201
|
Sarsour EH, Kumar MG, Chaudhuri L, Kalen AL, Goswami PC. Redox control of the cell cycle in health and disease. Antioxid Redox Signal 2009; 11:2985-3011. [PMID: 19505186 PMCID: PMC2783918 DOI: 10.1089/ars.2009.2513] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 01/11/2023]
Abstract
The cellular oxidation and reduction (redox) environment is influenced by the production and removal of reactive oxygen species (ROS). In recent years, several reports support the hypothesis that cellular ROS levels could function as ''second messengers'' regulating numerous cellular processes, including proliferation. Periodic oscillations in the cellular redox environment, a redox cycle, regulate cell-cycle progression from quiescence (G(0)) to proliferation (G(1), S, G(2), and M) and back to quiescence. A loss in the redox control of the cell cycle could lead to aberrant proliferation, a hallmark of various human pathologies. This review discusses the literature that supports the concept of a redox cycle controlling the mammalian cell cycle, with an emphasis on how this control relates to proliferative disorders including cancer, wound healing, fibrosis, cardiovascular diseases, diabetes, and neurodegenerative diseases. We hypothesize that reestablishing the redox control of the cell cycle by manipulating the cellular redox environment could improve many aspects of the proliferative disorders.
Collapse
Affiliation(s)
- Ehab H Sarsour
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa , Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
202
|
Lusby AL, Kirk CA, Bartges JW. The role of key adipokines in obesity and insulin resistance in cats. J Am Vet Med Assoc 2009; 235:518-22. [DOI: 10.2460/javma.235.5.518] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
203
|
Francaux M. Toll-like receptor signalling induced by endurance exerciseThis paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference – Muscles as Molecular and Metabolic Machines, and has undergone the Journal’s usual peer review process. Appl Physiol Nutr Metab 2009; 34:454-8. [DOI: 10.1139/h09-036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Toll-like receptors (TLRs) are transmembrane proteins that detect a variety of molecular components mostly derived from microorganisms. TLR2 and TLR4 are amongst others present in liver, adipose tissue, and skeletal muscle. Extracellular long-chain fatty acids bind TLR2 and 4 and induce downstream signalling cascades implicated in cellular stress and inflammatory processes. Evidence indicates that TLR activation by non-esterified fatty acids (NEFAs) may participate in the development of insulin resistance. Exercise seems to induce a downregulation of TLR expression in various tissues, a mechanism that may take part in the protective effect of exercise against insulin resistance. Moreover, TLRs seem to mediate the activation of mitogen-activated protein kinase p38 and Jun-amino-terminal kinase by extracellular NEFAs during endurance exercise. During this type of exercise, circulating NEFAs are known to regulate the expression of various genes including pyruvate dehydrogenase kinase 4, uncoupling protein 3, carnitine palmitoyltransferase 1, and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha. Whether these events are initiated by a TLR-dependent signal transduction remains to be investigated.
Collapse
Affiliation(s)
- Marc Francaux
- Research Group in Muscle and Exercise Physiology, Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin – 1, 1348 Louvain-la-Neuve, Belgium (e-mail: )
| |
Collapse
|
204
|
Park MJ, Jung SR, Jung HL, Craig BW, Lee CD, Kang HY. Effects of 4 weeks recombinant human growth hormone administration on insulin resistance of skeletal muscle in rats. Yonsei Med J 2008; 49:1008-16. [PMID: 19108026 PMCID: PMC2628033 DOI: 10.3349/ymj.2008.49.6.1008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Effect of recombinant human growth hormone (rhGH) administration on lipid storage, and its subsequent effect on insulin sensitivity have not yet been adequately examined. Thus, we investigated the effects of rhGH treatment on muscle triglyceride (TG) and ceramide content, and insulin sensitivity after 4 weeks of rhGH administration in rats. MATERIALS AND METHODS Fourteen rats were randomly assigned to two groups: rhGH injection group (GH, n = 7) and saline injection group (CON, n = 7). GH received rhGH by subcutaneous injections (130 microg.kg(-1).day(-1), 6 days.week(-1)) for 4 weeks, while CON received saline injections that were equivalent in volume to GH group. Intramuscular TG and ceramide content and hepatic TG content were measured. To determine insulin sensitivity, oral glucose tolerance test (OGTT) and muscle incubation for glucose transport rate were performed in rats, and used as indicators of insulin sensitivity. We also examined plasma lipid profiles. RESULTS After 4 weeks of rhGH treatment, the GH group had higher muscle and liver TG contents than the CON (p < 0.05). Ceramide content in GH was significantly greater than that in CON (p < 0.05). GH also had higher plasma levels of FFA (p < 0.05), glucose and insulin responses during OGTT (p < 0.05), and lower glucose transport rates in submaximal insulin concentration (p < 0.05) as compared with CON. Results indicate that rhGH treatment is associated with insulin resistance in rats. CONCLUSION rhGH treatment elevated muscle TG and ceramide content, and hepatic TG content. Thus, elevation of these compounded by rhGH treatment could contribute to the development of insulin resistance in rats.
Collapse
Affiliation(s)
- Mi Jung Park
- Department of Pediatrics, Sanggye Paik Hospital, Inje University School of Medicine, Seoul, Korea
| | - Su Ryun Jung
- Department of Physical Education, Kyungpook National University, Daegu, Korea
| | - Hyun Lyung Jung
- Department of Physical Education, Kyungpook National University, Daegu, Korea
| | - Bruce W. Craig
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Chong-Do Lee
- Department of Exercise and Wellness, Arizona State University, Mesa, Arizona, USA
| | - Ho Youl Kang
- Department of Physical Education, Kyungpook National University, Daegu, Korea
| |
Collapse
|
205
|
Malipa ACA, Meintjes RA, Haag M. Arachidonic acid and glucose uptake by freshly isolated human adipocytes. Cell Biochem Funct 2008; 26:221-7. [PMID: 17708582 DOI: 10.1002/cbf.1439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fatty acid (FA) and glucose transport into insulin-dependent cells are impaired in insulin resistance (IR; type 2 diabetes mellitus). Studies done on the effects of FAs on glucose uptake, and the influence of insulin on FA uptake by adipocytes, have yielded contradictory results. In this study, isolated human adipocytes were exposed to arachidonic acid (AA) and to insulin, and FA uptake as well as glucose uptake was measured. AA uptake into adipocyte membranes and nuclei was also investigated. Glucose uptake was inhibited by 57 +/- 8% after 30 min of exposure to arachidonate. AA was significantly taken up into adipocyte membranes (49.6 +/- 29% and 123 +/- 74%) at 20 and 30 min of exposure, respectively, and into nuclei (147.6 +/- 19.2%) after 30 min. Insulin stimulated AA uptake (24.1 +/- 14.1%) at 30 min by adipocytes from a non-obese subject, while inhibiting it (16.6 +/- 12%) in adipocytes from an obese subject. These results suggest that: (1) AA inhibits glucose uptake by adipocytes exposed over a short period, probably by a membrane-associated mechanism, (2) insulin-dependent AA uptake is dependent on the body mass index (BMI) of the donor and the insulin sensitivity of their adipocytes.
Collapse
Affiliation(s)
- Ana C A Malipa
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, South Africa
| | | | | |
Collapse
|
206
|
Toh SA, Rader DJ. Dyslipidemia in insulin resistance: clinical challenges and adipocentric therapeutic frontiers. Expert Rev Cardiovasc Ther 2008; 6:1007-22. [PMID: 18666851 DOI: 10.1586/14779072.6.7.1007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ever-increasing rates of obesity and diabetes worldwide have the potential to further fuel the epidemic of cardiovascular disease that we are experiencing today. To slow this epidemic successfully, insulin resistance and associated lipid abnormalities that frequently accompany it are key clinical targets. Yet, we are still challenged to reach the mandated clinical goals for lipids that would minimize the development and progression of cardiovascular disease. Adoption of a comprehensive approach by clinicians, in line with recent recommendations for stricter treatment goals for the at-risk patient, is essential to achieving cardiovascular risk reduction. The challenge for clinicians is integrating strategies, approaches and treatments that address the multiple metabolic defects in patients with insulin resistance and dyslipidemia. New perspectives can help effectively meet this ongoing challenge. Emerging evidence suggests that adipose tissue is intimately involved in the inter-relationships between insulin resistance and dyslipidemia. The future probably involves therapeutic strategies that directly target adipose tissue to optimally reduce cardiometabolic risk.
Collapse
Affiliation(s)
- Sue-Anne Toh
- Division of Endocrinology, Diabetes and Metabolism, University of Pennsylvania, 1 Maloney Building, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
207
|
Chen W, Wang LL, Liu HY, Long L, Li S. Peroxisome Proliferator-Activated Receptor δ-Agonist, GW501516, Ameliorates Insulin Resistance, Improves Dyslipidaemia in Monosodium l-Glutamate Metabolic Syndrome Mice. Basic Clin Pharmacol Toxicol 2008; 103:240-6. [DOI: 10.1111/j.1742-7843.2008.00268.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
208
|
Johansson SM, Lindgren E, Yang JN, Herling AW, Fredholm BB. Adenosine A1 receptors regulate lipolysis and lipogenesis in mouse adipose tissue-interactions with insulin. Eur J Pharmacol 2008; 597:92-101. [PMID: 18789919 DOI: 10.1016/j.ejphar.2008.08.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 08/10/2008] [Accepted: 08/21/2008] [Indexed: 12/22/2022]
Abstract
Adenosine acting at adenosine A1 receptors is considered to be one major regulator of adipose tissue physiology. We have examined the role of adenosine and its interactions with insulin in adipose tissue by using A1R knock out (-/-) mice. Removal of endogenous adenosine with adenosine deaminase caused lipolysis in A1R (+/+), but not A1R (-/-) adipocytes. The adenosine analogue, 2-chloroadenosine, inhibited noradrenaline-stimulated lipolysis and cAMP accumulation in A1R (+/+), but not in A1R (-/-) adipocytes. Insulin reduces lipolysis and cAMP via another mechanism than adenosine and acted additively, but not synergistically, with adenosine. Plasma levels of free fatty acids, glycerol and triglycerides were significantly lower in A1R (+/+) than in A1R (-/-) mice after administration of an adenosine analogue. 2-chloroadenosine induced lipogenesis in presence of insulin in A1R (+/+), but not in A1R (-/-) adipocytes. There were no changes in mRNA levels for several genes involved in fat synthesis in adipose tissue between genotypes. Body weight was similar in young A1R (+/+) and A1R (-/-) mice, but old male A1R (-/-) mice were heavier than wild type controls. In conclusion, adenosine inhibits lipolysis via the adenosine A1 receptor and other adenosine receptors play no significant role. Adenosine and insulin mediate additive but not synergistic antilipolytic effects and 2-chloroadenosine stimulates lipogenesis via adenosine A1 receptors. Thus deletion of adenosine A1 receptors should increase lipolysis and decrease lipogenesis, but in fact an increased fat mass was observed, indicating that other actions of adenosine A1 receptors, possibly outside adipose tissue, are also important.
