201
|
Sassmann-Schweda A, Singh P, Tang C, Wietelmann A, Wettschureck N, Offermanns S. Increased apoptosis and browning of TAK1-deficient adipocytes protects against obesity. JCI Insight 2016; 1:e81175. [PMID: 27699262 DOI: 10.1172/jci.insight.81175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Obesity is an increasing health problem worldwide, and nonsurgical strategies to treat obesity have remained rather inefficient. We here show that acute loss of TGF-β-activated kinase 1 (TAK1) in adipocytes results in an increased rate of apoptotic adipocyte death and increased numbers of M2 macrophages in white adipose tissue. Mice with adipocyte-specific TAK1 deficiency have reduced adipocyte numbers and are resistant to obesity induced by a high-fat diet or leptin deficiency. In addition, adipocyte-specific TAK1-deficient mice under a high-fat diet showed increased energy expenditure, which was accompanied by enhanced expression of the uncoupling protein UCP1. Interestingly, acute induction of adipocyte-specific TAK1 deficiency in mice already under a high-fat diet was able to stop further weight gain and improved glucose tolerance. Thus, loss of TAK1 in adipocytes reduces the total number of adipocytes, increases browning of white adipose tissue, and may be an attractive strategy to treat obesity, obesity-dependent diabetes, and other associated complications.
Collapse
Affiliation(s)
| | | | | | - Astrid Wietelmann
- Scientific Service Group Nuclear Magnetic Resonance Imaging, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nina Wettschureck
- Department of Pharmacology and.,Medical Faculty, Goethe-University Frankfurt, Frankfurt, Germany
| | - Stefan Offermanns
- Department of Pharmacology and.,Medical Faculty, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
202
|
Thyfault JP, Wright DC. "Weighing" the effects of exercise and intrinsic aerobic capacity: are there beneficial effects independent of changes in weight? Appl Physiol Nutr Metab 2016; 41:911-6. [PMID: 27512815 DOI: 10.1139/apnm-2016-0122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has been known for centuries that regularly performed exercise has beneficial effects on metabolic health. Owing to its central role in locomotion and the fact that it accounts for a large majority of whole-body glucose disposal and fatty acid oxidation, the effects of exercise on skeletal muscle has been a central focus in exercise physiology research. With this being said it is becoming increasingly well recognized that both adipose tissue and liver metabolism are robustly modified by exercise, especially in conditions of obesity and insulin resistance. One of the difficult questions to address is if the effects of exercise are direct or occur secondary to exercise-induced weight loss. The purpose of this review is to highlight recent work that has attempted to tease out the protective effects of exercise, or intrinsic aerobic capacity, against metabolic and inflammatory challenges as it relates to the treatment and prevention of obesity and insulin resistance. Recent studies reporting improvements in liver and adipose tissue insulin action following a single bout of exercise will also be discussed. The research highlighted in this review sheds new insight into protective, anti-inflammatory effects of exercise that occur largely independent of changes in adiposity and body weight.
Collapse
Affiliation(s)
- John P Thyfault
- a Molecular and Integrative Physiology, University of Kansas Medical Center, 2067 Hemenway Life Sciences and Innovation Center, MS:3043, 3901 Rainbow Blvd., Kansas, KS 66160, USA.,b Research Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA
| | - David C Wright
- c Department of Human Health and Nutritional Sciences, Room 343 Animal Sciences Building, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
203
|
Ozmen F, Ozmen MM, Gelecek S, Bilgic İ, Moran M, Sahin TT. STEAP4 and HIF-1α gene expressions in visceral and subcutaneous adipose tissue of the morbidly obese patients. Mol Immunol 2016; 73:53-59. [PMID: 27058639 DOI: 10.1016/j.molimm.2016.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 02/05/2023]
Abstract
AIM AND BACKGROUND Obesity is a multifactorial disease in which environmental and genetic factors play an integrated role. Determining such target genes will help to elucidate the mechanisms underlying complex diseases such as obesity and diabetes which are usually seen together. Present study investigates the expression levels of STEAP4 and HIF-1α in visceral and subcutaneous adipose tissue. PATIENTS AND METHODS 30(6M) morbidly obese patients undergoing bariatric surgery were included in the study. The patients were grouped according to the BMI as Group I (BMI <50kg/m(2)) and Group II (BMI ≥50kg/m(2)). Samples from visceral (omentum) and subcutaneous adipose tissues were obtained from each patient and real-time PCR (qPCR) was carried out for STEAP4 and HIF-1α gene expressions. Correlations between expression levels and clinical parameters were analyzed. RESULTS Mean age of the patients recruited to the study was 37.4 (18-64) years. Mean BMI was 46 (36-60) kg/m(2). STEAP4 expression in visceral adipose tissue was significantly higher than subcutaneous tissue. Visceral STEAP4 expression was also found to be reduced with increased BMI. It was also lower in patients with HbA1C over 6. Furthermore, expression of subcutaneous and visceral HIF-1α was significantly higher in Group II. There was a significant correlation between BMI, glycosylated hemoglobin, STEAP4 and HIF-1α gene expression. CONCLUSIONS Obesity and related disease are linked with the fact that there is a low grade inflammation in the adipose tissue of the obese individuals. Counter-regulatory processes such as STEAP4 protein family are overwhelmed by the proinflammatory stimuli. HIF-1α expression is increased due to tissue hypoxia and pro-inflammatory stimuli in the obese individuals, which results in increased visceral STEAP4 expressions.
Collapse
Affiliation(s)
- Fusun Ozmen
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | - M Mahir Ozmen
- Department of Surgery, Ankara Numune Teaching and Research Hospital, Ankara, Turkey; Department of Surgery, Medical School, Hacettepe University, Turkey.
| | - Sibel Gelecek
- Department of Surgery, Ankara Numune Teaching and Research Hospital, Ankara, Turkey
| | - İsmail Bilgic
- Department of Surgery, Ankara Numune Teaching and Research Hospital, Ankara, Turkey
| | - Munevver Moran
- Department of Surgery, Ankara Numune Teaching and Research Hospital, Ankara, Turkey
| | | |
Collapse
|
204
|
Kraakman MJ, Dragoljevic D, Kammoun HL, Murphy AJ. Is the risk of cardiovascular disease altered with anti-inflammatory therapies? Insights from rheumatoid arthritis. Clin Transl Immunology 2016; 5:e84. [PMID: 27350883 PMCID: PMC4910124 DOI: 10.1038/cti.2016.31] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. Atherosclerosis is the most common form of CVD, which is complex and multifactorial with an elevated risk observed in people with either metabolic or inflammatory diseases. Accumulating evidence now links obesity with a state of chronic low-grade inflammation and has renewed our understanding of this condition and its associated comorbidities. An emerging theme linking disease states with atherosclerosis is the increased production of myeloid cells, which can initiate and exacerbate atherogenesis. Although anti-inflammatory drug treatments exist and have been successfully used to treat inflammatory conditions such as rheumatoid arthritis (RA), a commonly observed side effect is dyslipidemia, inadvertently, a major risk factor for the development of atherosclerosis. The mechanisms leading to dyslipidemia associated with anti-inflammatory drug use and whether CVD risk is actually increased by this dyslipidemia are of great therapeutic importance and currently remain poorly understood. Here we review recent data providing links between inflammation, hematopoiesis, dyslipidemia and CVD risk in the context of anti-inflammatory drug use.
Collapse
Affiliation(s)
- Michael J Kraakman
- Department of Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Dragana Dragoljevic
- Department of Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - Helene L Kammoun
- Department of Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - Andrew J Murphy
- Department of Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
205
|
Jais A, Solas M, Backes H, Chaurasia B, Kleinridders A, Theurich S, Mauer J, Steculorum SM, Hampel B, Goldau J, Alber J, Förster CY, Eming SA, Schwaninger M, Ferrara N, Karsenty G, Brüning JC. Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity. Cell 2016; 165:882-95. [PMID: 27133169 DOI: 10.1016/j.cell.2016.03.033] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/25/2016] [Accepted: 03/16/2016] [Indexed: 01/01/2023]
Abstract
High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity.
Collapse
Affiliation(s)
- Alexander Jais
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - Maite Solas
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - Heiko Backes
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Bhagirath Chaurasia
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - André Kleinridders
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; National Center for Diabetes Research (DZD), Ingolstädter Land Strasse 1, 85764 Neuherberg, Germany
| | - Sebastian Theurich
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - Jan Mauer
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - Sophie M Steculorum
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - Brigitte Hampel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - Julia Goldau
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - Jens Alber
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - Carola Y Förster
- Department of Anaesthesia and Critical Care, University of Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany
| | - Sabine A Eming
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany; Department of Dermatology, University of Cologne, 50937 Cologne, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Napoleone Ferrara
- Moores Cancer Center, University of California, 3855 Health Sciences Drive, La Jolla, CA 92093, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Land Strasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
206
|
Babaev VR, Yeung M, Erbay E, Ding L, Zhang Y, May JM, Fazio S, Hotamisligil GS, Linton MF. Jnk1 Deficiency in Hematopoietic Cells Suppresses Macrophage Apoptosis and Increases Atherosclerosis in Low-Density Lipoprotein Receptor Null Mice. Arterioscler Thromb Vasc Biol 2016; 36:1122-31. [PMID: 27102962 DOI: 10.1161/atvbaha.116.307580] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/04/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The c-Jun NH2-terminal kinases (JNK) are regulated by a wide variety of cellular stresses and have been implicated in apoptotic signaling. Macrophages express 2 JNK isoforms, JNK1 and JNK2, which may have different effects on cell survival and atherosclerosis. APPROACH AND RESULTS To dissect the effect of macrophage JNK1 and JNK2 on early atherosclerosis, Ldlr(-/-) mice were reconstituted with wild-type, Jnk1(-/-), and Jnk2(-/-) hematopoietic cells and fed a high cholesterol diet. Jnk1(-/-)→Ldlr(-/-) mice have larger atherosclerotic lesions with more macrophages and fewer apoptotic cells than mice transplanted with wild-type or Jnk2(-/-) cells. Moreover, genetic ablation of JNK to a single allele (Jnk1(+/-)/Jnk2(-/-) or Jnk1(-/-)/Jnk2(+/-)) in marrow of Ldlr(-/-) recipients further increased atherosclerosis compared with Jnk1(-/-)→Ldlr(-/-) and wild-type→Ldlr(-/-) mice. In mouse macrophages, anisomycin-mediated JNK signaling antagonized Akt activity, and loss of Jnk1 gene obliterated this effect. Similarly, pharmacological inhibition of JNK1, but not JNK2, markedly reduced the antagonizing effect of JNK on Akt activity. Prolonged JNK signaling in the setting of endoplasmic reticulum stress gradually extinguished Akt and Bad activity in wild-type cells with markedly less effects in Jnk1(-/-) macrophages, which were also more resistant to apoptosis. Consequently, anisomycin increased and JNK1 inhibitors suppressed endoplasmic reticulum stress-mediated apoptosis in macrophages. We also found that genetic and pharmacological inhibition of phosphatase and tensin homolog abolished the JNK-mediated effects on Akt activity, indicating that phosphatase and tensin homolog mediates crosstalk between these pathways. CONCLUSIONS Loss of Jnk1, but not Jnk2, in macrophages protects them from apoptosis, increasing cell survival, and this accelerates early atherosclerosis.
