201
|
Affiliation(s)
- Mehran M Sadeghi
- Raymond and Beverly Sackler Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
202
|
Nahrendorf M, Weissleder R. Von vulnerablem Plaque bis Infarktheilung – neue Perspektiven in der Kardiologie mit molekularer Bildgebung. Radiologe 2007; 47:18-24. [PMID: 17187263 DOI: 10.1007/s00117-006-1450-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We will witness a change of paradigm in cardiovascular imaging, which is empowered by advances in imaging technology, biochemistry, molecular biology and nanotechnology. Instead of simply following the physical distribution of established contrast agents, we now have the opportunity to noninvasively image biological processes such as enzyme activity, interaction with cell surface markers, gene expression and cell migration. These advancements open up new avenues in basic cardiovascular research and will greatly speed up the pace of discovery. Patient management will profit as well: cardiovascular molecular imaging will strengthen personlized and prophylactic medicine through timely and precise diagnostics. In our review we describe selected molecular imaging strategies in atherosclerosis, myocardial ischemia and healing.
Collapse
Affiliation(s)
- M Nahrendorf
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Rm. 5406, 149 13th St., Charlestown, MA 02129, USA.
| | | |
Collapse
|
203
|
Seimon TA, Obstfeld A, Moore KJ, Golenbock DT, Tabas I. Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages. Proc Natl Acad Sci U S A 2006; 103:19794-9. [PMID: 17167049 PMCID: PMC1750881 DOI: 10.1073/pnas.0609671104] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Macrophage pattern recognition receptors (PRRs) play key roles in innate immunity, but they also may contribute to disease processes under certain pathological conditions. We recently showed that engagement of the type A scavenger receptor (SRA), a PRR, triggers JNK-dependent apoptosis in endoplasmic reticulum (ER)-stressed macrophages. In advanced atherosclerotic lesions, the SRA, activated JNK, and ER stress are observed in macrophages, and macrophage death in advanced atheromata leads to plaque necrosis. Herein, we show that SRA ligands trigger apoptosis in ER-stressed macrophages by cooperating with another PRR, Toll-like receptor 4 (TLR4), to redirect TLR4 signaling from prosurvival to proapoptotic. Common SRA ligands activate both TLR4 signaling and engage the SRA. The TLR4 effect results in activation of the proapoptotic MyD88-JNK branch of TLR4, whereas the SRA effect silences the prosurvival IRF-3-IFN-beta branch of TLR4. The normal cell-survival effect of LPS-induced TLR4 activation is converted into an apoptosis response by immunoneutralization of IFN-beta, and the apoptosis effect of SRA ligands is converted into a cell-survival response by reconstitution with IFN-beta. Thus, combinatorial signaling between two distinct PRRs results in a functional outcome-macrophage apoptosis that does not occur with either PRR alone. PRR-induced macrophage death may play important roles in advanced atherosclerosis and in other innate immunity-related processes in which the balance between macrophage survival and death is critical.
Collapse
Affiliation(s)
| | | | - Kathryn J. Moore
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114; and
| | - Douglas T. Golenbock
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ira Tabas
- Anatomy and Cell Biology and Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
204
|
van der Meer IM, Oei HHS, Hofman A, Pols HAP, de Jong FH, Witteman JCM. Soluble Fas, a mediator of apoptosis, C-reactive protein, and coronary and extracoronary atherosclerosis. Atherosclerosis 2006; 189:464-9. [PMID: 16466728 DOI: 10.1016/j.atherosclerosis.2006.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 01/10/2006] [Indexed: 11/19/2022]
Abstract
RATIONALE Findings from laboratory studies strongly suggest a role for apoptosis, the process of programmed cell death, in cardiovascular disease. No population-based study has yet investigated whether serum levels of soluble forms of Fas, a receptor capable of inducing the apoptosis cascade, are associated with coronary and extracoronary atherosclerosis. METHODS Within the Rotterdam Coronary Calcification Study, a population-based cohort study, we measured coronary calcification using electron-beam computed tomography, abdominal aortic calcification by abdominal X-ray, carotid plaques and common carotid intima-media thickness (IMT) by ultrasonography, and lower extremity atherosclerosis by computation of the ankle-arm index. Levels of sFas and of the inflammatory mediator C-reactive protein (CRP) were measured in 1036 participants. RESULTS Levels of sFas were not related to coronary or extracoronary atherosclerosis. CRP showed strong associations with measures of atherosclerosis, including coronary atherosclerosis, which largely remained after adjustment for traditional cardiovascular risk factors. CONCLUSION The results of this study do not support a role for sFas in the identification of subjects with atherosclerosis.
Collapse
Affiliation(s)
- Irene M van der Meer
- Department of Epidemiology and Biostatistics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
205
|
Affiliation(s)
- Sergio Waxman
- Department of Cardiovascular Medicine, Lahey Clinic, 41 Mall Rd, Burlington, MA 01805, USA.
| | | | | |
Collapse
|
206
|
Houard X, Leclercq A, Fontaine V, Coutard M, Martin-Ventura JL, Ho-Tin-Noé B, Touat Z, Meilhac O, Michel JB. Retention and Activation of Blood-Borne Proteases in the Arterial Wall. J Am Coll Cardiol 2006. [DOI: 10.1016/j.jacc.2006.04.098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
207
|
Li W, Ostblom M, Xu LH, Hellsten A, Leanderson P, Liedberg B, Brunk UT, Eaton JW, Yuan XM. Cytocidal effects of atheromatous plaque components: the death zone revisited. FASEB J 2006; 20:2281-90. [PMID: 17077305 DOI: 10.1096/fj.06-6114com] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Earlier we suggested that atheroma lesions constitute a "death zone" containing toxic materials that may cause dysfunction and demise of invading macrophages to prevent the removal of plaque materials. Here we have assessed the cytotoxic effects of nonfractionated gruel and insoluble (ceroid-like) material derived from advanced human atheroma. METHODS AND RESULTS The insoluble material within advanced atherosclerotic plaque was isolated following protease K digestion and extensive extraction with aqueous and organic solvents. FTIR, Raman, and atomic absorption spectroscopy suggested that, despite its fluorescent nature, this material closely resembled hydroxyapatite and dentin, but also contained a significant amount of iron and calcium. When added to J774 cells and human macrophages in culture, this insoluble substance was phagocytosed, and progressive cell death followed. However, an even more cytotoxic activity was found in the atheromatous "gruel" that contains abundant carbonyls/aldehydes. Cell death caused by both crude gruel and ceroid could be blocked by preincubating cells with the lipophilic iron chelator salicylaldehyde isonicotinoyl hydrazone, apoferritin, BAPTA/AM, or sodium borohydride, indicating that cellular iron, calcium, and reactive aldehyde(s) are responsible for the observed cytotoxicity. CONCLUSIONS Toxic materials within atheromatous lesions include both ceroid and even more cytotoxic lipidaceous materials. The cytotoxic effects of these plaque components may help explain the persistence of atherosclerotic lesions.
Collapse
Affiliation(s)
- Wei Li
- Division of Experimental Pathology, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Kolodgie FD, Burke AP, Skorija KS, Ladich E, Kutys R, Makuria AT, Virmani R. Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 26:2523-9. [PMID: 16960105 DOI: 10.1161/01.atv.0000244681.72738.bc] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Although lipoprotein-associated phospholipase A2 (Lp-PLA2) has received recent attention as a biomarker of inflammation and risk for acute coronary events, its relative expression in coronary plaque phenotypes, including unstable lesions, has not been established. METHODS AND RESULTS Coronary segments (n=30) were prospectively collected from 25 sudden coronary death patients for immunolocalization of Lp-PLA2. Lesion morphologies were classified as pathologic intimal thickening, fibroatheromas, thin-cap fibroatheromas (fibrous cap thicknesses <65 microm), and rupture. The expression of Lp-PLA2 was detected using a specific monoclonal antibody. Apoptosis was identified by DNA end-labeling using terminal deoxynucleotidyl transferase (TdT). Lp-PLA2 staining in early plaques was absent or minimally detected. In contrast, thin-cap fibroatheromas and ruptured plaques showed intense Lp-PLA2 expression within necrotic cores and surrounding macrophages including those in the fibrous cap. The degree of macrophage apoptosis was greater in thin-cap fibroatheroma and ruptures compared with less advanced plaques with additional double labeling studies showing Lp-PLA2 present in apoptotic cells in regions of high macrophage density. CONCLUSIONS Lp-PLA2 is strongly expressed within the necrotic core and surrounding macrophages of vulnerable and ruptured plaques, with relatively weak staining in less advanced lesions. These findings together with the association of Lp-PLA2 in apoptotic macrophages suggest a potential role in promoting plaque instability.
