201
|
Rico EP, Rosemberg DB, Senger MR, de Bem Arizi M, Dias RD, Souto AA, Bogo MR, Bonan CD. Ethanol and acetaldehyde alter NTPDase and 5'-nucleotidase from zebrafish brain membranes. Neurochem Int 2007; 52:290-6. [PMID: 17698255 DOI: 10.1016/j.neuint.2007.06.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 06/27/2007] [Accepted: 06/29/2007] [Indexed: 10/23/2022]
Abstract
Alcohol abuse is an acute health problem throughout the world and alcohol consumption is linked to the occurrence of several pathological conditions. Here we tested the acute effects of ethanol on NTPDases (nucleoside triphosphate diphosphohydrolases) and 5'-nucleotidase in zebrafish (Danio rerio) brain membranes. The results have shown a decrease on ATP (36.3 and 18.4%) and ADP (30 and 20%) hydrolysis after 0.5 and 1% (v/v) ethanol exposure during 60 min, respectively. In contrast, no changes on 5'-nucleotidase activity were observed in zebrafish brain membranes. Ethanol in vitro did not alter ATP and ADP hydrolysis, but AMP hydrolysis was inhibited at 0.5, and 1% (23 and 28%, respectively). Acetaldehyde in vitro, in the range 0.5-1%, inhibited ATP (40-85%) and ADP (28-65%) hydrolysis, whereas AMP hydrolysis was reduced (52, 58 and 64%) at 0.25, 0.5 and 1%, respectively. Acetate in vitro did not alter these enzyme activities. Semi-quantitative expression analysis of NTPDase and 5'-nucleotidase were performed. Ethanol treatment reduced NTPDase1 and three isoforms of NTPDase2 mRNA levels. These findings demonstrate that acute ethanol intoxication may influence the enzyme pathway involved in the degradation of ATP to adenosine, which could affect the responses mediated by adenine nucleotides and nucleosides in zebrafish central nervous system.
Collapse
Affiliation(s)
- Eduardo Pacheco Rico
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Braganhol E, Tamajusuku ASK, Bernardi A, Wink MR, Battastini AMO. Ecto-5'-nucleotidase/CD73 inhibition by quercetin in the human U138MG glioma cell line. Biochim Biophys Acta Gen Subj 2007; 1770:1352-9. [PMID: 17643826 DOI: 10.1016/j.bbagen.2007.06.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 06/05/2007] [Accepted: 06/07/2007] [Indexed: 11/23/2022]
Abstract
Gliomas are the most malignant of the primary brain tumors. Nucleotides represent an important class of extracellular molecules that are crucial for the normal function of the nervous system. ATP and adenosine can stimulate cell proliferation in different glioma cell lines; the events induced by extracellular adenine nucleotides are controlled by the action of ecto-nucleotidases, which hydrolyze ATP into adenosine in the extracellular space. Recent studies have shown that quercetin has an anti-proliferative effect on the U138MG glioma cell line. Since evidence suggests that purinergic signaling is involved in the growth and progression of glioma and, taking into consideration the anti-proliferative effect elicited by quercetin in this tumor type, the aim of the present study was to better investigate the extracellular metabolism of AMP and evaluate the effect of quercetin on this system in the human U138MG glioma cell line. The adenine products secreted by glioma cells were first characterized; extracellular AMP was efficiently metabolized by the glioma culture, demonstrating a very active ecto-5'-NT/CD73. Quercetin was able to inhibit the ecto-5'-NT/CD73 activity and modulate its expression. In addition, the cell treatment with APCP (alpha,beta-methyleneadenosine-5'-diphosphate), an ecto-5'-NT/CD73 inhibitor, led to a significant reduction in glioma cell proliferation. We suggest that the inhibition of ecto-5'-NT/CD73 may result in a decrease in extracellular adenosine production with a consequent reduction in tumor progression.
Collapse
Affiliation(s)
- Elizandra Braganhol
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600-anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
203
|
Wu J, Steinebrunner I, Sun Y, Butterfield T, Torres J, Arnold D, Gonzalez A, Jacob F, Reichler S, Roux SJ. Apyrases (nucleoside triphosphate-diphosphohydrolases) play a key role in growth control in Arabidopsis. PLANT PHYSIOLOGY 2007; 144:961-75. [PMID: 17434987 PMCID: PMC1914212 DOI: 10.1104/pp.107.097568] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Expression of two Arabidopsis (Arabidopsis thaliana) apyrase (nucleoside triphosphate-diphosphohydrolase) genes with high similarity, APY1 and APY2, was analyzed during seedling development and under different light treatments using beta-glucuronidase fusion constructs with the promoters of both genes. As evaluated by beta-glucuronidase staining and independently confirmed by other methods, the highest expression of both apyrases was in rapidly growing tissues and/or tissues that accumulate high auxin levels. Red-light treatment of etiolated seedlings suppressed the protein and message level of both apyrases at least as rapidly as it inhibited hypocotyl growth. Adult apy1 and apy2 single mutants had near-normal growth, but apy1apy2 double-knockout plants were dwarf, due primarily to reduced cell elongation. Pollen tubes and etiolated hypocotyls overexpressing an apyrase had faster growth rates than wild-type plants. Growing pollen tubes released ATP into the growth medium and suppression of apyrase activity by antiapyrase antibodies or by inhibitors simultaneously increased medium ATP levels and inhibited pollen tube growth. These results imply that APY1 and APY2, like their homologs in animals, act to reduce the concentration of extracellular nucleotides, and that this function is important for the regulation of growth in Arabidopsis.
Collapse
Affiliation(s)
- Jian Wu
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Bernardi A, Bavaresco L, Wink MR, Jacques-Silva MC, Delgado-Cañedo A, Lenz G, Battastini AMO. Indomethacin stimulates activity and expression of ecto-5'-nucleotidase/CD73 in glioma cell lines. Eur J Pharmacol 2007; 569:8-15. [PMID: 17568578 DOI: 10.1016/j.ejphar.2007.04.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 04/16/2007] [Accepted: 04/21/2007] [Indexed: 01/23/2023]
Abstract
Gliomas are the most common and devastating primary tumors of the central nervous system. Ecto-NTPDases and ecto-5'-nucleotidase/CD73 can control extracellular ATP/adenosine levels, which have been described as proliferation factors. Here, we investigate the influence of indomethacin on the enzyme cascade that catalyses the interconversion of purine nucleotides in U138-MG and C6 glioma cell lines. Exposure of glioma cells to 100 microM indomethacin for 48 h caused increases of 52% (P < 0.05) and 62% (P < 0.05) in the AMP hydrolysis rate in C6 and U138-MG cell lines, respectively. Indomethacin treatments also increased ATP hydrolysis. Significant increase in ecto-5'-nucleotidase/CD73 mRNA and protein levels were observed after treatment with indomethacin. Pretreatment of glioma cells with a specific antagonist of the adenosine A(3) receptor, MRS1220 (1 microM; 9-Chloro-2-(2-furanyl)-5-((phenylacetyl)amino)-[1,2,4]triazolo[1,5-c]quinazoline), significantly reduced the inhibition of cell proliferation induced by indomethacin. In addition, a significant increase in mRNA levels of the adenosine A(3) receptor was observed after treatment with indomethacin. In conclusion, our data indicate that adenosine A(3) receptors and the enzyme, ecto-5'-nucleotidase/CD73, are involved in the anti-proliferative effect of indomethacin in glioma cells.
Collapse
Affiliation(s)
- Andressa Bernardi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600-anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
205
|
Mazzanti CM, Spanevello RM, Morsch A, Zanin R, Battisti V, Ahmed M, Gonçalves JF, Mazzanti A, Graça DL, Morsch VM, Schetinger MRC. Previous treatment with ebselen and vitamin E alters adenine nucleotide hydrolysis in platelets from adult rats experimentally demyelinated with ethidium bromide. Life Sci 2007; 81:241-8. [PMID: 17574629 DOI: 10.1016/j.lfs.2007.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 05/09/2007] [Accepted: 05/10/2007] [Indexed: 02/07/2023]
Abstract
Many aspects of the relationship between the demyelinating pathology and platelet function need to be elucidated. Thus, the activity of NTPDase and 5'-nucleotidase enzymes was analyzed in platelets from rats demyelinated with ethidium bromide (EB) and previously treated with ebselen (Ebs) and vitamin E (Vit. E). The animals were divided into four groups: for ebselen, the groups were: I-control (saline), II-(saline and Ebs), III-(EB) and IV-(EB and Ebs); and for vitamin E, the groups were: I - control (saline), II-(saline and Vit. E), III-(EB) and IV-(EB and Vit. E). After 3 and 21 days, the blood was collected and the platelets were separated for enzymatic assays. For the treatment with Ebs, the NTPDase activity for ATP substrate was significantly lower in groups II, III and IV (p < 0.05) after 3 days, while after 21 days, a reduction was observed in group III (p < 0.05). ADP hydrolysis was reduced in group II (p < 0.05) and increased in group IV (p < 0.05) after 3 days, while after 21 days there was an increase in group IV (p < 0.05). In the treatment with Vit. E, ATP hydrolysis was lower in groups II, III and IV (p < 0.05) after 3 and 21 days. ADP hydrolysis was increased in group II (p < 0.05) after 3 days, and in group IV (p < 0.05) after 21 days. However, 5'-nucleotidase activity was not altered by the treatments. These findings demonstrate that NTPDase activity in platelets is diminished in demyelinating events and the treatments with Ebs and Vit. E modulated adenine nucleotide hydrolysis.
Collapse
Affiliation(s)
- Cinthia M Mazzanti
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcellos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Henz SL, Fürstenau CR, Chiarelli RA, Sarkis JJF. Kinetic and biochemical characterization of an ecto-nucleotide pyrophosphatase/phosphodiesterase (EC 3.1.4.1) in cells cultured from submandibular salivary glands of rats. Arch Oral Biol 2007; 52:916-23. [PMID: 17499574 DOI: 10.1016/j.archoralbio.2007.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 03/08/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
The participation of ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) activity in the nucleotide hydrolysis by salivary gland cells of rats was evaluated using p-nitrophenyl 5'-thymidine monophosphate (p-Nph-5'-TMP) as a substrate for this enzyme. We investigated the biochemical characteristics of this ectoenzyme in cells cultured from submandibular salivary glands of rats. Primary cell cultures demonstrated ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) activities, which could be observed by extracellular hydrolysis of p-Nph-5'-TMP and other biochemical characteristics such as dependence of metal ions, dependence of pH alkaline and inactivation by a metal ion chelator. The Km value for the hydrolysis of p-Nph-5'-TMP was 280.7+/-34.2 microM (mean+/-S.D., n=4) and Vmax was 721.31+/-225nmol p-nitrophenol/min/mg (mean+/-S.D., n=4). We suggest that E-NPP is co-localized with an ecto-ATP diphosphohydrolase/ecto-NTPDase and an ecto-5'-nucleotidase, since these enzymes probably act under different conditions. It may be postulated that the physiological role for these ecto-enzymes is to terminate the action of the co-transmitter ATP, generating adenosine.
