorylation to meet energetic demands, and as temperatures rise, mitochondria become less efficient at synthesising the amount of ATP required to meet the increasing demands. This leads to an energetic crisis. Here we used brain homogenate of three closely related triplefin fish species (Bellapiscis medius, Forsterygion lapillum, and Forsterygion varium) and measured respiration and ATP dynamics at three temperatures (15, 25 and 30 °C). We found that the intertidal B. medius and F. lapillum were able to maintain rates of ATP production above rates of ATP hydrolysis at high temperatures, compared to the subtidal F. varium, which showed no difference in rates at 30 °C. These results showed that brain mitochondria became less efficient at temperatures below their respective species thermal limits, and that energetic surplus of ATP synthesis over hydrolysis narrows. In subtidal species synthesis matches hydrolysis, leaving no scope to elevate ATP supply.
Collapse
|
189
|
Seibel BA, Andres A, Birk MA, Burns AL, Shaw CT, Timpe AW, Welsh CJ. Oxygen supply capacity breathes new life into critical oxygen partial pressure (Pcrit). J Exp Biol 2021; 224:jeb.242210. [PMID: 33692079 DOI: 10.1242/jeb.242210] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
The critical oxygen partial pressure (Pcrit), typically defined as the PO2 below which an animal's metabolic rate (MR) is unsustainable, is widely interpreted as a measure of hypoxia tolerance. Here, Pcrit is defined as the PO2 at which physiological oxygen supply (α0) reaches its maximum capacity (α; µmol O2 g-1 h-1 kPa-1). α is a species- and temperature-specific constant describing the oxygen dependency of the maximum metabolic rate (MMR=PO2×α) or, equivalently, the MR dependence of Pcrit (Pcrit=MR/α). We describe the α-method, in which the MR is monitored as oxygen declines and, for each measurement period, is divided by the corresponding PO2 to provide the concurrent oxygen supply (α0=MR/PO2). The highest α0 value (or, more conservatively, the mean of the three highest values) is designated as α. The same value of α is reached at Pcrit for any MR regardless of previous or subsequent metabolic activity. The MR need not be constant (regulated), standardized or exhibit a clear breakpoint at Pcrit for accurate determination of α. The α-method has several advantages over Pcrit determination and non-linear analyses, including: (1) less ambiguity and greater accuracy, (2) fewer constraints in respirometry methodology and analysis, and (3) greater predictive power and ecological and physiological insight. Across the species evaluated here, α values are correlated with MR, but not Pcrit. Rather than an index of hypoxia tolerance, Pcrit is a reflection of α, which evolves to support maximum energy demands and aerobic scope at the prevailing temperature and oxygen level.
Collapse
Affiliation(s)
- Brad A Seibel
- College of Marine Science, University of South Florida, St Petersburg, FL 33701, USA
| | - Alyssa Andres
- College of Marine Science, University of South Florida, St Petersburg, FL 33701, USA
| | - Matthew A Birk
- College of Marine Science, University of South Florida, St Petersburg, FL 33701, USA
| | - Alexandra L Burns
- College of Marine Science, University of South Florida, St Petersburg, FL 33701, USA
| | - C Tracy Shaw
- College of Marine Science, University of South Florida, St Petersburg, FL 33701, USA
| | - Alexander W Timpe
- College of Marine Science, University of South Florida, St Petersburg, FL 33701, USA
| | - Christina J Welsh
- College of Marine Science, University of South Florida, St Petersburg, FL 33701, USA
| |
Collapse
|
190
|
Jiang X, Dong S, Liu R, Huang M, Dong K, Ge J, Gao Q, Zhou Y. Effects of temperature, dissolved oxygen, and their interaction on the growth performance and condition of rainbow trout (Oncorhynchus mykiss). J Therm Biol 2021; 98:102928. [PMID: 34016351 DOI: 10.1016/j.jtherbio.2021.102928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 11/18/2022]
Abstract
