201
|
Tanaka J, Ogawa M, Hojo H, Kawashima Y, Mabuchi Y, Hata K, Nakamura S, Yasuhara R, Takamatsu K, Irié T, Fukada T, Sakai T, Inoue T, Nishimura R, Ohara O, Saito I, Ohba S, Tsuji T, Mishima K. Generation of orthotopically functional salivary gland from embryonic stem cells. Nat Commun 2018; 9:4216. [PMID: 30310071 PMCID: PMC6181987 DOI: 10.1038/s41467-018-06469-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
Organoids generated from pluripotent stem cells are used in the development of organ replacement regenerative therapy by recapitulating the process of organogenesis. These processes are strictly regulated by morphogen signalling and transcriptional networks. However, the precise transcription factors involved in the organogenesis of exocrine glands, including salivary glands, remain unknown. Here, we identify a specific combination of two transcription factors (Sox9 and Foxc1) responsible for the differentiation of mouse embryonic stem cell-derived oral ectoderm into the salivary gland rudiment in an organoid culture system. Following orthotopic transplantation into mice whose salivary glands had been removed, the induced salivary gland rudiment not only showed a similar morphology and gene expression profile to those of the embryonic salivary gland rudiment of normal mice but also exhibited characteristics of mature salivary glands, including saliva secretion. This study suggests that exocrine glands can be induced from pluripotent stem cells for organ replacement regenerative therapy.
Collapse
Affiliation(s)
- Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Miho Ogawa
- Laboratory for Organ Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
- Organ Technologies Inc., Tokyo, 101-0048, Japan
| | - Hironori Hojo
- Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yusuke Kawashima
- Laboratory for Integrative Genomics, RIKEN IMS, Yokohama, Kanagawa, 230-0045, Japan
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, 565-0871, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Rika Yasuhara
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Koki Takamatsu
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Tarou Irié
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
- Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, Iwate, 028-3694, Japan
| | - Toshiyuki Fukada
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
- Laboratory for Integrative Genomics, RIKEN IMS, Yokohama, Kanagawa, 230-0045, Japan
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Takayoshi Sakai
- Department of Oral-Facial Disorders, Osaka University Graduate School of Dentistry, Osaka, 565-0871, Japan
| | - Tomio Inoue
- Department of Oral Physiology, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, 565-0871, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN IMS, Yokohama, Kanagawa, 230-0045, Japan
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, 292-0818, Japan
| | - Ichiro Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Kanagawa, 230-8501, Japan
| | - Shinsuke Ohba
- Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
- Organ Technologies Inc., Tokyo, 101-0048, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan.
| |
Collapse
|
202
|
Resveratrol long-term treatment differentiates INS-1E beta-cell towards improved glucose response and insulin secretion. Pflugers Arch 2018; 471:337-345. [PMID: 30310992 DOI: 10.1007/s00424-018-2215-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
The clonal INS-1E beta-cell line has proven to be instrumental for numerous studies investigating the mechanisms of glucose-stimulated insulin secretion. The composition of its culture medium has not changed over the years, although some compounds have been recently highlighted for their effects on tissue differentiation. The present study investigated the effects of long-term treatment of INS-1E cells with 1 μM resveratrol on glucose-stimulated insulin secretion, testing an extended glucose dose response. The data demonstrate that chronic exposure to low-dose resveratrol expands the range of the glucose dose response of INS-1E cells beyond 15 mM glucose. We also assessed whether such beneficial effects could be retained after resveratrol withdrawal from the culture medium. This was not the case as INS-1E cells deprived of resveratrol returned to the phenotype of naïve cells, i.e., exhibiting a plateau phase at 15 mM glucose. Of note, although resveratrol has antioxidant properties, it cannot substitute for β-mercaptoethanol normally present in the medium of INS-1E cells as a reducing agent. In conclusion, the addition of resveratrol as a standard component of the culture medium of INS-1E cells improves glucose-stimulated insulin secretion.
Collapse
|
203
|
Brosch M, Kattler K, Herrmann A, von Schönfels W, Nordström K, Seehofer D, Damm G, Becker T, Zeissig S, Nehring S, Reichel F, Moser V, Thangapandi RV, Stickel F, Baretton G, Röcken C, Muders M, Matz-Soja M, Krawczak M, Gasparoni G, Hartmann H, Dahl A, Schafmayer C, Walter J, Hampe J. Epigenomic map of human liver reveals principles of zonated morphogenic and metabolic control. Nat Commun 2018; 9:4150. [PMID: 30297808 PMCID: PMC6175862 DOI: 10.1038/s41467-018-06611-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
A deeper epigenomic understanding of spatial organization of cells in human tissues is an important challenge. Here we report the first combined positional analysis of transcriptomes and methylomes across three micro-dissected zones (pericentral, intermediate and periportal) of human liver. We identify pronounced anti-correlated transcriptional and methylation gradients including a core of 271 genes controlling zonated metabolic and morphogen networks and observe a prominent porto-central gradient of DNA methylation at binding sites of 46 transcription factors. The gradient includes an epigenetic and transcriptional Wnt signature supporting the concept of a pericentral hepatocyte regeneration pathway under steady-state conditions. While donors with non-alcoholic fatty liver disease show consistent gene expression differences corresponding to the severity of the disease across all zones, the relative zonated gene expression and DNA methylation patterns remain unchanged. Overall our data provide a wealth of new positional insights into zonal networks controlled by epigenetic and transcriptional gradients in human liver. Spatial mapping of genomic programs in tissue cells is an important step in the understanding of organ function and disease. Here, the authors provide a spatially resolved epigenomic and transcriptomic map of human liver and show porto-central gradients in metabolic and morphogen networks and transcription factor binding sites as a basis to better understand liver regeneration and function.
Collapse
Affiliation(s)
- Mario Brosch
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Kathrin Kattler
- Department of Genetics and Epigenetics, Universität des Saarlandes, Saarbrücken, Germany
| | - Alexander Herrmann
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Witigo von Schönfels
- Department of Visceral Surgery, University Hospital Schleswig-Holstein, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Karl Nordström
- Department of Genetics and Epigenetics, Universität des Saarlandes, Saarbrücken, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, Leipzig, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, Leipzig, Germany
| | - Thomas Becker
- Department of Visceral Surgery, University Hospital Schleswig-Holstein, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Sebastian Zeissig
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Sophie Nehring
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Fabian Reichel
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Vincent Moser
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Raghavan Veera Thangapandi
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Felix Stickel
- Department of Gastroenterology, University of Zürich, Zürich, Switzerland
| | - Gustavo Baretton
- Institute of Pathology, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Christoph Röcken
- Institute of Pathology, University Hospital Schleswig-Holstein, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Michael Muders
- Institute of Pathology, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Madlen Matz-Soja
- Rudolf-Schönheimer-Institute for Biochemistry, University of Leipzig, Leipzig, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany
| | - Gilles Gasparoni
- Department of Genetics and Epigenetics, Universität des Saarlandes, Saarbrücken, Germany
| | - Hella Hartmann
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Andreas Dahl
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Clemens Schafmayer
- Department of Visceral Surgery, University Hospital Schleswig-Holstein, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Universität des Saarlandes, Saarbrücken, Germany
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany. .,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany.
| |
Collapse
|
204
|
Reshef YA, Finucane HK, Kelley DR, Gusev A, Kotliar D, Ulirsch JC, Hormozdiari F, Nasser J, O'Connor L, van de Geijn B, Loh PR, Grossman SR, Bhatia G, Gazal S, Palamara PF, Pinello L, Patterson N, Adams RP, Price AL. Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk. Nat Genet 2018; 50:1483-1493. [PMID: 30177862 PMCID: PMC6202062 DOI: 10.1038/s41588-018-0196-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 07/11/2018] [Indexed: 12/19/2022]
Abstract
Biological interpretation of genome-wide association study data frequently involves assessing whether SNPs linked to a biological process, for example, binding of a transcription factor, show unsigned enrichment for disease signal. However, signed annotations quantifying whether each SNP allele promotes or hinders the biological process can enable stronger statements about disease mechanism. We introduce a method, signed linkage disequilibrium profile regression, for detecting genome-wide directional effects of signed functional annotations on disease risk. We validate the method via simulations and application to molecular quantitative trait loci in blood, recovering known transcriptional regulators. We apply the method to expression quantitative trait loci in 48 Genotype-Tissue Expression tissues, identifying 651 transcription factor-tissue associations including 30 with robust evidence of tissue specificity. We apply the method to 46 diseases and complex traits (average n = 290 K), identifying 77 annotation-trait associations representing 12 independent transcription factor-trait associations, and characterize the underlying transcriptional programs using gene-set enrichment analyses. Our results implicate new causal disease genes and new disease mechanisms.
Collapse
Affiliation(s)
- Yakir A Reshef
- Department of Computer Science, Harvard University, Cambridge, MA, USA.
- Harvard/MIT MD/PhD Program, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | | | - David R Kelley
- California Life Sciences LLC, South San Francisco, CA, USA
| | | | - Dylan Kotliar
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacob C Ulirsch
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Farhad Hormozdiari
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joseph Nasser
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luke O'Connor
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA, USA
| | - Bryce van de Geijn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Po-Ru Loh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sharon R Grossman
- Harvard/MIT MD/PhD Program, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gaurav Bhatia
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Steven Gazal
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pier Francesco Palamara
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Statistics, University of Oxford, Oxford, UK
| | - Luca Pinello
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | | | - Ryan P Adams
- Google Brain, New York, NY, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Alkes L Price
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
205
|
Jiang K, Jiao Y, Liu Y, Fu D, Geng H, Chen L, Chen H, Shen X, Sun L, Ding K. HNF6 promotes tumor growth in colorectal cancer and enhances liver metastasis in mouse model. J Cell Physiol 2018; 234:3675-3684. [PMID: 30256389 DOI: 10.1002/jcp.27140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/05/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Kai Jiang
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Yurong Jiao
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Yue Liu
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Dongliang Fu
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Haitao Geng
- Department of Oncology Binzhou Medical University Hospital Binzhou China
| | - Liubo Chen
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Haiyan Chen
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Xiangfeng Shen
- Department of Mastopathy Zhejiang Provincial Hospital of TCM Hangzhou China
| | - Lifeng Sun
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Kefeng Ding
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
206
|
Gailhouste L, Liew LC, Yasukawa K, Hatada I, Tanaka Y, Nakagama H, Ochiya T. Differentiation Therapy by Epigenetic Reconditioning Exerts Antitumor Effects on Liver Cancer Cells. Mol Ther 2018; 26:1840-1854. [PMID: 29759938 PMCID: PMC6035736 DOI: 10.1016/j.ymthe.2018.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023] Open
Abstract
Primary liver tumors are mainly represented by hepatocellular carcinoma (HCC), one of the most aggressive and resistant forms of cancer. Liver tumorigenesis is characterized by an accumulation of epigenetic abnormalities, leading to gene extinction and loss of hepatocyte differentiation. The aim of this work was to investigate the feasibility of converting liver cancer cells toward a less aggressive and differentiated phenotype using a process called epigenetic reconditioning. Here, we showed that an epigenetic regimen with non-cytotoxic doses of the demethylating compound 5-azacytidine (5-AZA) promoted an anti-cancer response by inhibiting HCC cell tumorigenicity. Furthermore, epigenetic reconditioning improved sorafenib response. Remarkably, epigenetic treatment was associated with a significant restoration of differentiation, as attested by the increased expression of characteristic hepatocyte markers in reconditioned cells. In particular, we showed that reexpression of these epigenetically silenced liver genes following 5-AZA treatment or after knockdown of DNA methyltransferase 1 (DNMT1) was the result of regional CpG demethylation. Lastly, we confirmed the efficacy of HCC differentiation therapy by epigenetic reconditioning using an in vivo tumor growth model. In summary, this work demonstrates that epigenetic reconditioning using the demethylating compound 5-AZA shows therapeutic significance for liver cancer and is potentially attractive for the treatment of solid tumors.
