201
|
Wikström A, Romani Vestman N, Rakhimova O, Lazaro Gimeno D, Tsilingaridis G, Brundin M. Microbiological assessment of success and failure in pulp revitalization: a randomized clinical trial using calcium hydroxide and chlorhexidine gluconate in traumatized immature necrotic teeth. J Oral Microbiol 2024; 16:2343518. [PMID: 38665416 PMCID: PMC11044761 DOI: 10.1080/20002297.2024.2343518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Aim To compare differences in the disinfection efficacy of calcium hydroxide (CH) and chlorhexidine gluconate (CHD) dressings in pulp revitalization (PR) of traumatized immature necrotic teeth; to investigate the microflora in successful/failed PR and whether bacterial persistence influences the outcomes of PR. Methods Microbiological assessment of the average bacterial load (CFU/sample) and bacterial diversity (taxa/sample) was performed on 41 teeth at three timepoints (S2-before, S3-after debridement and S5- after root canal dressing). Results The primary microflora was more diverse in successful cases than in failed. Decreases in CFU/sample and taxa/sample occurred S2 - S3, though new increases occurred at S5 in the CHD subgroup (successful and failed) and CFU/sample in the CH subgroup (failed). At S5, the successful cases showed more bacterial decreases. No specific species was associated with the outcomes with no statistical differences between the disinfection efficacy. Conclusions There were no statistical differences in CH and CHD efficacy. At S5, microflora persisted in both successful and failed outcomes, but the abundance and diversity increased significantly only in the failed cases. The successful outcomes presented higher diversity and higher decreases of the primary microflora at S5 than the failed outcomes. The abundance and diversity increased significantly at S5 only in failed cases.
Collapse
Affiliation(s)
- Alina Wikström
- Division of Orthodontics and Paediatric Dentistry, Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Endodontics, Public Dental Health Services, Eastmaninstitutet, Stockholm, Sweden
- Centre of Paediatric Oral Health, Huddinge, Sweden
| | - Nelly Romani Vestman
- Department of Odontology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | | | - David Lazaro Gimeno
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Georgios Tsilingaridis
- Division of Orthodontics and Paediatric Dentistry, Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
- Centre of Paediatric Oral Health, Huddinge, Sweden
| | - Malin Brundin
- Department of Odontology, Umeå University, Umeå, Sweden
| |
Collapse
|
202
|
Bedoya-Correa CM, Betancur-Giraldo S, Franco J, Arango-Santander S. Probiotic Effect of Streptococcus dentisani on Oral Pathogens: An In Vitro Study. Pathogens 2024; 13:351. [PMID: 38787203 PMCID: PMC11123734 DOI: 10.3390/pathogens13050351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Probiotics, including Streptococcus dentisani, have been proposed as an alternative to re-establish the ecology of the oral cavity and inhibit the formation of pathogenic biofilms. The main objective of this work was to assess the probiotic ability of S. dentisani against Streptococcus mutans, Streptococcus mitis, and Candida albicans biofilms. The ability of the strains to form a monospecies biofilm and the probiotic potential of S. dentisani using the competition, exclusion, and displacement strategies were determined. All strains were moderate biofilm producers. The ability of S. dentisani to compete with and exclude S. mutans and S. mitis during biofilm formation was not significant. However, S. dentisani significantly reduced pathologic streptococcal biofilms using the displacement strategy. Also S. dentisani reduced the formation of the C. albicans biofilm mainly through competition and displacement. In vitro, S. dentisani exhibited probiotic potential to reduce the formation of potentially pathogenic biofilms. Further investigation is required to understand the biofilm-inhibiting mechanisms exhibited by this probiotic strain.
Collapse
Affiliation(s)
- Claudia María Bedoya-Correa
- GIOM Group, Faculty of Dentistry, Universidad Cooperativa de Colombia, Medellin 055421, Colombia; (J.F.); (S.A.-S.)
| | | | - John Franco
- GIOM Group, Faculty of Dentistry, Universidad Cooperativa de Colombia, Medellin 055421, Colombia; (J.F.); (S.A.-S.)
- Salud y Sostenibilidad Group, School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia
| | - Santiago Arango-Santander
- GIOM Group, Faculty of Dentistry, Universidad Cooperativa de Colombia, Medellin 055421, Colombia; (J.F.); (S.A.-S.)
| |
Collapse
|
203
|
Wood PL, Le A, Palazzolo DL. Comparative Lipidomics of Oral Commensal and Opportunistic Bacteria. Metabolites 2024; 14:240. [PMID: 38668368 PMCID: PMC11052126 DOI: 10.3390/metabo14040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The oral cavity contains a vast array of microbes that contribute to the balance between oral health and disease. In addition, oral bacteria can gain access to the circulation and contribute to other diseases and chronic conditions. There are a limited number of publications available regarding the comparative lipidomics of oral bacteria and fungi involved in the construction of oral biofilms, hence our decision to study the lipidomics of representative oral bacteria and a fungus. We performed high-resolution mass spectrometric analyses (<2.0 ppm mass error) of the lipidomes from five Gram-positive commensal bacteria: Streptococcus oralis, Streptococcus intermedius, Streptococcus mitis, Streptococcus sanguinis, and Streptococcus gordonii; five Gram-positive opportunistic bacteria: Streptococcus mutans, Staphylococcus epidermis, Streptococcus acidominimus, Actinomyces viscosus, and Nanosynbacter lyticus; seven Gram-negative opportunistic bacteria: Porphyromonas gingivalis. Prevotella brevis, Proteus vulgaris, Fusobacterium nucleatum, Veillonella parvula, Treponema denticola, and Alkermansia muciniphila; and one fungus: Candida albicans. Our mass spectrometric analytical platform allowed for a detailed evaluation of the many structural modifications made by microbes for the three major lipid scaffolds: glycerol, sphingosine and fatty acyls of hydroxy fatty acids (FAHFAs).
Collapse
Affiliation(s)
- Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA
| | - Annie Le
- Clinical Training Program, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA
| | - Dominic L. Palazzolo
- Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA;
| |
Collapse
|
204
|
Ju HM, Ahn YW, Ok SM, Jeong SH, Na HS, Chung J. Microbial Profiles in Oral Lichen Planus: Comparisons with Healthy Controls and Erosive vs. Non-Erosive Subtypes. Diagnostics (Basel) 2024; 14:828. [PMID: 38667474 PMCID: PMC11049134 DOI: 10.3390/diagnostics14080828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Recent studies have begun exploring the potential involvement of microbiota in the pathogenesis of oral lichen planus (OLP), yet comprehensive investigations remain limited. Hence, this study aimed to compare the microbial profiles in saliva samples obtained from patients with OLP against those from healthy controls (HC), along with a comparison between erosive (E) and non-erosive (NE) OLP patients. Saliva samples were collected from 60 OLP patients (E: n = 25, NE: n = 35) and 30 HC individuals. Analysis revealed no significant differences in alpha diversity, as assessed by the Chao1 and Shannon index, across the three groups. However, Bray-Curtis distance analysis indicated a significant disparity in microbiome composition distribution between HC and E-OLP, as well as HC and NE-OLP groups. The six most abundant phyla observed across the groups were Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Fusobacteria, and Saccharibacteria (TM7). Notably, OLP groups exhibited a higher prevalence of Bacteroidetes. Prevotella emerged as the predominant genus in the OLP groups, while Capnocytophaga showed a relatively higher prevalence in E-OLP compared to NE-OLP. This study's findings indicate a notable difference in microbiota composition between HC and patients with OLP. Additionally, differences in the microbiome were identified between the E-OLP and NE-OLP groups. The increase in the proportion of certain bacterial species in the oral microbiome suggests that they may exacerbate the inflammatory response and act as antigens for OLP.
Collapse
Affiliation(s)
- Hye-Min Ju
- Department of Oral Medicine, Dental and Life Science Institute, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan 50612, Republic of Korea; (H.-M.J.); (Y.-W.A.); (S.-M.O.); (S.-H.J.)
- Department of Oral Medicine, Dental Research Institute, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan 50612, Republic of Korea
| | - Yong-Woo Ahn
- Department of Oral Medicine, Dental and Life Science Institute, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan 50612, Republic of Korea; (H.-M.J.); (Y.-W.A.); (S.-M.O.); (S.-H.J.)
- Department of Oral Medicine, Dental Research Institute, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan 50612, Republic of Korea
| | - Soo-Min Ok
- Department of Oral Medicine, Dental and Life Science Institute, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan 50612, Republic of Korea; (H.-M.J.); (Y.-W.A.); (S.-M.O.); (S.-H.J.)
- Department of Oral Medicine, Dental Research Institute, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan 50612, Republic of Korea
| | - Sung-Hee Jeong
- Department of Oral Medicine, Dental and Life Science Institute, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan 50612, Republic of Korea; (H.-M.J.); (Y.-W.A.); (S.-M.O.); (S.-H.J.)
- Department of Oral Medicine, Dental Research Institute, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan 50612, Republic of Korea
| | - Hee-Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan 50612, Republic of Korea
- Dental Research Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan 50612, Republic of Korea
- Dental Research Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
205
|
Eriksen C, Boustedt K, Sonne SB, Dahlgren J, Kristiansen K, Twetman S, Brix S, Roswall J. Early life factors and oral microbial signatures define the risk of caries in a Swedish cohort of preschool children. Sci Rep 2024; 14:8463. [PMID: 38605085 PMCID: PMC11009336 DOI: 10.1038/s41598-024-59126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
The oral cavity harbors complex communities comprising bacteria, archaea, fungi, protozoa, and viruses. The oral microbiota is establish at birth and develops further during childhood, with early life factors such as birth mode, feeding practices, and oral hygiene, reported to influence this development and the susceptibility to caries. We here analyzed the oral bacterial composition in saliva of 260 Swedish children at two, three and five years of age using 16S rRNA gene profiling to examine its relation to environmental factors and caries development at five years of age. We were able to assign the salivary bacterial community in each child at each time point to one of seven distinct clusters. We observed an individual dynamic in the development of the oral microbiota related to early life factors, such as being first born, born by C-section, maternal perinatal antibiotics use, with a distinct transition between three and five years of age. Different bacterial signatures depending on age were related to increased caries risk, while Peptococcus consistently linked to reduced risk of caries development.
Collapse
Affiliation(s)
- Carsten Eriksen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Katarina Boustedt
- Department of Paediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Maxillofacial Unit, Halland Hospital, Halmstad, Sweden
| | - Si Brask Sonne
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jovanna Dahlgren
- Department of Paediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Queen Silvia Children's Hospital, Västra Götalandsregionen, Gothenburg, Sweden
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- BGI-Shenzhen, Shenzhen, 518083, China.
- Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, 266555, Shandong, China.
| | - Svante Twetman
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Josefine Roswall
- Department of Paediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Paediatrics, Halland Hospital, Halmstad, Sweden.
| |
Collapse
|
206
|
Lavoro A, Cultrera G, Gattuso G, Lombardo C, Falzone L, Saverio C, Libra M, Salmeri M. Role of Oral Microbiota Dysbiosis in the Development and Progression of Oral Lichen Planus. J Pers Med 2024; 14:386. [PMID: 38673013 PMCID: PMC11050998 DOI: 10.3390/jpm14040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Oral lichen planus (OLP) is a chronic inflammatory autoimmune disease of the oral cavity with malignant potential affecting 1.01% of the worldwide population. The clinical patterns of this oral disorder, characterized by relapses and remissions of the lesions, appear on buccal, lingual, gingival, and labial mucosa causing a significant reduction in the quality of life. Currently, there are no specific treatments for this disease, and the available therapies with topical and systemic corticosteroids only reduce symptoms. Although the etiopathogenesis of this pathological condition has not been completely understood yet, several exogenous and endogenous risk factors have been proposed over the years. The present review article summarized the underlying mechanisms of action involved in the onset of OLP and the most well-known triggering factors. According to the current data, oral microbiota dysbiosis could represent a potential diagnostic biomarker for OLP. However, further studies should be undertaken to validate their use in clinical practice, as well as to provide a better understanding of mechanisms of action and develop novel effective intervention strategies against OLP.
Collapse
Affiliation(s)
- Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.L.); (G.C.); (G.G.); (C.L.); (C.S.); (M.L.); (M.S.)
| | - Giovanni Cultrera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.L.); (G.C.); (G.G.); (C.L.); (C.S.); (M.L.); (M.S.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.L.); (G.C.); (G.G.); (C.L.); (C.S.); (M.L.); (M.S.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.L.); (G.C.); (G.G.); (C.L.); (C.S.); (M.L.); (M.S.)