Collapse
Affiliation(s)
- Sandra Liana Henz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo,90035-003, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
207
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
208
|
Wilot LC, Bernardi A, Frozza RL, Marques AL, Cimarosti H, Salbego C, Rocha E, Battastini AMO. Lithium and valproate protect hippocampal slices against ATP-induced cell death. Neurochem Res 2007; 32:1539-46. [PMID: 17479365 DOI: 10.1007/s11064-007-9348-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
Lithium and valproate (VPA) are the most commonly prescribed mood-stabilizing drugs. Recently, several studies have reported their neuroprotective properties in several models of neural toxicity and, in some pathological conditions, large amounts of intracellular ATP can be released from damaged cells. In the present study, we investigate the potential neuroprotective effect of lithium and VPA against ATP-induced cell death in hippocampal slices of adult rats. Acute (in vitro) and chronic (in vivo) treatment at therapeutic doses with lithium or VPA significantly prevent the ATP-induced cell death. Lithium and VPA also exerted a synergic effect in the prevention of ATP-induced cell death. Moreover, hippocampal slices prepared from rats chronically treated with lithium or VPA presented a significant reduction in cell death in the presence of cytotoxic extracellular ATP. Although further investigations are necessary, our results show the neuroprotective effect of lithium and VPA against neuronal death induced by extracellular ATP, probably through a different pathway, and suggest novel uses of these drugs in neurogenerative diseases.
Collapse
Affiliation(s)
- Leandre Carmen Wilot
- Departamento de Bioquímica-ICBS, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600 - anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Lack S, Dulong V, Picton L, Le Cerf D, Condamine E. High-resolution nuclear magnetic resonance spectroscopy studies of polysaccharides crosslinked by sodium trimetaphosphate: a proposal for the reaction mechanism. Carbohydr Res 2007; 342:943-53. [PMID: 17303095 DOI: 10.1016/j.carres.2007.01.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 01/13/2007] [Accepted: 01/19/2007] [Indexed: 11/16/2022]
Abstract
An NMR spectroscopy study ((31)P, (1)H, (13)C) of the postulated crosslinking mechanism of sodium trimetaphosphate (STMP) on polysaccharides is reported using methyl alpha-D-glucopyranoside as a model. In a first step, reaction of STMP with Glc-OMe gives grafted sodium tripolyphosphate (STPP(g)). On the one hand, STTP(g) can react with a second alcohol functionality to give a crosslinked monophosphate. On the other hand, a monophosphate (grafted phosphate) could be obtained by alkaline degradation of STPP(g). NMR spectroscopy allows to detect the various species formed and to obtain the crosslinking density of STMP-polysaccharides hydrogels.
Collapse
Affiliation(s)
- Stéphane Lack
- UMR 6522, CNRS-Université de Rouen, Laboratoire Polymères, Biopolymères et Membranes, F-76821 Mont Saint Aignan, France
| | | | | | | | | |
Collapse
|
210
|
Bavaresco L, Bernardi A, Braganhol E, Wink MR, Battastini AMO. Dexamethasone inhibits proliferation and stimulates ecto-5'-nucleotidase/CD73 activity in C6 rat glioma cell line. J Neurooncol 2007; 84:1-8. [PMID: 17453149 DOI: 10.1007/s11060-007-9342-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 01/24/2007] [Indexed: 12/25/2022]
Abstract
Malignant gliomas are the most common and devastating primary tumors of the adult central nervous system. Dexamethasone, a synthetic glucocorticoid, is commonly co-administered to control edema in the management of brain tumors during chemotherapy and radiotherapy. In the present study, the effect of dexamethasone on proliferation and ectonucleotidase activities in rat C6 glioma cell line was investigated. Dexamethasone concentrations ranging from 0.001 to 10 microM induced a time- and concentration-dependent inhibition of C6 rat glioma cell proliferation after 24, 48 and 72-h treatment. The tetrazolium reduction assay (MTT) indicated a reduction of in cell viability (44 +/- 7.6%) after 48-h treatment with 1 microM dexamethasone. Pretreatment with 10 microM of RU38486, an antagonist of glucocorticoid receptors, abolished the effect of 1 microM dexamethasone by 78 +/- 9.8% after 48 h of treatment, indicating that this action is mediated via the glucocorticoid receptor. Members of the E-NTPDase family and ecto-5'-nucleotidase/CD73 can modulate extracellular ATP degradation and adenosine formation, both of which have been described as proliferation factors. Treatment of C6 glioma cells for 48 h with 1 microM dexamethasone increased in 38 +/- 8.09% the AMP hydrolysis and in 3.7-fold the ecto-5'-nucleotidase/CD73 expression, suggesting an increase in adenosine formation and, therefore, a possible modulatory role in the elicitation of cell death responses. In addition, pretreatment with 5 microM GF 109203X, a protein kinase C (PKC) inhibitor, abolished the effect of dexamethasone on cell proliferation and on ecto-5'-NT activity, suggesting that dexamethasone could exert this action via PKC. The alterations in the catabolism of extracellular purines induced by dexamethasone treatment in glioma C6 cells could be related to its pharmacological effects.
Collapse
Affiliation(s)
- Luci Bavaresco
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
211
|
Rosemberg DB, Rico EP, Senger MR, Arizi MDB, Dias RD, Bogo MR, Bonan CD. Acute and subchronic copper treatments alter extracellular nucleotide hydrolysis in zebrafish brain membranes. Toxicology 2007; 236:132-9. [PMID: 17499414 DOI: 10.1016/j.tox.2007.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 04/12/2007] [Accepted: 04/16/2007] [Indexed: 01/13/2023]
Abstract
Copper is a divalent cation with physiological importance since deficiency of copper homeostasis can cause serious neurological diseases. ATP is an important signalling molecule stored at nerve endings and its inactivation is promoted by ecto-nucleotidases. In this study, we verified the effect of acute and subchronic copper treatments on ecto-nucleotidase activities in zebrafish brain membranes. Treatment with copper sulfate (15 microg/L) during 24h inhibited ATP hydrolysis (16%), whereas ADP and AMP hydrolysis were not altered. Nevertheless, a 96-h exposure with the copper concentration mentioned above inhibited NTPDase (31% and 42% for ATP and ADP hydrolysis, respectively) and ecto-5'-nucleotidase (40%) activities. NTPDase1, NTPDase2_mg and NTPDase2_mv transcripts were decreased after copper exposures during 24 and 96 h. Subchronic copper treatment also reduced the NTPDase2_mq and ecto-5'-nucleotidase expression. In vitro assays demonstrated that NTPDase activities were reduced after copper exposure during 40 min. ATP hydrolysis was inhibited at 0.25, 0.5 and 1mM (13%, 31% and 48%, respectively) and ADP hydrolysis also had a significant decrease at these same copper concentrations (41%, 63% and 68%, respectively). In contrast to the subchronic exposure, no significant changes on ecto-5'-nucleotidase were observed after in vitro assays. Lineweaver-Burk plots suggested that both inhibitory effects on nucleotide hydrolysis may occur in a non-competitive manner. Altogether, these findings indicate that copper is able to promote distinct changes on ecto-nucleotidases after in vivo and in vitro treatments and, consequently, it could control the nucleotide and nucleoside levels, modulating the purinergic signalling.
Collapse
Affiliation(s)
- Denis Broock Rosemberg
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
212
|
Duarte MMF, Loro VL, Rocha JBT, Leal DBR, Bem AFD, Dorneles A, Morsch VM, Schetinger MRC. Enzymes that hydrolyze adenine nucleotides of patients with hypercholesterolemia and inflammatory processes. FEBS J 2007; 274:2707-14. [PMID: 17451439 DOI: 10.1111/j.1742-4658.2007.05805.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The activity of NTPDase (EC 3.6.1.5, apyrase, CD39) was verified in platelets from patients with increasing cholesterol levels. A possible association between cholesterol levels and inflammatory markers, such as oxidized low-density lipoprotein, highly sensitive C-reactive protein and oxidized low-density lipoprotein autoantibodies, was also investigated. Lipid peroxidation was estimated by measurement of thiobarbituric acid reactive substances in serum. The following groups were studied: group I, < 150 mg.dL(-1) cholesterol; group II, 151-200 mg.dL(-1) cholesterol; group III, 201-250 mg.dL(-1) cholesterol; and group IV, > 251 mg.dL(-1) cholesterol. The results demonstrated that both ATP hydrolysis and ADP hydrolysis were enhanced as a function of cholesterol level. Low-density lipoprotein levels increased concomitantly with total cholesterol levels. Triglyceride levels were increased in the groups with total cholesterol above 251 mg.dL(-1). Oxidized low-density lipoprotein levels were elevated in groups II, III, and IV. Highly sensitive C-reactive protein was elevated in the group with cholesterol levels higher than 251 mg.dL(-1). Oxidized low-density lipoprotein autoantibodies were elevated in groups III and IV. Thiobarbituric acid reactive substance content was enhanced as a function of cholesterol level. In summary, hypercholesterolemia is associated with enhancement of inflammatory response, oxidative stress, and ATP and ADP hydrolysis. The increased ATP and ADP hydrolysis in group IV was confirmed by an increase in CD39 expression on its surface. The increase in CD39 activity is possibly related to a compensatory response to the inflammatory and pro-oxidative state associated with hypercholesterolemia.
