201
|
Ekrami E, Pouresmaieli M, Barati F, Asghari S, Ziarani FR, Shariati P, Mamoudifard M. Potential Diagnostic Systems for Coronavirus Detection: a Critical Review. Biol Proced Online 2020; 22:21. [PMID: 32884452 PMCID: PMC7462115 DOI: 10.1186/s12575-020-00134-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract Currently there are no effective anti-viral drugs for SARS-CoV-2, so the primary line of defense is to detect infected cases as soon as possible. The high rate of contagion for this virus and the highly nonspecific symptoms of the disease (Coronovirus disease 2019, (Covid-19)) that it causes, such as respiratory symptoms, cough, dyspnea, fever, and viral pneumonia, require the urgent establishment of precise and fast diagnostic tests to verify suspected cases, screen patients, and conduct virus surveillance. Nowadays, several virus detection methods are available for viral diseases, which act on specific properties of each virus or virus family, therefore, further investigations and trials are needed to find a highly efficient and accurate detection method to detect and prevent the outcomes of the disease. Hence, there is an urgent need for more and precise studies in this field. In this review, we discussed the properties of a new generation of coronaviruses (SARS-CoV-2) following routine virus detection methods and proposed new strategies and the use of potential samples for SARS-CoV-2 detection. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Elena Ekrami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahdi Pouresmaieli
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Barati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sahar Asghari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Farzad Ramezani Ziarani
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parvin Shariati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Matin Mamoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
202
|
Shpichka A, Bikmulina P, Peshkova M, Kosheleva N, Zurina I, Zahmatkesh E, Khoshdel-Rad N, Lipina M, Golubeva E, Butnaru D, Svistunov A, Vosough M, Timashev P. Engineering a Model to Study Viral Infections: Bioprinting, Microfluidics, and Organoids to Defeat Coronavirus Disease 2019 (COVID-19). Int J Bioprint 2020; 6:302. [PMID: 33089000 PMCID: PMC7557357 DOI: 10.18063/ijb.v6i4.302] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
While the number of studies related to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is constantly growing, it is essential to provide a framework of modeling viral infections. Therefore, this review aims to describe the background presented by earlier used models for viral studies and an approach to design an "ideal" tissue model for SARS-CoV-2 infection. Due to the previous successful achievements in antiviral research and tissue engineering, combining the emerging techniques such as bioprinting, microfluidics, and organoid formation are considered to be one of the best approaches to form in vitro tissue models. The fabrication of an integrated multi-tissue bioprinted platform tailored for SARS-CoV-2 infection can be a great breakthrough that can help defeat coronavirus disease in 2019.
Collapse
Affiliation(s)
- Anastasia Shpichka
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Polina Bikmulina
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Maria Peshkova
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Nastasia Kosheleva
- Department of Molecular and Cell Pathophysiology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
- Department of Embryology, Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Irina Zurina
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Department of Molecular and Cell Pathophysiology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Ensieh Zahmatkesh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel-Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marina Lipina
- Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov University, Moscow, Russia
| | - Elena Golubeva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Denis Butnaru
- Rector’s Office, Sechenov University, Moscow, Russia
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Department of Polymers and Composites, NN Semenov Institute of Chemical Physics, Moscow, Russia
| |
Collapse
|
203
|
Chen Y, Lear TB, Evankovich JW, Larsen MB, Lin B, Alfaras I, Kennerdell JR, Salminen L, Camarco DP, Lockwood KC, Liu J, Myerburg MM, McDyer JF, Liu Y, Finkel T, Chen BB. A high throughput screen for TMPRSS2 expression identifies FDA-approved and clinically advanced compounds that can limit SARS-CoV-2 entry. RESEARCH SQUARE 2020:rs.3.rs-48659. [PMID: 32818215 PMCID: PMC7430593 DOI: 10.21203/rs.3.rs-48659/v1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
SARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identified small molecules that can reduce surface expression of TMPRSS2 using a 2,700 FDA-approved or current clinical trial compounds. Among these, homoharringtonine and halofuginone appear the most potent agents, reducing endogenous TMPRSS2 expression at sub-micromolar concentrations. These effects appear to be mediated by a drug-induced alteration in TMPRSS2 protein stability. We further demonstrate that halofuginone modulates TMPRSS2 levels through proteasomal-mediated degradation that involves the E3 ubiquitin ligase component DDB1- and CUL4-associated factor 1 (DCAF1). Finally, cells exposed to homoharringtonine and halofuginone, at concentrations of drug known to be achievable in human plasma, demonstrated marked resistance to SARS-CoV-2 pseudoviral infection. Given the safety and pharmacokinetic data already available for the compounds identified in our screen, these results should help expedite the rational design of human clinical trials designed to combat COVID-19 infection.
Collapse
Affiliation(s)
- Yanwen Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Travis B. Lear
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - John W. Evankovich
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mads B. Larsen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Bo Lin
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Irene Alfaras
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | | | - Laura Salminen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Daniel P. Camarco
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Karina C. Lockwood
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Jie Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Michael M. Myerburg
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - John F. McDyer
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yuan Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bill B. Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
204
|
Lee P, Kim DJ. Newly Emerging Human Coronaviruses: Animal Models and Vaccine Research for SARS, MERS, and COVID-19. Immune Netw 2020; 20:e28. [PMID: 32895615 PMCID: PMC7458800 DOI: 10.4110/in.2020.20.e28] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
The recent emergence of the novel coronavirus (CoV) or severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a global threat to human health and economy. As of June 26, 2020, over 9.4 million cases of infection, including 482,730 deaths, had been confirmed across 216 countries. To combat a devastating virus pandemic, numerous studies on vaccine development are urgently being accelerated. In this review article, we take a brief look at the characteristics of SARS-CoV-2 in comparison to SARS and Middle East respiratory syndrome (MERS)-CoVs and discuss recent approaches to coronavirus disease-2019 (COVID-19) vaccine development.
Collapse
Affiliation(s)
- Pureum Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- University of Science and Technology (UST), Daejeon 34113, Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
205
|
Yuan S, Chu H, Huang J, Zhao X, Ye ZW, Lai PM, Wen L, Cai JP, Mo Y, Cao J, Liang R, Poon VKM, Sze KH, Zhou J, To KKW, Chen Z, Chen H, Jin DY, Chan JFW, Yuen KY. Viruses harness YxxØ motif to interact with host AP2M1 for replication: A vulnerable broad-spectrum antiviral target. SCIENCE ADVANCES 2020; 6:eaba7910. [PMID: 32923629 PMCID: PMC7455044 DOI: 10.1126/sciadv.aba7910] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/14/2020] [Indexed: 05/24/2023]
Abstract
Targeting a universal host protein exploited by most viruses would be a game-changing strategy that offers broad-spectrum solution and rapid pandemic control including the current COVID-19. Here, we found a common YxxØ-motif of multiple viruses that exploits host AP2M1 for intracellular trafficking. A library chemical, N-(p-amylcinnamoyl)anthranilic acid (ACA), was identified to interrupt AP2M1-virus interaction and exhibit potent antiviral efficacy against a number of viruses in vitro and in vivo, including the influenza A viruses (IAVs), Zika virus (ZIKV), human immunodeficiency virus, and coronaviruses including MERS-CoV and SARS-CoV-2. YxxØ mutation, AP2M1 depletion, or disruption by ACA causes incorrect localization of viral proteins, which is exemplified by the failure of nuclear import of IAV nucleoprotein and diminished endoplasmic reticulum localization of ZIKV-NS3 and enterovirus-A71-2C proteins, thereby suppressing viral replication. Our study reveals an evolutionarily conserved mechanism of protein-protein interaction between host and virus that can serve as a broad-spectrum antiviral target.
Collapse
MESH Headings
- A549 Cells
- Adaptor Proteins, Vesicular Transport/metabolism
- Animals
- Antiviral Agents/pharmacology
- Betacoronavirus/drug effects
- Binding Sites/genetics
- COVID-19
- Cell Line, Tumor
- Chlorocebus aethiops
- Cinnamates/pharmacology
- Coronavirus Infections/drug therapy
- Coronavirus Infections/pathology
- Dogs
- HEK293 Cells
- HIV Infections/drug therapy
- HIV Infections/pathology
- HIV-1/drug effects
- Host-Pathogen Interactions/drug effects
- Humans
- Influenza A virus/drug effects
- Influenza, Human/drug therapy
- Influenza, Human/pathology
- Madin Darby Canine Kidney Cells
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Middle East Respiratory Syndrome Coronavirus/drug effects
- Pandemics
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/pathology
- Protein Binding/genetics
- Protein Transport/drug effects
- RNA, Viral/genetics
- Receptor, Interferon alpha-beta/genetics
- SARS-CoV-2
- Transforming Growth Factor beta1/metabolism
- Vero Cells
- Virus Replication/drug effects
- Zika Virus/drug effects
- Zika Virus Infection/pathology
- ortho-Aminobenzoates/pharmacology
Collapse
Affiliation(s)
- Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jingjing Huang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiaoyu Zhao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zi-Wei Ye
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Pok-Man Lai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Lei Wen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yufei Mo
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jianli Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ronghui Liang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kong-Hung Sze
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zhiwei Chen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
206
|
Steardo L, Steardo L, Verkhratsky A. Psychiatric face of COVID-19. Transl Psychiatry 2020; 10:261. [PMID: 32732883 PMCID: PMC7391235 DOI: 10.1038/s41398-020-00949-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) represents a severe multiorgan pathology which, besides cardio-respiratory manifestations, affects the function of the central nervous system (CNS). The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), similarly to other coronaviruses demonstrate neurotropism; the viral infection of the brain stem may complicate the course of the disease through damaging central cardio-respiratory control. The systemic inflammation as well as neuroinflammatory changes are associated with massive increase of the brain pro-inflammatory molecules, neuroglial reactivity, altered neurochemical landscape and pathological remodelling of neuronal networks. These organic changes, emerging in concert with environmental stress caused by experiences of intensive therapy wards, pandemic fears and social restrictions, promote neuropsychiatric pathologies including major depressive disorder, bipolar disorder (BD), various psychoses, obsessive-compulsive disorder and post-traumatic stress disorder. The neuropsychiatric sequelae of COVID-19 represent serious clinical challenge that has to be considered for future complex therapies.
Collapse
Affiliation(s)
| | - Luca Steardo
- Sapienza University Rome, Rome, Italy.