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.L.); (G.C.); (G.G.); (C.L.); (C.S.); (M.L.); (M.S.)
| | - Candido Saverio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.L.); (G.C.); (G.G.); (C.L.); (C.S.); (M.L.); (M.S.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.L.); (G.C.); (G.G.); (C.L.); (C.S.); (M.L.); (M.S.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.L.); (G.C.); (G.G.); (C.L.); (C.S.); (M.L.); (M.S.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| |
Collapse
|
207
|
Verma A, Bhagchandani T, Rai A, Nikita, Sardarni UK, Bhavesh NS, Gulati S, Malik R, Tandon R. Short-Chain Fatty Acid (SCFA) as a Connecting Link between Microbiota and Gut-Lung Axis-A Potential Therapeutic Intervention to Improve Lung Health. ACS OMEGA 2024; 9:14648-14671. [PMID: 38585101 PMCID: PMC10993281 DOI: 10.1021/acsomega.3c05846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 04/09/2024]
Abstract
The microbiome is an integral part of the human gut, and it plays a crucial role in the development of the immune system and homeostasis. Apart from the gut microbiome, the airway microbial community also forms a distinct and crucial part of the human microbiota. Furthermore, several studies indicate the existence of communication between the gut microbiome and their metabolites with the lung airways, called "gut-lung axis". Perturbations in gut microbiota composition, termed dysbiosis, can have acute and chronic effects on the pathophysiology of lung diseases. Microbes and their metabolites in lung stimulate various innate immune pathways, which modulate the expression of the inflammatory genes in pulmonary leukocytes. For instance, gut microbiota-derived metabolites such as short-chain fatty acids can suppress lung inflammation through the activation of G protein-coupled receptors (free fatty acid receptors) and can also inhibit histone deacetylase, which in turn influences the severity of acute and chronic respiratory diseases. Thus, modulation of the gut microbiome composition through probiotic/prebiotic usage and fecal microbiota transplantation can lead to alterations in lung homeostasis and immunity. The resulting manipulation of immune cells function through microbiota and their key metabolites paves the way for the development of novel therapeutic strategies in improving the lung health of individuals affected with various lung diseases including SARS-CoV-2. This review will shed light upon the mechanistic aspect of immune system programming through gut and lung microbiota and exploration of the relationship between gut-lung microbiome and also highlight the therapeutic potential of gut microbiota-derived metabolites in the management of respiratory diseases.
Collapse
Affiliation(s)
- Anjali Verma
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Tannu Bhagchandani
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankita Rai
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Urvinder Kaur Sardarni
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Neel Sarovar Bhavesh
- Transcription
Regulation Group, International Centre for
Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Sameer Gulati
- Department
of Medicine, Lady Hardinge Medical College
(LHMC), New Delhi 110058, India
| | - Rupali Malik
- Department
of Medicine, Vardhman Mahavir Medical College
and Safdarjung Hospital, New Delhi 110029, India
| | - Ravi Tandon
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
208
|
Gund MP, Naim J, Rupf S, Gärtner B, Hannig M. Bacterial contamination potential of personal protective equipment itself in dental aerosol-producing treatments. Odontology 2024; 112:309-316. [PMID: 37702832 PMCID: PMC10925564 DOI: 10.1007/s10266-023-00848-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023]
Abstract
Personal protective equipment (PPE) has long been a high priority in dental aerosol-producing treatments. Since COVID-19 pandemic, its importance has increased yet again. While importance of PPE in preventing transmission and thus possible infection of pathogens is well known, contamination potential of PPE after treatment itself is less investigated. This review aims to give an overview of the current literature and contamination potential (viral, blood, bacterial) of components of protective equipment itself. The literature search was performed using the Medline database; furthermore, a hand search was conducted. Last search took place on 23 November 2022. Two categories of hygiene-related keywords were formed (category A: mask, face shield, goggles, eyewear, personal protective equipment; category B: contamination, aerosol). Each keyword from one category was combined with all keywords from the other one. In addition, the keyword "dental" was always added. First, a title and abstract screening was performed. Afterward, a full-text analysis was followed for the included studies. A total of 648 search hits were found in the Medline database. 47 were included after title and abstract screening. 22 studies were excluded after full-text analysis, 25 studies were included. The hand search resulted in 4 studies that were included. Bacterial contamination of PPE after treatment has been adequately studied, contamination with blood less. Microorganisms mainly originate from the oral and cutaneous flora; however, a transmission of potential pathogens like Staphylococcus aureus or Escherichia coli was also described. Studies showing transmission pathways starting from PPE and its various components are lacking. No measures have yet been described that fully protect the protective equipment from contamination. There is growing awareness that PPE itself can be a source of pathogen transmission, and thus possible infection. Therefore, not only wearing of protective clothing, but also conscious handling of it is crucial for transmission and possible infection prevention. However, studies showing transmission pathways starting from PPE and its various components are lacking. Several studies have investigated what measures can be taken to protect the protective equipment itself. So far, none of the methods evaluated can prevent contamination of PPE.
Collapse
Affiliation(s)
- Madline Priska Gund
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Clinic of Operative Dentistry, Saarland University Hospital, Saarland University, Kirrberger Str. 100, Building 73, 66421, Homburg, Saar, Germany.
| | - Jusef Naim
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Clinic of Operative Dentistry, Saarland University Hospital, Saarland University, Kirrberger Str. 100, Building 73, 66421, Homburg, Saar, Germany
| | - Stefan Rupf
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Clinic of Operative Dentistry, Saarland University Hospital, Saarland University, Kirrberger Str. 100, Building 73, 66421, Homburg, Saar, Germany
- Chair of Synoptic Dentistry, Homburg, Germany
| | - Barbara Gärtner
- Institute of Medical Microbiology and Hygiene, Department of Hospital Hygiene, Saarland University, Homburg, Germany
| | - Matthias Hannig
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Clinic of Operative Dentistry, Saarland University Hospital, Saarland University, Kirrberger Str. 100, Building 73, 66421, Homburg, Saar, Germany
| |
Collapse
|
209
|
Abdul-Azees PA, Wang H, Chun YHP, Pizzini J, Dean DD, Reveles KR, Marinkovic M, Chen XD, Salmon AB, Yeh CK. Changes in oral health during aging in a novel non-human primate model. GeroScience 2024; 46:1909-1926. [PMID: 37775702 PMCID: PMC10828187 DOI: 10.1007/s11357-023-00939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023] Open
Abstract
Oral health plays a significant role in the quality of life and overall well-being of the aging population. However, age-related changes in oral health are not well understood due to challenges with current animal models. In this study, we analyzed the oral health and microbiota of a short-lived non-human primate (i.e., marmoset), as a step towards establishing a surrogate for studying the changes that occur in oral health during human aging. We investigated the oral health of marmosets using cadaveric tissues in three different cohorts: young (aged ≤6 years), middle-aged, and older (>10 years) and assessed the gingival bacterial community using analyses of the V3-V4 variable region of 16S rRNA gene. The oldest cohort had a significantly higher number of dental caries, increased dental attrition/erosion, and deeper periodontal pocket depth scores. Oral microbiome analyses showed that older marmosets had a significantly greater abundance of Escherichia-Shigella and Propionibacterium, and a lower abundance of Agrobacterium/Rhizobium at the genus level. Alpha diversity of the microbiome between the three groups showed no significant differences; however, principal coordinate analysis and non-metric multidimensional scaling analysis revealed that samples from middle-aged and older marmosets were more closely clustered than the youngest cohort. In addition, linear discriminant analysis effect size (LEFSe) identified a higher abundance of Esherichia-Shigella as a potential pathogenic biomarker in older animals. Our findings confirm that changes in the oral microbiome are associated with a decline in oral health in aging marmosets. The current study suggests that the marmoset model recapitulates some of the changes in oral health associated with human aging and may provide opportunities for developing new preventive strategies or interventions which target these disease conditions.
Collapse
Affiliation(s)
- Parveez Ahamed Abdul-Azees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yong-Hee P Chun
- Department of Periodontics, Department of Cell Systems and Anatomy, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jason Pizzini
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kelly R Reveles
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Pharmacotherapy Division, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Adam B Salmon
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
210
|
Yang D, Xiang Y, Song F, Li H, Ji X. Phage therapy: A renewed approach against oral diseases caused by Enterococcus faecalis infections. Microb Pathog 2024; 189:106574. [PMID: 38354990 DOI: 10.1016/j.micpath.2024.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/16/2024]
Abstract
Antibiotics play an important role in the treatment of infectious diseases. Long-term overuse or misuse of antibiotics, however, has triggered the global crisis of antibiotic resistance, bringing challenges to treating clinical infection. Bacteriophages (phages) are the viruses infecting bacterial cells. Due to high host specificity, high bactericidal activity, and good biosafety, phages have been used as natural alternative antibacterial agents to fight against multiple drug-resistant bacteria. Enterococcus faecalis is the main species detected in secondary persistent infection caused by failure of root canal therapy. Due to strong tolerance and the formation of biofilm, E. faecalis can survive the changes in pH, temperature, and osmotic pressure in the mouth and thus is one of the main causes of periapical lesions. This paper summarizes the advantages of phage therapy, its applications in treating oral diseases caused by E. faecalis infections, and the challenges it faces. It offers a new perspective on phage therapy in oral diseases.
Collapse
Affiliation(s)
- Dan Yang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yingying Xiang
- Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Fei Song
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuling Ji
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
211
|
Selvaraj K, Venkatesan LS, Ganapathy D, Sathishkumar P. Treatment of dental biofilm-forming bacterium Streptococcus mutans using tannic acid-mediated gold nanoparticles. Microb Pathog 2024; 189:106568. [PMID: 38354988 DOI: 10.1016/j.micpath.2024.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Biosynthesized gold nanoparticles (AuNPs) are highly attracted as a biocompatible nanodrug to treat various diseased conditions in humans. In this study, phytochemical tannic acid-mediated AuNPs (TA-AuNPs) are successfully synthesized and tested for antibacterial and antibiofilm activity against dental biofilm-forming Streptococcus mutans biofilm. The synthesized TA-AuNPs are appeared as spherical in shape with an average size of 19 nm. The antibacterial potential of TA-AuNPs was evaluated using ZOI and MIC measurements; while, antibiofilm efficacy was measured by checking the eradication of preformed biofilm on the tooth model. The ZOI and MIC values for TA-AuNPs are 25 mm in diameter and 4 μg/mL, respectively. The MTT assay, CLSM, and SEM results demonstrate that the preformed S. mutans biofilm is completely eradicated at 4xMIC (16 μg/mL) of TA-AuNPs. Finally, the present study reveals that the synthesized TA-AuNPs might be a great therapeutic drug to treat dental biofilm-forming bacterium S. mutans.
Collapse
Affiliation(s)
- Kaviya Selvaraj
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Lekha Sree Venkatesan
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Dhanraj Ganapathy
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India.
| |
Collapse
|
212
|
Pignatelli P, Curia MC, Tenore G, Bondi D, Piattelli A, Romeo U. Oral bacteriome and oral potentially malignant disorders: A systematic review of the associations. Arch Oral Biol 2024; 160:105891. [PMID: 38295615 DOI: 10.1016/j.archoralbio.2024.105891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Periodontal bacteria can infiltrate the epithelium, activate signaling pathways, induce inflammation, and block natural killer and cytotoxic cells, all of which contribute to the vicious circle of carcinogenesis. It is unknown whether oral dysbiosis has an impact on the etiology or prognosis of OPMD. AIMS Within this paradigm, this work systemically investigated and reported on the composition of oral microbiota in patients with oral potentially malignant disorders (OPMD) versus healthy controls. METHODS Observational studies that reported next generation sequencing analysis of oral tissue or salivary samples and found at least three bacterial species were included. Identification, screening, citation analysis, and graphical synthesis were carried out. RESULTS For oral lichen planus (OLP), the bacteria with the highest abundance were Fusobacterium, Capnocytophaga, Gemella, Granulicatella, Porphyromonas, and Rothia; for oral leukoplakia (OLK), Prevotella. Streptococci levels in OLK and OLP were lower. The usage of alcohol or smoke had no effect on the outcomes. CONCLUSIONS An increase in periodontal pathogenic bacteria could promote the development and exacerbation of lichen. Effective bacteriome-based biomarkers are worthy of further investigation and application, as are bacteriome-based treatments.
Collapse
Affiliation(s)
- Pamela Pignatelli
- COMDINAV DUE, Nave Cavour, Italian Navy, Stazione Navale Mar Grande, Viale Ionio, 74122 Taranto, Italy.
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Gianluca Tenore
- Department of Oral Sciences and Maxillofacial Surgery, Sapienza University of Rome, Via Caserta, 00161 Rome, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences, 00131 Rome, Italy; Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
| | - Umberto Romeo
- Department of Oral Sciences and Maxillofacial Surgery, Sapienza University of Rome, Via Caserta, 00161 Rome, Italy
| |
Collapse
|
213
|
Yamaki K, Tamahara T, Washio J, Sato T, Shimizu R, Yamada S. Intracanal microbiome profiles of two apical periodontitis cases in one patient: A comparison with saliva and plaque profiles. Clin Exp Dent Res 2024; 10:e862. [PMID: 38433294 PMCID: PMC10909803 DOI: 10.1002/cre2.862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/26/2023] [Accepted: 02/04/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVES To determine the characteristics of the endodontic microbiome. MATERIAL AND METHODS Saliva, plaque, and infected root canal wall dentin of two teeth suffering from apical periodontitis were harvested from a 58-year-old man. Bacterial DNA was extracted from each sample, and 16S rRNA gene analysis targeting the V3-V4 region was conducted on the Illumina MiSeq platform using QIIME2. The functional potential of the microbiomes was inferred using PICRUSt2. RESULTS The four microbiomes were different in structure and membership, yet the nine most abundant metabolic pathways were common among them. The two endodontic microbiomes were more anaerobic, rich in Firmicutes, and scarce in Actinobacteriota and Proteobacteria, compared with saliva and plaque microbiomes. Their profiles were dissimilar despite their clinical and radiographic similarities. CONCLUSIONS The endodontic microbiomes were anaerobic, rich in Firmicutes, scarce in Actinobacteriota and Proteobacteria, and considerably varied within an individual.
