201
|
Zhao X, Liu TG, Chen H, Chen X, Zhu L, Wen J, Gu D. From bioinformatics to clinical application: A new strategy in CRP detection with peptide aptamer. J Pharm Biomed Anal 2025; 261:116820. [PMID: 40139042 DOI: 10.1016/j.jpba.2025.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
C-Reactive protein (CRP) is a key biomarker for evaluating inflammation levels and estimating cardiovascular risk. However, current CRP detection methods rely on monoclonal antibodies (mAb), which possess shortcomings such as a lengthy preparation cycle, high cost, and poor repeatability. To address these challenges, we explored the potential of peptide aptamers as an alternative to mAb for CRP detection. Using some bioinformatics approaches, we designed and optimized peptide aptamers, selecting the dominant peptide aptamer C9m (KWRWRFRLSR) through experimental validation for its specific recognition of CRP. We then established a sandwich ELISA detection system combining C9m with CRP mAb. This system demonstrated a detection limit of 22.275 ng/mL CRP and exhibited excellent specificity, with no cross-reactivity observed with human serum albumin or γ-globulin. The method also showed high reproducibility, with intra- and inter-assay coefficients of variation (CV) less than 15 %, meeting laboratory testing standards. Furthermore, comparison with clinically used immunoturbidimetry revealed high consistency (r = 0.9891).
Collapse
Affiliation(s)
- Xiaona Zhao
- Guangxi University of Chinese Medicine, Nanning 530004, China; Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Tong Gong Liu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Hongfang Chen
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China; School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Xi Chen
- Medical Department, Shenzhen Luohu People's Hospital, Shenzhen 518035, China
| | - Liwen Zhu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China; School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518035, China
| | - Jie Wen
- Guangxi University of Chinese Medicine, Nanning 530004, China; Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Dayong Gu
- Guangxi University of Chinese Medicine, Nanning 530004, China; Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| |
Collapse
|
202
|
Huang S, Gu D, Xiong W. Exploring the functional and prognostic roles of EPHX4 in pancreatic cancer: Insights from bioinformatics and experimental validation. Gene 2025; 959:149504. [PMID: 40258406 DOI: 10.1016/j.gene.2025.149504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Epoxide hydrolase-4 (EPHX4) belongs to the epoxide hydrolase enzyme family, but its biological function remains unclear, especially its potential involvement in the development of pancreatic tumours. This research sought to examine the function of EPHX4 in pancreatic adenocarcinoma (PAAD). METHODS The expression of EPHX4 across cancers was examined through The Cancer Genome Atlas (TCGA). Bioinformatics was employed, leveraging multiple databases to investigate EPHX4 gene expression in pancreatic cancer and its association with survival prognosis, functional enrichment, immune infiltration, tumour mutation load, and drug sensitivity, among other variables. To evaluate EPHX4 expression in PAAD cells, Western blotting and reverse transcription quantitative PCR were used. A series of in vitro functional experiments was performed to assess the proliferation, migration, and invasion of PAAD cells. RESULTS EPHX4 expression was markedly elevated in a number of malignancies, including PAAD, and was associated with patient sex, clinical stage, and metastasis to the lymph nodes. High EPHX4 expression was significantly associated with a worse outcome in PAAD patients. According to functional and enrichment studies, EPHX4 is involved in many signalling pathways linked to cancer. The study of immune infiltration revealed that EPHX4 was connected to the existence of a variety of immune cells inside the tumour. Our study revealed that EPHX4 knockdown significantly decreased PAAD cell migration, proliferation, and invasion. CONCLUSION EPHX4 is highly expressed in PAAD and independently predicts poor survival. Functional experiments demonstrate its tumor-promoting effects. Its involvement in multiple cancer-related signaling pathways and immune regulation mechanisms highlights the dual prognostic and therapeutic potential of EPHX4 in PAAD.
Collapse
Affiliation(s)
- Shaoyang Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Dandan Gu
- Department of Gastroenterology, Northeast Yunnan Regional Central Hospital, Zhaotong 657000, China
| | - Wei Xiong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali 671000, China; Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, College of Basic Medical Sciences, Dali University, Dali 671000, China.
| |
Collapse
|
203
|
Conlon MT, Huang JY, Gerner MY. Lymphatic chain gradients regulate the magnitude and heterogeneity of T cell responses to vaccination. J Exp Med 2025; 222:e20241311. [PMID: 40304721 PMCID: PMC12042774 DOI: 10.1084/jem.20241311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/18/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Upon activation, T cells proliferate and differentiate into diverse populations, including highly differentiated effector and memory precursor subsets. Initial diversification is influenced by signals sensed during T cell priming within lymphoid tissues. However, the rules governing how cellular heterogeneity is spatially encoded in vivo remain unclear. Here, we show that immunization establishes concentration gradients of antigens and inflammation across interconnected chains of draining lymph nodes (IC-LNs). While T cells are activated at all sites, individual IC-LNs elicit divergent responses: proximal IC-LNs favor the generation of effector cells, whereas distal IC-LNs promote formation of central memory precursor cells. Although both proximal and distal sites contribute to anamnestic responses, T cells from proximal IC-LNs preferentially provide early effector responses at inflamed tissues. Conversely, T cells from distal IC-LNs demonstrate an enhanced capacity to generate long-lasting responses to chronic antigens in cancer settings, including after checkpoint blockade therapy. Therefore, formation of spatial gradients across lymphatic chains following vaccination regulates the magnitude, heterogeneity, and longevity of T cell responses.
Collapse
Affiliation(s)
- Michael T. Conlon
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jessica Y. Huang
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Y. Gerner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
204
|
Sun IH, Qualls AE, Yin HS, Wang J, Arvedson MP, Germino J, Horner NK, Zhong S, Du J, Valdearcos M, Ntranos V, Locksley RM, Ricardo-Gonzalez RR, Gardner JM. RORγt eTACs mediate oral tolerance and Treg induction. J Exp Med 2025; 222:e20250573. [PMID: 40298935 PMCID: PMC12039581 DOI: 10.1084/jem.20250573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
The immune system must distinguish pathogens from innocuous dietary antigens, but the precise mechanisms and cellular actors remain unclear. Here, we demonstrate that RORγt-lineage APCs are required for oral tolerance. Using lineage tracing and single-cell sequencing, we show these APCs consist of three principal populations: type 3 innate lymphoid cells (ILC3s), RORγt-lineage dendritic cells, and cells expressing Aire called RORγt eTACs (R-eTACs)-also known as Janus or Thetis cells. We show that R-eTACs, but not ILC3s, are required for oral tolerance induction. We find R-eTACs are of probable myeloid origin and uniquely express integrin β8 (Itgb8). Both MHCII and Itgb8 expression in RORγt-lineage cells are necessary to induce food-specific regulatory T cells. Mice lacking R-eTACs or with deletion of MHCII or Itgb8 in the RORγt lineage fail to generate Tregs and instead develop a T-follicular helper response with elevated antigen-specific antibodies. These findings establish R-eTACs as critical mediators of oral tolerance and suggest novel cellular targets to modulate immune tolerance.