Collapse
Affiliation(s)
- Frank D Kolodgie
- CVPath Institute Inc, 19 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | | | | | | | | | | |
Collapse
|
209
|
Yasuda O, Fukuo K, Sun X, Nishitani M, Yotsui T, Higuchi M, Suzuki T, Rakugi H, Smithies O, Maeda N, Ogihara T. Apop-1, a novel protein inducing cyclophilin D-dependent but Bax/Bak-related channel-independent apoptosis. J Biol Chem 2006; 281:23899-907. [PMID: 16782708 DOI: 10.1074/jbc.m512610200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the intrinsic pathway of apoptosis, mitochondria play a crucial role by releasing cytochrome c from the intermembrane space into the cytoplasm. Cytochrome c release through Bax/Bak-dependent channels in mitochondria has been well documented. In contrast, cyclophilin D (CypD), an important component of permeability transition pore-dependent protein release, remains largely undefined, and no apoptogenic proteins that act specifically in a CypD-dependent manner have been reported to date. Here, we describe a novel and evolutionarily conserved protein, apoptogenic protein (Apop). Mouse Apop-1 expression induces apoptotic death by releasing cytochrome c from mitochondria into the cytosolic space followed by activation of caspase-9 and -3. Apop-1-induced apoptosis is not blocked by Bcl-2 or Bcl-xL, inhibitors of Bax/Bak-dependent channels, whereas it is completely blocked by cyclosporin A, an inhibitor of permeability transition pore. Cells lacking CypD were resistant to Apop-induced apoptosis. Moreover, inhibition of Apop expression prevented the cell death induced by apoptosis-inducing substances. Our findings, thus, indicate that the expression of Apop-1 induces apoptosis though CypD-dependent pathway and that Apop-1 plays roles in cell death under physiological conditions.
Collapse
Affiliation(s)
- Osamu Yasuda
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Clarke MCH, Figg N, Maguire JJ, Davenport AP, Goddard M, Littlewood TD, Bennett MR. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med 2006; 12:1075-80. [PMID: 16892061 DOI: 10.1038/nm1459] [Citation(s) in RCA: 512] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 06/29/2006] [Indexed: 11/10/2022]
Abstract
Vascular smooth muscle cell (VSMC) apoptosis occurs in many arterial diseases, including aneurysm formation, angioplasty restenosis and atherosclerosis. Although VSMC apoptosis promotes vessel remodeling, coagulation and inflammation, its precise contribution to these diseases is unknown, given that apoptosis frequently accompanies vessel injury or alterations to flow. To study the direct consequences of VSMC apoptosis, we generated transgenic mice expressing the human diphtheria toxin receptor (hDTR, encoded by HBEGF) from a minimal Tagln (also known as SM22alpha) promoter. Despite apoptosis inducing loss of 50-70% of VSMCs, normal arteries showed no inflammation, reactive proliferation, thrombosis, remodeling or aneurysm formation. In contrast, VSMC apoptosis in atherosclerotic plaques of SM22alpha-hDTR Apoe-/- mice induced marked thinning of fibrous cap, loss of collagen and matrix, accumulation of cell debris and intense intimal inflammation. We conclude that VSMC apoptosis is 'silent' in normal arteries, which have a large capacity to withstand cell loss. In contrast, VSMC apoptosis alone is sufficient to induce features of plaque vulnerability in atherosclerosis. SM22alpha-hDTR Apoe-/- mice may represent an important new model to test agents proposed to stabilize atherosclerotic plaques.
Collapse
Affiliation(s)
- Murray C H Clarke
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | | | | | | | | | | | | |
Collapse
|
211
|
Blankenberg S, Godefroy T, Poirier O, Rupprecht HJ, Barbaux S, Bickel C, Nicaud V, Schnabel R, Kee F, Morrison C, Evans A, Lackner KJ, Cambien F, Münzel T, Tiret L. Haplotypes of the Caspase-1 Gene, Plasma Caspase-1 Levels, and Cardiovascular Risk. Circ Res 2006; 99:102-8. [PMID: 16778130 DOI: 10.1161/01.res.0000232324.87983.4b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Caspase-1 processes the interleukin (IL)-1beta and IL-18 inactive precursors to the biologically active cytokines that are known to have proatherogenic effects. The present study investigated the genetic variability of the CASP1 gene and plasma levels of caspase-1 in relation to cardiovascular risk. In Europeans, 3 tag SNPs captured 4 common haplotypes of the CASP1 gene. Among these, the A(in6) allele of the G+7/in6A polymorphism was less frequent in 246 cases with myocardial infarction and a parental history of disease than in 253 controls free of familial history of disease (0.13+/-0.02 versus 0.20+/-0.02; P=0.005). However, in a larger case/control study (n=1774), these effects are borderline restricted to the UK population. In a prospective cohort of 1168 patients with coronary artery disease followed up during a median period of 6.0 years, the A(in6) allele exhibited a borderline association with future cardiovascular death (hazard ratio [HR]: 0.64, 0.41 to 1.01; P=0.053) and was associated with lower serum IL-18 levels (P=0.014). Baseline caspase-1 levels in the top quartile of the distribution were predictive of cardiovascular deaths (HR=3.62, 1.81 to 7.27; P=0.0003 compared with the bottom quartile). Finally, in vitro assays of allelic imbalance showed that the CASP1 haplotype carrying the A(in6) allele was associated with a lower mRNA expression. These results indicate that caspase-1 levels are predictive of future cardiovascular death in patients with coronary artery disease. The role of CASP1 genetic variations in the susceptibility to myocardial infarction requires further investigation.
Collapse
Affiliation(s)
- Stefan Blankenberg
- Department of Medicine II, Johannes Gutenberg-University Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Davies JR, Rudd JHF, Weissberg PL, Narula J. Radionuclide imaging for the detection of inflammation in vulnerable plaques. J Am Coll Cardiol 2006; 47:C57-68. [PMID: 16631511 DOI: 10.1016/j.jacc.2005.11.049] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 10/10/2005] [Accepted: 11/16/2005] [Indexed: 01/09/2023]
Abstract
Imaging of atheromatous plaques has traditionally centered on assessing the degree of luminal stenosis. More recently it has become clear that the vulnerable atherosclerotic plaques responsible for the majority of life-threatening syndromes are characterized by high numbers of inflammatory cells and proteins. This has highlighted the urgent need for suitable imaging techniques that can identify and quantify levels of inflammation within atheromatous lesions. Positron emission tomography and single-photon emission computed tomography imaging hold promise in this regard. Tracer compounds capable of assessing macrophage recruitment, foam cell generation, matrix metalloproteinase production, macrophage apoptosis, and macrophage metabolism have been developed and tested in the carotid and peripheral circulation. The identification of inflamed lesions within the coronary circulation, however, remains elusive owing to small plaque size, cardiac and respiratory motion, and lack of a suitable specific nuclear tracer.
Collapse
Affiliation(s)
- John R Davies
- Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
213
|
Abstract
Atherosclerosis is a chronic disease of the arterial wall where both innate and adaptive immunoinflammatory mechanisms are involved. Inflammation is central at all stages of atherosclerosis. It is implicated in the formation of early fatty streaks, when the endothelium is activated and expresses chemokines and adhesion molecules leading to monocyte/lymphocyte recruitment and infiltration into the subendothelium. It also acts at the onset of adverse clinical vascular events, when activated cells within the plaque secrete matrix proteases that degrade extracellular matrix proteins and weaken the fibrous cap, leading to rupture and thrombus formation. Cells involved in the atherosclerotic process secrete and are activated by soluble factors, known as cytokines. Important recent advances in the comprehension of the mechanisms of atherosclerosis provided evidence that the immunoinflammatory response in atherosclerosis is modulated by regulatory pathways, in which the two anti-inflammatory cytokines interleukin-10 and transforming growth factor-β play a critical role. The purpose of this review is to bring together the current information concerning the role of cytokines in the development, progression, and complications of atherosclerosis. Specific emphasis is placed on the contribution of pro- and anti-inflammatory cytokines to pathogenic (innate and adaptive) and regulatory immunity in the context of atherosclerosis. Based on our current knowledge of the role of cytokines in atherosclerosis, we propose some novel therapeutic strategies to combat this disease. In addition, we discuss the potential of circulating cytokine levels as biomarkers of coronary artery disease.