- Fortunato University, Benevento, Italy.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.
- Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
207
|
Price E. Could the severity of COVID-19 be increased by low gastric acidity? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:456. [PMID: 32698857 PMCID: PMC7374651 DOI: 10.1186/s13054-020-03182-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/15/2020] [Indexed: 02/02/2023]
|
208
|
Shuai H, Chu H, Hou Y, Yang D, Wang Y, Hu B, Huang X, Zhang X, Chai Y, Cai JP, Chan JFW, Yuen KY. Differential immune activation profile of SARS-CoV-2 and SARS-CoV infection in human lung and intestinal cells: Implications for treatment with IFN-β and IFN inducer. J Infect 2020; 81:e1-e10. [PMID: 32707230 PMCID: PMC7373021 DOI: 10.1016/j.jinf.2020.07.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/16/2020] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2 infection was more robust than SARS-CoV in Calu3. In contrast, SARS-CoV infected intestinal epithelial cells more efficiently. SARS-CoV-2 infection launched an attenuated interferon and pro-inflammatory cytokines/chemokines response in both Calu3 and Caco2 cells, despite robust virus infection and propagation. SARS-CoV-2 was more sensitive to IFNβ and poly(I:C) pretreatment than that of SARS-CoV.
Objectives Respiratory and intestinal tract are two primary target organs of SARS-CoV-2 infection. However, detailed characterization of the host-virus interplay in infected human lung and intestinal epithelial cells is lacking. Methods We utilized immunofluorescence assays, flow cytometry, and RT-qPCR to delineate the virological features and the innate immune response of the host cells against SARS-CoV-2 infection in two prototype human cell lines representing the human lung (Calu3) and intestinal (Caco2) epithelium when compared with SARS-CoV. Results Lung epithelial cells were significantly more susceptible to SARS-CoV-2 compared to SARS-CoV. However, SARS-CoV-2 infection induced an attenuated pro-inflammatory cytokines/chemokines induction and type I and type II IFN responses. A single dose of 10 U/mL interferon-β (IFNβ) pretreatment potently protected both Calu3 and Caco2 against SARS-CoV-2 infection. Interestingly, SARS-CoV-2 was more sensitive to the pretreatment with IFNβ and IFN inducer than SARS-CoV in Calu3. Conclusions Despite robust infection in both human lung and intestinal epithelial cells, SARS-CoV-2 could attenuate the virus-induced pro-inflammatory response and IFN response. Pre-activation of the type I IFN signaling pathway primed a highly efficient antiviral response in the host against SARS-CoV-2 infection, which could serve as a potential therapeutic and prophylactic maneuver to COVID-19 patients.
Collapse
Affiliation(s)
- Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Dong Yang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Yixin Wang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Xi Zhang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Kwok-Yung Yuen
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| |
Collapse
|
209
|
Abstract
Due to its fundamental role in the induction, training, and function of the immune system, it is critical to include characterizations of the gut microbiome in clinical trials and studies that aim to broaden our understanding of coronavirus disease 2019 (COVID-19). Understanding the “gut-lung axes,” where gut microbiome composition influences the lung’s susceptibility to viral infections and viral infections of the lung alter gut microbiome composition toward proinflammatory functional dysbiosis, will be critical in addressing COVID-19, including disease progression, the importance of preexisting conditions, and the risk for developing complications. Due to its fundamental role in the induction, training, and function of the immune system, it is critical to include characterizations of the gut microbiome in clinical trials and studies that aim to broaden our understanding of coronavirus disease 2019 (COVID-19). Understanding the “gut-lung axes,” where gut microbiome composition influences the lung’s susceptibility to viral infections and viral infections of the lung alter gut microbiome composition toward proinflammatory functional dysbiosis, will be critical in addressing COVID-19, including disease progression, the importance of preexisting conditions, and the risk for developing complications. These insights may further help to develop better intervention strategies for COVID-19 and other diseases caused by respiratory viruses.
Collapse
|
210
|
Carducci A, Federigi I, Liu D, Thompson JR, Verani M. Making Waves: Coronavirus detection, presence and persistence in the water environment: State of the art and knowledge needs for public health. WATER RESEARCH 2020; 179:115907. [PMID: 32389891 PMCID: PMC7199000 DOI: 10.1016/j.watres.2020.115907] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/25/2020] [Accepted: 05/01/2020] [Indexed: 05/18/2023]
Abstract
The main route of transmission of the human coronaviruses (HCoVs), and presumably also of the new pandemic SARS-CoV-2, is via droplets and close contacts, however their fecal elimination also suggests the possible spread via water. A scientific literature search was thus carried out to highlight the current state of the art and knowledge gaps regarding coronavirus in water. Since 1978 only 22 studies have met the inclusion criteria, and considered heterogeneous purposes, detection methods and types of water. In vitro experiments have addressed the recovery efficiency of analytical methods, survival in different types of water and the removal efficiency of water treatments. Field studies have monitored coronaviruses in surface waters, sewage, slurry, and biosolids. Overall, at the lab scale, HCoVs or surrogates can survive for several days at 4 °C, however their persistence is lower compared with non-enveloped viruses and is strongly influenced by temperature and organic or microbial pollution. HCoVs have rarely been detected in field investigations, however may be due to the low recovery efficiency of the analytical methods. The scarcity of information on HCoV in the environment suggests that research is needed to understand the fate of these viruses in the water cycle.
Collapse
Affiliation(s)
| | - Ileana Federigi
- Department of Biology, University of Pisa, Pisa, 56127, Italy.
| | - Dasheng Liu
- Ecological Society of Shandong, Jinan, 250012, China
| | - Julian R Thompson
- UCL Department of Geography, University College London, London, WC1E 6BT, United Kingdom
| | - Marco Verani
- Department of Biology, University of Pisa, Pisa, 56127, Italy
| |
Collapse
|
211
|
Wolf GK, Glueck T, Huebner J, Muenchhoff M, Hoffmann D, French LE, Keppler OT, Protzer U. Clinical and Epidemiological Features of a Family Cluster of Symptomatic and Asymptomatic Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J Pediatric Infect Dis Soc 2020; 9:362-365. [PMID: 32441753 PMCID: PMC7313851 DOI: 10.1093/jpids/piaa060] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
Abstract
In a family experiencing coronavirus disease 2019, the parents and 2 children aged 2 and 5 years became infected but the youngest child was not infected. Both children initially shed infectious virus, but cleared the virus after 5 to 6 days in the nasopharynx. However, viral RNA was continuously detected in the children's stool for more than 4 weeks.
Collapse
Affiliation(s)
- Gerhard K Wolf
- Children’s Hospital Traunstein, LMU Munich, Traunstein, Germany
| | - Thomas Glueck
- Division of Infectious Diseases, Kliniken Südostbayern, Trostberg, Germany
| | - Johannes Huebner
- Division of Pediatric Infectious Disease, Dr. von Hauner Children`s Hospital, LMU Munich, Munich, Germany
| | - Maximilian Muenchhoff
- German Center for Infection Research, Munich Partner Site, Germany
- Max von Pettenkofer Institute, LMU Munich, Munich, Munich, Germany
| | - Dieter Hoffmann
- German Center for Infection Research, Munich Partner Site, Germany
- Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Lars E French
- Department of Dermatology and Allergology, LMU University Hospital, Munich, Germany
| | - Oliver T Keppler
- German Center for Infection Research, Munich Partner Site, Germany
- Max von Pettenkofer Institute, LMU Munich, Munich, Munich, Germany
| | - Ulrike Protzer
- German Center for Infection Research, Munich Partner Site, Germany
- Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
212
|
Stanifer ML, Kee C, Cortese M, Zumaran CM, Triana S, Mukenhirn M, Kraeusslich HG, Alexandrov T, Bartenschlager R, Boulant S. Critical Role of Type III Interferon in Controlling SARS-CoV-2 Infection in Human Intestinal Epithelial Cells. Cell Rep 2020; 32:107863. [PMID: 32610043 PMCID: PMC7303637 DOI: 10.1016/j.celrep.2020.107863] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) is an unprecedented worldwide health problem that requires concerted and global approaches to stop the coronavirus 2019 (COVID-19) pandemic. Although SARS-CoV-2 primarily targets lung epithelium cells, there is growing evidence that the intestinal epithelium is also infected. Here, using both colon-derived cell lines and primary non-transformed colon organoids, we engage in the first comprehensive analysis of the SARS-CoV-2 life cycle in human intestinal epithelial cells (hIECs). Our results demonstrate that hIECs fully support SARS-CoV-2 infection, replication, and production of infectious de novo virus particles. We found that viral infection elicits an extremely robust intrinsic immune response where interferon-mediated responses are efficient at controlling SARS-CoV-2 replication and de novo virus production. Taken together, our data demonstrate that hIECs are a productive site of SARS-CoV-2 replication and suggest that the enteric phase of SARS-CoV-2 may participate in the pathologies observed in COVID-19 patients by contributing to increasing patient viremia and fueling an exacerbated cytokine response.