Collapse
Affiliation(s)
- Luc Gailhouste
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| | - Lee Chuen Liew
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ken Yasukawa
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hitoshi Nakagama
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; National Cancer Center, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
207
|
Braverman-Gross C, Nudel N, Ronen D, Beer NL, McCarthy MI, Benvenisty N. Derivation and molecular characterization of pancreatic differentiated MODY1-iPSCs. Stem Cell Res 2018; 31:16-26. [PMID: 29990710 DOI: 10.1016/j.scr.2018.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 05/01/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
Maturity onset diabetes of the young (MODY) is a hereditary form of diabetes mellitus presenting at childhood or adolescence, which eventually leads to pancreatic β-cells dysfunction. The underlying genetic basis of MODY disorders is haploinsufficiency, where loss-of-function mutations in a single allele cause the diabetic phenotype in heterozygous patients. MODY1 is a type of MODY disorder resulting from a mutation in the transcription factor hepatocyte nuclear factor 4 alpha (HNF4α). In order to establish a human based model to study MODY1, we generated patient-derived induced pluripotent stem cells (iPSCs). Differentiation of these pluripotent cells towards the pancreatic lineage enabled to evaluate the effects of the MODY1 mutation and its impact on endodermal and pancreatic cells. Analyzing the gene expression profiles of differentiated MODY1 cells, revealed the outcome of HNF4α haploinsufficiency on its targets. This molecular analysis suggests that the differential expression of HNF4α target genes in MODY1 is affected by the number of HNF4α binding sites, their distance from the transcription start site, and the number of other transcription factor binding sites. These features may help explain the molecular manifestations of haploinsufficiency in MODY1 disease.
Collapse
Affiliation(s)
- Carmel Braverman-Gross
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Neta Nudel
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Daniel Ronen
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Nicola L Beer
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
208
|
Parini P, Melhuish TA, Wotton D, Larsson L, Ahmed O, Eriksson M, Pramfalk C. Overexpression of transforming growth factor β induced factor homeobox 1 represses NPC1L1 and lowers markers of intestinal cholesterol absorption. Atherosclerosis 2018; 275:246-255. [PMID: 29980051 DOI: 10.1016/j.atherosclerosis.2018.06.867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/07/2018] [Accepted: 06/15/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Transforming growth factor β induced factor homeobox 1 (TGIF1) is a transcriptional repressor that limits the response to transforming growth factor ß signaling and also represses transcription independent of this pathway. Recently, we found higher serum cholesterol levels and more hepatic lipid accumulation in mice lacking Tgif1, and showed that TGIF1 can repress the expression of Soat2, the gene encoding the cholesterol esterifying enzyme acyl-Coenzyme A:cholesterol acyltransferase 2. Although there is evidence that TGIF1 plays a role in lipid metabolism, its role in this metabolic pathway is not fully characterized. Here we investigate whether overexpression of TGIF1 affects intestinal cholesterol absorption. METHODS AND RESULTS TGIF1 was found to repress human and mouse Niemann-Pick C1 like 1 (Npc1l1) promoter activity in intestinal Caco2 cells. We also found TGIF1 to be able to oppose the induction of the promoter activity by sterol regulatory element binding protein 2 and hepatocyte nuclear factor 1α and 4α. To validate these effects of TGIF1 in vivo, we generated transgenic mice specifically overexpressing TGIF1 in the intestine (Villin-Tgif1). We observed lower intestinal expression levels of Npc1l1 that was associated with lower expression of ATP-binding cassette transporter (Abc) a1, Abcg5, and Abcg8. Villin-Tgif1 mice fed regular chow or a high-fat diet had lower levels of markers of intestinal cholesterol absorption than wild types. CONCLUSIONS We suggest TGIF1 as a new player in intestinal cholesterol metabolism.
Collapse
Affiliation(s)
- Paolo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine Sweden; Metabolism Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tiffany A Melhuish
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
| | - David Wotton
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
| | - Lilian Larsson
- Division of Clinical Chemistry, Department of Laboratory Medicine Sweden
| | - Osman Ahmed
- Division of Clinical Chemistry, Department of Laboratory Medicine Sweden; Department of Biochemistry, Faculty of Medicine, Khartoum University, Khartoum, Sudan
| | - Mats Eriksson
- Metabolism Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Pramfalk
- Division of Clinical Chemistry, Department of Laboratory Medicine Sweden; Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
209
|
Abu-Gazala S, Horwitz E, Ben-Haroush Schyr R, Bardugo A, Israeli H, Hija A, Schug J, Shin S, Dor Y, Kaestner KH, Ben-Zvi D. Sleeve Gastrectomy Improves Glycemia Independent of Weight Loss by Restoring Hepatic Insulin Sensitivity. Diabetes 2018; 67:1079-1085. [PMID: 29475831 PMCID: PMC5961409 DOI: 10.2337/db17-1028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/12/2018] [Indexed: 12/21/2022]
Abstract
Bariatric surgery dramatically improves glycemic control, yet the underlying molecular mechanisms remain controversial because of confounding weight loss. We performed sleeve gastrectomy (SG) on obese and diabetic leptin receptor-deficient mice (db/db). One week postsurgery, mice weighed 5% less and displayed improved glycemia compared with sham-operated controls, and islets from SG mice displayed reduced expression of diabetes markers. One month postsurgery SG mice weighed more than preoperatively but remained near-euglycemic and displayed reduced hepatic lipid droplets. Pair feeding of SG and sham db/db mice showed that surgery rather than weight loss was responsible for reduced glycemia after SG. Although insulin secretion profiles from islets of sham and SG mice were indistinguishable, clamp studies revealed that SG causes a dramatic improvement in muscle and hepatic insulin sensitivity accompanied by hepatic regulation of hepatocyte nuclear factor-α and peroxisome proliferator-activated receptor-α targets. We conclude that long-term weight loss after SG requires leptin signaling. Nevertheless, SG elicits a remarkable improvement in glycemia through insulin sensitization independent of reduced feeding and weight loss.
Collapse
Affiliation(s)
- Samir Abu-Gazala
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
- Department of Surgery, The Hebrew University Hadassah Medical Center, Jerusalem, Israel
- Department of Genetics, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elad Horwitz
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Rachel Ben-Haroush Schyr
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Aya Bardugo
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Hadar Israeli
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ayat Hija
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Jonathan Schug
- Department of Genetics, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Soona Shin
- Department of Genetics, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Klaus H Kaestner
- Department of Genetics, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
210
|
Chen J, Chen Y, Wei Y, Tao X, Xu H, Liu Y, Zhu L, Tang G, Wen A, Lv D, Li X, Jiang Y. Activities Analysis and Polymorphisms Identification of GPIHBP1 Promoter Region in Porcine. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418060042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
211
|
Amicone L, Marchetti A. Microenvironment and tumor cells: two targets for new molecular therapies of hepatocellular carcinoma. Transl Gastroenterol Hepatol 2018; 3:24. [PMID: 29971255 DOI: 10.21037/tgh.2018.04.05] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC), is one of the most frequent human cancer and is characterized by a high mortality rate. The aggressiveness appears strictly related to the liver pathological background on which cancer develops. Inflammation and the consequent fibro/cirrhosis, derived from chronic injuries of several origins (viral, toxic and metabolic) and observable in almost all oncological patients, represents the most powerful risk factor for HCC and, at the same time, an important obstacle to the efficacy of systemic therapy. Multiple microenvironmental cues, indeed, play a pivotal role in the pathogenesis, evolution and recurrence of HCC as well as in the resistance to standard therapies observed in most of patients. The identification of altered pathways in cancer cells and of microenvironmental changes, strictly connected in pathogenic feedback loop, may permit to plan new therapeutic approaches targeting tumor cells and their permissive microenvironment, simultaneously.
Collapse
Affiliation(s)
- Laura Amicone
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Alessandra Marchetti
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
212
|
The molecular functions of hepatocyte nuclear factors - In and beyond the liver. J Hepatol 2018; 68:1033-1048. [PMID: 29175243 DOI: 10.1016/j.jhep.2017.11.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022]
Abstract
The hepatocyte nuclear factors (HNFs) namely HNF1α/β, FOXA1/2/3, HNF4α/γ and ONECUT1/2 are expressed in a variety of tissues and organs, including the liver, pancreas and kidney. The spatial and temporal manner of HNF expression regulates embryonic development and subsequently the development of multiple tissues during adulthood. Though the HNFs were initially identified individually based on their roles in the liver, numerous studies have now revealed that the HNFs cross-regulate one another and exhibit synergistic relationships in the regulation of tissue development and function. The complex HNF transcriptional regulatory networks have largely been elucidated in rodent models, but less so in human biological systems. Several heterozygous mutations in these HNFs were found to cause diseases in humans but not in rodents, suggesting clear species-specific differences in mutational mechanisms that remain to be uncovered. In this review, we compare and contrast the expression patterns of the HNFs, the HNF cross-regulatory networks and how these liver-enriched transcription factors serve multiple functions in the liver and beyond, extending our focus to the pancreas and kidney. We also summarise the insights gained from both human and rodent studies of mutations in several HNFs that are known to lead to different disease conditions.
Collapse
|
213
|
Gildea JJ, Xu P, Kemp BA, Carlson JM, Tran HT, Bigler Wang D, Langouët-Astrié CJ, McGrath HE, Carey RM, Jose PA, Felder RA. Sodium bicarbonate cotransporter NBCe2 gene variants increase sodium and bicarbonate transport in human renal proximal tubule cells. PLoS One 2018; 13:e0189464. [PMID: 29642240 PMCID: PMC5895442 DOI: 10.1371/journal.pone.0189464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/28/2017] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Salt sensitivity of blood pressure affects >30% of the hypertensive and >15% of the normotensive population. Variants of the electrogenic sodium bicarbonate cotransporter NBCe2 gene, SLC4A5, are associated with increased blood pressure in several ethnic groups. SLC4A5 variants are also highly associated with salt sensitivity, independent of hypertension. However, little is known about how NBCe2 contributes to salt sensitivity, although NBCe2 regulates renal tubular sodium bicarbonate transport. We hypothesized that SLC4A5 rs10177833 and rs7571842 increase NBCe2 expression and human renal proximal tubule cell (hRPTC) sodium transport and may be a cause of salt sensitivity of blood pressure. OBJECTIVE To characterize the hRPTC ion transport of wild-type (WT) and homozygous variants (HV) of SLC4A5. METHODS AND RESULTS The expressions of NBCe2 mRNA and protein were not different between hRPTCs carrying WT or HV SLC4A5 before or after dopaminergic or angiotensin (II and III) stimulation. However, luminal to basolateral sodium transport, NHE3 protein, and Cl-/HCO3- exchanger activity in hRPTCs were higher in HV than WT SLC4A5. Increasing intracellular sodium enhanced the apical location of NBCe2 in HV hRPTCs (4.24±0.35% to 11.06±1.72% (P<0.05, N = 3, 2-way ANOVA, Holm-Sidak test)) as determined by Total Internal Reflection Fluorescence Microscopy (TIRFM). In hRPTCs isolated from kidney tissue, increasing intracellular sodium enhanced bicarbonate-dependent pH recovery rate and increased NBCe2 mRNA and protein expressions to a greater extent in HV than WT SLC4A5 (+38.00±6.23% vs HV normal salt (P<0.01, N = 4, 2-way ANOVA, Holm-Sidak test)). In hRPTCs isolated from freshly voided urine, bicarbonate-dependent pH recovery was also faster in those from salt-sensitive and carriers of HV SLC4A5 than from salt-resistant and carriers of WT SLC4A5. The faster NBCe2-specific bicarbonate-dependent pH recovery rate in HV SCL4A5 was normalized by SLC4A5- but not SLC4A4-shRNA. The binding of purified hepatocyte nuclear factor type 4A (HNF4A) to DNA was increased in hRPTCs carrying HV SLC4A5 rs7571842 but not rs10177833. The faster NBCe2-specific bicarbonate-dependent pH recovery rate in HV SCL4A5 was abolished by HNF4A antagonists. CONCLUSION NBCe2 activity is stimulated by an increase in intracellular sodium and is hyper-responsive in hRPTCs carrying HV SLC4A5 rs7571842 through an aberrant HNF4A-mediated mechanism.