Collapse
Affiliation(s)
- Stina M Johansson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
209
|
Zhang L, Wu Y, Jia Z, Zhang Y, Shen HY, Li Wang X. Protective effects of a compound herbal extract (Tong Xin Luo) on free fatty acid induced endothelial injury: implications of antioxidant system. Altern Ther Health Med 2008; 8:39. [PMID: 18625049 PMCID: PMC2478673 DOI: 10.1186/1472-6882-8-39] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 07/14/2008] [Indexed: 11/17/2022]
Abstract
Background Tong-Xin-Luo (TXL) – a mixture of herbal extracts, has been used in Chinese medicine with established therapeutic efficacy in patients with coronary artery disease. Methods We investigated the protective role of TXL extracts on endothelial cells injured by a known risk factor – palmitic acid (PA), which is elevated in metabolic syndrome and associated with cardiovascular complications. Human aortic endothelial cells (HAECs) were preconditioned with TXL extracts before exposed to PA for 24 hours. Results We found that PA (0.5 mM) exposure induced 73% apoptosis in endothelial cells. However, when HAECs were preconditioned with ethanol extracted TXL (100 μg/ml), PA induced only 7% of the endothelial cells into apoptosis. Using antibody-based protein microarray, we found that TXL attenuated PA-induced activation of p38-MAPK stress pathway. To investigate the mechanisms involved in TXL's protective effects, we found that TXL reduced PA-induced intracellular oxidative stress. Through AMPK pathway, TXL restored the intracellular antioxidant system, which was depressed by the PA treatment, with an increased expression of thioredoxin and a decreased expression of the thioredoxin interacting protein. Conclusion In summary, our study demonstrates that TXL protects endothelial cells from PA-induced injury. This protection is likely mediated by boosting intracellular antioxidant capacity through AMPK pathway, which may account for the therapeutic efficacy in TXL-mediated cardiovascular protection.
Collapse
|
210
|
Osawa H, Yamada K, Tabara Y, Ochi M, Onuma H, Nishida W, Shimizu I, Kawamoto R, Fujii Y, Miki T, Ohashi J, Makino H. The G/G genotype of a single nucleotide polymorphism at -1066 of c-Jun N-terminal kinase 1 gene (MAPK8) does not affect type 2 diabetes susceptibility despite the specific binding of AP2alpha. Clin Endocrinol (Oxf) 2008; 69:36-44. [PMID: 18036196 DOI: 10.1111/j.1365-2265.2007.03143.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The c-Jun N-terminal kinase 1 (JNK1, mitogen-activated kinase 8; MAPK8) phosphorylates insulin receptor substrate-1 (IRS-1) at serine 307, which induces insulin resistance. MAPK8 activity is increased in obese insulin-resistant mice, whereas mapk8 (-/-) mice show decreased adiposity and improved insulin sensitivity. The aim of this study was to determine the relationship between single nucleotide polymorphisms (SNPs) of MAPK8 and type 2 diabetes (T2DM). DESIGN, PATIENTS AND MEASUREMENTS Approximately 2 kb of 5' flanking and the coding regions were initially sequenced in 24 Japanese T2DM subjects. Identified SNPs were genotyped in 204 T2DM cases and 201 nondiabetic controls. The function of promoter SNP-1066 (g.-1066G > A, rs10857561) was analysed by electrophoretic mobility shift assay (EMSA) and luciferase assay. SNP-1066 was further genotyped in a total of 498 cases and 407 controls, and in 2075 subjects in the general population. RESULTS In 204 cases and 201 controls, 11 identified SNPs were not associated with T2DM. These SNPs were in the same linkage disequilibrium (LD) block. The tag SNP-1066 was not associated with T2DM in a total of 498 cases and 407 controls with the power > 80% when the relative risk is > 1.31. Functionally, transcription factor AP2alpha specifically recognized G but not A at -1066. MAPK8 promoter activity was unchanged between G and A. In 2075 subjects, neither body mass index (BMI), fasting plasma glucose (FPG), homeostasis model assessment insulin resistance index (HOMA-IR), nor beta cell function index (HOMA-beta) was associated with SNP-1066. CONCLUSIONS The G/G genotype of MAPK8 SNP-1066 did not affect T2DM susceptibility despite specific binding of AP2alpha.
Collapse
Affiliation(s)
- Haruhiko Osawa
- Department of Molecular and Genetic Medicine, Ehime University Graduate School of Medicine, Ehime Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Hoppe AA, Carey GB. Polybrominated diphenyl ethers as endocrine disruptors of adipocyte metabolism. Obesity (Silver Spring) 2007; 15:2942-50. [PMID: 18198302 DOI: 10.1038/oby.2007.351] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Obesity is thought to result from poor diet and insufficient exercise. An additional factor may be endocrine-disrupting environmental chemicals that contaminate the air, water, and food supply. We tested the hypothesis that a class of lipid-soluble flame retardant chemicals known to accumulate in adipose tissue, polybrominated diphenyl ethers (PBDEs), disrupts insulin and isoproterenol sensitivity of isolated rat adipocytes. RESEARCH METHODS AND PROCEDURES Six-week-old Sprague-Dawley rats were gavaged daily with 14 mg/kg body weight (BW) pentabrominated diphenyl ether (penta-BDE) in corn oil (n = 24) or corn oil alone (n = 24). At 2 and 4 weeks of treatment, epididymal fat pad adipocytes were isolated, and isoproterenol-stimulated lipolysis, insulin-stimulated glucose oxidation, and adipocyte size were measured. RESULTS There was no alteration in adipocyte metabolism after 2 weeks of in vivo penta-BDE treatment, but after 4 weeks of treatment, adipocytes averaged a 30% increase in isoproterenol-stimulated lipolysis and a 59% decrease in insulin-stimulated glucose oxidation, compared with control. There were no differences in average rat BW and adipocyte size between treated and control rats, but plasma total thyroxine level in 2- and 4-week treated rats was 30% of control. DISCUSSION Daily exposure of rats to 14 mg/kg BW penta-BDE for 4 weeks has no effect on animal or adipocyte size but significantly alters insulin and isoproterenol-stimulated metabolism of isolated adipocytes. These alterations, hallmark features of metabolic obesity, suggest the need for further research on the contribution of lipid-soluble, endocrine-disrupting environmental chemicals to the obesity epidemic.
Collapse
Affiliation(s)
- Andrea A Hoppe
- Department of Animal and Nutritional Sciences, University of New Hampshire, Kendall Hall, 129 Main St., Durham, NH 03824, USA
| | | |
Collapse
|
212
|
Heutling D, Schulz H, Randeva H, Dodt C, Lehnert H. [Polycystic ovary syndrome. Prototype of a cardio-metabolic syndrome]. Internist (Berl) 2007; 48:144-53. [PMID: 17226011 DOI: 10.1007/s00108-006-1776-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting women in the reproductive age and is a major cause of anovulation, hyperandrogenism and infertility. Since obesity and insulin resistance are predominant features of women with PCOS, a variety of metabolic disturbances are associated. There is a marked increase in the risk of developing type-2 diabetes in these patients and a majority of women with PCOS will subsequently harbour an enhanced cardiovascular risk.
Collapse
Affiliation(s)
- D Heutling
- 1. Medizinische Klinik, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Deutschland
| | | | | | | | | |
Collapse
|
213
|
Abstract
The recent increase in the prevalence of obesity has been associated with a coincident rise in the prevalence of Type 2 diabetes, whereas weight loss has been shown to decrease the risk of Type 2 diabetes. The pathophysiological mechanisms that have been proposed to explain this link are fundamentally concerned with insulin resistance and the decline in pancreatic B-cell function that accompanies an increase in visceral obesity. They involve the rise in the plasma concentrations of free fatty acids (FFAs) that are associated with an increase in fat mass. Elevated levels of FFAs can lead to insulin resistance, and evidence is growing that B-cell function is impaired through lipotoxicity. Factors such as tumour necrosis factor-alpha (TNF-alpha) and adiponectin, released from adipose tissue, can also modulate insulin resistance. Many interventions that are helpful in treating or preventing Type 2 diabetes, such as weight loss and certain pharmacological interventions, reduce circulating FFA concentrations to a greater or lesser extent. Recent study results suggest that peroxisome proliferator-activated receptor (PPAR)gamma agonists have an effect on the development of Type 2 diabetes. However, in light of concerns over the apparent increase in congestive heart failure with PPARgamma agonists, their place in the prevention of Type 2 diabetes remains to be determined.
Collapse
Affiliation(s)
- J P H Wilding
- Clinical Sciences Centre, University Hospital Aintree, Liverpool, UK.
| |
Collapse
|
214
|
Gallis JL, Tissier P, Gin H, Beauvieux MC. Decrease in oxidative phosphorylation yield in presence of butyrate in perfused liver isolated from fed rats. BMC PHYSIOLOGY 2007; 7:8. [PMID: 17725817 PMCID: PMC2048500 DOI: 10.1186/1472-6793-7-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 08/28/2007] [Indexed: 11/10/2022]
Abstract
Background Butyrate is the main nutrient for the colonocytes but the effect of the fraction reaching the liver is not totally known. A decrease in tissue ATP content and increase in respiration was previously demonstrated when livers were perfused with short-chain fatty acids (SCFA) such as butyrate, or octanoate. In fed rats the oxidative phosphorylation yield was determined on the whole isolated liver perfused with butyrate in comparison with acetate and octoanoate (3 mmol/L). The rate of ATP synthesis was determined in the steady state by monitoring the rate of ATP loss after inhibition of (i) cytochrome oxidase (oxidative phosphorylation) with KCN (2.5 mmol/L) and (ii) glyceraldehyde 3-phosphate dehydrogenase (glycolysis) with IAA (0.5 mmol/L). The ATP flux, estimated by 31P Nuclear Magnetic Resonance, and the measured liver respiration allowed the ATP/O ratio to be determined. Results ATP turnover was significantly lower in the presence of butyrate (0.40 ± 0.10 μmoles/min.g, p = 0.001, n = 7) and octanoate (0.56 ± 0.10 μmoles/min.g, p = 0.01, n = 5) than in control (1.09 ± 0.13 μmoles/min.g, n = 7), whereas perfusion with acetate induced no significant decrease (0.76 ± 0.10 μmoles/min.g, n = 7). Mitochondrial oxygen consumption was unchanged in the presence of acetate (1.92 ± 0.16 vs 1.86 ± 0.16 for control) and significantly increased in the presence of butyrate (p = 0.02) and octanoate (p = 0.0004) (2.54 ± 0.18 and 3.04 ± 0.15 μmoles/min.g, respectively). The oxidative phosphorylation yield (ATP/O ratio) calculated in the whole liver was significantly lower with butyrate (0.07 ± 0.02, p = 0.0006) and octanoate (0.09 ± 0.02, p = 0.005) than in control (0.30 ± 0.05), whereas there was no significant change with acetate (0.20 ± 0.02). Conclusion Butyrate or octanoate decrease rather than increase the rate of ATP synthesis, resulting in a decrease in the apparent ATP/O ratio. Butyrate as a nutrient has the same effect as longer chain FA. An effect on the hepatic metabolism should be taken into account when large quantities of SCFA are directly used or obtained during therapeutic or nutritional strategies.
