201
|
Kast F, Klein C, Umaña P, Gros A, Gasser S. Advances in identification and selection of personalized neoantigen/T-cell pairs for autologous adoptive T cell therapies. Oncoimmunology 2021; 10:1869389. [PMID: 33520408 PMCID: PMC7808433 DOI: 10.1080/2162402x.2020.1869389] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Based on the success of tumor-infiltrating lymphocytes (TIL)-based therapies, personalized adoptive cell therapies (ACT) targeting neoantigens have the potential to become a disruptive technology and lead to highly effective treatments for cancer patients for whom no other options exist. ACT of TIL, peripheral blood or gene-engineered peripheral blood lymphocytes (PBLs) targeting neoantigens is a highly personalized intervention that requires three discrete steps: i) Identification of suitable personal targets (neoantigens), ii) selection of T cells or their T cell receptors (TCRs) that are specific for the identified neoantigens and iii) expansion of the selected T cell population or generation of sufficient number of TCR modified T cells. In this review, we provide an introduction into challenges and approaches to identify neoantigens and to select the Adoptive Cell Therapy, ACT, Neoantigen, T cell, Cancer respective neoantigen-reactive T cells for use in ACT.
Collapse
Affiliation(s)
- Florian Kast
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christian Klein
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Pablo Umaña
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Alena Gros
- Vall d'Hebron Institute of Oncology, Cellex Center, Barcelona, Spain
| | - Stephan Gasser
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| |
Collapse
|
202
|
Lippert AH, Dimov IB, Winkel AK, Humphrey J, McColl J, Chen KY, Santos AM, Jenkins E, Franze K, Davis SJ, Klenerman D. Soft Polydimethylsiloxane-Supported Lipid Bilayers for Studying T Cell Interactions. Biophys J 2021; 120:35-45. [PMID: 33248128 PMCID: PMC7820804 DOI: 10.1016/j.bpj.2020.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/22/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
Much of what we know about the early stages of T cell activation has been obtained from studies of T cells interacting with glass-supported lipid bilayers that favor imaging but are orders of magnitude stiffer than typical cells. We developed a method for attaching lipid bilayers to polydimethylsiloxane polymer supports, producing "soft bilayers" with physiological levels of mechanical resistance (Young's modulus of 4 kPa). Comparisons of T cell behavior on soft and glass-supported bilayers revealed that whereas late stages of T cell activation are thought to be substrate-stiffness dependent, early calcium signaling was unaffected by substrate rigidity, implying that early steps in T cell receptor triggering are not mechanosensitive. The exclusion of large receptor-type phosphatases was observed on the soft bilayers, however, even though it is yet to be demonstrated at authentic cell-cell contacts. This work sets the stage for an imaging-based exploration of receptor signaling under conditions closely mimicking physiological cell-cell contact.
Collapse
Affiliation(s)
- Anna H Lippert
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Ivan B Dimov
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alexander K Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jane Humphrey
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - James McColl
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kevin Y Chen
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ana M Santos
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Edward Jenkins
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
203
|
Cotton RN, Cheng TY, Wegrecki M, Le Nours J, Orgill DP, Pomahac B, Talbot SG, Willis RA, Altman JD, de Jong A, Ogg G, Van Rhijn I, Rossjohn J, Clark RA, Moody DB. Human skin is colonized by T cells that recognize CD1a independently of lipid. J Clin Invest 2021; 131:140706. [PMID: 33393500 PMCID: PMC7773353 DOI: 10.1172/jci140706] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
CD1a-autoreactive T cells contribute to skin disease, but the identity of immunodominant self-lipid antigens and their mode of recognition are not yet solved. In most models, MHC and CD1 proteins serve as display platforms for smaller antigens. Here, we showed that CD1a tetramers without added antigen stained large T cell pools in every subject tested, accounting for approximately 1% of skin T cells. The mechanism of tetramer binding to T cells did not require any defined antigen. Binding occurred with approximately 100 lipid ligands carried by CD1a proteins, but could be tuned upward or downward with certain natural self-lipids. TCR recognition mapped to the outer A' roof of CD1a at sites remote from the antigen exit portal, explaining how TCRs can bind CD1a rather than carried lipids. Thus, a major antigenic target of CD1a T cell autoreactivity in vivo is CD1a itself. Based on their high frequency and prevalence among donors, we conclude that CD1a-specific, lipid-independent T cells are a normal component of the human skin T cell repertoire. Bypassing the need to select antigens and effector molecules, CD1a tetramers represent a simple method to track such CD1a-specific T cells from tissues and in any clinical disease.
Collapse
Affiliation(s)
- Rachel N. Cotton
- Graduate Program in Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tan-Yun Cheng
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcin Wegrecki
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Dennis P. Orgill
- Division of Plastic and Reconstructive Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston Massachusetts, USA
| | - Bohdan Pomahac
- Division of Plastic and Reconstructive Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston Massachusetts, USA
| | - Simon G. Talbot
- Division of Plastic and Reconstructive Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston Massachusetts, USA
| | - Richard A. Willis
- NIH Tetramer Core Facility, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - John D. Altman
- NIH Tetramer Core Facility, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Annemieke de Jong
- Department of Dermatology, Columbia University Irving Medical Center, New York, New York, USA
| | - Graham Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, United Kingdom
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- School of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Rachael A. Clark
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
204
|
Hu X, Felber BK, Valentin A. Assessing Antigen-Specific Cellular Immune Responses upon HIV /SIV Plasmid DNA Vaccination in the Nonhuman Primate Model. Methods Mol Biol 2021; 2197:113-131. [PMID: 32827134 PMCID: PMC10802792 DOI: 10.1007/978-1-0716-0872-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Reliable detection and quantification of antigen-specific T cells are critical for assessing the immunogenicity of vaccine candidates. In this chapter, we describe the use of ELISpot and flow cytometry-based assays for efficient detection, mapping, and functional characterization of memory T lymphocytes in different tissues of rhesus macaques immunized with plasmid DNA. Flow cytometric assays provide a large amount of information, both phenotypic and functional, about individual cells, while the ELISpot is well suited for high throughput sample screening.
Collapse
Affiliation(s)
- Xintao Hu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
205
|
Akahoshi T, Gatanaga H, Kuse N, Chikata T, Koyanagi M, Ishizuka N, Brumme CJ, Murakoshi H, Brumme ZL, Oka S, Takiguchi M. T-cell responses to sequentially emerging viral escape mutants shape long-term HIV-1 population dynamics. PLoS Pathog 2020; 16:e1009177. [PMID: 33370400 PMCID: PMC7833229 DOI: 10.1371/journal.ppat.1009177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/25/2021] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
HIV-1 strains harboring immune escape mutations can persist in circulation, but the impact of selection by multiple HLA alleles on population HIV-1 dynamics remains unclear. In Japan, HIV-1 Reverse Transcriptase codon 135 (RT135) is under strong immune pressure by HLA-B*51:01-restricted and HLA-B*52:01-restricted T cells that target a key epitope in this region (TI8; spanning RT codons 128-135). Major population-level shifts have occurred at HIV-1 RT135 during the Japanese epidemic, which first affected hemophiliacs (via imported contaminated blood products) and subsequently non-hemophiliacs (via domestic transmission). Specifically, threonine accumulated at RT135 (RT135T) in hemophiliac and non-hemophiliac HLA-B*51:01+ individuals diagnosed before 1997, but since then RT135T has markedly declined while RT135L has increased among non-hemophiliac individuals. We demonstrated that RT135V selection by HLA-B*52:01-restricted TI8-specific T-cells led to the creation of a new HLA-C*12:02-restricted epitope TN9-8V. We further showed that TN9-8V-specific HLA-C*12:02-restricted T cells selected RT135L while TN9-8T-specific HLA-C*12:02-restricted T cells suppressed replication of the RT135T variant. Thus, population-level accumulation of the RT135L mutation over time in Japan can be explained by initial targeting of the TI8 epitope by HLA-B*52:01-restricted T-cells, followed by targeting of the resulting escape mutant by HLA-C*12:02-restricted T-cells. We further demonstrate that this phenomenon is particular to Japan, where the HLA-B*52:01-C*12:02 haplotype is common: RT135L did not accumulate over a 15-year longitudinal analysis of HIV sequences in British Columbia, Canada, where this haplotype is rare. Together, our observations reveal that T-cell responses to sequentially emerging viral escape mutants can shape long-term HIV-1 population dynamics in a host population-specific manner.
Collapse
Affiliation(s)
| | - Hiroyuki Gatanaga
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Madoka Koyanagi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Zabrina L. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Shinichi Oka
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
206
|
Estrada Brull A, Rost F, Oderbolz J, Kirchner FR, Leibundgut-Landmann S, Oxenius A, Joller N. CD85k Contributes to Regulatory T Cell Function in Chronic Viral Infections. Int J Mol Sci 2020; 22:E31. [PMID: 33375121 PMCID: PMC7792974 DOI: 10.3390/ijms22010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) prevent excessive immune responses and limit immune pathology upon infections. To fulfill this role in different immune environments elicited by different types of pathogens, Tregs undergo functional specialization into distinct subsets. During acute type 1 immune responses, type 1 Tregs are induced and recruited to the site of ongoing Th1 responses to efficiently control Th1 responses. However, whether a similar specialization process also takes place following chronic infections is still unknown. In this study, we investigated Treg specialization in persistent viral infections using lymphocytic choriomeningitis virus (LCMV) and murine cytomegalovirus (MCMV) infection as models for chronic and latent infections, respectively. We identify CD85k as a Th1-specific co-inhibitory receptor with sustained expression in persistent viral infections and show that recombinant CD85k inhibits LCMV-specific effector T cells. Furthermore, expression of the CD85k ligand ALCAM is induced on LCMV-specific and exhausted T cells during chronic LCMV infection. Finally, we demonstrate that type 1 Tregs arising during chronic LCMV infection suppress Th1 effector cells in an ALCAM-dependent manner. These results extend the current knowledge of Treg specialization from acute to persistent viral infections and reveal an important functional role of CD85k in Treg-mediated suppression of type 1 immunity.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Cell Adhesion Molecules, Neuronal/immunology
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Line
- Cells, Cultured
- Herpesviridae Infections/immunology
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/virology
- Lymphocytic Choriomeningitis/immunology
- Lymphocytic Choriomeningitis/metabolism
- Lymphocytic Choriomeningitis/virology
- Lymphocytic choriomeningitis virus/immunology
- Lymphocytic choriomeningitis virus/physiology
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice, Inbred C57BL
- Muromegalovirus/immunology
- Muromegalovirus/physiology
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/virology
- Th1 Cells/immunology
- Th1 Cells/metabolism
Collapse
Affiliation(s)
- Anna Estrada Brull
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland; (A.E.B.); (F.R.); (F.R.K.); (S.L.-L.)
| | - Felix Rost
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland; (A.E.B.); (F.R.); (F.R.K.); (S.L.-L.)
| | - Josua Oderbolz
- ETH Zurich, Institute of Microbiology, 8093 Zurich, Switzerland; (J.O.); (A.O.)
| | - Florian R. Kirchner
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland; (A.E.B.); (F.R.); (F.R.K.); (S.L.-L.)
- Section of Immunology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Salomé Leibundgut-Landmann
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland; (A.E.B.); (F.R.); (F.R.K.); (S.L.-L.)
- Section of Immunology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Annette Oxenius
- ETH Zurich, Institute of Microbiology, 8093 Zurich, Switzerland; (J.O.); (A.O.)
| | - Nicole Joller
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland; (A.E.B.); (F.R.); (F.R.K.); (S.L.-L.)
| |
Collapse
|
207
|
Sethna Z, Isacchini G, Dupic T, Mora T, Walczak AM, Elhanati Y. Population variability in the generation and selection of T-cell repertoires. PLoS Comput Biol 2020; 16:e1008394. [PMID: 33296360 PMCID: PMC7725366 DOI: 10.1371/journal.pcbi.1008394] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
The diversity of T-cell receptor (TCR) repertoires is achieved by a combination of two intrinsically stochastic steps: random receptor generation by VDJ recombination, and selection based on the recognition of random self-peptides presented on the major histocompatibility complex. These processes lead to a large receptor variability within and between individuals. However, the characterization of the variability is hampered by the limited size of the sampled repertoires. We introduce a new software tool SONIA to facilitate inference of individual-specific computational models for the generation and selection of the TCR beta chain (TRB) from sequenced repertoires of 651 individuals, separating and quantifying the variability of the two processes of generation and selection in the population. We find not only that most of the variability is driven by the VDJ generation process, but there is a large degree of consistency between individuals with the inter-individual variance of repertoires being about ∼2% of the intra-individual variance. Known viral-specific TCRs follow the same generation and selection statistics as all TCRs.