Collapse
Affiliation(s)
- Marta Medeiros Frescura Duarte
- Departamento de Química, Centro de Ciências Naturais e Exatas, Programa de Pos-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Delwing D, Delwing D, Gonçalves MCF, Sarkis JJF, Wyse ATS. NTPDase and 5'-nucleotidase activities of synaptosomes from hippocampus of rats subjected to hyperargininemia. Neurochem Res 2007; 32:1209-16. [PMID: 17401661 DOI: 10.1007/s11064-007-9292-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
ATP is an important excitatory neurotransmitter and adenosine acts as a neuromodulatory structure inhibiting neurotransmitters release in the central nervous system. Since the ecto-nucleotidase cascade that hydrolyzes ATP to adenosine is involved in the control of brain functions and previous studies realized in our laboratory have recently reported that acute administration of Arg decreases the NTPDase and 5'-nucleotidase activities of rat blood serum, in the present study we investigated the effect of arginine administration on NTPDase and 5'-nucleotidase activities by synaptosomes from hippocampus of rats. First, sixty-days-old rats were treated with a single or a triple intraperitoneal injection of arginine (0.8 g/Kg) or an equivalent volume of 0.9% saline solution (control) and were killed 1 h later. Second, rats received an intracerebroventricular injection of 1.5 mM arginine solution or saline (5 microL) and were killed 1 h later. We also tested the in vitro effect of arginine (0.1-1.5 mM) on nucleotide hydrolysis in synaptosomes from rat hippocampus. Results showed that intraperitoneal arginine administration did not alter nucleotide hydrolysis. On the other hand, arginine administered intracerebroventricularly reduced ATP (32%), ADP (30%) and AMP (21%) hydrolysis, respectively. In addition, arginine added to the incubation medium, provoked a decrease on ATP (19%), ADP (17%) and AMP (23%) hydrolysis, respectively. Furthermore, kinetic studies showed that the inhibitory effect of arginine was uncompetitive in relation to ATP, ADP and AMP. In conclusion, according to our results it seems reasonable to postulate that arginine alters the cascade involved in the extracellular degradation of ATP to adenosine.
Collapse
Affiliation(s)
- Débora Delwing
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
214
|
Musi E, Islam N, Drosopoulos JHF. Constraints imposed by transmembrane domains affect enzymatic activity of membrane-associated human CD39/NTPDase1 mutants. Arch Biochem Biophys 2007; 461:30-9. [PMID: 17374358 DOI: 10.1016/j.abb.2007.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/02/2007] [Accepted: 02/03/2007] [Indexed: 01/30/2023]
Abstract
Human CD39/NTPDase1 is an endothelial cell membrane-associated nucleotidase. Its large extracellular domain rapidly metabolizes nucleotides, especially ADP released from activated platelets, inhibiting further platelet activation/recruitment. Previous studies using our recombinant soluble CD39 demonstrated the importance of residues S57, D54, and D213 for enzymatic/biological activity. We now report effects of S57A, D54A, and D213A mutations on full-length (FL)CD39 function. Enzymatic activity of alanine modified FLCD39s was less than wild-type, contrasting the enhanced activity of their soluble counterparts. Furthermore, conservative substitutions D54E and D213E led to enzymes with activities greater than the alanine modified FLCD39s, but less than wild-type. Reductions in mutant activities were primarily associated with reduced catalytic rates. Differences in enzymatic activity were not attributable to gross changes in the nucleotide binding pocket or the enzyme's ability to multimerize. Thus, composition of the active site of wild-type CD39 appears optimized for ADPase function in the context of the transmembrane domains.
Collapse
Affiliation(s)
- Elgilda Musi
- Thrombosis Research Laboratory, Research Service, Room 13026W, VA New York Harbor Healthcare System, 423 East 23rd Street, New York, NY 10010-5050, USA
| | | | | |
Collapse
|
215
|
Delwing D, Delwing D, Sarkis JJF, Wyse ATS. Proline induces alterations on nucleotide hydrolysis in synaptosomes from cerebral cortex of rats. Brain Res 2007; 1149:210-5. [PMID: 17407768 DOI: 10.1016/j.brainres.2007.02.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/19/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
In the present study we investigated the in vivo (acute and chronic) and in vitro effects of proline on NTPDase and 5'-nucleotidase activities in synaptosomes obtained from cerebral cortex of rats. For acute administration, 29-day-old rats received one subcutaneous injection of proline (18.2 micromol/g body weight) or an equivalent volume of 0.9% saline solution (control) and were killed 1 h later. For chronic treatment, buffered proline was injected subcutaneously into rats twice a day at 10 h intervals from the 6th to the 28th day of age. Rats were killed 12 h after the last injection. Results showed that acute and chronic proline administration provoked a reduction (25%) of ATP hydrolysis, but did not alter ADP and AMP hydrolysis. We also verified the in vitro effect of proline (3.0 microM-1.0 mM) on nucleotide hydrolysis in synaptosomes from cerebral cortex of rats. In contrast to the in vivo studies, it was not observed any statistically significant alteration on ATP, ADP and AMP hydrolysis. In conclusion, according to our results, it seems reasonable to postulate that proline administration alters the hydrolysis of ATP and probably affects the responses mediated by adenine nucleotides in the central nervous system of proline treated rats.
Collapse
Affiliation(s)
- Daniela Delwing
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
216
|
Vuaden FC, de Paula Cognato G, Bonorino C, Bogo MR, de Freitas Sarkis JJ, Bonan CD. Lipopolysaccharide alters nucleotidase activities from lymphocytes and serum of rats. Life Sci 2007; 80:1784-91. [PMID: 17363004 DOI: 10.1016/j.lfs.2007.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 01/24/2007] [Accepted: 02/07/2007] [Indexed: 11/21/2022]
Abstract
ATP exerts a proinflammatory role and induces cytokine release by acting at P2X(7) receptors. The product of ATP hydrolysis is the nucleoside adenosine, an important immunomodulator. The main source of extracellular adenosine is the hydrolysis of extracellular ATP by a group of ecto-enzymes: ENTPDase family, NPP family and ecto-5'-nucleotidase. Considering the role of ATP and adenosine in inflammatory processes, we investigated the effect of lipopolysaccharide on ectonucleotidases activities and expression in lymphocytes from mesenteric lymph nodes and serum of rats, in order to better understand the involvement of extracellular nucleotide hydrolysis in an endotoxemia model. We observed significant changes on nucleotidase activities from lymphocytes and serum of rats after in vitro and in vivo exposure to LPS. In vitro results have shown an increase on nucleotide hydrolysis in lymphocytes and a decrease on the enzyme activity of NPP in blood serum. In vivo, we observed an increase on nucleotide hydrolysis in lymphocytes and a decrease in the hydrolysis of all nucleotides tested in blood serum. After 24 and 48 h of LPS treatment, there was a reduction in NTPDase1, 2, 3 and ecto-5'-nucleotidase transcripts. These results suggest that there is a time-dependent enhancement of extracellular nucleotides metabolism in lymphocytes and blood serum after the induction of an endotoxemic model. The changes observed suggest that these enzymes can act in the regulation of extracellular nucleosides and nucleotides in a model able to trigger inflammatory process.
Collapse
Affiliation(s)
- Fernanda Cenci Vuaden
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
217
|
Pedrazza EL, Riboldi GP, Pereira GS, Izquierdo I, Bonan CD. Habituation to an open field alters ecto-nucleotidase activities in rat hippocampal synaptosomes. Neurosci Lett 2007; 413:21-4. [PMID: 17166665 DOI: 10.1016/j.neulet.2006.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/09/2006] [Accepted: 11/12/2006] [Indexed: 11/20/2022]
Abstract
ATP and adenosine may play a role in the mechanisms of synaptic plasticity and memory formation. Previous studies have shown that ecto-nucleotidase activities are altered during memory consolidation of an aversive task named step-down inhibitory avoidance. Here we investigate ecto-nucleotidase activities in hippocampal synaptosomes of rats submitted to training and test sessions of habituation to open field, which is one of the most elementary forms of learning. There were no significant alterations on ATP, ADP and AMP hydrolysis immediately after the training session. However, immediately after the test session (0min), there was a significant increase of ATP hydrolysis (61%), but not of ADP and AMP hydrolysis. Sixty minutes after the test session, a significant increase of NTPDase (75% and 60.5% for ATP and ADP hydrolysis, respectively) and ecto-5'-nucleotidase (40%) activities was observed. This study reveals the involvement of ecto-nucleotidase activities in different learning paradigms during memory processing.
Collapse
Affiliation(s)
- Eduardo Luiz Pedrazza
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul. Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
218
|
Vlajkovic SM, Wang CJH, Soeller C, Zimmermann H, Thorne PR, Housley GD. Activation-dependent trafficking of NTPDase2 in Chinese hamster ovary cells. Int J Biochem Cell Biol 2007; 39:810-7. [PMID: 17307380 DOI: 10.1016/j.biocel.2007.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 12/18/2006] [Accepted: 01/02/2007] [Indexed: 11/28/2022]
Abstract
Membrane-bound NTPDase2 is a member of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) enzyme family involved in the regulation of P2 receptor signaling. NTPDase2 has broad substrate specificity for extracellular nucleotides, but hydrolyses nucleoside 5'-triphosphates with high preference over nucleoside 5'-diphosphates. In this study, we have sought to determine how enzyme substrates acting on P2 receptors affect intracellular NTPDase2 trafficking. To achieve this, Chinese hamster ovary (CHO) cells were transiently transfected with rat-specific NTPDase2 cDNA tagged with green fluorescent protein (GFP), to allow direct visualisation of subcellular localisation and trafficking of NTPDase2. Cells were superfused with NTPDase2 substrates (ATP and UTP) and synthetic nucleotide analogues (ATPgammaS and ADPbetaS), and confocal image stacks were acquired at regular time intervals. NTPDase2 incorporation into the plasma membrane was determined by comparative analysis of fluorescence intensity in the cytosolic and membrane compartments. GFP-tagged NTPDase2 was fully functional and ATP and ATPgammaS induced membrane incorporation of GFP-NTPDase2 from putative intracellular stores, whilst UTP and ADPbetaS were ineffective. The increased ATP hydrolysis rate correlated with increased NTPDase2 trafficking to the plasma membrane. ATP-induced NTPDase2 trafficking was mediated by activation of endogenous P2X receptors involving Ca2+ entry rather than by P2Y receptor-induced release of Ca2+ from intracellular stores. Our results suggest that P2X receptor activation stimulates insertion of latent NTPDase2 into the plasma membrane. The increase in surface-located NTPDase2 may reflect a regulatory mechanism counteracting excessive stimulation and desensitisation of P2 receptors.