Collapse
Affiliation(s)
- Jean-Louis Gallis
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS-UB2, 146 rue Léo Saignat, 33076 F-Bordeaux Cedex France
| | - Pierre Tissier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS-UB2, 146 rue Léo Saignat, 33076 F-Bordeaux Cedex France
| | - Henri Gin
- Service de Nutrition et Diabétologie, Hôpital Haut-Lévêque, Avenue de Magellan, F-33604 Pessac France
| | - Marie-Christine Beauvieux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS-UB2, 146 rue Léo Saignat, 33076 F-Bordeaux Cedex France
- Service de Nutrition et Diabétologie, Hôpital Haut-Lévêque, Avenue de Magellan, F-33604 Pessac France
| |
Collapse
|
215
|
Jaeschke A, Davis RJ. Metabolic stress signaling mediated by mixed-lineage kinases. Mol Cell 2007; 27:498-508. [PMID: 17679097 PMCID: PMC1986670 DOI: 10.1016/j.molcel.2007.07.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/31/2007] [Accepted: 07/06/2007] [Indexed: 01/22/2023]
Abstract
Saturated free fatty acid (FFA) is a major source of metabolic stress that activates the c-Jun NH(2)-terminal kinase (JNK). This FFA-stimulated JNK pathway is relevant to hallmarks of metabolic syndrome, including insulin resistance. Here we used gene ablation studies in mice to demonstrate a central role for mixed-lineage protein kinases (MLK) in this signaling pathway. Saturated FFA causes protein kinase C (PKC)-dependent activation of MLK3 that subsequently causes increased JNK activity by a mechanism that requires the MAP kinase kinases MKK4 and MKK7. Loss of PKC, MLK3, MKK4, or MKK7 expression prevents FFA-stimulated JNK activation. Together, these data establish a signaling pathway that mediates effects of metabolic stress on insulin resistance.
Collapse
Affiliation(s)
- Anja Jaeschke
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School and Worcester, Massachusetts 01605, USA
| | - Roger J. Davis
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School and Worcester, Massachusetts 01605, USA
| |
Collapse
|
216
|
Mittermayer F, Schaller G, Pleiner J, Krzyzanowska K, Kapiotis S, Roden M, Wolzt M. Rosiglitazone prevents free fatty acid-induced vascular endothelial dysfunction. J Clin Endocrinol Metab 2007; 92:2574-80. [PMID: 17473072 DOI: 10.1210/jc.2006-2130] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Free fatty acids (FFAs) cause insulin resistance and vascular endothelial dysfunction. The peroxisome proliferator-activated receptor gamma agonist rosiglitazone acts as insulin sensitizer and could exert vasoprotective properties by preservation of endothelium-dependent vasodilation. OBJECTIVE We tested the effect of rosiglitazone on FFA-induced endothelial dysfunction of the forearm resistance vessels, insulin sensitivity, asymmetric dimethylarginine (ADMA), and high-sensitivity C-reactive protein concentrations in humans. DESIGN AND SETTING We conducted a double-blind, randomized, placebo-controlled parallel-group study at a university hospital. PATIENTS AND INTERVENTIONS Rosiglitazone 8 mg daily or placebo was administered to 16 healthy male subjects for 21 d. On the last day, triglycerides and heparin were infused iv to increase FFA plasma concentrations. MAIN OUTCOME MEASURES Forearm blood flow responses to the endothelium-dependent vasodilator acetylcholine and the endothelium-independent vasodilator nitroglycerine were assessed using strain-gauge plethysmography at baseline, and on d 21 before and after 5 h of triglyceride/heparin infusion. RESULTS Forearm blood flow reactivity was not affected by rosiglitazone or placebo. Infusion of triglyceride/heparin substantially increased FFA concentrations (P < 0.001) and reduced endothelium-dependent vasodilation by 38 +/- 17% (P = 0.024). In the face of lower FFA elevation (P = 0.047 vs. controls), endothelium-dependent vasodilation was preserved in subjects receiving rosiglitazone (P = 0.016 vs. placebo). Endothelium-independent vasodilation and C-reactive protein were unchanged, whereas insulin sensitivity and plasma ADMA similarly decreased in both study groups after FFA elevation (both P < 0.05 vs. baseline). CONCLUSIONS Rosiglitazone mitigates the increase in FFA after infusion of triglyceride/heparin and prevents FFA-induced endothelial dysfunction. These effects are independent and possibly occur before any changes in insulin sensitivity and ADMA plasma concentrations in healthy subjects.
Collapse
Affiliation(s)
- Friedrich Mittermayer
- Department of Clinical Pharmacology, Medical University Vienna, AKH-Wien, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
217
|
Yang Y, Chen M, Loux TJ, Harmon CM. Regulation of FAT/CD36 mRNA gene expression by long chain fatty acids in the differentiated 3T3-L1 cells. Pediatr Surg Int 2007; 23:675-83. [PMID: 17516074 DOI: 10.1007/s00383-007-1942-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2007] [Indexed: 11/27/2022]
Abstract
Defects in fatty acid translocase (FAT/CD36) have been identified as a major factor in insulin resistance and defective fatty acid and glucose metabolism. Therefore, understanding of the regulation of FAT/CD36 expression and function is important for a potential therapeutic target for type II diabetes. We differentiated 3T3-L1 preadipocytes into matured adipocytes and examined the roles of insulin and long chain fatty acids on FAT/CD36 expression and function. Our results indicate that FAT/CD36 mRNA expression was not detected at preadipocyte but was significantly increased at matured adipocyte. In fully differentiated 3T3-L1 adipocytes, insulin significantly increased FAT/CD36 mRNA and protein expression in a dose dependent manner. The free fatty acid stearic acid reduced FAT/CD36 mRNA expression while the non-metabolizable free fatty acid alpha-bromopalmitate (2-BP) significantly increased FAT/CD36 mRNA and protein expression. Isoproterenol, in contrast, dose-dependently reduced FAT/CD36 mRNA expression and increased free fatty acid release. Mechanism analysis indicated that the effect of insulin and 2-BP on the FAT/CD36 mRNA gene expression may be mediated through activation of PPAR-gamma, suggesting that FAT/CD36 may have important implications in the pathophysiology of defective fatty acid metabolism.
Collapse
Affiliation(s)
- Yingkui Yang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | | | | | | |
Collapse
|
218
|
Abstract
In addition to hyperglycemia, diabetes is associated with increased levels of circulating free fatty acids, lactate, and branched chain amino acids, all of which produce an excessive reduced form of pyridine nucleotides NADH (reductive stress) in the cytosol and mitochondria. Our studies suggest that cytosolic NADH reductive stress under high glucose is largely caused by increased flux of glucose through polyol (sorbitol) pathway consisting of aldose reductase and sorbitol dehydrogenase. Inhibition of aldose reductase that blocks the polyol pathway has been shown to ameliorate diabetic neuropathy in humans. Cytosolic NADH reductive stress is predicted to increase production of diglycerides, reactive oxygen species, and methylglyoxal. Recent studies indicate that increasing NADH affects gene expression through the NADH activating transcriptional co-repressor, C-terminal binding protein (CtBP). In addition, it has been shown that the NADH utilizing enzyme, glyceraldehyde-3-phosphate dehydrogenase, participates as transcriptional regulator. These findings testify to the importance of NADH redox balance in cell biology and pathogenesis of diabetes and its complications. For example, through CtBP, the high NADH to NAD(+) ratio decreases an expression of SirT1, the protein inducing longevity and anti-apoptosis. This review covers metabolic cascades causing reductive stress and oxidative stress in diabetes after a brief introduction of the redox concept.
Collapse
Affiliation(s)
- Yasuo Ido
- Boston University Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
219
|
Eckel RH. Mechanisms of the components of the metabolic syndrome that predispose to diabetes and atherosclerotic CVD. Proc Nutr Soc 2007; 66:82-95. [PMID: 17343775 DOI: 10.1017/s0029665107005320] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The metabolic syndrome represents a summation of obesity-driven risk factors for atherosclerotic CVD and type 2 diabetes. Definitions of the syndrome vary but in general agree closely in identifying subjects. The relationships between the metabolic syndrome and atherosclerotic CVD and diabetes also vary, with relative risks of approximately 1.5-3.0 and approximately 3.0-5.0 respectively. Insulin resistance appears to explain much of the pathophysiology of the syndrome. Both increased fatty acid flux and an excess of circulating pro-inflammatory cytokines are likely mediators. With increased waist circumference, increases in fatty acid delivery to the liver result in higher rates of hepatic glucose production and increases in the secretion of apoB-containing lipoproteins. Concomitant changes in HDL ensue, including a replacement of the cholesterol content with TAG, an accelerated clearance from the plasma and thus a reduced number of HDL particles. Typically also present are increases in small dense LDL. Hypertension in part relates to the insulin resistance, but may involve other mechanisms. Impaired fasting glucose often relates to defects in insulin secretion in addition to insulin resistance, and probably more than any other component of the syndrome predicts the increased incidence of type 2 diabetes. Although not included in the diagnostic criteria, increases in pro-inflammatory cytokines and pro-thrombotic factors, in addition to decreases in plasma adiponectin, may also contribute to the increased incidence of atherosclerotic CVD and diabetes. In general, the greater the number of metabolic syndrome components, the greater the risk for these outcomes. The cytokines and pro-thrombotic factors also appear to contribute.
Collapse
Affiliation(s)
- Robert H Eckel
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado at Denver & Health Sciences Center, PO Box 6511, MS8106, Aurora, Colorado 80045, USA.
| |
Collapse
|
220
|
Gu N, Han SP, Fei L, Pan XQ, Guo M, Chen RH, Guo XR. Resistin-binding peptide antagonizes role of resistin on white adipose tissue. Acta Pharmacol Sin 2007; 28:221-6. [PMID: 17241525 DOI: 10.1111/j.1745-7254.2007.00480.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To investigate the direct effects of resistin and resistin-binding peptide (RBP) on lipid metabolism and endocrine function in adipose tissue. METHODS Rat white adipose tissue was cultured in vitro and incubated for 24 h with 30 ng/mL recombinant rat resistin protein (rResistin) or combined with RBP of varying concentrations(1x10(-12) mol/L, 1x10(-10) mol/L, 1x10(-8) mol/L). Free fatty acids (FFA) released into medium was measured by a colorimetric kit. The levels of protein secretion and mRNA expression of TNF-alpha and adiponectin were detected by ELISA kit and RT-PCR respectively. RESULTS The levels of FFA released into medium were significantly increased after 24 h of exposure to rResistin, but significantly decreased after RBP was applied, although there was no difference between the 3 concentrations. The protein level and gene expression of TNF-alpha in adipose tissue were significantly increased after 24 h of exposure to rResistin, but only obviously decreased after incubated with 1x10(-8) mol/L RBP. The levels of protein secretion and mRNA expression of adiponectin in adipose tissue were significantly decreased after 24 h of exposure to rResistin, but increased after incubated with RBP with the higher concentrations. CONCLUSION RBP can effectively antagonize the role of resistin on the lipid metabolism and endocrine function of adipose tissue.
