201
|
Abstract
Bacteria of the phylum Bacteroidetes, including commensal organisms and opportunistic pathogens, harbor abundant surface-exposed multiprotein membrane complexes (Sus-like systems) involved in carbohydrate acquisition. These complexes have been mostly linked to commensalism, and in some instances, they have also been shown to play a role in pathogenesis. Sus-like systems are mainly composed of lipoproteins anchored to the outer membrane and facing the external milieu. This lipoprotein localization is uncommon in most studied Gram-negative bacteria, while it is widespread in Bacteroidetes. Little is known about how these complexes assemble and particularly about how lipoproteins reach the bacterial surface. Here, by bioinformatic analyses, we identify a lipoprotein export signal (LES) at the N termini of surface-exposed lipoproteins of the human pathogen Capnocytophaga canimorsus corresponding to K-(D/E)2 or Q-A-(D/E)2. We show that, when introduced in sialidase SiaC, an intracellular lipoprotein, this signal is sufficient to target the protein to the cell surface. Mutational analysis of the LES in this reporter system showed that the amino acid composition, position of the signal sequence, and global charge are critical for lipoprotein surface transport. These findings were further confirmed by the analysis of the LES of mucinase MucG, a naturally surface-exposed C. canimorsus lipoprotein. Furthermore, we identify a LES in Bacteroides fragilis and Flavobacterium johnsoniae surface lipoproteins that allow C. canimorsus surface protein exposure, thus suggesting that Bacteroidetes share a new bacterial lipoprotein export pathway that flips lipoproteins across the outer membrane. Bacteria of the phylum Bacteroidetes are important human commensals and pathogens. Understanding their biology is therefore a key question for human health. A main feature of these bacteria is the presence of abundant lipoproteins at their surface that play a role in nutrient acquisition. To date, the underlying mechanism of lipoprotein transport is unknown. We show for the first time that Bacteroidetes surface lipoproteins share an N-terminal signal that drives surface localization. The localization and overall negative charge of the lipoprotein export signal (LES) are crucial for its role. Overall, our findings provide the first evidence that Bacteroidetes are endowed with a new bacterial lipoprotein export pathway that flips lipoproteins across the outer membrane.
Collapse
|
202
|
Structural Change in Microbiota by a Probiotic Cocktail Enhances the Gut Barrier and Reduces Cancer via TLR2 Signaling in a Rat Model of Colon Cancer. Dig Dis Sci 2016; 61:2908-2920. [PMID: 27384052 DOI: 10.1007/s10620-016-4238-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Structural change in the gut microbiota is implicated in cancer. The beneficial modulation of the microbiota composition with probiotics and prebiotics prevents diseases. AIM We investigated the effect of oligofructose-maltodextrin-enriched Lactobacillus acidophilus, Bifidobacteria bifidum, and Bifidobacteria infantum (LBB), on the gut microbiota composition and progression of colorectal cancer. METHODS Sprague Dawley rats were acclimatized, given ampicillin (75 mg/kg), and treated as follows; GCO: normal control; GPR: LBB only; GPC: LBB+ 1,2-dimethylhydrazine dihydrochloride (DMH); and GCA: DMH only (cancer control). 16S V4 Pyrosequencing for gut microbiota analysis, tumor studies, and the expression of MUC2, ZO-1, occludin, TLR2, TLR4, caspase 3, COX-2, and β-catenin were conducted at the end of experiment. RESULTS Probiotic LBB treatment altered the gut microbiota. The relative abundance of genera Pseudomonas, Congregibacter, Clostridium, Candidactus spp., Phaeobacter, Escherichia, Helicobacter, and HTCC was decreased (P < 0.05), but the genus Lactobacillus increased (P < 0.05), in LBB treatment than in cancer control. The altered gut microbiota was associated with decreased tumor incidence (80 % in GPC vs. 100 % in GCA, P = 0.0001), tumor volume (GPC 84.23 (42.75-188.4) mm(3) vs. GCA 243 (175.5-344.5) mm(3), P < 0.0001) and tumor multiplicity/count (GPC 2.92 ± 0.26 vs. GCA 6.27 ± 0.41; P < 0.0001). The expression of MUC2, ZO-1, occludin, and TLR2 was increased, but expression of TLR4, caspase 3, Cox-2, and β-catenin was decreased by LBB treatment than in cancer control GCA (P < 0.05). CONCLUSION Administration of LBB modulates the gut microbiota and reduces colon cancer development by decreasing tumor incidence, multiplicity/count, and volume via enhanced TLR2-improved gut mucosa epithelial barrier integrity and suppression of apoptosis and inflammation.
Collapse
|
203
|
Purcell RV, Pearson J, Frizelle FA, Keenan JI. Comparison of standard, quantitative and digital PCR in the detection of enterotoxigenic Bacteroides fragilis. Sci Rep 2016; 6:34554. [PMID: 27686415 PMCID: PMC5043350 DOI: 10.1038/srep34554] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/15/2016] [Indexed: 01/12/2023] Open
Abstract
Gut colonization with enterotoxigenic Bacteroides fragilis (ETBF) appears to be associated with the development of colorectal cancer. However, differences in carriage rates are seen with various testing methods and sampling sites. We compared standard PCR, SYBR green and TaqMan quantitative PCR (qPCR) and digital PCR (dPCR) in detecting the B. fragilis toxin (bft) gene from cultured ETBF, and from matched luminal and faecal stool samples from 19 colorectal cancer patients. Bland-Altman analysis found that all three quantitative methods performed comparably in detecting bft from purified bacterial DNA, with the same limits of detection (<1 copy/μl). However, SYBR qPCR under-performed compared to TaqMan qPCR and dPCR in detecting bft in clinical stool samples; 13/38 samples were reported positive by SYBR, compared to 35 and 36 samples by TaqMan and dPCR, respectively. TaqMan qPCR and dPCR gave bft copy numbers that were 48-fold and 75-fold higher for the same samples than SYBR qPCR, respectively (p < 0.001). For samples that were bft-positive in both fecal and luminal stools, there was no difference in relative abundance between the sites, by any method tested. From our findings, we recommend the use of TaqMan qPCR as the preferred method to detect ETBF from clinical stool samples.
Collapse
Affiliation(s)
- Rachel V Purcell
- Department of Surgery, University of Otago, 2 Riccarton Avenue, PO Box 4345, Christchurch 8140, New Zealand
| | - John Pearson
- Department of Population Health,University of Otago, 2 Riccarton Avenue,PO Box 4345,Christchurch 8140, New Zealand
| | - Frank A Frizelle
- Department of Surgery, University of Otago, 2 Riccarton Avenue, PO Box 4345, Christchurch 8140, New Zealand
| | - Jacqueline I Keenan
- Department of Surgery, University of Otago, 2 Riccarton Avenue, PO Box 4345, Christchurch 8140, New Zealand
| |
Collapse
|
204
|
Bacteroides fragilis Enterotoxin Upregulates Heme Oxygenase-1 in Intestinal Epithelial Cells via a Mitogen-Activated Protein Kinase- and NF-κB-Dependent Pathway, Leading to Modulation of Apoptosis. Infect Immun 2016; 84:2541-54. [PMID: 27324483 DOI: 10.1128/iai.00191-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/15/2016] [Indexed: 12/15/2022] Open
Abstract
The Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), interacts with intestinal epithelial cells and can provoke signals that induce mucosal inflammation. Although expression of heme oxygenase-1 (HO-1) is associated with regulation of inflammatory responses, little is known about HO-1 induction in ETBF infection. This study was conducted to investigate the effect of BFT on HO-1 expression in intestinal epithelial cells. Stimulation of intestinal epithelial cells with BFT resulted in upregulated expression of HO-1. BFT activated transcription factors such as NF-κB, AP-1, and Nrf2 in intestinal epithelial cells. Upregulation of HO-1 in intestinal epithelial cells was dependent on activated IκB kinase (IKK)-NF-κB signals. However, suppression of Nrf2 or AP-1 signals in intestinal epithelial cells did not result in significant attenuation of BFT-induced HO-1 expression. HO-1 induction via IKK-NF-κB in intestinal epithelial cells was regulated by p38 mitogen-activated protein kinases (MAPKs). Furthermore, suppression of HO-1 activity led to increased apoptosis in BFT-stimulated epithelial cells. These results suggest that a signaling pathway involving p38 MAPK-IKK-NF-κB in intestinal epithelial cells is required for HO-1 induction during exposure to BFT. Following this induction, increased HO-1 expression may regulate the apoptotic process in responses to BFT stimulation.