The individual effects of temperature and dissolved oxygen (DO) on rainbow trout (Oncorhynchus mykiss), an important aquaculture species, are clearly established; however, little is known about the interactive effects of these parameters. In this study, the effects of temperature, DO, and their interaction on the growth, antioxidant status, digestive enzyme activity, serum biochemical parameters, and liver IGF-1 expression in rainbow trout were evaluated. Fish (initial weight, 109.98 ± 3.28 g) were reared in a recirculating system for 4 weeks and subjected to 6 treatments at three temperatures (13 °C, 17 °C, and 21 °C) and two DO contents (4.2 mg L-1 and 9.6 mg L-1). Physiological parameters were determined at the end of the trial. Specific growth rate and feed consumption were the highest at 17 °C and the lowest at 21 °C. Additionally, lysozyme, trypsin, lipase, and amylase activities, serum glucose and serum triglyceride contents, and IGF-1 expression decreased significantly at 21 °C and total serum protein and albumin contents were significantly higher at 21 °C than at 13 °C and 17 °C, indicating that high temperature impaired the immunity, digestion, and growth of rainbow trout. However, the adverse effects of high temperature can be alleviated by a high DO content, as evidenced by the smaller increments and decrements of these parameters under hyperoxic conditions than under hypoxic conditions. In response to high temperature stress, an increase in antioxidant enzyme activity led to the removal of oxygen free radicals under hyperoxic conditions; however, this increase was inhibited under hypoxia. Our results indicated that high temperatures have adverse effects on rainbow trout, and these harmful effects can be reduced by a high DO content.
Collapse
Affiliation(s)
- Xuyang Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; Conson CSSC (Qingdao) Ocean Technology CO., LTD., Qingdao, Shandong Province, 266200, China
| | - Shuanglin Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266235, China.
| | - Rongxin Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Ming Huang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Kang Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Jian Ge
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Qinfeng Gao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Yangen Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China
| |
Collapse
|
191
|
Pham LP, Jordal AEO, Nguyen MV, Rønnestad I. Food intake, growth, and expression of neuropeptides regulating appetite in clown anemonefish (Amphiprion ocellaris) exposed to predicted climate changes. Gen Comp Endocrinol 2021; 304:113719. [PMID: 33476660 DOI: 10.1016/j.ygcen.2021.113719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/02/2020] [Accepted: 01/14/2021] [Indexed: 11/28/2022]
Abstract
The clown anemonefish (Amphiprion ocellaris) is a common model species in studies assessing the impact of climate changes on tropical coral fish physiology, metabolism, growth, and stress. However, the basic endocrine principles for the control of food intake and energy homeostasis, under normal and elevated sea temperatures, in this species remain unknown. In this work, we studied food intake and growth in clown anemonefish reared at different temperatures and with different food availability. We also analyzed expression of genes in the melanocortin system, which is believed to be involved in the control of appetite and feeding behavior. These were two paralogues of pomc: pomca and pomcb; two paralogs of agrp: agrp1 and agrp2; and one mc4r-like. Groups of juvenile clown anemonefish were exposed to four experimental treatments combining (orthogonal design) two rearing temperatures: 28 °C (T28; normal) and 32 °C (T32; high) and two feeding regimes: one (1 M; 08:00) or three (3 M; 08:00, 12:00, 15:00) meals per day, fed to satiety by hand. The results showed that high temperature (T32) did not affect the average growth rate but induced a stronger asymmetrical individual body weight of the fish within the population (tank). Lower feeding frequency (1 M) resulted in lower growth rates at both rearing temperatures. Fish reared at high temperature had higher total daily food intake, which correlated with a lower expression of pomca, supporting an anorexigenic role of this gene. High temperature combined with restricted feeding induced higher agrp1 levels and resulted in a higher food intake in the morning meal compared to the control. This supports an orexigenic role for agrp1. mRNA levels of agrp2 responded differently from agrp1, supporting different roles for the paralogues. Levels of mc4r-like inversely correlated with fish body weight, indicating a possible size/stage dependence of gene expression. In conclusion, our results indicate that the melanocortin system is involved in adjusting appetite and food intake of clown anemonefish in response to elevated temperature and low food availability.