Collapse
Affiliation(s)
- Zachary Sethna
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Giulio Isacchini
- Laboratoire de physique de l'École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Université de Paris 24 rue Lhomond, Paris, France.,Max Planck Institute for Dynamics and Self-organization, Am Faßberg 17, Göttingen, Germany
| | - Thomas Dupic
- Laboratoire de physique de l'École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Université de Paris 24 rue Lhomond, Paris, France
| | - Thierry Mora
- Laboratoire de physique de l'École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Université de Paris 24 rue Lhomond, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Université de Paris 24 rue Lhomond, Paris, France
| | - Yuval Elhanati
- Computational Oncology, Department of Epidemiology and Biostatistics, and Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
208
|
Moody DB. Remembering Enzo Cerundolo. Mol Immunol 2020; 129:53-55. [PMID: 33309954 DOI: 10.1016/j.molimm.2020.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
Affiliation(s)
- D Branch Moody
- Brigham and Women's Hospital, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, United States.
| |
Collapse
|
209
|
Watanabe M, Lu Y, Breen M, Hodes RJ. B7-CD28 co-stimulation modulates central tolerance via thymic clonal deletion and Treg generation through distinct mechanisms. Nat Commun 2020; 11:6264. [PMID: 33293517 PMCID: PMC7722925 DOI: 10.1038/s41467-020-20070-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
The molecular and cellular mechanisms mediating thymic central tolerance and prevention of autoimmunity are not fully understood. Here we show that B7-CD28 co-stimulation and B7 expression by specific antigen-presenting cell (APC) types are required for clonal deletion and for regulatory T (Treg) cell generation from endogenous tissue-restricted antigen (TRA)-specific thymocytes. While B7-CD28 interaction is required for both clonal deletion and Treg induction, these two processes differ in their CD28 signaling requirements and in their dependence on B7-expressing dendritic cells, B cells, and thymic epithelial cells. Meanwhile, defective thymic clonal deletion due to altered B7-CD28 signaling results in the accumulation of mature, peripheral TRA-specific T cells capable of mediating destructive autoimmunity. Our findings thus reveal a function of B7-CD28 co-stimulation in shaping the T cell repertoire and limiting autoimmunity through both thymic clonal deletion and Treg cell generation.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/metabolism
- Autoimmunity/physiology
- B7-1 Antigen/metabolism
- CD28 Antigens/genetics
- CD28 Antigens/metabolism
- Cell Differentiation/immunology
- Central Tolerance
- Clonal Deletion
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Flow Cytometry
- Gene Knock-In Techniques
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymocytes/physiology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Masashi Watanabe
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ying Lu
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Michael Breen
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Richard J Hodes
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
210
|
Hu-Lieskovan S, Bhaumik S, Dhodapkar K, Grivel JCJB, Gupta S, Hanks BA, Janetzki S, Kleen TO, Koguchi Y, Lund AW, Maccalli C, Mahnke YD, Novosiadly RD, Selvan SR, Sims T, Zhao Y, Maecker HT. SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery. J Immunother Cancer 2020; 8:e000705. [PMID: 33268350 PMCID: PMC7713206 DOI: 10.1136/jitc-2020-000705] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Since the publication of the Society for Immunotherapy of Cancer's (SITC) original cancer immunotherapy biomarkers resource document, there have been remarkable breakthroughs in cancer immunotherapy, in particular the development and approval of immune checkpoint inhibitors, engineered cellular therapies, and tumor vaccines to unleash antitumor immune activity. The most notable feature of these breakthroughs is the achievement of durable clinical responses in some patients, enabling long-term survival. These durable responses have been noted in tumor types that were not previously considered immunotherapy-sensitive, suggesting that all patients with cancer may have the potential to benefit from immunotherapy. However, a persistent challenge in the field is the fact that only a minority of patients respond to immunotherapy, especially those therapies that rely on endogenous immune activation such as checkpoint inhibitors and vaccination due to the complex and heterogeneous immune escape mechanisms which can develop in each patient. Therefore, the development of robust biomarkers for each immunotherapy strategy, enabling rational patient selection and the design of precise combination therapies, is key for the continued success and improvement of immunotherapy. In this document, we summarize and update established biomarkers, guidelines, and regulatory considerations for clinical immune biomarker development, discuss well-known and novel technologies for biomarker discovery and validation, and provide tools and resources that can be used by the biomarker research community to facilitate the continued development of immuno-oncology and aid in the goal of durable responses in all patients.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Kavita Dhodapkar
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | - Sumati Gupta
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Brent A Hanks
- Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Yoshinobu Koguchi
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Amanda W Lund
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | - Tasha Sims
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | | |
Collapse
|
211
|
Bousbaine D, Ploegh HL. Antigen discovery tools for adaptive immune receptor repertoire research. CURRENT OPINION IN SYSTEMS BIOLOGY 2020; 24:64-70. [PMID: 33195881 PMCID: PMC7665270 DOI: 10.1016/j.coisb.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The adaptive immune system has evolved to recognize with incredible precision a large diversity of molecules. Innovations in high-throughput sequencing and bioinformatics have accelerated large-scale immune repertoire analyses and given us important insights into the behavior of the adaptive immune system. However, establishing a connection between receptor sequence and its antigen-specificity remains a challenge despite its central role in determining T and B cell fate. We discuss recent large-scale antigen discovery technologies which can be combined with adaptive immune receptor repertoire (AIRR) studies. We highlight important discoveries made using repertoire analyses in the field of host-microbe interactions.
Collapse
Affiliation(s)
- Djenet Bousbaine
- Department of Bioengineering and ChEM-H, Stanford University, Stanford CA, USA
| | - Hidde L. Ploegh
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston MA, USA
| |
Collapse
|
212
|
Müller TR, Schuler C, Hammel M, Köhler A, Jutz S, Leitner J, Schober K, Busch DH, Steinberger P. A T-cell reporter platform for high-throughput and reliable investigation of TCR function and biology. Clin Transl Immunology 2020; 9:e1216. [PMID: 33251011 PMCID: PMC7681835 DOI: 10.1002/cti2.1216] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Transgenic re-expression enables unbiased investigation of T-cell receptor (TCR)-intrinsic characteristics detached from its original cellular context. Recent advancements in TCR repertoire sequencing and development of protocols for direct cloning of full TCRαβ constructs now facilitate large-scale transgenic TCR re-expression. Together, this offers unprecedented opportunities for the screening of TCRs for basic research as well as clinical use. However, the functional characterisation of re-expressed TCRs is still a complicated and laborious matter. Here, we propose a Jurkat-based triple parameter TCR signalling reporter endogenous TCR knockout cellular platform (TPRKO) that offers an unbiased, easy read-out of TCR functionality and facilitates high-throughput screening approaches. METHODS As a proof-of-concept, we transgenically re-expressed 59 human cytomegalovirus-specific TCRs and systematically investigated and compared TCR function in TPRKO cells versus primary human T cells. RESULTS We demonstrate that the TPRKO cell line facilitates antigen-HLA specificity screening via sensitive peptide-MHC-multimer staining, which was highly comparable to primary T cells. Also, TCR functional avidity in TPRKO cells was strongly correlating to primary T cells, especially in the absence of CD8αβ co-receptor. CONCLUSION Overall, our data show that the TPRKO cell lines can serve as a surrogate of primary human T cells for standardised and high-throughput investigation of TCR biology.
Collapse
Affiliation(s)
- Thomas R Müller
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
- German Center for Infection Research (DZIF)MunichGermany
| | - Corinna Schuler
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
| | - Amelie Köhler
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
| | - Sabrina Jutz
- Division of Immune Receptors and T Cell ActivationCenter for Pathophysiology, Infectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| | - Judith Leitner
- Division of Immune Receptors and T Cell ActivationCenter for Pathophysiology, Infectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
- German Center for Infection Research (DZIF)MunichGermany
- Focus Group ‘Clinical Cell Processing and Purification’Institute for Advanced StudyTUMMunichGermany
| | - Peter Steinberger
- Division of Immune Receptors and T Cell ActivationCenter for Pathophysiology, Infectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
213
|
Kolawole EM, Lamb TJ, Evavold BD. Relationship of 2D Affinity to T Cell Functional Outcomes. Int J Mol Sci 2020; 21:E7969. [PMID: 33120989 PMCID: PMC7662510 DOI: 10.3390/ijms21217969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
T cells are critical for a functioning adaptive immune response and a strong correlation exists between T cell responses and T cell receptor (TCR): peptide-loaded MHC (pMHC) binding. Studies that utilize pMHC tetramer, multimers, and assays of three-dimensional (3D) affinity have provided advancements in our understanding of T cell responses across different diseases. However, these technologies focus on higher affinity and avidity T cells while missing the lower affinity responders. Lower affinity TCRs in expanded polyclonal populations almost always constitute a significant proportion of the response with cells mediating different effector functions associated with variation in the proportion of high and low affinity T cells. Since lower affinity T cells expand and are functional, a fully inclusive view of T cell responses is required to accurately interpret the role of affinity for adaptive T cell immunity. For example, low affinity T cells are capable of inducing autoimmune disease and T cells with an intermediate affinity have been shown to exhibit an optimal anti-tumor response. Here, we focus on how affinity of the TCR may relate to T cell phenotype and provide examples where 2D affinity influences functional outcomes.
Collapse
Affiliation(s)
| | | | - Brian D. Evavold
- Department of Pathology, University of Utah, 15 N Medical Drive, Salt Lake City, UT 84112, USA; (E.M.K.); (T.J.L.)
| |
Collapse
|
214
|
Cotero V, Kao TJ, Graf J, Ashe J, Morton C, Chavan SS, Zanos S, Tracey KJ, Puleo CM. Evidence of Long-range nerve pathways connecting and coordinating activity in secondary lymph organs. Bioelectron Med 2020; 6:21. [PMID: 33110929 PMCID: PMC7584093 DOI: 10.1186/s42234-020-00056-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/09/2020] [Indexed: 01/23/2023] Open
Abstract
Background Peripheral nerve reflexes enable organ systems to maintain long-term physiological homeostasis while responding to rapidly changing environmental conditions. Electrical nerve stimulation is commonly used to activate these reflexes and modulate organ function, giving rise to an emerging class of therapeutics called bioelectronic medicines. Dogma maintains that immune cell migration to and from organs is mediated by inflammatory signals (i.e. cytokines or pathogen associated signaling molecules). However, nerve reflexes that regulate immune function have only recently been elucidated, and stimulation of these reflexes for therapeutic effect has not been fully investigated. Methods We utilized both electrical and ultrasound-based nerve stimulation to activate nerve pathways projecting to specific lymph nodes. Tissue and cell analysis of the stimulated lymph node, distal lymph nodes and immune organs is then utilized to measure the stimulation-induced changes in neurotransmitter/neuropeptide concentrations and immune cellularity in each of these sites. Results and conclusions In this report, we demonstrate that activation of nerves and stimulated release of neurotransmitters within a local lymph node results in transient retention of immune cells (e.g. lymphocytes and neutrophils) at that location. Furthermore, such stimulation results in transient changes in neurotransmitter concentrations at distal organs of the immune system, spleen and liver, and mobilization of immune cells into the circulation. This report will enable future studies in which stimulation of these long-range nerve connections between lymphatic and immune organs can be applied for clinical purpose, including therapeutic modulation of cellularity during vaccination, active allergic response, or active auto-immune disease.