Collapse
Affiliation(s)
- John J. Gildea
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Peng Xu
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Brandon A. Kemp
- The University of Virginia Department of Medicine, Charlottesville, VA, United States of America
| | - Julia M. Carlson
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Hanh T. Tran
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Dora Bigler Wang
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | | | - Helen E. McGrath
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Robert M. Carey
- The University of Virginia Department of Medicine, Charlottesville, VA, United States of America
| | - Pedro A. Jose
- The George Washington University School of Medicine & Health Sciences, Department of Medicine, Division of Renal Disease and Hypertension and Department of Pharmacology and Physiology, Washington, DC, United States of America
| | - Robin A. Felder
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| |
Collapse
|
214
|
Chen C, Soto-Gutierrez A, Baptista PM, Spee B. Biotechnology Challenges to In Vitro Maturation of Hepatic Stem Cells. Gastroenterology 2018; 154:1258-1272. [PMID: 29428334 PMCID: PMC6237283 DOI: 10.1053/j.gastro.2018.01.066] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 12/16/2022]
Abstract
The incidence of liver disease is increasing globally. The only curative therapy for severe end-stage liver disease, liver transplantation, is limited by the shortage of organ donors. In vitro models of liver physiology have been developed and new technologies and approaches are progressing rapidly. Stem cells might be used as a source of liver tissue for development of models, therapies, and tissue-engineering applications. However, we have been unable to generate and maintain stable and mature adult liver cells ex vivo. We review factors that promote hepatocyte differentiation and maturation, including growth factors, transcription factors, microRNAs, small molecules, and the microenvironment. We discuss how the hepatic circulation, microbiome, and nutrition affect liver function, and the criteria for considering cells derived from stem cells to be fully mature hepatocytes. We explain the challenges to cell transplantation and consider future technologies for use in hepatic stem cell maturation, including 3-dimensional biofabrication and genome modification.
Collapse
Affiliation(s)
- Chen Chen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; The Royal Netherlands Academy of Arts and Sciences, Hubrecht Institute and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Pedro M Baptista
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas, Madrid, Spain; Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain; Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain; Department of Biomedical and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
215
|
Horikawa Y. Maturity-onset diabetes of the young as a model for elucidating the multifactorial origin of type 2 diabetes mellitus. J Diabetes Investig 2018; 9:704-712. [PMID: 29406598 PMCID: PMC6031504 DOI: 10.1111/jdi.12812] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/19/2022] Open
Abstract
Maturity‐onset diabetes of the young (MODY) is a form of diabetes classically characterized as having autosomal dominant inheritance, onset before the age of 25 years in at least one family member and partly preserved pancreatic β‐cell function. The 14 responsible genes are reported to be MODY type 1~14, of which MODY 2 and 3 might be the most common forms. Although MODY is currently classified as diabetes of a single gene defect, it has become clear that mutations in rare MODYs, such as MODY 5 and MODY 6, have small mutagenic effects and low penetrance. In addition, as there are differences in the clinical phenotypes caused by the same mutation even in the same family, other phenotypic modifying factors are thought to exist; MODY could well have characteristics of type 2 diabetes mellitus, which is of multifactorial origin. Here, we outline the effects of genetic and environmental factors on the known phenotypes of MODY, focusing mainly on the examples of MODY 5 and 6, which have low penetrance, as suggestive models for elucidating the multifactorial origin of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yukio Horikawa
- Department of Diabetes and Endocrinology, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
216
|
Tao NN, Gong R, Chen X, He L, Ren F, Yu HB, Chen J, Ren JH. Interleukin-35 stimulates hepatitis B virus transcription and replication by targeting transcription factor HNF4α. J Gen Virol 2018; 99:645-654. [PMID: 29561254 DOI: 10.1099/jgv.0.001050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major health problem worldwide. Interleukin-35 (IL-35) is a definite immunosuppressive cytokine belonging to the IL-12 family. Nevertheless, the role of IL-35 in HBV replication remains elusive. In this study, we found that the level of HBV DNA replicative intermediates detected by qPCR and Southern blotting analysis was significantly increased by rhIL-35 in a dose-dependent manner. Moreover, HBV 3.5 kb mRNA levels were up-regulated by rhIL-35. The HBV core protein level as well as the HBsAg and HBeAg secretion levels were also increased by rhIL-35. Moreover, a mechanistic study demonstrated that IL-35 promoted HBV replication by enhancing the HBV core promoter activity. Importantly, hepatocyte nuclear factor 4α (HNF4α) was probably the target of IL-35. Mutation of the HNF4α-binding site on HBV core promoter or silencing HNF4α abolished the enhancement of HBV replication induced by IL-35. Finally, rhIL-35 was able to increase HBV replication in HBV transgenic mice. Taken together, our findings demonstrated that IL-35 has a novel role in HBV replication.
Collapse
Affiliation(s)
- Na-Na Tao
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Rui Gong
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Xiang Chen
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Lin He
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Fang Ren
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Hai-Bo Yu
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Juan Chen
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Ji-Hua Ren
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
217
|
Prokkola JM, Nikinmaa M, Lewis M, Anttila K, Kanerva M, Ikkala K, Seppänen E, Kolari I, Leder EH. Cold temperature represses daily rhythms in the liver transcriptome of a stenothermal teleost under decreasing day length. ACTA ACUST UNITED AC 2018; 221:jeb.170670. [PMID: 29361589 DOI: 10.1242/jeb.170670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/15/2018] [Indexed: 12/19/2022]
Abstract
The climate-change-driven increase in temperature is occurring rapidly and decreasing the predictability of seasonal rhythms at high latitudes. It is therefore urgent to understand how a change in the relationship between photoperiod and temperature can affect ectotherms in these environments. We tested whether temperature affects daily rhythms of transcription in a cold-adapted salmonid using high-throughput RNA sequencing. Arctic char (Salvelinus alpinus) from a subarctic population were reared at a high and a low temperature (15 and 8°C) for 1 month under natural, decreasing day length during late summer. Liver transcriptomes were compared between samples collected in the middle and towards the end of the light period and in the middle of the dark period. Daily variation in transcription was lower in fish from the low temperature compared with strong daily variation in warm-acclimated fish, suggesting that cold temperatures dampen the cycling of transcriptional rhythms under a simultaneously decreasing day length. Different circadian clock genes had divergent expression patterns, responding either by decreased expression or by increased rhythmicity at 15°C compared with 8°C. The results point out mechanisms that can affect the ability of fish to adapt to increasing temperatures caused by climate change.
Collapse
Affiliation(s)
- Jenni M Prokkola
- Department of Biology, University of Turku, FI-20014 Turku, Finland .,Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Mario Lewis
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Katja Anttila
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Mirella Kanerva
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Kaisa Ikkala
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Eila Seppänen
- Natural Resources Institute Finland (Luke), Laasalantie 9, FI-58175 Enonkoski, Finland
| | - Irma Kolari
- Natural Resources Institute Finland (Luke), Laasalantie 9, FI-58175 Enonkoski, Finland
| | - Erica H Leder
- Department of Biology, University of Turku, FI-20014 Turku, Finland.,Natural History Museum, University of Oslo, Oslo NO-0318, Norway
| |
Collapse
|
218
|
Dong Y, Zhao J, Chen J, Wang S, Liu Y, Zhang Q, You C, Monroig Ó, Tocher DR, Li Y. Cloning and characterization of ∆6/∆5 fatty acyl desaturase (Fad) gene promoter in the marine teleost Siganus canaliculatus. Gene 2018; 647:174-180. [DOI: 10.1016/j.gene.2018.01.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 01/18/2023]
|
219
|
Churbanov A, Abrahamyan L. Preventing Common Hereditary Disorders through Time-Separated Twinning. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-017-0488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
220
|
Martins F, Marafona AM, Pereira CD, Müller T, Loosse C, Kolbe K, da Cruz E Silva OAB, Rebelo S. Identification and characterization of the BRI2 interactome in the brain. Sci Rep 2018; 8:3548. [PMID: 29476059 PMCID: PMC5824958 DOI: 10.1038/s41598-018-21453-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/05/2018] [Indexed: 01/16/2023] Open
Abstract
BRI family proteins are ubiquitous type II transmembrane proteins but BRI2 is highly expressed in some neuronal tissues. Possible BRI2 functions include neuronal maturation and differentiation. Protein complexes appear to be important in mediating its functions. Previously described BRI2 interactors include the Alzheimer's amyloid precursor protein and protein phosphatase 1, but clearly the identification of novel interactors provides an important tool to understand the role and function of BRI2. To this end three rat brain regions (cerebellum, hippocampus, and cerebral cortex) were processed by BRI2 immunoprecipitation; co-precipitating proteins were identified by Nano-HPLC-MS/MS. The pool of the brain regions resulted in 511 BRI2 interacting proteins (BRI2 brain interactome) of which 120 were brain specific and 49 involved in neuronal differentiation. Brain region-specific analyses were also carried out for cerebellum, hippocampus, and cerebral cortex. Several novel BRI2 interactors were identified among them DLG4/PSD-95, which is singularly important as it places BRI2 in the postsynaptic compartment. This interaction was validated as well as the interaction with GAP-43 and synaptophysin. In essence, the resulting BRI2 brain interactome, associates this protein with neurite outgrowth and neuronal differentiation, as well as synaptic signalling and plasticity. It follows that further studies should address BRI2 particularly given its relevance to neuropathological conditions.
Collapse
Affiliation(s)
- Filipa Martins
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana M Marafona
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Cátia D Pereira
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Thorsten Müller
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e. V., Dortmund, Germany
- Cell Signaling, Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
- Institute of Psychiatric Phenomics and Genomics, Clinical Center of the University of Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Christina Loosse
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e. V., Dortmund, Germany
| | - Katharina Kolbe
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e. V., Dortmund, Germany
- Cell Signaling, Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
- Institute of Psychiatric Phenomics and Genomics, Clinical Center of the University of Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Odete A B da Cruz E Silva
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Sandra Rebelo
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
221
|
Ding CH, Yin C, Chen SJ, Wen LZ, Ding K, Lei SJ, Liu JP, Wang J, Chen KX, Jiang HL, Zhang X, Luo C, Xie WF. The HNF1α-regulated lncRNA HNF1A-AS1 reverses the malignancy of hepatocellular carcinoma by enhancing the phosphatase activity of SHP-1. Mol Cancer 2018; 17:63. [PMID: 29466992 PMCID: PMC5822613 DOI: 10.1186/s12943-018-0813-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/08/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Our previous study has demonstrated that hepatocyte nuclear factor 1α (HNF1α) exerts potent therapeutic effects on hepatocellular carcinoma (HCC). However, the molecular mechanisms by which HNF1α reverses HCC malignancy need to be further elucidated. METHODS lncRNA microarray was performed to identify the long noncoding RNAs (lncRNAs) regulated by HNF1α. Chromatin immunoprecipitation and luciferase reporter assays were applied to clarify the mechanism of the transcriptional regulation of HNF1α to HNF1A antisense RNA 1 (HNF1A-AS1). The effect of HNF1A-AS1 on HCC malignancy was evaluated in vitro and in vivo. RNA pulldown, RNA-binding protein immunoprecipitation and the Bio-Layer Interferometry assay were used to validate the interaction of HNF1A-AS1 and Src homology region 2 domain-containing phosphatase 1 (SHP-1). RESULTS HNF1α regulated the expression of a subset of lncRNAs in HCC cells. Among these lncRNAs, the expression levels of HNF1A-AS1 were notably correlated with HNF1α levels in HCC cells and human HCC tissues. HNF1α activated the transcription of HNF1A-AS1 by directly binding to its promoter region. HNF1A-AS1 inhibited the growth and the metastasis of HCC cells in vitro and in vivo. Moreover, knockdown of HNF1A-AS1 reversed the suppressive effects of HNF1α on the migration and invasion of HCC cells. Importantly, HNF1A-AS1 directly bound to the C-terminal of SHP-1 with a high binding affinity (KD = 59.57 ± 14.29 nM) and increased the phosphatase activity of SHP-1. Inhibition of SHP-1 enzymatic activity substantially reversed the HNF1α- or HNF1A-AS1-induced reduction on the metastatic property of HCC cells. CONCLUSIONS Our data revealed that HNF1A-AS1 is a direct transactivation target of HNF1α in HCC cells and involved in the anti-HCC effect of HNF1α. HNF1A-AS1 functions as phosphatase activator through the direct interaction with SHP-1. These findings suggest that regulation of the HNF1α/HNF1A-AS1/SHP-1 axis may have beneficial effects in the treatment of HCC.