Collapse
Affiliation(s)
- Linh P Pham
- Institute of Aquaculture, Nha Trang University, Nha Trang, Viet Nam; Department of Biological Sciences, University of Bergen, Bergen, Norway. https://orcid.org/0000-0003-0520-7134
| | | | - Minh V Nguyen
- Institute of Aquaculture, Nha Trang University, Nha Trang, Viet Nam. https://orcid.org/0000-0003-1805-4018
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
192
|
Jiang ZW, Ma L, Mi CR, Du WG. Effects of hypoxia on the thermal physiology of a high-elevation lizard: implications for upslope-shifting species. Biol Lett 2021; 17:20200873. [PMID: 33726564 DOI: 10.1098/rsbl.2020.0873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Montane reptiles are predicted to move to higher elevations in response to climate warming. However, whether upwards-shifting reptiles will be physiologically constrained by hypoxia at higher elevations remains unknown. We investigated the effects of hypoxic conditions on preferred body temperatures (Tpref) and thermal tolerance capacity of a montane lizard (Phrynocephalus vlangalii) from two populations on the Qinghai-Tibet Plateau. Lizards from 2600 m a.s.l. were exposed to O2 levels mimicking those at 2600 m (control) and 3600 m (hypoxia treatment). Lizards from 3600 m a.s.l. were exposed to O2 levels mimicking those at 3600 m (control) and 4600 m (hypoxia treatment). The Tpref did not differ between the control and hypoxia treatments in lizards from 2600 m. However, lizards from 3600 m selected lower body temperatures when exposed to the hypoxia treatment mimicking the O2 level at 4600 m. Additionally, the hypoxia treatment induced lower critical thermal minimum (CTmin) in lizards from both populations, but did not affect the critical thermal maximum (CTmax) in either population. Our results imply that upwards-shifting reptiles may be constrained by hypoxia if a decrease in Tpref reduces thermally dependent fitness traits, despite no observed effect on their heat tolerance.
Collapse
Affiliation(s)
- Zhong-Wen Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Liang Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,Princeton School of Public and International Affairs, Princeton University, Princeton, NJ 08544, USA
| | - Chun-Rong Mi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| |
Collapse
|
193
|
Leeuwis RHJ, Zanuzzo FS, Peroni EFC, Gamperl AK. Research on sablefish ( Anoplopoma fimbria) suggests that limited capacity to increase heart function leaves hypoxic fish susceptible to heat waves. Proc Biol Sci 2021; 288:20202340. [PMID: 33715435 PMCID: PMC7944113 DOI: 10.1098/rspb.2020.2340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/11/2021] [Indexed: 01/19/2023] Open
Abstract
Studies of heart function and metabolism have been used to predict the impact of global warming on fish survival and distribution, and their susceptibility to acute and chronic temperature increases. Yet, despite the fact that hypoxia and high temperatures often co-occur, only one study has examined the effects of hypoxia on fish thermal tolerance, and the consequences of hypoxia for fish cardiac responses to acute warming have not been investigated. We report that sablefish (Anoplopoma fimbria) did not increase heart rate or cardiac output when warmed while hypoxic, and that this response was associated with reductions in maximum O2 consumption and thermal tolerance (CTmax) of 66% and approximately 3°C, respectively. Further, acclimation to hypoxia for four to six months did not substantially alter the sablefish's temperature-dependent physiological responses or improve its CTmax. These results provide novel, and compelling, evidence that hypoxia can impair the cardiac and metabolic response to increased temperatures in fish, and suggest that some coastal species may be more vulnerable to climate change-related heat waves than previously thought. Further, they support research showing that cross-tolerance and physiological plasticity in fish following hypoxia acclimation are limited.