Collapse
Affiliation(s)
| | - Tzu-Jen Kao
- General Electric Research, Niskayuna, NY USA
| | - John Graf
- General Electric Research, Niskayuna, NY USA
| | | | | | | | - Stavros Zanos
- Feinstein Institutes for Medical Research, Manhasset, NY USA
| | - Kevin J. Tracey
- Feinstein Institutes for Medical Research, Manhasset, NY USA
| | | |
Collapse
|
215
|
Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM. Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nat Biotechnol 2020; 38:1194-1202. [PMID: 32341563 PMCID: PMC7541396 DOI: 10.1038/s41587-020-0505-4] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
CD4+ T cells are critical to fighting pathogens, but a comprehensive analysis of human T-cell specificities is hindered by the diversity of HLA alleles (>20,000) and the complexity of many pathogen genomes. We previously described GLIPH, an algorithm to cluster T-cell receptors (TCRs) that recognize the same epitope and to predict their HLA restriction, but this method loses efficiency and accuracy when >10,000 TCRs are analyzed. Here we describe an improved algorithm, GLIPH2, that can process millions of TCR sequences. We used GLIPH2 to analyze 19,044 unique TCRβ sequences from 58 individuals latently infected with Mycobacterium tuberculosis (Mtb) and to group them according to their specificity. To identify the epitopes targeted by clusters of Mtb-specific T cells, we carried out a screen of 3,724 distinct proteins covering 95% of Mtb protein-coding genes using artificial antigen-presenting cells (aAPCs) and reporter T cells. We found that at least five PPE (Pro-Pro-Glu) proteins are targets for T-cell recognition in Mtb.
Collapse
Affiliation(s)
- Huang Huang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Chunlin Wang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Florian Rubelt
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
216
|
Woodham AW, Zeigler SH, Zeyang EL, Kolifrath SC, Cheloha RW, Rashidian M, Chaparro RJ, Seidel RD, Garforth SJ, Dearling JL, Mesyngier M, Duddempudi PK, Packard AB, Almo SC, Ploegh HL. In vivo detection of antigen-specific CD8 + T cells by immuno-positron emission tomography. Nat Methods 2020; 17:1025-1032. [PMID: 32929269 PMCID: PMC7541633 DOI: 10.1038/s41592-020-0934-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/23/2020] [Indexed: 12/27/2022]
Abstract
The immune system's ability to recognize peptides on major histocompatibility molecules contributes to the eradication of cancers and pathogens. Tracking these responses in vivo could help evaluate the efficacy of immune interventions and improve mechanistic understanding of immune responses. For this purpose, we employ synTacs, which are dimeric major histocompatibility molecule scaffolds of defined composition. SynTacs, when labeled with positron-emitting isotopes, can noninvasively image antigen-specific CD8+ T cells in vivo. Using radiolabeled synTacs loaded with the appropriate peptides, we imaged human papillomavirus-specific CD8+ T cells by positron emission tomography in mice bearing human papillomavirus-positive tumors, as well as influenza A virus-specific CD8+ T cells in the lungs of influenza A virus-infected mice. It is thus possible to visualize antigen-specific CD8+ T-cell populations in vivo, which may serve prognostic and diagnostic roles.
Collapse
Affiliation(s)
- Andrew W Woodham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stad H Zeigler
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ella L Zeyang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stephen C Kolifrath
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jason L Dearling
- Division of Nuclear Medicine, Department of Radiology, Children's Hospital Boston, Boston, MA, USA
| | - Maia Mesyngier
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Alan B Packard
- Nuclear Medicine and Molecular Imaging, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
217
|
T Cell Receptor Diversity and Lineage Relationship between Virus-Specific CD8 T Cell Subsets during Chronic Lymphocytic Choriomeningitis Virus Infection. J Virol 2020; 94:JVI.00935-20. [PMID: 32759317 DOI: 10.1128/jvi.00935-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Recent studies on chronic viral infections have defined a novel programmed cell death 1-positive (PD-1+) T cell factor 1-positive (TCF1+) stem-like CD8 T cell subset that gives rise to the terminally differentiated exhausted CD8 T cells. In this study, we performed T cell receptor beta (TCRβ) sequencing of virus-specific CD8 T cells during chronic lymphocytic choriomeningitis virus (LCMV) infection to examine the TCR diversity and lineage relationship of these two functionally distinct subsets. We found that >95% of the TCR repertoire of the exhausted CD8 T cell subset was shared with the stem-like CD8 T cells. The TCR repertoires of both CD8 T cell subsets were composed mostly of a few dominant clonotypes, but there was slightly more breadth and diversity in the stem-like CD8 T cells than their exhausted counterpart (∼40 versus ∼15 GP33+ clonotypes; ∼20 versus ∼7 GP276+ clonotypes). Interestingly, the breadth of the TCR repertoire was broader during the early stages (day 8) of the chronic infection than the later stages (days 45 to 60), showing that there was a narrowing of the TCR repertoire during chronic infection (∼2-fold GP33+ and GP276+ stem-like subset; ∼10-fold GP33+ and ∼5-fold GP276+ exhausted subset). In contrast, during acute LCMV infection, the TCR repertoire was much broader in both GP33-specific effector (∼160 clonotypes) and memory CD8 T cells (∼160 clonotypes). Overall, our data demonstrate that the virus-specific CD8 T cell TCR repertoire is broad and remains stable after acute LCMV infection, but it contracts and is narrower during chronic infection. Our study also shows that the repertoire of the exhausted CD8 T cell subset is almost completely derived from the stem-like CD8 T cell subset during established chronic LCMV infection.IMPORTANCE CD8 TCR repertoires responding to chronic viral infections (HIV, hepatitis C virus [HCV], Epstein-Barr virus [EBV], and cytomegalovirus [CMV]) have limited breadth and diversity. How these repertoires change and are maintained throughout the chronic infection are unknown. We thus characterized the LCMV-specific CD8 TCR repertoires of stem-like and terminally exhausted subsets generated during chronic LCMV infections. During chronic LCMV infections, the repertoires started as diverse but became more clonal at the late time point. Further, the exhausted subset was composed of dominant clonotypes that were shared with the stem-like subset. Together, we demonstrate that the TCR repertoire contracts over time and is almost exclusively derived from the stem-like subset late during the persistent viral infection. Our data suggest that dominant clonotypes in the exhausted subset are derived from a diverse pool of stem-like clonotypes, which may be contributing to the clonality observed during chronic viral infections.
Collapse
|
218
|
Cardle II, Cheng EL, Jensen MC, Pun SH. Biomaterials in Chimeric Antigen Receptor T-Cell Process Development. Acc Chem Res 2020; 53:1724-1738. [PMID: 32786336 DOI: 10.1021/acs.accounts.0c00335] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has transformed the cancer treatment landscape, utilizing ex vivo modified autologous T cells to treat relapsed or refractory B-cell leukemias and lymphomas. However, the therapy's broader impact has been limited, in part, by a complicated, lengthy, and expensive production process. Accordingly, as CAR T-cell therapies are further advanced to treat other cancers, continual innovation in cell manufacturing will be critical to their successful clinical implementation. In this Account, we describe our research efforts using biomaterials to improve the three fundamental steps in CAR T-cell manufacturing: (1) isolation, (2) activation, and (3) genetic modification.Recognizing that clinical T-cell isolation reagents have high cost and supply constraints, we developed a synthetic DNA aptamer and complementary reversal agent technology that isolates label-free CD8+ T cells with high purity and yield from peripheral blood mononuclear cells. Encouragingly, CAR T cells manufactured from both antibody- and aptamer-isolated T cells were comparable in therapeutic potency. Discovery and design of other T-cell specific aptamers and corresponding reversal reagents could fully realize the potential of this approach, enabling inexpensive isolation of multiple distinct T-cell populations in a single isolation step.Current ex vivo T-cell activation materials do not accurately mimic in situ T-cell activation by antigen presenting cells (APCs). They cause unequal CD4+ and CD8+ T-cell expansion, necessitating separate production of CD4+ and CD8+ CAR T cells for therapies that call for balanced infusion compositions. To address these shortcomings, we designed a panel of biodegradable cell-templated silica microparticles with supported lipid bilayers that display stimulatory ligands for T-cell activation. High membrane fluidity, elongated shape, and rough surface topography, all properties of endogenous APCs, were found to be favorable parameters for activation, promoting unbiased and efficient CD4/CD8 T-cell expansion while not terminally differentiating the cells.Viral and electroporation-based gene delivery systems have various drawbacks. Viral vectors are expensive and have limited cargo sizes, whereas electroporation is highly cytotoxic. Thus, low-cost nonviral platforms that transfect T cells with low cytotoxicity and high efficiency are needed for CAR gene delivery. Our group thus synthesized a panel of cationic polymers with different architectures and evaluated their T-cell transfection ability. We identified a comb-shaped polymer formulation that transfected primary T cells with low cytotoxicity, although transfection efficiency was low compared to conventional methods. Analysis of intracellular and extracellular barriers to transfection revealed low uptake of polyplexes and high endosomal pH in T cells, alluding to biological and polymer properties that could be further improved.These innovations represent just a few recent developments in the biomaterials field for addressing CAR T-cell production needs. Together, these technologies and their future advancement will pave the way for economical and straightforward CAR T-cell manufacturing.
Collapse
Affiliation(s)
- Ian I. Cardle
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
- Research and Development, Seattle Children’s Therapeutics, Seattle, Washington 98101, United States
| | - Emmeline L. Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Michael C. Jensen
- Research and Development, Seattle Children’s Therapeutics, Seattle, Washington 98101, United States
- Department of Pediatrics and Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| |
Collapse
|
219
|
Role of Escape Mutant-Specific T Cells in Suppression of HIV-1 Replication and Coevolution with HIV-1. J Virol 2020; 94:JVI.01151-20. [PMID: 32699092 PMCID: PMC7495385 DOI: 10.1128/jvi.01151-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022] Open
Abstract
Escape mutant-specific CD8+ T cells were elicited in some individuals infected with escape mutants, but it is still unknown whether these CD8+ T cells can suppress HIV-1 replication. We clarified that Gag280V mutation were selected by HLA-B*52:01-restricted CD8+ T cells specific for the GagRI8 protective epitope, whereas the Gag280V virus could frequently elicit GagRI8-6V mutant-specific CD8+ T cells. GagRI8-6V mutant-specific T cells had a strong ability to suppress the replication of the Gag280V mutant virus both in vitro and in vivo. In addition, these T cells contributed to the selection of wild-type virus in HLA-B*52:01+ Japanese individuals. We for the first time demonstrated that escape mutant-specific CD8+ T cells can suppress HIV-1 replication and play an important role in the coevolution with HIV-1. Thus, the present study highlighted an important role of escape mutant-specific T cells in the control of HIV-1 and coevolution with HIV-1. The accumulation of HIV-1 escape mutations affects HIV-1 control by HIV-1-specific T cells. Some of these mutations can elicit escape mutant-specific T cells, but it still remains unclear whether they can suppress the replication of HIV-1 mutants. It is known that HLA-B*52:01-restricted RI8 (Gag 275 to 282; RMYSPTSI) is a protective T cell epitope in HIV-1 subtype B-infected Japanese individuals, though 3 Gag280A/S/V mutations are found in 26% of them. Gag280S and Gag280A were HLA-B*52:01-associated mutations, whereas Gag280V was not, implying a different mechanism for the accumulation of Gag280 mutations. In this study, we investigated the coevolution of HIV-1 with RI8-specific T cells and suppression of HIV-1 replication by its escape mutant-specific T cells both in vitro and in vivo. HLA-B*52:01+ individuals infected with Gag280A/S mutant viruses failed to elicit these mutant epitope-specific T cells, whereas those with the Gag280V mutant one effectively elicited RI8-6V mutant-specific T cells. These RI8-6V-specific T cells suppressed the replication of Gag280V virus and selected wild-type virus, suggesting a mechanism affording no accumulation of the Gag280V mutation in the HLA-B*52:01+ individuals. The responders to wild-type (RI8-6T) and RI8-6V mutant peptides had significantly higher CD4 counts than nonresponders, indicating that the existence of not only RI8-6T-specific T cells but also RI8-6V-specific ones was associated with a good clinical outcome. The present study clarified the role of escape mutant-specific T cells in HIV-1 evolution and in the control of HIV-1. IMPORTANCE Escape mutant-specific CD8+ T cells were elicited in some individuals infected with escape mutants, but it is still unknown whether these CD8+ T cells can suppress HIV-1 replication. We clarified that Gag280V mutation were selected by HLA-B*52:01-restricted CD8+ T cells specific for the GagRI8 protective epitope, whereas the Gag280V virus could frequently elicit GagRI8-6V mutant-specific CD8+ T cells. GagRI8-6V mutant-specific T cells had a strong ability to suppress the replication of the Gag280V mutant virus both in vitro and in vivo. In addition, these T cells contributed to the selection of wild-type virus in HLA-B*52:01+ Japanese individuals. We for the first time demonstrated that escape mutant-specific CD8+ T cells can suppress HIV-1 replication and play an important role in the coevolution with HIV-1. Thus, the present study highlighted an important role of escape mutant-specific T cells in the control of HIV-1 and coevolution with HIV-1.