Collapse
MESH Headings
- Animals
- T-Lymphocytes, Regulatory/immunology
- Immune Tolerance/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Mice
- Mice, Inbred C57BL
- Dendritic Cells/immunology
- Transcription Factors/metabolism
- Mice, Knockout
- AIRE Protein
- Integrin beta Chains/metabolism
- Integrin beta Chains/genetics
- Integrin beta Chains/immunology
- Cell Lineage
- Immunity, Innate
Collapse
Affiliation(s)
- Im-Hong Sun
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Anita E. Qualls
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Han S. Yin
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jiaxi Wang
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew P. Arvedson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Joe Germino
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Nolan K. Horner
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Sheng Zhong
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Juan Du
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Valdearcos
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vasilis Ntranos
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Richard M. Locksley
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- University of California, Howard Hughes Medical Institute, San Francisco, San Francisco, CA, USA
| | | | - James M. Gardner
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
205
|
Castagnoli R, Pala F, Subramanian P, Oguz C, Schwarz B, Lim AI, Burns AS, Fontana E, Bosticardo M, Corsino C, Angelova A, Delmonte OM, Kenney H, Riley D, Smith G, Ott de Bruin L, Oikonomou V, Dos Santos Dias L, Fink D, Bohrnsen E, Kimzey CD, Marseglia GL, Alva-Lozada G, Bergerson JR, Brett A, Brigatti KW, Dimitrova D, Dutmer CM, Freeman AF, Ale H, Holland SM, Licciardi F, Pasic S, Poskitt LE, Potts DE, Dasso JF, Sharapova SO, Strauss KA, Ward BR, Yilmaz M, Kuhns DB, Lionakis MS, Daley SR, Kong HH, Segre JA, Villa A, Pittaluga S, Walter JE, Vujkovic-Cvijin I, Belkaid Y, Notarangelo LD. Immunopathological and microbial signatures of inflammatory bowel disease in partial RAG deficiency. J Exp Med 2025; 222:e20241993. [PMID: 40314722 PMCID: PMC12047384 DOI: 10.1084/jem.20241993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/16/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
Partial RAG deficiency (pRD) can manifest with systemic and tissue-specific immune dysregulation, with inflammatory bowel disease (IBD) in 15% of the patients. We aimed at identifying the immunopathological and microbial signatures associated with IBD in patients with pRD and in a mouse model of pRD (Rag1w/w) with spontaneous development of colitis. pRD patients with IBD and Rag1w/w mice showed a systemic and colonic Th1/Th17 inflammatory signature. Restriction of fecal microbial diversity, abundance of pathogenic bacteria, and depletion of microbial species producing short-chain fatty acid were observed, which were associated with impaired induction of lamina propria peripheral Treg cells in Rag1w/w mice. The use of vedolizumab in Rag1w/w mice and of ustekinumab in a pRD patient were ineffective. Antibiotics ameliorated gut inflammation in Rag1w/w mice, but only bone marrow transplantation (BMT) rescued the immunopathological and microbial signatures. Our findings shed new light in the pathophysiology of gut inflammation in pRD and establish a curative role for BMT to resolve the disease phenotype.
Collapse
Affiliation(s)
- Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Poorani Subramanian
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Schwarz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Burns
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Corsino
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angelina Angelova
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deanna Riley
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grace Smith
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Ott de Bruin
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Leiden University Medical Center, Leiden, Netherlands
| | - Vasileios Oikonomou
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lucas Dos Santos Dias
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danielle Fink
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Eric Bohrnsen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Cole D. Kimzey
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Guisela Alva-Lozada
- Allergy and Immunology Division Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Jenna R.E. Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Brett
- Hospital Pediátrico, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Clínica Universitária de Pediatria, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | | | - Dimana Dimitrova
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute of the National Institutes of Health, Bethesda, MD, USA
| | - Cullen M. Dutmer
- Allergy and Immunology, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanadys Ale
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children’s Hospital, Memorial Healthcare System, Hollywood, FL, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Licciardi
- Immuno-reumatologia, Pediatria Specialistica Universitaria, Ospedale Infantile Regina Margherita, Torino, Italy
| | - Srdjan Pasic
- Department of Pediatric Immunology, Mother and Child Health Institute, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | | | - David E. Potts
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Joseph F. Dasso
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Svetlana O. Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Brant R. Ward
- Division of Allergy and Immunology, Children’s National Hospital, Washington, DC, USA
| | - Melis Yilmaz
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Douglas B. Kuhns
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen R. Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julia A. Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jolan E. Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Immunology, Institut Pasteur, Paris, France
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
206
|
Johansson Å, Venkita Subramani M, Yilmaz B, Nyström EE, Layunta E, Arike L, Sommer F, Rosenstiel P, Vereecke L, Mannerås-Holm L, Wullaert A, Pelaseyed T, Johansson ME, Birchenough GM. Neonatal microbiota colonization primes maturation of goblet cell-mediated protection in the pre-weaning colon. J Exp Med 2025; 222:e20241591. [PMID: 40323318 PMCID: PMC12051479 DOI: 10.1084/jem.20241591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/06/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Regulated host-microbe interactions are a critical aspect of lifelong health. Colonic goblet cells protect from microorganisms via the generation of a mucus barrier structure. Bacteria-sensing sentinel goblet cells provide secondary protection by orchestrating mucus secretion when microbes breach the mucus barrier. Mucus deficiencies in germ-free mice implicate a role for the microbiota in programming barrier generation, but its natural ontogeny remains undefined. We now investigate the mucus barrier and sentinel goblet cell development in relation to postnatal colonization. Combined in vivo and ex vivo analyses demonstrate rapid and sequential microbiota-dependent development of these primary and secondary goblet cell protective functions, with dynamic changes in mucus processing dependent on innate immune signaling via MyD88 and development of functional sentinel goblet cells dependent on the NADPH/dual oxidase family member Duox2. Our findings identify new mechanisms of microbiota-goblet cell regulatory interaction and highlight the critical importance of the pre-weaning period for the normal development of protective systems that are key legislators of host-microbiota interaction.