Collapse
Affiliation(s)
- Robine H. J. Leeuwis
- Department of Ocean Sciences, Memorial University of Newfoundland, St John's, NL, Canada A1C 5S7
| | - Fábio S. Zanuzzo
- Department of Ocean Sciences, Memorial University of Newfoundland, St John's, NL, Canada A1C 5S7
| | - Ellen F. C. Peroni
- Department of Ocean Sciences, Memorial University of Newfoundland, St John's, NL, Canada A1C 5S7
| | - A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St John's, NL, Canada A1C 5S7
| |
Collapse
|
194
|
Thermal reaction norms of key metabolic enzymes reflect divergent physiological and behavioral adaptations of closely related amphipod species. Sci Rep 2021; 11:4562. [PMID: 33633174 PMCID: PMC7907238 DOI: 10.1038/s41598-021-83748-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Lake Baikal is inhabited by more than 300 endemic amphipod species, which are narrowly adapted to certain thermal niches due to the high interspecific competition. In contrast, the surrounding freshwater fauna is commonly represented by species with large-scale distribution and high phenotypic thermal plasticity. Here, we investigated the thermal plasticity of the energy metabolism in two closely-related endemic amphipod species from Lake Baikal (Eulimnogammarus verrucosus; stenothermal and Eulimnogammarus cyaneus; eurythermal) and the ubiquitous Holarctic amphipod Gammarus lacustris (eurythermal) by exposure to a summer warming scenario (6-23.6 °C; 0.8 °C d-1). In concert with routine metabolic rates, activities of key metabolic enzymes increased strongly with temperature up to 15 °C in E. verrucosus, whereupon they leveled off (except for lactate dehydrogenase). In contrast, exponential increases were seen in E. cyaneus and G. lacustris throughout the thermal trial (Q10-values: 1.6-3.7). Cytochrome-c-oxidase, lactate dehydrogenase, and 3-hydroxyacyl-CoA dehydrogenase activities were found to be higher in G. lacustris than in E. cyaneus, especially at the highest experimental temperature (23.6 °C). Decreasing gene expression levels revealed some thermal compensation in E. cyaneus but not in G. lacustris. In all species, shifts in enzyme activities favored glycolytic energy generation in the warmth. The congruent temperature-dependencies of enzyme activities and routine metabolism in E. verrucosus indicate a strong feedback-regulation of enzymatic activities by whole organism responses. The species-specific thermal reaction norms reflect the different ecological niches, including the spatial distribution, distinct thermal behavior such as temperature-dependent migration, movement activity, and mating season.
Collapse
|
195
|
Pörtner HO. Climate impacts on organisms, ecosystems and human societies: integrating OCLTT into a wider context. J Exp Biol 2021; 224:224/Suppl_1/jeb238360. [PMID: 33627467 DOI: 10.1242/jeb.238360] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Physiological studies contribute to a cause and effect understanding of ecological patterns under climate change and identify the scope and limits of adaptation. Across most habitats, this requires analyzing organism responses to warming, which can be modified by other drivers such as acidification and oxygen loss in aquatic environments or excess humidity or drought on land. Experimental findings support the hypothesis that the width and temperature range of thermal performance curves relate to biogeographical range. Current warming causes range shifts, hypothesized to include constraints in aerobic power budget which in turn are elicited by limitations in oxygen supply capacity in relation to demand. Different metabolic scopes involved may set the borders of both the fundamental niche (at standard metabolic rate) and the realized niche (at routine rate). Relative scopes for aerobic performance also set the capacity of species to interact with others at the ecosystem level. Niche limits and widths are shifting and probably interdependent across life stages, with young adults being least thermally vulnerable. The principles of thermal tolerance and performance may also apply to endotherms including humans, their habitat and human society. Overall, phylogenetically based comparisons would need to consider the life cycle of species as well as organism functional properties across climate zones and time scales. This Review concludes with a perspective on how mechanism-based understanding allows scrutinizing often simplified modeling approaches projecting future climate impacts and risks for aquatic and terrestrial ecosystems. It also emphasizes the usefulness of a consensus-building process among experimentalists for better recognition in the climate debate.