Collapse
Affiliation(s)
- Chen-Hong Ding
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Chuan Yin
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Shi-Jie Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Liang-Zhi Wen
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.,Present address: Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Kai Ding
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Shu-Juan Lei
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Jin-Pei Liu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Jian Wang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Kai-Xian Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Hua-Liang Jiang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
222
|
Pathway-induced allelic spectra of diseases in the presence of strong genetic effects. Hum Genet 2018; 137:215-230. [DOI: 10.1007/s00439-018-1872-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/31/2018] [Indexed: 12/15/2022]
|
223
|
Klein AP, Wolpin BM, Risch HA, Stolzenberg-Solomon RZ, Mocci E, Zhang M, Canzian F, Childs EJ, Hoskins JW, Jermusyk A, Zhong J, Chen F, Albanes D, Andreotti G, Arslan AA, Babic A, Bamlet WR, Beane-Freeman L, Berndt SI, Blackford A, Borges M, Borgida A, Bracci PM, Brais L, Brennan P, Brenner H, Bueno-de-Mesquita B, Buring J, Campa D, Capurso G, Cavestro GM, Chaffee KG, Chung CC, Cleary S, Cotterchio M, Dijk F, Duell EJ, Foretova L, Fuchs C, Funel N, Gallinger S, M Gaziano JM, Gazouli M, Giles GG, Giovannucci E, Goggins M, Goodman GE, Goodman PJ, Hackert T, Haiman C, Hartge P, Hasan M, Hegyi P, Helzlsouer KJ, Herman J, Holcatova I, Holly EA, Hoover R, Hung RJ, Jacobs EJ, Jamroziak K, Janout V, Kaaks R, Khaw KT, Klein EA, Kogevinas M, Kooperberg C, Kulke MH, Kupcinskas J, Kurtz RJ, Laheru D, Landi S, Lawlor RT, Lee IM, LeMarchand L, Lu L, Malats N, Mambrini A, Mannisto S, Milne RL, Mohelníková-Duchoňová B, Neale RE, Neoptolemos JP, Oberg AL, Olson SH, Orlow I, Pasquali C, Patel AV, Peters U, Pezzilli R, Porta M, Real FX, Rothman N, Scelo G, Sesso HD, Severi G, Shu XO, Silverman D, Smith JP, Soucek P, et alKlein AP, Wolpin BM, Risch HA, Stolzenberg-Solomon RZ, Mocci E, Zhang M, Canzian F, Childs EJ, Hoskins JW, Jermusyk A, Zhong J, Chen F, Albanes D, Andreotti G, Arslan AA, Babic A, Bamlet WR, Beane-Freeman L, Berndt SI, Blackford A, Borges M, Borgida A, Bracci PM, Brais L, Brennan P, Brenner H, Bueno-de-Mesquita B, Buring J, Campa D, Capurso G, Cavestro GM, Chaffee KG, Chung CC, Cleary S, Cotterchio M, Dijk F, Duell EJ, Foretova L, Fuchs C, Funel N, Gallinger S, M Gaziano JM, Gazouli M, Giles GG, Giovannucci E, Goggins M, Goodman GE, Goodman PJ, Hackert T, Haiman C, Hartge P, Hasan M, Hegyi P, Helzlsouer KJ, Herman J, Holcatova I, Holly EA, Hoover R, Hung RJ, Jacobs EJ, Jamroziak K, Janout V, Kaaks R, Khaw KT, Klein EA, Kogevinas M, Kooperberg C, Kulke MH, Kupcinskas J, Kurtz RJ, Laheru D, Landi S, Lawlor RT, Lee IM, LeMarchand L, Lu L, Malats N, Mambrini A, Mannisto S, Milne RL, Mohelníková-Duchoňová B, Neale RE, Neoptolemos JP, Oberg AL, Olson SH, Orlow I, Pasquali C, Patel AV, Peters U, Pezzilli R, Porta M, Real FX, Rothman N, Scelo G, Sesso HD, Severi G, Shu XO, Silverman D, Smith JP, Soucek P, Sund M, Talar-Wojnarowska R, Tavano F, Thornquist MD, Tobias GS, Van Den Eeden SK, Vashist Y, Visvanathan K, Vodicka P, Wactawski-Wende J, Wang Z, Wentzensen N, White E, Yu H, Yu K, Zeleniuch-Jacquotte A, Zheng W, Kraft P, Li D, Chanock S, Obazee O, Petersen GM, Amundadottir LT. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat Commun 2018; 9:556. [PMID: 29422604 PMCID: PMC5805680 DOI: 10.1038/s41467-018-02942-5] [Show More Authors] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/10/2018] [Indexed: 12/20/2022] Open
Abstract
In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10-8). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10-14), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10-10), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10-8), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10-8). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.
Collapse
Affiliation(s)
- Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA.
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Rachael Z Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Evelina Mocci
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Mingfeng Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Erica J Childs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Jason W Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ashley Jermusyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fei Chen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan A Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Population Health, New York University School of Medicine, New York, NY, 10016, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - William R Bamlet
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Laura Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amanda Blackford
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Michael Borges
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Ayelet Borgida
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), 69372, Lyon, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, 3584 CX, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, SW7 2AZ, UK
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Julie Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126, Pisa, Italy
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, 'Sapienza' University of Rome, 00185, Rome, Italy
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Kari G Chaffee
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Charles C Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Sean Cleary
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada
| | - Michelle Cotterchio
- Cancer Care Ontario, University of Toronto, Toronto, Ontario, M5G 2L7, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada
| | - Frederike Dijk
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1007 MB, Amsterdam, The Netherlands
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, 08908, Spain
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, 65653, Brno, Czech Republic
| | | | - Niccola Funel
- Department of Translational Research and The New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada
| | - J Michael M Gaziano
- Division of Aging, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Boston VA Healthcare System, Boston, MA, 02132, USA
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 106 79, Athens, Greece
| | - Graham G Giles
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Edward Giovannucci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Michael Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Gary E Goodman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Thilo Hackert
- Department of General Surgery, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Patricia Hartge
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Manal Hasan
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
| | - Peter Hegyi
- First Department of Medicine, University of Szeged, 6725, Szeged, Hungary
| | - Kathy J Helzlsouer
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joseph Herman
- Department of Radiation Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Ivana Holcatova
- Institute of Public Health and Preventive Medicine, Charles University, 2nd Faculty of Medicine, 150 06, Prague 5, Czech Republic
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Robert Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada
| | - Eric J Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, 30303, USA
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776, Warsaw, Poland
| | - Vladimir Janout
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, 701 03, Ostrava, Czech Republic
- Faculty of Medicine, University of Olomouc, 771 47, Olomouc, Czech Republic
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Kay-Tee Khaw
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Manolis Kogevinas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), 08003, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 08003, Barcelona, Spain
- Hospital del Mar Institute of Medical Research (IMIM), Universitat Autònoma de Barcelona, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Matthew H Kulke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, 44307, Kaunas, Lithuania
| | - Robert J Kurtz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Daniel Laheru
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Stefano Landi
- Department of Biology, University of Pisa, 56126, Pisa, Italy
| | - Rita T Lawlor
- ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - I-Min Lee
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Loic LeMarchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
- CIBERONC, 28029, Madrid, Spain
| | - Andrea Mambrini
- Oncology Department, ASL1 Massa Carrara, Carrara, 54033, Italy
| | - Satu Mannisto
- Department of Public Health Solutions, National Institute for Health and Welfare, 00271, Helsinki, Finland
| | - Roger L Milne
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Beatrice Mohelníková-Duchoňová
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital, 775 20, Olomouc, Czech Republic
| | - Rachel E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - John P Neoptolemos
- Department of General Surgery, University of Heidelburg, Heidelberg, Germany
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Claudio Pasquali
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35124, Padua, Italy
| | - Alpa V Patel
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, 30303, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Raffaele Pezzilli
- Pancreas Unit, Department of Digestive Diseases and Internal Medicine, Sant'Orsola-Malpighi Hospital, 40138, Bologna, Italy
| | - Miquel Porta
- CIBER Epidemiología y Salud Pública (CIBERESP), 08003, Barcelona, Spain
- Hospital del Mar Institute of Medical Research (IMIM), Universitat Autònoma de Barcelona, 08003, Barcelona, Spain
| | - Francisco X Real
- CIBERONC, 28029, Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08002, Barcelona, Spain
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), 69372, Lyon, France
| | - Howard D Sesso
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Gianluca Severi
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Medicine, Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, 94800, Villejuif, France
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Debra Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jill P Smith
- Department of Medicine, Georgetown University, Washington, 20057, USA
| | - Pavel Soucek
- Laboratory for Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00, Pilsen, Czech Republic
| | - Malin Sund
- Department of Surgical and Perioperative Sciences, Umeå University, 901 85, Umeå, Sweden
| | | | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy
| | - Mark D Thornquist
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Geoffrey S Tobias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Yogesh Vashist
- Department of General, Visceral and Thoracic Surgery, University Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20, Prague 4, Czech Republic
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, 14214, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ofure Obazee
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
224
|
Zhou YJ, Yin RX, Hong SC, Yang Q, Cao XL, Chen WX. Association of the HNF1A polymorphisms and serum lipid traits, the risk of coronary artery disease and ischemic stroke. J Gene Med 2018; 19. [PMID: 28035729 PMCID: PMC6681139 DOI: 10.1002/jgm.2941] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/15/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocyte nuclear factor-1α gene (HNF1A) single nucleotide polymorphisms (SNPs) have been associated with serum lipid traits in several previous genome-wide association studies. However, little is known about such associations in the Chinese populations. The present study aimed to determine the association of the HNF1A rs1169288, rs2259820, rs2464196 and rs2650000 SNPs and serum lipid traits, the risk of coronary artery disease (CAD) and ischemic stroke (IS). METHODS The genotypes of the four SNPs in 562 CAD and 521 IS patients, as well as 594 healthy controls, were detected using the Snapshot technology. RESULTS The genotype and allele distribution of the four SNPs was not different between controls and CAD or IS patients (p > 0.05 for all). rs1169288, rs2259820 and rs2464196 SNPs were significantly associated with serum lipid levels in both controls and CAD patients (p < 0.004-0.009). rs2259820 and rs2464196 SNPs were significantly associated with a lower risk of CAD [odds ratio (OR) = 0.64, 95% confidence interval (CI) = 0.44-0.91, p = 0.015 and OR =0.62, 95% CI = 0.43-0.89, p = 0.010, respectively]. Significant linkage disequilibrium was noted among the four SNPs (r2 > 0.5, D' > 0.8). The haplotype of rs1169288A-rs2259820C-rs2464196G-rs2650000A was associated with an increased risk of CAD (OR =1.95, 95% CI: 1.13-3.37, p = 0.015). Interactions of SNP-SNP (rs1169288-rs2464196-rs2650000) and haplotype-environment on the risk of CAD (A-C-G-A-smoking) or IS (A-C-G-A-sex and A-T-A-C-alcohol consumption) were also observed among these SNPs. CONCLUSIONS These findings suggest that the HNF1A polymorphisms may be the genetic risk factors for CAD and IS.
Collapse
Affiliation(s)
- Yi-Jiang Zhou
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Shao-Cai Hong
- Department of Cardiology, Guangxi Provincial Corps Hospital, Chinese People's Armed Police Forces, Nanning, China
| | - Qian Yang
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiao-Li Cao
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Wu-Xian Chen
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
225
|
Quantitative proteomics reveals that distant recurrence-associated protein R-Ras and Transgelin predict post-surgical survival in patients with Stage III colorectal cancer. Oncotarget 2018; 7:43868-43893. [PMID: 27270312 PMCID: PMC5190065 DOI: 10.18632/oncotarget.9701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/08/2016] [Indexed: 12/14/2022] Open
Abstract
Surgical resection supplemented with adjuvant chemotherapy is the current preferred treatment for Stage III colorectal cancer (CRC). However, as many as 48% of patients who undergo curative resection eventually suffer from incurable distant recurrence. To investigate the molecular mechanisms involved in Stage III CRC post-surgical distant recurrence, we identified a total of 146 differentially expressed proteins (DEPs) associated with distant recurrence in Stage III CRC using TMT-based quantitative mass spectrometry. Among these DEPs, the altered expressions of R-Ras and Transgelin were then validated in 192 individual specimens using immunohistochemistry (IHC). Furthermore, Kaplan-Meier analysis revealed that the levels of R-Ras and Transgelin were significantly associated with 5-year overall survival (OS) and disease-free survival (DFS), and multivariate Cox-regression analyses revealed that R-Ras and Transgelin were independent prognostic factors for OS and DFS, respectively. In conclusion, this study identified potential biochemical players involved in distant recurrence and indicates that R-Ras and Transgelin are potential post-surgical prognostic biomarkers for Stage III CRC. This proteomics data have been submitted to Proteome Xchange under accession number PXD002903.