Collapse
Affiliation(s)
- Megan L Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg 69120, Germany; Research Group "Cellular polarity and viral infection," German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| | - Carmon Kee
- Research Group "Cellular polarity and viral infection," German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg 69120, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg 69120, Germany
| | - Camila Metz Zumaran
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg 69120, Germany
| | - Sergio Triana
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany; Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg 69120, Germany
| | - Markus Mukenhirn
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg 69120, Germany
| | - Hans-Georg Kraeusslich
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg 69120, Germany
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg 69120, Germany; Division "Virus-associated Carcinogenesis," German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; German Center for Infection Research, Heidelberg Partner site, Heidelberg 69120, Germany
| | - Steeve Boulant
- Research Group "Cellular polarity and viral infection," German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg 69120, Germany.
| |
Collapse
|
213
|
Kates OS, Fisher CE, Rakita RM, Reyes JD, Limaye AP. Use of SARS-CoV-2-infected deceased organ donors: Should we always "just say no?". Am J Transplant 2020; 20:1787-1794. [PMID: 32400087 PMCID: PMC7272824 DOI: 10.1111/ajt.16000] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 01/25/2023]
Abstract
In the context of a rapidly evolving pandemic, multiple organizations have released guidelines stating that all organs from potential deceased donors with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection should be deferred, including from otherwise medically eligible donors found to have mild or asymptomatic SARS-CoV-2 discovered on routine donor screening. In this article, we critically examine the available data on the risk of transmission of SARS-CoV-2 through organ transplantation. The isolation of SARS-CoV-2 from nonlung clinical specimens, the detection of SARS-CoV-2 in autopsy specimens, previous experience with the related coronaviruses SARS-CoV and MERS-CoV, and the vast experience with other common RNA respiratory viruses are all addressed. Taken together, these data provide little evidence to suggest the presence of intact transmissible SARS-CoV in organs that can potentially be transplanted, specifically liver and heart. Other considerations including ethical, financial, societal, and logistical concerns are also addressed. We conclude that, for selected patients with high waitlist mortality, transplant programs should consider accepting heart or liver transplants from deceased donors with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Olivia S. Kates
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA,Correspondence Olivia S. Kates
| | - Cynthia E. Fisher
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Robert M. Rakita
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Jorge D. Reyes
- Division of Transplant Surgery, University of Washington, Seattle, Washington, USA
| | - Ajit P. Limaye
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| |
Collapse
|
214
|
Rokkas T. Gastrointestinal involvement in COVID-19: a systematic review and meta-analysis. Ann Gastroenterol 2020; 33:355-365. [PMID: 32624655 PMCID: PMC7315709 DOI: 10.20524/aog.2020.0506] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Patients with COVID-19 usually manifest fever and respiratory symptoms. However, some patients also experience gastrointestinal (GI) symptoms such as diarrhea, vomiting and abdominal pain. In addition, SARS-CoV-2 RNA has been detected in feces of infected patients. Currently there is huge evolving research interest in this potentially lethal disease. We systematically reviewed and meta-analyzed the evidence suggesting involvement of the digestive system in COVID-19. METHODS PubMed, Medline and Embase databases were searched up to 10 April 2020, using suitable keywords. Individual and pooled prevalence rates with 95% confidence intervals (CI) were calculated using the fixed- or random-effects model as appropriate. Heterogeneity between studies was calculated employing the Cochran Q test and I2 values, whereas the possibility of publication bias was examined by constructing funnel plots. Additionally, subgroup and sensitivity analyses were performed. RESULTS In adult COVID-19 patients, the prevalence rates (95%CI) for all GI symptoms, and separately for diarrhea, nausea/vomiting, and abdominal discomfort/pain were 9.8% (6.4-14.7), 10.4% (95%CI 7.7-13.9), 7.7% (95%CI 4.8-12.1), and 6.9% (95%CI 3.9-11.9) respectively. The prevalence rates for children were 9.6% (95%CI 6.3-14.3) for all symptoms, 9.6% (95%CI 6.3-14.3) for diarrhea, and 6.8% (95% CI 4.2-11) for nausea/vomiting. In 30.3% (95%CI 10.5-61.6) of the patients SARS-CoV-2 RNA was detected in feces. CONCLUSIONS A percentage of patients with COVID-19 will manifest symptoms from the digestive system. The GI tract may be a target organ and potential transmission route of SARS-CoV-2, with important implications for disease management and transmission.
Collapse
Affiliation(s)
- Theodore Rokkas
- Gastroenterology Clinic, Henry Dunant Hospital, Athens, Greece
| |
Collapse
|
215
|
Abstract
Since human coronavirus (HCoV)-like particles were detected in the stool specimens of acute gastroenteritis and necrotizing enterocolitis children with electron microscopy, the relationship between HCoV and the pediatric gastrointestinal illness had been recognized. In recent years, the overall detection rates have been low and have varied by region. HCoVs have not been considered as the major pathogens in pediatric acute gastroenteritis. HCoVs detected in children with acute gastroenteritis have included 229E, OC43, HKU1, NL63, and severe acute respiratory syndrome coronavirus, Middle East Respiratory Syndrome Coronavirus and severe acute respiratory syndrome coronavirus-2 have also been associated with gastrointestinal symptoms in children. Although digestive tract has been recognized as an infection route, it has not been possible to fully investigate the association between HCoVs infection and the gastrointestinal symptoms because of the limited number of pediatric cases. Furthermore, pathologic features have not been clear. Till now, our knowledge of severe acute respiratory syndrome coronavirus-2 is limited. However, diarrhea and vomiting have been seen in pediatric cases, particularly in newborns and infants. It has been necessary to pay more attention on gastrointestinal transmission to identify the infected children early and avoid the children without apparent or mild symptoms becoming the sources of infection.
Collapse
|
216
|
Esposito G, Pesce M, Seguella L, Sanseverino W, Lu J, Sarnelli G. Can the enteric nervous system be an alternative entrance door in SARS-CoV2 neuroinvasion? Brain Behav Immun 2020; 87:93-94. [PMID: 32335192 PMCID: PMC7179488 DOI: 10.1016/j.bbi.2020.04.060] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Giuseppe Esposito
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | | | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang City, Liaoning, China
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
217
|
Cheung KS, Hung IFN, Chan PPY, Lung KC, Tso E, Liu R, Ng YY, Chu MY, Chung TWH, Tam AR, Yip CCY, Leung KH, Fung AYF, Zhang RR, Lin Y, Cheng HM, Zhang AJX, To KKW, Chan KH, Yuen KY, Leung WK. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis. Gastroenterology 2020; 159:81-95. [PMID: 32251668 PMCID: PMC7194936 DOI: 10.1053/j.gastro.2020.03.065] [Citation(s) in RCA: 1120] [Impact Index Per Article: 224.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which has been characterized by fever, respiratory, and gastrointestinal symptoms as well as shedding of virus RNA into feces. We performed a systematic review and meta-analysis of published gastrointestinal symptoms and detection of virus in stool and also summarized data from a cohort of patients with COVID-19 in Hong Kong. METHODS We collected data from the cohort of patients with COVID-19 in Hong Kong (N = 59; diagnosis from February 2 through February 29, 2020),and searched PubMed, Embase, Cochrane, and 3 Chinese databases through March 11, 2020, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We analyzed pooled data on the prevalence of overall and individual gastrointestinal symptoms (loss of appetite, nausea, vomiting, diarrhea, and abdominal pain or discomfort) using a random effects model. RESULTS Among the 59 patients with COVID-19 in Hong Kong, 15 patients (25.4%) had gastrointestinal symptoms, and 9 patients (15.3%) had stool that tested positive for virus RNA. Stool viral RNA was detected in 38.5% and 8.7% among those with and without diarrhea, respectively (P = .02). The median fecal viral load was 5.1 log10 copies per milliliter in patients with diarrhea vs 3.9 log10 copies per milliliter in patients without diarrhea (P = .06). In a meta-analysis of 60 studies comprising 4243 patients, the pooled prevalence of all gastrointestinal symptoms was 17.6% (95% confidence interval [CI], 12.3-24.5); 11.8% of patients with nonsevere COVID-19 had gastrointestinal symptoms (95% CI, 4.1-29.1), and 17.1% of patients with severe COVID-19 had gastrointestinal symptoms (95% CI, 6.9-36.7). In the meta-analysis, the pooled prevalence of stool samples that were positive for virus RNA was 48.1% (95% CI, 38.3-57.9); of these samples, 70.3% of those collected after loss of virus from respiratory specimens tested positive for the virus (95% CI, 49.6-85.1). CONCLUSIONS In an analysis of data from the Hong Kong cohort of patients with COVID-19 and a meta-analysis of findings from publications, we found that 17.6% of patients with COVID-19 had gastrointestinal symptoms. Virus RNA was detected in stool samples from 48.1% patients, even in stool collected after respiratory samples had negative test results. Health care workers should therefore exercise caution in collecting fecal samples or performing endoscopic procedures in patients with COVID-19, even during patient recovery.
Collapse
Affiliation(s)
- Ka Shing Cheung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong; Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ivan F N Hung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong; State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Pierre P Y Chan
- Department of Medicine and Geriatrics, Ruttonjee and Tang Shiu Kin Hospital, Hong Kong
| | - K C Lung
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | - Eugene Tso
- Department of Medicine, United Christian Hospital, Hong Kong
| | - Raymond Liu
- Department of Medicine and Geriatrics, Ruttonjee and Tang Shiu Kin Hospital, Hong Kong
| | - Y Y Ng
- Department of Medicine, Tuen Mun Hospital, Hong Kong
| | - Man Y Chu
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong
| | - Tom W H Chung
- Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Anthony Raymond Tam
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Cyril C Y Yip
- Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kit-Hang Leung
- Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Agnes Yim-Fong Fung
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Ricky R Zhang
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong; State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Yansheng Lin
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ho Ming Cheng
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Anna J X Zhang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Kelvin K W To
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong; Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kwok-H Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong; Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kwok-Y Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Wai K Leung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong.
| |
Collapse
|
218
|
Taxonera C, Sagastagoitia I, Alba C, Mañas N, Olivares D, Rey E. 2019 novel coronavirus disease (COVID-19) in patients with inflammatory bowel diseases. Aliment Pharmacol Ther 2020; 52:276-283. [PMID: 32359205 PMCID: PMC7267496 DOI: 10.1111/apt.15804] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Data on patients with inflammatory bowel diseases (IBD) who have had 2019 novel coronavirus (SARS-CoV-2) disease (COVID-19) are needed. AIMS To report the clinical characteristics, including gastrointestinal symptoms, of COVID-19 in IBD patients, and to assess the risk of COVID-19 in IBD. METHODS This case series included consecutive IBD patients with laboratory-confirmed COVID-19. Age-adjusted cumulative incidences were compared with the general population in the Madrid region. RESULTS Through April 8, 12 of 1918 IBD patients were diagnosed with COVID-19. The average age was 52 years, 75% of the patients were female and 58.3% had Crohn's disease. Seven patients (58%) were on maintenance treatment with immunomodulators/biologics, of these four with combined therapy (33%). Eight patients (66%) required hospitalisation (one intensive care unit admission, and two deaths), and four patients were isolated at home. Nine patients had diarrhoea ranging between 4 and 10 loose stools per day (mean 5.4, SD 1.6). In five patients (42%) diarrhoea was a presenting symptom. In two patients, diarrhoea was the only symptom at debut. Cumulative incidence of COVID-19 was 6.2 per 1000 IBD patients. IBD patients had a lower adjusted incidence ratio of COVID-19 (OR 0.74, 95% CI 0.70-0.77; P < 0.001), and a similar associated mortality ratio (OR 0.95, 95% CI: 0.84-1.06; P = 0.36), compared with the general population. CONCLUSIONS IBD patients do not have an increased risk of COVID-19 and associated mortality compared with the general population. In many IBD patients, diarrhoea was a presenting symptom, and sometimes, was the only symptom at onset of COVID-19.