Collapse
Affiliation(s)
- Vladimir R Babaev
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.).
| | - Michele Yeung
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.)
| | - Ebru Erbay
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.)
| | - Lei Ding
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.)
| | - Youmin Zhang
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.)
| | - James M May
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.)
| | - Sergio Fazio
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.)
| | - Gökhan S Hotamisligil
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.)
| | - MacRae F Linton
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.).
| |
Collapse
|
207
|
Vernia S, Cavanagh-Kyros J, Barrett T, Tournier C, Davis RJ. Fibroblast Growth Factor 21 Mediates Glycemic Regulation by Hepatic JNK. Cell Rep 2016; 14:2273-80. [PMID: 26947074 PMCID: PMC4794343 DOI: 10.1016/j.celrep.2016.02.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/16/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022] Open
Abstract
The cJun NH2-terminal kinase (JNK)-signaling pathway is implicated in metabolic syndrome, including dysregulated blood glucose concentration and insulin resistance. Fibroblast growth factor 21 (FGF21) is a target of the hepatic JNK-signaling pathway and may contribute to the regulation of glycemia. To test the role of FGF21, we established mice with selective ablation of the Fgf21 gene in hepatocytes. FGF21 deficiency in the liver caused marked loss of FGF21 protein circulating in the blood. Moreover, the protective effects of hepatic JNK deficiency to suppress metabolic syndrome in high-fat diet-fed mice were not observed in mice with hepatocyte-specific FGF21 deficiency, including reduced blood glucose concentration and reduced intolerance to glucose and insulin. Furthermore, we show that JNK contributes to the regulation of hepatic FGF21 expression during fasting/feeding cycles. These data demonstrate that the hepatokine FGF21 is a key mediator of JNK-regulated metabolic syndrome.
Collapse
Affiliation(s)
- Santiago Vernia
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Julie Cavanagh-Kyros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA
| | - Tamera Barrett
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA
| | - Cathy Tournier
- Faculty of Life Sciences, Manchester University, Manchester M13 9PL, UK
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA.
| |
Collapse
|
208
|
Vernia S, Morel C, Madara JC, Cavanagh-Kyros J, Barrett T, Chase K, Kennedy NJ, Jung DY, Kim JK, Aronin N, Flavell RA, Lowell BB, Davis RJ. Excitatory transmission onto AgRP neurons is regulated by cJun NH2-terminal kinase 3 in response to metabolic stress. eLife 2016; 5:e10031. [PMID: 26910012 PMCID: PMC4798947 DOI: 10.7554/elife.10031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
Abstract
The cJun NH2-terminal kinase (JNK) signaling pathway is implicated in the response to metabolic stress. Indeed, it is established that the ubiquitously expressed JNK1 and JNK2 isoforms regulate energy expenditure and insulin resistance. However, the role of the neuron-specific isoform JNK3 is unclear. Here we demonstrate that JNK3 deficiency causes hyperphagia selectively in high fat diet (HFD)-fed mice. JNK3 deficiency in neurons that express the leptin receptor LEPRb was sufficient to cause HFD-dependent hyperphagia. Studies of sub-groups of leptin-responsive neurons demonstrated that JNK3 deficiency in AgRP neurons, but not POMC neurons, was sufficient to cause the hyperphagic response. These effects of JNK3 deficiency were associated with enhanced excitatory signaling by AgRP neurons in HFD-fed mice. JNK3 therefore provides a mechanism that contributes to homeostatic regulation of energy balance in response to metabolic stress.
Collapse
Affiliation(s)
- Santiago Vernia
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Caroline Morel
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Joseph C Madara
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
- Harvard Medical School, Boston, United States
| | - Julie Cavanagh-Kyros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Tamera Barrett
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Kathryn Chase
- Department of Medicine, Division of Endocrinology, University of Massachusetts Medical School, Worcester, United States
| | - Norman J Kennedy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Dae Young Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
- Department of Medicine, Division of Endocrinology, University of Massachusetts Medical School, Worcester, United States
| | - Neil Aronin
- Department of Medicine, Division of Endocrinology, University of Massachusetts Medical School, Worcester, United States
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, United States
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Bradford B Lowell
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
- Harvard Medical School, Boston, United States
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
209
|
González-Terán B, Matesanz N, Nikolic I, Verdugo MA, Sreeramkumar V, Hernández-Cosido L, Mora A, Crainiciuc G, Sáiz ML, Bernardo E, Leiva-Vega L, Rodríguez E, Bondía V, Torres JL, Perez-Sieira S, Ortega L, Cuenda A, Sanchez-Madrid F, Nogueiras R, Hidalgo A, Marcos M, Sabio G. p38γ and p38δ reprogram liver metabolism by modulating neutrophil infiltration. EMBO J 2016; 35:536-52. [PMID: 26843485 DOI: 10.15252/embj.201591857] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 12/22/2015] [Indexed: 12/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health problem and the main cause of liver disease in Western countries. Although NAFLD is strongly associated with obesity and insulin resistance, its pathogenesis remains poorly understood. The disease begins with an excessive accumulation of triglycerides in the liver, which stimulates an inflammatory response. Alternative p38 mitogen-activated kinases (p38γ and p38δ) have been shown to contribute to inflammation in different diseases. Here we demonstrate that p38δ is elevated in livers of obese patients with NAFLD and that mice lacking p38γ/δ in myeloid cells are resistant to diet-induced fatty liver, hepatic triglyceride accumulation and glucose intolerance. This protective effect is due to defective migration of p38γ/δ-deficient neutrophils to the damaged liver. We further show that neutrophil infiltration in wild-type mice contributes to steatosis development by means of inflammation and liver metabolic changes. Therefore, p38γ and p38δ in myeloid cells provide a potential target for NAFLD therapy.
Collapse
Affiliation(s)
| | - Nuria Matesanz
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Ivana Nikolic
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - María Angeles Verdugo
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Vinatha Sreeramkumar
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Lourdes Hernández-Cosido
- Bariatric Surgery Unit, Department of General Surgery, University Hospital of Salamanca, Salamanca, Spain Department of Surgery, University of Salamanca, Salamanca, Spain
| | - Alfonso Mora
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Georgiana Crainiciuc
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - María Laura Sáiz
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Edgar Bernardo
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Luis Leiva-Vega
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Elena Rodríguez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Victor Bondía
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Jorge L Torres
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Sonia Perez-Sieira
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Luis Ortega
- Bariatric Surgery Unit, Department of General Surgery, University Hospital of Salamanca, Salamanca, Spain Department of Surgery, University of Salamanca, Salamanca, Spain
| | - Ana Cuenda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Andrés Hidalgo
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Guadalupe Sabio
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
210
|
Yarza R, Vela S, Solas M, Ramirez MJ. c-Jun N-terminal Kinase (JNK) Signaling as a Therapeutic Target for Alzheimer's Disease. Front Pharmacol 2016; 6:321. [PMID: 26793112 PMCID: PMC4709475 DOI: 10.3389/fphar.2015.00321] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/28/2015] [Indexed: 01/08/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) are a family of protein kinases that play a central role in stress signaling pathways implicated in gene expression, neuronal plasticity, regeneration, cell death, and regulation of cellular senescence. It has been shown that there is a JNK pathway activation after exposure to different stressing factors, including cytokines, growth factors, oxidative stress, unfolded protein response signals or Aβ peptides. Altogether, JNKs have become a focus of screening strategies searching for new therapeutic approaches to diabetes, cancer or liver diseases. In addition, activation of JNK has been identified as a key element responsible for the regulation of apoptosis signals and therefore, it is critical for pathological cell death associated with neurodegenerative diseases and, among them, with Alzheimer’s disease (AD). In addition, in vitro and in vivo studies have reported alterations of JNK pathways potentially associated with pathogenesis and neuronal death in AD. JNK’s, particularly JNK3, not only enhance Aβ production, moreover it plays a key role in the maturation and development of neurofibrillary tangles. This review aims to explain the rationale behind testing therapies based on inhibition of JNK signaling for AD in terms of current knowledge about the pathophysiology of the disease. Keeping in mind that JNK3 is specifically expressed in the brain and activated by stress-stimuli, it is possible to hypothesize that inhibition of JNK3 might be considered as a potential target for treating neurodegenerative mechanisms associated with AD.
Collapse
Affiliation(s)
- Ramon Yarza
- Department of Pharmacology and Toxicology, University of Navarra Pamplona, Spain
| | - Silvia Vela
- Department of Pharmacology and Toxicology, University of Navarra Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of NavarraPamplona, Spain; Navarra Institute for Health ResearchPamplona, Spain
| | - Maria J Ramirez
- Department of Pharmacology and Toxicology, University of NavarraPamplona, Spain; Navarra Institute for Health ResearchPamplona, Spain
| |
Collapse
|
211
|
Abstract
Low-grade tissue inflammation induced by obesity can result in insulin resistance, which in turn is a key cause of type 2 diabetes mellitus. Cells of the innate immune system produce cytokines and other factors that impair insulin signalling, which contributes to the connection between obesity and the onset of type 2 diabetes mellitus. Here, we review the innate immune cells involved in secreting inflammatory factors in the obese state. In the adipose tissue, these cells include proinflammatory adipose tissue macrophages and natural killer cells. We also discuss the role of innate immune cells, such as anti-inflammatory adipose tissue macrophages, eosinophils, group 2 innate lymphoid cells and invariant natural killer T cells, in maintaining an anti-inflammatory and insulin-sensitive environment in the lean state. In the liver, both Kupffer cells and recruited hepatic macrophages can contribute to decreased hepatic insulin sensitivity. Proinflammatory macrophages might also adversely affect insulin sensitivity in the skeletal muscle and pancreatic β-cell function. Finally, this Review provides an overview of the mechanisms for regulating proinflammatory immune responses that could lead to future therapeutic opportunities to improve insulin sensitivity.
Collapse
Affiliation(s)
- Denise E Lackey
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0673, USA
| | - Jerrold M Olefsky
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0673, USA
| |
Collapse
|
212
|
Coles CA. Adipokines in Healthy Skeletal Muscle and Metabolic Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:133-60. [DOI: 10.1007/978-3-319-27511-6_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
213
|
Zhu D, Wang Y, Du Q, Liu Z, Liu X. Cichoric Acid Reverses Insulin Resistance and Suppresses Inflammatory Responses in the Glucosamine-Induced HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10903-10913. [PMID: 26592089 DOI: 10.1021/acs.jafc.5b04533] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cichoric acid, a caffeic acid derivative found in Echinacea purpurea, basil, and chicory, has been reported to have bioactive effects, such as anti-inflammatory, antioxidant, and preventing insulin resistance. In this study, to explore the effects of CA on regulating insulin resistance and chronic inflammatory responses, the insulin resistance model was constructed by glucosamine in HepG2 cells. CA stimulated glucosamine-mediated glucose uptake by stimulating translocation of the glucose transporter 2. Moreover, the production of reactive oxygen, the expression of COX-2 and iNOS, and the mRNA levels of TNF-α and IL-6 were attenuated. Furthermore, CA was verified to promote glucosamine-mediated glucose uptake and inhibited inflammation through PI3K/Akt, NF-κB, and MAPK signaling pathways in HepG2 cells. These results implied that CA could increase glucose uptake, improve insulin resistance, and attenuate glucosamine-induced inflammation, suggesting that CA is a potential natural nutraceutical with antidiabetic properties and anti-inflammatory effects.
Collapse
Affiliation(s)
- Di Zhu
- College of Food Science and Engineering, Northwest A&F University , Yangling 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University , Yangling 712100, China
| | - Qingwei Du
- Functional Food Engineering and Technology Research Center of Shaanxi Province , Xi'an 710054, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University , Yangling 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University , Yangling 712100, China
| |
Collapse
|
214
|
Pal M, Febbraio MA, Lancaster GI. The roles of c-Jun NH2-terminal kinases (JNKs) in obesity and insulin resistance. J Physiol 2015; 594:267-79. [PMID: 26608096 DOI: 10.1113/jp271457] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/21/2015] [Indexed: 12/15/2022] Open
Abstract
Obesity is currently at epidemic levels worldwide and is associated with a wide range of diseases such as type 2 diabetes, cardiovascular disease, fatty liver disease and certain forms of cancer. Obesity-induced chronic inflammation is central to the disrupted metabolic homeostasis which underlies many of these conditions. While research over the past decade has identified many of the cells and signalling molecules that contribute to obesity-induced inflammation, perhaps the best characterised are the stress-activated c-Jun NH2 -terminal kinases (JNKs). JNKs are activated in obesity in numerous metabolically important cells and tissues such as adipose tissue, macrophages, liver, skeletal muscle and regions of the brain and pituitary. Elegant in vivo mouse studies using Cre-LoxP-mediated recombination of the JNK1 and JNK2 genes have revealed the remarkably diverse roles that JNKs play in the development of obesity-induced inflammation, impaired glucose homeostasis and hepatic steatosis. While JNK activation in classical metabolically active tissues such as skeletal muscle and adipose tissue only appears to play a minor role on the induction of the above-mentioned pathologies, recent studies have clearly established the important roles JNK signalling fulfils in macrophages, the liver and cells of the anterior pituitary. Collectively, these studies place JNKs as important mediators of obesity and obesity-associated disruptions to metabolic homeostasis.