Collapse
|
226
|
Yu D, Chen G, Pan M, Zhang J, He W, Liu Y, Nian X, Sheng L, Xu B. High fat diet-induced oxidative stress blocks hepatocyte nuclear factor 4α and leads to hepatic steatosis in mice. J Cell Physiol 2018; 233:4770-4782. [PMID: 29150932 DOI: 10.1002/jcp.26270] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Dongsheng Yu
- Department of Pharmacology; School of Basic Medical Science; Nanjing Medical University; Nanjing Jiangsu China
| | - Gang Chen
- Department of Hepatobiliary Surgery; The First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - Minglin Pan
- Department of Endocrinology; The Second Affiliated Hospital of Nanjing Medical University; Nanjing Jiangsu China
| | - Jia Zhang
- Department of Pharmacology; School of Basic Medical Science; Nanjing Medical University; Nanjing Jiangsu China
| | - Wenping He
- Department of Pharmacology; School of Basic Medical Science; Nanjing Medical University; Nanjing Jiangsu China
| | - Yang Liu
- Department of Gastroenterology and Hepatology; Zhongda Hospital; Nanjing Jiangsu China
- Institute of Gastroenterology and Hepatology; School of Medicine; Southeast University; Nanjing Jiangsu China
| | - Xue Nian
- Department of Pharmacology; School of Basic Medical Science; Nanjing Medical University; Nanjing Jiangsu China
| | - Liang Sheng
- Department of Pharmacology; School of Basic Medical Science; Nanjing Medical University; Nanjing Jiangsu China
| | - Bin Xu
- Department of Internal Medicine; Division of Metabolism, Endocrinology and Diabetes; University of Michigan Medical Center; Ann Arbor Michigan
| |
Collapse
|
227
|
Okour M, Jacobson PA, Ahmed MA, Israni AK, Brundage RC. Mycophenolic Acid and Its Metabolites in Kidney Transplant Recipients: A Semimechanistic Enterohepatic Circulation Model to Improve Estimating Exposure. J Clin Pharmacol 2018; 58:628-639. [PMID: 29329489 DOI: 10.1002/jcph.1064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/19/2017] [Indexed: 01/13/2023]
Abstract
Mycophenolic acid (MPA) is an approved immunosuppressive agent widely prescribed to prevent rejection after kidney transplantation. Wide between-subject variability (BSV) in MPA exposure exists which in part may be due to variability in enterohepatic recirculation (EHC). Several modeling strategies were developed to evaluate EHC as part of MPA pharmacokinetics, however mechanistic representation of EHC is limited. These models have not provided a satisfactory representation of the physiology of EHC in their modeling assumptions. The aim of this study was i) to develop an integrated model of MPA (total and unbound) and its metabolites (MPAG and acyl-MPAG) in kidney recipients, where this model provides a more physiological representation of EHC process, and ii) to evaluate the effect of donor and recipient clinical covariates and genotypes on MPA disposition. A five-compartment model with first-order input into an unbound MPA compartment connected to the MPAG, acyl-MPAG, and gallbladder compartment best fit the data. To represent the EHC process, the model was built based on the physiological concepts related to the hepatobiliary system and the gallbladder filling and emptying processes. The effect of cyclosporine versus tacrolimus on clearance of unbound MPA was included in the base model. Covariate analysis showed creatinine clearance to be significant on oral clearance of unbound MPA. The hepatic nuclear factor 1 alpha (HNF1A) genetic single nucleotide polymorphism (SNP) (rs2393791) in the recipient significantly affected the fraction of enterohepatically-circulated drug. Oral clearance of MPAG was affected by recipient IMPDH1 SNP (rs2288553), diabetes at the time of transplant, and donor sex.
Collapse
Affiliation(s)
- Malek Okour
- Clinical Pharmacology Modeling and Simulation (CPMS), GlaxoSmithKline, King of Prussia, PA, USA
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Mariam A Ahmed
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Ajay K Israni
- Department of Medicine, Department of Epidemiology and Community Health, Hennepin County Medical Center and University of Minnesota, Minneapolis, MN, USA
| | - Richard C Brundage
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
228
|
Muthusamy S, Jeong JJ, Cheng M, Bonzo JA, Kumar A, Gonzalez FJ, Borthakur A, Dudeja PK, Saksena S, Malakooti J. Hepatocyte nuclear factor 4α regulates the expression of intestinal epithelial Na +/H + exchanger isoform 3. Am J Physiol Gastrointest Liver Physiol 2018; 314:G14-G21. [PMID: 28882825 PMCID: PMC5866373 DOI: 10.1152/ajpgi.00225.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 01/31/2023]
Abstract
Na+/H+ exchanger isoform 3 (NHE3) plays a key role in coupled electroneutral NaCl absorption in the mammalian intestine. Reduced NHE3 expression or function has been implicated in the pathogenesis of diarrhea associated with inflammatory bowel disease (IBD) or enteric infections. Our previous studies revealed transcriptional regulation of NHE3 by various agents such as TNF-α, IFN-γ, and butyrate involving transcription factors Sp1 and Sp3. In silico analysis revealed that the NHE3 core promoter also contains a hepatocyte nuclear factor 4α (HNF-4α) binding site that is evolutionarily conserved in several species suggesting that HNF-4α has a role in NHE3 regulation. Nhe3 mRNA levels were reduced in intestine-specific Hnf4α-null mice. However, detailed mechanisms of NHE3 regulation by HNF-4α are not known. We investigated the regulation of NHE3 gene expression by HNF-4α in vitro in the human intestinal epithelial cell line C2BBe1 and in vivo in intestine-specific Hnf4α-null ( Hnf4αΔIEpC) and control ( Hnf4αfl/fl) mice. HNF-4α knockdown by short interfering RNA in C2BBe1 cells significantly decreased NHE3 mRNA and NHE3 protein levels. Gel mobility shift and chromatin immunoprecipitation assays revealed that HNF-4α directly interacts with the HNF-4α motif in the NHE3 core promoter. Site-specific mutagenesis on the HNF-4α motif decreased, whereas ectopic overexpression of HNF-4α increased, NHE3 promoter activity. Furthermore, loss of HNF-4α in Hnf4αΔIEpC mice decreased colonic Nhe3 mRNA and NHE3 protein levels. Our results demonstrate a novel role for HNF-4α in basal regulation of NHE3 expression. These studies represent an important and novel target for therapeutic intervention in IBD-associated diarrhea. NEW & NOTEWORTHY Our studies for the first time show that hepatocyte nuclear factor 4α directly regulates NHE3 promoter activity and its basal expression in the intestine.
Collapse
Affiliation(s)
- Saminathan Muthusamy
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Jong Jin Jeong
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Ming Cheng
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Jessica A Bonzo
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland
| | - Anoop Kumar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland
| | - Alip Borthakur
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| | - Jaleh Malakooti
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| |
Collapse
|
229
|
Integrated Systems and Chemical Biology Approach for Targeted Therapies. Synth Biol (Oxf) 2018. [DOI: 10.1007/978-981-10-8693-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
230
|
Berthelot C, Villar D, Horvath JE, Odom DT, Flicek P. Complexity and conservation of regulatory landscapes underlie evolutionary resilience of mammalian gene expression. Nat Ecol Evol 2018; 2:152-163. [PMID: 29180706 PMCID: PMC5733139 DOI: 10.1038/s41559-017-0377-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/10/2017] [Indexed: 02/02/2023]
Abstract
To gain insight into how mammalian gene expression is controlled by rapidly evolving regulatory elements, we jointly analysed promoter and enhancer activity with downstream transcription levels in liver samples from 15 species. Genes associated with complex regulatory landscapes generally exhibit high expression levels that remain evolutionarily stable. While the number of regulatory elements is the key driver of transcriptional output and resilience, regulatory conservation matters: elements active across mammals most effectively stabilize gene expression. In contrast, recently evolved enhancers typically contribute weakly, consistent with their high evolutionary plasticity. These effects are observed across the entire mammalian clade and are robust to potential confounders, such as the gene expression level. Using liver as a representative somatic tissue, our results illuminate how the evolutionary stability of gene expression is profoundly entwined with both the number and conservation of surrounding promoters and enhancers.
Collapse
Affiliation(s)
- Camille Berthelot
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique UMR8197, Institut National de la Santé et de la Recherche Médicale U1024, 46 Rue d'Ulm, 75230, Paris, Cedex 05, France
| | - Diego Villar
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Julie E Horvath
- Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA
- North Carolina Museum of Natural Sciences, Raleigh, NC, 27601, USA
- Evolutionary Anthropology Department, Duke University, Durham, NC, 27707, USA
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
231
|
Wang G, Yuan R, Zhu X, Ao P. Endogenous Molecular-Cellular Network Cancer Theory: A Systems Biology Approach. Methods Mol Biol 2018; 1702:215-245. [PMID: 29119508 DOI: 10.1007/978-1-4939-7456-6_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In light of ever apparent limitation of the current dominant cancer mutation theory, a quantitative hypothesis for cancer genesis and progression, endogenous molecular-cellular network hypothesis has been proposed from the systems biology perspective, now for more than 10 years. It was intended to include both the genetic and epigenetic causes to understand cancer. Its development enters the stage of meaningful interaction with experimental and clinical data and the limitation of the traditional cancer mutation theory becomes more evident. Under this endogenous network hypothesis, we established a core working network of hepatocellular carcinoma (HCC) according to the hypothesis and quantified the working network by a nonlinear dynamical system. We showed that the two stable states of the working network reproduce the main known features of normal liver and HCC at both the modular and molecular levels. Using endogenous network hypothesis and validated working network, we explored genetic mutation pattern in cancer and potential strategies to cure or relieve HCC from a totally new perspective. Patterns of genetic mutations have been traditionally analyzed by posteriori statistical association approaches in light of traditional cancer mutation theory. One may wonder the possibility of a priori determination of any mutation regularity. Here, we found that based on the endogenous network theory the features of genetic mutations in cancers may be predicted without any prior knowledge of mutation propensities. Normal hepatocyte and cancerous hepatocyte stable states, specified by distinct patterns of expressions or activities of proteins in the network, provide means to directly identify a set of most probable genetic mutations and their effects in HCC. As the key proteins and main interactions in the network are conserved through cell types in an organism, similar mutational features may also be found in other cancers. This analysis yielded straightforward and testable predictions on an accumulated and preferred mutation spectrum in normal tissue. The validation of predicted cancer state mutation patterns demonstrates the usefulness and potential of a causal dynamical framework to understand and predict genetic mutations in cancer. We also obtained the following implication related to HCC therapy, (1) specific positive feedback loops are responsible for the maintenance of normal liver and HCC; (2) inhibiting proliferation and inflammation-related positive feedback loops, and simultaneously inducing liver-specific positive feedback loop is predicated as the potential strategy to cure or relieve HCC; (3) the genesis and regression of HCC is asymmetric. In light of the characteristic property of the nonlinear dynamical system, we demonstrate that positive feedback loops must be existed as a simple and general molecular basis for the maintenance of phenotypes such as normal liver and HCC, and regulating the positive feedback loops directly or indirectly provides potential strategies to cure or relieve HCC.
Collapse
Affiliation(s)
- Gaowei Wang
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pathology, University of California, San Diego, La Jolla, CA, 92093-0864, USA
| | - Ruoshi Yuan
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Systems Biology, Harvard University, Boston, MA, USA
| | - Xiaomei Zhu
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Ping Ao
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China.
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
232
|
Apoptosis signal-regulating kinase 1 mediates the inhibitory effect of hepatocyte nuclear factor-4α on hepatocellular carcinoma. Oncotarget 2017; 7:27408-21. [PMID: 27050273 PMCID: PMC5053659 DOI: 10.18632/oncotarget.8478] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/16/2016] [Indexed: 12/24/2022] Open
Abstract
Previous studies provided substantial evidence of a striking suppressive effect of hepatocyte nuclear factor 4α (HNF4α) on hepatocellular carcinoma (HCC). Apoptosis signal-regulating kinase 1 (ASK1) is involved in death receptor-mediated apoptosis and may acts as a tumor suppressor in hepatocarcinogenesis. However, the status and function of ASK1 during HCC progression are unclear. In this study, we found that HNF4α increased ASK1 expression by directly binding to its promoter. ASK1 expression was dramatically suppressed and correlated with HNF4α levels in HCC tissues. Reduced ASK1 expression was associated with aggressive tumors and poor prognosis for human HCC. Moreover, ASK1 inhibited the malignant phenotype of HCC cells in vitro. Intratumoral ASK1 injection significantly suppressed the growth of subcutaneous HCC xenografts in nude mice. More interestingly, systemic ASK1 delivery strikingly inhibited the growth of orthotopic HCC nodules in NOD/SCID mice. In addition, inhibition of endogenous ASK1 partially reversed the suppressive effects of HNF4α on HCC. Collectively, this study highlights the suppressive effect of ASK1 on HCC and its biological significance in HCC development. These outcomes broaden the knowledge of ASK1 function in HCC progression, and provide a novel potential prognostic biomarker and therapeutic target for advanced HCC.