Collapse
Affiliation(s)
- Alain Tedgui
- Institut National de la Santé et de la Recherche Médicale U. 689, Cardiovascular Research Center Lariboisiere, and University Paris 7, Paris, France.
| | | |
Collapse
|
214
|
Hiller KH, Waller C, Nahrendorf M, Bauer WR, Jakob PM. Assessment of Cardiovascular Apoptosis in the Isolated Rat Heart by Magnetic Resonance Molecular Imaging. Mol Imaging 2006. [DOI: 10.2310/7290.2006.00012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Christiane Waller
- Medizinische Klinik und Poliklinik I/Herzkreislaufzentrum, Wuerzburg, Germany
| | | | - Wolfgang R. Bauer
- Medizinische Klinik und Poliklinik I/Herzkreislaufzentrum, Wuerzburg, Germany
| | | |
Collapse
|
215
|
Prunet C, Lemaire-Ewing S, Ménétrier F, Néel D, Lizard G. Activation of caspase-3-dependent and -independent pathways during 7-ketocholesterol- and 7beta-hydroxycholesterol-induced cell death: a morphological and biochemical study. J Biochem Mol Toxicol 2006; 19:311-26. [PMID: 16292754 DOI: 10.1002/jbt.20096] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
On treatment with 7-ketocholesterol (7-keto) or 7beta-hydroxycholesterol (7beta-OH), which are major oxysterols in atherosclerotic plaques, the simultaneous identification of oncotic and apoptotic cells suggests that these compounds activate different metabolic pathways leading to various modes of cell death. With U937, MCF-7 (caspase-3 deficient), MCF-7/c3 cells (stably transfected with caspase-3), we demonstrate that caspase-3 is essential for caspase-9, -7, -8 activation, for Bid degradation mediating mitochondrial cytochrome c release, for cleavage of poly(ADP-ribose) polymerase and inhibitor of the caspase-activated deoxyribonuclease, and, at least in part, for internucleosomal DNA fragmentation. The crucial role of caspase-3 was supported by the use of z-VAD-fmk and z-DEVD-fmk, which abolished apoptosis and the associated events. However, inactivation or lack of caspase-3 did not inhibit 7-keto- and 7beta-OH-induced cell death characterized by staining with propidium iodide, loss of mitochondrial potential. The mitochondrial release of apoptosis-inducing factor and endonuclease G was independent of the caspase-3 status, which conversely played major roles in the morphological aspects of dead cells. We conclude that caspase-3 is essential to trigger 7-keto- and 7beta-OH-induced apoptosis, that these oxysterols simultaneously activate caspase-3-dependent and/or -independent modes of cell death.
Collapse
Affiliation(s)
- Céline Prunet
- Inserm U498/IFR 100, CHU/Hôpital du Bocage, Laboratoire de Biochimie Médicale, BP 77908, 21079 Dijon Cedex, France
| | | | | | | | | |
Collapse
|
216
|
Abstract
Cell death is important for both development and tissue homeostasis in the adult. As such, it is tightly controlled and deregulation is associated with diverse pathologies; for example, regulated cell death is involved in vessel remodelling during development or following injury, but deregulated death is implicated in pathologies such as atherosclerosis, aneurysm formation, ischaemic and dilated cardiomyopathies and infarction. We describe the mechanisms of cell death and its role in the normal physiology and various pathologies of the cardiovascular system.
Collapse
Affiliation(s)
- Murray Clarke
- Division of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
217
|
Li Y, Gerbod-Giannone MC, Seitz H, Cui D, Thorp E, Tall AR, Matsushima GK, Tabas I. Cholesterol-induced Apoptotic Macrophages Elicit an Inflammatory Response in Phagocytes, Which Is Partially Attenuated by the Mer Receptor. J Biol Chem 2006; 281:6707-17. [PMID: 16380374 DOI: 10.1074/jbc.m510579200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Macrophage apoptosis and the ability of phagocytes to clear these apoptotic cells are important processes in advanced atherosclerosis. Phagocytic clearance not only disposes of dead cells but usually elicits an anti-inflammatory response. To study this process in a model of advanced lesional macrophage death, macrophages rendered apoptotic by free cholesterol loading (FC-AMs) were incubated briefly with fresh macrophages ("phagocytes"). FC-AMs were promptly ingested by the phagocytes, which was dependent upon actin polymerization and the phagocyte Mer receptor. Surprisingly, this brief exposure to FC-AMs triggered a modest proinflammatory response in the phagocytes: tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1beta were induced, whereas the levels of transforming growth factor-beta and IL-10 were not increased. This response required cell contact between the FC-AMs and phagocytes but not FC-AM ingestion. TNF-alpha and IL-1beta induction required one or more proteins on the FC-AM surface and was dependent on signaling through extracellular signal-regulated kinase-1/2 mitogen-activated protein kinase and nuclear factor-kappaB in the phagocytes. TNF-alpha production was markedly greater when Mer-defective phagocytes were used, indicating that Mer attenuated the inflammatory response. Interestingly, a more typical anti-inflammatory response was elicited when phagocytes were exposed to macrophages rendered apoptotic by oxidized low density lipoprotein or UV radiation. Thus, the proinflammatory milieu of advanced atherosclerotic lesions may be promoted, or at least not dampened, by contact between FC-induced apoptotic macrophages and neighboring phagocytes prior to apoptotic cell ingestion.
Collapse
Affiliation(s)
- Yankun Li
- Department of Medicine, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Tabas I. Consequences and Therapeutic Implications of Macrophage Apoptosis in Atherosclerosis. Arterioscler Thromb Vasc Biol 2005; 25:2255-64. [PMID: 16141399 DOI: 10.1161/01.atv.0000184783.04864.9f] [Citation(s) in RCA: 503] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Macrophage apoptosis occurs throughout all stages of atherosclerosis, yet new findings in vivo suggest that the consequences of this event may be very different in early versus late atherosclerotic lesions. In early lesions, where phagocytic clearance of apoptotic cells appears to be efficient, macrophage apoptosis is associated with diminished lesion cellularity and decreased lesion progression. In late lesions, however, a number of factors may contribute to defective phagocytic clearance of apoptotic macrophages, leading to secondary necrosis of these cells and a proinflammatory response. The cumulative effect of these late lesional events is generation of the necrotic core, which, in concert with proatherogenic effects of residual surviving macrophages, promotes further inflammation, plaque instability, and thrombosis. Thus, the ability or lack thereof of lesional phagocytes to safely clear apoptotic macrophages may be an important determinant of acute atherothrombotic clinical events. Further understanding of the mechanisms involved in macrophage apoptosis and phagocytic clearance might lead to novel therapeutic strategies directed against the progression of advanced plaques.
Collapse
Affiliation(s)
- Ira Tabas
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
219
|
Devries-Seimon T, Li Y, Yao PM, Stone E, Wang Y, Davis RJ, Flavell R, Tabas I. Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. ACTA ACUST UNITED AC 2005; 171:61-73. [PMID: 16203857 PMCID: PMC2171235 DOI: 10.1083/jcb.200502078] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Macrophage death in advanced atherosclerosis promotes necrosis and plaque destabilization. A likely cause of macrophage death is accumulation of free cholesterol (FC) in the ER, leading to activation of the unfolded protein response (UPR) and C/EBP homologous protein (CHOP)-induced apoptosis. Here we show that p38 MAPK signaling is necessary for CHOP induction and apoptosis. Additionally, two other signaling pathways must cooperate with p38-CHOP to effect apoptosis. One involves the type A scavenger receptor (SRA). As evidence, FC loading by non-SRA mechanisms activates p38 and CHOP, but not apoptosis unless the SRA is engaged. The other pathway involves c-Jun NH2-terminal kinase (JNK)2, which is activated by cholesterol trafficking to the ER, but is independent of CHOP. Thus, FC-induced apoptosis requires cholesterol trafficking to the ER, which triggers p38-CHOP and JNK2, and engagement of the SRA. These findings have important implications for understanding how the UPR, MAPKs, and the SRA might conspire to cause macrophage death, lesional necrosis, and plaque destabilization in advanced atherosclerotic lesions.
Collapse
|
220
|
Li W, Hellsten A, Xu LH, Zhuang DM, Jansson K, Brunk UT, Yuan XM. Foam cell death induced by 7beta-hydroxycholesterol is mediated by labile iron-driven oxidative injury: mechanisms underlying induction of ferritin in human atheroma. Free Radic Biol Med 2005; 39:864-75. [PMID: 16140207 DOI: 10.1016/j.freeradbiomed.2005.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 04/08/2005] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
Human atherosclerotic lesions typically contain large amounts of ferritin associated with apoptotic macrophages and foam cells, although the reasons are unknown. In the present investigation, we studied the relationship between ferritin induction and occurrence of apoptosis in 7beta-hydroxycholesterol (7beta-OH)-treated monocytic cells and macrophages. We found that 7beta-OH enlarges the intracellular labile iron pool, increases formation of reactive oxygen species (ROS), and induces ferritin and cytosolic accumulation of lipid droplets, lysosomal destabilization, and apoptototic macrophage death. Since ferritin is a phase II-type protective protein, our findings suggest that ferritin upregulation here worked as an inefficient defense mechanism. Addition to the culture medium of both a membrane-permeable iron chelator 10-phenanthroline and the non-membrane-permeable iron chelators apoferritin and desferrioxamine afforded significant protection against the 7beta-OH-induced effects. Consequently, endocytosed iron compounds dramatically augmented 7beta-OH-induced cytotoxicity. We conclude that oxidized lipid 7beta-OH causes not only foam cell formation but also oxidative damage with abnormal metabolism of cellular iron. The findings suggest that modulation of iron metabolism in human atheroma may be a potential therapeutic strategy against atherosclerosis.