Collapse
Affiliation(s)
- Åsa Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mahadevan Venkita Subramani
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bahtiyar Yilmaz
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Elisabeth E.L. Nyström
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Elena Layunta
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Liisa Arike
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Felix Sommer
- Institute of Clinical & Molecular Biology, University of Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical & Molecular Biology, University of Kiel, Kiel, Germany
| | - Lars Vereecke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Louise Mannerås-Holm
- Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Andy Wullaert
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Biomedical Sciences, Cell Death Signalling Lab, University of Antwerp, Antwerp, Belgium
| | - Thaher Pelaseyed
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Malin E.V. Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - George M.H. Birchenough
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
207
|
Xu J, Jia Z, Zhao X, Wang L, Jin G, Li Z, Yin N, Li Y, Peng M. BCOR and ZC3H12A suppress a core stemness program in exhausted CD8+ T cells. J Exp Med 2025; 222:e20241133. [PMID: 40327039 PMCID: PMC12054362 DOI: 10.1084/jem.20241133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/25/2024] [Accepted: 04/16/2025] [Indexed: 05/07/2025] Open
Abstract
In chronic viral infections, sustained CD8+ T cell response relies on TCF1+ precursor-exhausted T cells (TPEX) exhibiting stem-like properties. TPEX self-renew and respond to PD-1 blockade, underscoring their paramount importance. However, strategies for effectively augmenting TPEX remain limited. Here, we demonstrate that ZC3H12A deficiency initiates a stemness program in TPEX but also increases cell death, whereas BCOR deficiency predominantly promotes TPEX proliferation. Consequently, co-targeting of both BCOR and ZC3H12A imparts exceptional stemness and functionality to TPEX, thereby enhancing viral control. Mechanistically, BCOR and ZC3H12A collaboratively suppress a core stemness program in TPEX characterized by heightened expression of ∼216 factors. While TCF1 plays a role, this core stemness program relies on novel factors, including PDZK1IP1, IFIT3, PIM2, LTB, and POU2F2. Crucially, overexpressing POU2F2 robustly boosts TPEX and enhances antiviral immunity. Thus, a core stemness program exists in exhausted T cells, jointly repressed by BCOR and ZC3H12A, robustly controlling TPEX differentiation and providing new targets for addressing T cell exhaustion.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory of Immunological Research of Allergy, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zeran Jia
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- IDG/McGovern Institute for Brain Research, State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xiaocui Zhao
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory of Immunological Research of Allergy, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lixia Wang
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory of Immunological Research of Allergy, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Gang Jin
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory of Immunological Research of Allergy, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhuoyang Li
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory of Immunological Research of Allergy, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Na Yin
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory of Immunological Research of Allergy, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yinqing Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- IDG/McGovern Institute for Brain Research, State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Min Peng
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory of Immunological Research of Allergy, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
208
|
Yang J, Ye J, Li R, Li R, Liu X, Han J, Yang Y, Ran N, Yuan M, Zhang Z, Chong W, Ji X. Nanozyme-functionalized microalgal biohybrid microrobots in inflammatory bowel disease treatment. Biomaterials 2025; 319:123231. [PMID: 40037206 DOI: 10.1016/j.biomaterials.2025.123231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/24/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Oral drugs are the most direct and effective strategy for the treatment of gastrointestinal diseases. However, the harsh environment of gastric juice, lack of targeted lesion sites, and rapid metabolism present difficulties in the development of oral drugs. This research introduces a nanozyme-functionalized microalgal biohybrid microrobot (Hp@CS-PNAs@PAA) with a novel mechanism for treating inflammatory bowel disease (IBD) by leveraging the therapeutic advantages of microalgae and nanozymes. The microrobot uniquely combines the natural antioxidant capacity of Hematococcus pluvialis (Hp) microalgae and the catalytically active enzyme-mimicking properties of platinum-based nanoparticle assemblies (PNAs), enabling enhanced scavenging of reactive oxygen species (ROS) and targeted anti-inflammatory effects. Through its layered design, the Hp@CS-PNAs@PAA microrobot can navigate the gastrointestinal tract, resist degradation, and target inflamed colon tissues via electrostatic interactions, achieving extended retention and prolonged therapeutic action at inflammation sites. This study demonstrated that the synergistic anti-inflammatory effects of the microrobot derive from its ability to reduce ROS, inhibit proinflammatory cytokines, and promote the expression of tight junction proteins critical for preserving the integrity of the intestinal barrier. Both in vitro and in vivo tests in a DSS-induced colitis mouse model revealed that this system effectively restores damaged tissues by reducing oxidative stress and inflammation, indicating significant potential for clinical application in the management of colitis and similar inflammatory diseases.
Collapse
Affiliation(s)
- Jinmei Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jiamin Ye
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Runtan Li
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Ruiyan Li
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Xinting Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jingwen Han
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yiwen Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Nana Ran
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Mengyu Yuan
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Wei Chong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China.
| | - Xiaoyuan Ji
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China; Medical College, Linyi University, Linyi, 276000, China.
| |
Collapse
|
209
|
You X, Niu L, Fu J, Ge S, Shi J, Zhang Y, Zhuang P. Bidirectional regulation of the brain-gut-microbiota axis following traumatic brain injury. Neural Regen Res 2025; 20:2153-2168. [PMID: 39359076 PMCID: PMC11759007 DOI: 10.4103/nrr.nrr-d-24-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/20/2024] [Accepted: 05/11/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00002/figure1/v/2024-09-30T120553Z/r/image-tiff Traumatic brain injury is a prevalent disorder of the central nervous system. In addition to primary brain parenchymal damage, the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury; however, the underlying pathogenesis remains unclear, and effective intervention methods are lacking. Intestinal dysfunction is a significant consequence of traumatic brain injury. Being the most densely innervated peripheral tissue in the body, the gut possesses multiple pathways for the establishment of a bidirectional "brain-gut axis" with the central nervous system. The gut harbors a vast microbial community, and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal, hormonal, and immune pathways. A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications. We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury, with a specific focus on the complex biological processes of peripheral nerves, immunity, and microbes triggered by traumatic brain injury, encompassing autonomic dysfunction, neuroendocrine disturbances, peripheral immunosuppression, increased intestinal barrier permeability, compromised responses of sensory nerves to microorganisms, and potential effector nuclei in the central nervous system influenced by gut microbiota. Additionally, we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury. This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the "brain-gut-microbiota axis."