Collapse
Affiliation(s)
- Martin Pal
- Division of Diabetes and Metabolism, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - Mark A Febbraio
- Division of Diabetes and Metabolism, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia.,Cellular & Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Graeme I Lancaster
- Cellular & Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
215
|
Andrés-Blasco I, Herrero-Cervera A, Vinué Á, Martínez-Hervás S, Piqueras L, Sanz MJ, Burks DJ, González-Navarro H. Hepatic lipase deficiency produces glucose intolerance, inflammation and hepatic steatosis. J Endocrinol 2015; 227:179-91. [PMID: 26423094 DOI: 10.1530/joe-15-0219] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
Metabolic syndrome and type 2 diabetes mellitus constitute a major problem to global health, and their incidence is increasing at an alarming rate. Non-alcoholic fatty liver disease, which affects up to 90% of obese people and nearly 70% of the overweight, is commonly associated with MetS characteristics such as obesity, insulin resistance, hypertension and dyslipidemia. In the present study, we demonstrate that hepatic lipase (HL)-inactivation in mice fed with a high-fat, high-cholesterol diet produced dyslipidemia including hypercholesterolemia, hypertriglyceridemia and increased non-esterified fatty acid levels. These changes were accompanied by glucose intolerance, pancreatic and hepatic inflammation and steatosis. In addition, compared with WT mice, HL(-/-) mice exhibited enhanced circulating MCP1 levels, monocytosis and higher percentage of CD4+Th17+ cells. Consistent with increased inflammation, livers from HL(-/-) mice had augmented activation of the stress SAPK/JNK- and p38-pathways compared with the activation levels of the kinases in livers from WT mice. Analysis of HL(-/-) and WT mice fed regular chow diet showed dyslipidemia and glucose intolerance in HL(-/-) mice without any other changes in inflammation or hepatic steatosis. Altogether, these results indicate that dyslipidemia induced by HL-deficiency in combination with a high-fat, high-cholesterol diet promotes hepatic steatosis and inflammation in mice which are, at least in part, mediated by the activation of the stress SAPK/JNK- and p38-pathways. Future studies are warranted to asses the viability of therapeutic strategies based on the modulation of these kinases to reduce hepatic steatosis associated to lipase dysfunction.
Collapse
Affiliation(s)
- Irene Andrés-Blasco
- Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain
| | - Andrea Herrero-Cervera
- Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain
| | - Ángela Vinué
- Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain
| | - Sergio Martínez-Hervás
- Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain
| | - Laura Piqueras
- Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain
| | - María Jesús Sanz
- Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain
| | - Deborah Jane Burks
- Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain
| | - Herminia González-Navarro
- Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain
| |
Collapse
|
216
|
Edén D, Siegbahn A, Mokhtari D. Tissue factor/factor VIIa signalling promotes cytokine-induced beta cell death and impairs glucose-stimulated insulin secretion from human pancreatic islets. Diabetologia 2015; 58:2563-72. [PMID: 26271343 PMCID: PMC4589554 DOI: 10.1007/s00125-015-3729-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/20/2015] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS Patients diagnosed with type 1 or type 2 diabetes have elevated levels of coagulation factor VIIa (FVIIa) and its receptor tissue factor (TF) in their bloodstream. This may affect the fate of the beta cells. We aimed to study the effects of TF/FVIIa signalling on cytokine-induced beta cell death and islet function in vitro. METHODS Human pancreatic islets and MIN-6 beta cells were used to study TF mRNA and protein expression using real-time PCR, immunoblotting and flow cytometry. The effects of TF/FVIIa on cytokine-induced beta cell death were studied in MIN-6 cells and human pancreatic islets using cell-death ELISA and propidium iodide and cleaved caspase-3 staining. Effects of TF/FVIIa on the phosphorylation of p38, extracellular signal-regulated kinase and c-Jun N-terminal kinase (JNK) were investigated by immunoblotting. Glucose-stimulated insulin secretion (GSIS) from human islets was measured with an insulin ELISA. RESULTS A combination of the cytokines IL-1β, TNF-α and IFN-γ induced TF expression in human pancreatic islets and in beta cells. TF/FVIIa did not affect basal beta cell death but, independently of downstream coagulation activity, augmented beta cell death in response to cytokines. The effect of TF/FVIIa on cytokine-induced beta cell death was found to be dependent on the stress kinase JNK, since FVIIa addition potentiated cytokine-induced JNK activation and JNK inhibition abolished the effect of TF/FVIIa on cytokine-induced beta cell death. Moreover, TF/FVIIa signalling resulted in inhibition of GSIS from human pancreatic islets. CONCLUSIONS/INTERPRETATION These results indicate that TF/FVIIa signalling has a negative effect on beta cell function and promotes beta cell death in response to cytokines.
Collapse
Affiliation(s)
- Desirée Edén
- Department of Medical Sciences, Clinical Chemistry, Science for Life Laboratory, University Hospital, Uppsala University, Entr. 61 3rd floor, S-751 85, Uppsala, Sweden
| | - Agneta Siegbahn
- Department of Medical Sciences, Clinical Chemistry, Science for Life Laboratory, University Hospital, Uppsala University, Entr. 61 3rd floor, S-751 85, Uppsala, Sweden
| | - Dariush Mokhtari
- Department of Medical Sciences, Clinical Chemistry, Science for Life Laboratory, University Hospital, Uppsala University, Entr. 61 3rd floor, S-751 85, Uppsala, Sweden.
| |
Collapse
|
217
|
Castellani L, Perry CGR, Macpherson REK, Root-McCaig J, Huber JS, Arkell AM, Simpson JA, Wright DC. Exercise-mediated IL-6 signaling occurs independent of inflammation and is amplified by training in mouse adipose tissue. J Appl Physiol (1985) 2015; 119:1347-54. [PMID: 26472868 DOI: 10.1152/japplphysiol.00551.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/05/2015] [Indexed: 01/24/2023] Open
Abstract
The purpose of this investigation was to determine whether exercise-induced increases in adipose tissue interleukin 6 (IL-6) signaling occurred as part of a larger proinflammatory response to exercise and whether the induction of IL-6 signaling with acute exercise was altered in trained mice in parallel with changes in the IL-6 receptor complex. Sedentary and trained C57BL/6J mice were challenged with an acute bout of exercise. Adipose tissue and plasma were collected immediately and 4 h afterward and analyzed for changes in indices of IL-6 signaling, circulating IL-6, markers of adipose tissue inflammation, and expression/content of IL-6 receptor and glycoprotein 130 (gp130). In untrained mice, IL-6 mRNA increased immediately after exercise, and increases in indices of IL-6 signaling were increased 4 h after exercise in epididymal, but not inguinal adipose tissue. This occurred independent of increases in plasma IL-6 and alterations in markers of inflammation. When compared with untrained mice, in trained mice, acute exercise induced the expression of gp130 and IL-6 receptor alpha (IL-6Rα), and training increased the protein content of these. Acute exercise induced the expression, and training increased the protein content, of glycoprotein 130 and IL-6Rα and was associated with a more rapid increase in markers of IL-6 signaling in epididymal adipose tissue from trained compared with untrained mice. The ability of exogenous IL-6 to increase phosphorylation of STAT3 was similar between groups. Our findings demonstrate that acute exercise increases IL-6 signaling in a depot-dependent manner, likely through an autocrine/paracrine mechanism. This response is initiated more rapidly after exercise in trained mice, potentially as a result of increases in IL-6Rα and gp130.
Collapse
Affiliation(s)
- Laura Castellani
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Christopher G R Perry
- Faculty of Health, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Rebecca E K Macpherson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Jared Root-McCaig
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Jason S Huber
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Alicia M Arkell
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| |
Collapse
|
218
|
Filgueiras LR, Serezani CH, Jancar S. Leukotriene B4 as a Potential Therapeutic Target for the Treatment of Metabolic Disorders. Front Immunol 2015; 6:515. [PMID: 26500652 PMCID: PMC4597104 DOI: 10.3389/fimmu.2015.00515] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/22/2015] [Indexed: 12/31/2022] Open
Affiliation(s)
| | - C Henrique Serezani
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, IN , USA
| | - Sonia Jancar
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, IN , USA
| |
Collapse
|
219
|
Abstract
Obesity is a new global pandemic, with growing incidence and prevalence. This disease is associated with increased risk of several pathologies, including diabetes, cardiovascular diseases, and cancer. The mechanisms underlying obesity-associated metabolic changes are the focus of efforts to identify new therapies. Stress-activated protein kinases (SAPK), including cJun N-terminal kinases (JNKs) and p38, are required for cellular responses to metabolic stress and therefore might contribute to the pathogenesis of obesity. Tissue-specific knockout models support a cell-type-specific role for JNK isoforms, in particular JNK1, highlighting its importance in cell homeostasis and organ crosstalk. However, more efforts are needed to elucidate the specific roles of other JNK isoforms and p38 family members in metabolism and obesity. This review provides an overview of the role of SAPKs in the regulation of metabolism.
Collapse
Affiliation(s)
- Elisa Manieri
- Myocardial Pathophysiology AreaFundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, C/Melchor Fernandez Almagro, 2, 28029 Madrid, SpainDepartment of Immunology and OncologyCentro Nacional de Biotecnología/CSIC, Campus de Cantoblanco, Madrid, Spain Myocardial Pathophysiology AreaFundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, C/Melchor Fernandez Almagro, 2, 28029 Madrid, SpainDepartment of Immunology and OncologyCentro Nacional de Biotecnología/CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Guadalupe Sabio
- Myocardial Pathophysiology AreaFundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, C/Melchor Fernandez Almagro, 2, 28029 Madrid, SpainDepartment of Immunology and OncologyCentro Nacional de Biotecnología/CSIC, Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
220
|
Bleau C, Karelis AD, St-Pierre DH, Lamontagne L. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabetes Metab Res Rev 2015; 31:545-61. [PMID: 25352002 DOI: 10.1002/dmrr.2617] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/01/2014] [Accepted: 10/13/2014] [Indexed: 02/06/2023]
Abstract
Obesity is associated with a systemic chronic low-grade inflammation that contributes to the development of metabolic disorders such as cardiovascular diseases and type 2 diabetes. However, the etiology of this obesity-related pro-inflammatory process remains unclear. Most studies have focused on adipose tissue dysfunctions and/or insulin resistance in skeletal muscle cells as well as changes in adipokine profile and macrophage recruitment as potential sources of inflammation. However, low-grade systemic inflammation probably involves a complex network of signals interconnecting several organs. Recent evidences have suggested that disturbances in the composition of the gut microbial flora and alterations in levels of gut peptides following the ingestion of a high-fat diet may be a cause of low-grade systemic inflammation that may even precede and predispose to obesity, metabolic disorders or type 2 diabetes. This hypothesis is appealing because the gastrointestinal system is first exposed to nutrients and may thereby represent the first link in the chain of events leading to the development of obesity-associated systemic inflammation. Therefore, the present review will summarize the latest advances interconnecting intestinal mucosal bacteria-mediated inflammation, adipose tissue and skeletal muscle in a coordinated circuitry favouring the onset of a high-fat diet-related systemic low-grade inflammation preceding obesity and predisposing to metabolic disorders and/or type 2 diabetes. A particular emphasis will be given to high-fat diet-induced alterations of gut homeostasis as an early initiator event of mucosal inflammation and adverse consequences contributing to the promotion of extended systemic inflammation, especially in adipose and muscular tissues.