Collapse
Affiliation(s)
- Wei Li
- Division of Experimental Pathology, Faculty of Health Sciences, Linköping University, Linköping SE-581 85, Sweden.
| | | | | | | | | | | | | |
Collapse
|
221
|
|
222
|
Abstract
Inflammation plays a key role in atherothrombosis: in the development of plaques, plaque rupture and thrombus formation. Various biochemical substances have been shown to be involved in the inflammatory process, some with pro-inflammatory activity and others with anti-inflammatory activity. Increased expression of many inflammatory mediators (e.g. C-reactive protein, CD40 ligand, P-selectin and IL-6) has been shown to correlate with increased risk of atherothrombotic events. One possible strategy for primary and secondary prevention is likely to focus on minimizing the inflammatory response and tipping the balance in favour of anti-inflammatory mediators and, therefore, plaque stability.
Collapse
Affiliation(s)
- Alain Tedgui
- Department of Biology and Molecular Physiology of the Vessel, Inserm U541 - Hôpital Lariboisière, Paris, France.
| |
Collapse
|
223
|
Mango R, Biocca S, del Vecchio F, Clementi F, Sangiuolo F, Amati F, Filareto A, Grelli S, Spitalieri P, Filesi I, Favalli C, Lauro R, Mehta JL, Romeo F, Novelli G. In Vivo and In Vitro Studies Support That a New Splicing Isoform of
OLR1
Gene Is Protective Against Acute Myocardial Infarction. Circ Res 2005; 97:152-8. [PMID: 15976314 DOI: 10.1161/01.res.0000174563.62625.8e] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), encoded by the
OLR1
gene, is a scavenger receptor that plays a fundamental role in the pathogenesis of atherosclerosis. LOX-1 activation is associated with apoptosis of endothelial cells, smooth muscle cells (SMCs), and macrophages. This process is an important underlying mechanism that contributes to plaque instability and subsequent development of acute coronary syndromes. Independent association genetic studies have implicated
OLR1
gene variants in myocardial infarction (MI) susceptibility. Because single nucleotide polymorphisms (SNPs) linked to MI are located in intronic sequences of the gene, it remains unclear as to how they determine their biological effects. Using quantitative real-time PCR and minigene approach, we show that intronic SNPs, linked to MI, regulate the expression of a new functional splicing isoform of the
OLR1
gene, LOXIN, which lacks exon 5. Macrophages from subjects carrying the “non-risk” disease haplotype at
OLR1
gene have an increased expression of LOXIN at mRNA and protein level, which results in a significant reduction of apoptosis in response to oxLDL. Expression of LOXIN in different cell types results in loss of surface staining, indicating that truncation of the C-terminal portion of the protein has a profound effect on its cellular trafficking. Furthermore, the proapoptotic effect of LOX-1 receptor in cell culture is specifically rescued by the coexpression of LOXIN in a dose-dependent manner. The demonstration that increasing levels of LOXIN protect cells from LOX-1 induced apoptosis sets a groundwork for developing therapeutic approaches for prevention of plaque instability.
Collapse
Affiliation(s)
- Ruggiero Mango
- Department of Biopathology and Diagnostic Imaging, University of Tor Vergata, Via Montpellier 1, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Benagiano M, D'Elios MM, Amedei A, Azzurri A, van der Zee R, Ciervo A, Rombolà G, Romagnani S, Cassone A, Del Prete G. Human 60-kDa heat shock protein is a target autoantigen of T cells derived from atherosclerotic plaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 174:6509-6517. [PMID: 15879154 DOI: 10.4049/jimmunol.174.10.6509] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidemiological studies suggest the potential importance of an inflammatory component in atherosclerosis and support the hypothesis that immune responses to Ags of pathogens cross-react with homologous host proteins due to molecular mimicry. Protein candidates involved may be the stress-induced proteins known as heat shock proteins (HSP). In this study, we report that atherosclerotic plaques harbor in vivo-activated CD4(+) T cells that recognize the human 60-kDa HSP. Such in vivo-activated 60-kDa HSP-specific T cells are not detectable in the peripheral blood. In patients with positive serology and PCR for Chlamydia pneumoniae DNA, but not in patients negative for both, most of plaque-derived T cells specific for human 60-kDa HSP also recognized the C. pneumoniae 60-kDa HSP. We characterized the submolecular specificity of such 60-kDa HSP-specific plaque-derived T cells and identified both the self- and cross-reactive epitopes of that autoantigen. On challenge with human 60-kDa HSP, most of the plaque-derived T cells expressed Th type 1 functions, including cytotoxicity and help for monocyte tissue factor production. We suggest that arterial endothelial cells, undergoing classical atherosclerosis risk factors and conditioned by Th type 1 cytokines, express self 60-kDa HSP, which becomes target for both autoreactive T cells and cross-reactive T cells to microbial 60-kDa HSP via a mechanism of molecular mimicry. This hypothesis is in agreement with the notion that immunization with HSP exacerbates atherosclerosis, whereas immunosuppression and T cell depletion prevent the formation of arteriosclerotic lesions in experimental animals.
Collapse
Affiliation(s)
- Marisa Benagiano
- Department of Internal Medicine, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005; 73:1907-16. [PMID: 15784530 PMCID: PMC1087413 DOI: 10.1128/iai.73.4.1907-1916.2005] [Citation(s) in RCA: 1521] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Susan L Fink
- Department of Laboratory Medicine, University of Washington, Box 357110, Seattle, WA 98195-7110, USA
| | | |
Collapse
|
226
|
Narula N, Narula J, Zhang PJ, Haider N, Raghunath PN, Brittin R, Gorman JH, Gorman RC, Tomaszewski JE. Is the Myofibrillarlytic Myocyte a Forme Fruste Apoptotic Myocyte? Ann Thorac Surg 2005; 79:1333-7; discussion 1337. [PMID: 15797072 DOI: 10.1016/j.athoracsur.2004.09.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2004] [Indexed: 12/18/2022]
Abstract
BACKGROUND Myofibrillarlytic (MFL) cells are commonly observed in subendocardial myocardium in myocardial infarction. Because ischemic damage to myocytes is also known to induce apoptosis, we evaluated the prevalence of apoptosis in MFL cells in nine ischemic cardiomyopathic hearts explanted during transplantation. METHODS Myocytes with partial or complete clearing of cytoplasm, observed commonly in the subendocardium, were recognized as MFL cells. Prevalence of apoptosis was defined by TUNEL and ISOL staining and further characterized by immunohistochemical staining for caspase-3, Bcl2, BCL-X(L), Bax, proliferating cell nuclear antigen (PCNA), and Ki67. RESULTS Of 4131 MFL cells examined, 1305 (32%) possessed nuclei in a given histologic section; 1140 (88%) of the nucleated myocardial cells were TUNEL positive. Of 842 cells with normal appearance, 257 (31%) cells demonstrated nuclei in the given histologic section. TUNEL staining was observed in 5 (1.9%) in these control areas. All MFL cells stained positive for caspase 3. The antiapoptotic proteins, Bcl2 and BCL-X(L), demonstrated intense upregulation within and surrounding MFL cells, whereas pro-apoptotic protein Bax expression was only seen at control level. The MFL cells had Ki67 negative and PCNA positive nuclei. CONCLUSIONS The present study demonstrates that the majority of MFL cells are apoptotic and are associated with upregulation of caspase 3. Simultaneous upregulation of Bcl2 represents a survival effort in these myocytes. This is consistent with the review of the literature that MFL cells are viable, persist in myocardium for long time and may be functionally reversible. Evidence for concurrent apoptosis and survival instinct represent a conceptual paradox and suggests that myocytes undergoing apoptosis should be amenable to reconstitution of function.
Collapse
Affiliation(s)
- Navneet Narula
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Arai S, Shelton JM, Chen M, Bradley MN, Castrillo A, Bookout AL, Mak PA, Edwards PA, Mangelsdorf DJ, Tontonoz P, Miyazaki T. A role for the apoptosis inhibitory factor AIM/Spalpha/Api6 in atherosclerosis development. Cell Metab 2005; 1:201-13. [PMID: 16054063 DOI: 10.1016/j.cmet.2005.02.002] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 02/15/2005] [Accepted: 02/25/2005] [Indexed: 11/19/2022]
Abstract
Macrophages play a central role in the development of atherosclerosis through the accumulation of oxidized LDL (oxLDL). AIM (Spalpha/Api6) has previously been shown to promote macrophage survival; however, its function in atherogenesis is unknown. Here we identify AIM as a critical factor that protects macrophages from the apoptotic effects of oxidized lipids. AIM protein is induced in response to oxLDL loading and is highly expressed in foam cells within atherosclerotic lesions. Interestingly, both expression of AIM in lesions and its induction by oxidized lipids require the action of LXR/RXR heterodimers. AIM-/- macrophages are highly susceptible to oxLDL-induced apoptosis in vitro and undergo accelerated apoptosis in atherosclerotic lesions in vivo. Moreover, early atherosclerotic lesions in AIM-/-LDLR-/- double knockout mice are dramatically reduced when compared to AIM+/+LDLR-/- controls. We conclude that AIM production facilitates macrophage survival within atherosclerotic lesions and that loss of AIM decreases early lesion development by increasing macrophage apoptosis.