Collapse
|
220
|
Hickey JW, Isser A, Salathe SF, Gee KM, Hsiao MH, Shaikh W, Uzoukwu NC, Bieler JG, Mao HQ, Schneck JP. Adaptive Nanoparticle Platforms for High Throughput Expansion and Detection of Antigen-Specific T cells. NANO LETTERS 2020; 20:6289-6298. [PMID: 32594746 PMCID: PMC8008984 DOI: 10.1021/acs.nanolett.0c01511] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
T cells are critical players in disease; yet, their antigen-specificity has been difficult to identify, as current techniques are limited in terms of sensitivity, throughput, or ease of use. To address these challenges, we increased the throughput and translatability of magnetic nanoparticle-based artificial antigen presenting cells (aAPCs) to enrich and expand (E+E) murine or human antigen-specific T cells. We streamlined enrichment, expansion, and aAPC production processes by enriching CD8+ T cells directly from unpurified immune cells, increasing parallel processing capacity of aAPCs in a 96-well plate format, and designing an adaptive aAPC that enables multiplexed aAPC construction for E+E and detection. We applied these adaptive platforms to process and detect CD8+ T cells specific for rare cancer neoantigens, commensal bacterial cross-reactive epitopes, and human viral and melanoma antigens. These innovations dramatically increase the multiplexing ability and decrease the barrier to adopt for investigating antigen-specific T cell responses.
Collapse
Affiliation(s)
- John W. Hickey
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Ariel Isser
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sebastian F. Salathe
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kayla M. Gee
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Meng-Hsuan Hsiao
- Department of Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Wasamah Shaikh
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nkechi C. Uzoukwu
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Joanie Glick Bieler
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hai-Quan Mao
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jonathan P. Schneck
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
221
|
Tanaka Y. Cancer immunotherapy harnessing γδ T cells and programmed death-1. Immunol Rev 2020; 298:237-253. [PMID: 32888218 DOI: 10.1111/imr.12917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 12/31/2022]
Abstract
Cancer immunotherapy has received increasing attention since the success of CTLA-4 and programmed death-1 (PD-1) immune checkpoint inhibitors and CAR-T cells. One of the most promising next-generation cancer treatments is adoptive transfer of immune effector cells. Developing an efficacious adoptive transfer therapy requires growing large numbers of highly purified immune effector cells in a short period of time. γδ T cells can be effectively expanded using synthetic antigens such as pyrophosphomonoesters and nitrogen-containing bisphosphonates (N-BPs). Pyrophosphomonoester antigens, initially identified in mycobacterial extracts, were used for this purpose in the early years of the development of γδ T cell-based therapy. GMP-grade N-BPs, which are now commercially available, are used in many clinical trials worldwide. In order to develop N-BPs for cancer immunotherapy, N-BP prodrugs have been synthesized; among these, tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino)ethylidene-1,1-bisphosphonate (PTA) is the most potent compound for stimulating γδ T cells. The activated γδ T cells express high levels of PD-1, suggesting the potential for a combination therapy harnessing γδ T cells and PD-1 immune checkpoint inhibitors. In addition, the functions of γδ T cells can be modified by IL-18. Collectively, the recent findings show that γδ T cells are one of the most promising immune effector subsets for the development of novel cancer immunotherapy.
Collapse
Affiliation(s)
- Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Sakamoto, Japan
| |
Collapse
|
222
|
Barnstorf I, Welten SPM, Borsa M, Baumann NS, Pallmer K, Joller N, Spörri R, Oxenius A. Chronic viral infections impinge on naive bystander CD8 T cells. Immun Inflamm Dis 2020; 8:249-257. [PMID: 32220007 PMCID: PMC7416038 DOI: 10.1002/iid3.300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Epidemiological data suggest that persistent viral infections impair immune homeostasis and immune responsiveness. Previous studies showed that chronic virus infections negatively impact bystander T-cell differentiation and memory formation but there is limited knowledge of how chronic virus infections impinge on heterologous naive T-cell populations. METHODS We used adoptive transfer of naive CD8 T cells with defined nonviral specificity into hosts, which were subsequently chronically infected with lymphocytic choriomeningitis virus, followed by analyses of numeric, phenotypic, and functional changes provoked in the chronically infected host. RESULTS We demonstrate that chronic virus infections have a profound effect on the number and phenotype of naive bystander CD8 T cells. Moreover, primary expansion upon antigen encounter was severely compromised in chronically infected hosts. However, when naive bystander CD8 T cells were transferred from the chronically infected mice into naive hosts, they regained their expansion potential. Conversely, when chronically infected hosts were supplied with additional antigen-presenting cells (APCs), primary expansion of the naive CD8 T cells was restored to levels of the uninfected hosts. CONCLUSIONS Our results document numeric, phenotypic, and functional adaptation of bystander naive CD8 T cells during nonrelated chronic viral infection. Their functional impairment was only evident in the chronically infected host, indicating that T-cell extrinsic factors, in particular the quality of priming APCs, are responsible for the impaired function of naive bystander T cells in the chronically infected hosts.
Collapse
Affiliation(s)
- Isabel Barnstorf
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | | | - Mariana Borsa
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | - Nicolas S. Baumann
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | - Katharina Pallmer
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | - Nicole Joller
- Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Roman Spörri
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| |
Collapse
|
223
|
Corbett AJ, Awad W, Wang H, Chen Z. Antigen Recognition by MR1-Reactive T Cells; MAIT Cells, Metabolites, and Remaining Mysteries. Front Immunol 2020; 11:1961. [PMID: 32973800 PMCID: PMC7482426 DOI: 10.3389/fimmu.2020.01961] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Mucosal-associated Invariant T (MAIT) cells recognize vitamin B-based antigens presented by the non-polymorphic MHC class I related-1 molecule (MR1). Both MAIT T cell receptors (TCR) and MR1 are highly conserved among mammals, suggesting an important, and conserved, immune function. For many years, the antigens they recognize were unknown. The discovery that MR1 presents vitamin B-based small molecule ligands resulted in a rapid expansion of research in this area, which has yielded information on the role of MAIT cells in immune protection, autoimmune disease and recently in homeostasis and cancer. More recently, we have begun to appreciate the diverse nature of the small molecule ligands that can bind MR1, with several less potent antigens and small molecule drugs that can bind MR1 being identified. Complementary structural information has revealed the complex nature of interactions defining antigen recognition. Additionally, we now view MAIT cells (defined here as MR1-riboflavin-Ag reactive, TRAV1-2+ cells) as one subset of a broader family of MR1-reactive T cells (MR1T cells). Despite these advances, we still lack a complete understanding of how MR1 ligands are generated, presented and recognized in vivo. The biological relevance of these MR1 ligands and the function of MR1T cells in infection and disease warrants further investigation with new tools and approaches.
Collapse
Affiliation(s)
- Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
224
|
Wang C, Wang Z, Rosner GL, Huh WK, Roden RBS, Bae S. A batch-effect adjusted Simon's two-stage design for cancer vaccine clinical studies. Biometrics 2020; 77:1075-1088. [PMID: 32822525 DOI: 10.1111/biom.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2020] [Accepted: 08/10/2020] [Indexed: 11/29/2022]
Abstract
In the development of cancer treatment vaccines, phase II clinical studies are conducted to examine the efficacy of a vaccine in order to screen out vaccines with minimal activity. Immune responses are commonly used as the primary endpoint for assessing vaccine efficacy. With respect to study design, Simon's two-stage design is a popular format for phase II cancer clinical studies because of its simplicity and ethical considerations. Nonetheless, it is not straightforward to apply Simon's two-stage design to cancer vaccine studies when performing immune assays in batches, as outcomes from multiple patients may be correlated with each other in the presence of batch effects. This violates the independence assumption of Simon's two-stage design. In this paper, we numerically explore the impact of batch effects on Simon's two-stage design, propose a batch-effect adjusted Simon's two-stage design, demonstrate the proposed design by both a simulation study and a therapeutic human papillomavirus vaccine trial, and briefly introduce a software that implements the proposed design.
Collapse
Affiliation(s)
- Chenguang Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Zhixin Wang
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gary L Rosner
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Warner K Huh
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Richard B S Roden
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Sejong Bae
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
225
|
Xu H, Hamburger AE, Mock JY, Wang X, Martin AD, Tokatlian T, Oh J, Daris ME, Negri KR, Gabrelow GB, Wu ML, Nampe DP, Asuelime GE, McElvain ME, Sandberg ML, Kamb A. Structure-function relationships of chimeric antigen receptors in acute T cell responses to antigen. Mol Immunol 2020; 126:56-64. [PMID: 32768859 DOI: 10.1016/j.molimm.2020.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022]
Abstract
Chimeric antigen receptors (CARs) and their parent signaling molecule, the T cell receptor (TCR), are fascinating proteins of increasing relevance to disease therapy. Here we use a collection of 1221 pMHC-directed CAR constructs representing 10 pMHC targets to study aspects of CAR structure-activity relationships (SAR), with particular focus on the extracellular and transmembrane structural components. These experiments that involve pMHC targets whose number/cell can be manipulated by peptide dosing in vitro enable systematic analysis of the SAR of CARs in carefully controlled experimental situations (Harris and Kranz, 2016). We find that CARs tolerate a wide range of structural variation, with the ligand-binding domains (LBDs) dominating the SAR of CAR antigen sensitivity. Notwithstanding the critical role of the LBD, CAR antigen-binding on the cell surface, measured by pMHC tetramer staining, is not an effective predictor of functional sensitivity. These results have important implications for the design and testing of CARs aimed toward the clinic.
Collapse
Affiliation(s)
- Han Xu
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA, 91301, United States
| | - Agnes E Hamburger
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA, 91301, United States
| | - Jee-Young Mock
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA, 91301, United States
| | - Xueyin Wang
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA, 91301, United States
| | - Aaron D Martin
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA, 91301, United States
| | - Talar Tokatlian
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA, 91301, United States
| | - Julyun Oh
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA, 91301, United States
| | - Mark E Daris
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA, 91301, United States
| | - Kathleen R Negri
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA, 91301, United States
| | - Grant B Gabrelow
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA, 91301, United States
| | - Ming Lun Wu
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA, 91301, United States
| | - Daniel P Nampe
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA, 91301, United States
| | - Grace E Asuelime
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA, 91301, United States
| | - Michele E McElvain
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA, 91301, United States
| | - Mark L Sandberg
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA, 91301, United States
| | - Alexander Kamb
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA, 91301, United States.
| |
Collapse
|
226
|
Vujovic M, Degn KF, Marin FI, Schaap-Johansen AL, Chain B, Andresen TL, Kaplinsky J, Marcatili P. T cell receptor sequence clustering and antigen specificity. Comput Struct Biotechnol J 2020; 18:2166-2173. [PMID: 32952933 PMCID: PMC7473833 DOI: 10.1016/j.csbj.2020.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 11/17/2022] Open
Abstract
There has been increasing interest in the role of T cells and their involvement in cancer, autoimmune and infectious diseases. However, the nature of T cell receptor (TCR) epitope recognition at a repertoire level is not yet fully understood. Due to technological advances a plethora of TCR sequences from a variety of disease and treatment settings has become readily available. Current efforts in TCR specificity analysis focus on identifying characteristics in immune repertoires which can explain or predict disease outcome or progression, or can be used to monitor the efficacy of disease therapy. In this context, clustering of TCRs by sequence to reflect biological similarity, and especially to reflect antigen specificity have become of paramount importance. We review the main TCR sequence clustering methods and the different similarity measures they use, and discuss their performance and possible improvement. We aim to provide guidance for non-specialists who wish to use TCR repertoire sequencing for disease tracking, patient stratification or therapy prediction, and to provide a starting point for those aiming to develop novel techniques for TCR annotation through clustering.