Collapse
|
205
|
Wei Z, Cao S, Liu S, Yao Z, Sun T, Li Y, Li J, Zhang D, Zhou Y. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients' survival? A pilot study on relevant mechanism. Oncotarget 2016; 7:46158-46172. [PMID: 27323816 PMCID: PMC5216788 DOI: 10.18632/oncotarget.10064] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023] Open
Abstract
Evidences have shown that dysbiosis could promote the progression of colorectal cancer (CRC). However, the association of dysbiosis and prognosis of CRC is barely investigated. Therefore, we used 16S rRNA gene sequencing approach to determine differences in microbiota among tumor tissues of different prognosis and found that Fusobacterium nucleatum and Bacteroides fragilis were more abundant in worse prognosis groups, while Faecalibacterium prausnitzii displayed higher abundance in survival group. To further explore the prognostic value of the found bacteria, Kaplan-Meier and Cox proportional regression analyses were used and the results exhibited that high abundance of F. nucleatum and B. fragilis were independent indicators of poor patient's survival. Besides, the expression of major inflammatory mediator were analyzed using PCR and western blot methods, and it turned out that high abundance of F. nucleatum was associated with increased expression of TNF-α, β-catenin and NF-κB, while COX-2, MMP-9 and NF-κB were positively related with high B. fragilis level, and high level of F. prausnitzii showed lower expression of β-catenin, MMP-9 and NF-κB. Moreover, immunohistochemical analysis indicated that KRAS and BRAF expression were prominent in F. nucleatum and B. fragilis high abundance group, while MLH1 showed lower expression. In conclusion, F. nucleatum, B. fragilis and F. prausnitzii can be identified as useful prognostic biomarkers for CRC, and dysbiosis might worsen the patients' prognosis by up-regulating gut inflammation level.
Collapse
Affiliation(s)
- Zhiliang Wei
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shougen Cao
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shanglong Liu
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zengwu Yao
- Department of General Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Teng Sun
- Department of General Surgery, Qingdao Municipal Hospital Group, Qingdao, China
| | - Yi Li
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiante Li
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Qingdao University Medical College, Qingdao, China
| | - Yanbing Zhou
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
206
|
Hecht AL, Casterline BW, Earley ZM, Goo YA, Goodlett DR, Bubeck Wardenburg J. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep 2016; 17:1281-91. [PMID: 27432285 DOI: 10.15252/embr.201642282] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022] Open
Abstract
The microbiota is a major source of protection against intestinal pathogens; however, the specific bacteria and underlying mechanisms involved are not well understood. As a model of this interaction, we sought to determine whether colonization of the murine host with symbiotic non-toxigenic Bacteroides fragilis could limit acquisition of pathogenic enterotoxigenic B. fragilis We observed strain-specific competition with toxigenic B. fragilis, dependent upon type VI secretion, identifying an effector-immunity pair that confers pathogen exclusion. Resistance against host acquisition of a second non-toxigenic strain was also uncovered, revealing a broader function of type VI secretion systems in determining microbiota composition. The competitive exclusion of enterotoxigenic B. fragilis by a non-toxigenic strain limited toxin exposure and protected the host against intestinal inflammatory disease. Our studies demonstrate a novel role of type VI secretion systems in colonization resistance against a pathogen. This understanding of bacterial competition may be utilized to define a molecularly targeted probiotic strategy.
Collapse
Affiliation(s)
- Aaron L Hecht
- Department of Microbiology, University of Chicago, Chicago, IL, USA Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Benjamin W Casterline
- Department of Microbiology, University of Chicago, Chicago, IL, USA Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Zachary M Earley
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Young Ah Goo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - David R Goodlett
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Juliane Bubeck Wardenburg
- Department of Microbiology, University of Chicago, Chicago, IL, USA Department of Pediatrics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
207
|
Kim M, Kim H, Ji SE, Rim JH, Gwon SY, Kim WH, Rhee KJ, Lee K. Characterization of bftGenes among Enterotoxigenic Bacteroides fragilisIsolates from Extraintestinal Specimens at a University Hospital in Korea. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2016. [DOI: 10.15324/kjcls.2016.48.2.82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Myungsook Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyunsoo Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seung Eun Ji
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - John Hoon Rim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sun Yeong Gwon
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju 26493, Korea
| | - Wan Hee Kim
- KOTITI Testing and Research Institute, Seongnam 13202, Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju 26493, Korea
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
208
|
Snezhkina AV, Krasnov GS, Lipatova AV, Sadritdinova AF, Kardymon OL, Fedorova MS, Melnikova NV, Stepanov OA, Zaretsky AR, Kaprin AD, Alekseev BY, Dmitriev AA, Kudryavtseva AV. The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of c-Myc and C/EBPβ rather than Enterotoxigenic Bacteroides fragilis Infection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2353560. [PMID: 27433286 PMCID: PMC4940579 DOI: 10.1155/2016/2353560] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/28/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
Colorectal cancer is one of the most common cancers in the world. It is well known that the chronic inflammation can promote the progression of colorectal cancer (CRC). Recently, a number of studies revealed a potential association between colorectal inflammation, cancer progression, and infection caused by enterotoxigenic Bacteroides fragilis (ETBF). Bacterial enterotoxin activates spermine oxidase (SMO), which produces spermidine and H2O2 as byproducts of polyamine catabolism, which, in turn, enhances inflammation and tissue injury. Using qPCR analysis, we estimated the expression of SMOX gene and ETBF colonization in CRC patients. We found no statistically significant associations between them. Then we selected genes involved in polyamine metabolism, metabolic reprogramming, and inflammation regulation and estimated their expression in CRC. We observed overexpression of SMOX, ODC1, SRM, SMS, MTAP, c-Myc, C/EBPβ (CREBP), and other genes. We found that two mediators of metabolic reprogramming, inflammation, and cell proliferation c-Myc and C/EBPβ may serve as regulators of polyamine metabolism genes (SMOX, AZIN1, MTAP, SRM, ODC1, AMD1, and AGMAT) as they are overexpressed in tumors, have binding site according to ENCODE ChIP-Seq data, and demonstrate strong coexpression with their targets. Thus, increased polyamine metabolism in CRC could be driven by c-Myc and C/EBPβ rather than ETBF infection.
Collapse
Affiliation(s)
- Anastasiya V. Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow 119121, Russia
| | - Anastasiya V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Asiya F. Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- National Medical Research Center of Radiology, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| | - Olga L. Kardymon
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Oleg A. Stepanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Andrew R. Zaretsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Andrey D. Kaprin
- National Medical Research Center of Radiology, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| | - Boris Y. Alekseev
- National Medical Research Center of Radiology, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- National Medical Research Center of Radiology, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| |
Collapse
|
209
|
Krezalek MA, Skowron KB, Guyton KL, Shakhsheer B, Hyoju S, Alverdy JC. The intestinal microbiome and surgical disease. Curr Probl Surg 2016; 53:257-93. [PMID: 27497246 DOI: 10.1067/j.cpsurg.2016.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Monika A Krezalek
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Kinga B Skowron
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Kristina L Guyton
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Baddr Shakhsheer
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Sanjiv Hyoju
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - John C Alverdy
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL.
| |
Collapse
|
210
|
Abstract
Although genes contribute to colorectal cancer, the gut microbiota are an important player. Accumulating evidence suggests that chronic infection and the ensuing inflammation contributes to tumor initiation and tumor progression. A variety of bacterial species and tumor-promoting virulence mechanisms have been investigated. Significant advances have been made in understanding the composition and functional capabilities of the gut microbiota and its roles in cancer. In the current review, we discuss the novel roles of microbiota in the progression of colon cancer. Although microbiota technically include organisms other than bacteria e.g., viruses and fungi, this review will primarily focus on bacteria. We summarize epidemiological studies of human microbiome and colon cancer. We discuss the progress in the scientific understanding of the interplay between the gut microbiota, barrier function, and host responses in experimental models. Further, we discuss the potential application in prevention, diagnosis, and therapy of colon cancer by targeting microbiota. We discuss the challenges lie ahead and the future direction in studying gut microbiome in colon cancer to close the gap between the basic sciences and clinical application.
Collapse
Affiliation(s)
- Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
211
|
Keenan JI, Aitchison A, Purcell RV, Greenlees R, Pearson JF, Frizelle FA. Screening for enterotoxigenic Bacteroides fragilis in stool samples. Anaerobe 2016; 40:50-3. [PMID: 27166180 DOI: 10.1016/j.anaerobe.2016.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/21/2016] [Accepted: 05/06/2016] [Indexed: 02/08/2023]
Abstract
Bacteroides fragilis is a commensal bacterium found in the gut of most humans, however enterotoxigenic B. fragilis strains (ETBF) have been associated with diarrhoea and colorectal cancer (CRC). The purpose of this study was to establish a method of screening for the Bacteroides fragilis toxin (bft) gene in stool samples, as a means of determining if carriage of ETBF is detected more often in CRC patients than in age-matched healthy controls. Stool samples from 71 patients recently diagnosed with CRC, and 71 age-matched controls, were screened by standard and quantitative PCR using primers specific for the detection of the bft gene. Bacterial template DNA from stool samples was prepared by two methods: a sweep, where all colonies growing on Bacteroides Bile Esculin agar following stool culture for 48 h at 37 °C in an anaerobic environment were swept into sterile water and heat treated; and a direct DNA extraction from each stool sample. The bft gene was detected more frequently from DNA isolated from bacterial sweeps than from matched direct DNA extractions. qPCR was found to be more sensitive than standard PCR in detecting bft. The cumulative total of positive qPCR assays from both sample types revealed that 19 of the CRC patients had evidence of the toxin gene in their stool sample (27%), compared to seven of the age-matched controls (10%). This difference was significant (P = 0.016). Overall, ETBF carriage was detected more often in CRC patient stool samples compared to controls, but disparate findings from the different DNA preparations and testing methods suggests that poor sensitivity may limit molecular detection of ETBF in stool samples.