Collapse
Affiliation(s)
- Carlos Taxonera
- Inflammatory Bowel Disease UnitDepartment of GastroenterologyHospital Clínico San Carlos and Instituto de Investigación del Hospital Clínico San Carlos [IdISSC]MadridSpain
| | - Iñigo Sagastagoitia
- Department of Internal MedicineHospital Clínico San Carlos and Instituto de Investigación del Hospital Clínico San Carlos [IdISSC]MadridSpain
| | - Cristina Alba
- Inflammatory Bowel Disease UnitDepartment of GastroenterologyHospital Clínico San Carlos and Instituto de Investigación del Hospital Clínico San Carlos [IdISSC]MadridSpain
| | - Norberto Mañas
- Inflammatory Bowel Disease UnitDepartment of GastroenterologyHospital Clínico San Carlos and Instituto de Investigación del Hospital Clínico San Carlos [IdISSC]MadridSpain
| | - David Olivares
- Inflammatory Bowel Disease UnitDepartment of GastroenterologyHospital Clínico San Carlos and Instituto de Investigación del Hospital Clínico San Carlos [IdISSC]MadridSpain
| | - Enrique Rey
- Inflammatory Bowel Disease UnitDepartment of GastroenterologyHospital Clínico San Carlos and Instituto de Investigación del Hospital Clínico San Carlos [IdISSC]MadridSpain
| |
Collapse
|
219
|
Corrò C, Novellasdemunt L, Li VSW. A brief history of organoids. Am J Physiol Cell Physiol 2020; 319:C151-C165. [PMID: 32459504 PMCID: PMC7468890 DOI: 10.1152/ajpcell.00120.2020] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
In vitro cell cultures are crucial research tools for modeling human development and diseases. Although the conventional monolayer cell cultures have been widely used in the past, the lack of tissue architecture and complexity of such model fails to inform the true biological processes in vivo. Recent advances in the organoid technology have revolutionized the in vitro culture tools for biomedical research by creating powerful three-dimensional (3D) models to recapitulate the cellular heterogeneity, structure, and functions of the primary tissues. Such organoid technology enables researchers to recreate human organs and diseases in a dish and thus holds great promises for many translational applications such as regenerative medicine, drug discovery, and precision medicine. In this review, we provide an overview of the organoid history and development. We discuss the strengths and limitations of organoids as well as their potential applications in the laboratory and the clinic.
Collapse
Affiliation(s)
- Claudia Corrò
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London United Kingdom
| | - Laura Novellasdemunt
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London United Kingdom
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London United Kingdom
| |
Collapse
|
220
|
Abstract
The outbreak of novel coronavirus pneumonia in 2019 (Coronavirus disease 2019 [COVID-19]) is now threatening global public health. Although COVID-19 is principally defined by its respiratory symptoms, it is now clear that the virus can also affect the digestive system. In this review, we elaborate on the close relationship between COVID-19 and the digestive system, focusing on both the clinical findings and potential underlying mechanisms of COVID-19 gastrointestinal pathogenesis.
Collapse
Affiliation(s)
- Chunxiang Ma
- Department of Gastroenterology, West China Hospital and State Key Lab of Biotherapy, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital and State Key Lab of Biotherapy, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
221
|
Shah MB, Lynch RJ, El-Haddad H, Doby B, Brockmeier D, Goldberg DS. Utilization of deceased donors during a pandemic: argument against using SARS-CoV-2-positive donors. Am J Transplant 2020; 20:1795-1799. [PMID: 32368850 PMCID: PMC7267604 DOI: 10.1111/ajt.15969] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 01/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become an unprecedented pandemic that has impacted society, disrupted hospital functions, strained health care resources, and impacted the lives of transplant professionals. Despite this, organ failure and the need for transplant continues throughout the United States. Considering the perpetual scarcity of deceased donor organs, Kates et al present a viewpoint that advocates for the utilization of coronavirus disease 2019 (COVID-19)-positive donors in selected cases. We present a review of the current literature that details the potential negative consequences of COVID-19-positive donors. The factors we consider include (1) the risk of blood transmission of SARS-CoV-2, (2) involvement of donor organs, (3) lack of effective therapies, (4) exposure of health care and recovery teams, (5) disease transmission and propagation, and (6) hospital resource utilization. While we acknowledge that transplant fulfills the mission of saving lives, it is imperative to consider the consequences not only to our recipients but also to the community and to health care workers, particularly in the absence of effective preventative or curative therapies. For these reasons, we believe the evidence and risks show that COVID-19 infection should continue to remain a contraindication for donation, as has been the initial response of donation and transplant societies.
Collapse
Affiliation(s)
- Malay B. Shah
- Department of Surgery, Division of Abdominal Transplant Surgery, University of Kentucky College of Medicine, Lexington, Kentucky, USA,Correspondence Malay B. Shah
| | - Raymond J. Lynch
- Department of Surgery, Division of Transplantation, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hanine El-Haddad
- Department of Medicine, Division of Infectious Diseases, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Brianna Doby
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - David S. Goldberg
- Department of Medicine, Division of Hepatology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
222
|
Gulati A, Pomeranz C, Qamar Z, Thomas S, Frisch D, George G, Summer R, DeSimone J, Sundaram B. A Comprehensive Review of Manifestations of Novel Coronaviruses in the Context of Deadly COVID-19 Global Pandemic. Am J Med Sci 2020; 360:5-34. [PMID: 32620220 PMCID: PMC7212949 DOI: 10.1016/j.amjms.2020.05.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Since December 2019, the global pandemic caused by the highly infectious novel coronavirus 2019-nCoV (COVID-19) has been rapidly spreading. As of April 2020, the outbreak has spread to over 210 countries, with over 2,400,000 confirmed cases and over 170,000 deaths.1 COVID-19 causes a severe pneumonia characterized by fever, cough and shortness of breath. Similar coronavirus outbreaks have occurred in the past causing severe pneumonia like COVID-19, most recently, severe acute respiratory syndrome coronavirus (SARS-CoV) and middle east respiratory syndrome coronavirus (MERS-CoV). However, over time, SARS-CoV and MERS-CoV were shown to cause extrapulmonary signs and symptoms including hepatitis, acute renal failure, encephalitis, myositis and gastroenteritis. Similarly, sporadic reports of COVID-19 related extrapulmonary manifestations emerge. Unfortunately, there is no comprehensive summary of the multiorgan manifestations of COVID-19, making it difficult for clinicians to quickly educate themselves about this highly contagious and deadly pathogen. What is more, is that SARS-CoV and MERS-CoV are the closest humanity has come to combating something similar to COVID-19, however, there exists no comparison between the manifestations of any of these novel coronaviruses. In this review, we summarize the current knowledge of the manifestations of the novel coronaviruses SARS-CoV, MERS-CoV and COVID-19, with a particular focus on the latter, and highlight their differences and similarities.
Collapse
Affiliation(s)
| | | | | | | | | | - Gautam George
- Departments of Medicine; Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ross Summer
- Departments of Medicine; Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
223
|
Ding S, Liang TJ. Is SARS-CoV-2 Also an Enteric Pathogen With Potential Fecal-Oral Transmission? A COVID-19 Virological and Clinical Review. Gastroenterology 2020; 159:53-61. [PMID: 32353371 PMCID: PMC7184994 DOI: 10.1053/j.gastro.2020.04.052] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
In as few as 3 months, coronavirus disease 2019 (COVID-19) has spread and ravaged the world at an unprecedented speed in modern history, rivaling the 1918 flu pandemic. Severe acute respiratory syndrome coronavirus-2, the culprit virus, is highly contagious and stable in the environment and transmits predominantly among humans via the respiratory route. Accumulating evidence suggest that this virus, like many of its related viruses, may also be an enteric virus that can spread via the fecal-oral route. Such a hypothesis would also contribute to the rapidity and proliferation of this pandemic. Here we briefly summarize what is known about this family of viruses and literature basis of the hypothesis that severe acute respiratory syndrome coronavirus-2 is capable of infecting the gastrointestinal tract and shedding in the environment for potential human-to-human transmission.
Collapse
Affiliation(s)
- Siyuan Ding
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri.
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland,Correspondence Address correspondence to: T. Jake Liang, MD, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg10-9B16, 10 Center Drive, Bethesda, MD
| |
Collapse
|
224
|
Kopel J, Perisetti A, Gajendran M, Boregowda U, Goyal H. Clinical Insights into the Gastrointestinal Manifestations of COVID-19. Dig Dis Sci 2020; 65:1932-1939. [PMID: 32447742 PMCID: PMC7245177 DOI: 10.1007/s10620-020-06362-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/21/2020] [Indexed: 01/07/2023]
Abstract
The month of December 2019 became a critical part of the time of humanity when the first case of coronavirus disease 2019 (COVID-19) was reported in the Wuhan, Hubei Province in China. As of April 13th, 2020, there have been approximately 1.9 million cases and 199,000 deaths across the world, which were associated with COVID-19. The COVID-19 is the seventh coronavirus to be identified to infect humans. In the past, Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome were the two coronaviruses that infected humans with a high fatality, particularly among the elderly. Fatalities due to COVID-19 are higher in patients older than 50 years of age or those with multimorbid conditions. The COVID-19 is mainly transmitted through respiratory droplets, with the most common symptoms being high fever, cough, myalgia, atypical symptoms included sputum production, headache, hemoptysis and diarrhea. However, the incubation period can range from 2 to 14 days without any symptoms. It is particularly true with gastrointestinal (GI) symptoms in which patients can still shed the virus even after pulmonary symptoms have resolved. Given the high percentage of COVID-19 patients that present with GI symptoms (e.g., nausea and diarrhea), screening patients for GI symptoms remain essential. Recently, cases of fecal-oral transmission of COVID-19 have been confirmed in the USA and China, indicating that the virus can replicate in both the respiratory and digestive tract. Moreover, the epidemiology, clinical characteristics, diagnostic procedures, treatments and prevention of the gastrointestinal manifestations of COVID-19 remain to be elucidated.