Collapse
Affiliation(s)
- Milena Vujovic
- DTU HealthTech, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Kristine Fredlund Degn
- DTU HealthTech, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Frederikke Isa Marin
- DTU HealthTech, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Anna-Lisa Schaap-Johansen
- DTU HealthTech, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Benny Chain
- UCL Division of Infection and Immunity, University College London, Wing 3.2, Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Thomas Lars Andresen
- DTU HealthTech, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Joseph Kaplinsky
- Ludwig Institute for Cancer Research Ltd, University of Oxford, Nuffield Department of Medicine, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Paolo Marcatili
- DTU HealthTech, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
227
|
Kang CK, Han GC, Kim M, Kim G, Shin HM, Song KH, Choe PG, Park WB, Kim ES, Kim HB, Kim NJ, Kim HR, Oh MD. Aberrant hyperactivation of cytotoxic T-cell as a potential determinant of COVID-19 severity. Int J Infect Dis 2020; 97:313-321. [PMID: 32492530 PMCID: PMC7261468 DOI: 10.1016/j.ijid.2020.05.106] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES We hypothesized that immune response may contribute to progression of coronavirus disease-19 (COVID-19) at the second week of illness. Therefore, we compared cell-mediated immune (CMI) responses between severe and mild COVID-19 cases. METHODS We examined peripheral blood mononuclear cells of laboratory-confirmed COVID-19 patients from their first and third weeks of illness. Severe pneumonia was defined as an oxygen saturation ≤93% at room air. Expressions of molecules related to T-cell activation and functions were analyzed by flow cytometry. RESULTS The population dynamics of T cells at the first week were not different between the two groups. However, total numbers of CD4+ and CD8+ T cells tended to be lower in the severe group at the third week of illness. Expressions of Ki-67, PD-1, perforin, and granzyme B in CD4+ or CD8+ T cells were significantly higher in the severe group than in the mild group at the third week. In contrast to the mild group, the levels of their expression did not decrease in the severe group. CONCLUSIONS Severe COVID-19 had a higher degree of proliferation, activation, and cytotoxicity of T-cells at the late phase of illness without cytotoxic T-cell contraction, which might contribute to the development of severe COVID-19.
Collapse
Affiliation(s)
- Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Gi-Chan Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Minji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Gwanghun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun Mu Shin
- Wide River Institute of Immunology, Seoul National University, Hongcheon 25159, Republic of Korea
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Nam-Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon 25159, Republic of Korea; Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
228
|
Bewarder M, Held G, Thurner L, Stilgenbauer S, Smola S, Preuss KD, Carbon G, Bette B, Christofyllakis K, Bittenbring JT, Felbel A, Hasse A, Murawski N, Kaddu-Mulindwa D, Neumann F. Characterization of an HLA-restricted and human cytomegalovirus-specific antibody repertoire with therapeutic potential. Cancer Immunol Immunother 2020; 69:1535-1548. [PMID: 32300857 PMCID: PMC7347513 DOI: 10.1007/s00262-020-02564-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 04/02/2020] [Indexed: 01/04/2023]
Abstract
With an infection rate of 60-90%, the human cytomegalovirus (HCMV) is very common among adults but normally causes no symptoms. When T cell-mediated immunity is compromised, HCMV reactivation can lead to increased morbidity and mortality. HCMV antigens are processed and presented as peptides on the cell surface via HLA I complexes to the T cell receptor (TCR) of T cells. The generation of antibodies against HCMV peptides presented on HLA complexes (TCR-like antibodies) has been described, but is without therapeutic applications to date due to the polygenic and polymorphic nature of HLA genes. We set out to obtain antibodies specific for HLA/HCMV-peptides, covering the majority of HLA alleles present in European populations. Using phage display technology, we selected 10 Fabs, able to bind to HCMV-peptides presented in the 6 different HLA class I alleles A*0101, A*0201, A*2402, B*0702, B*0801 and B*3501. We demonstrate specific binding of all selected Fabs to HLA-typed lymphoblastoid cell lines (EBV-transformed B cells) and lymphocytes loaded with HCMV-peptides. After infection with HCMV, 4/10 tetramerized Fabs restricted to the alleles HLA-A*0101, HLA-A*0201 and HLA-B*0702 showed binding to infected primary fibroblasts. When linked to the pseudomonas exotoxin A, these Fab antibodies induce highly specific cytotoxicity in HLA matched cell lines loaded with HCMV peptides. TCR-like antibody repertoires therefore represent a promising new treatment modality for viral infections and may also have applications in the treatment of cancers.
Collapse
Affiliation(s)
- Moritz Bewarder
- Internal Medicine I, Saarland University Medical Center, 66421, Homburg, Germany.
- José Carreras Center, Saarland University Medical Center, Homburg, Germany.
| | - Gerhard Held
- Internal Medicine I, Westpfalz-Klinikum Kaiserslautern, Kaiserslautern, Germany
| | - Lorenz Thurner
- Internal Medicine I, Saarland University Medical Center, 66421, Homburg, Germany
- José Carreras Center, Saarland University Medical Center, Homburg, Germany
| | - Stephan Stilgenbauer
- Internal Medicine I, Saarland University Medical Center, 66421, Homburg, Germany
- José Carreras Center, Saarland University Medical Center, Homburg, Germany
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | | | - Gabi Carbon
- José Carreras Center, Saarland University Medical Center, Homburg, Germany
| | - Birgit Bette
- José Carreras Center, Saarland University Medical Center, Homburg, Germany
| | | | | | - Arne Felbel
- Internal Medicine I, Saarland University Medical Center, 66421, Homburg, Germany
| | - Alexander Hasse
- Internal Medicine I, Saarland University Medical Center, 66421, Homburg, Germany
| | - Niels Murawski
- Internal Medicine I, Saarland University Medical Center, 66421, Homburg, Germany
| | | | - Frank Neumann
- José Carreras Center, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
229
|
Basu S, Elkington P, Rao NA. Pathogenesis of ocular tuberculosis: New observations and future directions. Tuberculosis (Edinb) 2020; 124:101961. [PMID: 33010848 DOI: 10.1016/j.tube.2020.101961] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023]
Abstract
Ocular tuberculosis (OTB) encompasses all forms of intra- and extra-ocular inflammation associated with Mycobacterium tuberculosis (Mtb) infection. However, the organism is rarely found in ocular fluid samples of diseased eyes, rendering the pathomechanisms of the disease unclear. This confounds clinical decision-making in diagnosis and treatment of OTB. Here, we critically review existing human and animal data related to ocular inflammation and TB pathogenesis to unravel likely pathomechanisms of OTB. Broadly there appear to be two fundamental mechanisms that may underlie the development of TB-associated ocular inflammation: a. inflammatory response to live/replicating Mtb in the eye, and b. immune mediated ocular inflammation induced by non-viable Mtb or its components in the eye. This distinction is significant as in direct Mtb-driven mechanisms, diagnosis and treatment would be aimed at detection of Mtb-infection and its elimination; while indirect mechanisms would primarily require anti-inflammatory therapy with adjunctive anti-TB therapy. Further, we discuss how that most clinical phenotypes of OTB likely represent a combination of both mechanisms, with one being predominant than the other.
Collapse
Affiliation(s)
- Soumyava Basu
- Retina and Uveitis Service, L V Prasad Eye Institute (Mithu Tulsi Chanrai Campus), Bhubaneswar, India.
| | - Paul Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Narsing A Rao
- USC-Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
230
|
Papagno L, Kuse N, Lissina A, Gostick E, Price DA, Appay V, Nicoli F. The TLR9 ligand CpG ODN 2006 is a poor adjuvant for the induction of de novo CD8 + T-cell responses in vitro. Sci Rep 2020; 10:11620. [PMID: 32669577 PMCID: PMC7363897 DOI: 10.1038/s41598-020-67704-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/05/2020] [Indexed: 01/21/2023] Open
Abstract
Toll-like receptor 9 (TLR9) agonists have gained traction in recent years as potential adjuvants for the induction of adaptive immune responses. It has nonetheless remained unclear to what extent such ligands can facilitate the priming events that generate antigen-specific effector and/or memory CD8+ T-cell populations. We used an established in vitro model to prime naive precursors from human peripheral blood mononuclear cells in the presence of various adjuvants, including CpG ODN 2006, a synthetic oligonucleotide TLR9 ligand (TLR9L). Unexpectedly, we found that TLR9L induced a suboptimal inflammatory milieu and promoted the antigen-driven expansion and functional maturation of naive CD8+ T cells ineffectively compared with either ssRNA40 or 2'3'-cGAMP, which activate other pattern recognition receptors (PRRs). TLR9L also inhibited the priming efficacy of 2'3'-cGAMP. Collectively, these results suggest that TLR9L is unlikely to be a good candidate for the optimal induction of de novo CD8+ T-cell responses, in contrast to adjuvants that operate via discrete PRRs.
Collapse
Affiliation(s)
- Laura Papagno
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, 75013, Paris, France
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Anna Lissina
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, 75013, Paris, France
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, 75013, Paris, France.
- International Research Center of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| | - Francesco Nicoli
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, 75013, Paris, France.
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
231
|
Souter MNT, Loh L, Li S, Meehan BS, Gherardin NA, Godfrey DI, Rossjohn J, Fairlie DP, Kedzierska K, Pellicci DG, Chen Z, Kjer-Nielsen L, Corbett AJ, McCluskey J, Eckle SBG. Characterization of Human Mucosal-associated Invariant T (MAIT) Cells. ACTA ACUST UNITED AC 2020; 127:e90. [PMID: 31763790 DOI: 10.1002/cpim.90] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells restricted by the major histocompatibility complex (MHC) class I-like molecule MHC-related protein 1 (MR1). MAIT cells are found throughout the body, especially in human blood and liver. Unlike conventional T cells, which are stimulated by peptide antigens presented by MHC molecules, MAIT cells recognize metabolite antigens derived from an intermediate in the microbial biosynthesis of riboflavin. MAIT cells mediate protective immunity to infections by riboflavin-producing microbes via the production of cytokines and cytotoxicity. The discovery of stimulating MAIT cell antigens allowed for the development of an analytical tool, the MR1 tetramer, that binds specifically to the MAIT T cell receptor (TCR) and is becoming the gold standard for identification of MAIT cells by flow cytometry. This article describes protocols to characterize the phenotype of human MAIT cells in blood and tissues by flow cytometry using fluorescently labeled human MR1 tetramers alongside antibodies specific for MAIT cell markers. © 2019 by John Wiley & Sons, Inc. The main protocols include: Basic Protocol 1: Determining the frequency and steady-state surface phenotype of human MAIT cells Basic Protocol 2: Determining the activation phenotype of human MAIT cells in blood Basic Protocol 3: Characterizing MAIT cell TCRs using TCR-positive reporter cell lines Alternate protocols are provided for determining the absolute number, transcription factor phenotype, and TCR usage of human MAIT cells; and determining activation phenotype by staining for intracellular markers, measuring secreted cytokines, and measuring fluorescent dye dilution due to proliferation. Additional methods are provided for determining the capacity of MAIT cells to produce cytokine independently of antigen using plate-bound or bead-immobilized CD3/CD28 stimulation; and determining the MR1-Ag dependence of MAIT cell activation using MR1-blocking antibody or competitive inhibition. For TCR-positive reporter cell lines, methods are also provided for evaluating the MAIT TCR-mediated MR1-Ag response, determining the capacity of the reporter lines to produce cytokine independently of antigen, determining the MR1-Ag dependence of the reporter lines, and evaluating the MR1-Ag response of the reporter lines using IL-2 secretion. Support Protocols describe the preparation of PBMCs from human blood, the preparation of single-cell suspensions from tissue, the isolation of MAIT cells by FACS and MACS, cloning MAIT TCRα and β chain genes and MR1 genes for transduction, generating stably and transiently transfected cells lines, generating a stable MR1 knockout antigen-presenting cell line, and generating monocyte-derived dendritic cells.
Collapse
Affiliation(s)
- Michael N T Souter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Bronwyn S Meehan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Wales, United Kingdom
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, Parkville, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
232
|
Abstract
T cells respond to threats in an antigen-specific manner using T cell receptors (TCRs) that recognize short peptide antigens presented on major histocompatibility complex (MHC) proteins. The TCR-peptide-MHC interaction mediated between a T cell and its target cell dictates its function and thereby influences its role in disease. A lack of approaches for antigen discovery has limited the fundamental understanding of the antigenic landscape of the overall T cell response. Recent advances in high-throughput sequencing, mass cytometry, microfluidics and computational biology have led to a surge in approaches to address the challenge of T cell antigen discovery. Here, we summarize the scope of this challenge, discuss in depth the recent exciting work and highlight the outstanding questions and remaining technical hurdles in this field.