Collapse
Affiliation(s)
- Jacqueline I Keenan
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand.
| | - Alan Aitchison
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| | - Rachel V Purcell
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| | - Rosie Greenlees
- Microbiology Department, Canterbury Health Laboratories, Christchurch, New Zealand
| | - John F Pearson
- Biostatistics and Computational Biology Unit, University of Otago Christchurch, Christchurch, New Zealand
| | - Frank A Frizelle
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
212
|
Nagao-Kitamoto H, Kitamoto S, Kuffa P, Kamada N. Pathogenic role of the gut microbiota in gastrointestinal diseases. Intest Res 2016; 14:127-38. [PMID: 27175113 PMCID: PMC4863046 DOI: 10.5217/ir.2016.14.2.127] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022] Open
Abstract
The gastrointestinal (GI) tract is colonized by a dense community of commensal microorganisms referred to as the gut microbiota. The gut microbiota and the host have co-evolved, and they engage in a myriad of immunogenic and metabolic interactions. The gut microbiota contributes to the maintenance of host health. However, when healthy microbial structure is perturbed, a condition termed dysbiosis, the altered gut microbiota can trigger the development of various GI diseases including inflammatory bowel disease, colon cancer, celiac disease, and irritable bowel syndrome. There is a growing body of evidence suggesting that multiple intrinsic and extrinsic factors, such as genetic variations, diet, stress, and medication, can dramatically affect the balance of the gut microbiota. Therefore, these factors regulate the development and progression of GI diseases by inducing dysbiosis. Herein, we will review the recent advances in the field, focusing on the mechanisms through which intrinsic and extrinsic factors induce dysbiosis and the role a dysbiotic microbiota plays in the pathogenesis of GI diseases.
Collapse
Affiliation(s)
- Hiroko Nagao-Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sho Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Kuffa
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
213
|
Fathi P, Wu S. Isolation, Detection, and Characterization of Enterotoxigenic Bacteroides fragilis in Clinical Samples. Open Microbiol J 2016; 10:57-63. [PMID: 27335618 PMCID: PMC4899533 DOI: 10.2174/1874285801610010057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 01/13/2023] Open
Abstract
Bacteroides fragilis is an extensively studied anaerobic bacterium comprising the normal flora of the human gut. B. fragilis is known to be one of the most commonly isolated species from clinical samples and has been shown to cause a wide range of pathologies in humans [1, 2]. As an opportunistic pathogen B. fragilis can cause abscess formation and bacteremia [2]. Additionally in its enterotoxigenic form, B. fragilis is a known cause of diarrheal illness, is associated with inflammatory bowel disease, and has been recently characterized in patients with colon cancer [3 - 5]. As research in the field of the gut microbiome continues to expand at an ever increasing rate due to advances in the availability of next generation sequencing and analysis tools it is important to outline various molecular methods that can be employed in quickly detecting and isolating relevant strains of B. fragilis. This review outlines methods that are routinely employed in the isolation and detection of B. fragilis, with an emphasis on characterizing enterotoxigenic B. fragilis (ETBF) strains.
Collapse
Affiliation(s)
- Payam Fathi
- Department of Medicine, Division of Infectious Disease, Johns Hopkins University, Baltimore, MD, USA
| | - Shaoguang Wu
- Department of Medicine, Division of Infectious Disease, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
214
|
Abstract
The human gut microbiota plays a major role in the development and maintenance of good health. Many recent studies have attempted to define links between microbiota residents, their function and the development of colorectal cancer (CRC). Gut microbiota drive the development of inflammation within the colon and such inflammation is implicated in colonic neoplastic development. Although the precise mechanisms through which the microbiota is involved in cancer development remain elusive, the message is clear: the microbiota contributes to cancer risk by influencing a number of key host processes. It is also recognized that we have the ability to influence the role of the gut microbiota by considering our nutritional intake. We have always known that 'we are what we eat' but it is also true that 'they (our gut microbiota) are what we eat'. We therefore have a huge opportunity to positively influence our health through microbial manipulation. There is now a clear need to move past defining the constituents of the gastrointestinal microbiota and to focus more on understanding the functional capabilities of the resident microbial community and how this impacts on host health. One such emerging concept is the development of microbial biofilms which can form in the gut in conjunction with CRC tissue. By better understanding of the interaction between the host and its resident microbiota, in the context of health and cancer development, we will open new therapeutic and diagnostic opportunities for reducing the CRC global health burden.
Collapse
Affiliation(s)
- Georgina L Hold
- School of Medicine and Dentistry, Aberdeen University, Aberdeen, UK
| |
Collapse
|
215
|
Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, Bringer MA, Pezet D, Bonnet M. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol 2016; 22:501-518. [PMID: 26811603 PMCID: PMC4716055 DOI: 10.3748/wjg.v22.i2.501] [Citation(s) in RCA: 550] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/06/2015] [Accepted: 10/17/2015] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota acts as a real organ. The symbiotic interactions between resident micro-organisms and the digestive tract highly contribute to maintain the gut homeostasis. However, alterations to the microbiome caused by environmental changes (e.g., infection, diet and/or lifestyle) can disturb this symbiotic relationship and promote disease, such as inflammatory bowel diseases and cancer. Colorectal cancer is a complex association of tumoral cells, non-neoplastic cells and a large amount of micro-organisms, and the involvement of the microbiota in colorectal carcinogenesis is becoming increasingly clear. Indeed, many changes in the bacterial composition of the gut microbiota have been reported in colorectal cancer, suggesting a major role of dysbiosis in colorectal carcinogenesis. Some bacterial species have been identified and suspected to play a role in colorectal carcinogenesis, such as Streptococcus bovis, Helicobacter pylori, Bacteroides fragilis, Enterococcus faecalis, Clostridium septicum, Fusobacterium spp. and Escherichia coli. The potential pro-carcinogenic effects of these bacteria are now better understood. In this review, we discuss the possible links between the bacterial microbiota and colorectal carcinogenesis, focusing on dysbiosis and the potential pro-carcinogenic properties of bacteria, such as genotoxicity and other virulence factors, inflammation, host defenses modulation, bacterial-derived metabolism, oxidative stress and anti-oxidative defenses modulation. We lastly describe how bacterial microbiota modifications could represent novel prognosis markers and/or targets for innovative therapeutic strategies.
Collapse
|
216
|
Gwon SY, Jang IH, Rhee KJ. Enterotoxigenic Bacteroides fragilis-Associated Diseases and Detection. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2015. [DOI: 10.15324/kjcls.2015.47.4.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sun-Yeong Gwon
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju 26493, Korea
| | - In-Ho Jang
- Department of Biomedical Laboratory Science, College of Health Sciences, Sangji University, Wonju 18950, Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju 26493, Korea
| |
Collapse
|
217
|
Stappers MHT, Hagen F, Reimnitz P, Mouton JW, Meis JF, Gyssens IC. Bacteroides fragilis in biopsies of patients with major abscesses and diabetic foot infections: direct molecular versus culture-based detection. Diagn Microbiol Infect Dis 2015; 85:263-5. [PMID: 27112830 DOI: 10.1016/j.diagmicrobio.2015.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/31/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
Direct determination by pathogen-specific real-time PCR assay for Bacteroides fragilis was compared to culture in major abscess and diabetic foot infection biopsy samples. Real-time PCR resulted in an increased detection rate of 12% for B. fragilis and could improve the detection of B. fragilis in clinical samples.
Collapse
Affiliation(s)
- Mark H T Stappers
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA, Nijmegen, The Netherlands; Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, The Netherlands; Hasselt University, Martelarenlaan 42, BE3500, Hasselt, Belgium
| | - Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, The Netherlands
| | - Peter Reimnitz
- Bayer Healthcare Pharmaceuticals, Friedrich-Ebert-Straße 475, 42117, Wuppertal, Germany
| | - Johan W Mouton
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA, Nijmegen, The Netherlands; Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, The Netherlands; Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA, Nijmegen, The Netherlands; Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Inge C Gyssens
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA, Nijmegen, The Netherlands; Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, The Netherlands; Hasselt University, Martelarenlaan 42, BE3500, Hasselt, Belgium.
| |
Collapse
|
218
|
Rosadi F, Fiorentini C, Fabbri A. Bacterial protein toxins in human cancers. Pathog Dis 2015; 74:ftv105. [DOI: 10.1093/femspd/ftv105] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2015] [Indexed: 12/16/2022] Open
|
219
|
Nistal E, Fernández-Fernández N, Vivas S, Olcoz JL. Factors Determining Colorectal Cancer: The Role of the Intestinal Microbiota. Front Oncol 2015; 5:220. [PMID: 26528432 PMCID: PMC4601259 DOI: 10.3389/fonc.2015.00220] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/24/2015] [Indexed: 12/26/2022] Open
Abstract
The gastrointestinal tract, in particular the colon, holds a complex community of microorganisms, which are essential for maintaining homeostasis. However, in recent years, many studies have implicated microbiota in the development of colorectal cancer (CRC), with this disease considered a major cause of death in the western world. The mechanisms underlying bacterial contribution in its development are complex and are not yet fully understood. However, there is increasing evidence showing a connection between intestinal microbiota and CRC. Intestinal microorganisms cause the onset and progression of CRC using different mechanisms, such as the induction of a chronic inflammation state, the biosynthesis of genotoxins that interfere with cell cycle regulation, the production of toxic metabolites, or heterocyclic amine activation of pro-diet carcinogenic compounds. Despite these advances, additional studies in humans and animal models will further decipher the relationship between microbiota and CRC, and aid in developing alternate therapies based on microbiota manipulation.