Collapse
Affiliation(s)
- Xinyu You
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Niu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiafeng Fu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shining Ge
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangwei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanjun Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Pengwei Zhuang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
210
|
Koreeda T, Muraoka H, Sato Y. A newly identified pathology of episodic angioedema with hypereosinophilia (Gleich syndrome) revealed by nultiomics analysis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100465. [PMID: 40271157 PMCID: PMC12013126 DOI: 10.1016/j.jacig.2025.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/16/2025] [Accepted: 02/01/2025] [Indexed: 04/25/2025]
Abstract
Background Episodic angioedema with eosinophilia (Gleich syndrome) is a rare disease marked by periodic angioedema, fever, and severe eosinophilia, with limited understanding of its pathogenesis. Objective We sought to identify pathogenic factors contributing to severe Gleich syndrome through a comprehensive multiomics approach, using whole-genome sequencing (WGS) and RNA sequencing (RNA-seq). Methods A multiomics analysis was conducted on a 16- to 20-year-old female patient with severe Gleich syndrome, presenting with periodic high fever, extensive urticaria/eczema, and marked eosinophilia. The analysis included WGS and RNA-seq of blood samples. Results WGS revealed high-impact pathogenic mutations that have the potential to significantly alter gene function in 16 genes, including PR domain containing 16 (gene involved in transcriptional regulation). RNA-seq identified differentially expressed genes linked to immune response regulation and viral defense. Combined z-score analysis of WGS and RNA-seq highlighted angiotensin-converting enzyme as a key gene, with significant downregulation during disease progression that normalized with treatment. IFNG was also implicated. Conclusions The findings suggest that decreased angiotensin-converting enzyme expression, driven by PR domain containing 16 (gene involved in transcriptional regulation) mutations and altered IFNG expression, may contribute to increased bradykinin levels and activation of the arachidonic acid cascade, leading to the severe inflammation and angioedema characteristic of Gleich syndrome. This study underscores the utility of integrating WGS and RNA-seq data in elucidating the molecular basis of rare diseases and offers a foundation for developing therapeutic strategies for hypereosinophilic syndromes.
Collapse
Affiliation(s)
| | | | - Yasunori Sato
- Department of Preventive Medicine and Public Health, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
211
|
Wu J, Zhang F, Li Z, Gan L, Cao H, Cao H, Hao C, Sun Z, Wang W. Multiple omics-based machine learning reveals specific macrophage sub-clusters in renal ischemia-reperfusion injury and constructs predictive models for transplant outcomes. Comput Biol Chem 2025; 117:108421. [PMID: 40086342 DOI: 10.1016/j.compbiolchem.2025.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is closely associated with numerous severe postoperative complications, including acute rejection, delayed graft function (DGF) and graft failure. Macrophages are central to modulating the aseptic inflammatory response during the IRI process. The objective of this study is to conduct an analysis of the developmental and differentiation characteristics of macrophages in IRI, identify distinct molecules subtypes of IRI, and establish robust predictive strategies for DGF and graft survival. METHOD We analyzed scRNA-Seq data from GEO database to identify macrophage sub-clusters specific to renal IRI, and use the hdWGCNA algorithm to screen gene modules closely associated with this sub-cluster. Integrating these module genes with the results from bulk RNA-Seq differential analysis to obtain hub genes, and delineating the different IRI molecular subtypes through consensus clustering based on the expression profiles of hub genes. Innovatively, the gene expression matrix was transformed into a unique graphic pixel module and applied advanced computer vision processing algorithms to construct a DGF predictive model. Additionally, we also employed 111 combinations of 10 machine learning algorithms to develop a predictive signature for graft survival. Finally, we validated the expression of the key gene ANXA1 in a mouse IRI model using qRT-PCR, WB, and IHC. RESULT This study successfully identified a subset of macrophages closely associated with renal IRI, and cell communication and pseudo-time analysis implied that they may be instrumental in both the maintenance and exacerbation of the IRI process. Utilizing the expression patterns of hub genes, recipients can be clustered into two subtypes (CI and C2) with unique clinical and molecular features. We innovatively applied deep learning algorithms to construct a model for DGF prediction, which can effectively mitigate batch effects among IRI recipients. Compared to other existing models, our model demonstrated superior performance with AUC of 0.816 and 0.845 in the training and validation set. Furthermore, we also used the random survival forest algorithm to develop a high-precision predictive signature for graft failure. The mouse IRI model confirmed a marked upregulation of ANXA1 mRNA and protein expression in renal tissue following IRI. CONCLUSION This study successfully revealed the macrophage sub-cluster closely associated with renal IRI. Two distinct IRI subgroups with different characteristics were identified and robust strategies were constructed for predicting DGF and graft survival, which can offer potential therapeutic targets for the treatment of IRI and reference for early prevention of various postoperative complications.
Collapse
Affiliation(s)
- Jiyue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Feilong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Zhen Li
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Lijian Gan
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Haoyuan Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Huawei Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Changzhen Hao
- Department of Urology, Peking University International Hospital, Beijing, China.
| | - Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China.
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China.
| |
Collapse
|
212
|
Huang R, Wu Y, Shen F, Chen S, Yang X, Lin Y, Fang Y, Shen J. Manganese-coordinated nanoparticles loaded with CHK1 inhibitor dually activate cGAS-STING pathway and enhance efficacy of immune checkpoint therapy. Biomaterials 2025; 319:123199. [PMID: 40009899 DOI: 10.1016/j.biomaterials.2025.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/26/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Notable advancements have been made in utilizing immune checkpoint blockade (ICB) for the treatment of various cancers. However, the overall response rates and therapeutic effectiveness remain unsatisfactory. One cause is the inadequate immune environment characterized by poor T cell infiltration in tumors. To address these limitations, enhancing immune infiltration is crucial for optimizing the therapeutic efficacy of ICB. Activating the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is essential for initiating immune response and has become a potential target for developing combination therapies with ICB. In this study, we designed and fabricated manganese-containing nanoparticles loaded with the CHK1 inhibitor PF477736, which were subsequently encapsulated with macrophage membrane (PF/MMSN@MPM). This innovative design achieved excellent tumor targeting and demonstrated potent antitumor effects. The combination therapy dually amplified the cGAS-STING pathway, causing a cascade of enhanced therapeutic effects against tumors. Furthermore, single-cell mass cytometry (CyTOF) analysis revealed that PF/MMSN@MPM enhanced the activation and infiltration of immune cells. Moreover, the combination of PF/MMSN@MPM with anti-PD-1 (αPD-1) exhibited a stronger therapeutic effect compared to αPD-1 alone. PF/MMSN@MPM precisely and synergistically activated the cGAS-STING pathway, significantly improving therapeutic efficacy of ICB, and offering promising potential for tumor therapy.