Collapse
Affiliation(s)
- Satoko Arai
- Center for Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard NA7200, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Kavurma MM, Bhindi R, Lowe HC, Chesterman C, Khachigian LM. Vessel wall apoptosis and atherosclerotic plaque instability. J Thromb Haemost 2005; 3:465-72. [PMID: 15748235 DOI: 10.1111/j.1538-7836.2005.01120.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atherosclerotic cardiovascular disease remains the leading cause of death in the industrialized world. Most cardiovascular deaths result from acute coronary syndromes, including unstable angina pectoris and acute myocardial infarction. Coronary syndromes often arise from acute coronary thrombosis, itself commonly a result of disruption or rupture of the fibrous cap of a lipid-laden atherosclerotic plaque. Despite this huge clinical burden of atherosclerotic plaque instability, our understanding of the molecular mechanisms mediating atherosclerotic plaque disruption and rupture, at a cellular level, remains limited. Placed in a clinical context, this review discusses our current understanding of the molecular basis for atherosclerotic plaque instability, with particular emphasis on the process of apoptosis-or programmed cell death-seen increasingly as playing a key role in a number of cell types within the vessel wall.
Collapse
Affiliation(s)
- M M Kavurma
- Center for Vascular Research, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
229
|
de Winther MPJ, Kanters E, Kraal G, Hofker MH. Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 2005; 25:904-14. [PMID: 15731497 DOI: 10.1161/01.atv.0000160340.72641.87] [Citation(s) in RCA: 457] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Atherosclerosis is an inflammatory disease, characterized by the accumulation of macrophage-derived foam cells in the vessel wall and accompanied by the production of a wide range of chemokines, cytokines, and growth factors. These factors regulate the turnover and differentiation of immigrating and resident cells, eventually influencing plaque development. One of the key regulators of inflammation is the transcription factor nuclear factor kappaB (NF-kappaB), which, for a long time, has been regarded as a proatherogenic factor, mainly because of its regulation of many of the proinflammatory genes linked to atherosclerosis. NF-kappaB may play an important role in guarding the delicate balance of the atherosclerotic process as a direct regulator of proinflammatory and anti-inflammatory genes and as a regulator of cell survival and proliferation. Here we address recent literature on the function of NF-kappaB in inflammatory responses and its relation to atherosclerosis.
Collapse
Affiliation(s)
- Menno P J de Winther
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
230
|
Park SH, Kim DS, Kim WG, Ryoo IJ, Lee DH, Huh CH, Youn SW, Yoo ID, Park KC. Terrein: a new melanogenesis inhibitor and its mechanism. Cell Mol Life Sci 2004; 61:2878-85. [PMID: 15558216 PMCID: PMC11924421 DOI: 10.1007/s00018-004-4341-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Terrein is a bioactive fungal metabolite whose effects are almost unknown. In this study, we found for the first time that terrein has a strong hypopigmentary effect in a spontaneously immortalized mouse melanocyte cell line, Mel-Ab. Treatment of Mel-Ab cells with terrein (10-100 microM) for 4 days significantly reduced melanin levels in a dose-dependent manner. In addition, terrein at the same concentration also reduced tyrosinase activity. We then investigated whether terrein influences the extracellular signal-regulated protein kinase (ERK) pathway and the expression of microphthalmia-associated transcription factor (MITF), which is required for tyrosinase expression. Terrein was found to induce sustained ERK activation and MITF down-regulation, and luciferase assays showed that terrein inhibits MITF promoter activity in a dose-dependent manner. To elucidate the correlation between ERK pathway activation and a decreased MITF transcriptional level, PD98059, a specific inhibitor of the ERK pathway, was applied before terrein treatment and found to abrogate the terrein-induced MITF attenuation. Terrein also reduced the tyrosinase protein level for at least 72 h. These results suggest that terrein reduces melanin synthesis by reducing tyrosinase production via ERK activation, and that this is followed by MITF down-regulation.
Collapse
Affiliation(s)
- S-H Park
- Department of Dermatology, Bundang Hospital, Seoul National University, 300 Gumi-Dong, Bundang-Gu, 463-707, Seongnam-Si, Kyoungki-Do, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Frank PG, Lisanti MP. Caveolin-1 and caveolae in atherosclerosis: differential roles in fatty streak formation and neointimal hyperplasia. Curr Opin Lipidol 2004; 15:523-9. [PMID: 15361787 DOI: 10.1097/00041433-200410000-00005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Caveolae are 50-100 nm cell surface plasma membrane invaginations observed in terminally differentiated cells. They are characterized by the presence of the protein marker caveolin-1. Caveolae and caveolin-1 are present in almost every cell type that has been implicated in the development of an atheroma. These include endothelial cells, macrophages, and smooth muscle cells. Caveolae and caveolin-1 are involved in regulating several signal transduction pathways and processes that play an important role in atherosclerosis. RECENT FINDINGS Several recent studies using genetically engineered mice (Cav-1 (-/-) null animals) have now clearly demonstrated a role for caveolin-1 and caveolae in the development of atherosclerosis. In fact, they suggest a rather complex one, either proatherogenic or antiatherogenic, depending on the cell type examined. For example, in endothelial cells, caveolin-1 and caveolae may play a proatherogenic role by promoting the transcytosis of LDL-cholesterol particles from the blood to the sub-endothelial space. In contrast, in smooth muscle cells, the ability of caveolin-1 to negatively regulate cell proliferation (neointimal hyperplasia) may have an antiatherogenic effect. SUMMARY Caveolin-1 and caveolae play an important role in several steps involved in the initiation of an atheroma. Development of new drugs that regulate caveolin-1 expression may be important in the prevention or treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Philippe G Frank
- Department of Molecular Pharmacology and the Albert Einstein Diabetes Research and Training Center (DRTC), and Department of Urology, Albert Einstein College of Medicine, The Bronx, New York 10461, USA.
| | | |
Collapse
|
232
|
Muralidhar B, Carpenter KLH, Müller K, Skepper JN, Arends MJ. Potency of arachidonic acid in polyunsaturated fatty acid-induced death of human monocyte-macrophages: implications for atherosclerosis. Prostaglandins Leukot Essent Fatty Acids 2004; 71:251-262. [PMID: 15301796 DOI: 10.1016/j.plefa.2004.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 03/17/2004] [Indexed: 12/23/2022]
Abstract
Evidence suggests that oxidation of LDL is involved in the progression of atherosclerosis by inducing apoptosis in macrophages. Polyunsaturated fatty acids (PUFAs) are prominent components of LDL and are highly peroxidisable. We therefore tested PUFAs for induction of apoptosis in human monocyte-macrophages in vitro. Arachidonic acid (AA) induced the highest levels of apoptosis followed by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), despite DHA and EPA being more peroxidisable than AA. alpha-Linolenic acid induced lower levels of apoptosis. Linoleic and oleic acids were innocuous. Results of experiments with AA products and enzyme inhibitors suggest roles for peroxidation, cyclooxygenase and lipoxygenase in AA-induced apoptosis. Our results further suggest activation of PPARgamma by AA and DHA associated with apoptosis induction. These findings may be relevant to potential mechanisms of fatty acid influences on plaques and may suggest strategies for combating atherosclerosis progression.
Collapse
Affiliation(s)
- Balaji Muralidhar
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | |
Collapse
|
233
|
Stoneman VEA, Bennett MR. Role of apoptosis in atherosclerosis and its therapeutic implications. Clin Sci (Lond) 2004; 107:343-54. [PMID: 15230690 DOI: 10.1042/cs20040086] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 06/07/2004] [Accepted: 07/01/2004] [Indexed: 01/28/2023]
Abstract
Atherosclerotic plaques develop as a consequence of the accumulation of circulating lipid and the subsequent migration of inflammatory cells (macrophages and T-lymphocytes) and VSMCs (vascular smooth muscle cells). Advanced plaques consist of a lipid-rich core, separated from the lumen by a fibrous cap composed of VSMCs, collagen and extracellular matrix. Plaque enlargement ultimately narrows the lumen (stenosis) causing angina. However, recent studies have emphasized that acute coronary syndromes (unstable angina/myocardial infarction) are caused by lesion erosion/rupture with superimposed thrombus formation on often small non-stenotic plaques. Thus current therapies work predominantly on stabilization of plaques rather than plaque regression. Apoptosis (programmed cell death) is increasingly observed as plaques develop, although the exact mechanisms and consequences of apoptosis in the development and progression of atherosclerosis are still controversial. Increased endothelial cell apoptosis may initiate atherosclerosis, whereas apoptosis of VSMCs and macrophages localizes in ‘vulnerable’ lesions, i.e. those most likely to rupture, and at sites of rupture. This review will focus on the regulation of apoptosis of cells within the vasculature, concentrating on the relevance of apoptosis to plaque progression and clinical consequences of vascular cell apoptosis.