Collapse
Affiliation(s)
- Keiko Yamaki
- Division of Periodontology and Endodontology, Graduate School of DentistryTohoku UniversitySendaiJapan
| | - Toru Tamahara
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Graduate School of DentistryTohoku UniversitySendaiJapan
| | - Takuichi Sato
- Division of Clinical Chemistry, Graduate School of Health SciencesNiigata UniversityNiigataJapan
| | - Ritsuko Shimizu
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
- Department of Molecular Hematology, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Satoru Yamada
- Division of Periodontology and Endodontology, Graduate School of DentistryTohoku UniversitySendaiJapan
| |
Collapse
|
214
|
de Palma TH, Powers C, McPartland MJ, Welch JM, Ramsey M. Essential genes for Haemophilus parainfluenzae survival and biofilm growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587483. [PMID: 38585970 PMCID: PMC10996682 DOI: 10.1101/2024.03.31.587483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Haemophilus parainfluenzae ( Hp ) is a Gram-negative, pleomorphic rod, highly prevalent and abundant as a commensal in the human oral cavity, and an infrequent extraoral opportunistic pathogen. Hp occupies multiple niches in the oral cavity, including the tongue dorsum, keratinized gingiva, and the supragingival plaque biofilm. As a member of the HACEK group, Hp is also known to cause infective endocarditis. Additionally, case reports have identified Hp as the causative agent of meningitis, septic arthritis, chronic osteomyelitis, septicemia, and a variety of other infectious diseases. Little is known about how Hp interacts with its neighbors in the healthy biofilm nor about its mechanisms of pathogenesis as an extraoral opportunistic pathogen. To address these unknowns, we identified the essential genomes of two Hp strains and the conditionally essential genes for their growth in in vitro biofilms aerobically and anaerobically. Using transposon insertion sequencing (TnSeq) with a highly saturated mariner transposon library in two strains, the ATCC33392 type-strain ( Hp 392) and a commensal oral isolate EL1 ( Hp EL1), we show that the essential genome of Hp 392 and Hp EL1 is composed of 395 and 384 genes, respectively. The core essential genome, consisting of 341 essential genes conserved between both strains, was composed of genes associated with genetic information processing, carbohydrate, protein, and energy metabolism. We also identified conditionally essential genes for aerobic and anaerobic biofilm growth, which were associated with carbohydrate and energy metabolism in both strains of Hp . Additionally, RNAseq analysis determined that most genes upregulated during anaerobic growth are not essential for Hp 392 anaerobic biofilm survival. The completion of this library and analysis under these conditions gives us a foundational insight into the basic biology of H. parainfluenzae in differing oxygen conditions, similar to its in vivo oral habitat. Further, the creation of this library presents a valuable tool for further investigation into conditionally essential genes for an organism that lives in close contact with many microbial species in the human oral habitat.
Collapse
|
215
|
Kibria MK, Ali MA, Yaseen M, Khan IA, Bhat MA, Islam MA, Mahumud RA, Mollah MNH. Discovery of Bacterial Key Genes from 16S rRNA-Seq Profiles That Are Associated with the Complications of SARS-CoV-2 Infections and Provide Therapeutic Indications. Pharmaceuticals (Basel) 2024; 17:432. [PMID: 38675393 PMCID: PMC11053588 DOI: 10.3390/ph17040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
SARS-CoV-2 infections, commonly referred to as COVID-19, remain a critical risk to both human life and global economies. Particularly, COVID-19 patients with weak immunity may suffer from different complications due to the bacterial co-infections/super-infections/secondary infections. Therefore, different variants of alternative antibacterial therapeutic agents are required to inhibit those infection-causing drug-resistant pathogenic bacteria. This study attempted to explore these bacterial pathogens and their inhibitors by using integrated statistical and bioinformatics approaches. By analyzing bacterial 16S rRNA sequence profiles, at first, we detected five bacterial genera and taxa (Bacteroides, Parabacteroides, Prevotella Clostridium, Atopobium, and Peptostreptococcus) based on differentially abundant bacteria between SARS-CoV-2 infection and control samples that are significantly enriched in 23 metabolic pathways. A total of 183 bacterial genes were found in the enriched pathways. Then, the top-ranked 10 bacterial genes (accB, ftsB, glyQ, hldD, lpxC, lptD, mlaA, ppsA, ppc, and tamB) were selected as the pathogenic bacterial key genes (bKGs) by their protein-protein interaction (PPI) network analysis. Then, we detected bKG-guided top-ranked eight drug molecules (Bemcentinib, Ledipasvir, Velpatasvir, Tirilazad, Acetyldigitoxin, Entreatinib, Digitoxin, and Elbasvir) by molecular docking. Finally, the binding stability of the top-ranked three drug molecules (Bemcentinib, Ledipasvir, and Velpatasvir) against three receptors (hldD, mlaA, and lptD) was investigated by computing their binding free energies with molecular dynamic (MD) simulation-based MM-PBSA techniques, respectively, and was found to be stable. Therefore, the findings of this study could be useful resources for developing a proper treatment plan against bacterial co-/super-/secondary-infection in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Md. Kaderi Kibria
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.K.K.); (M.A.A.); (M.A.I.)
- Department of Statistics, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Ahad Ali
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.K.K.); (M.A.A.); (M.A.I.)
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Main Campus, Charbagh 19130, Pakistan;
| | - Imran Ahmad Khan
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan;
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11421, Saudi Arabia;
| | - Md. Ariful Islam
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.K.K.); (M.A.A.); (M.A.I.)
| | - Rashidul Alam Mahumud
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Md. Nurul Haque Mollah
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.K.K.); (M.A.A.); (M.A.I.)
| |
Collapse
|
216
|
Olczak T, Śmiga M, Antonyuk SV, Smalley JW. Hemophore-like proteins of the HmuY family in the oral and gut microbiome: unraveling the mystery of their evolution. Microbiol Mol Biol Rev 2024; 88:e0013123. [PMID: 38305743 PMCID: PMC10966948 DOI: 10.1128/mmbr.00131-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
SUMMARY Heme (iron protoporphyrin IX, FePPIX) is the main source of iron and PPIX for host-associated pathogenic bacteria, including members of the Bacteroidota (formerly Bacteroidetes) phylum. Porphyromonas gingivalis, a keystone oral pathogen, uses a unique heme uptake (Hmu) system, comprising a hemophore-like protein, designated as the first member of the novel HmuY family. Compared to classical, secreted hemophores utilized by Gram-negative bacteria or near-iron transporter domain-based hemophores utilized by Gram-positive bacteria, the HmuY family comprises structurally similar proteins that have undergone diversification during evolution. The best characterized are P. gingivalis HmuY and its homologs from Tannerella forsythia (Tfo), Prevotella intermedia (PinO and PinA), Bacteroides vulgatus (Bvu), and Bacteroides fragilis (BfrA, BfrB, and BfrC). In contrast to the two histidine residues coordinating heme iron in P. gingivalis HmuY, Tfo, PinO, PinA, Bvu, and BfrA preferentially use two methionine residues. Interestingly, BfrB, despite conserved methionine residue, binds the PPIX ring without iron coordination. BfrC binds neither heme nor PPIX in keeping with the lack of conserved histidine or methionine residues used by other members of the HmuY family. HmuY competes for heme binding and heme sequestration from host hemoproteins with other members of the HmuY family to increase P. gingivalis competitiveness. The participation of HmuY in the host immune response confirms its relevance in relation to the survival of P. gingivalis and its ability to induce dysbiosis not only in the oral microbiome but also in the gut microbiome or other host niches, leading to local injuries and involvement in comorbidities.
Collapse
Affiliation(s)
- Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, the University of Liverpool, Liverpool, United Kingdom
| | - John W. Smalley
- Institute of Life Course and Medical Sciences, School of Dentistry, the University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
217
|
Manzoor M, Leskelä J, Pietiäinen M, Martinez-Majander N, Könönen E, Niiranen T, Lahti L, Sinisalo J, Putaala J, Pussinen PJ, Paju S. Shotgun metagenomic analysis of the oral microbiome in gingivitis: a nested case-control study. J Oral Microbiol 2024; 16:2330867. [PMID: 38528961 PMCID: PMC10962305 DOI: 10.1080/20002297.2024.2330867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
Background Gingivitis, i.e. inflammation of the gums, is often induced by dentalplaque. However, its exact link to the oral microbiota remains unclear. Methods In a case-control study involving 120 participants, comprising 60 cases and 60 controls (mean age (SD) 36.6 (7.6) years; 50% males), nested within a prospective multicentre cohort study, we examined theoral microbiome composition of gingivitis patients and their controlsusing shotgun metagenomic sequencing of saliva samples. Participants underwent clinical and radiographic oral health examinations, including bleeding on probing (BOP), at six tooth sites. BOP ≥33%was considered 'generalized gingivitis/initial periodontitis'(GG/IP), and BOP <33% as 'healthy and localized gingivitis'(H/LG). Functional potential was inferred using HUMANn3. Results GG/IP exhibited an increase in the abundance of Actinomyces, Porphyromonas, Aggregatibacter, Corynebacterium, Olsenella, and Treponema, whereas H/LG exhibited an increased abundance of Candidatus Nanosynbacter. Nineteen bacterial species and fourmicrobial functional profiles, including L-methionine, glycogen, andinosine-5'-phosphate biosynthesis, were associated with GG/IP. Constructing models with multiple markers resulted in a strong predictive value for GG/IP, with an area under the curve (ROC) of 0.907 (95% CI: 0.848-0.966). Conclusion We observed distinct differences in the oral microbiome between the GG/IP and H/LG groups, indicating similar yet unique microbial profiles and emphasizing their potential role in progression of periodontal diseases.
Collapse
Affiliation(s)
- Muhammed Manzoor
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Jaakko Leskelä
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Milla Pietiäinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
- Industrial Biotechnology and Food Protein Production, VTT Technical Research Centre of Finland, Espoo, Finland
| | | | - Eija Könönen
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Internal Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Helsinki University Central Hospital, and Helsinki University, Helsinki, Finland
| | - Jukka Putaala
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pirkko J. Pussinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
- School of Medicine, Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
| | - Susanna Paju
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| |
Collapse
|
218
|
Tang Y, Nie H, Zhang Y, Wei Y, Huang Y, Zhuang Y, Yang W, Zhu Y. Effects of Sjogren's syndrome and high sugar diet on oral microbiome in patients with rampant caries: a clinical study. BMC Oral Health 2024; 24:361. [PMID: 38515087 PMCID: PMC10956276 DOI: 10.1186/s12903-024-04150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
OBJECTIVE The purpose of this study was to assess the composition of the oral microbial flora of adults with rampant caries in China to provide guidance for treatment. PATIENTS AND METHODS Sixty human salivary and supragingival plaque samples were collected. They were characterized into four groups: patients with rampant caries with Sjogren's syndrome (RC-SS) or high-sugar diet (RC-HD), common dental caries (DC), and healthy individuals (HP). The 16S rRNA V3-V4 region of the bacterial DNA was detected by Illumina sequencing. PCoA based on OTU with Bray-Curtis algorithm, the abundance of each level, LEfSe analysis, network analysis, and PICRUSt analysis were carried out between the four groups and two sample types. Clinical and demographic data were compared using analysis of variance (ANOVA) or the nonparametric Kruskal-Wallis rank-sum test, depending on the normality of the data, using GraphPad Prism 8 (P < 0.05). RESULTS OTU principal component analysis revealed a significant difference between healthy individuals and those with RC-SS. In the saliva of patients with rampant caries, the relative abundance of Firmicutes increased significantly at the phylum level. Further, Streptocpccus, Veillonella, Prevotella, and Dialister increased, while Neisseria and Haemophilus decreased at the genus level. Veillonella increased in the plaque samples of patients with rampant caries. CONCLUSION Both salivary and dental plaque composition were significantly different between healthy individuals and patients with rampant caries. This study provides a microbiological basis for exploring the etiology of rampant caries. CLINICAL RELEVANCE This study provides basic information on the flora of the oral cavity in adults with rampant caries in China. These findings could serve as a reference for the treatment of this disease.