Collapse
Affiliation(s)
- Rui Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China; Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yijia Wu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China; Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feiyang Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China; Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuai Chen
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyu Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China; Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yao Lin
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Fang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China; Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China; Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
213
|
Gao B, Ni H, Lai J, Gao N, Luo X, Wang Y, Chen Y, Zhao J, Yu Z, Zhang J, Cai W, Yang G. Macrophage response to fibrin structure mediated by Tgm2-dependent mitochondrial mechanosensing. Bioact Mater 2025; 50:382-395. [PMID: 40331213 PMCID: PMC12051126 DOI: 10.1016/j.bioactmat.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
Following an injury at the implantation position, blood-material interactions form a fibrin architecture, which serves as the initial activator of foreign body response (FBR). However, there is limited knowledge regarding how the topography of fibrin architectures regulates macrophage behavior in mitigating FBR. Mechanical cues of the microenvironment have been reported to shape immune cell functions. Here, we investigated macrophage mechanobiology at the organelle level by constructing heterogeneous fibrin networks. Based on findings in vivo, we demonstrated that adhesion-mediated differentiation of mitochondrial function modulated macrophage polarization. The finite activation of integrin signaling upregulated transglutaminase 2 (Tgm2) in a trans-manner, augments PGC1α-mediated mitochondrial biogenesis. Our study highlighted the previously overlooked spatial structures of host proteins adsorbed on material surfaces, advocating for a paradigm shift in material design strategies, from focusing solely on physical properties to considering the modification of host proteins.
Collapse
Affiliation(s)
- Bicong Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Haifeng Ni
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junhong Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Ning Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Xinxin Luo
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yani Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jiaying Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jing Zhang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenjin Cai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
214
|
Guo X, Zheng Q, Gao W, Xiao Y, Shi L, Lin F, Xiong Y, Zhang Y, Xu Q, Wang L, He S, Zheng F. Synergistic microglial modulation by laminarin-based platinum nanozymes for potential intracerebral hemorrhage therapy. Biomaterials 2025; 319:123212. [PMID: 40031123 DOI: 10.1016/j.biomaterials.2025.123212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/26/2025] [Accepted: 02/23/2025] [Indexed: 03/05/2025]
Abstract
Abnormal microglial activation increases inflammation, causing significant brain damage after intracerebral hemorrhage (ICH). To aid recovery, treatments should regulate oxidative stress and inhibit the M1-like phenotype (pro-inflammation) of microglia. Recently, antioxidant nanozymes have emerged as tools for modulating microglial states, but detailed studies on their role in ICH treatment are limited. To address this, we developed an ultra-small (3-4 nm) laminarin-modified platinum nanozyme (Pt@LA) for the synergistic regulation of microglial polarization, offering a novel therapeutic strategy for ICH. Pt@LA effectively scavenges reactive oxygen species (ROS) through superoxide dismutase (SOD) and catalase (CAT)-like activities. Laminarin may inhibit the Dectin-1 receptor on microglia and its inflammatory pathway, Syk/NF-κB, reducing neuroinflammation. In vitro, Pt@LA decreased pro-inflammatory microglia and cytokine expression by inhibiting the Dectin-1/Syk/NF-κB and ROS-mediated NF-κB pathways. Furthermore, Pt@LA protected neurons, inhibited glial scar formation, and improved neurological function in ICH rats. Overall, this study presents Pt nanozymes based on naturally extracted laminarin and explores their application in alleviating oxidative stress and neuroinflammation after ICH, bridging nanozyme research and neuroscience.
Collapse
Affiliation(s)
- Xiumei Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China; Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China; Medical Center for Neurological Disorders, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China; Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Qionghua Zheng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Wen Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China; Medical Center for Neurological Disorders, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China; Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yinfeng Xiao
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China; Medical Center for Neurological Disorders, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Liyong Shi
- Department of Pulmonary and Critical Care Medicine, Fujian Key Laboratory of Lung Stem Cell, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Fenglin Lin
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China; Medical Center for Neurological Disorders, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Yin Zhang
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Qiuxia Xu
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Lingxing Wang
- Medical Center for Neurological Disorders, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China; Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Shaobin He
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China; Department of Pulmonary and Critical Care Medicine, Fujian Key Laboratory of Lung Stem Cell, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China; Medical Center for Neurological Disorders, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
| |
Collapse
|
215
|
Song R, Yin S, Wu J, Yan J. Neuronal regulated cell death in aging-related neurodegenerative diseases: key pathways and therapeutic potentials. Neural Regen Res 2025; 20:2245-2263. [PMID: 39104166 PMCID: PMC11759035 DOI: 10.4103/nrr.nrr-d-24-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Regulated cell death (such as apoptosis, necroptosis, pyroptosis, autophagy, cuproptosis, ferroptosis, disulfidptosis) involves complex signaling pathways and molecular effectors, and has been proven to be an important regulatory mechanism for regulating neuronal aging and death. However, excessive activation of regulated cell death may lead to the progression of aging-related diseases. This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases. Notably, the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases. These forms of cell death exacerbate disease progression by promoting inflammation, oxidative stress, and pathological protein aggregation. The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms, with a focus on ferroptosis, cuproptosis, and disulfidptosis. For instance, FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation, while copper mediates glutathione peroxidase 4 degradation, enhancing ferroptosis sensitivity. Additionally, inhibiting the Xc- transport system to prevent ferroptosis can increase disulfide formation and shift the NADP + /NADPH ratio, transitioning ferroptosis to disulfidptosis. These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms. In conclusion, identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Run Song
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Shiyi Yin
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Jiannan Wu
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
216
|
Trier NH, Zivlaei N, Ostrowski SR, Sørensen E, Larsen M, Slibinskas R, Ciplys E, Frederiksen JL, Houen G. Virus-specific antibody responses in severe acute respiratory syndrome coronavirus 2-infected and vaccinated individuals. Immunol Lett 2025; 274:107004. [PMID: 40157431 DOI: 10.1016/j.imlet.2025.107004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 03/06/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can have a serious course with many complications, especially in immunocompromised individuals. In such persons, other latent virus infections may contribute to disease pathology, in particular viruses which infect immune cells such as Epstein-Barr virus (EBV) and cytomegalovirus (CMV). METHODS In this study, serology-based assays were conducted to analyse antibody responses to SARS-CoV-2 spike protein (SP), EBV Epstein-Barr nuclear antigen (EBNA)-1 and CMV phosphoprotein (pp)52 in naturally SARS-CoV-2-infected individuals, non-infected healthy controls (HCs) and vaccinated healthy controls (VHCs) to identify an association between SARS-CoV-2 antibodies and EBV and CMV antibodies in order to determine whether latent EBV and CMV infected individuals are more prone to become infected with SARS-CoV-2. Moreover, SARS-CoV-2, EBV, and CMV antibody responses were characterized in serum from patients with relapsing-remitting multiple sclerosis (RRMS), a chronic inflammatory disease strongly associated with EBV infections, to determine whether the serologic virus antibody profile varies in immunocompromised RRMS individuals upon SARS-CoV-2 vaccinations compared to VHCs. RESULTS Significantly elevated SP IgG, IgM and IgA levels were identified in SARS-CoV-2-infected immunocompetent individuals when compared to non-infected HCs. However, no correlation was found to serum antibodies between SARS-CoV-2, EBV, and CMV in individuals infected with SARS-CoV-2 and in VHCs, suggesting that latent infections with neither EBV nor CMV associates to SARS-CoV-2 infection. Moreover, no significant difference in SP IgG, IgA and IgM levels was observed between vaccinated RRMS patients and VHCs, indicating that the immune system of immune deficient RRMS patients and VHCs respond identical to SARS-CoV-2 vaccinations. CONCLUSION Collectively, SARS-CoV-2 SP antibody levels reflect the vaccination and infection history and do not associate with EBV and CMV serostatus.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, Glostrup, Denmark.
| | - Nadia Zivlaei
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, Glostrup, Denmark.