Collapse
|
233
|
Moritz A, Anjanappa R, Wagner C, Bunk S, Hofmann M, Pszolla G, Saikia A, Garcia-Alai M, Meijers R, Rammensee HG, Springer S, Maurer D. High-throughput peptide-MHC complex generation and kinetic screenings of TCRs with peptide-receptive HLA-A*02:01 molecules. Sci Immunol 2020; 4:4/37/eaav0860. [PMID: 31324691 DOI: 10.1126/sciimmunol.aav0860] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/21/2019] [Indexed: 12/26/2022]
Abstract
Major histocompatibility complex (MHC) class I molecules present short peptide ligands on the cell surface for interrogation by cytotoxic CD8+ T cells. MHC class I complexes presenting tumor-associated peptides such as neoantigens represent key targets of cancer immunotherapy approaches currently in development, making them important for efficacy and safety screenings. Without peptide ligand, MHC class I complexes are unstable and decay quickly, making the production of soluble monomers for analytical purposes labor intensive. We have developed a disulfide-stabilized HLA-A*02:01 molecule that is stable without peptide but can form peptide-MHC complexes (pMHCs) with ligands of choice in a one-step loading procedure. We illustrate the similarity between the engineered mutant and the wild-type molecule with respect to affinity of wild-type or affinity-matured T cell receptors (TCRs) and present a crystal structure corroborating the binding kinetics measurements. In addition, we demonstrate a high-throughput binding kinetics measurement platform to analyze the binding characteristics of bispecific TCR (bsTCR) molecules against diverse pMHC libraries produced with the disulfide-stabilized HLA-A*02:01 molecule. We show that bsTCR affinities for pMHCs are indicative of in vitro function and generate a bsTCR binding motif to identify potential off-target interactions in the human proteome. These findings showcase the potential of the platform and the engineered HLA-A*02:01 molecule in the emerging field of pMHC-targeting biologics.
Collapse
Affiliation(s)
- Andreas Moritz
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany. .,Immatics Biotechnologies GmbH, Tübingen, Germany
| | | | | | | | | | | | - Ankur Saikia
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Maria Garcia-Alai
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | | |
Collapse
|
234
|
He H, Kondo Y, Ishiyama K, Alatrash G, Lu S, Cox K, Qiao N, Clise-Dwyer K, St John L, Sukhumalchandra P, Ma Q, Molldrem JJ. Two unique HLA-A*0201 restricted peptides derived from cyclin E as immunotherapeutic targets in leukemia. Leukemia 2020; 34:1626-1636. [PMID: 31908357 PMCID: PMC10602224 DOI: 10.1038/s41375-019-0698-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 02/03/2023]
Abstract
Immunotherapy targeting leukemia-associated antigens has shown promising results. Because of the heterogeneity of leukemia, vaccines with a single peptide have elicited only a limited immune response. Targeting several peptides together elicited peptide-specific cytotoxic T lymphocytes (CTLs) in leukemia patients, and this was associated with clinical responses. Thus, the discovery of novel antigens is essential. In the current study, we investigated cyclin E as a novel target for immunotherapy. Cyclin E1 and cyclin E2 were found to be highly expressed in hematologic malignancies, according to reverse transcription polymerase chain reaction and western blot analysis. We identified two HLA-A*0201 binding nonameric peptides, CCNE1M from cyclin E1 and CCNE2L from cyclin E2, which both elicited the peptide-specific CTLs. The peptide-specific CTLs specifically kill leukemia cells. Furthermore, CCNE1M and CCNE2L CTLs were increased in leukemia patients who underwent allogeneic hematopoietic stem cell transplantation, and this was associated with desired clinical outcomes. Our findings suggest that cyclin E1 and cyclin E2 are potential targets for immunotherapy in leukemia.
Collapse
Affiliation(s)
- Hong He
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Yukio Kondo
- Department of Internal Medicine, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Ken Ishiyama
- Department of Hematology, Kanazawa University Hospital, Kanazawa, Japan
| | - Gheath Alatrash
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Sijie Lu
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Kathryn Cox
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Na Qiao
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Karen Clise-Dwyer
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Lisa St John
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Pariya Sukhumalchandra
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Qing Ma
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Jeffrey J Molldrem
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
235
|
Yermanos A, Sandu I, Pedrioli A, Borsa M, Wagen F, Oetiker N, Welten SPM, Pallmer K, Reddy ST, Oxenius A. Profiling Virus-Specific Tcf1+ T Cell Repertoires During Acute and Chronic Viral Infection. Front Immunol 2020; 11:986. [PMID: 32547546 PMCID: PMC7272574 DOI: 10.3389/fimmu.2020.00986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022] Open
Abstract
CD8 T cells play a crucial role in providing protection from viral infections. It has recently been established that a subset of CD8 T cells expressing Tcf1 are responsible for sustaining exhausted T cells during chronic lymphocytic choriomeningitis virus (LCMV) infection. Many of these studies, however, have been performed using T cell receptor (TCR) transgenic mice, in which CD8 T cells express a monoclonal TCR specific for the LCMV glycoprotein. To investigate whether the Tcf1+ and Tcf1- repertoires are naturally composed of similar or different clones in wild-type mice exposed to acute or chronic LCMV infection, we performed TCR repertoire sequencing of virus-specific CD8 T cells, including Tcf1+ and Tcf1- populations. Our analysis revealed that the Tcf1+ TCR repertoire is maintained at an equal or higher degree of clonal diversity despite harboring fewer cells. Additionally, within the same animal, there was extensive clonal overlap between the Tcf1+ and Tcf1- repertoires in both chronic and acute LCMV infection. We could further detect these virus-specific clones in longitudinal blood samples earlier in the infection. With respect to common repertoire parameters (clonal overlap, germline gene usage, and clonal expansion), we found minor differences between the virus-specific TCR repertoire of acute and chronic LCMV infection 40 days post infection. Overall, our results indicate that the Tcf1+ population emerging during chronic LCMV infection is not clonally distinct from the Tcf1- population, supporting the notion that the Tcf1+ pool is indeed a fuel for the more exhausted Tcf1- population within the heterogenous repertoire of LCMV-specific CD8 T cells.
Collapse
Affiliation(s)
- Alexander Yermanos
- Department of Biosystems and Engineering, ETH Zurich, Basel, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Mariana Borsa
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | - Sai T. Reddy
- Department of Biosystems and Engineering, ETH Zurich, Basel, Switzerland
| | | |
Collapse
|
236
|
Gerstner C, Turcinov S, Hensvold AH, Chemin K, Uchtenhagen H, Ramwadhdoebe TH, Dubnovitsky A, Kozhukh G, Rönnblom L, Kwok WW, Achour A, Catrina AI, van Baarsen LGM, Malmström V. Multi-HLA class II tetramer analyses of citrulline-reactive T cells and early treatment response in rheumatoid arthritis. BMC Immunol 2020; 21:27. [PMID: 32423478 PMCID: PMC7236297 DOI: 10.1186/s12865-020-00357-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND HLA class II tetramers can be used for ex vivo enumeration and phenotypic characterisation of antigen-specific CD4+ T cells. They are increasingly applied in settings like allergy, vaccination and autoimmune diseases. Rheumatoid arthritis (RA) is a chronic autoimmune disorder for which many autoantigens have been described. RESULTS Using multi-parameter flow cytometry, we developed a multi-HLA class II tetramer approach to simultaneously study several antigen specificities in RA patient samples. We focused on previously described citrullinated HLA-DRB1*04:01-restricted T cell epitopes from α-enolase, fibrinogen-β, vimentin as well as cartilage intermediate layer protein (CILP). First, we examined inter-assay variability and the sensitivity of the assay in peripheral blood from healthy donors (n = 7). Next, we confirmed the robustness and sensitivity in a cohort of RA patients with repeat blood draws (n = 14). We then applied our method in two different settings. We assessed lymphoid tissue from seropositive arthralgia (n = 5) and early RA patients (n = 5) and could demonstrate autoreactive T cells in individuals at risk of developing RA. Lastly, we studied peripheral blood from early RA patients (n = 10) and found that the group of patients achieving minimum disease activity (DAS28 < 2.6) at 6 months follow-up displayed a decrease in the frequency of citrulline-specific T cells. CONCLUSIONS Our study demonstrates the development of a sensitive tetramer panel allowing simultaneous characterisation of antigen-specific T cells in ex vivo patient samples including RA 'at risk' subjects. This multi-tetramer approach can be useful for longitudinal immune-monitoring in any disease with known HLA-restriction element and several candidate antigens.
Collapse
Affiliation(s)
- Christina Gerstner
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Sara Turcinov
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Aase H Hensvold
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Karine Chemin
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Hannes Uchtenhagen
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden.,Translational Research Program, BRI at Virginia Mason, Seattle, (WA), USA
| | - Tamara H Ramwadhdoebe
- Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands.,Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, Amsterdam, Netherlands
| | - Anatoly Dubnovitsky
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Genadiy Kozhukh
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala, Sweden
| | - William W Kwok
- Translational Research Program, BRI at Virginia Mason, Seattle, (WA), USA
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet & Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anca I Catrina
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Lisa G M van Baarsen
- Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands.,Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, Amsterdam, Netherlands
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
237
|
Kula T, Dezfulian MH, Wang CI, Abdelfattah NS, Hartman ZC, Wucherpfennig KW, Lyerly HK, Elledge SJ. T-Scan: A Genome-wide Method for the Systematic Discovery of T Cell Epitopes. Cell 2020; 178:1016-1028.e13. [PMID: 31398327 PMCID: PMC6939866 DOI: 10.1016/j.cell.2019.07.009] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/20/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022]
Abstract
T cell recognition of specific antigens mediates protection from pathogens and controls neoplasias, but can also cause autoimmunity. Our knowledge of T cell antigens and their implications for human health is limited by the technical limitations of T cell profiling technologies. Here, we present T-Scan, a high-throughput platform for identification of antigens productively recognized by T cells. T-Scan uses lentiviral delivery of antigen libraries into cells for endogenous processing and presentation on major histocompatibility complex (MHC) molecules. Target cells functionally recognized by T cells are isolated using a reporter for granzyme B activity, and the antigens mediating recognition are identified by next-generation sequencing. We show T-Scan correctly identifies cognate antigens of T cell receptors (TCRs) from viral and human genome-wide libraries. We apply T-Scan to discover new viral antigens, perform high-resolution mapping of TCR specificity, and characterize the reactivity of a tumor-derived TCR. T-Scan is a powerful approach for studying T cell responses.