Collapse
Affiliation(s)
- Victoria E A Stoneman
- Unit of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation, Level 6, Box 110, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.
| | | |
Collapse
|
234
|
MacNeill BD, Jang IK, Bouma BE, Iftimia N, Takano M, Yabushita H, Shishkov M, Kauffman CR, Houser SL, Aretz HT, DeJoseph D, Halpern EF, Tearney GJ. Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol 2004; 44:972-9. [PMID: 15337206 DOI: 10.1016/j.jacc.2004.05.066] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 05/31/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVES This study was designed to utilize optical coherence tomography (OCT) images of coronary atherosclerotic plaque macrophages to investigate the relationship between macrophage distributions and clinical syndrome. BACKGROUND The relative significance of focal macrophage infiltration and generalized coronary inflammation for predicting acute coronary events is a currently a source of considerable controversy in cardiology. Lack of a high-resolution cross-sectional imaging modality has limited macrophage evaluation in vivo. METHODS Intracoronary OCT imaging was performed at culprit and non-culprit plaques in patients presenting with stable angina pectoris, unstable angina pectoris,and ST-segment elevation myocardial infarction. Macrophage densities were quantified from these images and analyzed with respect to the clinical presentations of the patients under investigation. RESULTS A significantly greater macrophage density was found in unstable patients, both for fibrous and lipid-rich plaques (p = 0.025 and p = 0.002, respectively). Within each patient, the macrophage densities at culprit and non-culprit lesions correlated significantly (r = 0.66, y = 0.88x + 0.43, p = 0.01). Sites of plaque rupture demonstrated a greater macrophage density than non-ruptured sites (6.95 +/- 1.60%, 5.29 +/- 1.17%; p = 0.002). Surface macrophage infiltration was a stronger predictor of unstable clinical presentation than subsurface infiltration for culprit lesions (p = 0.035) but not for remote lesions (p = 0.80). CONCLUSIONS Our results demonstrate that increases in both multi-focal and focal macrophage densities are highly correlated with symptom severity. By providing a means of detecting increases in plaque macrophage content before an acute event, this technique may aid in determining prognosis and guiding preventive therapy.
Collapse
Affiliation(s)
- Briain D MacNeill
- Cardiology Division, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Leonarduzzi G, Biasi F, Chiarpotto E, Poli G. Trojan horse-like behavior of a biologically representative mixture of oxysterols. Mol Aspects Med 2004; 25:155-67. [PMID: 15051324 DOI: 10.1016/j.mam.2004.02.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oxysterols, 27-carbon atoms cholesterol oxidation products, are consistently detectable in minimally oxidized low density lipoproteins (oxLDLs) and accumulate in the core of fibrotic plaques. Several oxysterols of pathophysiological interest have been shown to possess many and diverse biochemical activities. In particular, 7-ketocholesterol (7K), a major cholesterol oxide both in oxLDLs and in atherosclerotic lesions, is able to lead vascular cells to apoptosis. Indeed, when 7K is added to cells of the macrophage lineage, in a concentration range actually detectable in hypercholesterolemic patients, a marked apoptotic effect was observed. However, when identical concentrations of 7K are given to the same cells in a mixture with other oxysterols, also detectable in human low density lipoprotein (LDL), cell apoptosis was dramatically reduced. Of note, identical amounts of unoxidized cholesterol did not show any significant pro-apoptotic effect. With the aim to investigate the mechanisms underlying the quenching of 7K-dependent apoptosis by the oxysterol mixture, we found that the combined oxysterol mixture counteracted the ability of 7K given alone to strongly increase the steady-state level of reactive oxygen species (ROS) in macrophages as well as the up-regulation of the pro-apoptotic factor p21 and the triggering of the mitochondria-dependent pathway of apoptosis. Competition among oxysterols, apparently at NADPH oxidase level, diminishes the macrophage ROS production and direct toxicity that is evoked by defined oxysterols, as for instance, 7-ketocholesterol.
Collapse
Affiliation(s)
- Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Regione Gonzole, 10, 10043 Orbassano, Torino, Italy
| | | | | | | |
Collapse
|
236
|
Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Varghese PJ, Farb A, Virmani R. Morphologic Findings of Coronary Atherosclerotic Plaques in Diabetics. Arterioscler Thromb Vasc Biol 2004; 24:1266-71. [PMID: 15142859 DOI: 10.1161/01.atv.0000131783.74034.97] [Citation(s) in RCA: 400] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Coronary atherosclerotic plaque composition of diabetic subjects and localization of receptor for advanced glycation end products (RAGE) and its ligands have not been extensively studied. METHODS AND RESULTS Hearts from diabetic subjects and age, race, and sex-matched nondiabetic subjects dying suddenly were examined. Coronary arteries were dissected and lesions were evaluated for plaque burden, necrotic core size, and inflammatory infiltrate. The expression of RAGE, the RAGE-binding protein (S100-A12, EN-RAGE), and cell death (apoptosis) were also determined. Lesions from type II diabetic subjects had larger mean necrotic cores (P=0.01) and greater total and distal plaque load (P<0.001) than nondiabetic subjects. Necrotic core size correlated positively with diabetic status, independent of other risk factors. Intimal staining for macrophages, T-cells, and HLA-DR was also significantly greater in diabetic subjects (P=0.03, P=0.003, and P<0.0001), respectively. The association of increased macrophage infiltrate was independent of cholesterol levels and patient age. Expression of RAGE and EN-RAGE was significantly greater in diabetic subjects (P=0.004) and was associated with apoptotic smooth muscle cells and macrophages. CONCLUSIONS In sudden coronary death, inflammation and necrotic core size play a greater role in the progression of atherosclerosis in diabetic subjects. The expression of RAGE and EN-RAGE may further compromise cell survival and promote plaque destabilization.
Collapse
Affiliation(s)
- Allen P Burke
- Department of Cardiovascular Pathology, Armed Forces Institute of Pathology, Washington, DC 20306-6000, USA
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Abstract
A plethora of studies in cultured cells have established that oxidized low-density lipoprotein (oxLDL) may enhance arterial apoptosis that involves both mitochondrial and death receptor pathways (Fas/FasL, TNF receptors I and II), thereby activating caspase cascade and other proteases. When apoptosis is inhibited by Bcl-2 overexpression, oxLDL may trigger necrosis through a calcium-dependent pathway. Despite this effort, the pathophysiological relevance of apoptosis in vivo remains to be elucidated. In principle, apoptosis occurring in atherosclerotic areas could be involved in endothelial cell lining defects, necrotic core formation, and plaque rupture or fissuring. This complex pathogenic framework may favor coronary atherothrombotic events. To date, the pathogenic role of apoptosis in thrombosis is attractive, but a solid evidence is still needed. When the precise role of oxLDL in vascular programmed cell death occurring in vivo is clarified, this may aid in the development of novel therapeutic approaches to adverse atherogenesis and its clinical sequelae.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Medicine, University of Naples, Naples, Italy.
| |
Collapse
|
238
|
Hutter R, Valdiviezo C, Sauter BV, Savontaus M, Chereshnev I, Carrick FE, Bauriedel G, Lüderitz B, Fallon JT, Fuster V, Badimon JJ. Caspase-3 and Tissue Factor Expression in Lipid-Rich Plaque Macrophages. Circulation 2004; 109:2001-8. [PMID: 15078795 DOI: 10.1161/01.cir.0000125526.91945.ae] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Macrophages associated with arterial wall lipid deposition contribute to inflammatory processes. Tissue factor (TF) has been implicated in the thrombogenicity of atherosclerotic plaques. Intimal cells undergoing apoptosis have been postulated as a source for TF. However, there is only limited knowledge of cell type, plaque component, and conditions associated with TF expression and apoptosis. We examined the hypothesis that macrophages exposed to conditions of lipid-rich plaque undergo apoptosis and express TF. METHODS AND RESULTS In human carotid (n=15) and coronary (n=6) atherosclerotic plaques, TF and caspase-3 mRNA and protein expression (evaluated by in situ hybridization and immunohistochemistry) were increased significantly in lipid-rich compared with fibrous plaque components (P<0.01) and correlated with high macrophage content (P<0.05). Double-labeling studies demonstrated colocalization of TF and active caspase-3. In hyperlipidemic mice, expression of TF and active caspase-3 was observed simultaneously and colocalized in neointimal macrophages after arterial injury. In neointima of normolipidemic animals, TF and active caspase-3 were absent after arterial injury. In monocytes cultured in the presence of oxidized LDL, strong induction and colocalization of TF and active caspase-3 were found compared with baseline (P<0.05). Both antigens were significantly decreased after cotreatment with a caspase inhibitor (P<0.05) and were absent in untreated control cells. CONCLUSIONS The expression of TF as the primary cell-associated activator of the coagulation pathway proves to be closely related to macrophages undergoing apoptosis in conditions of lipid-rich plaque, pointing to a key role of lipid content and inflammatory cell viability in determining plaque thrombogenicity.