Collapse
Affiliation(s)
- Jonathan Kopel
- Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA
| | - Abhilash Perisetti
- Department of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Mahesh Gajendran
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, 5001 El Paso Drive, El Paso, TX 79905 USA
| | - Umesha Boregowda
- Department of Medicine, Bassett Medical Center, 1 Atwell Road, Cooperstown, NY 13326 USA
| | - Hemant Goyal
- The Wright Center for Graduate Medical Education, 501 S. Washington Avenue, Scranton, PA 18503 USA
| |
Collapse
|
225
|
DosSantos MF, Devalle S, Aran V, Capra D, Roque NR, Coelho-Aguiar JDM, Spohr TCLDSE, Subilhaga JG, Pereira CM, D'Andrea Meira I, Niemeyer Soares Filho P, Moura-Neto V. Neuromechanisms of SARS-CoV-2: A Review. Front Neuroanat 2020; 14:37. [PMID: 32612515 PMCID: PMC7308495 DOI: 10.3389/fnana.2020.00037] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have suggested the neuroinvasive potential of severe acute respiratory coronavirus 2 (SARS-CoV-2). Notably, neuroinvasiveness might be involved in the pathophysiology of coronavirus disease 2019 (COVID-19). Some studies have demonstrated that synapse-connected routes may enable coronaviruses to access the central nervous system (CNS). However, evidence related to the presence of SARS-CoV-2 in the CNS, its direct impact on the CNS, and the contribution to symptoms suffered, remain sparse. Here, we review the current literature that indicates that SARS-CoV-2 can invade the nervous system. We also describe the neural circuits that are potentially affected by the virus and their possible role in the progress of COVID-19. In addition, we propose several strategies to understand, diagnose, and treat the neurological symptoms of COVID-19.
Collapse
Affiliation(s)
- Marcos F. DosSantos
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Medicina (Radiologia), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Brazil
| | - Sylvie Devalle
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Veronica Aran
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Daniela Capra
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Natália Roberta Roque
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Juliana de Mattos Coelho-Aguiar
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tânia Cristina Leite de Sampaio e Spohr
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Janice Gonçalves Subilhaga
- Setor de Pneumologia, Serviço de Clínica Médica, Hospital Federal dos Servidores do Estado, Rio de Janeiro, Brazil
| | - Cláudia Maria Pereira
- Programa de Pós-Graduação em Biomedicina Translacional e Odontologia Clínica e Experimental, Universidade do Grande Rio (Unigranrio), Duque de Caxias, Brazil
| | - Isabella D'Andrea Meira
- Departamento de Neurologia, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Epilepsia do Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Vivaldo Moura-Neto
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| |
Collapse
|
226
|
Koh J, Shah SU, Chua PEY, Gui H, Pang J. Epidemiological and Clinical Characteristics of Cases During the Early Phase of COVID-19 Pandemic: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2020; 7:295. [PMID: 32596248 PMCID: PMC7300278 DOI: 10.3389/fmed.2020.00295] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023] Open
Abstract
Background: On 29th December 2019, a cluster of cases displaying the symptoms of a "pneumonia of unknown cause" was identified in Wuhan, Hubei province of China. This systematic review and meta-analysis aims to review the epidemiological and clinical characteristics of COVID-19 cases in the early phase of the COVID-19 pandemic. Methods: The search strategy involved peer-reviewed studies published between 1st January and 11th February 2020 in Pubmed, Google scholar and China Knowledge Resource Integrated database. Publications identified were screened for their title and abstracts according to the eligibility criteria, and further shortlisted by full-text screening. Three independent reviewers extracted data from these studies, and studies were assessed for potential risk of bias. Studies comprising non-overlapping patient populations, were included for qualitative and quantitative synthesis of results. Pooled prevalence with 95% confidence intervals were calculated for patient characteristics. Results: A total of 29 publications were selected after full-text review. This comprised of 18 case reports, three case series and eight cross-sectional studies on patients admitted from mid-December of 2019 to early February of 2020. A total of 533 adult patients with pooled median age of 56 (95% CI: 49-57) and a pooled prevalence of male of 60% (95% CI: 52-68%) were admitted to hospital at a pooled median of 7 days (95% CI: 7-7) post-onset of symptoms. The most common symptoms at admission were fever, cough and fatigue, with a pooled prevalence of 90% (95% CI: 81-97%), 58% (95% CI: 47-68%), and 50% (95% CI: 29-71%), respectively. Myalgia, shortness of breath, headache, diarrhea and sore throat were less common with pooled prevalence of 27% (95% CI: 20-36%), 25% (95% CI: 15-35%), 10% (95% CI: 7-13%), 8% (95% CI: 5-13%), and 7% (95% CI: 1-15%), respectively. ICU patients had a higher proportion of shortness of breath at presentation, as well as pre-existing hypertension, cardiovascular disease and COPD, compared to non-ICU patients in 2 studies (n = 179). Conclusion: This study highlights the key epidemiological and clinical features of COVID-19 cases during the early phase of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jiayun Koh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Centre for Infectious Disease Epidemiology and Research, National University of Singapore, Singapore, Singapore
| | - Shimoni Urvish Shah
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Centre for Infectious Disease Epidemiology and Research, National University of Singapore, Singapore, Singapore
| | - Pearleen Ee Yong Chua
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Centre for Infectious Disease Epidemiology and Research, National University of Singapore, Singapore, Singapore
| | - Hao Gui
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Centre for Infectious Disease Epidemiology and Research, National University of Singapore, Singapore, Singapore
| | - Junxiong Pang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Centre for Infectious Disease Epidemiology and Research, National University of Singapore, Singapore, Singapore
| |
Collapse
|
227
|
Chen B, Tian EK, He B, Tian L, Han R, Wang S, Xiang Q, Zhang S, El Arnaout T, Cheng W. Overview of lethal human coronaviruses. Signal Transduct Target Ther 2020; 5:89. [PMID: 32533062 PMCID: PMC7289715 DOI: 10.1038/s41392-020-0190-2] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023] Open
Abstract
Coronavirus infections of multiple origins have spread to date worldwide, causing severe respiratory diseases. Seven coronaviruses that infect humans have been identified: HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV-2. Among them, SARS-CoV and MERS-CoV caused outbreaks in 2002 and 2012, respectively. SARS-CoV-2 (COVID-19) is the most recently discovered. It has created a severe worldwide outbreak beginning in late 2019, leading to date to over 4 million cases globally. Viruses are genetically simple, yet highly diverse. However, the recent outbreaks of SARS-CoV and MERS-CoV, and the ongoing outbreak of SARS-CoV-2, indicate that there remains a long way to go to identify and develop specific therapeutic treatments. Only after gaining a better understanding of their pathogenic mechanisms can we minimize viral pandemics. This paper mainly focuses on SARS-CoV, MERS-CoV, and SARS-CoV-2. Here, recent studies are summarized and reviewed, with a focus on virus-host interactions, vaccine-based and drug-targeted therapies, and the development of new approaches for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Bin Chen
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Er-Kang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bin He
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lejin Tian
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ruiying Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuangwen Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qianrong Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shu Zhang
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | | | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
228
|
Cimolai N. Features of enteric disease from human coronaviruses: Implications for COVID-19. J Med Virol 2020; 92:1834-1844. [PMID: 32462689 PMCID: PMC7283829 DOI: 10.1002/jmv.26066] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/25/2020] [Indexed: 01/19/2023]
Abstract
Coronaviruses have long been studied in both human and veterinary fields. Whereas the initial detection of endemic human respiratory coronaviruses was problematic, detection of these and newly discovered human coronaviruses has been greatly facilitated with major advances in the laboratory. Nevertheless, technological factors can affect the accuracy and timeliness of virus detection. Many human coronaviruses can be variably found in stool samples. All human coronaviruses have been variably associated with symptoms of gastroenteritis. Coronaviruses can occasionally be cultured from enteric specimens, but most detection is accomplished with genetic amplification technologies. Excretion of viral RNA in stool can extend for a prolonged period. Culture‐positive stool samples have been found to exceed a fourteen day period after onset of infection for some coronaviruses. Virus can also sometimes be cultured from patients' respiratory samples during the late incubation period. Relatively asymptomatic patients may excrete virus. Both viable and nonviable virus can be found in the immediate environment of the patient, the health care worker, and less often the public. These lessons from the past study of animal and human coronaviruses can be extended to presumptions for severe acute respiratory syndrome coronavirus 2. Already, the early reports from the coronavirus disease‐2019 pandemic are confirming some concerns. These data have the cumulative potential to cause us to rethink some current and common public health and infection control strategies. coronaviruses are variably found in human enteric samples during the course of infection. abdominal and intestinal illnesses are associated with coronavirus infections. enteric excretion of live virus and viral RNA have been confirmed. occasionally, live virus can be found in stool samples to exceed a fourteen day period after disease onset, and virus can also be cultured from these samples during the late incubation period or from asymptomatic individuals.