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen OE, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, BLegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen OE, Denmark.
| | - Margit Larsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen OE, Denmark.
| | - Rimantas Slibinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Evaldas Ciplys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Jette Lautrup Frederiksen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, BLegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, Glostrup, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55 5230 Odense M, Denmark.
| |
Collapse
|
217
|
Zhang S, Hu W, Zhao Y, Liao Y, Zha K, Zhang W, Yu C, Liao J, Li H, Zhou W, Cao F, Mi B, Liu G. Bidirectional modulation of glycolysis using a multifunctional nanocomposite hydrogel promotes bone fracture healing in type 2 diabetes mellitus. Bioact Mater 2025; 50:152-170. [PMID: 40256330 PMCID: PMC12008547 DOI: 10.1016/j.bioactmat.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025] Open
Abstract
Fracture healing in patients with type 2 diabetes mellitus (T2D) is markedly impaired, characterized by a prolonged inflammation phase and defective osteoblast differentiation at the fracture site. In this study, we identified aberrant cellular glycolysis at T2D fracture sites, with bone marrow mesenchymal stem cells (BMSCs) exhibiting suppressed glycolysis and macrophages displaying enhanced glycolysis, mediated by the dysregulation of hypoxia-inducible factor-1α (HIF-1α). To rectify these metabolic imbalances, we developed a multifunctional nanocomposite PN@MHV hydrogel. Myricitrin, a flavonoid glycoside, forms the MHV hydrogel by cross-linking with HA-PBA and PVA via hydrogen bonds, and upregulates glycolysis through HIF-1α, thus promoting osteoblast differentiation under high glucose environment. To further regulate the inflammatory microenvironment, we incorporated nanoparticles loaded with PX-478, a HIF-1α specific inhibitor, into the hydrogel, with folic acid covalently modified to target proinflammatory M1 macrophages. This PN@MHV hydrogel bidirectionally regulated glycolysis via HIF-1α, enhancing osteoblast differentiation while attenuating macrophage-mediated inflammation. Comprehensive in vitro and in vivo experiments in a T2D fracture mouse model confirmed the hydrogel's ability to improve the inflammatory microenvironment and accelerate bone healing. Our findings underscore the therapeutic potential of targeting cellular glycolysis as a promising approach for enhancing fracture healing in diabetic patients.
Collapse
Affiliation(s)
- Shengming Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Weixian Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanzhi Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuheng Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chenyan Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiewen Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hui Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
218
|
Wang X, Niu X, Wang Y, Liu Y, Yang C, Chen X, Qi Z. C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 pathway as a therapeutic target and regulatory mechanism for spinal cord injury. Neural Regen Res 2025; 20:2231-2244. [PMID: 39104168 PMCID: PMC11759034 DOI: 10.4103/nrr.nrr-d-24-00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 08/07/2024] Open
Abstract
Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage. The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury. Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury, suggesting that this axis is a novel target and regulatory control point for treatment. This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis, along with the regenerative and repair mechanisms linking the axis to spinal cord injury. Additionally, we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis. This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs, along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs. Nevertheless, there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis. This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.
Collapse
Affiliation(s)
- Xiangzi Wang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaofei Niu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingkai Wang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yang Liu
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Cheng Yang
- Characteristic Medical Center of People’s Armed Police Forces, Tianjin, China
| | - Xuyi Chen
- Characteristic Medical Center of People’s Armed Police Forces, Tianjin, China
| | - Zhongquan Qi
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
- Fujian Maternity and Child Health Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
219
|
Gong Z, Zhou D, Wu D, Han Y, Yu H, Shen H, Feng W, Hou L, Chen Y, Xu T. Challenges and material innovations in drug delivery to central nervous system tumors. Biomaterials 2025; 319:123180. [PMID: 39985979 DOI: 10.1016/j.biomaterials.2025.123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
Central nervous system (CNS) tumors, encompassing a diverse array of neoplasms in the brain and spinal cord, pose significant therapeutic challenges due to their intricate anatomy and the protective presence of the blood-brain barrier (BBB). The primary treatment obstacle is the effective delivery of therapeutics to the tumor site, which is hindered by multiple physiological, biological, and technical barriers, including the BBB. This comprehensive review highlights recent advancements in material science and nanotechnology aimed at surmounting these delivery challenges, with a focus on the development and application of nanomaterials. Nanomaterials emerge as potent tools in designing innovative drug delivery systems that demonstrate the potential to overcome the limitations posed by CNS tumors. The review delves into various strategies, including the use of lipid nanoparticles, polymeric nanoparticles, and inorganic nanoparticles, all of which are engineered to enhance drug stability, BBB penetration, and targeted tumor delivery. Additionally, this review highlights the burgeoning role of theranostic nanoparticles, integrating therapeutic and diagnostic functionalities to optimize treatment efficacy. The exploration extends to biocompatible materials like biodegradable polymers, liposomes, and advanced material-integrated delivery systems such as implantable drug-eluting devices and microfabricated devices. Despite promising preclinical results, the translation of these material-based strategies into clinical practice necessitates further research and optimization.
Collapse
Affiliation(s)
- Zhenyu Gong
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China; Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Dairan Zhou
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, PR China
| | - Yaguang Han
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Hao Yu
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, PR China
| | - Haotian Shen
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Lijun Hou
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Tao Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| |
Collapse
|
220
|
Yu L, Shi H, Gao T, Xu W, Qian H, Jiang J, Yang X, Zhang X. Exomeres and supermeres: Current advances and perspectives. Bioact Mater 2025; 50:322-343. [PMID: 40276541 PMCID: PMC12020890 DOI: 10.1016/j.bioactmat.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Recent studies have revealed a great diversity and complexity in extracellular vesicles and particles (EVPs). The developments in techniques and the growing awareness of the particle heterogeneity have spurred active research on new particle subsets. Latest discoveries highlighted unique features and roles of non-vesicular extracellular nanoparticles (NVEPs) as promising biomarkers and targets for diseases. These nanoparticles are distinct from extracellular vesicles (EVs) in terms of their smaller particle sizes and lack of a bilayer membrane structure and they are enriched with diverse bioactive molecules particularly proteins and RNAs, which are widely reported to be delivered and packaged in exosomes. This review is focused on the two recently identified membraneless NVEPs, exomeres and supermeres, to provide an overview of their biogenesis and contents, particularly those bioactive substances linked to their bio-properties. This review also explains the concepts and characteristics of these nanoparticles, to compare them with other EVPs, especially EVs, as well as to discuss their isolation and identification methods, research interests, potential clinical applications and open questions.