Collapse
Affiliation(s)
- Yifei Tang
- Department of Endodontic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Hua Nie
- Department of Endodontic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yu Zhang
- Department of Endodontic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yuan Wei
- Department of Endodontic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yequan Huang
- Department of Endodontic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yuan Zhuang
- Department of Endodontic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Weidong Yang
- Department of Endodontic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Yanan Zhu
- Department of Endodontic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
219
|
Augimeri G, Caparello G, Caputo I, Reda R, Testarelli L, Bonofiglio D. Mediterranean diet: a potential player in the link between oral microbiome and oral diseases. J Oral Microbiol 2024; 16:2329474. [PMID: 38510981 PMCID: PMC10953787 DOI: 10.1080/20002297.2024.2329474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Background The oral microbiome is a complex and dynamic assemblage of microorganisms that colonize different sites of the oral cavity maintaining both oral and systemic health. Therefore, when its composition is altered, oral diseases occur. Among oral inflammatory pathologies, periodontal diseases affect the tissues surrounding the teeth, representing the main cause of tooth loss and one of the most important threats to the oral health. Lifestyle and eating habits influence the composition of the human oral microbiota and the development and progression of oral diseases. In this context, the Mediterranean Diet (MD) model, comprising both healthy dietary choices and lifestyle, is linked to the prevention of several metabolic and chronic-degenerative pathological processes, including oral diseases. Indeed, the MD is a plant-based diet, enriched of anti-inflammatory and antioxidant nutrients, which may induce beneficial effects against dental caries and periodontal diseases. Aim This review summarizes the role of the oral microbiome in the development of the oral diseases and the potential of MD in modulating the oral microbiome leading to implications for oral health. Conclusions The data collected highlight the need to promote the MD pattern along with the correct hygiene habits to prevent the development of oral diseases.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Giovanna Caparello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Ippolito Caputo
- Department of Oral and Maxillo Facial Sciences, Sapienza University of Rome, Rome, Italy
| | - Rodolfo Reda
- Department of Oral and Maxillo Facial Sciences, Sapienza University of Rome, Rome, Italy
| | - Luca Testarelli
- Department of Oral and Maxillo Facial Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
220
|
Sharma S, Jahanzaib M, Bakht A, Kim MK, Lee H, Park D. The composition of the bacterial communities collected from the PM 10 samples inside the Seoul subway and railway station. Sci Rep 2024; 14:6478. [PMID: 38499557 PMCID: PMC10948816 DOI: 10.1038/s41598-023-49848-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/12/2023] [Indexed: 03/20/2024] Open
Abstract
Health implications of indoor air quality (IAQ) have drawn more attention since the COVID epidemic. There are many different kinds of studies done on how IAQ affects people's well-being. There hasn't been much research that looks at the microbiological composition of the aerosol in subway transit systems. In this work, for the first time, we examined the aerosol bacterial abundance, diversity, and composition in the microbiome of the Seoul subway and train stations using DNA isolated from the PM10 samples from each station (three subway and two KTX stations). The average PM10 mass concentration collected on the respective platform was 41.862 µg/m3, with the highest average value of 45.95 µg/m3 and the lowest of 39.25 µg/m3. The bacterial microbiomes mainly constituted bacterial species of soil and environmental origin (e.g., Acinetobacter, Brevundimonas, Lysinibacillus, Clostridiodes) with fewer from human sources (Flaviflexus, Staphylococcus). This study highlights the relationship between microbiome diversity and PM10 mass concentration contributed by outdoor air and commuters in South Korea's subway and train stations. This study gives insights into the microbiome diversity, the source, and the susceptibility of public transports in disease spreading.
Collapse
Affiliation(s)
- Shambhavi Sharma
- Department of Transportation Environmental Research, Korea Railroad Research Institute (KRRI), Uiwang, 16105, Republic of Korea
- Transportation System Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Muhammad Jahanzaib
- Department of Transportation Environmental Research, Korea Railroad Research Institute (KRRI), Uiwang, 16105, Republic of Korea
- Transportation System Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Ahtesham Bakht
- Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea
| | - Min-Kyung Kim
- Department of Transportation Environmental Research, Korea Railroad Research Institute (KRRI), Uiwang, 16105, Republic of Korea
| | - Hyunsoo Lee
- Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea
| | - Duckshin Park
- Department of Transportation Environmental Research, Korea Railroad Research Institute (KRRI), Uiwang, 16105, Republic of Korea.
- Transportation System Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
221
|
Sikdar R, Beauclaire MV, Lima BP, Herzberg MC, Elias MH. N-acyl homoserine lactone signaling modulates bacterial community associated with human dental plaque. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585217. [PMID: 38559107 PMCID: PMC10980036 DOI: 10.1101/2024.03.15.585217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
N-acyl homoserine lactones (AHLs) are small diffusible signaling molecules that mediate a cell density-dependent bacterial communication system known as quorum sensing (QS). AHL-mediated QS regulates gene expression to control many critical bacterial behaviors including biofilm formation, pathogenicity, and antimicrobial resistance. Dental plaque is a complex multispecies oral biofilm formed by successive colonization of the tooth surface by groups of commensal, symbiotic, and pathogenic bacteria, which can contribute to tooth decay and periodontal diseases. While the existence and roles of AHL-mediated QS in oral microbiota have been debated, recent evidence indicates that AHLs play significant roles in oral biofilm development and community dysbiosis. The underlying mechanisms, however, remain poorly characterized. To better understand the importance of AHL signaling in dental plaque formation, we manipulated AHL signaling by adding AHL lactonases or exogenous AHL signaling molecules. We find that AHLs can be detected in dental plaque grown under 5% CO2 conditions, but not when grown under anaerobic conditions, and yet anaerobic cultures are still responsive to AHLs. QS signal disruption using lactonases leads to changes in microbial population structures in both planktonic and biofilm states, changes that are dependent on the substrate preference of the used lactonase but mainly result in the increase in the abundance of commensal and pioneer colonizer species. Remarkably, the opposite manipulation, that is the addition of exogenous AHLs increases the abundance of late colonizer bacterial species. Hence, this work highlights the importance of AHL-mediated QS in dental plaque communities, its potential different roles in anaerobic and aerobic parts of dental plaque, and underscores the potential of QS interference in the control of periodontal diseases.
Collapse
Affiliation(s)
- Rakesh Sikdar
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Mai V. Beauclaire
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Bruno P. Lima
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mikael H. Elias
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
222
|
Tao X, Zhang J, Meng Q, Chu J, Zhao R, Liu Y, Dong Y, Xu H, Tian T, Cui J, Zhang L, Chu M. The potential health effects associated with electronic-cigarette. ENVIRONMENTAL RESEARCH 2024; 245:118056. [PMID: 38157958 DOI: 10.1016/j.envres.2023.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
A good old gateway theory that electronic-cigarettes (e-cigarettes) are widely recognized as safer tobacco substitutes. In actuality, demographics also show that vaping cannibalizes smoking, the best explanation of the data is the "common liability". However, the utilization of e-cigarette products remains a controversial topic at present. Currently, there has been a widespread and substantial growth in e-cigarette use worldwide owing to their endless new flavors and customizable characteristics. Furthermore, e-cigarette has grown widespread among smokers as well as non-smokers, including adolescents and young adults. And some studies have shown that e-cigarette users are at greater risk to start using combustible cigarettes while e-cigarettes use was also observed the potential benefits to people who want to quit smoking or not. Although it is true that e-cigarettes generally contain fewer toxic substances than combustible cigarettes, this does not mean that the chemical composition in e-cigarettes aerosols poses absolutely no risks. While concerns about toxic substances in e-cigarettes and their widespread use in the population are reasonable, it is also crucial to consider that e-cigarettes have been associated with the potential for promoting smoking cessation and the clinically relevant improvements in users with smoking-related pathologies. Meanwhile, there is still short of understanding of the health impacts associated with e-cigarette use. Therefore, in this review, we discussed the health impacts of e-cigarette exposure on oral, nasal, pulmonary, cardiovascular systems and brain. We aspire for this review to change people's previous perceptions of e-cigarettes and provide them with a more balanced perspective. Additionally, we suggest appropriate adjustments on regulation and policy for e-cigarette to gain greater public health benefits.
Collapse
Affiliation(s)
- Xiaobo Tao
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiale Zhang
- The Second People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Qianyao Meng
- Department of Global Health and Population, School of Public Health, Harvard University, Boston, USA
| | - Junfeng Chu
- Department of Oncology, Jiangdu People's Hospital of Yangzhou, Yangzhou, Jiangsu, China
| | - Rongrong Zhao
- Department of Oncology, Jiangdu People's Hospital of Yangzhou, Yangzhou, Jiangsu, China
| | - Yiran Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yang Dong
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiahua Cui
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Lei Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
223
|
Chen H, Jiang X, Zhu F, Yang R, Yu X, Zhou X, Tang N. Characteristics of the oral and gastric microbiome in patients with early-stage intramucosal esophageal squamous cell carcinoma. BMC Microbiol 2024; 24:88. [PMID: 38491387 PMCID: PMC10941485 DOI: 10.1186/s12866-024-03233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Oral microbiome dysbacteriosis has been reported to be associated with the pathogenesis of advanced esophageal cancer. However, few studies investigated the potential role of oral and gastric microbiota in early-stage intramucosal esophageal squamous carcinoma (EIESC). METHOD A total of 104 samples were collected from 31 patients with EIESC and 21 healthy controls. The compositions of oral and gastric microbiota were analyzed using 16 S rRNA V3-V4 amplicon sequencing. Linear discriminant analysis effect size (LEfSe) analysis was performed to assess taxonomic differences between groups. The correlation between oral microbiota and clinicopathological factors was evaluated using Spearman correlation analysis. Additionally, co-occurrence networks were established and random forest models were utilized to identify significant microbial biomarkers for distinguishing between the EIESC and control groups. RESULTS A total of 292 oral genera and 223 species were identified in both EIESC and healthy controls. Six oral genera were remarkably enriched in EIESC groups, including the genera Porphyromonas, Shigella, Subdoligranulum, Leptotrichia, Paludibacter, and Odoribacter. LEfSe analysis identified genera Porphyromonas and Leptotrichia with LDA scores > 3. In the random forest model, Porphyromonas endodontalis ranked the top microbial biomarker to differentiate EIESC from controls. The elimination rate of Porphyromonas endodontalis from the oral cavity to the stomach was also dramatically decreased in the EIESC group than controls. In the microbial co-occurrence network, Porphyromonas endodontalis was positively correlated with Prevotella tannerae and Prevotella intermedia and was negatively correlated with Veillonella dispar. CONCLUSION Our study potentially indicates that the dysbacteriosis of both the oral and gastric microbiome was associated with EIESC. Larger scale studies and experimental animal models are urgently needed to confirm the possible role of microbial dysbacteriosis in the pathogenesis of EIESC. (Chinese Clinical Trial Registry Center, ChiCTR2200063464, Registered 07 September 2022, https://www.chictr.org.cn/showproj.html?proj=178563).
Collapse
Affiliation(s)
- Han Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xingzhou Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Fengyi Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Ruoyun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xin Yu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xiaoying Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, China.
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China.
| | - Nana Tang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, China.
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
224
|
Podar NA, Carrell AA, Cassidy KA, Klingeman DM, Yang Z, Stahler EA, Smith DW, Stahler DR, Podar M. From wolves to humans: oral microbiome resistance to transfer across mammalian hosts. mBio 2024; 15:e0334223. [PMID: 38299854 PMCID: PMC10936156 DOI: 10.1128/mbio.03342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
The mammalian mouth is colonized by complex microbial communities, adapted to specific niches, and in homeostasis with the host. Individual microbes interact metabolically and rely primarily on nutrients provided by the host, with which they have potentially co-evolved along the mammalian lineages. The oral environment is similar across mammals, but the diversity, specificity, and evolution of community structure in related or interacting mammals are little understood. Here, we compared the oral microbiomes of dogs with those of wild wolves and humans. In dogs, we found an increased microbial diversity relative to wolves, possibly related to the transition to omnivorous nutrition following domestication. This includes a larger diversity of Patescibacteria than previously reported in any other oral microbiota. The oral microbes are most distinct at bacterial species or strain levels, with few if any shared between humans and canids, while the close evolutionary relationship between wolves and dogs is reflected by numerous shared taxa. More taxa are shared at higher taxonomic levels including with humans, supporting their more ancestral common mammalian colonization followed by diversification. Phylogenies of selected oral bacterial lineages do not support stable human-dog microbial transfers but suggest diversification along mammalian lineages (apes and canids). Therefore, despite millennia of cohabitation and close interaction, the host and its native community controls and limits the assimilation of new microbes, even if closely related. Higher resolution metagenomic and microbial physiological studies, covering a larger mammalian diversity, should help understand how oral communities assemble, adapt, and interact with their hosts.IMPORTANCENumerous types of microbes colonize the mouth after birth and play important roles in maintaining oral health. When the microbiota-host homeostasis is perturbed, proliferation of some bacteria leads to diseases such as caries and periodontitis. Unlike the gut microbiome, the diversity of oral microbes across the mammalian evolutionary space is not understood. Our study compared the oral microbiomes of wild wolves, dogs, and apes (humans, chimpanzees, and bonobos), with the aim of identifying if microbes have been potentially exchanged between humans and dogs as a result of domestication and cohabitation. We found little if any evidence for such exchanges. The significance of our research is in finding that the oral microbiota and/or the host limit the acquisition of exogenous microbes, which is important in the context of natural exclusion of potential novel pathogens. We provide a framework for expanded higher-resolution studies across domestic and wild animals to understand resistance/resilience.
Collapse
Affiliation(s)
- Nicholas A. Podar
- School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Alyssa A. Carrell
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Kira A. Cassidy
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Dawn M. Klingeman
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Zamin Yang
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Erin A. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Douglas W. Smith
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Daniel R. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Mircea Podar
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
225
|
Hernández-Cabanyero C, Vonaesch P. Ectopic colonization by oral bacteria as an emerging theme in health and disease. FEMS Microbiol Rev 2024; 48:fuae012. [PMID: 38650052 PMCID: PMC11065354 DOI: 10.1093/femsre/fuae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/23/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
The number of research papers published on the involvement of the oral microbiota in systemic diseases has grown exponentially over the last 4 years clearly demonstrating the growing interest in this field. Indeed, accumulating evidence highlights the central role of ectopic colonization by oral bacteria in numerous noncommunicable diseases including inflammatory bowel diseases (IBDs), undernutrition, preterm birth, neurological diseases, liver diseases, lung diseases, heart diseases, or colonic cancer. There is thus much interest in understanding the molecular mechanisms that lead to the colonization and maintenance of ectopic oral bacteria. The aim of this review is to summarize and conceptualize the current knowledge about ectopic colonization by oral bacteria, highlight wherever possible the underlying molecular mechanisms and describe its implication in health and disease. The focus lies on the newly discovered molecular mechanisms, showcasing shared pathophysiological mechanisms across different body sites and syndromes and highlighting open questions in the field regarding the pathway from oral microbiota dysbiosis to noncommunicable diseases.