Collapse
Affiliation(s)
- Esther Nistal
- Instituto de Biomedicina (IBIOMED), Universidad de León , León , Spain
| | | | - Santiago Vivas
- Instituto de Biomedicina (IBIOMED), Universidad de León , León , Spain ; Gastroenterología, Hospital Universitario de León , León , Spain
| | - José Luis Olcoz
- Gastroenterología, Hospital Universitario de León , León , Spain
| |
Collapse
|
220
|
Abstract
It is becoming increasingly clear that microbiota inhabiting our bodies influence cancer predisposition and etiology. In addition to pathogens with oncogenic properties, commensal and symbiotic microbiota have tumor-suppressive properties. Diet and other environmental factors can modulate the abundance of certain members of microbial communities within the gastrointestinal tract and at other anatomical sites. Furthermore, some dietary factors are metabolized by commensal/symbiotic gut microbiota into bioactive food components believed to prevent cancer. For example, dietary fiber undergoes bacterial fermentation in the colon to yield butyrate, which is a short-chain fatty acid and histone deacetylase (HDAC) inhibitor that suppresses the viability and growth of colorectal cancer cell lines. A recent study using gnotobiotic mouse models demonstrates that fiber can protect against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner that involves the Warburg effect. This and other examples suggest that some of the inter-individual variation observed in epidemiology and intervention studies that have investigated associations between diet and cancer risk might be explained by differences in microbiota among the participants. Data from basic research studies also support the idea that probiotics and prebiotics could be plausible chemoprevention strategies that may be utilized to a greater extent in the future.
Collapse
Affiliation(s)
- Scott J Bultman
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
221
|
Chen LA, Van Meerbeke S, Albesiano E, Goodwin A, Wu S, Yu H, Carroll K, Sears C. Fecal detection of enterotoxigenic Bacteroides fragilis. Eur J Clin Microbiol Infect Dis 2015; 34:1871-7. [PMID: 26173688 DOI: 10.1007/s10096-015-2425-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/04/2015] [Indexed: 01/14/2023]
Abstract
Bacteroides fragilis is a common colonic symbiote of which one subtype, enterotoxigenic Bacteroides fragilis (ETBF), causes inflammatory diarrhea. However, asymptomatic ETBF colonization is common. Through its primary virulence factor, B. fragilis toxin (BFT), ETBF causes asymptomatic, chronic colitis in C57BL/6 mice and increased colon tumorigenesis in multiple intestinal neoplasia mice. Human studies suggest an association between ETBF infection, inflammatory bowel disease, and colon cancer. Additional studies on ETBF epidemiology are, therefore, crucial. The goal of this study is to develop a reliable fecal diagnostic for ETBF. To develop a sensitive assay for ETBF, we tested multiple protocols on mouse stools spiked with serially diluted ETBF. Each assay was based on either touchdown or quantitative polymerase chain reaction (qPCR) and used primers targeted to bft to detect ETBF. Using touchdown PCR or qPCR, the mean ETBF detection limit was 1.55 × 10(6) colony-forming units (CFU)/g stool and 1.33 × 10(4) CFU/g stool, respectively. Augmentation of Bacteroides spp. growth in fecal samples using PYGB (Peptone Yeast Glucose with Bile) broth enhanced ETBF detection to 2.93 × 10(2) CFU/g stool using the touchdown PCR method and 2.63 × 10(2) CFU/g stool using the qPCR method. Fecal testing using combined culture-based amplification and bft touchdown PCR is a sensitive assay for the detection of ETBF colonization and should be useful in studying the role of ETBF colonization in intestinal diseases, such as inflammatory bowel disease and colon cancer. We conclude that touchdown PCR with culture-based amplification may be the optimal ETBF detection strategy, as it performs as well as qPCR with culture-based amplification, but is a less expensive technique.
Collapse
Affiliation(s)
- L A Chen
- Department of Medicine, Johns Hopkins School of Medicine, CRB2 Bldg, Suite 1M.05, 1550 Orleans Street, Baltimore, MD, 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Fiedoruk K, Daniluk T, Rozkiewicz D, Zaremba ML, Oldak E, Sciepuk M, Leszczynska K. Conventional and molecular methods in the diagnosis of community-acquired diarrhoea in children under 5 years of age from the north-eastern region of Poland. Int J Infect Dis 2015; 37:145-51. [PMID: 26159845 DOI: 10.1016/j.ijid.2015.06.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/29/2015] [Accepted: 06/29/2015] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES The purpose of this study was to determine the main causative agents of community-acquired acute diarrhoea in children using conventional methods and PCR. METHODS Stool samples were collected from 100 children under 5 years of age with acute diarrhoea during the autumn-winter period of 2010-2011. Rotaviruses and adenoviruses were detected by the stool antigen immunoassay, and Salmonella spp, Campylobacter spp, Shigella spp, Yersinia enterocolitica, Yersinia pseudotuberculosis, Clostridium difficile, enterotoxigenic Bacteroides fragilis (ETBF), and diarrhoeagenic Escherichia coli were detected by culture methods and PCR. RESULTS Overall, enteropathogens were identified in 73% of the children. Bacteria, viruses, and mixed infections were noted in 37%, 24%, and 12% of diarrhoeal cases, respectively. The most common enteric pathogens were rotaviruses (31%), followed by C. difficile (17%), Campylobacter jejuni (13%), Salmonella spp (11%), and atypical enteropathogenic Escherichia coli (aEPEC) strains (10%). Compared with culture methods, PCR increased the overall detection frequency of the bacterial enteropathogens by 4%. CONCLUSIONS The high prevalence of Campylobacter jejuni suggests that the number of campylobacteriosis cases in Poland may be underestimated; this pathogen should be investigated routinely in children with diarrhoea. Moreover, C. difficile might be considered a causative or contributing agent of diarrhoea in 14.8% of children aged >1 year.
Collapse
Affiliation(s)
- Krzysztof Fiedoruk
- Department of Microbiology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland.
| | - Tamara Daniluk
- Department of Microbiology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Dorota Rozkiewicz
- Department of Paediatric Infectious Diseases, Medical University of Bialystok, University Children's Hospital, Bialystok, Poland
| | - Maria L Zaremba
- Department of Microbiology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Elzbieta Oldak
- Department of Paediatric Infectious Diseases, Medical University of Bialystok, University Children's Hospital, Bialystok, Poland
| | - Malgorzata Sciepuk
- Department of Microbiology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Katarzyna Leszczynska
- Department of Microbiology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| |
Collapse
|
223
|
Practical Guidance for Clinical Microbiology Laboratories: Diagnosis of Bacterial Gastroenteritis. Clin Microbiol Rev 2015; 28:3-31. [PMID: 25567220 DOI: 10.1128/cmr.00073-14] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacterial gastroenteritis is a disease that is pervasive in both the developing and developed worlds. While for the most part bacterial gastroenteritis is self-limiting, identification of an etiological agent by bacterial stool culture is required for the management of patients with severe or prolonged diarrhea, symptoms consistent with invasive disease, or a history that may predict a complicated course of disease. Importantly, characterization of bacterial enteropathogens from stool cultures in clinical laboratories is one of the primary means by which public health officials identify and track outbreaks of bacterial gastroenteritis. This article provides guidance for clinical microbiology laboratories that perform stool cultures. The general characteristics, epidemiology, and clinical manifestations of key bacterial enteropathogens are summarized. Information regarding optimal specimen collection, transport, and processing and current diagnostic tests and testing algorithms is provided. This article is an update of Cumitech 12A (P. H. Gilligan, J. M. Janda, M. A. Karmali, and J. M. Miller, Cumitech 12A, Laboratory diagnosis of bacterial diarrhea, 1992).
Collapse
|
224
|
Kharlampieva D, Manuvera V, Podgorny O, Grafskaia E, Kovalchuk S, Pobeguts O, Altukhov I, Govorun V, Lazarev V. Recombinant fragilysin isoforms cause E-cadherin cleavage of intact cells and do not cleave isolated E-cadherin. Microb Pathog 2015; 83-84:47-56. [DOI: 10.1016/j.micpath.2015.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/28/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
|
225
|
Complete Genome Sequence of an Enterotoxigenic Bacteroides fragilis Clinical Isolate. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00450-15. [PMID: 25953165 PMCID: PMC4424316 DOI: 10.1128/genomea.00450-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here we present the complete genome sequence of Bacteroides fragilis isolate BOB25. It is an enterotoxigenic isolate that was obtained from a stool sample of a patient with dysbiosis.