Collapse
Affiliation(s)
- Nan Gu
- Department of Pediatrics, Nanjing Maternal and Child Health Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
221
|
Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1271-8. [PMID: 17095651 DOI: 10.1152/ajpregu.00472.2006] [Citation(s) in RCA: 313] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impaired mitochondrial function and structure and intramyocellular lipid (IMCL) accumulation have been associated with obesity and Type 2 diabetes. We examined whether endurance exercise training and sex influenced IMCL and mitochondrial morphology using electron microscopy, whole-body substrate use, and mitochondrial enzyme activity. Untrained men (n = 5) and women (n = 7) were tested before and after 7 wk of endurance exercise training. Testing included 90 min of cycle ergometry at 60% Vo(2 peak) with preexercise muscle biopsies analyzed for IMCL and mitochondrial size/area using electron microscopy and short-chain beta-hydroxyacyl-CoA dehydrogenase (SCHAD) and citrate synthase (CS) enzyme activity. Training increased the mean lipid area density (P = 0.090), the number of IMCL droplets (P = 0.055), the number of IMCL droplets in contact with mitochondria (P = 0.010), the total mitochondrial area (P < 0.001), and the size of individual mitochondrial fragments (P = 0.006). Women had higher mean lipid area density (P = 0.030) and number of IMCL droplets (P = 0.002) before and after training, but higher individual IMCL area only before training (P = 0.013), compared with men. Women oxidized more fat (P = 0.027) and less carbohydrate (P = 0.032) throughout the study. Training increased Vo(2 peak) (P < 0.001), %fat oxidation (P = 0.018), SCHAD activity (P = 0.003), and CS activity (P = 0.042). In summary, endurance exercise training increased IMCL area density due to an increase in the number of lipid droplets, whereas the increase in total mitochondrial area was due to an increase in the size of individual mitochondrial fragments. In addition, women have higher IMCL content compared with men due mainly to a greater number of individual droplets. Finally, endurance exercise training increased the proportion of IMCL in physical contact with mitochondria.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Department of Pediatrics and Medicine, Rm. 2H26, McMaster University Medical Centre, 1200 Main St. West, Hamilton, Ontario L8N 3Z5, Canada.
| | | | | | | | | | | |
Collapse
|
222
|
Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006; 116:3015-25. [PMID: 17053832 PMCID: PMC1616196 DOI: 10.1172/jci28898] [Citation(s) in RCA: 2730] [Impact Index Per Article: 143.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 09/12/2006] [Indexed: 02/06/2023] Open
Abstract
TLR4 is the receptor for LPS and plays a critical role in innate immunity. Stimulation of TLR4 activates proinflammatory pathways and induces cytokine expression in a variety of cell types. Inflammatory pathways are activated in tissues of obese animals and humans and play an important role in obesity-associated insulin resistance. Here we show that nutritional fatty acids, whose circulating levels are often increased in obesity, activate TLR4 signaling in adipocytes and macrophages and that the capacity of fatty acids to induce inflammatory signaling in adipose cells or tissue and macrophages is blunted in the absence of TLR4. Moreover, mice lacking TLR4 are substantially protected from the ability of systemic lipid infusion to (a) suppress insulin signaling in muscle and (b) reduce insulin-mediated changes in systemic glucose metabolism. Finally, female C57BL/6 mice lacking TLR4 have increased obesity but are partially protected against high fat diet-induced insulin resistance, possibly due to reduced inflammatory gene expression in liver and fat. Taken together, these data suggest that TLR4 is a molecular link among nutrition, lipids, and inflammation and that the innate immune system participates in the regulation of energy balance and insulin resistance in response to changes in the nutritional environment.
Collapse
Affiliation(s)
- Hang Shi
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
223
|
Abstract
PURPOSE OF REVIEW Obesity is a new pandemic in humans associated with increased morbidity and mortality. A similar sharp increase has occurred in the number of obese cats in recent years. There are many reasons for this increase in both species; for cats, the main problems are unlimited access to a nutrient-dense diet and sedentary life style. Obesity is a major risk factor for diabetes whose prevalence has increased concomitantly. Cats develop a form of diabetes that is similar to type 2 in humans, characterized by islet amyloid and loss of beta-cell mass. The energy metabolism of cats and the pathophysiology of obesity and diabetes are being characterized in order to identify similarities and differences from humans and to recognize causative and protective factors for adverse sequelae to obesity and diabetes. RECENT FINDINGS New approaches to the study of lipid and glucose metabolism in cats show that glucose metabolism is not as dissimilar and lipid metabolism is not as similar to that of humans as previously thought, perhaps explaining why cats do not develop the classic metabolic syndrome. SUMMARY The cat is an excellent model for examining the pathophysiology and complications of obesity and diabetes.
Collapse
Affiliation(s)
- Margarethe Hoenig
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
224
|
van de Wall EHEM, Wielinga PY, Strubbe JH, van Dijk G. Neonatal capsaicin causes compensatory adjustments to energy homeostasis in rats. Physiol Behav 2006; 89:115-21. [PMID: 16678223 DOI: 10.1016/j.physbeh.2006.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 12/28/2022]
Abstract
Several mechanisms involved in ingestive behavior and neuroendocrine activity rely on vagal afferent neuronal signaling. Seemingly contradictory to this idea are observations that vagal afferent neuronal ablation by neonatal capsaicin (CAP) treatment has relatively small effects on glucose homeostasis and long-term regulation of energy balance. It may be proposed that humoral endocrine factors and/or their sensitivities compensate for the loss of vagal afferent information, particularly when subjects face disturbances in ambient fuel levels. Therefore, male adult rats neonatally treated with CAP or with the vehicle (VEH) underwent intravenous glucose tolerance tests (IVGTTs) during which blood fuel levels, and circulating adipose, pancreatic, and adrenal hormones were assessed. CAP rats displayed similar hyperglycemia as VEH rats, but with markedly reduced plasma insulin and corticosterone responses. These results indicate that CAP rats have increased insulin sensitivity during hyperglycemic episodes, and lower plasma levels of corticosterone in CAP rats relative to VEH rats could underlie this effect. After the IVGTT, CAP rats had increased plasma adiponectin and reduced plasma resistin levels, and these alterations in adipose hormones might be relevant for post-ingestive metabolic processes. In a second experiment, anorexigenic efficacies of cholecystokinin and leptin were assessed. While VEH rats, but not CAP rats, responded with reduced food intake to i.p. injected cholecystokinin, only CAP rats responded to i.v. infused leptin with a reduction in food intake. It is concluded that reduced HPA axis activity and/or increased leptin signaling could underlie compensations in fuel handling and energy balance following CAP treatment.
Collapse
Affiliation(s)
- E H E M van de Wall
- Department of Animal Physiology, Unit Neuroendocrinology, University of Groningen, PO box 14, 9750 AA Haren, The Netherlands
| | | | | | | |
Collapse
|
225
|
Wang XL, Zhang L, Youker K, Zhang MX, Wang J, LeMaire SA, Coselli JS, Shen YH. Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes 2006; 55:2301-10. [PMID: 16873694 DOI: 10.2337/db05-1574] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In metabolic syndrome, a systemic deregulation of the insulin pathway leads to a combined deregulation of insulin-regulated metabolism and cardiovascular functions. Free fatty acids (FFAs), which are increased in metabolic syndrome, inhibit insulin signaling and induce metabolic insulin resistance. This study was designed to examine FFAs' effects on vascular insulin signaling and endothelial nitric oxide (NO) synthase (eNOS) activation in endothelial cells. We showed that FFAs inhibited insulin signaling and eNOS activation through different mechanisms. While linoleic acid inhibited Akt-mediated eNOS phosphorylation, palmitic acid appeared to affect the upstream signaling. Upregulation of PTEN (phosphatase and tensin homolog deleted on chromosome 10) activity and transcription by palmitic acid mediated the inhibitory effects on insulin signaling. We further found that activated stress signaling p38, but not Jun NH(2)-terminal kinase, was involved in PTEN upregulation. The p38 target transcriptional factor activating transcription factor (ATF)-2 bound to the PTEN promoter, which was increased by palmitic acid treatment. In summary, both palmitic acid and linoleic acid exert inhibitory effect on insulin signaling and eNOS activation in endothelial cells. Palmitic acid inhibits insulin signaling by promoting PTEN activity and its transcription through p38 and its downstream transcription factor ATF-2. Our findings suggest that FFA-mediated inhibition of vascular insulin signaling and eNOS activation may contribute to cardiovascular diseases in metabolic syndrome.
Collapse
Affiliation(s)
- Xing Li Wang
- DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Goedecke JH, Wake DJ, Levitt NS, Lambert EV, Collins MR, Morton NM, Andrew R, Seckl JR, Walker BR. Glucocorticoid metabolism within superficial subcutaneous rather than visceral adipose tissue is associated with features of the metabolic syndrome in South African women. Clin Endocrinol (Oxf) 2006; 65:81-7. [PMID: 16817824 DOI: 10.1111/j.1365-2265.2006.02552.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Glucocorticoid hyperactivity in adipose tissue, due to up-regulation of local glucocorticoid reactivation by 11beta-hydroxysteroid dehydrogenase-1 (11HSD1) or of glucocorticoid receptors (GR), may underpin susceptibility to the metabolic syndrome. This hypothesis has been tested extensively in subcutaneous adipose tissue (SAT) but inadequately in visceral adipose tissue (VAT). The aim of the study was therefore to examine expression of 11HSD1, GRalpha and hexose-6-phosphate dehydrogenase (H6PDH), which supplies cofactor for 11HSD1, in abdominal adipose tissue compartments and to characterize their relation to metabolic syndrome parameters. DESIGN AND SUBJECTS A cross-sectional study including 26 premenopausal South African women. MEASUREMENTS Biopsies were taken for measurement of mRNA levels by real-time polymerase chain reaction (RT-PCR) and 11HSD1 activity from VAT, and deep and superficial SAT compartments during elective surgery. Prior to surgery, blood pressure, blood lipid profile, body composition [by dual X-ray absorptiometry (DEXA) scan], body fat distribution [by computed tomography (CT) scan], and glucose tolerance were determined. RESULTS 11HSD1 activity (P < 0.01) was higher in VAT than SAT, but 11HSD1 and GRalpha mRNA levels were not statistically different between compartments. 11HSD1 mRNA levels in superficial SAT correlated with VAT volume (R = 0.57, P < 0.01), insulin sensitivity calculated from the oral glucose tolerance test (OGTT) (R = -0.52, P < 0.016) and blood pressure (R = 0.48, P < 0.016). Apart from a correlation between deep SAT 11HSD1 activity and blood pressure (R = 0.72, P < 0.01), glucocorticoid action in deep SAT and VAT depots was not significantly associated with any metabolic syndrome parameters. CONCLUSION Increased capacity for glucocorticoid regeneration in superficial SAT but not VAT is associated with visceral adiposity and other features of the metabolic syndrome in women.