Collapse
Affiliation(s)
- Carla Hernández-Cabanyero
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, UNIL-Sorge, 1015 Lausanne, Switzerland
| |
Collapse
|
226
|
Jaimes J, Patiño LH, Herrera G, Cruz C, Pérez J, Correa-Cárdenas CA, Muñoz M, Ramírez JD. Prokaryotic and eukaryotic skin microbiota modifications triggered by Leishmania infection in localized Cutaneous Leishmaniasis. PLoS Negl Trop Dis 2024; 18:e0012029. [PMID: 38478569 PMCID: PMC10962849 DOI: 10.1371/journal.pntd.0012029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/25/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Cutaneous Leishmaniasis (CL) is a tropical disease characterized by cutaneous ulcers, sometimes with satellite lesions and nodular lymphangitis. Leishmania parasites, transmitted by sandfly vectors, cause this widespread public health challenge affecting millions worldwide. CL's complexity stems from diverse Leishmania species and intricate host interactions. Therefore, this study aims to shed light on the spatial-temporal distribution of Leishmania species and exploring the influence of skin microbiota on disease progression. We analyzed 40 samples from CL patients at three military bases across Colombia. Using Oxford Nanopore's Heat Shock Protein 70 sequencing, we identified Leishmania species and profiled microbiota in CL lesions and corresponding healthy limbs. Illumina sequencing of 16S-rRNA and 18S-rRNA genes helped analyze prokaryotic and eukaryotic communities. Our research uncovered a spatial-temporal overlap between regions of high CL incidence and our sampling locations, indicating the coexistence of various Leishmania species. L. naiffi emerged as a noteworthy discovery. In addition, our study delved into the changes in skin microbiota associated with CL lesions sampled by scraping compared with healthy skin sampled by brushing of upper and lower limbs. We observed alterations in microbial diversity, both in prokaryotic and eukaryotic communities, within the lesioned areas, signifying the potential role of microbiota in CL pathogenesis. The significant increase in specific bacterial families, such as Staphylococcaceae and Streptococcaceae, within CL lesions indicates their contribution to local inflammation. In essence, our study contributes to the ongoing research into CL, highlighting the need for a multifaceted approach to decipher the intricate interactions between Leishmaniasis and the skin microbiota.
Collapse
Affiliation(s)
- Jesús Jaimes
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Claudia Cruz
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia e Investigación, Dirección de Sanidad Ejército, Bogotá, Colombia
| | - Julie Pérez
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia e Investigación, Dirección de Sanidad Ejército, Bogotá, Colombia
| | - Camilo A. Correa-Cárdenas
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia e Investigación, Dirección de Sanidad Ejército, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
227
|
Shahzad M, Saeed M, Amin H, Binmadi N, Ullah Z, Bibi S, Andrew SC. The oral microbiome of newly diagnosed tuberculosis patients; a pilot study. Genomics 2024; 116:110816. [PMID: 38431030 DOI: 10.1016/j.ygeno.2024.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/15/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Changes in oral microbiota composition (dysbiosis) have long been known to play a key role in the pathogenesis of oral and systemic diseases including respiratory diseases. However, till now, no study has assessed changes in oral microbiota following tuberculosis (TB) infection in humans. AIMS This is the first study of its kind that aimed to investigate oral microbial dysbiosis in newly diagnosed, treatment naïve, TB patients. METHODS Oral swab samples were collected from newly diagnosed TB patients (n = 20) and age, gender and ethnicity matched healthy controls (n = 10). DNA was extracted and microbiota analyzed by sequencing the hypervariable (V3-V4) region of the bacterial 16S rRNA gene using Illumina MiSeq platform. Bioinformatics and statistical analyses were performed using QIIME and R. RESULTS Bacterial richness, diversity and community composition were significantly different between TB patients and healthy controls. The two groups also exhibit differential abundance at phylum, class, genus and species levels. LEfSe analysis revealed enrichment (LDA scores (log10) >2, P < 0.05) of Firmicutes (especially Streptococcus) and Actinobacteriota (especially Rothia) in TB patients relative to healthy controls. Gene function prediction analysis showed upregulation of metabolic pathways related to carbohydrates (butanoate, galactose) and fatty acids metabolism, antibiotics biosynthesis, proteosome and immune system signaling. CONCLUSION These observations suggest significant variations in diversity, relative abundance and functional potential of oral microbiota of TB patients compared to healthy controls thereby suggesting potential role of oral bacterial dysbiosis in TB pathogenesis. However, longitudinal studies using powerful metagenomic and transcriptomic approaches are crucial to more fully understand and confrim these findings.
Collapse
Affiliation(s)
- Muhammad Shahzad
- Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan; Institute of Basic Medical Sciences, Khyber Medical University, Hayat Abad Phase 5, Peshawar 25120, Pakistan.
| | - Muhammad Saeed
- Institute of Basic Medical Sciences, Khyber Medical University, Hayat Abad Phase 5, Peshawar 25120, Pakistan
| | - Humaira Amin
- Alpha Genomics Private Limited, Islamabad 45710, Pakistan
| | - Nada Binmadi
- Department of Oral Diagnostic Sciences, King Abdulaziz University Faculty of Dentistry, Jeddah, Saudi Arabia
| | - Zafar Ullah
- Institute of Basic Medical Sciences, Khyber Medical University, Hayat Abad Phase 5, Peshawar 25120, Pakistan
| | - Sana Bibi
- Alpha Genomics Private Limited, Islamabad 45710, Pakistan
| | - Simon C Andrew
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Reading RG6 6EX, UK.
| |
Collapse
|
228
|
Mishra Y, Ranjan A, Mishra V, Chattaraj A, Aljabali AAA, El-Tanani M, Hromić-Jahjefendić A, Uversky VN, Tambuwala MM. The role of the gut microbiome in gastrointestinal cancers. Cell Signal 2024; 115:111013. [PMID: 38113978 DOI: 10.1016/j.cellsig.2023.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
The gut microbiota present in the human digestive system is incredibly varied and is home to trillions of microorganisms. The gut microbiome is shaped at birth, while numerous genetic, dietary, and environmental variables primarily influence the microbiome composition. The importance of gut microbiota on host health is becoming more widely acknowledged. Digestion, intestinal permeability, and immunological and metabolism responses can all be affected by changes in the composition and function of the gut microbiota. There is mounting evidence that the microbial population's complex traits are important biomarkers and indicators of patient outcomes in cancer and its therapies. Numerous studies have demonstrated that changed commensal gut microorganisms contribute to the development and spread of cancer through various routes. Despite the ongoing controversy surrounding the gut microbiome and gastrointestinal cancer, accumulating evidence points to a potentially far more intricate connection than a simple cause-and-effect relationship. SIMPLE SUMMARY: Due to their high frequency and fatality rate, gastrointestinal cancers are regarded as a severe public health issue with complex medical and economic burdens. The gut microbiota may directly or indirectly interact with existing therapies like immunotherapy and chemotherapy, affecting how well a treatment works. The gut microbiome influences the immune response's activity, function, and development. Generally, certain gut bacteria impact the antitumor actions during cancer by creating particular metabolites or triggering T-cell responses. Yet, certain bacterial species have been found to promote cellular proliferation and metastasis in cancer, and comprehending these interactions in the context of cancer may help identify possible treatment targets. Notwithstanding the improvements in the field, additional research is still required to comprehend the underlying processes, examine the effects on existing therapies, and pinpoint certain bacteria and immune cells that can cause this interaction.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Abhigyan Ranjan
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Alaa A A Aljabali
- Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Alkhama Medical and Health Sciences University, United Arab Emirates
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, England, United Kingdom.
| |
Collapse
|
229
|
Boyapati R, Lanke RB, Mudaliyar MC, Gaddam B, Babu Dasari A, Dhulipalla R. Exploring the Microbiome Landscape of Dental Plaque: A Cross-Sectional Analysis in Periodontal Health and Disease. Cureus 2024; 16:e57334. [PMID: 38690496 PMCID: PMC11060497 DOI: 10.7759/cureus.57334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/30/2024] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVE This study aimed to comprehensively analyze the microbiome of dental plaque in individuals with varying periodontal statuses, encompassing both periodontal health and disease. The primary objectives were to identify microbial markers associated with different clinical conditions, explore variations in microbial diversity, and investigate potential correlations between the oral microbiome and clinical parameters. METHODS A cross-sectional design was employed, involving 164 participants aged 18 to 65 years. Inclusion criteria comprised individuals with good oral and systemic health for the periodontal health group and those diagnosed with various stages of periodontal disease for the periodontal disease group. Dental plaque samples were meticulously collected from diverse tooth surfaces, and clinical examinations were conducted to assess periodontal health status. High-throughput sequencing of the 16S ribosomal RNA (rRNA) gene was utilized for microbiome analysis. RESULTS Demographic characteristics revealed a balanced distribution between the periodontal health and disease groups. Clinical parameters, including probing depth, clinical attachment loss, and bleeding on probing, exhibited significant differences between the two groups (p < 0.001). Microbial diversity indices indicated a higher diversity in the periodontal health group compared to the disease group (p < 0.001). Analysis of relative abundance of bacterial phyla identified significant variations, with Firmicutes, Bacteroidetes, and Actinobacteria showing differential prevalence between health and disease (p < 0.05). Differentially abundant taxa analysis highlighted specific species associated with each clinical condition, including Prevotella intermedia and Porphyromonas gingivalis. Network analysis revealed complex microbial interactions within the oral microbiome. Functional predictions indicated variations in metabolic capabilities between health and disease, with potential implications for virulence and antibiotic resistance. CONCLUSION This study provides a comprehensive analysis of the oral microbiome in periodontal health and disease, revealing significant associations between microbial composition and clinical parameters. The identification of microbial markers and functional insights enhances our understanding of the complex interplay within the oral ecosystem. These findings hold promise for advancing diagnostic and therapeutic approaches tailored to individual microbial profiles.
Collapse
|
230
|
Gosch A, Banemann R, Dørum G, Haas C, Hadrys T, Haenggi N, Kulstein G, Neubauer J, Courts C. Spitting in the wind?-The challenges of RNA sequencing for biomarker discovery from saliva. Int J Legal Med 2024; 138:401-412. [PMID: 37847308 PMCID: PMC10861700 DOI: 10.1007/s00414-023-03100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Forensic trace contextualization, i.e., assessing information beyond who deposited a biological stain, has become an issue of great and steadily growing importance in forensic genetic casework and research. The human transcriptome encodes a wide variety of information and thus has received increasing interest for the identification of biomarkers for different aspects of forensic trace contextualization over the past years. Massively parallel sequencing of reverse-transcribed RNA ("RNA sequencing") has emerged as the gold standard technology to characterize the transcriptome in its entirety and identify RNA markers showing significant expression differences not only between different forensically relevant body fluids but also within a single body fluid between forensically relevant conditions of interest. Here, we analyze the quality and composition of four RNA sequencing datasets (whole transcriptome as well as miRNA sequencing) from two different research projects (the RNAgE project and the TrACES project), aiming at identifying contextualizing forensic biomarker from the forensically relevant body fluid saliva. We describe and characterize challenges of RNA sequencing of saliva samples arising from the presence of oral bacteria, the heterogeneity of sample composition, and the confounding factor of degradation. Based on these observations, we formulate recommendations that might help to improve RNA biomarker discovery from the challenging but forensically relevant body fluid saliva.
Collapse
Affiliation(s)
- Annica Gosch
- Institute of Legal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Regine Banemann
- Federal Criminal Police Office, Forensic Science Institute, Wiesbaden, Germany
| | - Guro Dørum
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Thorsten Hadrys
- State Criminal Police Office, Forensic Science Institute, Munich, Germany
| | - Nadescha Haenggi
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Galina Kulstein
- Federal Criminal Police Office, Forensic Science Institute, Wiesbaden, Germany
| | - Jacqueline Neubauer
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Cornelius Courts
- Institute of Legal Medicine, University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
231
|
Chamlagain M, Hu J, Sionov RV, Steinberg D. Anti-bacterial and anti-biofilm activities of arachidonic acid against the cariogenic bacterium Streptococcus mutans. Front Microbiol 2024; 15:1333274. [PMID: 38596377 PMCID: PMC11002910 DOI: 10.3389/fmicb.2024.1333274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/16/2024] [Indexed: 04/11/2024] Open
Abstract
Streptococcus mutans is a Gram-positive, facultative anaerobic bacterium, which causes dental caries after forming biofilms on the tooth surface while producing organic acids that demineralize enamel and dentin. We observed that the polyunsaturated arachidonic acid (AA) (ω-6; 20:4) had an anti-bacterial activity against S. mutans, which prompted us to investigate its mechanism of action. The minimum inhibitory concentration (MIC) of AA on S. mutans was 25 μg/ml in the presence of 5% CO2, while it was reduced to 6.25-12.5 μg/ml in the absence of CO2 supplementation. The anti-bacterial action was due to a combination of bactericidal and bacteriostatic effects. The minimum biofilm inhibitory concentration (MBIC) was the same as the MIC, suggesting that part of the anti-biofilm effect was due to the anti-bacterial activity. Gene expression studies showed decreased expression of biofilm-related genes, suggesting that AA also has a specific anti-biofilm effect. Flow cytometric analyses using potentiometric DiOC2(3) dye, fluorescent efflux pump substrates, and live/dead SYTO 9/propidium iodide staining showed that AA leads to immediate membrane hyperpolarization, altered membrane transport and efflux pump activities, and increased membrane permeability with subsequent membrane perforation. High-resolution scanning electron microscopy (HR-SEM) showed remnants of burst bacteria. Furthermore, flow cytometric analysis using the redox probe 2',7'-dichlorofluorescein diacetate (DCFHDA) showed that AA acts as an antioxidant in a dose-dependent manner. α-Tocopherol, an antioxidant that terminates the radical chain, counteracted the anti-bacterial activity of AA, suggesting that oxidation of AA in bacteria leads to the production of cytotoxic radicals that contribute to bacterial growth arrest and death. Importantly, AA was not toxic to normal Vero epithelial cells even at 100 μg/ml, and it did not cause hemolysis of erythrocytes. In conclusion, our study shows that AA is a potentially safe drug that can be used to reduce the bacterial burden of cariogenic S. mutans.