Collapse
Affiliation(s)
- Nevio Cimolai
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Children's and Women's Health Centre of British Columbia, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
229
|
Liao D, Li H. Dissecting the Niche for Alveolar Type II Cells With Alveolar Organoids. Front Cell Dev Biol 2020; 8:419. [PMID: 32582703 PMCID: PMC7287157 DOI: 10.3389/fcell.2020.00419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Danying Liao
- Department of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaibiao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
230
|
Parasa S, Desai M, Thoguluva Chandrasekar V, Patel HK, Kennedy KF, Roesch T, Spadaccini M, Colombo M, Gabbiadini R, Artifon ELA, Repici A, Sharma P. Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in Patients With Coronavirus Disease 2019: A Systematic Review and Meta-analysis. JAMA Netw Open 2020; 3:e2011335. [PMID: 32525549 PMCID: PMC7290409 DOI: 10.1001/jamanetworkopen.2020.11335] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/02/2020] [Indexed: 01/10/2023] Open
Abstract
Importance Coronavirus disease 2019 (COVID-19) is a global pandemic and can involve the gastrointestinal (GI) tract, including symptoms like diarrhea and shedding of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in feces. Objective To provide a pooled estimate of GI symptoms, liver enzyme levels outside reference ranges, and fecal tests positive for SARS-CoV-2 among patients with COVID-19. Data Sources An electronic literature search was performed for published (using MEDLINE/PubMed and Embase) and preprint (using bioRxiv and medRxiv) studies of interest conducted from November 1, 2019, to March 30, 2020. Search terms included "COVID-19," "SARS-Cov-2," and/or "novel coronavirus." Study Selection Eligible studies were those including patients with SARS-CoV-2 infection who reported GI symptoms. Data Extraction and Synthesis Data on patients with GI symptoms (ie, diarrhea, nausea, or vomiting), liver enzyme level changes, and fecal shedding of virus were extracted. Quality of studies was examined using methodological index for nonrandomized studies. Pooled estimates (%) were reported with 95% CIs with level of heterogeneity (I2). Main Outcomes and Measures Study and patient characteristics with pooled detection rates for diarrhea, nausea or vomiting, liver enzyme levels outside reference ranges, and SARS-CoV-2 positivity in feces tests were analyzed. Results Of 1484 records reviewed, 23 published and 6 preprint studies were included in the analysis, with a total of 4805 patients (mean [SD] age, 52.2 [14.8] years; 1598 [33.2%] women) with COVID-19. The pooled rates were 7.4% (95% CI, 4.3%-12.2%) of patients reporting diarrhea and 4.6% (95% CI, 2.6%-8.0%) of patients reporting nausea or vomiting. The pooled rate for aspartate aminotransferase levels outside reference ranges was 20% (95% CI, 15.3%-25.6%) of patients, and the pooled rate for alanine aminotransferase levels outside reference ranges was 14.6% (95% CI, 12.8%-16.6%) of patients. Fecal tests that were positive for SARS-CoV-2 were reported in 8 studies, and viral RNA shedding was detected in feces in 40.5% (95% CI, 27.4%-55.1%) of patients. There was high level of heterogeneity (I2 = 94%), but no statistically significant publication bias noted. Conclusions and Relevance These findings suggest that that 12% of patients with COVID-19 will manifest GI symptoms; however, SAR-CoV-2 shedding was observed in 40.5% of patients with confirmed SARS-CoV-2 infection. This highlights the need to better understand what measures are needed to prevent further spread of this highly contagious pathogen.
Collapse
Affiliation(s)
| | - Madhav Desai
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | | | | | | | - Thomas Roesch
- Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Marco Spadaccini
- Instituto Clinico Humanitas, Department of Endoscopy, Humanitas University School of Medicine, Milano, Italy
| | - Matteo Colombo
- Instituto Clinico Humanitas, Department of Endoscopy, Humanitas University School of Medicine, Milano, Italy
| | - Roberto Gabbiadini
- Instituto Clinico Humanitas, Department of Endoscopy, Humanitas University School of Medicine, Milano, Italy
| | - Everson L. A. Artifon
- Division of Gastrointestinal Endoscopy, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Alessandro Repici
- Instituto Clinico Humanitas, Department of Endoscopy, Humanitas University School of Medicine, Milano, Italy
| | - Prateek Sharma
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| |
Collapse
|
231
|
Li L, Huang T, Wang Y, Wang Z, Liang Y, Huang T, Zhang H, Sun W, Wang Y. COVID-19 patients' clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol 2020; 92:577-583. [PMID: 32162702 PMCID: PMC7228329 DOI: 10.1002/jmv.25757] [Citation(s) in RCA: 834] [Impact Index Per Article: 166.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
The aim of this study was to analyze the clinical data, discharge rate, and fatality rate of COVID-19 patients for clinical help. The clinical data of COVID-19 patients from December 2019 to February 2020 were retrieved from four databases. We statistically analyzed the clinical symptoms and laboratory results of COVID-19 patients and explained the discharge rate and fatality rate with a single-arm meta-analysis. The available data of 1994 patients in 10 literatures were included in our study. The main clinical symptoms of COVID-19 patients were fever (88.5%), cough (68.6%), myalgia or fatigue (35.8%), expectoration (28.2%), and dyspnea (21.9%). Minor symptoms include headache or dizziness (12.1%), diarrhea (4.8%), nausea and vomiting (3.9%). The results of the laboratory showed that the lymphocytopenia (64.5%), increase of C-reactive protein (44.3%), increase of lactic dehydrogenase (28.3%), and leukocytopenia (29.4%) were more common. The results of single-arm meta-analysis showed that the male took a larger percentage in the gender distribution of COVID-19 patients 60% (95% CI [0.54, 0.65]), the discharge rate of COVID-19 patients was 52% (95% CI [0.34,0.70]), and the fatality rate was 5% (95% CI [0.01,0.11]).
Collapse
Affiliation(s)
- Long‐quan Li
- The First Clinical Medical SchoolLanzhou UniversityLanzhouChina
- Department of GastroenterologyThe First Hospital of Lanzhou UniversityLanzhouChina
- Key Laboratory for Gastrointestinal Diseases of Gansu ProvinceThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Tian Huang
- The First Clinical Medical SchoolLanzhou UniversityLanzhouChina
- Department of GastroenterologyThe First Hospital of Lanzhou UniversityLanzhouChina
- Key Laboratory for Gastrointestinal Diseases of Gansu ProvinceThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Yong‐qing Wang
- Day Diagnostic CenterGansu Provincial HospitalLanzhouChina
| | - Zheng‐ping Wang
- Clinical College of Chinese MedicineGansu University of Chinese MedicineLanzhouChina
| | - Yuan Liang
- The First Clinical Medical SchoolLanzhou UniversityLanzhouChina
- Department of GastroenterologyThe First Hospital of Lanzhou UniversityLanzhouChina
- Key Laboratory for Gastrointestinal Diseases of Gansu ProvinceThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Tao‐bi Huang
- The First Clinical Medical SchoolLanzhou UniversityLanzhouChina
- Department of GastroenterologyThe First Hospital of Lanzhou UniversityLanzhouChina
- Key Laboratory for Gastrointestinal Diseases of Gansu ProvinceThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Hui‐yun Zhang
- The First Clinical Medical SchoolLanzhou UniversityLanzhouChina
- Department of GastroenterologyThe First Hospital of Lanzhou UniversityLanzhouChina
- Key Laboratory for Gastrointestinal Diseases of Gansu ProvinceThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Weiming Sun
- Department of EndocrinologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Yuping Wang
- Department of GastroenterologyThe First Hospital of Lanzhou UniversityLanzhouChina
- Key Laboratory for Gastrointestinal Diseases of Gansu ProvinceThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
232
|
Drucker DJ. Coronavirus Infections and Type 2 Diabetes-Shared Pathways with Therapeutic Implications. Endocr Rev 2020; 41:5820492. [PMID: 32294179 PMCID: PMC7184382 DOI: 10.1210/endrev/bnaa011] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Individuals with diabetes are at increased risk for bacterial, mycotic, parasitic, and viral infections. The severe acute respiratory syndrome (SARS)-CoV-2 (also referred to as COVID-19) coronavirus pandemic highlights the importance of understanding shared disease pathophysiology potentially informing therapeutic choices in individuals with type 2 diabetes (T2D). Two coronavirus receptor proteins, angiotensin-converting enzyme 2 (ACE2) and dipeptidyl peptidase-4 (DPP4) are also established transducers of metabolic signals and pathways regulating inflammation, renal and cardiovascular physiology, and glucose homeostasis. Moreover, glucose-lowering agents such as the DPP4 inhibitors, widely used in subjects with T2D, are known to modify the biological activities of multiple immunomodulatory substrates. Here, we review the basic and clinical science spanning the intersections of diabetes, coronavirus infections, ACE2, and DPP4 biology, highlighting clinical relevance and evolving areas of uncertainty underlying the pathophysiology and treatment of T2D in the context of coronavirus infection.
Collapse
Affiliation(s)
- Daniel J Drucker
- From the Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, University of Toronto, Toronto Ontario, Canada
| |
Collapse
|
233
|
Hu Y, Shen L, Yao Y, Xu Z, Zhou J, Zhou H. A report of three COVID-19 cases with prolonged viral RNA detection in anal swabs. Clin Microbiol Infect 2020; 26:786-787. [PMID: 32304746 PMCID: PMC7159869 DOI: 10.1016/j.cmi.2020.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/02/2022]
Affiliation(s)
- Y Hu
- Respiratory Department, Deqing People's Hospital, Zhejiang, China
| | - L Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Y Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Z Xu
- Internal Medicine Unit, Deqing People's Hospital, Zhejiang, China
| | - J Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, China.
| | - H Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, China.
| |
Collapse
|
234
|
Liang W, Feng Z, Rao S, Xiao C, Xue X, Lin Z, Zhang Q, Qi W. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut 2020; 69:1141-1143. [PMID: 32102928 DOI: 10.1136/gutjnl-2020-320832] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Weicheng Liang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Zhijie Feng
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, China
| | - Shitao Rao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Cuicui Xiao
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Xingyang Xue
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Zexiao Lin
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China .,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Wei Qi
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, China
| |
Collapse
|
235
|
Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect 2020; 26:729-734. [PMID: 32234451 PMCID: PMC7176926 DOI: 10.1016/j.cmi.2020.03.026] [Citation(s) in RCA: 687] [Impact Index Per Article: 137.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The 2019 novel coronavirus (SARS-CoV-2) is a new human coronavirus which is spreading with epidemic features in China and other Asian countries; cases have also been reported worldwide. This novel coronavirus disease (COVID-19) is associated with a respiratory illness that may lead to severe pneumonia and acute respiratory distress syndrome (ARDS). Although related to the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS), COVID-19 shows some peculiar pathogenetic, epidemiological and clinical features which to date are not completely understood. AIMS To provide a review of the differences in pathogenesis, epidemiology and clinical features of COVID-19, SARS and MERS. SOURCES The most recent literature in the English language regarding COVID-19 has been reviewed, and extracted data have been compared with the current scientific evidence about SARS and MERS epidemics. CONTENT COVID-19 seems not to be very different from SARS regarding its clinical features. However, it has a fatality rate of 2.3%, lower than that of SARS (9.5%) and much lower than that of MERS (34.4%). The possibility cannot be excluded that because of the less severe clinical picture of COVID-19 it can spread in the community more easily than MERS and SARS. The actual basic reproductive number (R0) of COVID-19 (2.0-2.5) is still controversial. It is probably slightly higher than the R0 of SARS (1.7-1.9) and higher than that of MERS (<1). A gastrointestinal route of transmission for SARS-CoV-2, which has been assumed for SARS-CoV and MERS-CoV, cannot be ruled out and needs further investigation. IMPLICATIONS There is still much more to know about COVID-19, especially as concerns mortality and its capacity to spread on a pandemic level. Nonetheless, all of the lessons we learned in the past from the SARS and MERS epidemics are the best cultural weapons with which to face this new global threat.