Collapse
Affiliation(s)
- J H Goedecke
- UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Senn JJ. Toll-like receptor-2 is essential for the development of palmitate-induced insulin resistance in myotubes. J Biol Chem 2006; 281:26865-75. [PMID: 16798732 DOI: 10.1074/jbc.m513304200] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fatty acids can activate proinflammatory pathways leading to the development of insulin resistance, but the mechanism is undiscovered. Toll like receptor 2 (TLR2) recognizes lipids, activates proinflammatory pathways, and is genetically associated with inflammatory diseases. This study aimed to examine the role of TLR2 in palmitate-induced insulin resistance in C2C12 myotubes. Treatment with palmitate rapidly induced the association of myeloid differentiation factor 88 (MyD88) with the TLR2 receptor, activated the stress-linked kinases p38, JNK, and protein kinase C, induced degradation of IkappaBalpha, and increased NF-kappaB DNA binding. The activation of these pathways by palmitate was sensitive and temporally regulated and occurred within the upper physiologic range of saturated fatty acid concentrations in vivo, suggesting a receptor-mediated event and not simple lipotoxicity. When compared with an equimolar concentration of palmitate, fibroblast-stimulating lipopeptide-1, a known TLR2 ligand, was a slightly more potent activator of signal transduction and interleukin (IL)-6 production. Palmitate inhibited insulin signal transduction in C2C12 cells beginning 1-2 h after exposure and reached a maximum at 12-16 h. An antagonist TLR2 antibody, mAb 2.5, led to a 50-60% decrease in palmitate-induced IL-6 production and partially restored insulin signal transduction, whereas an isotype-matched control antibody had no effect. RNA interference-mediated inhibition of TLR2 and MyD88 expression in C2C12 muscle cells resulted in a near complete inhibition of palmitate-induced insulin resistance and IL-6 production. This study provides strong evidence that TLR2 mediates the initial events of fatty acid-induced insulin resistance in muscle.
Collapse
Affiliation(s)
- Joseph J Senn
- Department of Pediatrics, Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| |
Collapse
|
228
|
Mansoub S, Chan MK, Adeli K. Gap analysis of pediatric reference intervals for risk biomarkers of cardiovascular disease and the metabolic syndrome. Clin Biochem 2006; 39:569-87. [PMID: 16624272 DOI: 10.1016/j.clinbiochem.2006.02.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 01/17/2006] [Accepted: 02/07/2006] [Indexed: 02/07/2023]
Abstract
The childhood obesity epidemic has begun to compromise the health of the pediatric population by promoting premature development of atherosclerosis and the metabolic syndrome (MS), both of which significantly increase the risk of cardiovascular disease (CVD) early in life. As a result, recently, there has been increased recognition of the need to assess and closely monitor children and adolescents for risk factors of CVD and components of the MS. Serum/Plasma biomarkers including total cholesterol, triglycerides, HDL-C, LDL-C, insulin and C-peptide have been used for this purpose for many years. Recently, emerging biomarkers such as apolipoprotein AI, apolipoprotein B, leptin, adiponectin, free fatty acids, and ghrelin have been proposed as tools that provide valuable complementary information to that obtained from traditional biomarkers, if not more powerful predictions of risk. In order for biomarkers to be clinically useful in accurately diagnosing and treating disorders, age-specific reference intervals that account for differences in gender, pubertal stage, and ethnic origin are a necessity. Unfortunately, to date, many critical gaps exist in the reference interval database of most of the biomarkers that have been identified. This review contains a comprehensive gap analysis of the reference intervals for emerging and traditional risk biomarkers of CVD and the MS and discusses the clinical significance and analytical considerations of each biomarker.
Collapse
Affiliation(s)
- Sepideh Mansoub
- Clinical Biochemistry Division, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
229
|
Aggarwal D, Fernandez ML, Soliman GA. Rapamycin, an mTOR inhibitor, disrupts triglyceride metabolism in guinea pigs. Metabolism 2006; 55:794-802. [PMID: 16713440 DOI: 10.1016/j.metabol.2006.01.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 01/30/2006] [Indexed: 12/29/2022]
Abstract
This study was designed to define some of the mechanisms by which rapamycin (RAPA), an mTOR inhibitor, induces hypertriglyceridemia when used as an immunosuppressive or antiproliferative agent and to determine whether low doses result in less undesirable side effects. Thirty male guinea pigs (n=10 per group) were randomly assigned to control (no RAPA), low-RAPA (0.08 mg/d), or high-RAPA (0.85 mg/d) treatment for 3 weeks. Rapamycin treatment resulted in more than a 2-fold increase in plasma triglycerides (TG) (P<.01), whereas no differences were observed in plasma cholesterol between RAPA and control groups. Low-RAPA treatment resulted in lower concentrations of cholesterol in the aorta (28.6%) and lower hepatic acyl-CoA cholesteryl acyltransferase activity compared to control and high-RAPA groups (P<.01). In addition, acyl-CoA cholesteryl acyltransferase activity was positively correlated with aortic cholesterol (r=0.43, P<.05). In contrast, aortic TG concentrations were higher in RAPA-treated guinea pigs than in control (P<.01). Very low density lipoprotein and low-density lipoprotein particles isolated from guinea pigs treated with RAPA were larger in size and contained more TG molecules than particles from control animals. Interestingly, plasma free fatty acids and fasting plasma glucose were 65% and 72% higher in the high-RAPA group than in control (P<.01). Tumor necrosis factor-alpha concentrations in the aorta were 3.6- and 10.4-fold higher in the low-RAPA and high-RAPA groups than in control guinea pigs (P<.01). These results suggest that RAPA interferes with TG metabolism by altering the insulin signaling pathway, inducing increased secretion of very low density lipoprotein and promoting deposition of TG in the aorta. Low RAPA was found to decrease cholesterol accumulation in tissue (liver and aorta) compared to high RAPA, suggesting that lower doses could be less detrimental to transplant patients.
Collapse
Affiliation(s)
- Dimple Aggarwal
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
230
|
|
231
|
Oakes ND, Thalén P, Aasum E, Edgley A, Larsen T, Furler SM, Ljung B, Severson D. Cardiac metabolism in mice: tracer method developments and in vivo application revealing profound metabolic inflexibility in diabetes. Am J Physiol Endocrinol Metab 2006; 290:E870-81. [PMID: 16352676 DOI: 10.1152/ajpendo.00233.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies of cardiac fuel metabolism in mice have been almost exclusively conducted ex vivo. The major aim of this study was to assess in vivo plasma FFA and glucose utilization by the hearts of healthy control (db/+) and diabetic (db/db) mice, based on cardiac uptake of (R)-2-[9,10-(3)H]bromopalmitate ([3H]R-BrP) and 2-deoxy-D-[U-14C]glucose tracers. To obtain quantitative information about the evaluation of cardiac FFA utilization with [3H]R-BrP, simultaneous comparisons of [3H]R-BrP and [14C]palmitate ([14C]P) uptake were first made in isolated perfused working hearts from db/+ mice. It was found that [3H]R-BrP uptake was closely correlated with [14C]P oxidation (r2 = 0.94, P < 0.001). Then, methods for in vivo application of [3H]R-BrP and [14C]2-DG previously developed for application in the rat were specially adapted for use in the mouse. The method yields indexes of cardiac FFA utilization (R(f)*) and clearance (K(f)*), as well as glucose utilization (R(g)'). Finally, in the main part of the study, the ability of the heart to switch between FFA and glucose fuels (metabolic flexibility) was investigated by studying anesthetized, 8-h-fasted control and db/db mice in either the basal state or during glucose infusion. In control mice, glucose infusion raised plasma levels of glucose and insulin, raised R(g)' (+58%), and lowered plasma FFA level (-48%), K(f)* (-45%), and R(f)* (-70%). This apparent reciprocal regulation of glucose and FFA utilization by control hearts illustrates metabolic flexibility for substrate use. By contrast, in the db/db mice, glucose infusion raised glucose levels with no apparent influence on cardiac FFA or glucose utilization. In conclusion, tracer methodology for assessing in vivo tissue-specific plasma FFA and glucose utilization has been adapted for use in mice and reveals a profound loss of metabolic flexibility in the diabetic db/db heart, suggesting a fixed level of FFA oxidation in fasted and glucose-infused states.
Collapse
Affiliation(s)
- Nicholas D Oakes
- Integrative Pharmacology, AstraZeneca R&D, S-431 83 Mölndal, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Hoenig M, McGoldrick JB, deBeer M, Demacker PNM, Ferguson DC. Activity and tissue-specific expression of lipases and tumor-necrosis factor alpha in lean and obese cats. Domest Anim Endocrinol 2006; 30:333-44. [PMID: 16219442 DOI: 10.1016/j.domaniend.2005.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/02/2005] [Accepted: 09/02/2005] [Indexed: 11/27/2022]
Abstract
Post-heparin plasma activity of lipoprotein lipase (LPL) and hepatic lipase (HL), and fat and muscle activity of LPL were measured in neutered lean and obese cats. Lipoprotein lipase, hormone-sensitive lipase (HSL), and tumor necrosis factor a (TNF) mRNA were measured in muscle and fat tissue with real-time PCR using primers for feline LPL, HSL, and TNF. Lipoprotein lipase plasma and fat activity and fat mRNA levels were significantly lower (50, 80, and 50%, respectively) in obese cats than lean cats, whereas the muscle/fat ratio of LPL was significantly higher in obese compared to lean cats. The activity of HL was not different between the groups. Hormone-sensitive lipase mRNA levels were significantly higher in obese than lean cats. The level of fat TNF also was significantly higher in obese cats than in lean cats, whereas the level in muscle was not different. The lower LPL activity and mRNA expression in fat and the higher LPL and HSL mRNA expression in muscle in obese cats compared to lean cats expectedly favor a redistribution of fatty acids from fat to muscle tissue where they can be deposited or used for energy in times of need. Tumor necrosis factor alpha may regulate this repartitioning process through suppression of adipocyte LPL.