Collapse
|
226
|
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide whose incidence has increased rapidly in recent years. There is growing evidence that the complex gut microbiota community plays an important role in the development of intestinal tumorigenesis. SUMMARY This review aimed to explore the correlation between gut microbiota and CRC as well as to identify the pathogens and their metabolites that affect CRC and the potential models of gut microbiota action. It promotes our understanding of the correlation between gut microbiota and CRC. KEY MESSAGE Our knowledge of the risk factors associated with gut microbiota for CRC development, as well as of the mechanism how intestinal bacteria act on colorectal tumorigenesis, has improved, leading to a better understanding of the correlation between gut microbiota and CRC. PRACTICAL IMPLICATIONS The intestinal microbiota community has a close relationship with CRC by influencing the mechanism of the body and by regulating the physiological function of the colorectum and even the entire digestive system. Gut microbiota have been linked to CRC based upon their toxic and genotoxic metabolites production by fermentation of dietary ingredients. These metabolites could bind specific intestinal cell surface receptors and subsequently affect intracellular signal transduction. The mechanisms by which gut microbiota affect CRC development include the 'Alpha-bug' model, the 'driver-passenger' model and the 'intestinal microbiota adaptions' model. This review promotes our understanding of the correlation between gut microbiota and CRC.
Collapse
Affiliation(s)
- Ya-Na Yu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing-Yua Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Shanghai, China ; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai, China ; State Key Laboratory of Oncogene and Related Genes, Shanghai, China
| |
Collapse
|
227
|
Allali I, Delgado S, Marron PI, Astudillo A, Yeh JJ, Ghazal H, Amzazi S, Keku T, Azcarate-Peril MA. Gut microbiome compositional and functional differences between tumor and non-tumor adjacent tissues from cohorts from the US and Spain. Gut Microbes 2015; 6:161-72. [PMID: 25875428 PMCID: PMC4615176 DOI: 10.1080/19490976.2015.1039223] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world and the second leading cause of cancer deaths in the US and Spain. The molecular mechanisms involved in the etiology of CRC are not yet elucidated due in part to the complexity of the human gut microbiota. In this study, we compared the microbiome composition of 90 tumor and matching adjacent tissue (adjacent) from cohorts from the US and Spain by 16S rRNA amplicon sequencing in order to determine the impact of the geographic origin on the CRC microbiome. Data showed a significantly (P < 0.05) higher Phylogenetic Diversity (PD) for the US (PD Adjacent = 26.3 ± 5.3, PD Tumor = 23.3 ± 6.2) compared to the Spanish cohort (PD Adjacent = 18.9 ± 5.9, PD Tumor = 18.7 ± 6.6) while no significant differences in bacterial diversity were observed between tumor and adjacent tissues for individuals from the same country. Adjacent tissues from the Spanish cohort were enriched in Firmicutes (SP = 43.9% and US = 22.2%, P = 0.0001) and Actinobacteria (SP = 1.6% and US = 0.5%, P = 0.0018) compared to US adjacent tissues, while adjacent tissues from the US had significantly higher abundances of Fusobacteria (US = 8.1% and SP = 1.5%, P = 0.0023) and Sinergistetes (US = 0.3% and SP = 0.1%, P = 0.0097). Comparisons between tumor and adjacent tissues in each cohort identified the genus Eikenella significantly over represented in US tumors (T = 0.024% and A = 0%, P = 0.03), and the genera Fusobacterium (T = 10.4% and A = 1.5%, P = <0.0001), Bulleida (T = 0.36% and A = 0.09%, P = 0.02), Gemella (T = 1.46% and A = 0.19%, P = 0.03), Parvimonas (T = 3.14% and A = 0.86%, P = 0.03), Campylobacter (T = 0.15% and A = 0.008%, P = 0.047), and Streptococcus (T = 2.84% and A = 2.19%, P = 0.05) significantly over represented in Spanish tumors. Predicted metagenome functional content from 16S rRNA surveys showed that bacterial motility proteins and proteins involved in flagellar assembly were over represented in adjacent tissues of both cohorts, while pathways involved in fatty acid biosynthesis, the MAPK signaling pathway, and bacterial toxins were over represented in tumors. Our study suggests that microbiome compositional and functional dissimilarities by geographic location should be taken in consideration when approaching CRC therapeutic options.
Collapse
Affiliation(s)
- Imane Allali
- Department of Cell Biology and Physiology, and Microbiome Core Facility; University of North Carolina School of Medicine; Chapel Hill, NC, USA,Laboratory of Biochemistry & Immunology; Faculty of Sciences; University Mohammed V; Rabat, Morocco,Laboratory of Genetics and Biotechnology; Faculty of Sciences of Oujda; University Mohammed Premier; Oujda, Morocco
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias (IPLA-CSIC); Villaviciosa-Asturias, Spain
| | - Pablo Isidro Marron
- Instituto Universitario de Oncología del Principado de Asturias; Hospital Universitario Central de Asturias; Universidad de Oviedo; Asturias, Spain
| | - Aurora Astudillo
- Instituto Universitario de Oncología del Principado de Asturias; Hospital Universitario Central de Asturias; Universidad de Oviedo; Asturias, Spain
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center; Departments of Surgery and Pharmacology; University of North Carolina School of Medicine; Chapel Hill, NC, USA
| | - Hassan Ghazal
- Laboratory of Genetics and Biotechnology; Faculty of Sciences of Oujda; University Mohammed Premier; Oujda, Morocco,Polydisciplinary Faculty of Nador; University Mohammed Premier; Nador, Morocco
| | - Saaïd Amzazi
- Laboratory of Biochemistry & Immunology; Faculty of Sciences; University Mohammed V; Rabat, Morocco
| | - Temitope Keku
- Division of Gastroenterology & Hepatology; Department of Medicine; University of North Carolina School of Medicine; Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- Department of Cell Biology and Physiology, and Microbiome Core Facility; University of North Carolina School of Medicine; Chapel Hill, NC, USA,Correspondence to: M Andrea Azcarate-Peril
| |
Collapse
|
228
|
Abstract
A host's microbiota may increase, diminish, or have no effect at all on cancer susceptibility. Assigning causal roles in cancer to specific microbes and microbiotas, unraveling host-microbiota interactions with environmental factors in carcinogenesis, and exploiting such knowledge for cancer diagnosis and treatment are areas of intensive interest. This Review considers how microbes and the microbiota may amplify or mitigate carcinogenesis, responsiveness to cancer therapeutics, and cancer-associated complications.
Collapse
Affiliation(s)
- Wendy S Garrett
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
229
|
Abstract
Inflammation has long been suspected to play a major role in the pathogenesis of cancer. Only recently, however, have some mechanisms of its tumor promoting effects become known. Microbes, both commensal and pathogenic, are critical regulators of the host immune system and, ultimately, of inflammation. Consequently, microbes have the potential power to influence tumor progression as well, through a wide variety of routes, including chronic activation of inflammation, alteration of tumor microenvironment, induction of genotoxic responses, and metabolism. In this review, we will provide a general overview of commensal microbiota, inflammation, and cancer, as well as how microbes fit into this emerging field.
Collapse
|
230
|
Abstract
The trillions of bacteria that naturally reside in the human gut collectively constitute the complex system known the gut microbiome, a vital player for the host's homeostasis and health. However, there is mounting evidence that dysbiosis, a state of pathological imbalance in the gut microbiome is present in many disease states. In this review, we present recent insights concerning the gut microbiome's contribution to the development of colorectal adenomas and the subsequent progression to colorectal cancer (CRC). In the United States alone, CRC is the second leading cause of cancer deaths. As a result, there is a high interest in identifying risk factors for adenomas, which are intermediate precursors to CRC. Recent research on CRC and the microbiome suggest that modulation of the gut bacterial composition and structure may be useful in preventing adenomas and CRC. We highlight the known risk factors for colorectal adenomas and the potential mechanisms by which microbial dysbiosis may contribute to the etiology of CRC. We also underscore novel findings from recent studies on the gut microbiota and colorectal adenomas along with current knowledge gaps. Understanding the microbiome may provide promising new directions towards novel diagnostic tools, biomarkers, and therapeutic interventions for CRC.
Collapse
|
231
|
Wilson MM, Anderson DE, Bernstein HD. Analysis of the outer membrane proteome and secretome of Bacteroides fragilis reveals a multiplicity of secretion mechanisms. PLoS One 2015; 10:e0117732. [PMID: 25658944 PMCID: PMC4319957 DOI: 10.1371/journal.pone.0117732] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/31/2014] [Indexed: 01/28/2023] Open
Abstract
Bacteroides fragilis is a widely distributed member of the human gut microbiome and an opportunistic pathogen. Cell surface molecules produced by this organism likely play important roles in colonization, communication with other microbes, and pathogenicity, but the protein composition of the outer membrane (OM) and the mechanisms used to transport polypeptides into the extracellular space are poorly characterized. Here we used LC-MS/MS to analyze the OM proteome and secretome of B. fragilis NCTC 9343 grown under laboratory conditions. Of the 229 OM proteins that we identified, 108 are predicted to be lipoproteins, and 61 are predicted to be TonB-dependent transporters. Based on their proximity to genes encoding TonB-dependent transporters, many of the lipoprotein genes likely encode proteins involved in nutrient or small molecule uptake. Interestingly, protease accessibility and biotinylation experiments indicated that an unusually large fraction of the lipoproteins are cell-surface exposed. We also identified three proteins that are members of a novel family of autotransporters, multiple potential type I protein secretion systems, and proteins that appear to be components of a type VI secretion apparatus. The secretome consisted of lipoproteins and other proteins that might be substrates of the putative type I or type VI secretion systems. Our proteomic studies show that B. fragilis differs considerably from well-studied Gram-negative bacteria such as Escherichia coli in both the spectrum of OM proteins that it produces and the range of secretion strategies that it utilizes.