Collapse
Affiliation(s)
- Randolph Hutter
- Cardiovascular Institute/Cardiovascular Biology Research Laboratory, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Abstract
The revolution in molecular imaging techniques is profoundly changing the understanding of the pathophysiology and treatment of atherosclerosis. With these rapid changes there is an increasing demand for development of sensitive and well tolerated novel imaging agents that can be rapidly translated from small animal models into patients with atherosclerosis. Nuclear medicine and positron emission tomography techniques have the ability to detect and serially monitor a variety of biologic and pathophysiologic processes usually with tracer quantities of radiolabeled peptides, drugs, and other molecules at dosages free of pharmacologic adverse effects unlike the current generation of intravenous agents required for magnetic resonance imaging (MRI) and computed axial tomography (CT) scanning. A representative sampling of the wide array of radiopharmaceuticals developed specifically for radionuclide imaging of atherosclerosis, that have been approved for clinical use and those in pre-clinical trials, have been reviewed in this article. The presence of an inflammatory stimulus increases expression of CC (cysteine-cysteine motif) chemokine receptor (CCR)-2 on monocytes and macrophages, and somatostatin receptors on T lymphocytes. Radiolabeled monocyte chemoattractant protein (MCP)-1 binds with high affinity to CCR-2 and can be used to detect subacute and chronic inflammatory lesions. Similarly, radiolabeled octreotide or depreotide can be used to detect activated T lymphocytes which may identify the vulnerable plaque. Animal models indicate that (99m)Tc-annexin V, (125)I-MCP-1 and [(18)F]-fluoro-2-deoxyglucose are effective in identifying apoptotic cell death, macrophage infiltration and metabolic activity in atheromatous lesions, respectively. Expression of alpha(v)beta(3) integrin is increased in activated endothelial cells and vascular smooth muscle cells after vascular injury, and alpha(v)beta(3) integrin is minimally expressed on smooth muscle cells and is not expressed on quiescent epithelial cells. Radiolabeled high-affinity peptides can be used to target the alpha(v)beta(3) integrin and visualize areas of vascular damage. Advances in technology such as the micro-single photon emission computed tomography (microSPECT) have the potential to overcome the drawbacks of older CT and MRI methodologies, such as lack of biologically relevant ligands and compatible blood pool contrast agents for imaging. Despite these advances in imaging technology, the small size of atheromatous lesions makes it difficult to detect using external imaging techniques. Therefore, recently there has been renewed interest in the use of intravascular catheter-based radiation detectors.
Collapse
MESH Headings
- Animals
- Annexin A5/metabolism
- Arteriosclerosis/diagnostic imaging
- Arteriosclerosis/metabolism
- Blood Vessels/metabolism
- Blood Vessels/pathology
- Chemokine CCL2/metabolism
- Endothelium, Vascular/diagnostic imaging
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Humans
- Integrin alphaVbeta3/metabolism
- Muscle, Smooth, Vascular/diagnostic imaging
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Radioisotopes
- Radionuclide Angiography
- Radiopharmaceuticals/chemistry
- Somatostatin/metabolism
- Tomography, Emission-Computed/methods
- Tomography, Emission-Computed, Single-Photon/methods
Collapse
Affiliation(s)
- Francis G Blankenberg
- Department of Radiology/Division of Pediatric Radiology, Lucile Salter Packard Children's Hospital, Stanford, California, USA.
| | | | | |
Collapse
|
240
|
Kietselaer BLJH, Reutelingsperger CPM, Heidendal GAK, Daemen MJAP, Mess WH, Hofstra L, Narula J. Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 2004; 350:1472-3. [PMID: 15070807 DOI: 10.1056/nejm200404013501425] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
241
|
Abstract
Atherosclerosis is an inflammatory disease of the arterial wall. Ischemic manifestations of atherosclerosis are mainly due to thrombus formation upon a superficially eroded (denudation of luminal endothelium, 40% of cases) or deeply ruptured (fibrous cap rupture, 60% of cases) plaques. Recent studies have unraveled potentially critical roles for both inflammatory and apoptotic processes in plaque destabilization leading to thrombus formation. Pro-inflammatory mediators have been particularly implicated in the loss of smooth muscle cell and the promotion of collagen degradation that are responsible for fibrous cap rupture, whereas apoptosis has been identified as one of the major determinants of plaque thrombogenicity.
Collapse
Affiliation(s)
- Ziad Mallat
- Inserm U.541, Hôpital Lariboisière, 75475 Paris Cedex 10, France
| | | |
Collapse
|
242
|
Biasi F, Leonarduzzi G, Vizio B, Zanetti D, Sevanian A, Sottero B, Verde V, Zingaro B, Chiarpotto E, Poli G. Oxysterol mixtures prevent proapoptotic effects of 7-ketocholesterol in macrophages: implications for proatherogenic gene modulation. FASEB J 2004; 18:693-5. [PMID: 14977888 DOI: 10.1096/fj.03-0401fje] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxysterols are common components of oxidized low-density lipoprotein and accumulate in the core of fibrotic plaques as a mixture of cholesterol and cholesteryl ester oxidation products. The proapoptotic effects of a biologically representative mixture of oxysterols was compared with equimolar amounts of 7-ketocholesterol and unoxidized cholesterol. The oxysterol mixture in a concentration range actually detectable in hypercholesterolemic patients did not stimulate programmed cell death in cultivated murine macrophages. Unoxidized cholesterol also produced no effect. By contrast, when given alone, 7-ketocholesterol strongly stimulated the mitochondrial pathway of apoptosis with cytochrome c release, caspase-9 activation, and eventually caspase-3 activation. Subsequent experiments showed that when 7-ketocholesterol was administered to cells together with another oxysterol, namely 7betaOH-cholesterol, the strong proapoptotic effect of 7-ketocholesterol was markedly attenuated. As regards the mechanism underlying this quenching, we found that the combined oxysterol treatment counteracted the ability of 7-ketocholesterol, when administered alone, to strongly up-regulate the steady-state levels of reactive oxygen species (ROS) without interfering with sterol uptake. Furthermore, this increase in intracellular ROS appeared to be responsible for the up-regulation of proapoptotic factor, p21, after treatment with 7-ketocholesterol but not in cells challenged with the oxysterol mixture. Competition among oxysterols, apparently at the level of NADPH oxidase, diminishes the ROS induction and direct toxicity that is evoked by specific oxysterols. As a consequence, a more subtle gene modulation by oxysterols becomes facilitated in vascular cells.
Collapse
Affiliation(s)
- Fiorella Biasi
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Gonzaga Hospital, Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Niculescu F, Niculescu T, Rus H. C5b-9 terminal complement complex assembly on apoptotic cells in human arterial wall with atherosclerosis. Exp Mol Pathol 2004; 76:17-23. [PMID: 14738864 DOI: 10.1016/j.yexmp.2003.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis plays an important role in atherosclerosis. The factors regulating this process are not well defined. We examined the relation of apoptotic cells with the terminal complement complex C5b-9 in human atherosclerotic lesions. The extent of apoptosis was determined using TdT dUTP nick-end labeling (TUNEL) and immunohistochemistry of apoptosis regulators caspase-3, caspase-9, Bax, and Bcl-2. C5b-9 was localized by immunohistochemistry and immunoelectron microscopy. The apoptotic index was higher in fibrous plaques when compared with intimal fatty streaks and intimal thickenings. Bax expression was present in TUNEL+ apoptotic cells, and Bcl-2 was rarely present in the atherosclerotic wall. Active caspase 9 and caspase 3 deposits were present in the same areas, suggesting an involvement of the mitochondrial pathway. C5b-9 deposits colocalized with TUNEL+ cells, and the percent of double-positive cells was 2% in fatty streaks, 12% in intimal thickenings, and 35% in fibrous plaques. Colocalization of apoptotic cells with C5b-9 was also confirmed by immunoelectron microscopy. In conclusion, some apoptotic cells carry C5b-9 deposits, suggesting that complement might be activated by apoptotic cells and involved in the promotion of apoptosis, contributing to the progression of atherosclerotic lesions.