Collapse
Affiliation(s)
- N Petrosillo
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Rome, Italy.
| | - G Viceconte
- University 'Federico II', Department of Clinical Medicine and Surgery, Naples, Italy
| | - O Ergonul
- Koc University, School of Medicine, Istanbul, Turkey; ESCMID Executive Committee, Switzerland
| | - G Ippolito
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Rome, Italy
| | - E Petersen
- Directorate General for Disease Surveillance and Control, Min of Health, Muscat, Oman; ESCMID Emerging Infections Task Force, ESCMID, Basel, Switzerland; Institute for Clinical Medicine, Faculty of Health Sciences, University of Aarhus, Denmark
| |
Collapse
|
236
|
Raimondi MT, Donnaloja F, Barzaghini B, Bocconi A, Conci C, Parodi V, Jacchetti E, Carelli S. Bioengineering tools to speed up the discovery and preclinical testing of vaccines for SARS-CoV-2 and therapeutic agents for COVID-19. Theranostics 2020; 10:7034-7052. [PMID: 32641977 PMCID: PMC7330866 DOI: 10.7150/thno.47406] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
This review provides an update for the international research community on the cell modeling tools that could accelerate the understanding of SARS-CoV-2 infection mechanisms and could thus speed up the development of vaccines and therapeutic agents against COVID-19. Many bioengineering groups are actively developing frontier tools that are capable of providing realistic three-dimensional (3D) models for biological research, including cell culture scaffolds, microfluidic chambers for the culture of tissue equivalents and organoids, and implantable windows for intravital imaging. Here, we review the most innovative study models based on these bioengineering tools in the context of virology and vaccinology. To make it easier for scientists working on SARS-CoV-2 to identify and apply specific tools, we discuss how they could accelerate the discovery and preclinical development of antiviral drugs and vaccines, compared to conventional models.
Collapse
Affiliation(s)
- Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy
| | - Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy
| | - Alberto Bocconi
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy
| | - Claudio Conci
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy
| | - Valentina Parodi
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center “Fondazione Romeo ed Enrica Invernizzi”, Department of Biomedical and Clinical Sciences L. Sacco, University of Milano, Italy
| |
Collapse
|
237
|
Mei Y, Luo D, Wei S, Liao X, Pan Y, Yang X, Lin Y. Obstetric Management of COVID-19 in Pregnant Women. Front Microbiol 2020; 11:1186. [PMID: 32574255 PMCID: PMC7264107 DOI: 10.3389/fmicb.2020.01186] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
The 2019 novel coronavirus disease (COVID-19), which is caused by the novel beta coronavirus, SARS-CoV-2, is currently prevalent all over the world, causing thousands of deaths with relatively high virulence. Like two other notable beta coronaviruses, severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 can lead to severe contagious respiratory disease. Due to impaired cellular immunity and physiological changes, pregnant women are susceptible to respiratory disease and are more likely to develop severe pneumonia. Given the prevalence of COVID-19, it is speculated that some pregnant women have already been infected. However, limited data are available for the clinical course and management of COVID-19 in pregnancy. Therefore, we conducted this review to identify strategies for the obstetric management of COVID-19. We compared the clinical course and outcomes of COVID-19, SARS, and MERS in pregnancy and discussed several drugs for the treatment of COVID-19 in pregnancy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yonghong Lin
- Department of Obstetrics and Gynecology, Chengdu Women and Children's Central Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
238
|
Ren JG, Li DY, Wang CF, Wu JH, Wang Y, Sun YJ, Zhang Q, Wang YY, Chang XJ. Positive RT-PCR in urine from an asymptomatic patient with novel coronavirus 2019 infection: a case report. Infect Dis (Lond) 2020; 52:571-574. [PMID: 32420777 DOI: 10.1080/23744235.2020.1766105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: With the emergence of novel coronavirus disease 2019 (COVID-19) in many countries, medical resources currently focus on the treatment of confirmed patients and screening of suspected cases. Asymptomatic patients may be contagious, which makes epidemic control difficult. We describe an asymptomatic patient with a positive real-time polymerase chain reaction (RT-PCR) test in urine.Case report: An asymptomatic girl was identified during the epidemiological investigation of a confirmed COVID-19 patient. When admitted to the hospital on 24 February 2020, she had no clinical manifestations. A throat swab was negative for RT-PCR, but urine was positive. She was given antiviral and symptomatic supportive treatment. On 26 February, a throat swab RT-PCR was positive. RT-PCR in throat swabs and urine were negative on 3 and 5 March, and on 9 and 12 March, throat swabs were still negative. At follow-up on 26 March, she felt well, throat swab RT-PCR was negative, and isolation was lifted.Conclusion: The urine of asymptomatic patients may be contagious. RT-PCR in urine might be a useful supplement in screening when the RT-PCR is negative in throat swabs.
Collapse
Affiliation(s)
- Jian-Guo Ren
- Department of Respiratory and Critical Care Medicine, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Dong-Yan Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Chang-Fei Wang
- Department of Information, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Jian-Hua Wu
- Department of Respiratory and Critical Care Medicine, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Ying Wang
- Department of Respiratory and Critical Care Medicine, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Yu-Jing Sun
- Department of Respiratory and Critical Care Medicine, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Qian Zhang
- Department of Pharmacy, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Yao-Yong Wang
- Department of Respiratory and Critical Care Medicine, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Xin-Jian Chang
- Department of Molecular and Cell Genetics Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| |
Collapse
|
239
|
Infection of bat and human intestinal organoids by SARS-CoV-2. Nat Med 2020; 26:1077-1083. [PMID: 32405028 DOI: 10.1038/s41591-020-0912-6] [Citation(s) in RCA: 422] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
A novel coronavirus-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-emerged in humans in Wuhan, China, in December 2019 and has since disseminated globally1,2. As of April 16, 2020, the confirmed case count of coronavirus disease 2019 (COVID-19) had surpassed 2 million. Based on full-genome sequence analysis, SARS-CoV-2 shows high homology to SARS-related coronaviruses identified in horseshoe bats1,2. Here we show the establishment and characterization of expandable intestinal organoids derived from horseshoe bats of the Rhinolophus sinicus species that can recapitulate bat intestinal epithelium. These bat enteroids are fully susceptible to SARS-CoV-2 infection and sustain robust viral replication. Development of gastrointestinal symptoms in some patients with COVID-19 and detection of viral RNA in fecal specimens suggest that SARS-CoV-2 might cause enteric, in addition to respiratory, infection3,4. Here we demonstrate active replication of SARS-CoV-2 in human intestinal organoids and isolation of infectious virus from the stool specimen of a patient with diarrheal COVID-19. Collectively, we established the first expandable organoid culture system of bat intestinal epithelium and present evidence that SARS-CoV-2 can infect bat intestinal cells. The robust SARS-CoV-2 replication in human intestinal organoids suggests that the human intestinal tract might be a transmission route of SARS-CoV-2.
Collapse
|
240
|
Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, Raizada MK, Grant MB, Oudit GY. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res 2020; 126:1456-1474. [PMID: 32264791 PMCID: PMC7188049 DOI: 10.1161/circresaha.120.317015] [Citation(s) in RCA: 1364] [Impact Index Per Article: 272.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ACE2 (angiotensin-converting enzyme 2) has a multiplicity of physiological roles that revolve around its trivalent function: a negative regulator of the renin-angiotensin system, facilitator of amino acid transport, and the severe acute respiratory syndrome-coronavirus (SARS-CoV) and SARS-CoV-2 receptor. ACE2 is widely expressed, including, in the lungs, cardiovascular system, gut, kidneys, central nervous system, and adipose tissue. ACE2 has recently been identified as the SARS-CoV-2 receptor, the infective agent responsible for coronavirus disease 2019, providing a critical link between immunity, inflammation, ACE2, and cardiovascular disease. Although sharing a close evolutionary relationship with SARS-CoV, the receptor-binding domain of SARS-CoV-2 differs in several key amino acid residues, allowing for stronger binding affinity with the human ACE2 receptor, which may account for the greater pathogenicity of SARS-CoV-2. The loss of ACE2 function following binding by SARS-CoV-2 is driven by endocytosis and activation of proteolytic cleavage and processing. The ACE2 system is a critical protective pathway against heart failure with reduced and preserved ejection fraction including, myocardial infarction and hypertension, and against lung disease and diabetes mellitus. The control of gut dysbiosis and vascular permeability by ACE2 has emerged as an essential mechanism of pulmonary hypertension and diabetic cardiovascular complications. Recombinant ACE2, gene-delivery of Ace2, Ang 1-7 analogs, and Mas receptor agonists enhance ACE2 action and serve as potential therapies for disease conditions associated with an activated renin-angiotensin system. rhACE2 (recombinant human ACE2) has completed clinical trials and efficiently lowered or increased plasma angiotensin II and angiotensin 1-7 levels, respectively. Our review summarizes the progress over the past 20 years, highlighting the critical role of ACE2 as the novel SARS-CoV-2 receptor and as the negative regulator of the renin-angiotensin system, together with implications for the coronavirus disease 2019 pandemic and associated cardiovascular diseases.
Collapse
Affiliation(s)
- Mahmoud Gheblawi
- From the Department of Physiology (M.G., A.V., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada (K.W., Q.N., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| | - Anissa Viveiros
- From the Department of Physiology (M.G., A.V., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| | - Quynh Nguyen
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada (K.W., Q.N., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (J.-C.Z.)
| | - Anthony J. Turner
- School of Biomedical Sciences, University of Leeds, United Kingdom (A.J.T.)
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (M.K.R.)
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (M.B.G.)
| | - Gavin Y. Oudit
- From the Department of Physiology (M.G., A.V., G.Y.O.)