Collapse
MESH Headings
- Adipose Tissue, White/immunology
- Adipose Tissue, White/metabolism
- Animals
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/microbiology
- Diet, High-Fat/adverse effects
- Enteritis/etiology
- Enteritis/immunology
- Enteritis/microbiology
- Enteritis/physiopathology
- Gastrointestinal Hormones/metabolism
- Gastrointestinal Microbiome
- Humans
- Immunity, Mucosal
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Models, Biological
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Myositis/etiology
- Myositis/immunology
- Myositis/microbiology
- Myositis/physiopathology
- Obesity/etiology
- Obesity/immunology
- Obesity/metabolism
- Obesity/microbiology
- Panniculitis/etiology
- Panniculitis/immunology
- Panniculitis/microbiology
- Panniculitis/physiopathology
- Systemic Vasculitis/etiology
- Systemic Vasculitis/immunology
- Systemic Vasculitis/microbiology
- Systemic Vasculitis/physiopathology
Collapse
Affiliation(s)
- Christian Bleau
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada, H3C 3P8
| | - Antony D Karelis
- Department of Kinanthropology, Université du Québec à Montréal, Montreal, Canada, H3C 3P8
| | - David H St-Pierre
- Department of Kinanthropology, Université du Québec à Montréal, Montreal, Canada, H3C 3P8
| | - Lucie Lamontagne
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada, H3C 3P8
| |
Collapse
|
221
|
Dai X, Zhan J, Demmy TA, Poordad FB, Fauceglia PL, Zhang H, Wu L. Monocytes play different roles in stimulating T cells in obese diabetic individuals. Int J Immunopathol Pharmacol 2015; 28:374-83. [PMID: 26246197 DOI: 10.1177/0394632015598848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/08/2015] [Indexed: 11/17/2022] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder, which was also found to involve a series of inflammatory disorders, including accumulation of macrophages and T cells in the adipose tissue, increased proinflammatory cytokine production, shifting of macrophage composition toward M1-type, and skewing of peripheral blood T cells toward IL-17 productions. However, these studies were primarily conducted in obese mouse models and/or human subjects with higher BMI, and may not reflect the role of the immune system in non-obese T2D pathogenesis. Here, we examined T cell and monocyte cytokine expression and function in both non-obese and obese T2D patients. We found that IFN-g production by circulating T cells were increased in both non-obese and obese T2D subjects, while IL-17 is only upregulated in obese T2D subjects. Also, circulating monocytes from obese T2D subjects had significantly higher IL-6 production than their counterparts in non-obese T2D subjects. Moreover, monocytes from non-obese T2D subjects could support IFN-g but not IL-17 production in vitro, while that from obese T2D subjects supported both IFN-g and IL-17 production. Together, our results revealed that the role immune system plays in T2D pathogenesis is more complicated than previously thought, and is affected by the person's BMI.
Collapse
Affiliation(s)
- Xiaojiang Dai
- Surgical Center of Thyroid Diabetes, General Hospital of Guangzhou Military Command of PLA, Guangzhou, PR China
| | - Junfang Zhan
- Health Management Center, Guangzhou First People's Hospital, Guangzhou Medical College, Guangzhou, PR China
| | - Todd A Demmy
- Faculty of Medicine, University of Maryland, Baltimore, MD, USA
| | - Fred B Poordad
- University Hospital, University of British Columbia, BC, Canada
| | | | - Hongbin Zhang
- Medical Lab, General Hospital of Guangzhou Military Command of PLA, Guangzhou, PR China
| | - Liangping Wu
- Surgical Center of Thyroid Diabetes, General Hospital of Guangzhou Military Command of PLA, Guangzhou, PR China
| |
Collapse
|
222
|
Belo S, Santos AC, Madureira A, Pereira J, Sarmento A, Carvalho D, Freitas P. IL-4 and IL-6 levels and adipose tissue distribution in HIV-1 patients under antiretroviral therapy. J Endocrinol Invest 2015; 38:779-84. [PMID: 25722225 DOI: 10.1007/s40618-015-0256-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/06/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE Combined antiretroviral therapy (cART) for the treatment of HIV-1 infection has been associated with complications, including lipodystrophy. Several interleukins have been implicated in the pathology and physiology of lipodystrophy. The present study aimed to compare the levels of IL-4 and IL-6 in HIV-1 patients under cART with and without, clinically and fat mass ratio defined, lipodystrophy and in four different groups of fat distribution: (1) no lipodystrophy; (2) isolated central fat accumulation; (3) isolated lipoatrophy and (4) mixed forms of lipodystrophy. METHODS In the present cross-sectional study we evaluated IL-4 and IL-6 levels, insulin resistance and insulin sensitivity indexes in 86 HIV-infected adults under cART. RESULTS No significant differences in IL-4 and IL-6 levels between the four groups of body composition were observed. Patients with HOMA-IR >4 presented higher levels of IL-6 and lower levels of IL-4, although without statistical significance. No correlation between IL-6, or IL-4, HOMA-IR and quantitative body fat mass distribution was found. CONCLUSION Although there was a tendency for patients with isolated lipoatrophy and isolated fat accumulation to present higher IL-6 levels, these differences were not statistically significant. No differences were found relating IL-4 levels.
Collapse
Affiliation(s)
- S Belo
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar de São João, Alameda Prof. Hernani Monteiro, Porto, 4200, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - A C Santos
- Faculty of Medicine, University of Porto, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - A Madureira
- Faculty of Medicine, University of Porto, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Department of Radiology, Centro Hospitalar de São João, Porto, Portugal.
| | - J Pereira
- Department of Nuclear Medicine, Centro Hospitalar de São João, Porto, Portugal.
| | - A Sarmento
- Faculty of Medicine, University of Porto, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Department of Infectious Diseases, Centro Hospitalar de São João, Porto, Portugal.
| | - D Carvalho
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar de São João, Alameda Prof. Hernani Monteiro, Porto, 4200, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - P Freitas
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar de São João, Alameda Prof. Hernani Monteiro, Porto, 4200, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
223
|
Uraki S, Tameda M, Sugimoto K, Shiraki K, Takei Y, Nobori T, Ito M. Substitution in Amino Acid 70 of Hepatitis C Virus Core Protein Changes the Adipokine Profile via Toll-Like Receptor 2/4 Signaling. PLoS One 2015; 10:e0131346. [PMID: 26121241 PMCID: PMC4487891 DOI: 10.1371/journal.pone.0131346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/01/2015] [Indexed: 12/28/2022] Open
Abstract
Background & Aims It has been suggested that amino acid (aa) substitution at position 70 from arginine (70R) to glutamine (70Q) in the genotype 1b hepatitis C virus (HCV) core protein is associated with insulin resistance and worse prognosis. However, the precise mechanism is still unclear. The aim of this study was to investigate the impact of the substitution at position 70 in HCV core protein on adipokine production by murine and human adipocytes. Methods The influence of treatment with HCV core protein (70R or 70Q) on adipokine production by both 3T3-L1 and human adipocytes were examined with real-time PCR and enzyme-linked immunosorbent assay (ELISA), and triglyceride content was also analyzed. The effects of toll-like receptor (TLR)2/4 inhibition on IL-6 production by 3T3-L1 induced by HCV core protein were examined. Results IL-6 production was significantly increased and adiponectin production was reduced without a change in triglyceride content by treatment with 70Q compared to 70R core protein in both murine and human adipocytes. IL-6 induction of 3T3-L1 cells treated by 70Q HCV core protein was significantly inhibited with anti-TLR2 antibody by 42%, and by TLR4 inhibitor by 40%. Conclusions Our study suggests that extracellular HCV core protein with substitution at position 70 enhanced IL-6 production and reduced adiponectin production from visceral adipose tissue, which can cause insulin resistance, hepatic steatosis, and ultimately development of HCC.
Collapse
Affiliation(s)
- Satoko Uraki
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
| | - Masahiko Tameda
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, 2–174 Edobashi, Tsu, Mie, 514–8507, Japan
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Japan
| | - Kazushi Sugimoto
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, 2–174 Edobashi, Tsu, Mie, 514–8507, Japan
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Japan
- * E-mail:
| | - Katsuya Shiraki
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Japan
| | - Tsutomu Nobori
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, 2–174 Edobashi, Tsu, Mie, 514–8507, Japan
| | - Masaaki Ito
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
| |
Collapse
|
224
|
Hill AA, Reid Bolus W, Hasty AH. A decade of progress in adipose tissue macrophage biology. Immunol Rev 2015; 262:134-52. [PMID: 25319332 DOI: 10.1111/imr.12216] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One decade has passed since seminal publications described macrophage infiltration into adipose tissue (AT) as a key contributor to inflammation and obesity-related insulin resistance. Currently, a PubMed search for 'adipose tissue inflammation' reveals over 3500 entries since these original reports. We now know that resident macrophages in lean AT are alternatively activated, M2-like, and play a role in AT homeostasis. In contrast, the macrophages in obese AT are dramatically increased in number and are predominantly classically activated, M1-like, and promote inflammation and insulin resistance. Mediators of AT macrophage (ATM) phenotype include adipokines and fatty acids secreted from adipocytes as well as cytokines secreted from other immune cells in AT. There are several mechanisms that could explain the large increase in ATMs in obesity. These include recruitment-dependent mechanisms such as adipocyte death, chemokine release, and lipolysis of fatty acids. Newer evidence also points to recruitment-independent mechanisms such as impaired apoptosis, increased proliferation, and decreased egress. Although less is known about the homeostatic function of M2-like resident ATMs, recent evidence suggests roles in AT expansion, thermoregulation, antigen presentation, and iron homeostasis. The field of immunometabolism has come a long way in the past decade, and many exciting new discoveries are bound to be made in the coming years that will expand our understanding of how AT stands at the junction of immune and metabolic co-regulation.
Collapse
Affiliation(s)
- Andrea A Hill
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | |
Collapse
|
225
|
Sharma M, Mitnala S, Vishnubhotla RK, Mukherjee R, Reddy DN, Rao PN. The Riddle of Nonalcoholic Fatty Liver Disease: Progression From Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis. J Clin Exp Hepatol 2015; 5:147-58. [PMID: 26155043 PMCID: PMC4491606 DOI: 10.1016/j.jceh.2015.02.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/09/2015] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver (NAFL) is an emerging global epidemic which progresses to nonalcoholic steatohepatitis (NASH) and cirrhosis in a subset of subjects. Various reviews have focused on the etiology, epidemiology, pathogenesis and treatment of NAFLD. This review highlights specifically the triggers implicated in disease progression from NAFL to NASH. The integrating role of genes, dietary factors, innate immunity, cytokines and gut microbiome have been discussed.