Collapse
Affiliation(s)
- Li Yu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Hui Shi
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Tingxin Gao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
221
|
Liu Z, Wang Y, Dong Y, Wang H, Liang Z, Yue R, Zhou X. Trojan horse strategy and TfR/ LDLR-Mediated transcytosis determine the dissemination of mycobacteria in tuberculous meningoencephalitis. Microbiol Res 2025; 297:128172. [PMID: 40203495 DOI: 10.1016/j.micres.2025.128172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Tuberculous meningoencephalitis (TBM), caused by the Mycobacterium tuberculosis complex, stands as one of the most lethal infections affecting the central nervous system (CNS). The understanding of the mechanisms underlying the neuroinvasion of Mycobacterium bovis (M. bovis) remains limited. Our findings reveal that M. bovis could exploit host transferrin receptor (TfR)- and low-density lipoprotein receptor (LDLR)-mediated transcytosis, while simultaneously utilizing infected macrophages as vectors to traverse the blood-brain barrier (BBB). Infected macrophages accelerate the M. bovis' neuroinvasion and promote its proliferation and dissemination to various organs. Persistent infection disrupts BBB integrity by degrading tight junction proteins and upregulating intercellular cell adhesion molecule-1 (iCAM-1), facilitating macrophage adhesion and migration, which contribute to the pathogen's entry into the brain. This study established a murine TBM model by administering M. bovis through carotid artery injection, accurately mimicking the interactions between the pathogen and the BBB. These findings offer insights into the mechanisms of TBM and serve as a foundation for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ziyi Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuanzhi Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuhui Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Haoran Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhengmin Liang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ruichao Yue
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xiangmei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
222
|
Wu Y, Yang L, Jiang W, Zhang X, Yao Z. Glycolytic dysregulation in Alzheimer's disease: unveiling new avenues for understanding pathogenesis and improving therapy. Neural Regen Res 2025; 20:2264-2278. [PMID: 39101629 PMCID: PMC11759019 DOI: 10.4103/nrr.nrr-d-24-00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments. The current therapeutic strategies, primarily based on cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, offer limited symptomatic relief without halting disease progression, highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease. Recent studies have provided insights into the critical role of glycolysis, a fundamental energy metabolism pathway in the brain, in the pathogenesis of Alzheimer's disease. Alterations in glycolytic processes within neurons and glial cells, including microglia, astrocytes, and oligodendrocytes, have been identified as significant contributors to the pathological landscape of Alzheimer's disease. Glycolytic changes impact neuronal health and function, thus offering promising targets for therapeutic intervention. The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression. Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments, emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease.
Collapse
Affiliation(s)
- You Wu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lijie Yang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wanrong Jiang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xinyuan Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhaohui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
223
|
Lei X, Wang F, Zhang X, Huang J, Huang Y. The potential mechanisms by which Xiaoyao Powder may exert therapeutic effects on thyroid cancer were examined at various levels. Comput Biol Chem 2025; 117:108412. [PMID: 40056710 DOI: 10.1016/j.compbiolchem.2025.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Thyroid cancer (TC) is the most prevalent endocrine malignancy, with a rising incidence necessitating safer treatment strategies to reduce overtreatment and its side effects. Xiaoyao Powder (XYP), a widely used herbal formula, shows promise in treating TC. This study aims to investigate the mechanisms by which XYP may affect TC. METHODS The components of XYP were identified through database retrieval, and targets related to TC were collected to construct a target network for key screening. GEO dataset samples analyzed immune cells and identified significantly differentially expressed core genes (SDECGs). Based on SDECG expression and clustering, samples were classified for comparison. WGCNA was employed to identify gene modules linked to clinical characteristics. ML models screened characteristic genes and constructed a nomogram validated using another GEO dataset. MR methods explored causal relationships between genes and TC. RESULTS The top ten active components of XYP were identified, along with 27 SDECGs that exhibited significant differences in immune cell infiltration between TC patients and normal controls. The nomogram effectively predicted TC risk, validated through ROC curves. Key characteristic genes included SMIM1, PPP1R16A, KIAA1462, DNAJC22, and EFNA5. CONCLUSION XYP may treat TC by regulating SMIM1, PPP1R16A, KIAA1462, DNAJC22, EFNA5, and associated immune pathways; this provides theoretical support for its potential mechanisms.
Collapse
Affiliation(s)
- Xiaoli Lei
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feifei Wang
- Department of Quality Control, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, China
| | - Xinying Zhang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaxi Huang
- Department of Pharmacy, Huoqiu County First People's Hospital, Liuan, China
| | - Yanqin Huang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
224
|
Yu Z, Guo Y, Chen H, Wan W, Hu M, Li Y, Wei T, Chen Q. A phloem-limited unculturable bacterium induces mild xenophagy in insect vectors for persistent infection. Microbiol Res 2025; 297:128186. [PMID: 40262357 DOI: 10.1016/j.micres.2025.128186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Xenophagy is an important antibacterial defense mechanism that many organisms use to engulf intracellular pathogens. However, the mechanisms of xenophagy triggered by insect-borne plant bacteria are not well understood. Candidatus Liberibacter asiaticus (CLas) causes Huanglongbing, which poses a serious threat to citrus production. CLas is a phloem-limited unculturable bacterium that is transmitted by the Asian citrus psyllid in a persistent and propagative manner in nature. Here, we found that CLas infection in the gut of psyllids triggered a mild and anti-bacterial xenophagy. Xenophagy limited excessive propagation of CLas to maintain psyllid survival, because overload of CLas was detrimental to psyllid life. Furthermore, the outer membrane β-barrel protein (OMBB) of CLas is the key secreted protein that induces xenophagy in psyllids by interacting with ATG8 and ATG14. OMBB can independently induce autophagy in psyllid and non-host cells. Together, these results revealed that an insect-borne plant bacterium activates mild xenophagy to control its propagation, thereby achieving persistent infection in insect vectors.