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
219
|
Torres ILS, Fürstenau CR, Rossi G, Dallegrave E, Dallegrave G, Stenzel B, Dantas G, Battastini AMO, Sarkis JJF, Ferreira MBC. Methylprednisolone administration alters adenine nucleotide hydrolysis in rat blood serum. Eur J Pharmacol 2007; 560:212-5. [PMID: 17292883 DOI: 10.1016/j.ejphar.2006.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 12/19/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
The effect of methylprednisolone on the hydrolysis of adenine nucleotides by rat blood serum enzymes was studied. Adult male Wistar rats were submitted to three different treatments with synthetic steroid methylprednisolone: one dose of 50 mg/kg, i.p. (acute); or oral doses of 6 mg/kg dissolved in drinking water for 15 (sub-chronic) or 30 (chronic) days. Decreased ADP hydrolysis was observed after acute and sub-chronic treatments. Furthermore, ATP, ADP and AMP hydrolysis decreased after chronic treatment. These alterations may constitute one of the mechanisms that mediate the development of some of the side effects associated with corticosteroid use.
Collapse
Affiliation(s)
- Iraci Lucena S Torres
- Departamentos de Farmacologia, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Sarmiento Leite 500, 90050-170 Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Pedrazza EL, Senger MR, Pedrazza L, Zimmermann FF, de Freitas Sarkis JJ, Bonan CD. Sertraline and clomipramine inhibit nucleotide catabolism in rat brain synaptosomes. Toxicol In Vitro 2007; 21:671-6. [PMID: 17317090 DOI: 10.1016/j.tiv.2007.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 11/22/2022]
Abstract
The effects of sertraline, a selective serotonin reuptake inhibitor, and clomipramine, a tricyclic antidepressant, were tested on ecto-nucleotidases from synaptosomes of cerebral cortex and hippocampus of rats. Sertraline and clomipramine (100-500 microM) inhibited NTPDase, but not ecto-5'-nucleotidase activity in both cerebral cortex and hippocampus. In cortical synaptosomes, sertraline inhibited both ATP and ADP hydrolysis in the concentrations tested. The inhibitory effect varied from 21% to 83% for ATP hydrolysis and 48% to 75% for ADP hydrolysis. The inhibition promoted by sertraline in hippocampal synaptosomes varied from 38% to 89% for ATP hydrolysis and 45% to 77% for ADP hydrolysis. A significant inhibition of cortical NTPDase activity by clomipramine was observed in the all concentrations tested (35-72% and 36-87% for ATP and ADP hydrolysis, respectively). Similar effects were observed in hippocampus (29-91% and 48-83% for ATP and ADP hydrolysis, respectively). There was no inhibitory effect of sertraline and clomipramine on AMP hydrolysis in cerebral cortex and hippocampus. Our results have shown that classical antidepressants inhibit the extracellular catabolism of ATP. Therefore, it is possible to suggest that changes induced by antidepressants on bilayer membrane could affect NTPDase activities and consequently, modulating ATP and adenosine levels in the synaptic cleft.
Collapse
Affiliation(s)
- Eduardo Luiz Pedrazza
- Laboratório de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul., Avenida Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
221
|
Spier AP, Bavaresco CS, Wyse ÂT, Carvalho D, Freitas Sarkis JJ. Effects of resveratrol and purple grape juice on nucleotide hydrolysis by adult rat serum. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
222
|
Schetinger MRC, Morsch VM, Bonan CD, Wyse ATS. NTPDase and 5'-nucleotidase activities in physiological and disease conditions: new perspectives for human health. Biofactors 2007; 31:77-98. [PMID: 18806312 DOI: 10.1002/biof.5520310205] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular nucleotides and nucleosides act as signaling molecules involved in a wide spectrum of biological effects. Their levels are controlled by a complex cell surface-located group of enzymes called ectonucleotidases. There are four major families of ectonucleotidases, nucleoside triphosphate diphosphohydrolases (NTPDases/CD39), ectonucleotide pyrophosphatase/phosphodiesterases (E-NPPs), alkaline phosphatases and ecto-5'-nucleotidase. In the last few years, substantial progress has been made toward the molecular identification of members of the ectonucleotidase families and their enzyme structures and functions. In this review, there is an emphasis on the involvement of NTPDase and 5'-nucleotidase activities in disease processes in several tissues and cell types. Brief background information is given about the general characteristics of these enzymes, followed by a discussion of their roles in thromboregulatory events in diabetes, hypertension, hypercholesterolemia and cancer, as well as in pathological conditions where platelets are less responsive, such as in chronic renal failure. In addition, immunomodulation and cell-cell interactions involving these enzymes are considered, as well as ATP and ADP hydrolysis under different clinical conditions related with alterations in the immune system, such as acute lymphoblastic leukemia (ALL), B-chronic lymphocytic leukemia (B-CLL) and infections associated with human immunodeficiency virus (HIV). Finally, changes in ATP, ADP and AMP hydrolysis induced by inborn errors of metabolism, seizures and epilepsy are discussed in order to highlight the importance of these enzymes in the control of neuronal activity in pathological conditions. Despite advances made toward understanding the molecular structure of ectonucleotidases, much more investigation will be necessary to entirely grasp their role in physiological and pathological conditions.
Collapse
Affiliation(s)
- Maria Rosa C Schetinger
- Laboratório de Enzimologia Toxicológica, Departamento de Química, CCNE, Universidade Federal de Santa Maria, Avenida Roraima, no 1000, Cidade Universitária, Bairro Camobi, Santa Maria-RS, 97105-900, Brazil.
| | | | | | | |
Collapse
|
223
|
Martín-Satué M, Torrejón-Escribano B, Felipe A, de Aranda IG, Elías M, Marsal J, Blasi J, Solsona C. Cloning, molecular characterization and expression of ecto-nucleoside triphosphate diphosphohydrolase-1 from Torpedo electric organ. Neurochem Int 2007; 50:256-63. [PMID: 17030469 DOI: 10.1016/j.neuint.2006.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/21/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
During synaptic transmission large amounts of ATP are released from pre- and post-synaptic sources of Torpedo electric organ. A chain reaction sequentially hydrolyses ATP to adenosine, which inhibits acetylcholine secretion. The first enzyme implicated in this extracellular ATP hydrolysis is an ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) that dephosphorylates both ATP and ADP to AMP. This enzyme has been biochemically characterized in the synaptosomal fraction of Torpedo electric organ, having almost equal affinity for ATP as for ADP, a fact that pointed to the type-1 NTPDase enzyme. In the present work we describe the cloning and molecular characterization of the cDNA for an NTPDase from Torpedo marmorata electric organ. The clone, obtained using the RACE-PCR technique, contains and open-reading frame of 1506bp and encodes a 502 amino acids protein that exhibits high homology with other NTPDases1 from vertebrates previously identified, including those of zebrafish and Xenopus, as well as human, rat and mouse. Topology analyses revealed the existence of two transmembrane regions, two short cytoplasmic tails and a long extracellular domain containing five apyrase-conserved regions. Gene expression studies revealed that this gene is expressed in all the Torpedo tissues analyzed. Finally, activity and cellular localization of the protein encoded by this newly cloned cDNA was assessed by heterologous expression experiments involving COS-7 and HeLa cells.
Collapse
Affiliation(s)
- Mireia Martín-Satué
- Laboratori de Neurobiologia Cellular i Molecular, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, Institut d'Investigacions Biomèdiques de Bellvitge-Universitat de Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Abstract
While there were early papers about the extracellular actions of purines, the role of ATP as a purinergic neurotransmitter in nonadrenergic, noncholinergic nerves in the gut and bladder in 1972 was a landmark discovery, although it met considerable resistance for the next 20 years. In the early 1990s, receptors for purines were cloned: four P1 receptor subtypes and seven P2X ionotropic and eight P2Y metabotropic receptor subtypes are currently recognized and characterized. The mechanisms underlying ATP release and breakdown are discussed. Purines and pyrimidines have major roles in the activities of non-neuronal cells as well as neurons. This includes fast signalling roles in exocrine and endocrine secretion, platelet aggregation, vascular endothelial cell-mediated vasodilation and nociceptive mechanosensory transduction, as well as acting as a cotransmitter and neuromodulator in most, if not all, nerve types in the peripheral and central nervous systems. More recently, slow (trophic) purinergic signalling has been implicated in cell proliferation, migration, differentiation and death in embryological development, wound healing, restenosis, atherosclerosis, ischaemia, cell turnover of epithelial cells in skin and visceral organs, inflammation, neuroprotection and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF.
| |
Collapse
|
225
|
Rayment SJ, Ralevic V, Barrett DA, Cordell R, Alexander SPH. A novel mechanism of vasoregulation: ADP-induced relaxation of the porcine isolated coronary artery is mediated via adenosine release. FASEB J 2006; 21:577-85. [PMID: 17167068 DOI: 10.1096/fj.06-7050com] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study, we have investigated the mechanism of ADP-induced relaxation of porcine coronary artery (PCA) rings. The P2Y receptor agonists ADP and ADPbetaS produced concentration-dependent relaxation of endothelium-denuded PCA smooth muscle with pD2 values of 5.3 and 4.9, respectively. RT-polymerase chain reaction (RT-PCR) and immunoblotting demonstrated mRNA and protein expression of P2Y1 and A2A adenosine receptors in the PCA. The nonselective P2 antagonist PPADS or the P2Y1-selective antagonist MRS2179 failed to alter ADP- or ADPbetaS-induced relaxations. Relaxations to ADP were, however, blocked by the A2A adenosine receptor-selective antagonists ZM241385 and SCH58261 (apparent pK(B) values of 9.2 and 8.9, respectively). We excluded roles for direct occupancy of A2A adenosine receptors by ADP or ADPbetaS as well as metabolism to adenosine as mechanisms for ADP-evoked relaxations. However, ADP responses were significantly enhanced in the presence of the ENT1 nucleoside transporter inhibitors dipyridamole and NBTI and were significantly inhibited by adenosine deaminase, indicating a role for extracellular adenosine. Suprafusion of [3H]-adenine-labeled PCA segments showed that ADP induced the release of a number of purines, including adenosine. These data suggest that ADP mediates relaxation of the PCA via a novel mechanism that involves adenine nucleotide-evoked adenosine release and the subsequent activation of A2A receptors.