Collapse
Key Words
- AGE, Advanced glycation end products
- ALT, Alanine aminotransferase
- AMPK, AMP-activated protein Kinase
- APPL1 and 2, Adaptor protein 1 and 2
- ATP, Adenosine tri-phosphatase
- BMI, Basal Metabolic Index
- CD, Cluster of differentiation
- COL13A1, Collagen, type XIII, alpha 1
- DAMP, Damage assocauted molecular pattern molecules
- EFCAB4B, EF-hand calcium binding domain 4B
- FA, Fatty acid
- FDFT1, Farnesyl-diphosphate farnesyltransferase 1
- FFA, Free fatty acid
- GCKR, Glucokinase regulatory protein
- GLUT 5, Glucose transporter type 5
- GWAS, Genome wide association studies
- HDL, High density lipoprotein
- HMGB1, High-mobility group protein B1
- HOMA-IR, Homoestatic model assessment-insulin resistance
- HSC, Hepatic Stellate Cells
- Hh, Hedgehog
- IL6, Interleukin 6
- IR, Insulin Resistance
- KC, Kupffer Cells
- LPS, Lipopolysacharrides
- LYPLAL1, Lypophospholipase like 1
- MCP, Monocyte chemotactic protein
- NAD, Nicotinamide adenine dinucleotide
- NAFL, Nonalcoholic fatty liver
- NAFLD, Nonalcoholic fatty liver disease
- NASH, Nonalcoholic steatohepatitis
- NCAN, Neurocan gene
- NF-KB, Nuclear Factor Kappa B
- NK, Natural Killer
- NKL, Natural Killer T cells
- NLR, NOD like receptor
- NNMT, Nicotinamide N-methyltransferase gene
- OXLAM, Oxidized linolenic acid metabolite
- PAMP, Pathogen-associated Molecular pattern
- PARVB, Beta Parvin Gene
- PDGF, Platelet-derived growth factor
- PNPLA3
- PNPLA3, Patatin-like phospholipase domain-containing protein 3
- PPAR-α, Peroxisome proliferator activated receptor alpha
- PPP1R3B, Protein phosphatase 1 R3B
- PUFA, Poly unsaturated fatty acid
- PZP, Pregnancy-zone protein
- ROS, Reactive oxygen species
- SAMM, Sorting and assembly machinery component
- SCAP, SREBP cleavage-activating protein
- SFA, Saturated fatty acid
- SNP, Single nucleotide polymorphism
- SOCS3, Suppressor of cytokine signaling 3
- SOD2, Superoxide dismutase 2 gene
- SREBP-1C, Sterol regulatory Element—Binding Protein 1-C gene
- TLR, Toll like receptor
- TNF α, Tumor necrosis factor Alpha
- UCP3, Uncoupling protein 3 gene
- adiponectin
- cytokines
- gut microbiota
- lipotoxicity
Collapse
Affiliation(s)
- Mithun Sharma
- Department of Hepatology and Nutrition, Asian Institute of Gastroenterology, Hyderabad, Telangana, India,Address for correspondence: Mithun Sharma, Consultant Hepatologist, Asian Institute of Gastroenterology, 6-3-661, Red Rose Café Lane, Somajigudda, Hyderabad 500082, India. Tel.: +91 8790622655.
| | - Shasikala Mitnala
- Research Labs, Institute of Basic Sciences and Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Ravi K. Vishnubhotla
- Department of Genetics, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Rathin Mukherjee
- Department of Molecular Biology, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Duvvur N. Reddy
- Department of Gastroenterology, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Padaki N. Rao
- Department of Hepatology and Nutrition, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| |
Collapse
|
226
|
Song M, Schuschke DA, Zhou Z, Zhong W, Zhang J, Zhang X, Wang Y, McClain CJ. Kupffer cell depletion protects against the steatosis, but not the liver damage, induced by marginal-copper, high-fructose diet in male rats. Am J Physiol Gastrointest Liver Physiol 2015; 308:G934-45. [PMID: 25813056 PMCID: PMC4451322 DOI: 10.1152/ajpgi.00285.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/24/2015] [Indexed: 01/31/2023]
Abstract
High-fructose feeding impairs copper status and leads to low copper availability, which is a novel mechanism in obesity-related fatty liver. Copper deficiency-associated hepatic iron overload likely plays an important role in fructose-induced liver injury. Excess iron in the liver is distributed throughout hepatocytes and Kupffer cells (KCs). The aim of this study was to examine the role of KCs in the pathogenesis of nonalcoholic fatty liver disease induced by a marginal-copper high-fructose diet (CuMF). Male weanling Sprague-Dawley rats were fed either a copper-adequate or a marginally copper-deficient diet for 4 wk. Deionized water or deionized water containing 30% fructose (wt/vol) was also given ad libitum. KCs were depleted by intravenous administration of gadolinium chloride (GdCl3) before and/or in the middle of the experimental period. Hepatic triglyceride accumulation was completely eliminated with KC depletion in CuMF consumption rats, which was associated with the normalization of elevated plasma monocyte chemoattractant protein-1 (MCP-1) and increased hepatic sterol regulatory element binding protein-1 expression. However, hepatic copper and iron content were not significantly affected by KC depletion. In addition, KC depletion reduced body weight and epididymal fat weight as well as adipocyte size. Plasma endotoxin and gut permeability were markedly increased in CuMF rats. Moreover, MCP-1 was robustly increased in the culture medium when isolated KCs from CuMF rats were treated with LPS. Our data suggest that KCs play a critical role in the development of hepatic steatosis induced by marginal-copper high-fructose diet.
Collapse
Affiliation(s)
- Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky;
| | - Dale A. Schuschke
- 2Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky;
| | - Zhanxiang Zhou
- 6Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, North Carolina; ,7Department of Nutrition, University of North Carolina at Greensboro, Kannapolis, North Carolina; and
| | - Wei Zhong
- 6Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, North Carolina;
| | - Jiayuan Zhang
- 4Department of Chemistry, University of Louisville School of Medicine, Louisville, Kentucky;
| | - Xiang Zhang
- 3Department of Pharmacology and Toxicology, ,4Department of Chemistry, University of Louisville School of Medicine, Louisville, Kentucky;
| | - Yuhua Wang
- 8College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Craig J. McClain
- 1Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky; ,3Department of Pharmacology and Toxicology, ,5Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky;
| |
Collapse
|
227
|
Vinué Á, Andrés-Blasco I, Herrero-Cervera A, Piqueras L, Andrés V, Burks DJ, Sanz MJ, González-Navarro H. Ink4/Arf locus restores glucose tolerance and insulin sensitivity by reducing hepatic steatosis and inflammation in mice with impaired IRS2-dependent signalling. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1729-42. [PMID: 26022372 DOI: 10.1016/j.bbadis.2015.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 01/12/2023]
Abstract
Single nucleotide polymorphisms near the Ink4/Arf locus have been associated with type-2 diabetes mellitus. Previous studies indicate a protective role of the locus in the carbohydrate metabolism derangement associated with ageing in wild-type mice. The present study demonstrates that the increased Ink4/Arf locus expression in 1-year-old mice, partially-deficient for the insulin receptor substrate (IRS)2 (Irs2+/-SuperInk4/Arf mice) ameliorates hepatic steatosis, inflammation and insulin resistance. Irs2+/-SuperInk4/Arf mice displayed improved glucose tolerance and insulin sensitivity compared with Irs2+/- mice which were glucose intolerant and insulin resistant compared with age-matched wild-type mice. These changes in Irs2+/- mice were accompanied by enhanced hepatic steatosis, proinflammatory macrophage phenotype, increased Ly6C(hi)-monocyte percentage, T-lymphocyte activation and MCP1 and TNF-α cytokine levels. In Irs2+/-SuperInk4/Arf mice, steatosis and inflammatory parameters were markedly reduced and similar to those of wild-type counterparts. In vivo insulin signalling also revealed reduced activation of the IRS/AKT-dependent signalling in Irs2+/- mice. This was restored upon increased locus expression in Irs2+/-SuperInk4/Arf mice which display similar activation levels as those for wild-type mice. In vivo treatment of Irs2+/-SuperInk4/Arf mice with TNF-α diminished insulin canonical IRS/AKT-signalling and enhanced the stress SAPK/JNK-phosphoSer307IRS1-pathway suggesting that cytokine levels might potentially affect glucose homeostasis through changes in these insulin-signalling pathways. Altogether, these results indicate that enhanced Ink4/Arf locus expression restores glucose homeostasis and that this is associated with diminished hepatic steatosis and inflammation in mice with insulin resistance. Therefore, pharmacological interventions targeted to modulate the Ink4/Arf locus expression could be a tentative therapeutic approach to alleviate the inflammation associated with insulin resistance.
Collapse
Affiliation(s)
- Ángela Vinué
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain
| | | | | | - Laura Piqueras
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain
| | - Vicente Andrés
- Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Deborah J Burks
- Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Spain
| | - María Jesús Sanz
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain; Departamento de Farmacología, Universidad de Valencia, 46010 Valencia, Spain
| | - Herminia González-Navarro
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Spain.
| |
Collapse
|
228
|
Jaiswal N, Maurya CK, Pandey J, Rai AK, Tamrakar AK. Fructose-induced ROS generation impairs glucose utilization in L6 skeletal muscle cells. Free Radic Res 2015; 49:1055-68. [PMID: 25968943 DOI: 10.3109/10715762.2015.1031662] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High fructose consumption has implicated in insulin resistance and metabolic syndrome. Fructose is a highly lipogenic sugar that has intense metabolic effects in liver. Recent evidences suggest that fructose exposure to other tissues has substantial and profound metabolic consequences predisposing toward chronic conditions such as type 2 diabetes. Since skeletal muscle is the major site for glucose utilization, in the present study we define the effects of fructose exposure on glucose utilization in skeletal muscle cells. Upon fructose exposure, the L6 skeletal muscle cells displayed diminished glucose uptake, glucose transporter type 4 (GLUT4) translocation, and impaired insulin signaling. The exposure to fructose elevated reactive oxygen species (ROS) production in L6 myotubes, accompanied by activation of the stress/inflammation markers c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2), and degradation of inhibitor of NF-κB (IκBα). We found that fructose caused impairment of glucose utilization and insulin signaling through ROS-mediated activation of JNK and ERK1/2 pathways, which was prevented in the presence of antioxidants. In conclusion, our data demonstrate that exposure to fructose induces cell-autonomous oxidative response through ROS production leading to impaired insulin signaling and attenuated glucose utilization in skeletal muscle cells.
Collapse
Affiliation(s)
- N Jaiswal
- Division of Biochemistry, CSIR-Central Drug Research Institute , Lucknow, Uttar Pradesh , India
| | | | | | | | | |
Collapse
|
229
|
Pan X, Wang P, Luo J, Wang Z, Song Y, Ye J, Hou X. Adipogenic changes of hepatocytes in a high-fat diet-induced fatty liver mice model and non-alcoholic fatty liver disease patients. Endocrine 2015; 48:834-847. [PMID: 25138963 DOI: 10.1007/s12020-014-0384-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/04/2014] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by steatosis associated with liver inflammation. As NAFLD progresses, triglycerides increase within hepatocytes, causing typical vacuoles that resemble adipocytes. However, whether these morphological changes in hepatocytes indicate potential functional changes is unclear. C57BL/6J mice were fed a high-fat diet (HFD) containing 42% fat. Markers for adipocytes in the liver were measured using real-time PCR, Western blot, and double immunofluorescent labeling. Cytokines in cell culture supernatants were quantified with ELISA. To determine the macrophage phenotype, hepatic classical M1 markers and alternative M2 markers were analyzed. After a 24-week feeding period, adipocyte markers aP2 and PPARγ increased at both the mRNA and protein level in the liver of HFD-fed mice. FITC-labeled aP2 and rhodamine-labeled albumin were both stained in the cytoplasm of steatotic hepatocytes as observed under confocal laser scanning microscopy. Cell membrane-bound E-cadherin and albumin expression were reduced in steatotic hepatocytes compared to controls. However, hepatic adiponectin and adiponectin receptor-2 expression decreased with upregulation of hepatic CD36, suggesting impaired adiponectin activity in livers of HFD-fed mice. Moreover, steatotic primary hepatocytes not only released pro-inflammatory cytokines such as TNFα, MCP-1, IL-6, and IL-18, but also could activate macrophages when co-cultured in vitro. In vivo, hepatic expression of M1 genes such as iNOS and TNFα was markedly increased in HFD-fed mice. In contrast, hepatic expression of M2 genes such as Arg1 and CD206 was significantly reduced. Specifically, the ratio of TNFα to CD206 in HFD-fed mice was notably upregulated. Overexpression of adipocyte-specific genes in hepatocytes and their secretory function and epithelial phenotype impairment in NAFLD cause functional changes in steatotic hepatocytes aside from morphological changes. This suggests that adipogenic changes in hepatocytes are involved in pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Xiaoli Pan
- Department of Gastroenterology and Hepatology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
230
|
Fuster JJ, Zuriaga MA, Ngo DTM, Farb MG, Aprahamian T, Yamaguchi TP, Gokce N, Walsh K. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion. Diabetes 2015; 64:1235-48. [PMID: 25352637 PMCID: PMC4375084 DOI: 10.2337/db14-1164] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion.