Collapse
Affiliation(s)
- M Hoenig
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
233
|
Botella-Carretero JI, Alvarez-Blasco F, Sancho J, Escobar-Morreale HF. Effects of thyroid hormones on serum levels of adipokines as studied in patients with differentiated thyroid carcinoma during thyroxine withdrawal. Thyroid 2006; 16:397-402. [PMID: 16646687 DOI: 10.1089/thy.2006.16.397] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Previous studies addressing the influence of thyroid hormones on serum levels of adipokines yielded conflicting results. We aimed to study the impact of short-term overt hypothyroidism on serum leptin, resistin, and adiponectin levels in an in vivo human model. DESIGN Twenty-two women with differentiated thyroid carcinoma were studied the last day of their thyroxine-suppressive treatment, 4-7 days after withdrawal, and the day before whole-body scanning. Evaluations included serum thyroid hormone, leptin, resistin, and adiponectin concentrations, fasting glucose and insulin, lipid profiles, body temperature, body mass index, and total body fat mass. MAIN OUTCOMES Thyroid function changed from subclinical or mild hyperthyroidism to normal free thyroxine and triiodothyronine levels, ending in overt hypothyroidism. Thyroxine withdrawal resulted in an increase in serum resistin (p = 0.007) and leptin (p = 0.006) concentrations, whereas adiponectin levels remain unchanged. A significant decrease in body temperature during thyroxine withdrawal was paralleled by a decrease in fasting glucose (p = 0.006) and insulin resistance (p = 0.033), which occurred despite an increase in estimated total body fat mass. CONCLUSION Thyroid hormones are important regulators of energy balance and intermediate metabolism, influencing the serum concentrations of leptin and resistin.
Collapse
|
234
|
Aas V, Rokling-Andersen MH, Kase ET, Thoresen GH, Rustan AC. Eicosapentaenoic acid (20:5 n-3) increases fatty acid and glucose uptake in cultured human skeletal muscle cells. J Lipid Res 2006; 47:366-74. [PMID: 16301737 DOI: 10.1194/jlr.m500300-jlr200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was conducted to evaluate the chronic effects of eicosapentaenoic acid (EPA) on fatty acid and glucose metabolism in human skeletal muscle cells. Uptake of [14C]oleate was increased >2-fold after preincubation of myotubes with 0.6 mM EPA for 24 h, and incorporation into various lipid classes showed that cellular triacylgycerol (TAG) and phospholipids were increased 2- to 3-fold compared with control cells. After exposure to oleic acid (OA), TAG was increased 2-fold. Insulin (100 nM) further increased the incorporation of [14C]oleate into all lipid classes for EPA-treated myotubes. Fatty acid beta-oxidation was unchanged, and complete oxidation (CO2) decreased in EPA-treated cells. Basal glucose transport and oxidation (CO2) were increased 2-fold after EPA, and insulin (100 nM) stimulated glucose transport and oxidation similarly in control and EPA-treated myotubes, whereas these responses to insulin were abolished after OA treatment. Lower concentrations of EPA (0.1 mM) also increased fatty acid and glucose uptake. CD36/FAT (fatty acid transporter) mRNA expression was increased after EPA and OA treatment compared with control cells. Moreover, GLUT1 expression was increased 2.5-fold by EPA, whereas GLUT4 expression was unchanged, and activities of the mitogen-activated protein kinase p38 and extracellular signal-regulated kinase were decreased after treatment with OA compared with EPA. Together, our data show that chronic exposure of myotubes to EPA promotes increased uptake and oxidation of glucose despite a markedly increased fatty acid uptake and synthesis of complex lipids.
Collapse
Affiliation(s)
- Vigdis Aas
- Faculty of Health Sciences, Oslo University College, Oslo, Norway
| | | | | | | | | |
Collapse
|
235
|
Komosińska-Vassev K, Olczyk K, Koźma EM, Olczyk P, Wisowski G, Winsz-Szczotka K. Alterations of glycosaminoglycan metabolism in the development of diabetic complications in relation to metabolic control. Clin Chem Lab Med 2005; 43:924-9. [PMID: 16176171 DOI: 10.1515/cclm.2005.158] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Disturbed metabolism of glycosaminoglycans (GAGs) has been proposed to play an important role in the pathogenesis of late diabetic complications. The effect of diabetic complications and metabolic control on both total serum GAGs content and the serum activity of lysosomal glycosidases (N-acetyl-beta-D-glucosaminidase, alpha-L-fucosidase, beta-D-galactosidase, and alpha-D-mannosidase) contributing to GAGs degradation, was investigated in 48 patients with type 2 diabetes mellitus. The activity of beta-D-glucosidase and acid phosphatase, the lysosomal enzymes unrelated to GAGs metabolism, was determined for comparison. The elevated serum total GAG concentration in diabetic patients was strongly and positively influenced by poor metabolic compensation of diabetes and the presence of vascular complications. A similar tendency has been shown in regard to the activity of enzymes involved in GAG degradation, especially N-acetyl-beta-D-glucosaminidase, alpha-L-fucosidase and beta-D-galactosidase. Furthermore, the total serum GAG concentrations, as well as the activity of lysosomal enzymes involved in the extracellular matrix degradation, closely followed metabolic compensation, regardless of diabetic vascular complications. Thus, we suggest that increased values of the investigated parameters may indicate the degree of endothelial cell dysfunction and may be useful to predict the development of diabetic vascular pathology.
Collapse
Affiliation(s)
- Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Silesia, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | | | | | | | | | | |
Collapse
|
236
|
Rypka M, Červenková K, Uherková L, Poczatková H, Bogdanová K, Veselý J. CHANGES IN mRNA LEVELS OF INTRACELLULAR FATTY ACID METABOLISM REGULATORS IN HUMAN HEPATOMA HepG2 CELLS FOLLOWING THEIR TREATMENT WITH NON-ESTERIFIED FATTY ACIDS AND DEHYDROEPIANDROSTERONE. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005. [DOI: 10.5507/bp.2005.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
237
|
Martikainen T, Teppo AM, Gronhagen-Riska C, Ekstrand A. Benefit of Glucose-Free Dialysis Solutions on Glucose and Lipid Metabolism in Peritoneal Dialysis Patients. Blood Purif 2005; 23:303-10. [PMID: 15980620 DOI: 10.1159/000086553] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 03/21/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND Glucose absorbed from conventional peritoneal dialysis (PD) solutions contributes to unfavorable metabolic effects. Its replacement with a glucose-free osmotic agent such as icodextrin (ID) or amino acids (AA) may have some benefit on glucose and lipid metabolism. METHODS Serum lipids, insulin sensitivity and substrate oxidation (calorimetry) were measured before and after 8 weeks use of ID or AA in 22 patients. Calorimetry and blood tests (HbA1c, lipids) were also performed after 8 weeks of simultaneous use of ID and AA in 8 patients. RESULTS Cholesterol declined during the use of AA (4.8 +/- 0.3-4.5 +/- 0.3 mmol/l, p = 0.045). Triglycerides decreased during the use of both ID (2.2 +/- 0.2-1.9 +/- 0.1 mmol/l, p = 0.019) and AA (1.9 +/- 0.2-1.6 +/- 0.1 mmol/l, p = 0.024). Free fatty acids declined during the use of AA. There were no significant changes in insulin sensitivity. Glucose oxidation decreased and lipid oxidation increased during the use of ID, the changes in substrate oxidation were accentuated during the simultaneous use of ID and AA. CONCLUSION Replacement of glucose with ID or AA had a benefit on glucose and lipid metabolism.
Collapse
Affiliation(s)
- Terhi Martikainen
- Department of Medicine, Division of Nephrology, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | |
Collapse
|
238
|
Jensen CB, Storgaard H, Holst JJ, Dela F, Madsbad S, Vaag A. Young, low-birth-weight men are not more susceptible to the diabetogenic effects of a prolonged free fatty acid exposure than matched controls. Metabolism 2005; 54:1398-406. [PMID: 16154442 DOI: 10.1016/j.metabol.2005.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2004] [Accepted: 05/18/2005] [Indexed: 10/25/2022]
Abstract
Low birth weight (LBW) is associated with increased risk of developing type 2 diabetes later in life. Progression from normal to impaired glucose tolerance and overt diabetes may depend, to some extent, on elevation of plasma free fatty acids (FFAs). We undertook this study to elucidate whether a prolonged physiological lipid load could unmask or augment existing metabolic defects in otherwise healthy young LBW subjects. Forty 19-year-old men (LBW [n = 20], controls [normal birth weight, NBW] [n = 20]) without a family history of diabetes underwent an intravenous glucose tolerance test (0.3 g kg(-1)), followed by 2-step hyperinsulinemic-euglycemic clamps (2 x 120 minutes: 10 and 40 mU m(-2) min(-1)) in combination with [3-3H]-glucose and indirect calorimetry. The tests were preceded, in randomized order, by a 24-hour continuous intralipid (20%, 0.4 mg mL(-1) h(-1)) or saline infusion. Estimates of cellular glucose metabolism were obtained and a disposition index calculated. Clamp FFA concentrations were 4- to ten-fold higher during lipid infusion. Both groups experienced a similar decrease in insulin-stimulated glucose disposal in response to lipid infusion (approximately 15%; P < .05), which was mainly accounted for by reduced glucose oxidation (approximately 30%; P < .001). Glycolysis, glucose storage, and glucose production were not significantly altered by lipid infusion. Nevertheless, the LBW group had significantly lower insulin-stimulated glycolysis during lipid infusion (approximately 27%; P < .05) than the NBW group. An appropriate increase in insulin secretion matched the decline in insulin sensitivity in both groups. A 24-hour low-grade intralipid infusion has similar effects on whole-body glucose metabolism and first-phase insulin secretion in 19-year-old, healthy, lean, LBW men with normal glucose tolerance and in NBW controls. We reproduced our previous finding of lower insulin-stimulated glycolysis in this population.
Collapse
|
239
|
Aziz A, Anderson GH, Giacca A, Cho F. Hyperglycemia after protein ingestion concurrent with injection of a GLP-1 receptor agonist in rats: a possible role for dietary peptides. Am J Physiol Regul Integr Comp Physiol 2005; 289:R688-94. [PMID: 15879053 DOI: 10.1152/ajpregu.00850.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein ingestion after injection of the glucagon-like peptide-1 receptor agonist Exendin-4 (Ex-4) causes hyperglycemia in rats. The objectives of this study were to determine the components of protein digestion responsible for this effect and to associate it with changes in the concentrations of other metabolites and hormones. Two experiments were conducted. In the first experiment, food-deprived rats were gavaged with intact whey (WP) or albumin protein, their hydrolysates, amino acid mixtures (1 g/2.5 ml), or water 5 min after injection of either PBS or Ex-4 (0.5 μg/rat). Tail vein blood was analyzed for glucose over 2 h. In the second experiment, food-deprived rats were gavaged with WP with or without Ex-4. Groups of conscious rats were killed by decapitation either before, or at selected times after gavage. Plasma concentrations of glucose, amino acids, free fatty acids (FFA), glycerol, insulin, glucagon, and leptin were measured. In experiment 1, blood glucose was higher when intact proteins and protein hydrolysates, but not amino acid mixtures, were given with than without Ex-4 ( P < 0.05). In experiment 2, concentrations of glucose, FFA, and the ratio of tyrosine to branched-chain amino acid were higher ( P < 0.01), but leptin and essential amino acid concentrations were lower ( P < 0.05), and insulin, glucagon, and glycerol were similar when WP was given with or without Ex-4. We conclude that the hyperglycemia caused by the administration of Ex-4 concurrently with dietary protein arises from the action of peptides released during digestion and their interaction with Ex-4 in the regulation of glucose, fatty acid, and amino acid metabolism.