Collapse
Affiliation(s)
- Marlena M. Wilson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - D. Eric Anderson
- Advanced Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Harris D. Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
232
|
Sarkar A, Pazhani GP, Dharanidharan R, Ghosh A, Ramamurthy T. Detection of integron-associated gene cassettes and other antimicrobial resistance genes in enterotoxigenic Bacteroides fragilis. Anaerobe 2015; 33:18-24. [PMID: 25634362 DOI: 10.1016/j.anaerobe.2015.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/23/2015] [Accepted: 01/25/2015] [Indexed: 12/31/2022]
Abstract
Twenty seven Enterotoxigenic Bacteroides fragilis (ETBF) strains isolated from children in Kolkata, India, were tested for their antimicrobial resistance, presence of integrons and resistance encoding genes. Almost all the strains (>90%) were resistant to two or more antimicrobials. About 59-92% of the strains were resistant to ampicillin, amoxicillin, streptomycin, tetracycline, ciprofloxacin and norfloxacin. Most of these antimicrobial agents have been used in the treatment of diarrhea and other infectious diseases. In addition, about half a number of strains (48-55%) were resistant to clindamycin, cefotaxime, ceftazidime, ampicillin/sulbactam and trimethoprim/sulfamethoxazole. Moxifloxacin and metronidazole resistance ranged from 30 to 40%. All strains however, were found to be susceptible to chloramphenicol and imipenem. Class 1 integrase (intI1) was detected in seven and class 2 integrase (intI2) in one of the twenty seven ETBF strains. Resistance gene cassettes carried by these integrons had different alleles of dfr or aad genes. Beside these integron-borne genes, other genes encoding different antimicrobial resistance were also detected. Resistance genes such as cep(A) and tet(Q) were detected in most of the ETBF strains. To the best of our knowledge, this work constituted the first extensive report from India on the detection of integrons and antimicrobial resistance genes in ETBF.
Collapse
Affiliation(s)
- Anirban Sarkar
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | | | - Amit Ghosh
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
233
|
Varela-Calviño R, Cordero OJ. Immunology and Immunotherapy of Colorectal Cancer. CANCER IMMUNOLOGY 2015:217-236. [DOI: 10.1007/978-3-662-46410-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
234
|
Abstract
The cause and pathogenesis of colorectal cancer are still not completely understood. The development of microbiology in recent years has increasingly provided more evidence for the importance of infectious agents in colorectal cancer. This review highlights investigations of four agents in relation to colorectal cancer: Escherichia coli, Helicobacter pylori, Bacterooides fragilis, and Streptococcus bovis. The possible mechanisms of carcinogenesis for each of these agents and epidemiologic evidence are discussed.
Collapse
|
235
|
Shiryaev SA, Remacle AG, Cieplak P, Strongin AY. Peptide Sequence Region That is Essential for the Interactions of the Enterotoxigenic Bacteroides fragilis Metalloproteinase II with E-cadherin. JOURNAL OF PROTEOLYSIS 2014; 1:3-14. [PMID: 25964952 PMCID: PMC4425422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bacteroides fragilis is a valuable anaerobic commensal and an essential component of the gut microbiome in humans. The presence of a short pathogenicity island in the genome is predominantly associated with the enterotoxigenic strains of B. fragilis. Metallopro-teinase II (MPII) and fragilysin (FRA) are the structurally related enzymes encoded by the pathogenicity island in the enterotoxigenic strains. Accordingly, there is a significant overlap between the cleavage preferences of MPII and FRA. These proteinases, however, are counter-transcribed in the bacterial genome suggesting their distinct and specialized functions in the course of infection. It is well established that FRA directly cleaves E-cadherin, a key protein of the cell-to-cell adhesion junctions in the intestinal epithelium. Counterintuitively, MPII directly binds to, rather than cleaves, E-cadherin. Structural modeling suggested that a potential E-cadherin binding site involves the C-terminal -helical region of the MPII catalytic domain. The sequence of this region is different in MPII and FRA. Here, we employed substitution mutagenesis of this C-terminal -helical region to isolate the MPII mutants with the potentially inactivated E-cadherin binding site. Overall, as a result of our modeling, mutagenesis and binding studies, we determined that the C-terminal ten residue segment is essential for the binding of MPII, but not of FRA3, to E-cadherin, and that the resulting MPII•E-cadherin complex does not impair E-cadherin-dependent cell-to-cell contacts. It is possible to envision that the putative cleavage targets of MPII should be explored not only on the host cell surface but also in B. fragilis.
Collapse
Affiliation(s)
- Sergey A. Shiryaev
- To whom correspondence should be addressed: , tel: 858-795-5271, fax: 858-795-5225
| | - Albert G. Remacle
- To whom correspondence should be addressed: , tel: 858-795-5271, fax: 858-795-5225
| | | | | |
Collapse
|
236
|
Remacle AG, Shiryaev SA, Strongin AY. Distinct interactions with cellular E-cadherin of the two virulent metalloproteinases encoded by a Bacteroides fragilis pathogenicity island. PLoS One 2014; 9:e113896. [PMID: 25411788 PMCID: PMC4239093 DOI: 10.1371/journal.pone.0113896] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/02/2014] [Indexed: 12/14/2022] Open
Abstract
Bacteroides fragilis causes the majority of Gram-negative anaerobic infections in the humans. The presence of a short, 6-kb, pathogenicity island in the genome is linked to enterotoxigenic B. fragilis (ETBF). The role of the enterotoxin in B. fragilis virulence, however, remains to be determined, as the majority of clinical isolates lack ETBF genes and healthy individuals carry enterotoxin-positive B. fragilis. The island encodes secretory metalloproteinase II (MPII) and one of three homologous enterotoxigenic fragilysin isoenzymes (FRA; also termed B. fragilis toxin or BFT). The secretory metalloproteinases expressed from the genes on the B. fragilis pathogenicity island may have pathological importance within the gut, not linked to diarrhea. MPII and FRA are counter-transcribed in the bacterial genome, implying that regardless of their structural similarity and overlapping cleavage preferences these proteases perform distinct and highly specialized functions in the course of B. fragilis infection. The earlier data by us and others have demonstrated that FRA cleaves cellular E-cadherin, an important adherens junction protein, and weakens cell-to-cell contacts. Using E-cadherin-positive and E-cadherin-deficient cancer cells, and the immunostaining, direct cell binding and pull-down approaches, we, however, demonstrated that MPII via its catalytic domain efficiently binds, rather than cleaves, E-cadherin. According to our results, E-cadherin is an adherens junction cellular receptor, rather than a proteolytic target, of the B. fragilis secretory MPII enzyme. As a result of the combined FRA and MPII proteolysis, cell-to-cell contacts and adherens junctions are likely to weaken further.
Collapse
Affiliation(s)
- Albert G. Remacle
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Sergey A. Shiryaev
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Alex Y. Strongin
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| |
Collapse
|
237
|
Abstract
Colorectal cancer (CRC) presents a considerable disease burden worldwide. The human colon is also an anatomical location with the largest number of microbes. It is natural, therefore, to anticipate a role for microbes, particularly bacteria, in colorectal carcinogenesis. The increasing accessibility of microbial meta'omics is fueling a surge in our understanding of the role that microbes and the microbiota play in CRC. In this review, we will discuss recent insights into contributions of the microbiota to CRC and explore conceptual frameworks for evaluating the role of microbes in cancer causation. We also highlight new findings on candidate CRC-potentiating species and current knowledge gaps. Finally, we explore the roles of microbial metabolism as it relates to bile acids, xenobiotics, and diet in the etiology and therapeutics of CRC.