Collapse
Affiliation(s)
- José J Fuster
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - María A Zuriaga
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Doan Thi-Minh Ngo
- Clinical Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Melissa G Farb
- Cardiovascular Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Tamar Aprahamian
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD
| | - Noyan Gokce
- Cardiovascular Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Kenneth Walsh
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| |
Collapse
|
231
|
Wu R, Zhang QH, Lu YJ, Ren K, Yi GH. Involvement of the IRE1α-XBP1 pathway and XBP1s-dependent transcriptional reprogramming in metabolic diseases. DNA Cell Biol 2015; 34:6-18. [PMID: 25216212 DOI: 10.1089/dna.2014.2552] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The X-box binding protein 1 (XBP1) is not only an important component of the unfolded protein response (UPR), but also an important nuclear transcription factor. Upon endoplasmic reticulum stress, XBP1 is spliced by inositol-requiring enzyme 1 (IRE1), thereby generating functional spliced XBP1 (XBP1s). XBP1s functions by translocating into the nucleus to initiate transcriptional programs that regulate a subset of UPR- and non-UPR-associated genes involved in the pathophysiological processes of various diseases. Recent reports have implicated XBP1 in metabolic diseases. This review summarizes the effects of XBP1-mediated regulation on lipid metabolism, glucose metabolism, obesity, and atherosclerosis. Additionally, for the first time, we present XBP1s-dependent transcriptional reprogramming in metabolic diseases under different conditions, including pathology and physiology. Understanding the function of XBP1 in metabolic diseases may provide a basic knowledge for the development of novel therapeutic targets for ameliorating these diseases.
Collapse
Affiliation(s)
- Rong Wu
- 1 Key Laboratory for Atherosclerology of Hunan Province, Institute of Cardiovascular Research, University of South China , Hengyang, China
| | | | | | | | | |
Collapse
|
232
|
Gao Z, Zhang J, Henagan TM, Lee JH, Ye X, Wang H, Ye J. P65 inactivation in adipocytes and macrophages attenuates adipose inflammatory response in lean but not in obese mice. Am J Physiol Endocrinol Metab 2015; 308:E496-505. [PMID: 25564477 PMCID: PMC4360014 DOI: 10.1152/ajpendo.00532.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NF-κB induces transcriptional expression of proinflammatory genes and antiapoptotic genes. The two activities of NF-κB remain to be characterized in the mechanism of chronic inflammation in obesity. To address this issue, we inactivated NF-κB in adipose tissue by knocking out p65 (RelA) in mice (F-p65-KO) and examined the inflammation in lean and obese conditions. In the lean condition, KO mice exhibited a reduced inflammation in adipose tissue with a decrease in macrophage infiltration, M1 polarization, and proinflammatory cytokine expression. In the obese condition, KO mice had elevated inflammation with more macrophage infiltration, M1 polarization, and cytokine expression. In the mechanism of enhanced inflammation, adipocytes and macrophages exhibited an increase in cellular apoptosis, which was observed with more formation of crown-like structures (CLS) in fat tissue of KO mice. Body weight, glucose metabolism, and insulin sensitivity were not significantly altered in KO mice under the lean and obese conditions. A modest but significant reduction in body fat mass was observed in KO mice on HFD with an elevation in energy expenditure. The data suggest that in the control of adipose inflammation, NF-κB exhibits different activities in the lean vs. obese condition. NF-κB is required for expression of proinflammatory genes in the lean but not in the obese condition. NF-κB is required for inhibition of apoptosis in the obese condition, in which proinflammation is enhanced by NF-κB inactivation.
Collapse
Affiliation(s)
- Zhanguo Gao
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, China; Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Jin Zhang
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Tara M Henagan
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; and
| | - Jong Han Lee
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Xin Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Hui Wang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, China; Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine in Henan Province, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jianping Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana;
| |
Collapse
|
233
|
Mayoral R, Osborn O, McNelis J, Johnson AM, Oh DY, Izquierdo CL, Chung H, Li P, Traves PG, Bandyopadhyay G, Pessentheiner AR, Ofrecio JM, Cook JR, Qiang L, Accili D, Olefsky JM. Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity. Mol Metab 2015; 4:378-91. [PMID: 25973386 PMCID: PMC4421024 DOI: 10.1016/j.molmet.2015.02.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Adipose tissue is the primary site for lipid deposition that protects the organisms in cases of nutrient excess during obesogenic diets. The histone deacetylase Sirtuin 1 (SIRT1) inhibits adipocyte differentiation by targeting the transcription factor peroxisome proliferator activated-receptor gamma (PPARγ). METHODS To assess the specific role of SIRT1 in adipocytes, we generated Sirt1 adipocyte-specific knockout mice (ATKO) driven by aP2 promoter onto C57BL/6 background. Sirt1 (flx/flx) aP2Cre (+) (ATKO) and Sirt1 (flx/flx) aP2Cre (-) (WT) mice were fed high-fat diet for 5 weeks (short-term) or 15 weeks (chronic-term). Metabolic studies were combined with gene expression analysis and phosphorylation/acetylation patterns in adipose tissue. RESULTS On standard chow, ATKO mice exhibit low-grade chronic inflammation in adipose tissue, along with glucose intolerance and insulin resistance compared with control fed mice. On short-term HFD, ATKO mice become more glucose intolerant, hyperinsulinemic, insulin resistant and display increased inflammation. During chronic HFD, WT mice developed a metabolic dysfunction, higher than ATKO mice, and thereby, knockout mice are more glucose tolerant, insulin sensitive and less inflamed relative to control mice. SIRT1 attenuates adipogenesis through PPARγ repressive acetylation and, in the ATKO mice adipocyte PPARγ was hyperacetylated. This high acetylation was associated with a decrease in Ser273-PPARγ phosphorylation. Dephosphorylated PPARγ is constitutively active and results in higher expression of genes associated with increased insulin sensitivity. CONCLUSION Together, these data establish that SIRT1 downregulation in adipose tissue plays a previously unknown role in long-term inflammation resolution mediated by PPARγ activation. Therefore, in the context of obesity, the development of new therapeutics that activate PPARγ by targeting SIRT1 may provide novel approaches to the treatment of T2DM.
Collapse
Affiliation(s)
- Rafael Mayoral
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA ; Networked Biomedical Research Center, Hepatic and Digestive Diseases (CIBERehd), Monforte de Lemos 3-5, ISC-III, 28029 Madrid, Spain
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Joanne McNelis
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Andrew M Johnson
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Da Young Oh
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Cristina Llorente Izquierdo
- Division of Gastroenterology, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Heekyung Chung
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Pingping Li
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Paqui G Traves
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | - Gautam Bandyopadhyay
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | | | - Jachelle M Ofrecio
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Joshua R Cook
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Li Qiang
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Domenico Accili
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| |
Collapse
|
234
|
Kraakman MJ, Kammoun HL, Allen TL, Deswaerte V, Henstridge DC, Estevez E, Matthews VB, Neill B, White DA, Murphy AJ, Peijs L, Yang C, Risis S, Bruce CR, Du XJ, Bobik A, Lee-Young RS, Kingwell BA, Vasanthakumar A, Shi W, Kallies A, Lancaster GI, Rose-John S, Febbraio MA. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab 2015; 21:403-16. [PMID: 25738456 DOI: 10.1016/j.cmet.2015.02.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/21/2014] [Accepted: 02/06/2015] [Indexed: 01/01/2023]
Abstract
Interleukin-6 (IL-6) plays a paradoxical role in inflammation and metabolism. The pro-inflammatory effects of IL-6 are mediated via IL-6 "trans-signaling," a process where the soluble form of the IL-6 receptor (sIL-6R) binds IL-6 and activates signaling in inflammatory cells that express the gp130 but not the IL-6 receptor. Here we show that trans-signaling recruits macrophages into adipose tissue (ATM). Moreover, blocking trans-signaling with soluble gp130Fc protein prevents high-fat diet (HFD)-induced ATM accumulation, but does not improve insulin action. Importantly, however, blockade of IL-6 trans-signaling, unlike complete ablation of IL-6 signaling, does not exacerbate obesity-induced weight gain, liver steatosis, or insulin resistance. Our data identify the sIL-6R as a critical chemotactic signal for ATM recruitment and suggest that selectively blocking IL-6 trans-signaling may be a more favorable treatment option for inflammatory diseases, compared with current treatments that completely block the action of IL-6 and negatively impact upon metabolic homeostasis.
Collapse
Affiliation(s)
- Michael J Kraakman
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Helene L Kammoun
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Tamara L Allen
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Virginie Deswaerte
- Vascular Biology and Atherosclerosis Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Darren C Henstridge
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Emma Estevez
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Vance B Matthews
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Bronwyn Neill
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - David A White
- Experimental Cardiology Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Lone Peijs
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Christine Yang
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Steve Risis
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Clinton R Bruce
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Xiao-Jun Du
- Experimental Cardiology Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Robert S Lee-Young
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Bronwyn A Kingwell
- Metabolic and Vascular Physiology Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | | | - Wei Shi
- Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Computing and Information Systems, University of Melbourne, Parkville, VIC 3010, Australia
| | - Axel Kallies
- Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Graeme I Lancaster
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Stefan Rose-John
- Department of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia.
| |
Collapse
|
235
|
Tan SX, Fisher-Wellman KH, Fazakerley DJ, Ng Y, Pant H, Li J, Meoli CC, Coster ACF, Stöckli J, James DE. Selective insulin resistance in adipocytes. J Biol Chem 2015; 290:11337-48. [PMID: 25720492 DOI: 10.1074/jbc.m114.623686] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 12/14/2022] Open
Abstract
Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin.
Collapse
Affiliation(s)
- Shi-Xiong Tan
- From the Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Kelsey H Fisher-Wellman
- From the Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | | | - Yvonne Ng
- From the Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Himani Pant
- From the Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Jia Li
- From the Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Christopher C Meoli
- From the Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, the Charles Perkins Centre, School of Molecular Biosciences and
| | - Adelle C F Coster
- the School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | - David E James
- the Charles Perkins Centre, School of Molecular Biosciences and the School of Medicine, University of Sydney, New South Wales 2006, Australia, and
| |
Collapse
|
236
|
Li R, Xu X, Chen C, Wang Y, Gruzdev A, Zeldin DC, Wang DW. CYP2J2 attenuates metabolic dysfunction in diabetic mice by reducing hepatic inflammation via the PPARγ. Am J Physiol Endocrinol Metab 2015; 308:E270-82. [PMID: 25389363 PMCID: PMC4329496 DOI: 10.1152/ajpendo.00118.2014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) and arachidonic acid-derived cytochrome P450 (CYP) epoxygenase metabolites have diverse biological effects, including anti-inflammatory properties in the vasculature. Increasing evidence suggests that inflammation in type 2 diabetes is a key component in the development of insulin resistance. In this study, we investigated whether CYP epoxygenase expression and exogenous EETs can attenuate insulin resistance in diabetic db/db mice and in cultured hepatic cells (HepG2). In vivo, CYP2J2 expression and the accompanying increase in EETs attenuated insulin resistance, as determined by plasma glucose levels, glucose tolerance test, insulin tolerance test, and hyperinsulinemic euglycemic clamp studies. CYP2J2 expression reduced the production of proinflammatory cytokines in liver, including CRP, IL-6, IL-1β, and TNFα, and decreased the infiltration of macrophages in liver. CYP2J2 expression also decreased activation of proinflammatory signaling cascades by decreasing NF-κB and MAPK activation in hepatocytes. Interestingly, CYP2J2 expression and exogenous EET treatment increased glucose uptake and activated the insulin-signaling cascade both in vivo and in vitro, suggesting that CYP2J2 metabolites play a role in glucose homeostasis. Furthermore, CYP2J2 expression upregulated PPARγ, which has been shown to induce adipogenesis, which attenuates dyslipidemias observed in diabetes. All of the findings suggest that CYP2J2 expression attenuates the diabetic phenotype and insulin resistance via inhibition of NF-κB and MAPK signaling pathways and activation of PPARγ.