Collapse
Affiliation(s)
- Alfred Aziz
- Dept. of Nutritional Sciences, Faculty of Medicine, University of Toronto, 3rd floor FitzGerald Bldg., 150 College Street, Toronto, Ontario, Canada M5S 3E2
| | | | | | | |
Collapse
|
240
|
Kralisch S, Klein J, Lossner U, Bluher M, Paschke R, Stumvoll M, Fasshauer M. Isoproterenol, TNFalpha, and insulin downregulate adipose triglyceride lipase in 3T3-L1 adipocytes. Mol Cell Endocrinol 2005; 240:43-9. [PMID: 16009485 DOI: 10.1016/j.mce.2005.06.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/25/2005] [Accepted: 06/07/2005] [Indexed: 11/18/2022]
Abstract
Recently, adipose triglyceride lipase (ATGL, also called desnutrin and calcium-independent phospholipase A2 [iPLA(2)] zeta) was isolated as a novel adipose-expressed triglyceride lipase which is downregulated in obesity and may contribute to obesity-associated metabolic disorders such as hyperlipidemia and insulin resistance. To clarify expression and regulation of this fat-derived lipase, ATGL mRNA was measured in 3T3-L1 adipocytes by quantitative real-time reverse transcription-polymerase chain reaction after treatment with isoproterenol, tumor necrosis factor (TNF) alpha, insulin, and growth hormone (GH) which have been shown to influence lipolysis and insulin sensitivity profoundly. Interestingly, treatment of adipocytes with 100 nM isoproterenol, 30 ng/ml TNF alpha, and 100 nM insulin for 16 h significantly decreased ATGL mRNA to 74%, 17%, and 49% of control levels, respectively. GH did not influence ATGL synthesis. The effect of isoproterenol, TNFalpha, and insulin on ATGL expression was time- and dose-dependent. Similarly, HSL mRNA was downregulated by the three hormones. Furthermore, signaling studies suggested that activation of Gs-protein-coupled pathways by forskolin and cholera toxin is sufficient to significantly downregulate ATGL mRNA. Moreover, p44/42 mitogen-activated protein kinase appears to partly mediate the negative effect of insulin but not TNFalpha on ATGL. Taken together, downregulation of ATGL by isoproterenol, TNFalpha, and insulin might contribute to dysregulated expression and function of this lipase in obesity, hyperlipidemia, and insulin resistance.
Collapse
Affiliation(s)
- Susan Kralisch
- University of Leipzig, Department of Internal Medicine III, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
241
|
Ceddia RB. Direct metabolic regulation in skeletal muscle and fat tissue by leptin: implications for glucose and fatty acids homeostasis. Int J Obes (Lond) 2005; 29:1175-83. [PMID: 16030519 DOI: 10.1038/sj.ijo.0803025] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, the adipose tissue has emerged as an important endocrine organ. It is now recognized that besides storing energy the adipocytes also secrete several bioactive peptides, collectively called adipocytokines. Among these adipocytokines, leptin, the product of the ob gene, has been extensively investigated over the last decade. Skeletal muscle and adipose tissue, two major tissues involved in the regulation of glucose and fatty acids metabolism, have been consistently demonstrated to be directly affected by leptin. By binding to its receptors located in skeletal muscle and fat cells, leptin promotes energy dissipation and prevents fatty acid accumulation and 'lipotoxicity' in these tissues. On the other hand, under conditions of peripheral leptin resistance, such as observed in obese humans, the activation of pathways involved in fatty acid oxidation may be impaired. This leads to intracellular accumulation of lipid intermediates and causes insulin resistance. This review examines the metabolic pathways that are directly activated by leptin and how it regulates glucose and fatty acids metabolism in skeletal muscle and fat tissue. Furthermore, the impact of peripheral leptin resistance in these tissues leading to dysfunctional metabolic adaptations is also discussed.
Collapse
Affiliation(s)
- R B Ceddia
- Department of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.
| |
Collapse
|
242
|
Abstract
PURPOSE OF REVIEW The lipolytic catabolism of stored fat in adipose tissue supplies tissues with fatty acids as metabolites and energy substrates during times of food deprivation. This review focuses on the function of recently discovered enzymes in adipose tissue lipolysis and fatty acid mobilization. RECENT FINDINGS The characterization of hormone-sensitive lipase-deficient mice provided compelling evidence that hormone-sensitive lipase is not uniquely responsible for the hydrolysis of triacylglycerols and diacylglycerols of stored fat. Recently, three different laboratories independently discovered a novel enzyme that also acts in this capacity. We named the enzyme 'adipose triglyceride lipase' in accordance with its predominant expression in adipose tissue, its high substrate specificity for triacylglycerols, and its function in the lipolytic mobilization of fatty acids. Two other research groups showed that adipose triglyceride lipase (named desnutrin and Ca-independent phospholipase A2zeta, respectively) is regulated by the nutritional status and that it might exert acyl-transacylase activity in addition to its activity as triacylglycerol hydrolase. Adipose triglyceride lipase represents a novel type of 'patatin domain-containing' triacylglycerol hydrolase that is more closely related to plant lipases than to other known mammalian metabolic triacylglycerol hydrolases. SUMMARY Although the regulation of adipose triglyceride lipase and its physiological function remain to be determined in mouse lines that lack or overexpress the enzyme, present data permit the conclusion that adipose triglyceride lipase is involved in the cellular mobilization of fatty acids, and they require a revision of the concept that hormone-sensitive lipase is the only enzyme involved in the lipolysis of adipose tissue triglycerides.
Collapse
Affiliation(s)
- Rudolf Zechner
- Institute of Molecular Biosciences, Karl-Franzens University Graz, Graz, Austria.
| | | | | | | | | |
Collapse
|
243
|
Degerman E, Manganiello V, Holst JJ, Ahrén B. Milrinone efficiently potentiates insulin secretion induced by orally but not intravenously administered glucose in C57BL6J mice. Eur J Pharmacol 2005; 498:319-23. [PMID: 15364011 DOI: 10.1016/j.ejphar.2004.07.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 07/16/2004] [Accepted: 07/20/2004] [Indexed: 10/26/2022]
Abstract
To study the effect of phosphodiesterase (PDE) 3 inhibition on plasma insulin and glucose levels, the selective PDE 3 inhibitor milrinone (0.25, 1.0, and 2.5 mg/kg) was given orally to anesthetized CL57Bl/6J mice 10 min before a gastric glucose gavage (150 mg/mouse). It was found that milrinone augmented the glucose-mediated increase in plasma insulin at 1.0 and 2.5 mg/kg without, however, any improvement in glucose elimination. In contrast, when given 10 min before intravenous glucose (1 g/kg), milrinone (1 mg/kg) did not affect the insulin response to glucose. The increase in glucagon-like peptide-1 (GLP-1) levels after gastric glucose was not altered by milrinone. However, the PDE3 inhibitor augmented the insulin response to intravenous GLP-1 (2.8 nmol/kg). We therefore conclude that PDE3 inhibition by milrinone augments insulin secretion in vivo in mice after oral but not after intravenous glucose, which may be explained by enhanced response to the cAMP-dependent insulinotropic action of endogenously released GLP-1.
Collapse
Affiliation(s)
- Eva Degerman
- Department of Cell and Molecular Biology, Biomedical Center, C11, 22184 Lund, Sweden
| | | | | | | |
Collapse
|
244
|
Rudich A, Ben-Romano R, Etzion S, Bashan N. Cellular mechanisms of insulin resistance, lipodystrophy and atherosclerosis induced by HIV protease inhibitors. ACTA ACUST UNITED AC 2005; 183:75-88. [PMID: 15654921 DOI: 10.1111/j.1365-201x.2004.01383.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Accumulating clinical evidence now links HIV protease inhibitors (HPIs) to the pathogenesis of insulin resistance, dyslipidaemia, lipodystrophy and atherosclerosis associated with highly active anti-retroviral therapy. Here we briefly describe the evidence for a distinct causative role for HPIs, and explore the cellular mechanisms proposed to underlie these side-effects. Acute inhibition of GLUT4-mediated glucose transport, and defective insulin signalling induced by chronic exposure to nelfinavir, are described as cellular mechanisms of insulin resistance. Interference with adipogenesis and adipocyte apoptosis and nelfinavir-induced activation of lipolysis are discussed as potential mechanisms of HPI-induced lipodystrophy. HPI-induced free radical production, apoptosis and increased glucose utilization in vascular smooth muscle cells are presented as possible novel mechanisms for atherosclerosis. Common pathways and cause-effect relationships between the various cellular mechanisms presented are then discussed, with emphasis on the role of insulin resistance, free radical production and enhanced lipolysis. Understanding the cellular mechanisms of HPI-induced side-effects will enhance the search for improved anti-retroviral therapy, and may also shed light on the pathogenesis of common forms of insulin resistance, dyslipidaemia and atherosclerosis.