Collapse
Affiliation(s)
- Sarah J Rayment
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | | | |
Collapse
|
226
|
Spanevello RM, Mazzanti CM, Maldonado PA, Zanin R, Morsch A, Hannel L, Mazzanti A, Festugatto R, Graça D, Schmatz R, Loro VL, Schetinger MRC, Morsch VM. Activities of enzymes that hydrolyze adenine nucleotides in platelets from rats experimentally demyelinated with ethidium bromide and treated with interferon-beta. Life Sci 2006; 80:1109-14. [PMID: 17239402 DOI: 10.1016/j.lfs.2006.11.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 11/09/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
The activities of the enzymes NTPDase (EC 3.6.1.5, apyrase, CD39) and 5'-nucleotidase (EC 3.1.3.5, CD73) were analyzed in platelets from rats submitted to demyelination by ethidium bromide (EB) and treated with interferon beta (IFN-beta). The following groups were studied: I - control (saline), II - (saline and IFN-beta), III - (EB) and IV - (EB and IFN-beta). After 7, 15 and 30 days, the animals (n=7) were sacrificed and the platelets were separated by the method of Lunkes et al. [Lunkes, G., Lunkes D., Morsch, V., Mazzanti, C., Morsch, A., Miron, V., Schetinger, M.R.C., 2004. NTPDase and 5'-nucleotidase in rats alloxan- induced diabetes. Diabetes Research and Clinical Practice 65, 1-6]. NTPDase activity for ATP and ADP substrates was significantly lower in groups II and III after seven days, when compared to control (p<0.001). At fifteen days, ATP hydrolysis was significantly lower in group III and IV and higher in group II (p<0.001), while there was an activation of ADP hydrolysis in group II (p<0.001), when compared with the control. 5'-nucleotidase activity was significantly higher in group IV (p<0.001) after seven days, and lower in the groups III and IV (p<0.001) after fifteen days in relation to the control. No significant differences were observed in NTPDase and 5'-nucleotidase activities after thirty days. In conclusion, our study demonstrated that the hydrolysis of adenine nucleotides is modified in platelets of rats demyelinated and treated with IFN-beta.
Collapse
Affiliation(s)
- Roselia M Spanevello
- Pós Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
de Souza Leite M, Thomaz R, Fonseca FV, Panizzutti R, Vercesi AE, Meyer-Fernandes JR. Trypanosoma brucei brucei: biochemical characterization of ecto-nucleoside triphosphate diphosphohydrolase activities. Exp Parasitol 2006; 115:315-23. [PMID: 17141762 DOI: 10.1016/j.exppara.2006.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 08/28/2006] [Accepted: 09/01/2006] [Indexed: 01/17/2023]
Abstract
In this work we describe the ability of living cells of Trypanosoma brucei brucei to hydrolyze extracellular ATP. In these intact parasites there was a low level of ATP hydrolysis in the absence of any divalent metal (4.72+/-0.51 nmol Pi x 10(-7) cells x h(-1)). The ATP hydrolysis was stimulated by MgCl(2) and the Mg-dependent ecto-ATPase activity was 27.15+/-2.91 nmol Pi x 10(-7) cells x h(-1). This stimulatory activity was also observed when MgCl(2) was replaced by MnCl(2). CaCl(2) and ZnCl(2) were also able to stimulate the ATPase activity, although less than MgCl(2). The apparent K(m) for ATP was 0.61 mM. This ecto-ATPase activity was insensitive to inhibitors of other ATPase and phosphatase activities. To confirm that this Mg-dependent ATPase activity is an ecto-ATPase activity, we used an impermeable inhibitor, DIDS (4, 4'-diisothiocyanostylbene 2'-2'-disulfonic acid), as well as suramin, an antagonist of P(2) purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg(2+)-dependent ATPase activity in a dose-dependent manner. Living cells sequentially hydrolyzed the ATP molecule generating ADP, AMP and adenosine, and supplementation of the culture medium with ATP was able to sustain the proliferation of T. brucei brucei as well as adenosine supplementation. Furthermore, the E-NTPDase activity of T. brucei brucei is modulated by the availability of purines in the medium. These results indicate that this surface enzyme may play a role in the salvage of purines from the extracellular medium in T. brucei brucei.
Collapse
Affiliation(s)
- Milane de Souza Leite
- Instituto de Bioquímica Médica, CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
228
|
Buffon A, Ribeiro VB, Wink MR, Casali EA, Sarkis JJF. Nucleotide metabolizing ecto-enzymes in Walker 256 tumor cells: molecular identification, kinetic characterization and biochemical properties. Life Sci 2006; 80:950-8. [PMID: 17169379 DOI: 10.1016/j.lfs.2006.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 11/02/2006] [Accepted: 11/16/2006] [Indexed: 02/06/2023]
Abstract
In this study we describe the molecular identification, kinetic characterization and biochemical properties of an E-NTPDase and an 5'-nucleotidase in Walker 256 cells. For the ATP, ADP and AMP hydrolysis there were optimum pH in the range 6.5-8.0, and absolute requirement for divalent cations (Mg(2+)>Ca(2+)). A significant inhibition of ATP and ADP hydrolysis was observed in the presence of high concentrations of sodium azide and 0.5 mM of Gadolinium chloride. These activities were insensitive to ATPase, adenylate kinase and alkaline phosphatase classical inhibitors. The K(m) values were 464.2+/-86.6 microM (mean+/-SEM, n=4), 137.0+/-31 microM (mean+/-SEM, n=5) and 44.8+/-10.2 microM (mean+/-SEM, n=4), and V(max) values were 655.0+/-94.6 (mean+/-SEM, n=4), 236.3+/-27.2 (mean+/-SEM, n=5) and 177.6+/-13.8 (mean+/-SEM, n=5) nmol of inorganic phosphate min(-1) mg of protein(-1) for ATP, ADP and AMP, respectively. Using RT-PCR analysis we identified the mRNA of two members of the ecto-nucleoside triphosphate diphosphohydrolase family (NTPDase 2 and 5) and a 5'-nucleotidase. The presence of NTPDases and 5'-nucleotidase enzymes in Walker 256 tumor cells may be important to regulate the ratio adenine nucleotides/adenine nucleoside extracellularly, therefore motivating tumor growth.
Collapse
Affiliation(s)
- Andréia Buffon
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 ANEXO, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
229
|
Miron VR, Bauermann L, Morsch ALB, Zanin RF, Corrêa M, da Silva AC, Mazzanti C, Morsch VM, Lunkes GI, Schetinger MRC. Enhanced NTPDase and 5'-nucleotidase activities in diabetes mellitus and iron-overload model. Mol Cell Biochem 2006; 298:101-7. [PMID: 17119848 DOI: 10.1007/s11010-006-9357-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 10/19/2006] [Indexed: 11/27/2022]
Abstract
The activity of the enzymes NTPDase and 5'-nucleotidase was studied in both diabetes mellitus and an associated model of iron-overload. Rats were divided in five groups: citrate (CC), saline (S), diabetic (D), iron-overload (IO), and diabetic iron-overload (DIO). Diabetes was induced with alloxan (150 mg/kg), and iron-overload was induced with iron-dextran (10 intramuscular applications of +/-80 mg/kg). The enzymatic activities were evaluated in the platelets. The results demonstrated an increase in the activity of NTPDase with substrates ATP and ADP (60% and 120%, respectively; P<0.001), and 5'-nucleotidase (60%, P<0.001). This increase was more intense in the IO and DIO groups. The results obtained in vitro showed an activation in ATP, ADP, and AMP hydrolysis between 1 microM and 1,000 microM ferric nitrate concentrations, being more pronounced at 100 microM and decreasing at 1,000 microM. We concluded that diabetes mellitus in association with iron-overload increased the hydrolysis of adenine nucleotides in platelets, contributing to the abnormalities found in these pathological conditions.
Collapse
Affiliation(s)
- Vinícius Ribas Miron
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Delwing D, Delwing D, Sarkis JJF, Wyse ATS. Proline induces alterations in nucleotide hydrolysis in rat blood serum. Mol Cell Biochem 2006; 292:139-44. [PMID: 17003951 DOI: 10.1007/s11010-006-9227-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
The main objective of the present study was to evaluate the in vivo (acute and chronic) and in vitro effects of proline on serum nucleotide hydrolysis. For acute administration, 29-day-old rats received one subcutaneous injection of proline (18.2 (micromol/g body weight) or an equivalent volume of 0.9% saline solution (control) and were sacrificed 1 h, 3 h or 12 h later. Results showed that acute proline administration provoked a decrease in ATP (42%) and ADP (49%) hydrolysis when rats were sacrificed 1 h after the injection. Furthermore, in rats killed 3 h and 12 h after acute injection, no change in nucleotide hydrolysis were observed. For chronic treatment, buffered proline was injected subcutaneously twice a day at 10 h intervals from the 6(th) to the 28(th) day of age. Rats were sacrificed 3 h or 12 h after the last injection. Chronic administration of proline did not alter the nucleotide hydrolysis when the rats were killed 12 h after the last injection, but decreased ATP (15%) and ADP (32%) hydrolysis when rats were sacrificed 3 h after the last injection. The in vitro effect of proline (3.0 microM - 1.0 mM) on serum nucleotide hydrolysis was also investigated; results showed that 1.0 mM of proline significantly increased ATP (45%), ADP (55%) and AMP (49%) hydrolysis. The data indicate that proline in vivo and in vitro alters nucleotide hydrolysis, which may be involved in the pathogeny of hyperprolinemic patients.