Collapse
Affiliation(s)
- Florin Niculescu
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
244
|
Martín-Ventura JL, Blanco-Colio LM, Muñoz-García B, Gómez-Hernández A, Arribas A, Ortega L, Tuñón J, Egido J. NF-kappaB activation and Fas ligand overexpression in blood and plaques of patients with carotid atherosclerosis: potential implication in plaque instability. Stroke 2004; 35:458-63. [PMID: 14739407 DOI: 10.1161/01.str.0000114876.51656.7a] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Apoptosis is present in human atherosclerotic lesions. Nuclear factor-kappaB (NF-kappaB) is involved in the transcriptional regulation of the proapoptotic protein Fas ligand (FasL). We have analyzed NF-kappaB activation and FasL expression in atherosclerotic plaques and peripheral blood mononuclear cells (PBMCs) of patients with carotid stenosis. METHODS NF-kappaB activation and FasL and active caspase-3 expression were analyzed in 32 human carotid plaques. NF-kappaB activation and FasL mRNA were tested in PBMCs of patients and healthy volunteers. We analyzed whether the NF-kappaB inhibitor parthenolide regulates FasL expression and cytotoxicity in human T cells. RESULTS The inflammatory region of plaques showed an increase in NF-kappaB activation (3393+/-281 versus 1029+/-100 positive nuclei per mm(2), P<0.001) and FasL (16+/-1.4% versus 13+/-1.8%, P<0.05) and active caspase-3 (3.3+/-0.6 versus 1.5+/-0.3%, P<0.05) expression compared with the fibrous area. Activated NF-kappaB and FasL protein were colocalized in plaque cells. In PBMCs obtained from those patients the day of endarterectomy, NF-kappaB activation and FasL expression were significantly increased compared with healthy controls (1.5+/-0.1 versus 0.5+/-0.1 and 2.1+/-0.1 versus 1.2+/-0.1 arbitrary units, respectively; P<0.001). There was a significant correlation between NF-kappaB activation and FasL expression. In activated T cells, parthenolide decreased NF-kappaB activation, FasL promoter activity, and mRNA expression. Parthenolide also decreased cytotoxicity of activated Jurkat cells on FasL-sensitive cells. CONCLUSIONS NF-kappaB activation and FasL overexpression occur in PBMCs and atherosclerotic lesions of patients with carotid stenosis. The NF-kappaB-FasL pathway could be involved in the mechanisms underlying plaque instability in humans.
Collapse
|
245
|
Beohar N, Flaherty JD, Davidson CJ, Maynard RC, Robbins JD, Shah AP, Choi JW, MacDonald LA, Jorgensen JP, Pinto JV, Chandra S, Klaus HM, Wang NC, Harris KR, Decker R, Bonow RO. Antirestenotic Effects of a Locally Delivered Caspase Inhibitor in a Balloon Injury Model. Circulation 2004; 109:108-13. [PMID: 14662713 DOI: 10.1161/01.cir.0000105724.30980.cd] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The precise role of arterial barotrauma-mediated apoptosis in causing restenosis is unclear. The purpose of this study was to determine if a link exists between angioplasty-mediated medial smooth muscle cell apoptosis and subsequent neointimal hyperplasia. METHODS AND RESULTS Bilateral iliac artery angioplasty was performed in 25 male New Zealand White rabbits. Simultaneous with balloon injury, each artery was treated locally with either the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(Ome)-fluoromethylketone (ZVAD-fmk) or control. In the acute cohort that was survived to 4 hours (n=10, 7 high dose and 3 low dose), an apoptotic index was calculated using the terminal deoxynucleotidyl TUNEL method. In the intermediate cohort that was survived to 2 weeks (n=5), luminal reendothelialization was measured via CD-31 staining. In the chronic cohort that was survived to 4 weeks (n=10), neointimal area was measured. In the acute cohort, there was a 40% reduction in the apoptotic index with high-dose ZVAD-fmk (P=0.008) and a 33% reduction with low-dose ZVAD-fmk (P=0.08). At 2 weeks, there was no significant difference in the degree of luminal reendothelialization. However, at 4 weeks, there was a 33% (0.33+/-0.23 versus 0.22+/-0.20 mm2) (P<0.005) reduction in neointimal area in ZVAD-fmk-treated arteries. CONCLUSIONS The local delivery of ZVAD-fmk during balloon injury inhibits smooth muscle cell apoptosis. This corresponds to a significant reduction in neointimal proliferation seen at 4 weeks without a significant change in the degree of reendothelialization at 2 weeks.
Collapse
Affiliation(s)
- Nirat Beohar
- Feinberg School of Medicine of Northwestern University, Department of Medicine, Division of Cardiology, 251 E Huron St, Feinberg Pavilion 8-526, Chicago, Ill 60611, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, Hartung D, Steinmetz N, Vanderheyden JL, Vannan MA, Gold HK, Reutelingsperger CPM, Hofstra L, Narula J. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 2003; 108:3134-9. [PMID: 14676140 DOI: 10.1161/01.cir.0000105761.00573.50] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Apoptosis is common in advanced human atheroma and contributes to plaque instability. Because annexin V has a high affinity for exposed phosphatidylserine on apoptotic cells, radiolabeled annexin V may be used for noninvasive detection of apoptosis in atherosclerotic lesions. METHODS AND RESULTS Atherosclerotic plaques were produced in 5 rabbits by deendothelialization of the infradiaphragmatic aorta followed by 12 weeks of cholesterol diet; 5 controls were studied without manipulation. Animals were injected with human recombinant annexin V labeled with technetium-99m before imaging. Aortas were explanted for ex vivo imaging, macroautoradiography, and histological characterization of plaque. Radiolabeled annexin V cleared rapidly from the circulation (T1/2, alpha 9 and beta 46 minutes). There was intense uptake of radiolabel within lesions by 2 hours; no uptake was seen in controls. The results were confirmed in the ex vivo imaging of the explanted aorta. Quantitative annexin uptake was 9.3-fold higher in lesion versus nonlesion areas; the lesion-to-blood ratio was 3.0+/-0.37. Annexin uptake paralleled lesion severity and macrophage burden; no correlation was observed with smooth muscle cells. DNA fragmentation staining of apoptotic nuclei was increased in advanced lesions with evolving necrotic cores, predominantly in macrophages; the uptake of radiolabel correlated with the apoptotic index. CONCLUSIONS Because annexin V clears rapidly from blood and targets apoptotic macrophage population, it should constitute an attractive imaging agent for the noninvasive detection of unstable atherosclerotic plaques.
Collapse
|
247
|
|
248
|
Regar E, Schaar JA, Mont E, Virmani R, Serruys PW. Optical coherence tomography. ACTA ACUST UNITED AC 2003; 4:198-204. [PMID: 15321058 DOI: 10.1016/j.carrad.2003.12.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 12/17/2003] [Indexed: 11/29/2022]
Abstract
BACKGROUND Optical coherence tomography (OCT) is a light-based imaging modality that can be used in biological systems to study tissues in vivo with near-histologic, ultrahigh resolution. The rationale for intravascular application of OCT is its potential for in vivo visualisation of the coronary artery microstructure. METHODS AND RESULTS The principle is analogous to pulse-echo ultrasound imaging; however, light is used rather than sound to create the image. Low-coherent near-infrared light is emitted by a superluminescent diode and reflected by the microstructures within biological tissues. The echo time delay of reflected light waves is converted into a two-dimensional spatial image. The intensity of the reflected light waves is translated into an intensity map. Experimental studies confirmed the ability of intravascular OCT for plaque characterisation and accurate assessment of vascular structures that are close to the luminal surface. Preliminary clinical experience proved in vivo feasibility of intravascular OCT. A variety of atherosclerotic plaque structures including thin cap fibroatheromas can be visualized in vivo. CONCLUSIONS Intravascular OCT allows for accurate assessment of vessel structures close to the luminal side. Clinical application is feasible. To date, however, the clinical relevance of OCT findings in coronary arteries is unclear and further validation of OCT imaging is mandatory.
Collapse
Affiliation(s)
- E Regar
- Department of Cardiology, Thoraxcentre, Erasmus Medical Centre-Rotterdam, Bd 406, Dr. Molewaterplein 40, NL-3015 GD Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
249
|
Affiliation(s)
- Antoine Lafont
- Cardiology Department, Hôpital Européen Georges Pompidou, 20 rue Leblanc, Paris 75015, France.
| |
Collapse
|
250
|
Abstract
PURPOSE OF REVIEW Apoptosis is a critical regulator of homeostasis in many tissues, including the vasculature. Apoptosis in atherosclerotic lesions is triggered by inflammatory processes, both via cell-cell contact and by cytokines and oxidized lipids. Apoptosis of vascular smooth muscle cells, endothelial cells and macrophages may promote plaque growth and pro-coagulation and may induce rupture, the major consequence of atherosclerosis in humans. RECENT FINDINGS Studies over the past year have clearly demonstrated the significance of cell death in atherosclerosis. Some of the key cellular, cytokine and molecular regulators that contribute to the apoptosis of cells within the atherosclerotic lesion have been identified and their mechanism of action elucidated. Other studies have shed some light on the identity of cells whose loss by apoptosis contributes to plaque instability. SUMMARY The identification of which cell types undergo apoptosis within the atherosclerotic lesion, the extracellular factors that impinge on these cells, and the intracellular mechanisms that govern their demise have begun to be elucidated. This information is critical in the design of further in-vivo experiments such as the exploitation of animal models, and ultimately, in applying this knowledge to clinical practice.
Collapse
Affiliation(s)
- Trevor D Littlewood
- University of Cambridge, Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, UK.
| | | |
Collapse
|