Collapse
Affiliation(s)
- Tomasz Kula
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Mohammad H Dezfulian
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Charlotte I Wang
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard University Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Nouran S Abdelfattah
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Zachary C Hartman
- Departments of Surgery and Pathology, Duke University Medical Center, 571 Research Drive, Suite 433, Box 2606, Durham, NC 27710, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Herbert Kim Lyerly
- Departments of Surgery, Immunology, and Pathology, Duke University Medical Center, 571 Research Drive, Suite 433, Box 2606, Durham, NC 27710, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard University Medical School, Boston, MA, USA.
| |
Collapse
|
238
|
Welten SPM, Yermanos A, Baumann NS, Wagen F, Oetiker N, Sandu I, Pedrioli A, Oduro JD, Reddy ST, Cicin-Sain L, Held W, Oxenius A. Tcf1 + cells are required to maintain the inflationary T cell pool upon MCMV infection. Nat Commun 2020; 11:2295. [PMID: 32385253 PMCID: PMC7211020 DOI: 10.1038/s41467-020-16219-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/22/2020] [Indexed: 01/07/2023] Open
Abstract
Cytomegalovirus-based vaccine vectors offer interesting opportunities for T cell-based vaccination purposes as CMV infection induces large numbers of functional effector-like cells that accumulate in peripheral tissues, a process termed memory inflation. Maintenance of high numbers of peripheral CD8 T cells requires continuous replenishment of the inflationary T cell pool. Here, we show that the inflationary T cell population contains a small subset of cells expressing the transcription factor Tcf1. These Tcf1+ cells resemble central memory T cells and are proliferation competent. Upon sensing viral reactivation events, Tcf1+ cells feed into the pool of peripheral Tcf1- cells and depletion of Tcf1+ cells hampers memory inflation. TCR repertoires of Tcf1+ and Tcf1- populations largely overlap, with the Tcf1+ population showing higher clonal diversity. These data show that Tcf1+ cells are necessary for sustaining the inflationary T cell response, and upholding this subset is likely critical for the success of CMV-based vaccination approaches.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Alexander Yermanos
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
- Department of Biosystems and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Nicolas S Baumann
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Franziska Wagen
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Nathalie Oetiker
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Alessandro Pedrioli
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Jennifer D Oduro
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Hannover-Braunschweig Site, 38124, Braunschweig, Germany
| | - Sai T Reddy
- Department of Biosystems and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Hannover-Braunschweig Site, 38124, Braunschweig, Germany
| | - Werner Held
- Department of Oncology, University of Lausanne, 1066, Epalinges, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland.
| |
Collapse
|
239
|
Schaupp L, Muth S, Rogell L, Kofoed-Branzk M, Melchior F, Lienenklaus S, Ganal-Vonarburg SC, Klein M, Guendel F, Hain T, Schütze K, Grundmann U, Schmitt V, Dorsch M, Spanier J, Larsen PK, Schwanz T, Jäckel S, Reinhardt C, Bopp T, Danckwardt S, Mahnke K, Heinz GA, Mashreghi MF, Durek P, Kalinke U, Kretz O, Huber TB, Weiss S, Wilhelm C, Macpherson AJ, Schild H, Diefenbach A, Probst HC. Microbiota-Induced Type I Interferons Instruct a Poised Basal State of Dendritic Cells. Cell 2020; 181:1080-1096.e19. [PMID: 32380006 DOI: 10.1016/j.cell.2020.04.022] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/31/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Environmental signals shape host physiology and fitness. Microbiota-derived cues are required to program conventional dendritic cells (cDCs) during the steady state so that they can promptly respond and initiate adaptive immune responses when encountering pathogens. However, the molecular underpinnings of microbiota-guided instructive programs are not well understood. Here, we report that the indigenous microbiota controls constitutive production of type I interferons (IFN-I) by plasmacytoid DCs. Using genome-wide analysis of transcriptional and epigenetic regulomes of cDCs from germ-free and IFN-I receptor (IFNAR)-deficient mice, we found that tonic IFNAR signaling instructs a specific epigenomic and metabolic basal state that poises cDCs for future pathogen combat. However, such beneficial biological function comes with a trade-off. Instructed cDCs can prime T cell responses against harmless peripheral antigens when removing roadblocks of peripheral tolerance. Our data provide fresh insights into the evolutionary trade-offs that come with successful adaptation of vertebrates to their microbial environment.
Collapse
Affiliation(s)
- Laura Schaupp
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany; Institute for Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Sabine Muth
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Leif Rogell
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany; Max-Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Michael Kofoed-Branzk
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany; Max-Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Felix Melchior
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stefan Lienenklaus
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Stephanie C Ganal-Vonarburg
- Department for BioMedical Research (DBMR), University Clinic for Visceral Surgery and Medicine, Inselspital, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Matthias Klein
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Fabian Guendel
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany
| | - Tobias Hain
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Kristian Schütze
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Ulrike Grundmann
- Institute for Medical Microbiology and Hygiene, University of Freiburg Medical Center, Hermann-Herder-Str. 11, 79104 Freiburg, Germany
| | - Vanessa Schmitt
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Martina Dorsch
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Pia-Katharina Larsen
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Thomas Schwanz
- Institute of Medical Microbiology and Hygiene, University Medical Center Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany
| | - Sven Jäckel
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Tobias Bopp
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; University Cancer Center Mainz, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; German Cancer Consortium (DKTK)
| | - Sven Danckwardt
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Posttranscriptional Gene Regulation, Cancer Research and Experimental Hemostasis, University Medical Centre Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Karsten Mahnke
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, D-69120 Heidelberg, Germany
| | - Gitta Anne Heinz
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany
| | - Pawel Durek
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Department for Neuroanatomy, Anatomy and Cell Biology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Siegfried Weiss
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Andrew J Macpherson
- Department for BioMedical Research (DBMR), University Clinic for Visceral Surgery and Medicine, Inselspital, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; Helmholtz Institute Translational Oncology, Obere Zahlbacher Straße 63, 55131 Mainz, Germany.
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany.
| | - Hans Christian Probst
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| |
Collapse
|
240
|
Marrack P. Obsessive-Compulsive Behavior Isn't Necessarily a Bad Thing. Annu Rev Immunol 2020; 38:1-21. [PMID: 31594433 DOI: 10.1146/annurev-immunol-072319-033325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is difficult to believe that in about 1960 practically nothing was known about the thymus and some of its products, T cells bearing αβ receptors for antigen. Thus I was lucky to join the field of T cell biology almost at its beginning, when knowledge about the cells was just getting off the ground and there was so much to discover. This article describes findings about these cells made by others and myself that led us all from ignorance, via complete confusion, to our current state of knowledge. I believe I was fortunate to practice science in very supportive institutions and with very collaborative colleagues in two countries that both encourage independent research by independent scientists, while simultaneously ignoring or somehow being able to avoid some of the difficulties of being a woman in what was, at the time, a male-dominated profession.
Collapse
Affiliation(s)
- Philippa Marrack
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA; .,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
241
|
Condotta SA, Downey J, Pardy RD, Valbon SF, Tarrab E, Lamarre A, Divangahi M, Richer MJ. Cyclophilin D Regulates Antiviral CD8 + T Cell Survival in a Cell-Extrinsic Manner. Immunohorizons 2020; 4:217-230. [PMID: 32332052 DOI: 10.4049/immunohorizons.2000016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
CD8+ T cell-mediated immunity is critical for host defense against viruses and requires mitochondria-mediated type I IFN (IFN-I) signaling for optimal protection. Cyclophilin D (CypD) is a mitochondrial matrix protein that modulates the mitochondrial permeability transition pore, but its role in IFN-I signaling and CD8+ T cell responses to viral infection has not been previously explored. In this study, we demonstrate that CypD plays a critical extrinsic role in the survival of Ag-specific CD8+ T cell following acute viral infection with lymphocytic choriomeningitis virus in mice. CypD deficiency resulted in reduced IFN-I and increased CD8+ T cell death, resulting in a reduced antiviral CD8+ T cell response. In addition, CypD deficiency was associated with an increase in pathogen burden at an early time-point following infection. Furthermore, our data demonstrate that transfer of wild-type macrophages (expressing CypD) to CypD-deficient mice can partially restore CD8+ T cell responses. These results establish that CypD plays an extrinsic role in regulating optimal effector CD8+ T cell responses to viral infection. Furthermore, this suggests that, under certain circumstances, inhibition of CypD function may have a detrimental impact on the host's ability to respond to viral infection.
Collapse
Affiliation(s)
- Stephanie A Condotta
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Jeffrey Downey
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- Department of Pathology, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- McGill International TB Centre, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Ryan D Pardy
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Stefanie F Valbon
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Esther Tarrab
- Laboratoire d'Immunovirologie, Institut National de la Recherche Scientifique, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada; and
| | - Alain Lamarre
- Laboratoire d'Immunovirologie, Institut National de la Recherche Scientifique, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada; and
| | - Maziar Divangahi
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- Department of Pathology, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- McGill International TB Centre, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Martin J Richer
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3G 1Y6, Canada;
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
242
|
Lin JJ, O'Donoghue GP, Wilhelm KB, Coyle MP, Low-Nam ST, Fay NC, Alfieri KN, Groves JT. Membrane Association Transforms an Inert Anti-TCRβ Fab' Ligand into a Potent T Cell Receptor Agonist. Biophys J 2020; 118:2879-2893. [PMID: 32407684 DOI: 10.1016/j.bpj.2020.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/09/2020] [Accepted: 04/13/2020] [Indexed: 12/27/2022] Open
Abstract
The natural peptide-major histocompatibility complex (pMHC) ligand for T cell receptors (TCRs) is inactive from solution yet capable of activating T cells at single-molecule levels when membrane-associated. This distinctive feature stems from the mechanism of TCR activation, which is thought to involve steric phosphatase exclusion as well as direct mechanical forces. It is possible to defeat this mechanism and activate T cells with solution ligands by cross-linking pMHC or using multivalent antibodies to TCR. However, these widely used strategies activate TCRs through a nonphysiological mechanism and can produce different activation profiles than natural, monovalent, membrane-associated pMHC. Here, we introduce a strictly monovalent anti-TCRβ H57 Fab' ligand that, when coupled to a supported lipid bilayer via DNA complementation, triggers TCRs and activates nuclear translocation of the transcription factor nuclear factor of activated T cells (NFAT) with a similar potency to pMHC in primary murine T cells. Importantly, like monovalent pMHC and unlike bivalent antibodies, monovalent Fab'-DNA triggers TCRs only when physically coupled to the membrane, and only around 100 individual Fab':TCR interactions are necessary to stimulate early T cell activation.
Collapse
Affiliation(s)
- Jenny J Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, California
| | - Geoff P O'Donoghue
- Department of Chemistry, University of California, Berkeley, Berkeley, California.
| | - Kiera B Wilhelm
- Department of Chemistry, University of California, Berkeley, Berkeley, California
| | - Michael P Coyle
- Department of Chemistry, University of California, Berkeley, Berkeley, California.
| | - Shalini T Low-Nam
- Department of Chemistry, University of California, Berkeley, Berkeley, California
| | - Nicole C Fay
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California
| | - Katherine N Alfieri
- Department of Chemistry, University of California, Berkeley, Berkeley, California
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, California.
| |
Collapse
|
243
|
Overall SA, Toor JS, Hao S, Yarmarkovich M, Sara M O'Rourke, Morozov GI, Nguyen S, Japp AS, Gonzalez N, Moschidi D, Betts MR, Maris JM, Smibert P, Sgourakis NG. High throughput pMHC-I tetramer library production using chaperone-mediated peptide exchange. Nat Commun 2020; 11:1909. [PMID: 32312993 PMCID: PMC7170893 DOI: 10.1038/s41467-020-15710-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
Peptide exchange technologies are essential for the generation of pMHC-multimer libraries used to probe diverse, polyclonal TCR repertoires in various settings. Here, using the molecular chaperone TAPBPR, we develop a robust method for the capture of stable, empty MHC-I molecules comprising murine H2 and human HLA alleles, which can be readily tetramerized and loaded with peptides of choice in a high-throughput manner. Alternatively, catalytic amounts of TAPBPR can be used to exchange placeholder peptides with high affinity peptides of interest. Using the same system, we describe high throughput assays to validate binding of multiple candidate peptides on empty MHC-I/TAPBPR complexes. Combined with tetramer-barcoding via a multi-modal cellular indexing technology, ECCITE-seq, our approach allows a combined analysis of TCR repertoires and other T cell transcription profiles together with their cognate antigen specificities in a single experiment. The new approach allows TCR/pMHC interactions to be interrogated easily at large scale.
Collapse
Affiliation(s)
- Sarah A Overall
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, USA
| | - Jugmohit S Toor
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, USA
| | - Stephanie Hao
- Technology Innovation Lab, New York Genome Center, 101 6th Ave, New York, NY, 10013, USA
| | - Mark Yarmarkovich
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Sara M O'Rourke
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, USA
| | - Giora I Morozov
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, USA
| | - Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Alberto Sada Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Nicolas Gonzalez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, USA
| | - Danai Moschidi
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - John M Maris
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Peter Smibert
- Technology Innovation Lab, New York Genome Center, 101 6th Ave, New York, NY, 10013, USA
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, USA.
| |
Collapse
|
244
|
Khan S, Liu Y, Ernst LM, Leung LYT, Budylowski P, Dong S, Campisi P, Propst EJ, Wolter NE, Grunebaum E, Ostrowski M, Ehrhardt GRA. Detection of Human CD38 Using Variable Lymphocyte Receptor (VLR) Tetramers. Cells 2020; 9:E950. [PMID: 32290546 PMCID: PMC7226959 DOI: 10.3390/cells9040950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
CD38 is a multifunctional cell surface receptor expressed on multiple cell lineages of hematopoietic origin with high levels of expression on human plasma cells. Previously, we isolated the monoclonal variable lymphocyte receptor B (VLRB) MM3 antibody from the evolutionarily distant sea lamprey, which recognized the CD38 ectoenzyme exclusively on human plasma cells in a manner that correlated with CD38 enzymatic activity. The plasma cell-specific binding of VLRB MM3 contrasts with the broad pattern of expression of CD38-determined conventional antibodies specific for this antigen. In an effort to facilitate the application of this unique reagent in combination with conventional antibody panels, we explored a strategy to generate VLRB MM3 tetramers. The resulting reagent maintained the threshold-based recognition of CD38. Increased sensitivity achieved with VLRB MM3 tetramers also showed preferential recognition of germinal center centroblasts over centrocytes. VLRB MM3 tetramers thus provided a unique and versatile single-step staining reagent for the detection of human CD38 that is readily incorporated into multi-color flow cytometry panels.