Collapse
|
233
|
Shukla S, Cyrta J, Murphy DA, Walczak EG, Ran L, Agrawal P, Xie Y, Chen Y, Wang S, Zhan Y, Li D, Wong EWP, Sboner A, Beltran H, Mosquera JM, Sher J, Cao Z, Wongvipat J, Koche RP, Gopalan A, Zheng D, Rubin MA, Scher HI, Chi P, Chen Y. Aberrant Activation of a Gastrointestinal Transcriptional Circuit in Prostate Cancer Mediates Castration Resistance. Cancer Cell 2017; 32:792-806.e7. [PMID: 29153843 PMCID: PMC5728174 DOI: 10.1016/j.ccell.2017.10.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 07/13/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022]
Abstract
Prostate cancer exhibits a lineage-specific dependence on androgen signaling. Castration resistance involves reactivation of androgen signaling or activation of alternative lineage programs to bypass androgen requirement. We describe an aberrant gastrointestinal-lineage transcriptome expressed in ∼5% of primary prostate cancer that is characterized by abbreviated response to androgen-deprivation therapy and in ∼30% of castration-resistant prostate cancer. This program is governed by a transcriptional circuit consisting of HNF4G and HNF1A. Cistrome and chromatin analyses revealed that HNF4G is a pioneer factor that generates and maintains enhancer landscape at gastrointestinal-lineage genes, independent of androgen-receptor signaling. In HNF4G/HNF1A-double-negative prostate cancer, exogenous expression of HNF4G at physiologic levels recapitulates the gastrointestinal transcriptome, chromatin landscape, and leads to relative castration resistance.
Collapse
Affiliation(s)
- Shipra Shukla
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joanna Cyrta
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine of Weill Cornell Medicine and New York-Presbyterian, New York, NY 10065, USA
| | - Devan A Murphy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edward G Walczak
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Leili Ran
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Praveen Agrawal
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Yuanyuan Xie
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuedan Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shangqian Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Zhan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dan Li
- Yale School of Medicine, New Haven, CT 06511, USA
| | - Elissa W P Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine of Weill Cornell Medicine and New York-Presbyterian, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Medical College, New York, NY 10065, USA
| | - Himisha Beltran
- Englander Institute for Precision Medicine of Weill Cornell Medicine and New York-Presbyterian, New York, NY 10065, USA; Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine of Weill Cornell Medicine and New York-Presbyterian, New York, NY 10065, USA
| | - Jessica Sher
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhen Cao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John Wongvipat
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard P Koche
- Center of Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Deyou Zheng
- Departments of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine of Weill Cornell Medicine and New York-Presbyterian, New York, NY 10065, USA
| | - Howard I Scher
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
234
|
Nie YL, Meng XG, Liu JY, Yan L, Wang P, Bi HZ, Kan QC, Zhang LR. Histone Modifications Regulate the Developmental Expression of Human Hepatic UDP-Glucuronosyltransferase 1A1. Drug Metab Dispos 2017; 45:1372-1378. [PMID: 29025858 DOI: 10.1124/dmd.117.076109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/29/2017] [Indexed: 12/23/2022] Open
Abstract
Human UDP-glucuronosyltransferase 1A1 (UGT1A1) is a unique enzyme involved in bilirubin conjugation. We previously characterized the hepatic expression of transcription factors affecting UGT1A1 expression during development. Accordingly, in this study, we characterized the ontogenetic expression of hepatic UGT1A1 from the perspective of epigenetic regulation. We observed significant histone-3-lysine-4 dimethylation (H3K4me2) enrichment in the adult liver and histone-3-lysine-27 trimethylation (H3K27me3) enrichment in the fetal liver, indicating that dynamic alterations of histone methylation were associated with ontogenetic UGT1A1 expression. We further showed that the transcription factor hepatocyte nuclear factor 1α (HNF1A) affects histone modifications around the UGT1A1 locus. In particular, we demonstrated that by recruiting HNF1A the cofactors mixed-lineage leukemia 1, the transcriptional coactivator p300, and nuclear receptor coactivator 6 aggregate at the UGT1A1 promoter, thereby regulating histone modifications and subsequent UGT1A1 expression. In this study, we proposed new ideas for the developmental regulation of metabolic enzymes via histone modifications, and our findings will potentially contribute to the development of age-specific therapies.
Collapse
Affiliation(s)
- Ya-Li Nie
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University (Y.-L.N., J.-Y.L., L.Y., P.W., H.-Z.B., L.-R.Z.); Laboratory of Cardiovascular Disease and Drug Research, Seventh People's Hospital of Zhengzhou (X.-G.M.); Department of Clinical Pharmacology, First Affiliated Hospital, Zhengzhou University (Q.-C.K.), Zhengzhou, People's Republic of China
| | - Xiang-Guang Meng
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University (Y.-L.N., J.-Y.L., L.Y., P.W., H.-Z.B., L.-R.Z.); Laboratory of Cardiovascular Disease and Drug Research, Seventh People's Hospital of Zhengzhou (X.-G.M.); Department of Clinical Pharmacology, First Affiliated Hospital, Zhengzhou University (Q.-C.K.), Zhengzhou, People's Republic of China
| | - Jing-Yang Liu
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University (Y.-L.N., J.-Y.L., L.Y., P.W., H.-Z.B., L.-R.Z.); Laboratory of Cardiovascular Disease and Drug Research, Seventh People's Hospital of Zhengzhou (X.-G.M.); Department of Clinical Pharmacology, First Affiliated Hospital, Zhengzhou University (Q.-C.K.), Zhengzhou, People's Republic of China
| | - Liang Yan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University (Y.-L.N., J.-Y.L., L.Y., P.W., H.-Z.B., L.-R.Z.); Laboratory of Cardiovascular Disease and Drug Research, Seventh People's Hospital of Zhengzhou (X.-G.M.); Department of Clinical Pharmacology, First Affiliated Hospital, Zhengzhou University (Q.-C.K.), Zhengzhou, People's Republic of China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University (Y.-L.N., J.-Y.L., L.Y., P.W., H.-Z.B., L.-R.Z.); Laboratory of Cardiovascular Disease and Drug Research, Seventh People's Hospital of Zhengzhou (X.-G.M.); Department of Clinical Pharmacology, First Affiliated Hospital, Zhengzhou University (Q.-C.K.), Zhengzhou, People's Republic of China
| | - Hong-Zheng Bi
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University (Y.-L.N., J.-Y.L., L.Y., P.W., H.-Z.B., L.-R.Z.); Laboratory of Cardiovascular Disease and Drug Research, Seventh People's Hospital of Zhengzhou (X.-G.M.); Department of Clinical Pharmacology, First Affiliated Hospital, Zhengzhou University (Q.-C.K.), Zhengzhou, People's Republic of China
| | - Quan-Cheng Kan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University (Y.-L.N., J.-Y.L., L.Y., P.W., H.-Z.B., L.-R.Z.); Laboratory of Cardiovascular Disease and Drug Research, Seventh People's Hospital of Zhengzhou (X.-G.M.); Department of Clinical Pharmacology, First Affiliated Hospital, Zhengzhou University (Q.-C.K.), Zhengzhou, People's Republic of China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University (Y.-L.N., J.-Y.L., L.Y., P.W., H.-Z.B., L.-R.Z.); Laboratory of Cardiovascular Disease and Drug Research, Seventh People's Hospital of Zhengzhou (X.-G.M.); Department of Clinical Pharmacology, First Affiliated Hospital, Zhengzhou University (Q.-C.K.), Zhengzhou, People's Republic of China
| |
Collapse
|
235
|
Nakamori D, Akamine H, Takayama K, Sakurai F, Mizuguchi H. Direct conversion of human fibroblasts into hepatocyte-like cells by ATF5, PROX1, FOXA2, FOXA3, and HNF4A transduction. Sci Rep 2017; 7:16675. [PMID: 29192290 PMCID: PMC5709502 DOI: 10.1038/s41598-017-16856-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/19/2017] [Indexed: 12/27/2022] Open
Abstract
Recently, it has been reported that human hepatocyte-like cells can be generated from fibroblasts by direct reprogramming technology. However, the conversion efficiency of human induced hepatocyte-like cells (hiHeps) is not high enough. In addition, comparative analysis with the existing models of hepatocytes, such as human iPS cell-derived hepatocyte-like cells and primary human hepatocytes, has not been sufficiently carried out. In this study, we screened hepatic transcription factors for efficient direct hepatic reprogramming and compared hepatic functions between hiHeps and other existing hepatocyte models. We found that human fibroblasts were efficiently converted into hiHeps by using a combination of ATF5, PROX1, FOXA2, FOXA3, and HNF4A (albumin+/alpha-1 antitrypsin+ cells = 27%, asialoglycoprotein receptor 1+ cells = 22%). The CYP expression levels and CYP activities in hiHeps were higher than those in human iPS cell-derived hepatocyte-like cells, but lower than those in short-term (4 hr) cultured primary human hepatocytes and primary human hepatocytes collected immediately after thawing. These results suggested that functional hiHeps could be efficiently generated by ATF5, PROX1, FOXA2, FOXA3, and HNF4A transduction. We believe that hiHeps generated by our method will be useful for the drug-discovery activities such as hepatotoxicity screening and drug metabolism tests.
Collapse
Affiliation(s)
- Daiki Nakamori
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Hiroki Akamine
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.,Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.,Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Project, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan. .,Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan. .,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
236
|
Hepatocyte nuclear factor 1A deficiency causes hemolytic anemia in mice by altering erythrocyte sphingolipid homeostasis. Blood 2017; 130:2786-2798. [PMID: 29109103 DOI: 10.1182/blood-2017-03-774356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022] Open
Abstract
The hepatocyte nuclear factor (HNF) family regulates complex networks of metabolism and organ development. Human mutations in its prototypical member HNF1A cause maturity-onset diabetes of the young (MODY) type 3. In this study, we identified an important role for HNF1A in the preservation of erythrocyte membrane integrity, calcium homeostasis, and osmotic resistance through an as-yet unrecognized link of HNF1A to sphingolipid homeostasis. HNF1A-/- mice displayed microcytic hypochromic anemia with reticulocytosis that was partially compensated by avid extramedullary erythropoiesis at all erythroid stages in the spleen thereby excluding erythroid differentiation defects. Morphologically, HNF1A-/- erythrocytes resembled acanthocytes and displayed increased phosphatidylserine exposure, high intracellular calcium, and elevated osmotic fragility. Sphingolipidome analysis by mass spectrometry revealed substantial and tissue-specific sphingolipid disturbances in several tissues including erythrocytes with the accumulation of sphingosine as the most prominent common feature. All HNF1A-/- erythrocyte defects could be simulated by exposure of wild-type (WT) erythrocytes to sphingosine in vitro and attributed in part to sphingosine-induced suppression of the plasma-membrane Ca2+-ATPase activity. Bone marrow transplantation rescued the anemia phenotype in vivo, whereas incubation with HNF1A-/- plasma increased the osmotic fragility of WT erythrocytes in vitro. Our data suggest a non-cell-autonomous erythrocyte defect secondary to the sphingolipid changes caused by HNF1A deficiency. Transcriptional analysis revealed 4 important genes involved in sphingolipid metabolism to be deregulated in HNF1A deficiency: Ormdl1, sphingosine kinase-2, neutral ceramidase, and ceramide synthase-5. The considerable erythrocyte defects in murine HNF1A deficiency encourage clinical studies to explore the hematological consequences of HNF1A deficiency in human MODY3 patients.