Collapse
Affiliation(s)
- Daniela Delwing
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
231
|
Morrone FB, Oliveira DL, Gamermann P, Stella J, Wofchuk S, Wink MR, Meurer L, Edelweiss MIA, Lenz G, Battastini AMO. In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model. BMC Cancer 2006; 6:226. [PMID: 16995949 PMCID: PMC1592110 DOI: 10.1186/1471-2407-6-226] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 09/23/2006] [Indexed: 12/03/2022] Open
Abstract
Background ATP is an important signalling molecule in the peripheral and central nervous system. Both glioma growth and tumor resection induces cell death, thus liberating nucleotides to the extracellular medium. Nucleotides are hydrolyzed very slowly by gliomas when compared with astrocytes and induce neuronal cell death and glioma proliferation. The objective of the present study was to test the involvement of extracellular ATP in glioblastoma growth in a rat glioma model. Methods To deplete the extracellular ATP, the enzyme apyrase was tested on the treatment of gliomas implanted in the rats CNS. One million glioma C6 cells in 3 microliters of DMEM/FCS were injected in the right striata of male Wistar rats, 250–270 g. After 20 days, the rats were decapitated and the brain sectioning and stained with hematoxylin and eosine. We performed immunohistochemical experiments with Ki67, CD31 and VEGF. Total RNA was isolated from cultured glioma C6 cells and the cDNA was analyzed by Real Time-PCR with primers for the NTPDase family. Results C6 glioma cells effectively have a low expression of all NTPDases investigated, in comparison with normal astrocytes. The implanted glioma co-injected with apyrase had a significant reduction in the tumor size (p < 0.05) when compared with the rats injected only with gliomas or with gliomas plus inactivated apyrase. According to the pathological analysis, the malignant gliomas induced by C6 injection and co-injected with apyrase presented a significant reduction in the mitotic index and other histological characteristics that indicate a less invasive/proliferative tumor. Reduction of proliferation induced by apyrase co-injection was confirmed by counting the percentage of Ki67 positive glioma cell nuclei. According to counts with CD31, vessel density and neoformation was higher in the C6 group 20 days after implantation. Confirming this observation, rats treated with apyrase presented less VEGF staining in comparison to the control group. Conclusion These results indicate that the participation of extracellular ATP and the ecto-nucleotidases may be associated with the development of this type of brain tumor in an in vivo glioma model.
Collapse
Affiliation(s)
- Fernanda B Morrone
- Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, RS, Brazil
- Faculdade de Farmácia, PUCRS, Porto Alegre, RS, Brazil
| | - Diogo L Oliveira
- Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, RS, Brazil
| | | | - Joseli Stella
- Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, RS, Brazil
| | - Suzana Wofchuk
- Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, RS, Brazil
| | - Márcia R Wink
- Departamento de Biofísica IB, UFRGS, Porto Alegre, RS, Brazil
| | - Luise Meurer
- Departamento de Patologia, HCPA, UFRGS, Porto Alegre, RS, Brazil
| | | | - Guido Lenz
- Departamento de Biofísica IB, UFRGS, Porto Alegre, RS, Brazil
| | | |
Collapse
|
232
|
Borges FP, Gottardi B, Stuepp C, Larré AB, Tasca T, De Carli GA, Bonan CD. Characterization of an ecto-5'-nucleotidase (EC 3.1.3.5) activity in intact trophozoites of Trichomonas gallinae. Vet Parasitol 2006; 143:106-11. [PMID: 16962709 DOI: 10.1016/j.vetpar.2006.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 07/19/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
This study describes the enzymatic properties of an ecto-5'-nucleotidase in Trichomonas gallinae. The enzyme hydrolyzes nucleoside monophosphates at pH 7.2 and is activated by divalent cations, such as magnesium. Ecto-5'-nucleotidase activity was insensitive to levamisole, tetramisole (alkaline phosphatase inhibitors), and AMPCP (adenosine 5'-[alpha,beta-methylene]diphosphate), an ecto-5'-nucleotidase inhibitor, whereas 0.1mM ammonium molybdate (considered a potent inhibitor of 5'-nucleotidase activity) completely inhibited the enzyme activity. The apparent K(M) (Michaelis constant) and Vmax (maximum velocity) values for Mg2+-AMP were 466+/-57 microM and 3.7+/-0.59 nmolPi/min/10(6) trichomonads, respectively. Considering that trichomonads lack the ability to synthesize purines and pyrimidines de novo, the presence of an ecto-5'-nucleotidase in intact trophozoites of T. gallinae could be important in regulating the extracellular nucleotide levels and generating adenosine, essential for the survival strategies of the parasite.
Collapse
Affiliation(s)
- Fernanda Pires Borges
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
233
|
Senger MR, Rosemberg DB, Rico EP, de Bem Arizi M, Dias RD, Bogo MR, Bonan CD. In vitro effect of zinc and cadmium on acetylcholinesterase and ectonucleotidase activities in zebrafish (Danio rerio) brain. Toxicol In Vitro 2006; 20:954-8. [PMID: 16446075 DOI: 10.1016/j.tiv.2005.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/24/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
Zinc and cadmium are environmental contaminants that induce a wide range of effects on CNS. Here we tested the in vitro effect of these metals on acetylcholinesterase (AChE) and ectonucleotidase (NTPDase and ecto-5'-nucleotidase) activities in zebrafish brain. Both zinc and cadmium treatments did not alter significantly the zebrafish brain AChE activity. ATP hydrolysis presented a significant increase at 1 mM zinc (17%) and the AMPase activity had a dose-dependent increase at 0.5 and 1 mM zinc exposure (188% and 199%). After cadmium treatment, ATPase activity was significantly increased (53% and 48%) at 0.5 and 1 mM, respectively. Cadmium, in the range 0.25-1 mM, inhibited ADP hydrolysis in a dose-dependent manner (13.4-69%). Ecto-5'-nucleotidase activity was only inhibited (38%) in the presence of 1 mM cadmium. It is possible to suggest that changes on NTPDase and ecto-5'-nucleotidase activities can be an important mechanism involved in neurotoxic effects promoted by zinc and cadmium.
Collapse
Affiliation(s)
- Mario Roberto Senger
- Laboratório de Pesquisa Bioquímica, Departamento de Ciências Fisiológicas, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
234
|
Vlajkovic SM, Vinayagamoorthy A, Thorne PR, Robson SC, Wang CJH, Housley GD. Noise-induced up-regulation of NTPDase3 expression in the rat cochlea: Implications for auditory transmission and cochlear protection. Brain Res 2006; 1104:55-63. [PMID: 16815340 DOI: 10.1016/j.brainres.2006.05.094] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/15/2006] [Accepted: 05/21/2006] [Indexed: 10/24/2022]
Abstract
Stimuli such as noise or hypoxia can induce a release of ATP into the cochlear fluid spaces. At nanomolar concentrations, ATP affects neurotransmission and electrochemical regulation of sound transduction. At higher concentrations, ATP may exert cytotoxicity acting on specific P2X(7) receptor subunits, thus contributing to the pathophysiology of noise-induced cochlear injury. Ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) are pivotal to regulation of extracellular nucleotide concentrations and therefore P2 receptor signaling in the cochlea. Here, we characterize the distribution of NTPDase3 ectonucleotidase (preferentially hydrolyzes ATP over ADP) in cochlear tissues and investigate the effect of noise exposure on NTPDase3 expression. Marked NTPDase3 immunoreactivity in the primary afferent neurones of the spiral ganglion, extending in the distal neurite processes to the synapses beneath the inner and outer hair cells, suggests involvement in auditory neurotransmission. Immunolabeling in the lateral wall and epithelial cells lining the cochlear partition was also evident. Semi-quantitative immunohistochemistry revealed increased NTPDase3 immunolabeling in the synaptic regions of the inner and outer hair cells at sound intensities that induce temporary threshold shift. The results suggest a role for NTPDase3 in regulating ATP signaling associated primarily with auditory neurotransmission, and the potential neuroprotective nature of noise-induced up-regulation of this ectonucleotidase in the cochlea.
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
235
|
Senger MR, Rico EP, de Bem Arizi M, Frazzon APG, Dias RD, Bogo MR, Bonan CD. Exposure to Hg2+ and Pb2+ changes NTPDase and ecto-5'-nucleotidase activities in central nervous system of zebrafish (Danio rerio). Toxicology 2006; 226:229-37. [PMID: 16930798 DOI: 10.1016/j.tox.2006.07.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 05/27/2006] [Accepted: 07/14/2006] [Indexed: 10/24/2022]
Abstract
Neurotransmission can be affected by exposure to heavy metals, such as mercury and lead. ATP is a signaling molecule that can be metabolized by a group of enzymes called ecto-nucleotidases. Here we investigated the effects of mercury chloride (HgCl(2)) and lead acetate (Pb(CH(3)COO)(2)) on NTPDase (nucleoside triphosphate diphosphohydrolase) and ecto-5'-nucleotidase activities in zebrafish brain membranes. In vitro exposure to HgCl(2) decreased ATP and ADP hydrolysis in an uncompetitive mechanism and AMP hydrolysis in a non-competitive manner. Pb(CH(3)COO)(2) inhibited ATP hydrolysis in an uncompetitive manner, but not ADP and AMP hydrolysis. In vivo exposure of zebrafish to HgCl(2) or Pb(CH(3)COO)(2) (20mug/L, during 24, 96h and 30 days) caused differential effects on nucleotide hydrolysis. HgCl(2), during 96h, inhibited the hydrolysis of ATP, ADP and AMP. After 30 days of exposure to HgCl(2), ATP hydrolysis returned to the control levels, ADP hydrolysis was strongly increased and AMP hydrolysis remained inhibited. Exposure to Pb(CH(3)COO)(2) during 96h caused a significant decrease only on ATP hydrolysis. After 30 days, Pb(CH(3)COO)(2) promoted the inhibition of ATP, ADP and AMP hydrolysis. Semi-quantitative RT-PCR analysis showed no changes in the expression of NTPDase1 and 5'-nucleotidase, following 30 days of exposure to both metals. This study demonstrated that Hg(2+) and Pb(2+) affect the ecto-nucleotidase activities, an important enzymatic pathway for the control of purinergic signaling.
Collapse
Affiliation(s)
- Mario Roberto Senger
- Laboratório de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
236
|
de Souza Dahm KC, Rückert C, Tonial EM, Bonan CD. In vitro exposure of heavy metals on nucleotidase and cholinesterase activities from the digestive gland of Helix aspersa. Comp Biochem Physiol C Toxicol Pharmacol 2006; 143:316-20. [PMID: 16730235 DOI: 10.1016/j.cbpc.2006.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 03/15/2006] [Accepted: 03/16/2006] [Indexed: 11/26/2022]
Abstract
Zinc, copper and cadmium are important environmental contaminants and differences in purinergic and cholinergic systems of invertebrates have been described when compared to characteristics of these signaling systems in vertebrates. Here we evaluate the effect in vitro of these metals on the ATPase, 5'-nucleotidase and cholinesterase (ChE) activities in the digestive gland of Helix aspersa. Zinc (500 and 1000 microM) promoted a significant decrease in 5'-nucleotidase activity. However, it did not induce changes in ATP hydrolysis. Copper (25 and 50 microM), inhibited significantly ATPase activity, but did not alter 5'-nucleotidase when compared to control (no metal added). In relation to effects of cadmium, an inhibitory effect on ATP hydrolysis has been observed at concentrations of 100, 500 and 1000 microM and a similar decrease of AMP hydrolysis was observed at 500 and 1000 microM. However, there were no significant changes in ChE activity from homogenates of the digestive gland of H. aspersa for all metals tested. This study demonstrated that zinc, cadmium and copper affect ATPase and 5'-nucleotidase in digestive gland, but not ChE, suggesting that the purinergic system may be a target related to toxicity induced by these metals and a possible indicator of biological impact of exposure to these contaminants.