Collapse
Affiliation(s)
- Srijit Khan
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada; (S.K.); (Y.L.); (L.M.E.); (L.Y.T.L.); (S.D.); (M.O.)
| | - Yanling Liu
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada; (S.K.); (Y.L.); (L.M.E.); (L.Y.T.L.); (S.D.); (M.O.)
| | - Laura M. Ernst
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada; (S.K.); (Y.L.); (L.M.E.); (L.Y.T.L.); (S.D.); (M.O.)
| | - Leslie Y. T. Leung
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada; (S.K.); (Y.L.); (L.M.E.); (L.Y.T.L.); (S.D.); (M.O.)
| | - Patrick Budylowski
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada; (S.K.); (Y.L.); (L.M.E.); (L.Y.T.L.); (S.D.); (M.O.)
| | - Shilan Dong
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada; (S.K.); (Y.L.); (L.M.E.); (L.Y.T.L.); (S.D.); (M.O.)
| | - Paolo Campisi
- Department of Otolaryngology—Head and Neck Surgery, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada; (P.C.); (E.J.P.); (N.E.W.)
| | - Evan J. Propst
- Department of Otolaryngology—Head and Neck Surgery, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada; (P.C.); (E.J.P.); (N.E.W.)
| | - Nikolaus E. Wolter
- Department of Otolaryngology—Head and Neck Surgery, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada; (P.C.); (E.J.P.); (N.E.W.)
| | - Eyal Grunebaum
- Division of Immunology and Allergy, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Mario Ostrowski
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada; (S.K.); (Y.L.); (L.M.E.); (L.Y.T.L.); (S.D.); (M.O.)
| | - Götz R. A. Ehrhardt
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada; (S.K.); (Y.L.); (L.M.E.); (L.Y.T.L.); (S.D.); (M.O.)
| |
Collapse
|
245
|
Belz GT. Elucidating Specificity Opens a Window to the Complexity of Both the Innate and Adaptive Immune Systems. Viral Immunol 2020; 33:145-152. [PMID: 32286183 PMCID: PMC7185331 DOI: 10.1089/vim.2019.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Science is a tedious and painstaking business. Many discoveries are considered incremental, individually not necessarily earth shattering, but collectively providing the critical broad framework on which pivotal insights can emerge. Transformational discoveries spring from this knowledge legacy of others and spur a fervent discovery process, often driven by technological developments. The seminal discovery of major histocompatibility class restriction I (MHCI) and its role in antiviral infections by Doherty and Zinkernagel in 1974 was one such discovery-the key that unlocked the treasure chest to the rich tapestry of the diversity of the immune system. An army of researchers have teased apart the different elements of the immune response, which now brings us to a deeper understanding of immune memory and protective immunity. In this process, it has uncovered a multitude of cell types that bridge the innate and adaptive arms of the immune system-blurring the line between these two branches-and ultimately fortifying the development of long-term immune protection.
Collapse
Affiliation(s)
- Gabrielle T. Belz
- The University of Queensland Diamantina Institute, Brisbane, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medial Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
246
|
Lucchesi S, Furini S, Medaglini D, Ciabattini A. From Bivariate to Multivariate Analysis of Cytometric Data: Overview of Computational Methods and Their Application in Vaccination Studies. Vaccines (Basel) 2020; 8:E138. [PMID: 32244919 PMCID: PMC7157606 DOI: 10.3390/vaccines8010138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Flow and mass cytometry are used to quantify the expression of multiple extracellular or intracellular molecules on single cells, allowing the phenotypic and functional characterization of complex cell populations. Multiparametric flow cytometry is particularly suitable for deep analysis of immune responses after vaccination, as it allows to measure the frequency, the phenotype, and the functional features of antigen-specific cells. When many parameters are investigated simultaneously, it is not feasible to analyze all the possible bi-dimensional combinations of marker expression with classical manual analysis and the adoption of advanced automated tools to process and analyze high-dimensional data sets becomes necessary. In recent years, the development of many tools for the automated analysis of multiparametric cytometry data has been reported, with an increasing record of publications starting from 2014. However, the use of these tools has been preferentially restricted to bioinformaticians, while few of them are routinely employed by the biomedical community. Filling the gap between algorithms developers and final users is fundamental for exploiting the advantages of computational tools in the analysis of cytometry data. The potentialities of automated analyses range from the improvement of the data quality in the pre-processing steps up to the unbiased, data-driven examination of complex datasets using a variety of algorithms based on different approaches. In this review, an overview of the automated analysis pipeline is provided, spanning from the pre-processing phase to the automated population analysis. Analysis based on computational tools might overcame both the subjectivity of manual gating and the operator-biased exploration of expected populations. Examples of applications of automated tools that have successfully improved the characterization of different cell populations in vaccination studies are also presented.
Collapse
Affiliation(s)
- Simone Lucchesi
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (S.L.); (D.M.)
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (S.L.); (D.M.)
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (S.L.); (D.M.)
| |
Collapse
|
247
|
Chruściel E, Urban-Wójciuk Z, Arcimowicz Ł, Kurkowiak M, Kowalski J, Gliwiński M, Marjański T, Rzyman W, Biernat W, Dziadziuszko R, Montesano C, Bernardini R, Marek-Trzonkowska N. Adoptive Cell Therapy-Harnessing Antigen-Specific T Cells to Target Solid Tumours. Cancers (Basel) 2020; 12:683. [PMID: 32183246 PMCID: PMC7140076 DOI: 10.3390/cancers12030683] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, much research has been focused on the field of adoptive cell therapies (ACT) that use native or genetically modified T cells as therapeutic tools. Immunotherapy with T cells expressing chimeric antigen receptors (CARs) demonstrated great success in the treatment of haematologic malignancies, whereas adoptive transfer of autologous tumour infiltrating lymphocytes (TILs) proved to be highly effective in metastatic melanoma. These encouraging results initiated many studies where ACT was tested as a treatment for various solid tumours. In this review, we provide an overview of the challenges of T cell-based immunotherapies of solid tumours. We describe alternative approaches for choosing the most efficient T cells for cancer treatment in terms of their tumour-specificity and phenotype. Finally, we present strategies for improvement of anti-tumour potential of T cells, including combination therapies.
Collapse
Affiliation(s)
- Elżbieta Chruściel
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
| | - Zuzanna Urban-Wójciuk
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
| | - Łukasz Arcimowicz
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
| | - Jacek Kowalski
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
- Department of Pathomorphology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Tomasz Marjański
- Department of Thoracic Surgery, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (T.M.); (W.R.)
| | - Witold Rzyman
- Department of Thoracic Surgery, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (T.M.); (W.R.)
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Rafał Dziadziuszko
- Department of Oncology and Radiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Carla Montesano
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy;
| | - Roberta Bernardini
- Department of Biology and Interdepartmental Center CIMETA, University of Rome "Tor Vergata", 00133 Rome, Italy;
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
248
|
Schorer M, Rakebrandt N, Lambert K, Hunziker A, Pallmer K, Oxenius A, Kipar A, Stertz S, Joller N. TIGIT limits immune pathology during viral infections. Nat Commun 2020; 11:1288. [PMID: 32152316 PMCID: PMC7062903 DOI: 10.1038/s41467-020-15025-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/17/2020] [Indexed: 12/30/2022] Open
Abstract
Co-inhibitory pathways have a fundamental function in regulating T cell responses and control the balance between promoting efficient effector functions and restricting immune pathology. The TIGIT pathway has been implicated in promoting T cell dysfunction in chronic viral infection. Importantly, TIGIT signaling is functionally linked to IL-10 expression, which has an effect on both virus control and maintenance of tissue homeostasis. However, whether TIGIT has a function in viral persistence or limiting tissue pathology is unclear. Here we report that TIGIT modulation effectively alters the phenotype and cytokine profile of T cells during influenza and chronic LCMV infection, but does not affect virus control in vivo. Instead, TIGIT has an important effect in limiting immune pathology in peripheral organs by inducing IL-10. Our data therefore identify a function of TIGIT in limiting immune pathology that is independent of viral clearance.
Collapse
Affiliation(s)
- Michelle Schorer
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nikolas Rakebrandt
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Katharina Lambert
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Annika Hunziker
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Katharina Pallmer
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10 8093, Zurich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10 8093, Zurich, Switzerland
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057, Zurich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nicole Joller
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
249
|
Akatsuka Y. TCR-Like CAR-T Cells Targeting MHC-Bound Minor Histocompatibility Antigens. Front Immunol 2020; 11:257. [PMID: 32184779 PMCID: PMC7058980 DOI: 10.3389/fimmu.2020.00257] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 11/20/2022] Open
Abstract
Minor histocompatibility antigens (mHAgs) in allogeneic hematopoietic stem cell transplantation are highly immunogenic as they are foreign antigens and cause polymorphism between donors and recipients. Adoptive cell therapy with mHAg-specific T cells may be an effective option for therapy against recurring hematological malignancies following transplantation. Genetically modified T cells with T cell receptors (TCRs) specific to mHAgs have been developed, but formation of mispaired chimeric TCRs between endogenous and exogenous TCR chains may compromise their function. An alternative approach is the development of chimeric antigen receptor (CAR)-T cells with TCR-like specificity whose CAR transmembrane and intracellular domains do not compete with endogenous TCR for CD3 complexes and transmit their own activation signals. However, it has been shown that the recognition of low-density antigens by high-affinity CAR-T cells has poor sensitivity and specificity. This mini review focuses on the potential for and limitations of TCR-like CAR-T cells in targeting human leukocyte antigen-bound peptide antigens, based on their recognition mechanisms and their application in targeting mHAgs.
Collapse
Affiliation(s)
- Yoshiki Akatsuka
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
250
|
Amodio D, Santilli V, Zangari P, Cotugno N, Manno EC, Rocca S, Rossi P, Cancrini C, Finocchi A, Chassiakos A, Petrovas C, Palma P. How to dissect the plasticity of antigen-specific immune response: a tissue perspective. Clin Exp Immunol 2020; 199:119-130. [PMID: 31626717 PMCID: PMC6954674 DOI: 10.1111/cei.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/01/2022] Open
Abstract
Generation of antigen-specific humoral responses following vaccination or infection requires the maturation and function of highly specialized immune cells in secondary lymphoid organs (SLO), such as lymph nodes or tonsils. Factors that orchestrate the dynamics of these cells are still poorly understood. Currently, experimental approaches that enable a detailed description of the function of the immune system in SLO have been mainly developed and optimized in animal models. Conversely, methodological approaches in humans are mainly based on the use of blood-associated material because of the challenging access to tissues. Indeed, only few studies in humans were able to provide a discrete description of the complex network of cytokines, chemokines and lymphocytes acting in tissues after antigenic challenge. Furthermore, even fewer data are currently available on the interaction occurring within the complex micro-architecture of the SLO. This information is crucial in order to design particular vaccination strategies, especially for patients affected by chronic and immune compromising medical conditions who are under-vaccinated or who respond poorly to immunizations. Analysis of immune cells in different human tissues by high-throughput technologies, able to obtain data ranging from gene signature to protein expression and cell phenotypes, is needed to dissect the peculiarity of each immune cell in a definite human tissue. The main aim of this review is to provide an in-depth description of the current available methodologies, proven evidence and future perspectives in the analysis of immune mechanisms following immunization or infections in SLO.
Collapse
Affiliation(s)
- D. Amodio
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - V. Santilli
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - P. Zangari
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - N. Cotugno
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - E. C. Manno
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - S. Rocca
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - P. Rossi
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - C. Cancrini
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - A. Finocchi
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - A. Chassiakos
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - C. Petrovas
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - P. Palma
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| |
Collapse
|