Collapse
Affiliation(s)
- Rui Li
- Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Xizhen Xu
- Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Chen Chen
- Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Yan Wang
- Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Artiom Gruzdev
- Division of Intramural Research, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina
| | - Dao Wen Wang
- Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| |
Collapse
|
237
|
Dinh CHL, Szabo A, Camer D, Yu Y, Wang H, Huang XF. Bardoxolone methyl prevents fat deposition and inflammation in the visceral fat of mice fed a high-fat diet. Chem Biol Interact 2015; 229:1-8. [PMID: 25637688 DOI: 10.1016/j.cbi.2015.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/07/2015] [Accepted: 01/20/2015] [Indexed: 12/14/2022]
Abstract
Key features of diet-induced obesity are visceral fat deposition, macrophage infiltration and inflammation that can lead to metabolic disorders. This study examined the effects of bardoxolone methyl (BARD) in preventing obesity and inflammation in the visceral fat of mice fed high-fat diet. Male C57BL/6J mice were fed a high-fat diet (HFD), a low-fat diet (LFD, i.e., lab chow diet) or a high-fat diet supplemented with BARD (HFD/BARD) for 21weeks. BARD at a dosage of 10mg/kg body weight was administered orally in drinking water. Histology, immunohistochemistry and Western blot were used for the analysis of epididymal adipose tissue. Morphological results demonstrated that HFD fed mice treated with BARD had smaller adipocytes and fewer macrophages present in epididymal adipose tissue than the HFD group. Furthermore, BARD administration reduced the inflammatory profile in this tissue by increasing the expression of nuclear factor of kappa-light-polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α) protein and decreasing the protein expression of tumour necrosis factor alpha (TNF-α). BARD also prevented oxidative stress reflected by a reduction in stress activated proteins, including signal transducer and activator of transcription 3 (STAT3), protein kinase B (Akt), extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). BARD administration activated the sympathetic nervous system in epididymal adipose tissue assessed by the increased synthesis of tyrosine hydroxylase (TH) and uncoupling protein 2 (UCP2). The expression of inflammatory and sympathetic nervous system proteins in BARD mice fed a HFD was equivalent to that of the LFD control mice, indicating the anti-inflammatory and anti-obesity properties of this drug. In conclusion, the oral administration of BARD in HFD mice prevented fat deposition, inflammation and oxidative stress, and improved sympathetic activity in visceral fat. This study suggests a potential therapeutic role of BARD in preventing the development of obesity.
Collapse
Affiliation(s)
- Chi H L Dinh
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Alexander Szabo
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia; ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, NSW 2234, Australia
| | - Danielle Camer
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Yinghua Yu
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Hongqin Wang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia.
| |
Collapse
|
238
|
Mauer J, Denson JL, Brüning JC. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol 2015; 36:92-101. [PMID: 25616716 DOI: 10.1016/j.it.2014.12.008] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/26/2014] [Accepted: 12/26/2014] [Indexed: 12/16/2022]
Abstract
Owing to its abundance in inflammatory settings, interleukin IL-6 is frequently viewed as a proinflammatory cytokine, with functions that parallel those of tumor necrosis factor (TNF) and IL-1β in the context of inflammation. However, accumulating evidence points to a broader role for IL-6 in a variety of (patho)physiological conditions, including functions related to the resolution of inflammation. We review recent findings on the complex biological functions governed by IL-6 signaling, focusing on its role in inflammation-associated cancer and metabolic disorders such as obesity and type 2 diabetes mellitus (T2DM). We propose that the anti-inflammatory functions of IL-6 may extend to multiple settings and cell types, and suggest that these dimensions should be incorporated in therapeutic approaches to these diseases. Finally, we outline important areas of inquiry towards understanding this pleiotropic cytokine.
Collapse
Affiliation(s)
- Jan Mauer
- Max Planck Institute for Metabolism Research, Cologne, Germany.
| | - Jesse L Denson
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany.
| |
Collapse
|
239
|
Aguilar-Valles A, Inoue W, Rummel C, Luheshi GN. Obesity, adipokines and neuroinflammation. Neuropharmacology 2015; 96:124-34. [PMID: 25582291 DOI: 10.1016/j.neuropharm.2014.12.023] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 12/14/2022]
Abstract
Global levels of obesity are reaching epidemic proportions, leading to a dramatic increase in incidence of secondary diseases and the significant economic burden associated with their treatment. These comorbidities include diabetes, cardiovascular disease, and some psychopathologies, which have been linked to a low-grade inflammatory state. Obese individuals exhibit an increase in circulating inflammatory mediators implicated as the underlying cause of these comorbidities. A number of these molecules are also manufactured and released by white adipose tissue (WAT), in direct proportion to tissue mass and are collectively known as adipokines. In the current review we focused on the role of two of the better-studied members of this family namely, leptin and adiponectin, with particular emphasis on their role in neuro-immune interactions, neuroinflammation and subsequent brain diseases. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Argel Aguilar-Valles
- Department of Neuroscience, Université de Montréal and Goodman Cancer Centre, Department of Biochemistry, McGill University, Montréal, Canada
| | - Wataru Inoue
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Christoph Rummel
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Giamal N Luheshi
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec H4H 1R3, Canada.
| |
Collapse
|
240
|
Gruben N, Funke A, Kloosterhuis NJ, Schreurs M, Sheedfar F, Havinga R, Houten SM, Shiri-Sverdlov R, van de Sluis B, Kuivenhoven JA, Koonen DPY, Hofker MH. Cholesterol-induced hepatic inflammation does not underlie the predisposition to insulin resistance in dyslipidemic female LDL receptor knockout mice. J Diabetes Res 2015; 2015:956854. [PMID: 25815343 PMCID: PMC4359820 DOI: 10.1155/2015/956854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/10/2015] [Accepted: 02/14/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is considered a causal risk factor predisposing to insulin resistance. However, evidence is accumulating that inflammation confined to the liver may not be causal to metabolic dysfunction. To investigate this, we assessed if hepatic inflammation explains the predisposition towards insulin resistance in low-density lipoprotein receptor knock-out (Ldlr (-/-)) mice. For this, wild type (WT) and Ldlr (-/-) mice were fed a chow diet, a high fat (HF) diet, or a high fat, high cholesterol (HFC) diet for 2 weeks. Plasma lipid levels were elevated in chow-fed Ldlr (-/-) mice compared to WT mice. Although short-term HF or HFC feeding did not result in body weight gain and adipose tissue inflammation, dyslipidemia was worsened in Ldlr (-/-) mice compared to WT mice. In addition, dyslipidemic HF-fed Ldlr (-/-) mice had a higher hepatic glucose production rate than HF-fed WT mice, while peripheral insulin resistance was unaffected. This suggests that HF-fed Ldlr (-/-) mice suffered from hepatic insulin resistance. While HFC-fed Ldlr (-/-) mice displayed the anticipated increased hepatic inflammation, this did neither exacerbate systemic nor hepatic insulin resistance. Therefore, our results show that hepatic insulin resistance is unrelated to cholesterol-induced hepatic inflammation in Ldlr (-/-) mice, indicating that hepatic inflammation may not contribute to metabolic dysfunction per se.
Collapse
Affiliation(s)
- Nanda Gruben
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Anouk Funke
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Niels J. Kloosterhuis
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Marijke Schreurs
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Fareeba Sheedfar
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Rick Havinga
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Sander M. Houten
- Academic Medical Center, Laboratory Genetic Metabolic Diseases, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, Netherlands
| | - Bart van de Sluis
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Jan Albert Kuivenhoven
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Debby P. Y. Koonen
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
- *Debby P. Y. Koonen:
| | - Marten H. Hofker
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| |
Collapse
|
241
|
Lucas E, Cruces-Sande M, Briones AM, Salaices M, Mayor F, Murga C, Vila-Bedmar R. Molecular physiopathology of obesity-related diseases: multi-organ integration by GRK2. Arch Physiol Biochem 2015; 121:163-77. [PMID: 26643283 DOI: 10.3109/13813455.2015.1107589] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is a worldwide problem that has reached epidemic proportions both in developed and developing countries. The excessive accumulation of fat poses a risk to health since it favours the development of metabolic alterations including insulin resistance and tissue inflammation, which further contribute to the progress of the complex pathological scenario observed in the obese. In this review we put together the different outcomes of fat accumulation and insulin resistance in the main insulin-responsive tissues, and discuss the role of some of the key molecular routes that control disease progression both in an organ-specific and also in a more systemic manner. In particular, we focus on the importance of studying the integrated regulation of different organs and pathways that contribute to the global pathophysiology of this condition with a specific emphasis on the role of emerging key molecular nodes such as the G protein-coupled receptor kinase 2 (GRK2) signalling hub.
Collapse
Affiliation(s)
- Elisa Lucas
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Marta Cruces-Sande
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Ana M Briones
- c Departamento de Farmacología , Universidad Autónoma de Madrid (UAM) Madrid , Spain , and
- d Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid , Spain
| | - Mercedes Salaices
- c Departamento de Farmacología , Universidad Autónoma de Madrid (UAM) Madrid , Spain , and
- d Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid , Spain
| | - Federico Mayor
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Cristina Murga
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Rocio Vila-Bedmar
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| |
Collapse
|
242
|
Abstract
Low-grade inflammation is an established pathological condition that contributes to the development of obesity, insulin resistance and type 2 diabetes. Metabolic inflammation is dependent on multiple signalling events. In an overnutrition state, canonical inflammatory pathways are induced by inflammatory cytokines and lipid species. They can also be triggered through inflammasome activation as well as through cellular stress provoked by the unfolded protein response at the endoplasmic reticulum as well as by reactive oxygen species. In this chapter, we summarize the current knowledge about signalling events within the cell and describe how they impact on metabolic inflammation and whole-body metabolism. We particularly highlight the interplay between different signalling pathways that link low-grade inflammation responses to the inactivation of the insulin receptor pathway, ultimately leading to insulin resistance, a hallmark of type 2 diabetes.
Collapse
|
243
|
Madsen SM, Thorup AC, Bjerre M, Jeppesen PB. Does 8 weeks of strenuous bicycle exercise improve diabetes-related inflammatory cytokines and free fatty acids in type 2 diabetes patients and individuals at high-risk of metabolic syndrome? Arch Physiol Biochem 2015; 121:129-38. [PMID: 26469542 DOI: 10.3109/13813455.2015.1082600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED In the present study, the effects of 8 weeks of low volume high intensity interval training (HIIT) was investigated on circulating diabetes-related cytokines and free fatty acids (FFA) in adults with type 2 diabetes (T2D) and matched controls (CON). METHODS Participants exercised for 8 weeks (3 weekly sessions: 10 × 60 sec HIIT) on a cycle ergometer supervised by medical staff. Prior to the intervention and after the last HIIT session, venous blood samples were collected. RESULTS Circulating omentin-1 concentrations increased significantly in both the CON-group (p = 0.003) and in the T2D-group (p = 0.002). Pentraxin-3 (p = 0.010) and IL-1ra (p = 0.031) levels increased significantly in the CON-group. Plasma FFA in the T2D-group was significantly reduced after 60 min (p = 0.011). Post HIIT area under curve of circulating FFAs was reduced by -17.73 ± 6.99% (p = 0.041) in the T2D-group. CONCLUSION We observed only modest exercise-induced improvements of multiple diabetes-related cytokines. Circulating levels of FFAs were significantly lowered in the T2D-group.