Collapse
Affiliation(s)
- Kelly Cristine de Souza Dahm
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
237
|
da Silva AC, Balz D, de Souza JBD, Morsch VM, Corrêa MC, Zanetti GD, Manfron MP, Schetinger MRC. Inhibition of NTPDase, 5'-nucleotidase, Na+/K+-ATPase and acetylcholinesterase activities by subchronic treatment with Casearia sylvestris. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2006; 13:509-14. [PMID: 16785042 DOI: 10.1016/j.phymed.2005.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 01/11/2005] [Indexed: 05/10/2023]
Abstract
The aqueous extract of Casearia sylvestris was tested in cortical membrane preparations. C. sylvestris was obtained commercially from two different sources, designated as Sample A and Sample B. The enzymes studied in this work were NTPDase-like, 5'-Nucleotidase, Na(+)/K(+)-ATPase and acetylcholinesterase (AChE). Adult rats received aqueous extracts from C. sylvestris in a dose of 20mg/kg body wt. daily for a 75-day-period, by oral administration (gavage). Our study showed that this treatment caused an inhibition of NTPDase-like activity with both, ATP (19.41% with Sample A and 25.03% with Sample B) and ADP (41.57% with Sample A and 31.20% with Sample B) as substrates. This treatment also caused an inhibition of 5'-nucleotidase activity (28.34% with Sample A and 31.46% with Sample B) and Na(+)/K(+)-ATPase (25.08% with Sample A and 24.81% with Sample B). The rate of acetylcholine degradation was reduced, as shown by the inhibition of AChE (31.65% and 26.74%, Samples A and B, respectively). These results suggest that extracts of C. sylvestris can cause neurochemical alterations in the purinergic and cholinergic systems of the central nervous system.
Collapse
Affiliation(s)
- A C da Silva
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Bartel DL, Sullivan SL, Lavoie EG, Sévigny J, Finger TE. Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds. J Comp Neurol 2006; 497:1-12. [PMID: 16680780 PMCID: PMC2212711 DOI: 10.1002/cne.20954] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The presence of one or more calcium-dependent ecto-ATPases (enzymes that hydrolyze extracellular 5'-triphosphates) in mammalian taste buds was first shown histochemically. Recent studies have established that dominant ecto-ATPases consist of enzymes now called nucleoside triphosphate diphosphohydrolases (NTPDases). Massively parallel signature sequencing (MPSS) from murine taste epithelium provided molecular evidence suggesting that NTPDase2 is the most likely member present in mouse taste papillae. Immunocytochemical and enzyme histochemical staining verified the presence of NTPDase2 associated with plasma membranes in a large number of cells within all mouse taste buds. To determine which of the three taste cell types expresses this enzyme, double-label assays were performed with antisera directed against the glial glutamate/aspartate transporter (GLAST), the transduction pathway proteins phospholipase Cbeta2 (PLCbeta2) or the G-protein subunit alpha-gustducin, and serotonin (5HT) as markers of type I, II, and III taste cells, respectively. Analysis of the double-labeled sections indicates that NTPDase2 immunoreactivity is found on cell processes that often envelop other taste cells, reminiscent of type I cells. In agreement with this observation, NTPDase2 was located to the same membrane as GLAST, indicating that this enzyme is present in type I cells. The presence of ecto-ATPase in taste buds likely reflects the importance of ATP as an intercellular signaling molecule in this system.
Collapse
Affiliation(s)
- Dianna L Bartel
- Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045-6511, USA
| | | | | | | | | |
Collapse
|
239
|
Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 2006; 112:358-404. [PMID: 16784779 DOI: 10.1016/j.pharmthera.2005.04.013] [Citation(s) in RCA: 787] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 02/07/2023]
Abstract
Human health is under constant threat of a wide variety of dangers, both self and nonself. The immune system is occupied with protecting the host against such dangers in order to preserve human health. For that purpose, the immune system is equipped with a diverse array of both cellular and non-cellular effectors that are in continuous communication with each other. The naturally occurring nucleotide adenosine 5'-triphosphate (ATP) and its metabolite adenosine (Ado) probably constitute an intrinsic part of this extensive immunological network through purinergic signaling by their cognate receptors, which are widely expressed throughout the body. This review provides a thorough overview of the effects of ATP and Ado on major immune cell types. The overwhelming evidence indicates that ATP and Ado are important endogenous signaling molecules in immunity and inflammation. Although the role of ATP and Ado during the course of inflammatory and immune responses in vivo appears to be extremely complex, we propose that their immunological role is both interdependent and multifaceted, meaning that the nature of their effects may shift from immunostimulatory to immunoregulatory or vice versa depending on extracellular concentrations as well as on expression patterns of purinergic receptors and ecto-enzymes. Purinergic signaling thus contributes to the fine-tuning of inflammatory and immune responses in such a way that the danger to the host is eliminated efficiently with minimal damage to healthy tissues.
Collapse
Affiliation(s)
- M J L Bours
- Maastricht University, Department of Epidemiology, Nutrition and Toxicology Research Institute Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
240
|
Barreto-Chaves MLM, Carneiro-Ramos MS, Cotomacci G, Júnior MBC, Sarkis JJF. E-NTPDase 3 (ATP diphosphohydrolase) from cardiomyocytes, activity and expression are modulated by thyroid hormone. Mol Cell Endocrinol 2006; 251:49-55. [PMID: 16584835 DOI: 10.1016/j.mce.2006.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 01/12/2006] [Accepted: 02/20/2006] [Indexed: 11/19/2022]
Abstract
Degradation of adenine nucleotides by myocardial cells occurs, in part, by a cascade of surface-located enzymes converting ATP into adenosine that has important implications for the regulation of the nucleotide/nucleoside ratio modulating the cardiac functions. Thyroid hormones have profound effects on cardiovascular system, as observed in hypo- and hyperthyroidism. Combined biochemical parameters and gene expression analysis approaches were used to investigate the influence of tri-iodothyronine (T3) on ATP and ADP hydrolysis by isolated myocytes. Cultures of cardiomyocytes were submitted to increasing doses of T3 for 24h. Enzymatic activity and expression were evaluated. T3 (0.1 nM) caused an increase in ATP and ADP hydrolysis. Experiments with specific inhibitors suggest the involvement of an NTPDase, which was confirmed by an increase in NTPDase 3 messenger RNA (mRNA) levels. Since T3 promotes an increase in the contractile protein, leading to cardiac hypertrophy, it is tempting to postulate that the increase in ATP hydrolysis and the decrease in the extracellular levels signify an important factor for prevention of excessive contractility.
Collapse
Affiliation(s)
- Maria Luiza M Barreto-Chaves
- Laboratory of Cellular Biology and Functional Anatomy, Department of Anatomy, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes 2415, Cidade Universitária, São Paulo, SP 05508-900, Brazil.
| | | | | | | | | |
Collapse
|
241
|
Abstract
Activity-dependent release of ATP from synapses, axons and glia activates purinergic membrane receptors that modulate intracellular calcium and cyclic AMP. This enables glia to detect neural activity and communicate among other glial cells by releasing ATP through membrane channels and vesicles. Through purinergic signalling, impulse activity regulates glial proliferation, motility, survival, differentiation and myelination, and facilitates interactions between neurons, and vascular and immune system cells. Interactions among purinergic, growth factor and cytokine signalling regulate synaptic strength, development and responses to injury. We review the involvement of ATP and adenosine receptors in neuron-glia signalling, including the release and hydrolysis of ATP, how the receptors signal, the pharmacological tools used to study them, and their functional significance.
Collapse
Affiliation(s)
- R Douglas Fields
- National Institute of Child Health and Human Development, National Institutes of Health, Building 35, Room 2A211, MSC 3713, 35 Lincoln Drive, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
242
|
Robson SC, Sévigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2006; 2:409-30. [PMID: 18404480 PMCID: PMC2254478 DOI: 10.1007/s11302-006-9003-5] [Citation(s) in RCA: 729] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 01/23/2006] [Indexed: 12/17/2022] Open
Abstract
Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides to the respective nucleosides. Within the past decade, ectonucleotidases belonging to several enzyme families have been discovered, cloned and characterized. In this article, we specifically address the cell surface-located members of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) family (NTPDase1,2,3, and 8). The molecular identification of individual NTPDase subtypes, genetic engineering, mutational analyses, and the generation of subtype-specific antibodies have resulted in considerable insights into enzyme structure and function. These advances also allow definition of physiological and patho-physiological implications of NTPDases in a considerable variety of tissues. Biological actions of NTPDases are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides and consequent effects on P2-receptor signaling. It further appears that the spatial and temporal expression of NTPDases by various cell types within the vasculature, the nervous tissues and other tissues impacts on several patho-physiological processes. Examples include acute effects on cellular metabolism, adhesion, activation and migration with other protracted impacts upon developmental responses, inclusive of cellular proliferation, differentiation and apoptosis, as seen with atherosclerosis, degenerative neurological diseases and immune rejection of transplanted organs and cells. Future clinical applications are expected to involve the development of new therapeutic strategies for transplantation and various inflammatory cardiovascular, gastrointestinal and neurological diseases.