Collapse
Affiliation(s)
- Manoj Chamlagain
- Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jieni Hu
- Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ronit Vogt Sionov
- Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Steinberg
- Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
232
|
Xu J, Yu L, Ye S, Ye Z, Yang L, Xu X. Oral microbiota-host interaction: the chief culprit of alveolar bone resorption. Front Immunol 2024; 15:1254516. [PMID: 38455060 PMCID: PMC10918469 DOI: 10.3389/fimmu.2024.1254516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
There exists a bidirectional relationship between oral health and general well-being, with an imbalance in oral symbiotic flora posing a threat to overall human health. Disruptions in the commensal flora can lead to oral diseases, while systemic illnesses can also impact the oral cavity, resulting in the development of oral diseases and disorders. Porphyromonas gingivalis and Fusobacterium nucleatum, known as pathogenic bacteria associated with periodontitis, play a crucial role in linking periodontitis to accompanying systemic diseases. In periodontal tissues, these bacteria, along with their virulence factors, can excessively activate the host immune system through local diffusion, lymphatic circulation, and blood transmission. This immune response disruption contributes to an imbalance in osteoimmune mechanisms, alveolar bone resorption, and potential systemic inflammation. To restore local homeostasis, a deeper understanding of microbiota-host interactions and the immune network phenotype in local tissues is imperative. Defining the immune network phenotype in periodontal tissues offers a promising avenue for investigating the complex characteristics of oral plaque biofilms and exploring the potential relationship between periodontitis and associated systemic diseases. This review aims to provide an overview of the mechanisms underlying Porphyromonas gingivalis- and Fusobacterium nucleatum-induced alveolar bone resorption, as well as the immunophenotypes observed in host periodontal tissues during pathological conditions.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
233
|
Lim TW, Huang S, Jiang Y, Zhang Y, Burrow MF, McGrath C. Characterization of pathogenic microbiome on removable prostheses with different levels of cleanliness using 2bRAD-M metagenomic sequencing. J Oral Microbiol 2024; 16:2317059. [PMID: 38410192 PMCID: PMC10896157 DOI: 10.1080/20002297.2024.2317059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/03/2024] [Indexed: 02/28/2024] Open
Abstract
Background The microbiomes on the surface of unclean removable prostheses are complex and yet largely underexplored using metagenomic sequencing technology. Objectives To characterize the microbiome of removable prostheses with different levels of cleanliness using Type IIB Restriction-site Associated DNA for Microbiome (2bRAD-M) sequencing and compare the Microbial Index of Pathogenic Bacteria (MIP) between clean and unclean prostheses. Materials and Methods Ninety-seven removable prostheses were classified into 'clean' and 'unclean' groups. All prosthesis plaque samples underwent 2bRAD metagenomic sequencing to characterize the species-resolved microbial composition. MIPs for clean and unclean prostheses were calculated based on the sum of the relative abundance of pathogenic bacteria in a microbiome using a reference database that contains opportunistic pathogenic bacteria and disease-associated information. Results Beta diversity analyses based on Jaccard qualitative and Bray-Curtis quantitative distance matrices identified significant differences between the two groups (p < 0.05). There was a significant enrichment of many pathogenic bacteria in the unclean prosthesis group. The MIP for unclean prostheses (0.47 ± 0.25) was significantly higher than for clean prostheses (0.37 ± 0.29), p = 0.029. Conclusions The microbial community of plaque samples from 'unclean' prostheses demonstrated compositional differences compared with 'clean' prostheses. In addition, the pathogenic microbiome in the 'unclean' versus 'clean' group differed.
Collapse
Affiliation(s)
- Tong Wah Lim
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shi Huang
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yuesong Jiang
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yufeng Zhang
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Michael Francis Burrow
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Colman McGrath
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
234
|
Hattori Y, Kawaguchi Y, Joyo Y, Okamoto H, Murakami H, Waguri-Nagaya Y. Reverse Posterior Interosseous Artery Flap for Human Bite Injury to the Hand. Case Rep Orthop 2024; 2024:5392926. [PMID: 38410683 PMCID: PMC10896647 DOI: 10.1155/2024/5392926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Bite injuries frequently occur on human hands. Human bite injuries to the hand may lead to an infection because of limited soft tissue protection and wound contamination. However, no studies have reported severe bite injuries on hands treated by flaps. We report a case of an 80-year-old woman diagnosed with a major neurocognitive disorder. The patient accidentally had a self-bite injury accompanied with an open metacarpal fracture. Debridement and fixation of the first metacarpal fracture were performed. Afterward, skin necrosis occurred gradually on the dorsum of the hand. Therefore, a reverse posterior interosseous artery (PIA) flap was used, and the postoperative course was uneventful. Given the high risk of infection, human bite injuries, particularly hand bites, should be treated immediately. Delayed treatment for such injuries may lead to extensive soft tissue defects requiring reconstruction with flaps.
Collapse
Affiliation(s)
- Yusuke Hattori
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Department of Orthopedic Surgery, Nagoya City University East Medical Center, 1 Wakamizu, Chikusa-ku, Nagoya, Aichi 464-8457, Japan
| | - Yohei Kawaguchi
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Yuji Joyo
- Department of Orthopedic Surgery, Nagoya City University East Medical Center, 1 Wakamizu, Chikusa-ku, Nagoya, Aichi 464-8457, Japan
| | - Hideki Okamoto
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Hideki Murakami
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Yuko Waguri-Nagaya
- Department of Orthopedic Surgery, Nagoya City University East Medical Center, 1 Wakamizu, Chikusa-ku, Nagoya, Aichi 464-8457, Japan
| |
Collapse
|
235
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|
236
|
Kvapilova K, Misenko P, Radvanszky J, Brzon O, Budis J, Gazdarica J, Pos O, Korabecna M, Kasny M, Szemes T, Kvapil P, Paces J, Kozmik Z. Validated WGS and WES protocols proved saliva-derived gDNA as an equivalent to blood-derived gDNA for clinical and population genomic analyses. BMC Genomics 2024; 25:187. [PMID: 38365587 PMCID: PMC10873937 DOI: 10.1186/s12864-024-10080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Whole exome sequencing (WES) and whole genome sequencing (WGS) have become standard methods in human clinical diagnostics as well as in population genomics (POPGEN). Blood-derived genomic DNA (gDNA) is routinely used in the clinical environment. Conversely, many POPGEN studies and commercial tests benefit from easy saliva sampling. Here, we evaluated the quality of variant call sets and the level of genotype concordance of single nucleotide variants (SNVs) and small insertions and deletions (indels) for WES and WGS using paired blood- and saliva-derived gDNA isolates employing genomic reference-based validated protocols. METHODS The genomic reference standard Coriell NA12878 was repeatedly analyzed using optimized WES and WGS protocols, and data calls were compared with the truth dataset published by the Genome in a Bottle Consortium. gDNA was extracted from the paired blood and saliva samples of 10 participants and processed using the same protocols. A comparison of paired blood-saliva call sets was performed in the context of WGS and WES genomic reference-based technical validation results. RESULTS The quality pattern of called variants obtained from genomic-reference-based technical replicates correlates with data calls of paired blood-saliva-derived samples in all levels of tested examinations despite a higher rate of non-human contamination found in the saliva samples. The F1 score of 10 blood-to-saliva-derived comparisons ranged between 0.8030-0.9998 for SNVs and between 0.8883-0.9991 for small-indels in the case of the WGS protocol, and between 0.8643-0.999 for SNVs and between 0.7781-1.000 for small-indels in the case of the WES protocol. CONCLUSION Saliva may be considered an equivalent material to blood for genetic analysis for both WGS and WES under strict protocol conditions. The accuracy of sequencing metrics and variant-detection accuracy is not affected by choosing saliva as the gDNA source instead of blood but much more significantly by the genomic context, variant types, and the sequencing technology used.
Collapse
Affiliation(s)
- Katerina Kvapilova
- Faculty of Science, Charles University, Albertov 6, Prague, 128 00, Czech Republic.
- Institute of Applied Biotechnologies a.s, Služeb 4, Prague, 108 00, Czech Republic.
| | - Pavol Misenko
- Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia
| | - Jan Radvanszky
- Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia
- Institute of Clinical and Translational Research, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava, 845 05, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 3278/6, Karlova Ves, Bratislava, 841 04, Slovakia
- Comenius University Science Park, Comenius University, Ilkovičova 8, Karlova Ves, Bratislava, 841 04, Slovakia
| | - Ondrej Brzon
- Institute of Applied Biotechnologies a.s, Služeb 4, Prague, 108 00, Czech Republic
| | - Jaroslav Budis
- Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia
- Comenius University Science Park, Comenius University, Ilkovičova 8, Karlova Ves, Bratislava, 841 04, Slovakia
- Slovak Centre for Scientific and Technical Information, Staré Mesto, Lamačská Cesta 8A, Bratislava, 811 04, Slovakia
| | - Juraj Gazdarica
- Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia
- Comenius University Science Park, Comenius University, Ilkovičova 8, Karlova Ves, Bratislava, 841 04, Slovakia
- Slovak Centre for Scientific and Technical Information, Staré Mesto, Lamačská Cesta 8A, Bratislava, 811 04, Slovakia
| | - Ondrej Pos
- Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia
- Comenius University Science Park, Comenius University, Ilkovičova 8, Karlova Ves, Bratislava, 841 04, Slovakia
| | - Marie Korabecna
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, Prague, 128 00, Czech Republic
| | - Martin Kasny
- Institute of Applied Biotechnologies a.s, Služeb 4, Prague, 108 00, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - Tomas Szemes
- Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 3278/6, Karlova Ves, Bratislava, 841 04, Slovakia
- Comenius University Science Park, Comenius University, Ilkovičova 8, Karlova Ves, Bratislava, 841 04, Slovakia
| | - Petr Kvapil
- Institute of Applied Biotechnologies a.s, Služeb 4, Prague, 108 00, Czech Republic
| | - Jan Paces
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 142 20, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 142 20, Czech Republic
| |
Collapse
|
237
|
Alissa M, Hjazi A, Abusalim GS, Aloraini GS, Alghamdi SA, Alharthi NS, Rizg WY, Hosny KM, Binmadi N. Utilization of nanotechnology and experimental design in the development and optimization of a posaconazole‒calendula oil nanoemulgel for the treatment of mouth disorders. Front Pharmacol 2024; 15:1347551. [PMID: 38434704 PMCID: PMC10905964 DOI: 10.3389/fphar.2024.1347551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction: Essential oil‒based nanoemulsions (NEs) are the subjects of extensive investigation due to their potential to address a variety of oral health issues. NEs are delivery systems that improve lipid medicine solubility and distribution to intended sites. The goal of the current study was to create and enhance a self-nanoemulsifying drug delivery paradigm based on calendula oil (CO) and decorated with chitosan (CS) that could deliver posaconazole (PSZ) for the treatment of gingivitis. Method: Employing a response-surface Box‒Behnken design, PSZ-CO-CS NEs were created with varying amounts of PSZ (10, 15, and 20 mg), percentages of CO (6%, 12%, and 18%), and percentages of CS (0.5%, 1.5%, and 2.5%). Results and conclusion: The optimized formulation resulted in a 22-mm bacterial growth suppression zone, 25-mm fungal growth inhibition zone, droplet sizes of 110 nm, and a viscosity of 750 centipoise (cP). Using the appropriate design, the ideal formulation was produced; it contained 20 mg of PSZ, 18% of CO, and 1.35% of CS. Furthermore, the optimal formulation had a more controlled drug release, larger inhibition zones of bacterial and fungal growth, and desirable rheologic properties. Additionally, the optimized formulation substantially lowered the ulcer index in rats when tested against other formulations. Thus, this investigation showed that PSZ-CO-CS NEs could provide efficient protection against microbially induced gingivitis.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghadah S. Abusalim
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghfren S. Aloraini
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Suad A. Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nahed S. Alharthi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nada Binmadi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
238
|
McGuinness AJ, Loughman A, Foster JA, Jacka F. Mood Disorders: The Gut Bacteriome and Beyond. Biol Psychiatry 2024; 95:319-328. [PMID: 37661007 DOI: 10.1016/j.biopsych.2023.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Knowledge of the microbiome-gut-brain axis has revolutionized the field of psychiatry. It is now well recognized that the gut bacteriome is associated with, and likely influences, the pathogenesis of mental disorders, including major depressive disorder and bipolar disorder. However, while substantial advances in the field of microbiome science have been made, we have likely only scratched the surface in our understanding of how these ecosystems might contribute to mental disorder pathophysiology. Beyond the gut bacteriome, research into lesser explored components of the gut microbiome, including the gut virome, mycobiome, archaeome, and parasitome, is increasingly suggesting relevance in psychiatry. The contribution of microbiomes beyond the gut, including the oral, lung, and small intestinal microbiomes, to human health and pathology should not be overlooked. Increasing both our awareness and understanding of these less traversed fields of research are critical to improving the therapeutic benefits of treatments targeting the gut microbiome, including fecal microbiome transplantation, postbiotics and biogenics, and dietary intervention. Interdisciplinary collaborations integrating systems biology approaches are required to fully elucidate how these different microbial components and distinct microbial niches interact with each other and their human hosts. Excitingly, we may be at the start of the next microbiome revolution and thus one step closer to informing the field of precision psychiatry to improve outcomes for those living with mental illness.