Collapse
|
237
|
Moon H, Ju HL, Chung SI, Cho KJ, Eun JW, Nam SW, Han KH, Calvisi DF, Ro SW. Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail. Gastroenterology 2017; 153:1378-1391.e6. [PMID: 28734833 DOI: 10.1053/j.gastro.2017.07.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Transforming growth factor beta (TGF-β) suppresses early stages of tumorigenesis, but also contributes to migration and metastasis of cancer cells. A large number of human tumors contain mutations that inactivate its receptors, or downstream proteins such as Smad transcription factors, indicating that the TGF-β signaling pathway prevents tumor growth. We investigated the effects of TGF-β inhibition on liver tumorigenesis in mice. METHODS C57BL/6 mice received hydrodynamic tail-vein injections of transposons encoding HRASG12V and a short hairpin RNA (shRNA) to down-regulate p53, or those encoding HRASG12V and MYC, or those encoding HRASG12V and TAZS89A, to induce liver tumor formation; mice were also given injections of transposons encoding SMAD7 or shRNA against SMAD2, SMAD3, SMAD4, or SNAI1 (Snail), with or without ectopic expression of Snail. Survival times were compared, and livers were weighted and examined for tumors. Liver tumor tissues were analyzed by quantitative reverse-transcription PCR, RNA sequencing, immunoblots, and immunohistochemistry. We analyzed gene expression levels in human hepatocellular carcinoma samples deposited in The Cancer Genome Atlas. A cell proliferation assay was performed using human liver cancer cell lines (HepG2 and Huh7) stably expressing Snail or shRNA against Snail. RESULTS TGF-β inhibition via overexpression of SMAD7 (or knockdown of SMAD2, SMAD3, or SMAD4) consistently reduced formation and growth of liver tumors in mice that expressed activated RAS plus shRNA against p53, or in mice that expressed activated RAS and TAZ. TGF-β signaling activated transcription of the Snail gene in liver tumors induced by HRASG12V and shRNA against p53, and by activated RAS and TAZ. Knockdown of Snail reduced liver tumor formation in both tumor models. Ectopic expression of Snail restored liver tumorigenesis suppressed by disruption of TGF-β signaling. In human hepatocellular carcinoma, Snail expression correlated with TGF-β activation. Ectopic expression of Snail increased cellular proliferation, whereas Snail knockdown led to reduced proliferation in human hepatocellular carcinoma cells. CONCLUSIONS In analyses of transgenic mice, we found TGF-β signaling to be required for formation of liver tumors upon expression of activated RAS and shRNA down-regulating p53, and upon expression of activated RAS and TAZ. Snail is the TGF-β target that is required for hepatic tumorigenesis in these models.
Collapse
Affiliation(s)
- Hyuk Moon
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 Project for Medical Science College of Medicine, Yonsei University, Seoul, South Korea
| | - Hye-Lim Ju
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sook In Chung
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyung Joo Cho
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 Project for Medical Science College of Medicine, Yonsei University, Seoul, South Korea
| | - Jung Woo Eun
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kwang-Hyub Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Diego F Calvisi
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Simon Weonsang Ro
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
238
|
Karaca E, Onay H, Cetinkalp S, Aykut A, Göksen D, Ozen S, Atik T, Darcan S, Tekin IM, Ozkınay F. The spectrum of HNF1A gene mutations in patients with MODY 3 phenotype and identification of three novel germline mutations in Turkish Population. Diabetes Metab Syndr 2017; 11 Suppl 1:S491-S496. [PMID: 28395978 DOI: 10.1016/j.dsx.2017.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/31/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes mellitus characterized by autosomal dominant inheritance, early age of onset, and pancreatic beta cell dysfunction. Heterozygous mutations in several genes may cause MODY. METHODS In the present study, we investigated the molecular spectrum of HNF1A (hepatocyte nuclear factor 1a) mutations, in the individuals referred to a reference center for molecular genetic analysis. Mutations screening was performed in a group of 136 unrelated patients (average age 17.22 years) selected by clinical characterization of MODY. Mutation screening involved direct sequencing of the HNF1A gene. RESULTS Among 136 individuals analyzed, 10 were carrying heterozygous HNF1A mutations, 3 of them being novel. Clinical features, such as age of diabetes at diagnosis or severity of hyperglycemia, were not related to the mutation type or location. No clear phenotype - genotype correlations were identified. CONCLUSIONS As a conclusion MODY resulted from HNF1A mutations shows heterogeneity at both phenotypic and molecular levels in Turkish population.
Collapse
Affiliation(s)
- Emin Karaca
- Department of Medical Genetics, Ege University Medical Faculty, Izmir, Turkey.
| | - Huseyin Onay
- Department of Medical Genetics, Ege University Medical Faculty, Izmir, Turkey
| | - Sevki Cetinkalp
- Department of Internal Medicine, Division of Endocrinology, Ege University Medical Faculty, Izmir, Turkey
| | - Ayca Aykut
- Department of Medical Genetics, Ege University Medical Faculty, Izmir, Turkey
| | - Damla Göksen
- Division of Pediatric Endocrinology, Department of Pediatrics, Ege University Medical Faculty Izmir, Turkey
| | - Samim Ozen
- Division of Pediatric Endocrinology, Department of Pediatrics, Ege University Medical Faculty Izmir, Turkey
| | - Tahir Atik
- Division of Genetics, Department of Pediatrics, Ege University Medical Faculty Izmir, Turkey
| | - Sukran Darcan
- Division of Pediatric Endocrinology, Department of Pediatrics, Ege University Medical Faculty Izmir, Turkey
| | - Ismihan Merve Tekin
- Department of Medical Genetics, Ege University Medical Faculty, Izmir, Turkey
| | - Ferda Ozkınay
- Department of Medical Genetics, Ege University Medical Faculty, Izmir, Turkey
| |
Collapse
|
239
|
Ranjan A, Ansari SA. Therapeutic potential of Mediator complex subunits in metabolic diseases. Biochimie 2017; 144:41-49. [PMID: 29061530 DOI: 10.1016/j.biochi.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/16/2017] [Indexed: 01/16/2023]
Abstract
The multisubunit Mediator is an evolutionary conserved transcriptional coregulatory complex in eukaryotes. It is needed for the transcriptional regulation of gene expression in general as well as in a gene specific manner. Mediator complex subunits interact with different transcription factors as well as components of RNA Pol II transcription initiation complex and in doing so act as a bridge between gene specific transcription factors and general Pol II transcription machinery. Specific interaction of various Mediator subunits with nuclear receptors (NRs) and other transcription factors involved in metabolism has been reported in different studies. Evidences indicate that ligand-activated NRs recruit Mediator complex for RNA Pol II-dependent gene transcription. These NRs have been explored as therapeutic targets in different metabolic diseases; however, they show side-effects as targets due to their overlapping involvement in different signaling pathways. Here we discuss the interaction of various Mediator subunits with transcription factors involved in metabolism and whether specific interaction of these transcription factors with Mediator subunits could be potentially utilized as therapeutic strategy in a variety of metabolic diseases.
Collapse
Affiliation(s)
- Amol Ranjan
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, MO, 64110, USA
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, AlAin, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
240
|
Sneha P, Thirumal Kumar D, Lijo J, Megha M, Siva R, George Priya Doss C. Probing the Protein-Protein Interaction Network of Proteins Causing Maturity Onset Diabetes of the Young. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:167-202. [PMID: 29412996 DOI: 10.1016/bs.apcsb.2017.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein-protein interactions (PPIs) play vital roles in various cellular pathways. Most of the proteins perform their responsibilities by interacting with an enormous number of proteins. Understanding these interactions of the proteins and their interacting partners has shed light toward the field of drug discovery. Also, PPIs enable us to understand the functions of a protein by understanding their interacting partners. Consequently, in the current study, PPI network of the proteins causing MODY (Maturity Onset Diabetes of the Young) was drawn, and their correlation in causing a disease condition was marked. MODY is a monogenic type of diabetes caused by autosomal dominant inheritance. Extensive research on transcription factor and their corresponding genetic pathways have been studied over the last three decades, yet, very little is understood about the molecular modalities of highly dynamic interactions between transcription factors, genomic DNA, and the protein partners. The current study also reveals the interacting patterns of the various transcription factors. Consequently, in the current work, we have devised a PPI analysis to understand the plausible pathway through which the protein leads to a deformity in glucose uptake.
Collapse
Affiliation(s)
- P Sneha
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - D Thirumal Kumar
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Jose Lijo
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - M Megha
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - R Siva
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
241
|
Labriet A, De Mattia E, Cecchin E, Lévesque É, Jonker D, Couture F, Buonadonna A, D'Andrea M, Villeneuve L, Toffoli G, Guillemette C. Improved Progression-Free Survival in Irinotecan-Treated Metastatic Colorectal Cancer Patients Carrying the HNF1A Coding Variant p.I27L. Front Pharmacol 2017; 8:712. [PMID: 29066969 PMCID: PMC5641335 DOI: 10.3389/fphar.2017.00712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/22/2017] [Indexed: 01/15/2023] Open
Abstract
Hepatocyte nuclear factor 1-alpha (HNF1A) is a liver-enriched transcription factor that plays a key role in many aspects of hepatic functions including detoxification processes. We examined whether HNF1A polymorphisms are associated with clinical outcomes in two independent cohorts combining 417 European ancestry patients with metastatic colorectal cancer (mCRC) treated with irinotecan-based chemotherapy. The intronic rs2244608A>G marker was predictive of an improved progression-free survival with a trend in the Canadian cohort and reaching significance in the Italian cohort, with hazard ratios (HR) of 0.74 and 0.72, P = 0.076 and 0.038, respectively. A strong association between rs2244608A>G and improved PFS was found in the combined analysis of both cohorts (HR = 0.72; P = 0.002). Consistent with an altered HNF1A function, mCRC carriers of the rs2244608G minor allele displayed enhanced drug exposure by 45% (P = 0.032) compared to non-carriers. In Caucasians, rs2244608A>G is in strong linkage with the coding variant rs1169288c.79A>C (HNF1A p.I27L). In healthy donors, we observed an altered hepatic (ABCC1, P = 0.009, ABCC2, P = 0.048 and CYP3A5, P = 0.001; n = 89) and intestinal (TOP1, P = 0.004; n = 75) gene expression associated with the rs1169288C allele. In addition, the rs1169288C polymorphism could significantly increase the ABCC1 promoter activity by 27% (P = 0.008) and 15% (P = 0.041) in the human kidney HEK293 and the human liver HepG2 cell lines, respectively. Our findings suggest that the HNF1A rs2244608, or the tightly linked functional coding variant p.I27L, might be a potential prognostic marker with irinotecan-based regimens.
Collapse
Affiliation(s)
- Adrien Labriet
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - Elena De Mattia
- Clinical and Experimental Pharmacology, IRCCS National Cancer Institute 'Centro di Riferimento Oncologico', Aviano, Italy
| | - Erika Cecchin
- Clinical and Experimental Pharmacology, IRCCS National Cancer Institute 'Centro di Riferimento Oncologico', Aviano, Italy
| | - Éric Lévesque
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Derek Jonker
- Division of Medical Oncology, Department of Medicine, Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Félix Couture
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Angela Buonadonna
- Medical Oncology Unit, IRCCS National Cancer Institute 'Centro di Riferimento Oncologico', Aviano, Italy
| | - Mario D'Andrea
- Medical Oncology Unit, San Filippo Neri Hospital, Rome, Italy
| | - Lyne Villeneuve
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - Giuseppe Toffoli
- Clinical and Experimental Pharmacology, IRCCS National Cancer Institute 'Centro di Riferimento Oncologico', Aviano, Italy
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| |
Collapse
|
242
|
Armour SM, Remsberg JR, Damle M, Sidoli S, Ho WY, Li Z, Garcia BA, Lazar MA. An HDAC3-PROX1 corepressor module acts on HNF4α to control hepatic triglycerides. Nat Commun 2017; 8:549. [PMID: 28916805 PMCID: PMC5601916 DOI: 10.1038/s41467-017-00772-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/26/2017] [Indexed: 01/23/2023] Open
Abstract
The histone deacetylase HDAC3 is a critical mediator of hepatic lipid metabolism, and liver-specific deletion of HDAC3 leads to fatty liver. To elucidate the underlying mechanism, here we report a method of cross-linking followed by mass spectrometry to define a high-confidence HDAC3 interactome in vivo that includes the canonical NCoR-HDAC3 complex as well as Prospero-related homeobox 1 protein (PROX1). HDAC3 and PROX1 co-localize extensively on the mouse liver genome, and are co-recruited by hepatocyte nuclear factor 4α (HNF4α). The HDAC3-PROX1 module controls the expression of a gene program regulating lipid homeostasis, and hepatic-specific ablation of either component increases triglyceride content in liver. These findings underscore the importance of specific combinations of transcription factors and coregulators in the fine tuning of organismal metabolism.HDAC3 is a critical mediator of hepatic lipid metabolism and its loss leads to fatty liver. Here, the authors characterize the liver HDAC3 interactome in vivo, provide evidence that HDAC3 interacts with PROX1, and show that HDAC3 and PROX1 control expression of genes regulating lipid homeostasis.