Collapse
Affiliation(s)
- Hans-O Pörtner
- Integrative Ecophysiology section, Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, 27570 Bremetrhaven, Germany
| |
Collapse
|
196
|
van Jaarsveld B, Bennett NC, Czenze ZJ, Kemp R, van de Ven TMFN, Cunningham SJ, McKechnie AE. How hornbills handle heat: sex-specific thermoregulation in the southern yellow-billed hornbill. J Exp Biol 2021; 224:jeb.232777. [PMID: 33504586 DOI: 10.1242/jeb.232777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022]
Abstract
At a global scale, thermal physiology is correlated with climatic variables such as temperature and aridity. There is also evidence that thermoregulatory traits vary with fine-scale microclimate, but this has received less attention in endotherms. Here, we test the hypothesis that avian thermoregulation varies with microclimate and behavioural constraints in a non-passerine bird. Male and female southern yellow-billed hornbills (Tockus leucomelas) experience markedly different microclimates while breeding, with the female sealing herself into a tree cavity and moulting all her flight feathers during the breeding attempt, becoming entirely reliant on the male for provisioning. We examined interactions between resting metabolic rate (RMR), evaporative water loss (EWL) and core body temperature (T b) at air temperatures (T a) between 30°C and 52°C in male and female hornbills, and quantified evaporative cooling efficiencies and heat tolerance limits. At thermoneutral T a, neither RMR, EWL nor T b differed between sexes. At T a >40°C, however, RMR and EWL of females were significantly lower than those of males, by ∼13% and ∼17%, respectively, despite similar relationships between T b and T a, maximum ratio of evaporative heat loss to metabolic heat production and heat tolerance limits (∼50°C). These sex-specific differences in hornbill thermoregulation support the hypothesis that avian thermal physiology can vary within species in response to fine-scale microclimatic factors. In addition, Q 10 for RMR varied substantially, with Q 10 ≤2 in some individuals, supporting recent arguments that active metabolic suppression may be an underappreciated aspect of endotherm thermoregulation in the heat.
Collapse
Affiliation(s)
- Barry van Jaarsveld
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa .,DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0001, South Africa
| | - Zenon J Czenze
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa.,DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Ryno Kemp
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa.,DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Tanja M F N van de Ven
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.,Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Susan J Cunningham
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa.,DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
197
|
Sokolova I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. J Exp Biol 2021; 224:224/Suppl_1/jeb236802. [PMID: 33627464 DOI: 10.1242/jeb.236802] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Energy metabolism (encompassing energy assimilation, conversion and utilization) plays a central role in all life processes and serves as a link between the organismal physiology, behavior and ecology. Metabolic rates define the physiological and life-history performance of an organism, have direct implications for Darwinian fitness, and affect ecologically relevant traits such as the trophic relationships, productivity and ecosystem engineering functions. Natural environmental variability and anthropogenic changes expose aquatic ectotherms to multiple stressors that can strongly affect their energy metabolism and thereby modify the energy fluxes within an organism and in the ecosystem. This Review focuses on the role of bioenergetic disturbances and metabolic adjustments in responses to multiple stressors (especially the general cellular stress response), provides examples of the effects of multiple stressors on energy intake, assimilation, conversion and expenditure, and discusses the conceptual and quantitative approaches to identify and mechanistically explain the energy trade-offs in multiple stressor scenarios, and link the cellular and organismal bioenergetics with fitness, productivity and/or ecological functions of aquatic ectotherms.
Collapse
Affiliation(s)
- Inna Sokolova
- Marine Biology Department, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany .,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
198
|
Lefevre S, Wang T, McKenzie DJ. The role of mechanistic physiology in investigating impacts of global warming on fishes. J Exp Biol 2021; 224:224/Suppl_1/jeb238840. [PMID: 33627469 DOI: 10.1242/jeb.238840] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Warming of aquatic environments as a result of climate change is already having measurable impacts on fishes, manifested as changes in phenology, range shifts and reductions in body size. Understanding the physiological mechanisms underlying these seemingly universal patterns is crucial if we are to reliably predict the fate of fish populations with future warming. This includes an understanding of mechanisms for acute thermal tolerance, as extreme heatwaves may be a major driver of observed effects. The hypothesis of gill oxygen limitation (GOL) is claimed to explain asymptotic fish growth, and why some fish species are decreasing in size with warming; but its underlying assumptions conflict with established knowledge and direct mechanistic evidence is lacking. The hypothesis of oxygen- and capacity-limited thermal tolerance (OCLTT) has stimulated a wave of research into the role of oxygen supply capacity and thermal performance curves for aerobic scope, but results vary greatly between species, indicating that it is unlikely to be a universal mechanism. As thermal performance curves remain important for incorporating physiological tolerance into models, we discuss potentially fruitful alternatives to aerobic scope, notably specific dynamic action and growth rate. We consider the limitations of estimating acute thermal tolerance by a single rapid measure whose mechanism of action is not known. We emphasise the continued importance of experimental physiology, particularly in advancing our understanding of underlying mechanisms, but also the challenge of making this knowledge relevant to the more complex reality.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Tobias Wang