Collapse
Affiliation(s)
- Amelia J McGuinness
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia.
| | - Amy Loughman
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Jane A Foster
- Center for Depression Research and Clinical Care, Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Felice Jacka
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
239
|
Wang Q, Wang BY, Pratap S, Xie H. Oral microbiome associated with differential ratios of Porphyromonas gingivalis and Streptococcus cristatus. Microbiol Spectr 2024; 12:e0348223. [PMID: 38230927 PMCID: PMC10846039 DOI: 10.1128/spectrum.03482-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
Periodontitis has recently been defined as a dysbiotic disease caused by an imbalanced oral microbiota. The transition from commensal microbial communities to periodontitis-associated ones requires colonization by specific pathogens, including Porphyromonas gingivalis. We previously reported an antagonistic relationship between Streptococcus cristatus and P. gingivalis. To determine the role of S. cristatus in altering the interactions of P. gingivalis with other oral bacteria in a complex context, we collected dental plaque samples from patients with periodontitis and assigned them to two groups based on the ratios of S. cristatus and P. gingivalis. We then characterized the microbial profiles of the dental plaque samples using shotgun metagenomic sequencing and compared the oral microbial composition and functional capabilities of the group with high S. cristatus-P. gingivalis ratios with the low ratio group. Taxonomic annotation revealed significant differences in the microbial composition at both the genus and species levels between the low and high S. cristatus-P. gingivalis ratio groups. Notably, a higher microbial diversity was observed in the samples with low S. cristatus-P. gingivalis ratios. Furthermore, the antibiotic resistance gene profiles of the two groups were also distinct, with a significantly increased abundance of the genes in the dental plaque samples with low S. cristatus-P. gingivalis ratios. It, therefore, indicates that the S. cristatus-P. gingivalis ratios influenced the virulence potential of the oral microbiome. Our work shows that enhancing the S. cristatus-P. gingivalis ratio in oral microbial communities can be an attractive approach for revising the dysbiotic oral microbiome.IMPORTANCEPeriodontitis, one of the most common chronic diseases, is linked to several systemic diseases, such as cardiovascular disease and diabetes. Although Porphyromonas gingivalis is a keystone pathogen that causes periodontitis, its levels, interactions with accessory bacteria and pathobionts in the oral microbiome, and its association with the pathogenic potential of the microbial communities are still not well understood. In this study, we revealed the role of Streptococcus cristatus and the ratios of S. cristatus and P. gingivalis in modulating the oral microbiome to facilitate a deeper understanding of periodontitis and its progression. The study has important clinical implications as it laid a foundation for developing novel non-antibiotic therapies against P. gingivalis and improving the efficiency of periodontal treatments.
Collapse
Affiliation(s)
- Qingguo Wang
- School of Applied Computational Sciences, Meharry Medical College, Nashville, Tennessee, USA
| | - Bing-Yan Wang
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Siddharth Pratap
- School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
240
|
Cheng J, Zhou L, Wang H. Symbiotic microbial communities in various locations of the lung cancer respiratory tract along with potential host immunological processes affected. Front Cell Infect Microbiol 2024; 14:1296295. [PMID: 38371298 PMCID: PMC10873922 DOI: 10.3389/fcimb.2024.1296295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Lung cancer has the highest mortality rate among all cancers worldwide. The 5-year overall survival rate for non-small cell lung cancer (NSCLC) is estimated at around 26%, whereas for small cell lung cancer (SCLC), the survival rate is only approximately 7%. This disease places a significant financial and psychological burden on individuals worldwide. The symbiotic microbiota in the human body has been significantly associated with the occurrence, progression, and prognosis of various diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Studies have demonstrated that respiratory symbiotic microorganisms and their metabolites play a crucial role in modulating immune function and contributing to the pathophysiology of lung cancer through their interactions with the host. In this review, we provide a comprehensive overview of the microbial characteristics associated with lung cancer, with a focus on the respiratory tract microbiota from different locations, including saliva, sputum, bronchoalveolar lavage fluid (BALF), bronchial brush samples, and tissue. We describe the respiratory tract microbiota's biodiversity characteristics by anatomical region, elucidating distinct pathological features, staging, metastasis, host chromosomal mutations, immune therapies, and the differentiated symbiotic microbiota under the influence of environmental factors. Our exploration investigates the intrinsic mechanisms linking the microbiota and its host. Furthermore, we have also provided a comprehensive review of the immune mechanisms by which microbiota are implicated in the development of lung cancer. Dysbiosis of the respiratory microbiota can promote or inhibit tumor progression through various mechanisms, including DNA damage and genomic instability, activation and regulation of the innate and adaptive immune systems, and stimulation of epithelial cells leading to the upregulation of carcinogenesis-related pathways.
Collapse
Affiliation(s)
- Jiuling Cheng
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lujia Zhou
- Henan Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huaqi Wang
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
241
|
Gregorczyk-Maga I, Kania M, Dąbrowska M, Samborowska E, Żeber-Lubecka N, Kulecka M, Klupa T. The interplay between gingival crevicular fluid microbiome and metabolomic profile in intensively treated people with type 1 diabetes - a combined metagenomic/metabolomic approach cross-sectional study. Front Endocrinol (Lausanne) 2024; 14:1332406. [PMID: 38371896 PMCID: PMC10871129 DOI: 10.3389/fendo.2023.1332406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/31/2023] [Indexed: 02/20/2024] Open
Abstract
Aims This study aimed to assess the gingival crevicular fluid (GCF) microbiome and metabolome of adults with type 1 diabetes (T1D) treated with continuous subcutaneous insulin infusion (CSII). Methods In this cross-sectional study, the GCF of adults with T1D treated with CSII and non-diabetic controls were sampled, and metagenomic/metabolomic analyses were performed. Results In total, 65 participants with T1D and 45 healthy controls with a mean age of 27.05 ± 5.95 years were investigated. There were 22 cases of mild gingivitis (G) in the T1D group. There were no differences considering the Shannon and Chao indices and β-diversity between people with T1D and G, with T1D without G, and healthy controls. Differential taxa were identified, which were mainly enriched in people with T1D and G. Acetic acid concentration was higher in people with T1D, regardless of the presence of G, than in healthy controls. Propionic acid was higher in people with T1D and G than in healthy controls. Isobutyric and isovaleric acid levels were higher in individuals with T1D and G than in the other two subgroups. The concentration of valeric acid was lower and that of caproic acid was higher in people with T1D (regardless of gingival status) than in healthy controls. Conclusions The identification of early changes in periodontal tissues by targeting the microbiome and metabolome could potentially enable effective prevention and initial treatment of periodontal disease in people with T1D.
Collapse
Affiliation(s)
- Iwona Gregorczyk-Maga
- Institute of Dentistry, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Michał Kania
- Chair of Metabolic Diseases and Diabetology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Doctoral School of Medicine and Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Tomasz Klupa
- Center of Advanced Technologies in Diabetes, Chair of Metabolic Diseases, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
242
|
Kim HY, Jung YS, Park W, Choi YJ, Kim JY. Can medication-related osteonecrosis of the jaw be attributed to specific microorganisms through oral microbiota analyses? A preliminary study. BMC Oral Health 2024; 24:160. [PMID: 38302952 PMCID: PMC10832156 DOI: 10.1186/s12903-024-03945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/27/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Medication-related osteonecrosis of the jaw (MRONJ) can cause significant pain and loss of aesthetics and function if not treated properly. However, diagnosis still relies on detailed intraoral examinations and imaging. Prognosis varies even among patients with similar stages or conditions of MRONJ, emphasizing the need for a deeper understanding of its complex mechanisms. Thus, this study aimed to identify the oral microbiota of patients with MRONJ. METHODS This single-center prospective cohort study included patients with confirmed MRONJ who visited the Department of Oral and Maxillofacial Surgery at Yonsei University Dental Hospital between 2021 and 2022. Oral swab samples were collected from the affected and unaffected sides of each patient. The composition and enumeration of the microbial communities were analyzed, and the diversity was compared to verify ecological changes in the groups using a next-generation sequencing-based 16S metagenomic analysis. A statistical analysis was performed using Wilcoxon signed-rank test with SPSS version 22, and values of P less than 0.05 were considered statistically significant. RESULTS The final study sample included 12 patients. The mean age was 82.67 ± 5.73 (range, 72-90) years. Changes in microbial composition were observed at different taxonomic levels (phylum, genus, and species). The identified microorganisms were commonly associated with periodontitis, gingival disease, and endodontic infection, suggesting a multifactorial etiology of MRONJ. CONCLUSIONS Although this study is based on a small number of cases, it shows that MRONJ is not caused by a specific microorganism but can rather be caused by a variety of factors. By addressing these findings in large-scale studies, the significance of oral microbiome in pathogenesis can be further elucidated and can facilitate the development of effective therapeutic interventions for patients with MRONJ.
Collapse
Affiliation(s)
- Heon-Young Kim
- Department of Oral and Maxillofacial Surgery, Ewha Womans University Medical Centre, Seoul, Republic of Korea
| | - Young-Soo Jung
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Wonse Park
- Department of Advanced General Dentistry, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Republic of Korea
| | - Yoon Jeong Choi
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Republic of Korea
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jun-Young Kim
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
243
|
Gu Z, Liu Y. A bibliometric and visualized in oral microbiota and cancer research from 2013 to 2022. Discov Oncol 2024; 15:24. [PMID: 38302656 PMCID: PMC10834930 DOI: 10.1007/s12672-024-00878-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Numerous studies have highlighted the implication of oral microbiota in various cancers. However, no bibliometric analysis has been conducted on the relationship between oral microbiota and cancer. This bibliometric analysis aimed to identify the research hotspots in oral microbiota and cancer research, as well as predict future research trends. The literature published relating to oral microbiota and cancer was searched from the Web of Science Core Collection database (WoSCC) from 2013 to 2022. VOSviewer or Citespace software was used to perform the bibliometric analysis, focusing on countries, institutions, authors, journals, keywords and references. A total of 1516 publications were included in the analysis. The number of publications related oral microbiota and cancer increased annually, reaching its peak in 2022 with 287 papers. The United States (456) and China (370) were the countries with the most publications and made significant contributions to the field. Sears CL and Zhou XD were the most productive authors. The high frequency of keywords revealed key topics, including cancer (colorectal cancer, oral cancer), oral microbiota (Fusobacterium nucleatum, Porphyromonas gingivalis), and inflammation (periodontal disease). The latest trend keywords were F. nucleatum, dysbiosis, prognosis, tumor microenvironment, gastric microbiota, complications and survival, suggesting a new hotspot in the field of oral microbiota and cancer. Our study provides a comprehensive analysis of oral microbiota and cancer research, revealing an increase in publications in recent years. Future research directions will continue to focus on the diversity of oral microbiota impacted by cancers and the underlying mechanism connecting them, providing new ideas for targeted therapy of tumorigenesis.
Collapse
Affiliation(s)
- Zhiyu Gu
- Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Yunkun Liu
- Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
244
|
Anestino TA, Queiroz-Junior CM, Cruz AMF, Souza DG, Madeira MFM. The impact of arthritogenic viruses in oral tissues. J Appl Microbiol 2024; 135:lxae029. [PMID: 38323434 DOI: 10.1093/jambio/lxae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
Arthritis and periodontitis are inflammatory diseases that share several immunopathogenic features. The expansion in the study of virus-induced arthritis has shed light on how this condition could impact other parts of the human body, including the mouth. Viral arthritis is an inflammatory joint disease caused by several viruses, most notably the alphaviruses Chikungunya virus (CHIKV), Sindbis virus (SINV), Ross River virus (RRV), Mayaro virus (MAYV), and O'nyong'nyong virus (ONNV). These viruses can induce an upsurge of matrix metalloproteinases and immune-inflammatory mediators such as Interleukin-6 (IL6), IL-1β, tumor necrosis factor, chemokine ligand 2, and receptor activator of nuclear factor kappa-B ligand in the joint and serum of infected individuals. This can lead to the influx of inflammatory cells to the joints and associated muscles as well as osteoclast activation and differentiation, culminating in clinical signs of swelling, pain, and bone resorption. Moreover, several data indicate that these viral infections can affect other sites of the body, including the mouth. The human oral cavity is a rich and diverse microbial ecosystem, and viral infection can disrupt the balance of microbial species, causing local dysbiosis. Such events can result in oral mucosal damage and gingival bleeding, which are indicative of periodontitis. Additionally, infection by RRV, CHIKV, SINV, MAYV, or ONNV can trigger the formation of osteoclasts and upregulate pro-osteoclastogenic inflammatory mediators, interfering with osteoclast activation. As a result, these viruses may be linked to systemic conditions, including oral manifestations. Therefore, this review focuses on the involvement of alphavirus infections in joint and oral health, acting as potential agents associated with oral mucosal inflammation and alveolar bone loss. The findings of this review demonstrate how alphavirus infections could be linked to the comorbidity between arthritis and periodontitis and may provide a better understanding of potential therapeutic management for both conditions.