Collapse
Affiliation(s)
- Sean M Armour
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Jarrett R Remsberg
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Manashree Damle
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Wesley Y Ho
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Zhenghui Li
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA. .,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.
| |
Collapse
|
243
|
Cardano M, Diaferia GR, Conti L, Baronchelli S, Sessa A, Broccoli V, Barbieri A, De Blasio P, Biunno I. mSEL-1L deficiency affects vasculogenesis and neural stem cell lineage commitment. J Cell Physiol 2017; 233:3152-3163. [PMID: 28816361 DOI: 10.1002/jcp.26153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/15/2017] [Indexed: 11/09/2022]
Abstract
mSEL-1L is a highly conserved ER-resident type I protein, involved in the degradation of misfolded peptides through the ubiquitin-proteasome system (UPS), a pathway known to control the plasticity of the vascular smooth muscle cells (VSMC) phenotype and survival. In this article, we demonstrate that mSEL-1L deficiency interferes with the murine embryonic vascular network, showing particular irregularities in the intracranic and intersomitic neurovascular units and in the cerebral capillary microcirculation. During murine embryogenesis, mSEL-1L is expressed in cerebral areas known to harbor progenitor neural cells, while in the adult brain the protein is specifically restricted to the stem cell niches, co-localizing with Sox2 and Nestin. Null mice are characterized by important defects in the development of telenchephalic regions, revealing conspicuous aberration in neural stem cell lineage commitment. Moreover, mSEL-1L depletion in vitro and in vivo appears to affect the harmonic differentiation of the NSCs, by negatively influencing the corticogenesis processes. Overall, the data presented suggests that the drastic phenotypic characteristics exhibited in mSEL-1L null mice can, in part, be explained by the negative influence it plays on Notch1 signaling pathway.
Collapse
Affiliation(s)
| | | | - Luciano Conti
- Laboratory of Stem Cell Biology, Centre for Integrative Biology-CIBIO, Università degli Studi di Trento, Trento, Italy
| | - Simona Baronchelli
- Institute of Genetic and Biomedical Research (IRGB) of the National Research Council, Milano, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,CNR Institute of Neuroscience, Milan, Italy
| | - Andrea Barbieri
- Institute of Genetic and Biomedical Research (IRGB) of the National Research Council, Milano, Italy
| | | | - Ida Biunno
- Institute of Genetic and Biomedical Research (IRGB) of the National Research Council, Milano, Italy.,IRCCS Multimedica, Milano, Italy
| |
Collapse
|
244
|
Hang HL, Liu XY, Wang HT, Xu N, Bian JM, Zhang JJ, Xia L, Xia Q. Hepatocyte nuclear factor 4A improves hepatic differentiation of immortalized adult human hepatocytes and improves liver function and survival. Exp Cell Res 2017; 360:81-93. [PMID: 28870599 DOI: 10.1016/j.yexcr.2017.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 12/22/2022]
Abstract
Immortalized human hepatocytes (IHH) could provide an unlimited supply of hepatocytes, but insufficient differentiation and phenotypic instability restrict their clinical application. This study aimed to determine the role of hepatocyte nuclear factor 4A (HNF4A) in hepatic differentiation of IHH, and whether encapsulation of IHH overexpressing HNF4A could improve liver function and survival in rats with acute liver failure (ALF). Primary human hepatocytes were transduced with lentivirus-mediated catalytic subunit of human telomerase reverse transcriptase (hTERT) to establish IHH. Cells were analyzed for telomerase activity, proliferative capacity, hepatocyte markers, and tumorigenicity (c-myc) expression. Hepatocyte markers, hepatocellular functions, and morphology were studied in the HNF4A-overexpressing IHH. Hepatocyte markers and karyotype analysis were completed in the primary hepatocytes using shRNA knockdown of HNF4A. Nuclear translocation of β-catenin was assessed. Rat models of ALF were treated with encapsulated IHH or HNF4A-overexpressing IHH. A HNF4A-positive IHH line was established, which was non-tumorigenic and conserved properties of primary hepatocytes. HNF4A overexpression significantly enhanced mRNA levels of genes related to hepatic differentiation in IHH. Urea levels were increased by the overexpression of HNF4A, as measured 24h after ammonium chloride addition, similar to that of primary hepatocytes. Chromosomal abnormalities were observed in primary hepatocytes transfected with HNF4A shRNA. HNF4α overexpression could significantly promote β-catenin activation. Transplantation of HNF4A overexpressing IHH resulted in better liver function and survival of rats with ALF compared with IHH. HNF4A improved hepatic differentiation of IHH. Transplantation of HNF4A-overexpressing IHH could improve the liver function and survival in a rat model of ALF.
Collapse
Affiliation(s)
- Hua-Lian Hang
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xin-Yu Liu
- Department of General Surgery, Nanjing Hospital Affiliated to NanJing Medical University, Nanjing 210006, China
| | - Hai-Tian Wang
- Department of General Surgery, Nanjing Hospital Affiliated to NanJing Medical University, Nanjing 210006, China
| | - Ning Xu
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jian-Min Bian
- Department of General Surgery, Nanjing Hospital Affiliated to NanJing Medical University, Nanjing 210006, China
| | - Jian-Jun Zhang
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
245
|
Abstract
Macrophages play essential roles in the response to injury and infection and contribute to the development and/or homeostasis of the various tissues they reside in. Conversely, macrophages also influence the pathogenesis of metabolic, neurodegenerative, and neoplastic diseases. Mechanisms that contribute to the phenotypic diversity of macrophages in health and disease remain poorly understood. Here we review the recent application of genome-wide approaches to characterize the transcriptomes and epigenetic landscapes of tissue-resident macrophages. These studies are beginning to provide insights into how distinct tissue environments are interpreted by transcriptional regulatory elements to drive specialized programs of gene expression.
Collapse
|
246
|
Yao J, Guihard PJ, Wu X, Blazquez-Medela AM, Spencer MJ, Jumabay M, Tontonoz P, Fogelman AM, Boström KI, Yao Y. Vascular endothelium plays a key role in directing pulmonary epithelial cell differentiation. J Cell Biol 2017; 216:3369-3385. [PMID: 28838957 PMCID: PMC5626536 DOI: 10.1083/jcb.201612122] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/26/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
J. Yao et al. demonstrate that loss of MGP, a BMP inhibitor, causes abnormal hepatic differentiation in lungs. They find that interactions between endothelium and epithelium separate pulmonary from hepatic differentiation during development. Lack of MGP triggers hepatic differentiation in the pulmonary epithelium, as regulated by the endothelium. The vascular endothelium is critical for induction of appropriate lineage differentiation in organogenesis. In this study, we report that dysfunctional pulmonary endothelium, resulting from the loss of matrix Gla protein (MGP), causes ectopic hepatic differentiation in the pulmonary epithelium. We demonstrate uncontrolled induction of the hepatic growth factor (HGF) caused by dysregulated cross talk between pulmonary endothelium and epithelium in Mgp-null lungs. Elevated HGF induced hepatocyte nuclear factor 4 α (Hnf4a), which competed with NK2 homeobox 1 (Nkx2.1) for binding to forkhead box A2 (Foxa2) to drive hepatic differentiation in Mgp-null airway progenitor cells. Limiting endothelial HGF reduced Hnf4a, abolished interference of Hnf4a with Foxa2, and reduced hepatic differentiation in Mgp-null lungs. Together, our results suggest that endothelial–epithelial interactions, maintained by MGP, are essential in pulmonary cell differentiation.
Collapse
Affiliation(s)
- Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Pierre J Guihard
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Ana M Blazquez-Medela
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Melissa J Spencer
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Alan M Fogelman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA .,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
247
|
Wang X, Li W, Ma L, Ping F, Liu J, Wu X, Mao J, Wang X, Nie M. Variants in MODY genes associated with maternal lipids profiles in second trimester of pregnancy. J Gene Med 2017; 19. [PMID: 28591938 DOI: 10.1002/jgm.2962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/15/2017] [Accepted: 06/03/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xiaojing Wang
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Wei Li
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Liangkun Ma
- Department of Obstetrics and Gynecology; Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Juntao Liu
- Department of Obstetrics and Gynecology; Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Xueyan Wu
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Jiangfeng Mao
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Xi Wang
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Min Nie
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| |
Collapse
|
248
|
Dai XQ, Cai WT, Wu X, Chen Y, Han FM. Protocatechuic acid inhibits hepatitis B virus replication by activating ERK1/2 pathway and down-regulating HNF4α and HNF1α in vitro. Life Sci 2017; 180:68-74. [DOI: 10.1016/j.lfs.2017.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 01/02/2023]
|
249
|
Piccolo P, Annunziata P, Soria LR, Attanasio S, Barbato A, Castello R, Carissimo A, Quagliata L, Terracciano LM, Brunetti-Pierri N. Down-regulation of hepatocyte nuclear factor-4α and defective zonation in livers expressing mutant Z α1-antitrypsin. Hepatology 2017; 66:124-135. [PMID: 28295475 DOI: 10.1002/hep.29160] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/09/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022]
Abstract
UNLABELLED α1 -Antitrypsin (AAT) deficiency is one of the most common genetic disorders and the liver disease due to the Z mutant of AAT (ATZ) is a prototype of conformational disorder due to protein misfolding with consequent aberrant intermolecular protein aggregation. In the present study, we found that livers of PiZ transgenic mice expressing human ATZ have altered expression of a network of hepatocyte transcriptional factors, including hepatocyte nuclear factor-4α, that is early down-regulated and induces a transcriptional repression of ATZ expression. Reduced hepatocyte nuclear factor-4α was associated with activation of β-catenin, which regulates liver zonation. Livers of PiZ mice and human patients with AAT deficiency were both found to have a severe perturbation of liver zonation. Functionally, PiZ mice showed a severe defect of ureagenesis, as shown by increased baseline ammonia, and reduced urea production and survival after an ammonia challenge. Down-regulation of hepatocyte nuclear factor-4α expression and defective zonation in livers have not been recognized so far as features of the liver disease caused by ATZ and are likely involved in metabolic disturbances and in the increased risk of hepatocellular carcinoma in patients with AAT deficiency. CONCLUSION The findings of this study are consistent with the concept that abnormal AAT protein conformation and intrahepatic accumulation have broad effects on metabolic liver functions. (Hepatology 2017;66:124-135).
Collapse
Affiliation(s)
- Pasquale Piccolo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | - Leandro R Soria
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Sergio Attanasio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Anna Barbato
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Raffaele Castello
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | - Luca Quagliata
- Molecular Pathology Division, Institute of Pathology, University of Basel, Basel, Switzerland
| | - Luigi M Terracciano
- Molecular Pathology Division, Institute of Pathology, University of Basel, Basel, Switzerland
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Department of Translational Medicine, Federico II University, Naples, Italy
| |
Collapse
|
250
|
Ni Q, Ding K, Wang KQ, He J, Yin C, Shi J, Zhang X, Xie WF, Shi YQ. Deletion of HNF1α in hepatocytes results in fatty liver-related hepatocellular carcinoma in mice. FEBS Lett 2017; 591:1947-1957. [PMID: 28547778 DOI: 10.1002/1873-3468.12689] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/17/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022]
Abstract
Hepatocyte nuclear factor 1α (HNF1α) is a liver-enriched transcription factor that is critical for the maintenance of hepatocyte function. Our previous studies have demonstrated the therapeutic effects of HNF1α on hepatic fibrosis and hepatocellular carcinoma (HCC) in animals. In this study, we created hepatocyte-specific Hnf1α knockout mice using the Cre-loxP recombination system. The knockout mice display increased fatty acid synthesis in the liver. Moreover, these mice spontaneously develop HCC through fatty liver without cirrhosis. Inflammatory cytokines, such as tumor necrosis factor α and IL-6, are upregulated and accompanied by increased phosphorylation of Akt, p-65 and STAT3 in the livers of HNF1α knockout mice. Our findings suggest that HNF1α plays a crucial role in hepatocyte lipid metabolism and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Qi Ni
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kai Ding
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ke-Qi Wang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jin He
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chuan Yin
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian Shi
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yong-Quan Shi
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|