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - David J McKenzie
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université de Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| |
Collapse
|
199
|
Collins M, Truebano M, Verberk WCEP, Spicer JI. Do aquatic ectotherms perform better under hypoxia after warm acclimation? J Exp Biol 2021; 224:224/3/jeb232512. [PMID: 33542094 DOI: 10.1242/jeb.232512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aquatic animals increasingly encounter environmental hypoxia due to climate-related warming and/or eutrophication. Although acute warming typically reduces performance under hypoxia, the ability of organisms to modulate hypoxic performance via thermal acclimation is less understood. Here, we review the literature and ask whether hypoxic performance of aquatic ectotherms improves following warm acclimation. Interpretation of thermal acclimation effects is limited by reliance on data from experiments that are not designed to directly test for beneficial or detrimental effects on hypoxic performance. Most studies have tested hypoxic responses exclusively at test temperatures matching organisms' acclimation temperatures, precluding the possibility of distinguishing between acclimation and acute thermal effects. Only a few studies have applied appropriate methodology to identify beneficial thermal acclimation effects on hypoxic performance, i.e. acclimation to different temperatures prior to determining hypoxic responses at standardised test temperatures. These studies reveal that acute warming predominantly impairs hypoxic performance, whereas warm acclimation tends to be either beneficial or have no effect. If this generalises, we predict that warm-acclimated individuals in some species should outperform non-acclimated individuals under hypoxia. However, acclimation seems to only partially offset acute warming effects; therefore, aquatic ectotherms will probably display overall reduced hypoxic performance in the long term. Drawing on the appropriate methodology, future studies can quantify the ability of organisms to modulate hypoxic performance via (reversible) thermal acclimation and unravel the underlying mechanisms. Testing whether developmental acclimation and multigenerational effects allow for a more complete compensation is essential to allow us to predict species' resilience to chronically warmer, hypoxic environments.
Collapse
Affiliation(s)
- Michael Collins
- Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, PL4 8AA, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, PL4 8AA, UK
| | - Wilco C E P Verberk
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, 6500 GL Nijmegen, The Netherlands
| | - John I Spicer
- Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, PL4 8AA, UK
| |
Collapse
|
200
|
Reddin CJ, Kocsis ÁT, Aberhan M, Kiessling W. Victims of ancient hyperthermal events herald the fates of marine clades and traits under global warming. GLOBAL CHANGE BIOLOGY 2021; 27:868-878. [PMID: 33230883 DOI: 10.1111/gcb.15434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Organismic groups vary non-randomly in their vulnerability to extinction. However, it is unclear whether the same groups are consistently vulnerable, regardless of the dominant extinction drivers, or whether certain drivers have their own distinctive and predictable victims. Given the challenges presented by anthropogenic global warming, we focus on changes in extinction selectivity trends during ancient hyperthermal events: geologically rapid episodes of global warming. Focusing on the fossil record of the last 300 million years, we identify clades and traits of marine ectotherms that were more prone to extinction under the onset of six hyperthermal events than during other times. Hyperthermals enhanced the vulnerability of marine fauna that host photosymbionts, particularly zooxanthellate corals, the reef environments they provide, and genera with actively burrowing or swimming adult life-stages. The extinction risk of larger sized fauna also increased relative to non-hyperthermal times, while genera with a poorly buffered internal physiology did not become more vulnerable on average during hyperthermals. Hyperthermal-vulnerable clades include rhynchonelliform brachiopods and bony fish, whereas resistant clades include cartilaginous fish, and ostreid and venerid bivalves. These extinction responses in the geological past mirror modern responses of these groups to warming, including range-shift magnitudes, population losses, and experimental performance under climate-related stressors. Accordingly, extinction mechanisms distinctive to rapid global warming may be indicated, including sensitivity to warming-induced seawater deoxygenation. In anticipation of modern warming-driven marine extinctions, the trends illustrated in the fossil record offer an expedient preview.
Collapse
Affiliation(s)
- Carl J Reddin
- GeoZentrum Nordbayern, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Ádám T Kocsis
- GeoZentrum Nordbayern, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- MTA-MTM-ELTE Research Group for Paleontology, Budapest, Hungary
| | - Martin Aberhan
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Wolfgang Kiessling
- GeoZentrum Nordbayern, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|