Collapse
Affiliation(s)
- Simon C. Robson
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts USA
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Québec, Québec Canada
| | - Herbert Zimmermann
- Institut fuer Zellbiologie und Neurowissenschaft, Biozentrum der J.W. Goethe-Universitaet, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany
| |
Collapse
|
243
|
Burnstock G. Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 2006; 110:433-54. [PMID: 16226312 DOI: 10.1016/j.pharmthera.2005.08.013] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 08/31/2005] [Accepted: 08/31/2005] [Indexed: 12/22/2022]
Abstract
Following hints in the early literature about adenosine 5'-triphosphate (ATP) injections producing pain, an ion-channel nucleotide receptor was cloned in 1995, P2X3 subtype, which was shown to be localized predominantly on small nociceptive sensory nerves. Since then, there has been an increasing number of papers exploring the role of P2X3 homomultimer and P2X2/3 heteromultimer receptors on sensory nerves in a wide range of organs, including skin, tongue, tooth pulp, intestine, bladder, and ureter that mediate the initiation of pain. Purinergic mechanosensory transduction has been proposed for visceral pain, where ATP released from epithelial cells lining the bladder, ureter, and intestine during distension acts on P2X3 and P2X2/3, and possibly P2Y, receptors on subepithelial sensory nerve fibers to send messages to the pain centers in the brain as well as initiating local reflexes. P1, P2X, and P2Y receptors also appear to be involved in nociceptive neural pathways in the spinal cord. P2X4 receptors on spinal microglia have been implicated in allodynia. The involvement of purinergic signaling in long-term neuropathic pain and inflammation as well as acute pain is discussed as well as the development of P2 receptor antagonists as novel analgesics.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
244
|
E-NTPDases in human airways: Regulation and relevance for chronic lung diseases. Purinergic Signal 2006; 2:399-408. [PMID: 18404479 PMCID: PMC2096640 DOI: 10.1007/s11302-006-9001-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 12/21/2005] [Indexed: 12/01/2022] Open
Abstract
Chronic obstructive lung diseases are characterized by the inability to prevent bacterial infection and a gradual loss of lung function caused by recurrent inflammatory responses. In the past decade, numerous studies have demonstrated the importance of nucleotide-mediated bacterial clearance. Their interaction with P2 receptors on airway epithelia provides a rapid ‘on-and-off’ signal stimulating mucus secretion, cilia beating activity and surface hydration. On the other hand, abnormally high ATP levels resulting from damaged epithelia and bacterial lysis may cause lung edema and exacerbate inflammatory responses. Airway ATP concentrations are regulated by ecto nucleoside triphosphate diphosphohydrolases (E-NTPDases) which are expressed on the mucosal surface and catalyze the sequential dephosphorylation of nucleoside triphosphates to nucleoside monophosphates (ATP → ADP → AMP). The common bacterial product, Pseudomonas aeruginosa lipopolysaccharide (LPS), induces an acute reduction in azide-sensitive E-NTPDase activities, followed by a sustained increase in activity as well as NTPDase 1 and NTPDase 3 expression. Accordingly, chronic lung diseases, including cystic fibrosis (CF) and primary ciliary dyskinesia, are characterized by higher rates of nucleotide elimination, azide-sensitive E-NTPDase activities and expression. This review integrates the biphasic regulation of airway E-NTPDases with the function of purine signaling in lung diseases. During acute insults, a transient reduction in E-NTPDase activities may be beneficial to stimulate ATP-mediated bacterial clearance. In chronic lung diseases, elevating E-NTPDase activities may represent an attempt to prevent P2 receptor desensitization and nucleotide-mediated lung damage.
Collapse
|
245
|
Housley GD, Marcotti W, Navaratnam D, Yamoah EN. Hair Cells – Beyond the Transducer. J Membr Biol 2006; 209:89-118. [PMID: 16773496 DOI: 10.1007/s00232-005-0835-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Indexed: 02/06/2023]
Abstract
OVERVIEW This review considers the "tween twixt and twain" of hair cell physiology, specifically the signaling elements and membrane conductances which underpin forward and reverse transduction at the input stage of hair cell function and neurotransmitter release at the output stage. Other sections of this review series outline the advances which have been made in understanding the molecular physiology of mechanoelectrical transduction and outer hair cell electromotility. Here we outline the contributions of a considerable array of ion channels and receptor signaling pathways that define the biophysical status of the sensory hair cells, contributing to hair cell development and subsequently defining the operational condition of the hair cells across the broad dynamic range of physiological function.
Collapse
Affiliation(s)
- G D Housley
- Department of Physiology, University of Auckland, Private Bag, 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
246
|
Braganhol E, Bruno AN, Bavaresco L, Barreto-Chaves MLM, Sarkis JJF, Battastini AMO. Neonatal hypothyroidism affects the adenine nucleotides metabolism in astrocyte cultures from rat brain. Neurochem Res 2006; 31:449-54. [PMID: 16758352 DOI: 10.1007/s11064-006-9041-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2005] [Indexed: 11/24/2022]
Abstract
Neonatal hypothyroidism is associated with multiple and severe brain alterations. We recently demonstrated a significant increase in hydrolysis of AMP to adenosine in brain of hypothyroid rats at different ages. However, the origin of this effect was unclear. Considering the effects of adenine nucleotides to brain functions and the harmful effects of neonatal hypothyroidism to normal development of the central nervous system, in this study we investigated the metabolism of adenine nucleotides in hippocampal, cortical and cerebellar astrocyte cultures from rats submitted to neonatal hypothyroidism. ATP and AMP hydrolysis were enhanced by 52 and 210%, respectively, in cerebellar astrocytes from hypothyroid rats. In hippocampus of hypothyroid rats, the 47% increase in AMP hydrolysis was significantly reverted when the astrocytes were treated with T3. Therefore, the imbalance in the ATP and adenosine levels in astrocytes, during brain development, may contribute to some of the effects described in neonatal hypothyroidism.
Collapse
Affiliation(s)
- Elizandra Braganhol
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | |
Collapse
|
247
|
Spanevello RMM, Mazzanti CM, Kaizer R, Zanin R, Cargnelutti D, Hannel L, Côrrea M, Mazzanti A, Festugatto R, Graça D, Schetinger MRC, Morsch VM. Apyrase and 5'-nucleotidase activities in synaptosomes from the cerebral cortex of rats experimentally demyelinated with ethidium bromide and treated with interferon-beta. Neurochem Res 2006; 31:455-62. [PMID: 16758353 DOI: 10.1007/s11064-006-9039-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2005] [Indexed: 10/24/2022]
Abstract
Apyrase and 5'-nucleotidase activities were analyzed in an ethidium bromide (EB) demyelinating model associated with interferon-beta (IFN-beta). The animals were divided in groups: I, control (saline); II, saline and IFN-beta; III, EB and IV, EB and IFN-beta. After 7, 15 and 30 days the animals (n = 5) were sacrificed and the cerebral cortex was removed for synaptosome preparation and enzymatic assays. Apyrase activity using ATP as substrate increased in groups II, III and IV (P < 0.001) after 7 days and in groups III and IV (P < 0.001) after 15 days. Using ADP as substrate, an activation of this enzyme was observed in group III (P < 0.05) after seven and 15 days. The 5'-nucleotidase activity increased in group III (P < 0.05) after 7 days and in groups II, III and IV (P < 0.001) after 15 days. After 30 days treatment, no significant alteration was observed in enzyme activities. Results showed that apyrase and 5'-nucleotidase activities are altered in demyelination events and that IFN-beta was able to regulate the adenine nucleotide hydrolysis.
Collapse
Affiliation(s)
- R M M Spanevello
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, RS, Brasil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Rico EP, Rosemberg DB, Senger MR, Arizi MDB, Bernardi GF, Dias RD, Bogo MR, Bonan CD. Methanol alters ecto-nucleotidases and acetylcholinesterase in zebrafish brain. Neurotoxicol Teratol 2006; 28:489-96. [PMID: 16806813 DOI: 10.1016/j.ntt.2006.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 04/11/2006] [Accepted: 05/01/2006] [Indexed: 11/16/2022]
Abstract
Methanol is a neurotoxic compound that is responsible for serious damage on CNS. Besides being found as an environmental contaminant, this alcohol is also employed as a component of cryoprotector solutions for zebrafish embryos. Here we tested the acute effect of methanol on ecto-nucleotidase (NTPDase, ecto-5'-nucleotidase) and acetylcholinesterase (AChE) activities in zebrafish brain. After acute treatment, there were significant decreases on ATP (26% and 45%) and ADP hydrolysis (26% and 30%) at 0.5% and 1.0%, respectively. However, no significant alteration on ecto-5'-nucleotidase activity was verified in zebrafish brain. A significant inhibition on AChE activity (39%, 33% and 30%) was observed at the range of 0.25% to 1.0% methanol exposure. Four NTPDase sequences were identified from phylogenetic analyses, which one is similar to NTPDase1 and the others to NTPDase2. Methanol was able to inhibit NTPDase1, two isoforms of NTPDase2 and AChE transcripts. To evaluate if methanol affects directly these enzymes activities, we have performed in vitro assays. ATP hydrolysis presented a significant inhibition (19% and 34%) at 1.5% and 3.0%, respectively, and ADP hydrolysis decreased only at 3.0% (29.2%). Nevertheless, AMP hydrolysis and AChE were not altered after in vitro exposure. The inhibitory effect observed on these enzymes could contribute to the neurodegenerative events promoted by methanol in zebrafish brain.
Collapse
Affiliation(s)
- Eduardo Pacheco Rico
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul. Avenida Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Invited Lectures : Overviews Purinergic signalling: past, present and future. Purinergic Signal 2006; 2:1-324. [PMID: 18404494 PMCID: PMC2096525 DOI: 10.1007/s11302-006-9006-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2006] [Indexed: 12/11/2022] Open
|
250
|
Zimmermann H. Nucleotide signaling in nervous system development. Pflugers Arch 2006; 452:573-88. [PMID: 16639549 DOI: 10.1007/s00424-006-0067-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/06/2006] [Indexed: 11/24/2022]
Abstract
The development of the nervous system requires complex series of cellular programming and intercellular communication events that lead from the early neural induction to the formation of a highly structured central and peripheral nervous system. Neurogenesis continuously takes place also in select regions of the adult mammalian brain. During the past years, a multiplicity of cellular control mechanisms has been identified, ranging from differential transcriptional mediators to inducers or inhibitors of cell specification or neurite outgrowth. While the identification of transcription factors typical for the stage-specific progression has been a topic of key interest for many years, less is known concerning the potential multiplicity of relevant intercellular signaling pathways and the fine tuning of epigenetic gene regulation. Nucleotide receptors can induce a multiplicity of cellular signaling pathways and are involved in multiple molecular interactions, thus opening the possibility of cross talk between several signaling pathways, including growth factors, cytokines, and extracellular matrix components. An increasing number of studies provides evidence for a role of nucleotide signaling in nervous system development. This includes progenitor cell proliferation, cell migration, neuronal and glial cellular interaction and differentiation, and synaptic network formation.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institut fuer Zellbiologie und Neurowissenschaft, Biozentrum der J.W. Goethe-Universitaet, Max-von-Lane-Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|