Collapse
Affiliation(s)
- Thales Augusto Anestino
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Amanda Medeiros Frota Cruz
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Mila Fernandes Moreira Madeira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
- Department of Oral Biology, Biomedical Research Institute, University at Buffalo, Buffalo, NY, 14203, United States
| |
Collapse
|
245
|
Álvarez-Santacruz C, Tyrkalska SD, Candel S. The Microbiota in Long COVID. Int J Mol Sci 2024; 25:1330. [PMID: 38279329 PMCID: PMC10816132 DOI: 10.3390/ijms25021330] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
Interest in the coronavirus disease 2019 (COVID-19) has progressively decreased lately, mainly due to the great effectivity of vaccines. Furthermore, no new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants able to circumvent the protection of these vaccines, while presenting high transmissibility and/or lethality, have appeared. However, long COVID has emerged as a huge threat to human health and economy globally. The human microbiota plays an important role in health and disease, participating in the modulation of innate and adaptive immune responses. Thus, multiple studies have found that the nasopharyngeal microbiota is altered in COVID-19 patients, with these changes associated with the onset and/or severity of the disease. Nevertheless, although dysbiosis has also been reported in long COVID patients, mainly in the gut, little is known about the possible involvement of the microbiota in the development of this disease. Therefore, in this work, we aim to fill this gap in the knowledge by discussing and comparing the most relevant studies that have been published in this field up to this point. Hence, we discuss that the relevance of long COVID has probably been underestimated, and that the available data suggest that the microbiota could be playing a pivotal role on the pathogenesis of the disease. Further research to elucidate the involvement of the microbiota in long COVID will be essential to explore new therapeutic strategies based on manipulation of the microbiota.
Collapse
Affiliation(s)
| | - Sylwia D. Tyrkalska
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergio Candel
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
246
|
Chopra A, Franco-Duarte R, Rajagopal A, Choowong P, Soares P, Rito T, Eberhard J, Jayasinghe TN. Exploring the presence of oral bacteria in non-oral sites of patients with cardiovascular diseases using whole metagenomic data. Sci Rep 2024; 14:1476. [PMID: 38233502 PMCID: PMC10794416 DOI: 10.1038/s41598-023-50891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
Cardiovascular diseases (CVDs) encompass various conditions affecting the heart and its blood vessels and are often linked with oral microbes. Our data analysis aimed to identify oral bacteria from other non-oral sites (i.e., gut, arterial plaque and cultured blood) that could be linked with CVDs. Taxonomic profiling identified bacteria to the species level and compared with the Human Oral Microbiome Database (HOMD). The oral bacteria in the gut, cultured blood and arterial plaque samples were catalogued, with their average frequency calculated for each sample. Additionally, data were filtered by comparison with the Human Microbiome Project (HMP) database. We identified 17,243 microbial species, of which 410 were present in the HOMD database and further denominated as "oral", and were found in at least one gut sample, but only 221 and 169 species were identified in the cultured blood and plaque samples, respectively. Of the 410 species, 153 were present solely in oral-associated environments after comparison with the HMP database, irrespective of their presence in other body sites. Our results suggest a potential connection between the presence of specific species of oral bacterial and occurrence of CVDs. Detecting these oral bacterial species in non-oral sites of patients with CVDs could help uncover the link between oral health and general health, including cardiovascular conditions via bacterial translocation.
Collapse
Affiliation(s)
- Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ricardo Franco-Duarte
- Department of Biology, CBMA (Center of Molecular and Environmental Biology), University of Minho, Braga, Portugal
- Institute of Science and Innovation for Biosustainability (IB-S), University of Minho, Braga, Portugal
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Phannaphat Choowong
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, University of Sydney, Sydney, Australia
| | - Pedro Soares
- Department of Biology, CBMA (Center of Molecular and Environmental Biology), University of Minho, Braga, Portugal
- Institute of Science and Innovation for Biosustainability (IB-S), University of Minho, Braga, Portugal
| | - Teresa Rito
- Department of Biology, CBMA (Center of Molecular and Environmental Biology), University of Minho, Braga, Portugal
- Institute of Science and Innovation for Biosustainability (IB-S), University of Minho, Braga, Portugal
| | - Joerg Eberhard
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, University of Sydney, Sydney, Australia
| | - Thilini N Jayasinghe
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, University of Sydney, Sydney, Australia.
- The Charles Perkins Centre, The University of Sydney, University of Sydney, Sydney, Australia.
| |
Collapse
|
247
|
Gund MP, Naim J, Lang J, Hannig M, Gärtner B, Halfmann A, Boros G, Rupf S. Detection of viable oral bacteria of the patient on the surgical mask of dentists. BDJ Open 2024; 10:4. [PMID: 38228600 DOI: 10.1038/s41405-023-00182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/18/2024] Open
Abstract
INTRODUCTION AND AIM Bioaerosols contaminate the personal protective equipment (PPE), especially masks. The PPE harbors microorganisms from various sources. However, no previous studies have investigated the specific sources of bacteria found on used masks and their correlation with those from the treated patient. SETTING, DESIGN, MATERIAL AND METHODS Intraoral samples from the patient were collected prior to dental aerosol-producing treatments using a nylon flock fiber swab. After treatment, the practitioner's mask was imprinted onto agar plates. MAIN OUTCOME METHODS Following cultivation, colony forming units were counted and identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). After the samples were analyzed, the intraoral samples as well as the mask samples were assessed for the presence of identical species, which were subsequently quantified. RESULTS 126 treatments were included. One species match occurred most frequently (26.2%), followed by two (11.9%%) and three or more (3.97%). In the intraoral samples, Neisseria subflava occurred most often, within mask samples Staphylococcus epidermidis were detected most. Staphylococcus aureus could be cultivated three times more often in intraoral samples than on the mask. DISCUSSION AND CONCLUSION Oral microorganisms originating from the patient's oral cavity can be found on the outside of masks. When using PPE during treatments, it should therefore always be in mind that potentially pathogenic microorganisms may land on the mask becoming a source of for itself.
Collapse
Affiliation(s)
- Madline Priska Gund
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany.
- Oral Surgery Clinic, German Armed Forces Central Hospital, Koblenz, Germany.
| | - Jusef Naim
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Janina Lang
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Matthias Hannig
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Barbara Gärtner
- Institute of Medical Microbiology and Hygiene, Department of Hospital Hygiene, Saarland University, Homburg, Germany
| | - Alexander Halfmann
- Institute of Medical Microbiology and Hygiene, Department of Hospital Hygiene, Saarland University, Homburg, Germany
| | - Gabor Boros
- Oral Surgery Clinic, German Armed Forces Central Hospital, Koblenz, Germany
| | - Stefan Rupf
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Synoptic Dentistry, Saarland University, Homburg, Germany
| |
Collapse
|
248
|
Britton TA, Wu C, Chen YW, Franklin D, Chen Y, Camacho MI, Luong TT, Das A, Ton-That H. The respiratory enzyme complex Rnf is vital for metabolic adaptation and virulence in Fusobacterium nucleatum. mBio 2024; 15:e0175123. [PMID: 38059640 PMCID: PMC10790702 DOI: 10.1128/mbio.01751-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE This paper illuminates the significant question of how the oral commensal Fusobacterium nucleatum adapts to the metabolically changing environments of several extra-oral sites such as placenta and colon to promote various diseases as an opportunistic pathogen. We demonstrate here that the highly conserved Rhodobacter nitrogen-fixation complex, commonly known as Rnf complex, is key to fusobacterial metabolic adaptation and virulence. Genetic disruption of this Rnf complex causes global defects in polymicrobial interaction, biofilm formation, cell growth and morphology, hydrogen sulfide production, and ATP synthesis. Targeted metabolomic profiling demonstrates that the loss of this respiratory enzyme significantly diminishes catabolism of numerous amino acids, which negatively impacts fusobacterial virulence as tested in a preterm birth model in mice.
Collapse
Affiliation(s)
- Timmie A. Britton
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Yi-Wei Chen
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Dana Franklin
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Yimin Chen
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Martha I. Camacho
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Truc T. Luong
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
249
|
Aguirre-García MM, Amedei A, Hernández-Ruiz P, Gómez-García AP, Niccolai E, Moreno-Rodríguez AM, Pinto-Cardoso S, Alviter-Plata A, Escalona-Montaño AR, Ordaz-Robles ER, González-Salazar MDC, Springall Del Villar R, Berrios-Bárcenas EA, Ávila-Vanzzini N. Cytokine and microbiota profiles in obesity-related hypertension patients. Front Cell Infect Microbiol 2024; 13:1325261. [PMID: 38292856 PMCID: PMC10824975 DOI: 10.3389/fcimb.2023.1325261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Systemic arterial hypertension is linked to a heightened risk of cardiovascular diseases on a global scale. In Mexico, nearly half of adults in vulnerable conditions experience hypertension. Imbalance in the oral and intestinal microbiota composition has been observed in patients with hypertension, documented by a decrease of bacteria producing short-chain fatty acids, which play a critical role in blood pressure regulation. AIM To examine the cytokines' profile and assess the characteristics of oral and gut microbiota in obesity-related hypertension in Mexican patients. METHODS A cross-sectional, observational, and analytical study was carried out. Twenty-two patients were categorized by their body mass index (BMI) as overweight and obese, and the diagnosis of primary hypertension. DNA from supragingival dental plaque and feces samples was used to carry out 16S rRNA sequencing. Additionally, 13 cytokines were quantified. RESULTS In the oral microbiota, Kluyvera was found to be significantly enriched in obese compared to overweight patients. Instead, the gut microbiota was dominated by Firmicutes. However, the correlation between certain genera and proinflammatory cytokines was noted. CONCLUSION This exploratory study provides insights into the complex relationship between the oral and gut microbiota and their association with systemic inflammation in obesity-related hypertension.
Collapse
Affiliation(s)
- María Magdalena Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología "Ignacio Chávez, Ciudad de México, Mexico
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Paulina Hernández-Ruiz
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología "Ignacio Chávez, Ciudad de México, Mexico
| | - Ana Pamela Gómez-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología "Ignacio Chávez, Ciudad de México, Mexico
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Aura M. Moreno-Rodríguez
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología "Ignacio Chávez, Ciudad de México, Mexico
| | - Sandra Pinto-Cardoso
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, Mexico
| | - Adriana Alviter-Plata
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología "Ignacio Chávez, Ciudad de México, Mexico
| | - Alma R. Escalona-Montaño
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología "Ignacio Chávez, Ciudad de México, Mexico
| | - Erick R. Ordaz-Robles
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología "Ignacio Chávez, Ciudad de México, Mexico
| | - María del C. González-Salazar
- Outpatient Clinic, Cardiovascular Risk Factors Clinic, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico
| | | | - Enrique A. Berrios-Bárcenas
- Outpatient Clinic, Cardiovascular Risk Factors Clinic, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico
| | - Nydia Ávila-Vanzzini
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología "Ignacio Chávez, Ciudad de México, Mexico
| |
Collapse
|
250
|
Spatafora G, Li Y, He X, Cowan A, Tanner ACR. The Evolving Microbiome of Dental Caries. Microorganisms 2024; 12:121. [PMID: 38257948 PMCID: PMC10819217 DOI: 10.3390/microorganisms12010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Dental caries is a significant oral and public health problem worldwide, especially in low-income populations. The risk of dental caries increases with frequent intake of dietary carbohydrates, including sugars, leading to increased acidity and disruption of the symbiotic diverse and complex microbial community of health. Excess acid production leads to a dysbiotic shift in the bacterial biofilm composition, demineralization of tooth structure, and cavities. Highly acidic and acid-tolerant species associated with caries include Streptococcus mutans, Lactobacillus, Actinomyces, Bifidobacterium, and Scardovia species. The differences in microbiotas depend on tooth site, extent of carious lesions, and rate of disease progression. Metagenomics and metatranscriptomics not only reveal the structure and genetic potential of the caries-associated microbiome, but, more importantly, capture the genetic makeup of the metabolically active microbiome in lesion sites. Due to its multifactorial nature, caries has been difficult to prevent. The use of topical fluoride has had a significant impact on reducing caries in clinical settings, but the approach is costly; the results are less sustainable for high-caries-risk individuals, especially children. Developing treatment regimens that specifically target S. mutans and other acidogenic bacteria, such as using nanoparticles, show promise in altering the cariogenic microbiome, thereby combatting the disease.
Collapse
Affiliation(s)
- Grace Spatafora
- Biology and Program in Molecular Biology and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Yihong Li
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY 14853, USA;
| | - Xuesong He
- ADA-Forsyth Institute, Cambridge, MA 02142, USA;
| | - Annie Cowan
- The Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | | |
Collapse
|