Collapse
Affiliation(s)
- Søren Møller Madsen
- a Department of Endocrinology and Internal Medicine , Aarhus Sygehus THG, Aarhus University Hospital , Aarhus C , Denmark and
| | - Anne Cathrine Thorup
- a Department of Endocrinology and Internal Medicine , Aarhus Sygehus THG, Aarhus University Hospital , Aarhus C , Denmark and
| | - Mette Bjerre
- b The Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University , Denmark
| | - Per Bendix Jeppesen
- a Department of Endocrinology and Internal Medicine , Aarhus Sygehus THG, Aarhus University Hospital , Aarhus C , Denmark and
| |
Collapse
|
244
|
Marseglia L, Manti S, D'Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci 2014; 16:378-400. [PMID: 25548896 PMCID: PMC4307252 DOI: 10.3390/ijms16010378] [Citation(s) in RCA: 608] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023] Open
Abstract
Obesity, a social problem worldwide, is characterized by an increase in body weight that results in excessive fat accumulation. Obesity is a major cause of morbidity and mortality and leads to several diseases, including metabolic syndrome, diabetes mellitus, cardiovascular, fatty liver diseases, and cancer. Growing evidence allows us to understand the critical role of adipose tissue in controlling the physic-pathological mechanisms of obesity and related comorbidities. Recently, adipose tissue, especially in the visceral compartment, has been considered not only as a simple energy depository tissue, but also as an active endocrine organ releasing a variety of biologically active molecules known as adipocytokines or adipokines. Based on the complex interplay between adipokines, obesity is also characterized by chronic low grade inflammation with permanently increased oxidative stress (OS). Over-expression of oxidative stress damages cellular structures together with under-production of anti-oxidant mechanisms, leading to the development of obesity-related complications. The aim of this review is to summarize what is known in the relationship between OS in obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Lucia Marseglia
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Sara Manti
- Unit of Paediatric Genetics and Immunology, Department of Paediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Gabriella D'Angelo
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Antonio Nicotera
- Unit of Child Neurology and Psychiatry, Department of Pediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Eleonora Parisi
- Unit of Child Neurology and Psychiatry, Department of Pediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Pediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Teresa Arrigo
- Unit of Paediatric Genetics and Immunology, Department of Paediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| |
Collapse
|
245
|
Kruse M, von Loeffelholz C, Hoffmann D, Pohlmann A, Seltmann AC, Osterhoff M, Hornemann S, Pivovarova O, Rohn S, Jahreis G, Pfeiffer AFH. Dietary rapeseed/canola-oil supplementation reduces serum lipids and liver enzymes and alters postprandial inflammatory responses in adipose tissue compared to olive-oil supplementation in obese men. Mol Nutr Food Res 2014; 59:507-19. [PMID: 25403327 DOI: 10.1002/mnfr.201400446] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 11/10/2022]
Abstract
SCOPE Obesity is associated with hyperlipidemia, hepatic steatosis, and low-grade inflammation. Studies have shown that MUFA as well as PUFA have beneficial effects on blood lipids and the inflammatory state. METHODS AND RESULTS This study investigates the effects of a daily supplementation of either 50 g of rapeseed/canola (RA) or olive (OL) oil over 4 wk on serum lipids, serum liver enzymes, and inflammatory gene expression in subcutaneous (s. c.) adipose tissue in obese men. Consuming RA resulted in increased serum n-3 fatty acids and a reduction in total cholesterol, LDL cholesterol, and serum aspartate aminotransferase compared to OL. In s. c. adipose tissue, gene expression of the pro-inflammatory cytokine IL6 was reduced in RA compared to OL. However, after 4 h after a test meal, containing the appropriate oil, white bread, and 400 mL of liquid diet drink (835 kcal in total), gene expression of IL6, IL1B, and EMR1 (egf-like module containing Mucin-like hormone receptor-like 1) was increased in RA and of monocyte chemoattractant protein-1 (CCL2) in both RA and OL. CONCLUSION This demonstrates that consuming RA for 4 wk improves serum lipids, liver enzymes, and basal inflammation in s. c. adipose tissue, but it mediates an acute pro-inflammatory response in adipose tissue upon consuming a meal.
Collapse
Affiliation(s)
- Michael Kruse
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Abstract
The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
247
|
Ipsen DH, Tveden-Nyborg P, Lykkesfeldt J. Does vitamin C deficiency promote fatty liver disease development? Nutrients 2014; 6:5473-99. [PMID: 25533004 PMCID: PMC4276979 DOI: 10.3390/nu6125473] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/05/2014] [Accepted: 11/15/2014] [Indexed: 02/06/2023] Open
Abstract
Obesity and the subsequent reprogramming of the white adipose tissue are linked to human disease-complexes including metabolic syndrome and concurrent non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). The dietary imposed dyslipidemia promotes redox imbalance by the generation of excess levels of reactive oxygen species and induces adipocyte dysfunction and reprogramming, leading to a low grade systemic inflammation and ectopic lipid deposition, e.g., in the liver, hereby promoting a vicious circle in which dietary factors initiate a metabolic change that further exacerbates the negative consequences of an adverse life-style. Large epidemiological studies and findings from controlled in vivo animal studies have provided evidence supporting an association between poor vitamin C (VitC) status and propagation of life-style associated diseases. In addition, overweight per se has been shown to result in reduced plasma VitC, and the distribution of body fat in obesity has been shown to have an inverse relationship with VitC plasma levels. Recently, a number of epidemiological studies have indicated a VitC intake below the recommended daily allowance (RDA) in NAFLD-patients, suggesting an association between dietary habits, disease and VitC deficiency. In the general population, VitC deficiency (defined as a plasma concentration below 23 μM) affects around 10% of adults, however, this prevalence is increased by an adverse life-style, deficiency potentially playing a broader role in disease progression in specific subgroups. This review discusses the currently available data from human surveys and experimental models in search of a putative role of VitC deficiency in the development of NAFLD and NASH.
Collapse
Affiliation(s)
- David Højland Ipsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C, 1870 Copenhagen, Denmark.
| | - Pernille Tveden-Nyborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C, 1870 Copenhagen, Denmark.
| | - Jens Lykkesfeldt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C, 1870 Copenhagen, Denmark.
| |
Collapse
|
248
|
Abstract
Obesity is frequently associated with chronic inflammation, metabolic and vascular alterations which predispose to the development of the Metabolic Syndrome (MetS). However, the individual obesity-related risk for the MetS is not determined by increased fat mass alone. Heterogeneity of body composition, fat distribution and adipose tissue (AT) function may underly the variable risk to develop metabolic and cardiovascular diseases associated with increased body fat mass. Importantly, an inability to increase AT mass by adipocyte hyperplasia may lead to adipocyte hypertrophy and could induce dysfunction of adipose tissue characterized by decreased insulin sensitivity, hypoxia, increased parameters of intracellular stress, increased autophagy and apoptosis and tissue inflammation. As a result, adipocytes and other AT cells release signals (e.g. adipokines, cells, metabolites) resulting in a proinflammatory, diabetogenic and atherogenic serum profile. These adverse signals may contribute to further AT inflammation and secondary organ damage in target tissues such as liver, brain, endothelium, vasculature, endocrine organs and skeletal muscle. Recently, a specific adipocyte volume threshold has been shown to predict the risk for obesity-associated type 2 diabetes. Most likely, impaired adipocyte function is caused by genetic, behavioural and environmental factors which are not entirely understood. Elucidating the mechanisms of adipocyte dysfunction may lead to the identification of novel treatment targets for obesity and the MetS.
Collapse
Affiliation(s)
- Nora Klöting
- Department of Medicine, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | | |
Collapse
|
249
|
Zhang W, Mottillo EP, Zhao J, Gartung A, VanHecke GC, Lee JF, Maddipati KR, Xu H, Ahn YH, Proia RL, Granneman JG, Lee MJ. Adipocyte lipolysis-stimulated interleukin-6 production requires sphingosine kinase 1 activity. J Biol Chem 2014; 289:32178-32185. [PMID: 25253697 PMCID: PMC4231693 DOI: 10.1074/jbc.m114.601096] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/12/2014] [Indexed: 12/17/2022] Open
Abstract
Adipocyte lipolysis can increase the production of inflammatory cytokines such as interleukin-6 (IL-6) that promote insulin resistance. However, the mechanisms that link lipolysis with inflammation remain elusive. Acute activation of β3-adrenergic receptors (ADRB3) triggers lipolysis and up-regulates production of IL-6 in adipocytes, and both of these effects are blocked by pharmacological inhibition of hormone-sensitive lipase. We report that stimulation of ADRB3 induces expression of sphingosine kinase 1 (SphK1) and increases sphingosine 1-phosphate production in adipocytes in a manner that also depends on hormone-sensitive lipase activity. Mechanistically, we found that adipose lipolysis-induced SphK1 up-regulation is mediated by the c-Jun N-terminal kinase (JNK)/activating protein-1 signaling pathway. Inhibition of SphK1 by sphingosine kinase inhibitor 2 diminished the ADRB3-induced IL-6 production both in vitro and in vivo. Induction of IL-6 by ADRB3 activation was suppressed by siRNA knockdown of Sphk1 in cultured adipocytes and was severely attenuated in Sphk1 null mice. Conversely, ectopic expression of SphK1 increased IL-6 expression in adipocytes. Collectively, these data demonstrate that SphK1 is a critical mediator in lipolysis-triggered inflammation in adipocytes.
Collapse
Affiliation(s)
- Wenliang Zhang
- Departments of Pathology, Wayne State University, Detroit, Michigan 48202; Departments of Bioactive Lipid Research Program, Wayne State University, Detroit, Michigan 48202
| | - Emilio P Mottillo
- Departments of Pathology, Wayne State University, Detroit, Michigan 48202; Center for Integrative Metabolic and Endocrine Research, Wayne State University, Detroit, Michigan 48202
| | - Jiawei Zhao
- Departments of Pathology, Wayne State University, Detroit, Michigan 48202; Departments of Bioactive Lipid Research Program, Wayne State University, Detroit, Michigan 48202
| | - Allison Gartung
- Departments of Pathology, Wayne State University, Detroit, Michigan 48202; Departments of Bioactive Lipid Research Program, Wayne State University, Detroit, Michigan 48202
| | - Garrett C VanHecke
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | - Jen-Fu Lee
- Departments of Pathology, Wayne State University, Detroit, Michigan 48202; Departments of Bioactive Lipid Research Program, Wayne State University, Detroit, Michigan 48202
| | - Krishna R Maddipati
- Departments of Pathology, Wayne State University, Detroit, Michigan 48202; Departments of Bioactive Lipid Research Program, Wayne State University, Detroit, Michigan 48202
| | - Haiyan Xu
- Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02912, and
| | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | - Richard L Proia
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20814
| | - James G Granneman
- Departments of Pathology, Wayne State University, Detroit, Michigan 48202; Center for Integrative Metabolic and Endocrine Research, Wayne State University, Detroit, Michigan 48202; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48202.
| | - Menq-Jer Lee
- Departments of Pathology, Wayne State University, Detroit, Michigan 48202; Departments of Bioactive Lipid Research Program, Wayne State University, Detroit, Michigan 48202; Karmanos Cancer Institute, and Wayne State University, Detroit, Michigan 48202; Cardiovascular Research Institute, Wayne State University, Detroit, Michigan 48202,.
| |
Collapse
|
250
|
Chen X, Huang Z, Zhou B, Wang H, Jia G, Liu G, Zhao H. STEAP4 and insulin resistance. Endocrine 2014; 47:372-9. [PMID: 24627165 DOI: 10.1007/s12020-014-0230-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/26/2014] [Indexed: 12/31/2022]
Abstract
Obesity is a multifactorial disease that caused by the interactions between genetic susceptibility genes and environmental cues. Obesity is considered as a major risk factor of insulin resistance. STEAP4 is a novel anti-obesity gene that is significantly down-regulated in adipose tissue of obese patients. Over-expression of STEAP4 can improve glucose uptake and mitochondrial function, and increase insulin sensitivity. STEAP4 expression is regulated by a variety of inflammatory cytokines, hormones, or adipokines. In this review, we discuss function of STEAP4 in regulating insulin resistance in adipose tissue in vivo, as well as in adipocytes in vitro.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|