Collapse
Affiliation(s)
- A Rudich
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | | | | | | |
Collapse
|
245
|
McCarty MF. Up-regulation of PPARγ coactivator-1α as a strategy for preventing and reversing insulin resistance and obesity. Med Hypotheses 2005; 64:399-407. [PMID: 15607577 DOI: 10.1016/j.mehy.2004.03.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 03/21/2004] [Indexed: 12/25/2022]
Abstract
Excessive accumulation of triglycerides and certain fatty acid derivatives in skeletal muscle and other tissues appears to mediate many of the adverse effects of insulin resistance syndrome. Although fatty diets and obesity can promote such accumulation, deficient capacity for fatty acid oxidation can also contribute in this regard. Indeed, in subjects who are insulin resistant, diabetic, and/or obese, fatty acid oxidation by skeletal muscle tends to be inefficient, reflecting decreased expression of mitochondria and mitochondrial enzymes in muscle. This phenomenon is not corrected by weight loss, is not simply reflective of subnormal physical activity, and is also seen in lean first-degree relatives of diabetics; thus, it appears to be primarily attributable to genetic factors. Recent studies indicate that decreased expression of PPARgamma coactivator-1alpha (PGC-1alpha), a "master switch" which induces mitochondrial biogenesis by supporting the transcriptional activity of the nuclear respiratory factors, may largely account for the diminished oxidative capacity of subjects prone to insulin resistance. Thus, feasible measures which up-regulate PGC-1alpha may be useful for preventing and treating insulin resistance and obesity. These may include exercise training, metformin and other agents which stimulate AMP-activated kinase, high-dose biotin, and PPARdelta agonists. Drugs which are specific agonists for PPARdelta show remarkable efficacy in rodent models of insulin resistance, diabetes, and obesity, and are currently being evaluated clinically. Phytanic acid, a branched-chain fatty acid found in omnivore diets, can also activate PPARdelta, and thus should be examined with respect to its impact on mitochondrial biogenesis and insulin sensitivity.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, USA.
| |
Collapse
|
246
|
Cruciani-Guglielmacci C, Vincent-Lamon M, Rouch C, Orosco M, Ktorza A, Magnan C. Early changes in insulin secretion and action induced by high-fat diet are related to a decreased sympathetic tone. Am J Physiol Endocrinol Metab 2005; 288:E148-54. [PMID: 15353406 DOI: 10.1152/ajpendo.00225.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To evaluate the relationship between the development of obesity, nervous system activity, and insulin secretion and action, we tested the effect of a 2-mo high-fat diet in rats (HF rats) on glucose tolerance, glucose-induced insulin secretion (GIIS), and glucose turnover rate compared with chow-fed rats (C rats). Moreover, we measured pancreatic and hepatic norepinephrine (NE) turnover, as assessment of sympathetic tone, and performed hypothalamic microdialysis to quantify extracellular NE turnover. Baseline plasma triglyceride, free fatty acid, insulin, and glucose concentrations were similar in both groups. After 2 days of diet, GIIS was elevated more in HF than in C rats, whereas plasma glucose time course was similar. There was a significant increase in basal pancreatic NE level of HF rats, and a twofold decrease in the fractional turnover constant was observed, indicating a change in sympathetic tone. In ventromedian hypothalamus of HF rats, the decrease in NE extracellular concentration after a glucose challenge was lower compared with C rats, suggesting changes in overall activity. After 7 days, insulin hypersecretion persisted, and glucose intolerance appeared. Later (2 mo), there was no longer insulin hypersecretion, whereas glucose intolerance worsened. At all times, HF rats also displayed hepatic insulin resistance. On day 2 of HF diet, GIIS returned to normal after treatment with oxymetazoline, an alpha(2A)-adrenoreceptor agonist, thus suggesting the involvement of a low sympathetic tone in insulin hypersecretion in response to glucose in HF rats. In conclusion, the HF diet rapidly results in an increased GIIS, at least in part related to a decreased sympathetic tone, which can be the first step of a cascade of events leading to impaired glucose homeostasis.
Collapse
Affiliation(s)
- C Cruciani-Guglielmacci
- Laboratoire de Physiopathologie de la Nutrition, Centre National de la Recherche Scientifique, UMR 7059, Université Paris 7, Paris, France.
| | | | | | | | | | | |
Collapse
|
247
|
Woodman RJ, Chew GT, Watts GF. Mechanisms, Significance and Treatment of Vascular Dysfunction in Type 2 Diabetes Mellitus. Drugs 2005; 65:31-74. [PMID: 15610050 DOI: 10.2165/00003495-200565010-00003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endothelial dysfunction and increased arterial stiffness occur early in the pathogenesis of diabetic vasculopathy. They are both powerful independent predictors of cardiovascular risk. Advances in non-invasive methodologies have led to widespread clinical investigation of these abnormalities in diabetes mellitus, generating a wealth of new knowledge concerning the mechanisms of vascular dysfunction, risk factor associations and potential treatment targets. Endothelial dysfunction primarily reflects decreased availability of nitric oxide (NO), a critical endothelium-derived vasoactive factor with vasodilatory and anti-atherosclerotic properties. Techniques for assessing endothelial dysfunction include ultrasonographic measurement of flow-mediated vasodilatation of the brachial artery and plethysmography measurement of forearm blood flow responses to vasoactive agents. Arterial stiffness may be assessed using pulse wave analysis to generate measures of pulse wave velocity, arterial compliance and wave reflection. The pathogenesis of endothelial dysfunction in type 2 diabetes is multifactorial, with principal contributors being oxidative stress, dyslipidaemia and hyperglycaemia. Elevated blood glucose levels drive production of reactive oxidant species (ROS) via multiple pathways, resulting in uncoupling of mitochondrial oxidative phosphorylation and endothelial NO synthase (eNOS) activity, reducing NO availability and generating further ROS. Hyperglycaemia also contributes to accelerated arterial stiffening by increasing formation of advanced glycation end-products (AGEs), which alter vessel wall structure and function. Diabetic dyslipidaemia is characterised by accumulation of triglyceride-rich lipoproteins, small dense low-density lipoprotein (LDL) particles, reduced high-density lipoprotein (HDL)-cholesterol and increased postprandial free fatty acid flux. These lipid abnormalities contribute to increasing oxidative stress and may directly inhibit eNOS activity. Although lipid-regulating agents such as HMG-CoA reductase inhibitors (statins), fibric acid derivatives (fibrates) and fish oils are used to treat diabetic dyslipidaemia, their impact on vascular function is less clear. Studies in type 2 diabetes have yielded inconsistent results, but this may reflect sampling variation and the potential over-riding influence of oxidative stress, dysglycaemia and insulin resistance on endothelial dysfunction. Results of positive intervention trials suggest that improvement in vascular function is mediated by both lipid and non-lipid mechanisms, including anti-inflammatory, anti-oxidative and direct effects on the arterial wall. Other treatments, such as renin-angiotensin-aldosterone system antagonists, insulin sensitisers and lifestyle-based interventions, have shown beneficial effects on vascular function in type 2 diabetes. Novel approaches, targeting eNOS and AGEs, are under development, as are new lipid-regulating therapies that more effectively lower LDL-cholesterol and raise HDL-cholesterol. Combination therapy may potentially increase therapeutic efficacy and permit use of lower doses, thereby reducing the risk of adverse drug effects and interactions. Concomitant treatments that specifically target oxidative stress may also improve endothelial dysfunction in diabetes. Vascular function studies can be used to explore the therapeutic potential and mechanisms of action of new and established interventions, and provide useful surrogate measures for cardiovascular endpoints in clinical trials.
Collapse
Affiliation(s)
- Richard J Woodman
- School of Medicine and Pharmacology, University of Western Australia, and West Australian Heart Research Institute, Perth, Western Australia, Australia
| | | | | |
Collapse
|
248
|
McCarty MF. AMPK activation as a strategy for reversing the endothelial lipotoxicity underlying the increased vascular risk associated with insulin resistance syndrome. Med Hypotheses 2005; 64:1211-5. [PMID: 15823720 DOI: 10.1016/j.mehy.2004.01.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 01/13/2004] [Indexed: 12/25/2022]
Abstract
The endotheliopathy associated with insulin resistance syndrome appears to result largely from excessive free fatty acid (FFA) exposure that boosts endothelial production of diacylglycerol, thereby activating protein kinase C. This endothelial "lipotoxicity" can be alleviated by very-low-fat diets and by appropriate weight loss. In addition, pharmacological activation of endothelial AMP-activated kinase (AMPK), as with the drug metformin, has the potential to decrease the FFA content of endothelial cells by stimulating fat oxidation; AMPK may also suppress endothelial de novo synthesis of diacylglycerol by inhibiting glycerol-3-phosphate acyltransferase. These considerations may rationalize the superior impact of metformin therapy on the macrovascular health of diabetics. More generally, metformin - or, preferably, better tolerated activators of AMPK - may have considerable potential for promoting vascular health in the large proportion of the adult population afflicted with insulin resistance syndrome.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Avenue, Encinitas, CA 92024, USA.
| |
Collapse
|
249
|
Assmann G, Nofer JR, Schulte H. Cardiovascular risk assessment in metabolic syndrome: view from PROCAM. Endocrinol Metab Clin North Am 2004; 33:377-92, table of contents. [PMID: 15158524 DOI: 10.1016/j.ecl.2004.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The near-epidemic proportions of diabetes mellitus and the metabolic syndrome over the past years are widely ascribed to a changing socioeconomic environment that contributes to excessive nutritional intake and sedentary lifestyle. Paradoxically, this gives room for expectations, because timely lifestyle and dietary intervention could decelerate the progression of diabetes, reduce the rate of development of cardiovascular complications, and reduce costs associated with treatment and rehabilitation. This approach,however, depends on the development of tools that allow precise estimation of risk of cardiovascular complications before the onset of diabetes mellitus and the risk of developing type 2 diabetes itself. This article reviews the progress that has been made toward reaching these goals based on the results of the PROspective Cardiovascular Münster (PROCAM) study.
Collapse
Affiliation(s)
- Gerd Assmann
- Institut für Klinische Chemie und Laboratoriumsmedizin, Westfäliche Wilhelms-Universität, Muenster, Germany.
| | | | | |
Collapse
|
250
|
Kerenyi Z, Samer H, James R, Yan Y, Stewart M. Combination therapy with rosiglitazone and glibenclamide compared with upward titration of glibenclamide alone in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2004; 63:213-23. [PMID: 14757293 DOI: 10.1016/j.diabres.2003.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AIM To compare the efficacy of combination therapy using rosiglitazone (8 mg per day) and glibenclamide (7.5 mg per day) with upward titration of glibenclamide as monotherapy (maximum dose=15 mg per day) in reducing HbA(1c) levels over 26 weeks in patients with type 2 diabetes mellitus (T2DM). METHODS Three hundred and forty patients with T2DM inadequately controlled (FPG > or =7.0 and < or =15.0 mmol/l) on glibenclamide 7.5 mg per day were randomised to either additional treatment with rosiglitazone 8 mg per day or up-titration of the glibenclamide dose (maximum dose=15 mg per day). RESULTS After 26 weeks, treatment with rosiglitazone combination reduced HbA(1c) by 0.81% (P<0.0001) and FPG by 2.4 mmol/l (P<0.0001) compared with glibenclamide monotherapy. HOMA-S and HOMA-B increased by 12 and 28%, respectively (P<0.0001 for both) with combination compared with glibenclamide monotherapy. With rosiglitazone combination and glibenclamide monotherapy, total cholesterol: HDL ratio reduced by 5 and 13%, triglycerides reduced by 6 and 2%, and FFAs reduced by 15 and 8%, respectively. Both treatments were well tolerated and had predictable safety profiles. CONCLUSION For patients inadequately controlled on glibenclamide, addition of rosiglitazone provides significantly improved glycaemic control compared with uptitration of glibenclamide. This may be preferable to continued monotherapy with higher doses of glibenclamide.
Collapse
Affiliation(s)
- Zsuzsa Kerenyi
- Fourth Department of Medicine, Szent Imre Hospital, Budapest, Hungary
| | | | | | | | | |
Collapse
|