Collapse
Affiliation(s)
- Cynthia L Sears
- Department of Medicine, Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA; Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
238
|
Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, Ellis B, Carroll KC, Albesiano E, Wick EC, Platz EA, Pardoll DM, Sears CL. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2014; 60:208-15. [PMID: 25305284 DOI: 10.1093/cid/ciu787] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Enterotoxigenic Bacteroides fragilis (ETBF) produces the Bacteroides fragilis toxin, which has been associated with acute diarrheal disease, inflammatory bowel disease, and colorectal cancer (CRC). ETBF induces colon carcinogenesis in experimental models. Previous human studies have demonstrated frequent asymptomatic fecal colonization with ETBF, but no study has investigated mucosal colonization that is expected to impact colon carcinogenesis. METHODS We compared the presence of the bft gene in mucosal samples from colorectal neoplasia patients (cases, n = 49) to a control group undergoing outpatient colonoscopy for CRC screening or diagnostic workup (controls, n = 49). Single bacterial colonies isolated anaerobically from mucosal colon tissue were tested for the bft gene with touch-down polymerase chain reaction. RESULTS The mucosa of cases was significantly more often bft-positive on left (85.7%) and right (91.7%) tumor and/or paired normal tissues compared with left and right control biopsies (53.1%; P = .033 and 55.5%; P = .04, respectively). Detection of bft was concordant in most paired mucosal samples from individual cases or controls (75% cases; 67% controls). There was a trend toward increased bft positivity in mucosa from late- vs early-stage CRC patients (100% vs 72.7%, respectively; P = .093). In contrast to ETBF diarrheal disease where bft-1 detection dominates, bft-2 was the most frequent toxin isotype identified in both cases and controls, whereas multiple bft isotypes were detected more frequently in cases (P ≤ .02). CONCLUSIONS The bft gene is associated with colorectal neoplasia, especially in late-stage CRC. Our results suggest that mucosal bft exposure is common and may be a risk factor for developing CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Brandon Ellis
- Department of Pathology, Johns Hopkins University School of Medicine
| | - Karen C Carroll
- Department of Pathology, Johns Hopkins University School of Medicine
| | | | | | - Elizabeth A Platz
- Department of Oncology Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Drew M Pardoll
- Department of Medicine Department of Oncology Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cynthia L Sears
- Department of Medicine Department of Oncology Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
239
|
Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 2014; 12:661-72. [PMID: 25198138 DOI: 10.1038/nrmicro3344] [Citation(s) in RCA: 1928] [Impact Index Per Article: 175.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that the human intestinal microbiota contributes to the aetiology of colorectal cancer (CRC), not only via the pro-carcinogenic activities of specific pathogens but also via the influence of the wider microbial community, particularly its metabolome. Recent data have shown that the short-chain fatty acids acetate, propionate and butyrate function in the suppression of inflammation and cancer, whereas other microbial metabolites, such as secondary bile acids, promote carcinogenesis. In this Review, we discuss the relationship between diet, microbial metabolism and CRC and argue that the cumulative effects of microbial metabolites should be considered in order to better predict and prevent cancer progression.
Collapse
Affiliation(s)
- Petra Louis
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Georgina L Hold
- Gastrointestinal Research Group, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Harry J Flint
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| |
Collapse
|
240
|
Exploring the influence of the gut microbiota and probiotics on health: a symposium report. Br J Nutr 2014; 112 Suppl 1:S1-18. [PMID: 24953670 PMCID: PMC4077244 DOI: 10.1017/s0007114514001275] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present report describes the presentations delivered at the 7th International Yakult Symposium, ‘The Intestinal Microbiota and Probiotics: Exploiting Their Influence on Health’, in London on 22–23 April 2013. The following two themes associated with health risks were covered: (1) the impact of age and diet on the gut microbiota and (2) the gut microbiota's interaction with the host. The strong influence of the maternal gut microbiota on neonatal colonisation was reported, as well as rapid changes in the gut microbiome of older people who move from community living to residential care. The effects of dietary changes on gut metabolism were described and the potential influence of inter-individual microbiota differences was noted, in particular the presence/absence of keystone species involved in butyrate metabolism. Several speakers highlighted the association between certain metabolic disorders and imbalanced or less diverse microbiota. Data from metagenomic analyses and novel techniques (including an ex vivo human mucosa model) provided new insights into the microbiota's influence on coeliac, obesity-related and inflammatory diseases, as well as the potential of probiotics. Akkermansia muciniphila and Faecalibacterium prausnitzii were suggested as targets for intervention. Host–microbiota interactions were explored in the context of gut barrier function, pathogenic bacteria recognition, and the ability of the immune system to induce either tolerogenic or inflammatory responses. There was speculation that the gut microbiota should be considered a separate organ, and whether analysis of an individual's microbiota could be useful in identifying their disease risk and/or therapy; however, more research is needed into specific diseases, different population groups and microbial interventions including probiotics.
Collapse
|
241
|
Sears CL, Geis AL, Housseau F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest 2014; 124:4166-72. [PMID: 25105360 DOI: 10.1172/jci72334] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human body comprises fewer host cells than bacterial cells, most of which are obligate anaerobes residing in the gut. The symbiont Bacteroides fragilis constitutes a relatively small proportion (up to 1%-2%) of cultured fecal bacteria, but colonizes most humans. There are 2 classes of B. fragilis distinguished by their ability to secrete a zinc-dependent metalloprotease toxin, B. fragilis toxin (BFT). Strains that do not secrete BFT are nontoxigenic B. fragilis (NTBF), and those that do are called enterotoxigenic B. fragilis (ETBF). ETBF can induce clinical pathology, including inflammatory diarrhea, although asymptomatic colonization may be common. Intestinal inflammation is mediated by BFT, as yet the only known virulence factor of ETBF. Recent experimental evidence demonstrating that ETBF-driven colitis promotes colon tumorigenesis has generated interest in the potential contribution of ETBF to human colon carcinogenesis. Critical questions about the epidemiology of chronic, subclinical human colonization with ETBF and its impact on the biology of the colon need to be addressed.
Collapse
|
242
|
Robinson KM, Dunning Hotopp JC. Mobile elements and viral integrations prompt considerations for bacterial DNA integration as a novel carcinogen. Cancer Lett 2014; 352:137-44. [PMID: 24956175 DOI: 10.1016/j.canlet.2014.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 12/11/2022]
Abstract
Insertional mutagenesis has been repeatedly demonstrated in cancer genomes and has a role in oncogenesis. Mobile genetic elements can induce cancer development by random insertion into cancer related genes or by inducing translocations. L1s are typically implicated in cancers of an epithelial cell origin, while Alu elements have been implicated in leukemia as well as epithelial cell cancers. Likewise, viral infections have a significant role in cancer development predominantly through integration into the human genome and mutating or deregulating cancer related genes. Human papilloma virus is the best-known example of viral integrations contributing to carcinogenesis. However, hepatitis B virus, Epstein-Barr virus, and Merkel cell polyomavirus also integrate into the human genome and disrupt cancer related genes. Thus far, the role of microbes in cancer has primarily been attributed to mutations induced through chronic inflammation or toxins, as is the case with Helicobacter pylori and enterotoxigenic Bacteroides fragilis. We hypothesize that like mobile elements and viral DNA, bacterial and parasitic DNA may also integrate into the human somatic genome and be oncogenic. Until recently it was believed that bacterial DNA could not integrate into the human genome, but new evidence demonstrates that bacterial insertional mutagenesis may occur in cancer cells. Although this work does not show causation between bacterial insertions and cancer, it prompts more research in this area. Promising new sequencing technologies may reduce the risk of artifactual chimeric sequences, thus diminishing some of the challenges of identifying novel insertions in the somatic human genome.
Collapse
Affiliation(s)
- Kelly M Robinson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
243
|
Raisch J, Buc E, Bonnet M, Sauvanet P, Vazeille E, de Vallée A, Déchelotte P, Darcha C, Pezet D, Bonnet R, Bringer MA, Darfeuille-Michaud A. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J Gastroenterol 2014; 20:6560-6572. [PMID: 24914378 PMCID: PMC4047342 DOI: 10.3748/wjg.v20.i21.6560] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/10/2014] [Accepted: 03/08/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To provide further insight into the characterization of mucosa-associated Escherichia coli (E. coli) isolated from the colonic mucosa of cancer patients. METHODS Phylogroups and the presence of cyclomodulin-encoding genes of mucosa-associated E. coli from colon cancer and diverticulosis specimens were determined by PCR. Adhesion and invasion experiments were performed with I-407 intestinal epithelial cells using gentamicin protection assay. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) expression in T84 intestinal epithelial cells was measured by enzyme-linked immunosorbent assay and by Western Blot. Gut colonization, inflammation and pro-carcinogenic potential were assessed in a chronic infection model using CEABAC10 transgenic mice. Cell proliferation was analyzed by real-time mRNA quantification of PCNA and immunohistochemistry staining of Ki67. RESULTS Analysis of mucosa-associated E. coli from colon cancer and diverticulosis specimens showed that whatever the origin of the E. coli strains, 86% of cyclomodulin-positive E. coli belonged to B2 phylogroup and most harbored polyketide synthase (pks) island, which encodes colibactin, and/or cytotoxic necrotizing factor (cnf) genes. In vitro assays using I-407 intestinal epithelial cells revealed that mucosa-associated B2 E. coli strains were poorly adherent and invasive. However, mucosa-associated B2 E. coli similarly to Crohn's disease-associated E. coli are able to induce CEACAM6 expression in T84 intestinal epithelial cells. In addition, in vivo experiments using a chronic infection model of CEACAM6 expressing mice showed that B2 E. coli strain 11G5 isolated from colon cancer is able to highly persist in the gut, and to induce colon inflammation, epithelial damages and cell proliferation. CONCLUSION In conclusion, these data bring new insights into the ability of E. coli isolated from patients with colon cancer to establish persistent colonization, exacerbate inflammation and trigger carcinogenesis.