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada (K.W., Q.N., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| |
Collapse
|
241
|
Abstract
CoVID-19 is a Public Health Emergency of International Concern. Since the first case has been reported in Wuhan in China, evidence of associated severe acute respiratory syndrome is well established and the disease is accepted as a primarily respiratory infection. However, current available data are supporting a gastrointestinal tropism with great implications at multiple levels in the course of this disease. The gastrointestinal tract appears in the heart of the strategy for management of infected patients from diagnosis to post-recovery isolation policies. This review highlights the digestive aspects of CoVID-19.
Keywords: ACE2, CoVID-19, Digestive, Endoscopy, Fecal transmission, Liver, Prognosis
Collapse
|
242
|
Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children. Pediatr Infect Dis J 2020. [PMID: 32310621 DOI: 10.1097/inf.0000000000002660)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coronaviruses (CoVs) are a large family of enveloped, single-stranded, zoonotic RNA viruses. Four CoVs commonly circulate among humans: HCoV2-229E, -HKU1, -NL63 and -OC43. However, CoVs can rapidly mutate and recombine leading to novel CoVs that can spread from animals to humans. The novel CoVs severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. The 2019 novel coronavirus (SARS-CoV-2) is currently causing a severe outbreak of disease (termed COVID-19) in China and multiple other countries, threatening to cause a global pandemic. In humans, CoVs mostly cause respiratory and gastrointestinal symptoms. Clinical manifestations range from a common cold to more severe disease such as bronchitis, pneumonia, severe acute respiratory distress syndrome, multi-organ failure and even death. SARS-CoV, MERS-CoV and SARS-CoV-2 seem to less commonly affect children and to cause fewer symptoms and less severe disease in this age group compared with adults, and are associated with much lower case-fatality rates. Preliminary evidence suggests children are just as likely as adults to become infected with SARS-CoV-2 but are less likely to be symptomatic or develop severe symptoms. However, the importance of children in transmitting the virus remains uncertain. Children more often have gastrointestinal symptoms compared with adults. Most children with SARS-CoV present with fever, but this is not the case for the other novel CoVs. Many children affected by MERS-CoV are asymptomatic. The majority of children infected by novel CoVs have a documented household contact, often showing symptoms before them. In contrast, adults more often have a nosocomial exposure. In this review, we summarize epidemiologic, clinical and diagnostic findings, as well as treatment and prevention options for common circulating and novel CoVs infections in humans with a focus on infections in children.
Collapse
|
243
|
Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C, Hoelscher M, Bleicker T, Brünink S, Schneider J, Ehmann R, Zwirglmaier K, Drosten C, Wendtner C. Virological assessment of hospitalized patients with COVID-2019. Nature 2020. [PMID: 32096611 DOI: 10.1038/s41586-020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples-in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19.
Collapse
Affiliation(s)
- Roman Wölfel
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | | | | | - Sabine Zange
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | | | - Terry C Jones
- Charité Universitätsmedizin Berlin, Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | - Rosina Ehmann
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | | | | |
Collapse
|
244
|
Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C, Hoelscher M, Bleicker T, Brünink S, Schneider J, Ehmann R, Zwirglmaier K, Drosten C, Wendtner C. Virological assessment of hospitalized patients with COVID-2019. Nature 2020. [PMID: 32235945 DOI: 10.1038/s41586-020-2196x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples-in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19.
Collapse
Affiliation(s)
- Roman Wölfel
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | | | | | - Sabine Zange
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | | | - Terry C Jones
- Charité Universitätsmedizin Berlin, Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | - Rosina Ehmann
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | | | | |
Collapse
|
245
|
Zimmermann P, Curtis N. Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children. Pediatr Infect Dis J 2020; 39:355-368. [PMID: 32310621 PMCID: PMC7158880 DOI: 10.1097/inf.0000000000002660] [Citation(s) in RCA: 694] [Impact Index Per Article: 138.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Coronaviruses (CoVs) are a large family of enveloped, single-stranded, zoonotic RNA viruses. Four CoVs commonly circulate among humans: HCoV2-229E, -HKU1, -NL63 and -OC43. However, CoVs can rapidly mutate and recombine leading to novel CoVs that can spread from animals to humans. The novel CoVs severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. The 2019 novel coronavirus (SARS-CoV-2) is currently causing a severe outbreak of disease (termed COVID-19) in China and multiple other countries, threatening to cause a global pandemic. In humans, CoVs mostly cause respiratory and gastrointestinal symptoms. Clinical manifestations range from a common cold to more severe disease such as bronchitis, pneumonia, severe acute respiratory distress syndrome, multi-organ failure and even death. SARS-CoV, MERS-CoV and SARS-CoV-2 seem to less commonly affect children and to cause fewer symptoms and less severe disease in this age group compared with adults, and are associated with much lower case-fatality rates. Preliminary evidence suggests children are just as likely as adults to become infected with SARS-CoV-2 but are less likely to be symptomatic or develop severe symptoms. However, the importance of children in transmitting the virus remains uncertain. Children more often have gastrointestinal symptoms compared with adults. Most children with SARS-CoV present with fever, but this is not the case for the other novel CoVs. Many children affected by MERS-CoV are asymptomatic. The majority of children infected by novel CoVs have a documented household contact, often showing symptoms before them. In contrast, adults more often have a nosocomial exposure. In this review, we summarize epidemiologic, clinical and diagnostic findings, as well as treatment and prevention options for common circulating and novel CoVs infections in humans with a focus on infections in children.
Collapse
Affiliation(s)
- Petra Zimmermann
- From the Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne
- Infectious Diseases Research Group, Murdoch Children’s Research Institute
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne
- Infectious Diseases Research Group, Murdoch Children’s Research Institute
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
246
|
Wong SH, Lui RN, Sung JJ. Covid-19 and the digestive system. J Gastroenterol Hepatol 2020; 35:744-748. [PMID: 32215956 DOI: 10.1111/jgh.15047] [Citation(s) in RCA: 444] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
The novel coronavirus disease is currently causing a major pandemic. It is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a member of the Betacoronavirus genus that also includes the SARS-CoV and Middle East respiratory syndrome coronavirus. While patients typically present with fever and a respiratory illness, some patients also report gastrointestinal symptoms such as diarrhea, vomiting, and abdominal pain. Studies have identified the SARS-CoV-2 RNA in stool specimens of infected patients, and its viral receptor angiotensin converting enzyme 2 was found to be highly expressed in gastrointestinal epithelial cells. These suggest that SARS-CoV-2 can actively infect and replicate in the gastrointestinal tract. This has important implications to the disease management, transmission, and infection control. In this article, we review the important gastrointestinal aspects of the disease.
Collapse
Affiliation(s)
- Sunny H Wong
- Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Rashid Ns Lui
- Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Joseph Jy Sung
- Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
247
|
Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C, Hoelscher M, Bleicker T, Brünink S, Schneider J, Ehmann R, Zwirglmaier K, Drosten C, Wendtner C. Virological assessment of hospitalized patients with COVID-2019. Nature 2020; 581:465-469. [PMID: 32235945 DOI: 10.1101/2020.03.05.20030502] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/24/2020] [Indexed: 05/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples-in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19.
Collapse
Affiliation(s)
- Roman Wölfel
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | | | | | - Sabine Zange
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | | | - Terry C Jones
- Charité Universitätsmedizin Berlin, Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | - Rosina Ehmann
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | | | | |
Collapse
|
248
|
Chen Y, Chen L, Deng Q, Zhang G, Wu K, Ni L, Yang Y, Liu B, Wang W, Wei C, Yang J, Ye G, Cheng Z. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol 2020; 92:833-840. [PMID: 32243607 DOI: 10.1002/jmv.25825] [Citation(s) in RCA: 569] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
In December 2019, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan, China, and has spread globally. However, the transmission route of SARS-CoV-2 has not been fully understood. In this study, we aimed to investigate SARS-CoV-2 shedding in the excreta of COVID-19 patients. Electronical medical records, including demographics, clinical characteristics, laboratory and radiological findings of enrolled patients were extracted and analyzed. Pharyngeal swab, stool, and urine specimens were collected and tested for SARS-CoV-2 RNA by real-time reverse transcription polymerase chain reaction. Viral shedding at multiple time points in specimens was recorded, and its correlation analyzed with clinical manifestations and the severity of illness. A total of 42 laboratory-confirmed patients were enrolled, 8 (19.05%) of whom had gastrointestinal symptoms. A total of 28 (66.67%) patients tested positive for SARS-CoV-2 RNA in stool specimens, and this was not associated with the presence of gastrointestinal symptoms and the severity of illness. Among them, 18 (64.29%) patients remained positive for viral RNA in the feces after the pharyngeal swabs turned negative. The duration of viral shedding from the feces after negative conversion in pharyngeal swabs was 7 (6-10) days, regardless of COVID-19 severity. The demographics, clinical characteristics, laboratory and radiologic findings did not differ between patients who tested positive and negative for SARS-CoV-2 RNA in the feces. Viral RNA was not detectable in urine specimens from 10 patients. Our results demonstrated the presence of SARS-CoV-2 RNA in the feces of COVID-19 patients and suggested the possibility of SARS-CoV-2 transmission via the fecal-oral route.
Collapse
Affiliation(s)
- Yifei Chen
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liangjun Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiaoling Deng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guqin Zhang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaisong Wu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lan Ni
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yibin Yang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bing Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chaojie Wei
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiong Yang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guangming Ye
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenshun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
249
|
Larina VN, Golovko MG, Larin VG. Possible effects of coronavurus infection (COVID-19) on the cardiovascular system. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute viral respiratory infections can increase the risk of progression of a pre-existing condition, including a cardiovascular pathology. Life-threatening complications of Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitate research into the cardiovascular effects of COVID-19 crucial for developing adequate treatment strategy for infected patients, especially those of advanced age. This article reviews the literature on the clinical and functional characteristics of patients with COVID-19, including those with poor outcomes. The article looks at the pathophysiological processes occurring in the cardiovascular system in the setting of SARS-CoV-2 infection, risk factors and death predictors. It also discusses continuation of therapy with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in patients with COVID-19.
Collapse
Affiliation(s)
- VN Larina
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - MG Golovko
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - VG Larin
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
250
|
Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol 2020; 5:335-337. [PMID: 32087098 PMCID: PMC7130008 DOI: 10.1016/s2468-1253(20)30048-0] [Citation(s) in RCA: 542] [Impact Index Per Article: 108.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Charleen Yeo
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433
| | - Sanghvi Kaushal
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433
| | - Danson Yeo
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433.
| |
Collapse
|