Collapse
|
244
|
Wick EC, Rabizadeh S, Albesiano E, Wu X, Wu S, Chan J, Rhee KJ, Ortega G, Huso DL, Pardoll D, Housseau F, Sears CL. Stat3 activation in murine colitis induced by enterotoxigenic Bacteroides fragilis. Inflamm Bowel Dis 2014; 20:821-34. [PMID: 24704822 PMCID: PMC4121853 DOI: 10.1097/mib.0000000000000019] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Enterotoxigenic Bacteroides fragilis (ETBF), a molecular subclass of the common human commensal, B. fragilis, has been associated with inflammatory bowel disease. ETBF colitis is characterized by the activation of Stat3 and a Th17 immune response in the colonic mucosa. This study was designed to investigate the time course and cellular distribution of Stat3 activation in ETBF-colonized mice. METHODS C57BL/6 wild-type, C57BL/6, or Rag-1 mice were inoculated with saline, nontoxigenic B. fragilis or ETBF. Histologic diagnosis and mucosal Stat activation (immunohistochemistry, Western blot, and/or electrophorectic mobility shift assay) were evaluated over time (6-24 h, 1-7 d, and 1-18 mo after inoculation). Mucosal permeability was evaluated at 16 hours, 1 day, and 3 days. Mucosal immune responses were evaluated at 1 week, and 12 and 18 months. RESULTS ETBF induced rapid-onset colitis that persisted for up to 1 year. Stat3 activation (pStat3) was noted in the mucosal immune cells within 16 hours, with colonic epithelial cell activation evident at 24 hours after inoculation. ETBF-induced increased mucosal permeability was first observed at 24 hours after inoculation, after which the initial immune cell pStat3 activation was noted. Immune cell pStat3 was present in the absence of epithelial pStat3 (C57BL/6). Epithelial pStat3 was present in the absence of T and B cells (Rag-1 mice). pStat3 persisted in the epithelial and immune cells for 1 year, characterized by isolated pStat3-positive cell clusters, with varying intensity distributed through the proximal and distal colon. Similarly, mucosal Th17 immune responses persisted for up to 1 year. Loss of fecal ETBF colonization was associated with the loss of mucosal pStat3 and Th17 immune responses. CONCLUSIONS ETBF rapidly induces immune cell pStat3, which is independent of epithelial pStat3. This occurs before ETBF-induced mucosal permeability, suggesting that ETBF, likely through B. fragilis toxin and its action on the colonic epithelial cell, triggers mucosal immune cell Stat3 activation. Peak mucosal Stat3 activation (immune and epithelial cells) occurs subsequently when other colonic bacteria may contribute to the ETBF-initiated immune response due to barrier dysfunction. ETBF induces long-lived, focal colonic Stat3 activation and Th17 immune responses dependent on the ongoing ETBF colonization. Further study is needed to evaluate the early mucosal signaling events, resulting in epithelial Stat3 activation and the sequelae of long-term colonic Stat3 activation.
Collapse
Affiliation(s)
- Elizabeth C. Wick
- Department of Surgery, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Shervin Rabizadeh
- Department of Pediatrics, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Emilia Albesiano
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - XinQun Wu
- Department of Medicine, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Shaoguang Wu
- Department of Medicine, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - June Chan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Ki-Jong Rhee
- Department of Medicine, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea
| | - Guillermo Ortega
- Department of Medicine, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - David L. Huso
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Drew Pardoll
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Franck Housseau
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Cynthia L. Sears
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
245
|
Abstract
Increasing knowledge about the gut microbiota composition together with a resurgence in attention to the impact of the host immune system on tumor development triggered our interest in exploring how the interplay of the microbiota and the immune system represents an emerging area of interest. Determining how the immune system may alter gut microbiota composition, or the converse, and whether these interactions increase or reduce cancer risk may be relevant to generate more effective colon cancer preventive strategies.
Collapse
Affiliation(s)
- Florencia McAllister
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Franck Housseau
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Cynthia L. Sears
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
246
|
Shiryaev SA, Aleshin AE, Muranaka N, Kukreja M, Routenberg DA, Remacle AG, Liddington RC, Cieplak P, Kozlov IA, Strongin AY. Structural and functional diversity of metalloproteinases encoded by the Bacteroides fragilis pathogenicity island. FEBS J 2014; 281:2487-502. [PMID: 24698179 DOI: 10.1111/febs.12804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 01/04/2023]
Abstract
Bacteroides fragilis causes the majority of anaerobic infections in humans. The presence of a pathogenicity island in the genome discriminates pathogenic and commensal B. fragilis strains. The island encodes metalloproteinase II (MPII), a potential virulence protein, and one of three homologous fragilysin isozymes (FRA; also termed B. fragilis toxin or BFT). Here, we report biochemical data on the structural-functional characteristics of the B. fragilis pathogenicity island proteases by reporting the crystal structure of MPII at 2.13 Å resolution, combined with detailed characterization of the cleavage preferences of MPII and FRA3 (as a representative of the FRA isoforms), identified using a high-throughput peptide cleavage assay with 18 583 substrate peptides. We suggest that the evolution of the MPII catalytic domain can be traced to human and archaebacterial proteinases, whereas the prodomain fold is a feature specific to MPII and FRA. We conclude that the catalytic domain of both MPII and FRA3 evolved differently relative to the prodomain, and that the prodomain evolved specifically to fit the B. fragilis pathogenicity. Overall, our data provide insights into the evolution of cleavage specificity and activation mechanisms in the virulent metalloproteinases.
Collapse
|
247
|
Wedlake L, Slack N, Andreyev HJN, Whelan K. Fiber in the treatment and maintenance of inflammatory bowel disease: a systematic review of randomized controlled trials. Inflamm Bowel Dis 2014; 20:576-86. [PMID: 24445775 DOI: 10.1097/01.mib.0000437984.92565.31] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dietary fiber may favorably influence fermentation, gastrointestinal inflammation, and disease progression in Crohn's disease, ulcerative colitis (UC), and pouchitis and offer an attractive therapeutic addition to pharmacological treatment. This systematic review appraised data from randomized controlled trials of fiber in the management of inflammatory bowel disease. METHODS The review followed Cochrane and PRISMA recommendations. Seven electronic databases were searched along with hand searching and contacting experts. Inclusion criteria were randomized controlled trials of the effects of fiber on clinical endpoints (primarily disease activity for treatment or maintenance) or physiological outcomes in patients with inflammatory bowel disease. RESULTS In total, 23 randomized controlled trials fulfilled the inclusion criteria (UC, 10; Crohn's disease, 12; and pouchitis, 1) recruiting 1296 patients. In UC, 3/10 studies reported fiber supplementation to benefit disease outcomes. In Crohn's disease, 0/12 studies and in pouchitis 1/1 study reported a benefit on disease activity. Despite this, a number of studies reported favorable intragroup effects on physiological outcomes including fecal butyrate, fecal calprotectin, inflammatory cytokines, microbiota, and gastrointestinal symptom indices. Meta-analysis was not possible. CONCLUSIONS There is limited weak evidence for the efficacy of fiber in improving disease outcomes in UC and pouchitis. The potential antiinflammatory role of fiber is intriguing and merits further investigation in adequately powered clinical trials. Excluding overt gastrointestinal obstruction, there was no evidence that fiber intake should be restricted in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Linda Wedlake
- *Department of Nutrition and Dietetics, The Royal Marsden NHS Foundation Trust, London, United Kingdom; †Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, United Kingdom; and ‡Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | | |
Collapse
|
248
|
Candela M, Turroni S, Biagi E, Carbonero F, Rampelli S, Fiorentini C, Brigidi P. Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World J Gastroenterol 2014; 20:908-922. [PMID: 24574765 PMCID: PMC3921544 DOI: 10.3748/wjg.v20.i4.908] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/26/2013] [Accepted: 12/13/2013] [Indexed: 02/06/2023] Open
Abstract
Structural changes in the gut microbial community have been shown to accompany the progressive development of colorectal cancer. In this review we discuss recent hypotheses on the mechanisms involved in the bacteria-mediated carcinogenesis, as well as the triggering factors favoring the shift of the gut microbiota from a mutualistic to a pro-carcinogenic configuration. The possible role of inflammation, bacterial toxins and toxic microbiota metabolites in colorectal cancer onset is specifically discussed. On the other hand, the strategic role of inflammation as the keystone factor in driving microbiota to become carcinogenic is suggested. As a common outcome of different environmental and endogenous triggers, such as diet, aging, pathogen infection or genetic predisposition, inflammation can compromise the microbiota-host mutualism, forcing the increase of pathobionts at the expense of health-promoting groups, and allowing the microbiota to acquire an overall pro-inflammatory configuration. Consolidating inflammation in the gut, and favoring the bloom of toxigenic bacterial drivers, these changes in the gut microbial ecosystem have been suggested as pivotal in promoting carcinogenesis. In this context, it will become of primary importance to implement dietary or probiotics-based interventions aimed at preserving the microbiota-host mutualism along aging, counteracting deviations that favor a pro-carcinogenic microbiota asset.
Collapse
|
249
|
Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013; 155:1451-63. [PMID: 24315484 PMCID: PMC3897394 DOI: 10.1016/j.cell.2013.11.024] [Citation(s) in RCA: 2316] [Impact Index Per Article: 193.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/03/2013] [Accepted: 11/18/2013] [Indexed: 02/07/2023]
Abstract
Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders.
Collapse
|
250
|
Determination of Antibiotic Sensitivity of Bacteroid fragilis Isolated from Patients and Healthy Individuals in Imam Reza Center of Medical Teaching and Treatment-Tabriz. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.7880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|