Collapse
Affiliation(s)
- Zhongkai Yu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Yuxin Guo
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Hongyan Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Wenqiang Wan
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Mengting Hu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - You Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Taiyun Wei
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China.
| | - Qian Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China.
| |
Collapse
|
225
|
Wu N, Han Z, Lv W, Huang Y, Zhu J, Deng J, Xue Q. Reprogramming peritoneal macrophages with outer membrane vesicle-coated PLGA nanoparticles for endometriosis prevention. Biomaterials 2025; 319:123198. [PMID: 40015004 DOI: 10.1016/j.biomaterials.2025.123198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/23/2025] [Accepted: 02/16/2025] [Indexed: 03/01/2025]
Abstract
Endometriosis is a chronic inflammatory disease that primarily affects women of reproductive age. The current hormonal treatments are unsuitable for women who wish to conceive, highlighting the need for non-hormonal therapeutic alternatives. In this study, we engineered outer membrane vesicle (OMV)-coated poly (lactic-co-glycolic acid) (PLGA) nanoparticles (OMV-NPs) as a potential therapy for endometriosis. These OMV-NPs were internalized by macrophages more efficiently than bacterial OMVs and preserved the immunostimulatory properties of OMVs. In vivo administration of OMV-NPs in mice achieved prolonged retention in the peritoneal cavity, with effective uptake by nearly 80 % of the peritoneal macrophages. Notably, treatment with OMV-NPs reprogrammed macrophages toward the M1 phenotype, resulting in a significant decrease in the M2 to M1 ratio within the peritoneal cavity and in endometriotic lesions. This shift from M2 to M1 was associated with reduced TGF-β1 production and suppressed myofibroblast activation, which led to substantial inhibition of endometriosis progression. Furthermore, immunohistochemical imaging of paired eutopic and ectopic endometrial tissues from endometriosis patients revealed a positive correlation between M2-polarized macrophages and fibrosis. This finding suggests that reprogramming macrophages with OMV-NPs could be a promising therapeutic approach for endometriosis.
Collapse
Affiliation(s)
- Ning Wu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Ziwei Han
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxing Lv
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjuan Huang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qing Xue
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
226
|
Su S, Levasseur IN, Alonge KM. Neurocircuit regeneration by extracellular matrix reprogramming. Neural Regen Res 2025; 20:2300-2301. [PMID: 39359079 PMCID: PMC11759010 DOI: 10.4103/nrr.nrr-d-24-00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Shengzhang Su
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Ian N. Levasseur
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Kimberly M. Alonge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington Medicine Diabetes Institute, Seattle, WA, USA
| |
Collapse
|
227
|
Wei R, Xie K, Li T, Lin W, Zhao Y, Li J, Lai S, Wei X, Jiang X, Yuan Y, Yang R. Immunity/metabolism dual-regulation via an acidity-triggered bioorthogonal assembly nanoplatform enhances glioblastoma immunotherapy by targeting CXCL12/CXCR4 and adenosine-A2AR pathways. Biomaterials 2025; 319:123216. [PMID: 40037210 DOI: 10.1016/j.biomaterials.2025.123216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Blocking the C-X-C motif chemokine ligand-12/C-X-C motif chemokine receptor-4 (CXCL12/CXCR4) signal offers the potential to induce immunogenic cell death (ICD) and enhance immunotherapy of glioblastoma (GBM). However, traditional intracellular targeted delivery strategies and adenosine-mediated tumor immunosuppression limit its therapeutic efficacy. Herein, we present an acidity-triggered self-assembly nanoplatform based on bioorthogonal reaction to potentiate GBM immunotherapy through dual regulation of metabolism and immune pathways. AMD3100 (CXCR4 antagonist) and CPI-444 (adenosine 2A receptor inhibitor) were formulated into micelles, denoted as AMD@iNPDBCO and CPI@iNPN3, respectively. Upon administration, the pH-sensitive poly(2-azepane ethyl methacrylate) group of AMD@iNPDBCO responds to the acidic tumor microenvironment, exposing the DBCO moiety, resulting in highly efficient bioorthogonal reaction with azide group on CPI@iNPN3 to form large-sized aggregates, ensuring extracellular drug release. The combination of AMD3100 and CPI-444 contributes to ICD induction, dendritic cell maturation, and immunosuppressive milieu alleviation by reducing tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, leading to a robust antitumor response, thereby significantly prolonging survival in orthotopic GBM-bearing mice. Furthermore, the nanoplatform remarkably amplifies immuno-radiotherapy by potently evoking cytotoxic CD8+ T cell priming, and synergized with immune checkpoint blockade by delaying CD8+ T cell exhaustion. Our work highlights the potential of the in situ assembly nanoplatform tailored for delivery of extracellular-targeted therapeutic agents for boosting GBM immunotherapy.
Collapse
Affiliation(s)
- Ruili Wei
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Kunfeng Xie
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China
| | - Tao Li
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China
| | - Wanxian Lin
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Yandong Zhao
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Jiamin Li
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Shengsheng Lai
- School of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou 510520, PR China
| | - Xinhua Wei
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Xinqing Jiang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Youyong Yuan
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China.
| | - Ruimeng Yang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China.
| |
Collapse
|
228
|
Yin Z, Huang D, Kuhn EMA, Moriarty TF, Li G, Wang X. Unraveling persistent bacteria: Formation, niches, and eradication strategies. Microbiol Res 2025; 297:128189. [PMID: 40311456 DOI: 10.1016/j.micres.2025.128189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 05/03/2025]
Abstract
Persistent bacteria (persisters) are phenotypic variants that emerge either randomly or in response to a range of adverse environmental conditions. Persistence represents a state whereby a subpopulation of microorganisms can spontaneously enter a "dormant" state in response to environmental factors, while simultaneously exhibiting elevated tolerance to antimicrobial agents. This review provides the current definition of bacterial persistence and summarizes the mechanisms of persisters formation as well as the various niches of bacterial persistence encountered in clinical practice. Strategies targeting persisters are outlined, including but not limited to direct killing, awakening of persistent bacteria, combined clearance, and inhibition of persistence formation, and we conclude by proposing challenges and solutions for addressing bacterial persistence in current clinical practice.
Collapse
Affiliation(s)
- Zibo Yin
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 PR China
| | - Diandian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 PR China
| | | | | | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 PR China.
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 PR China.
| |
Collapse
|
229
|
Xuanyuan X, Liu W, Jiang M, Zhang X, Wen B, Zheng R, Yao N, Zhang T, Feng Y, Qiao C, Zhang H, Luo D, Feng S, Li M, Gao J, Lu Z. Harnessing prazosin for tumors: Liposome hybrid nanovesicles activate tumor immunotherapy via autophagy inhibition. Biomaterials 2025; 319:123184. [PMID: 39985978 DOI: 10.1016/j.biomaterials.2025.123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/01/2025] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
Prazosin (Prz), an antagonist of alpha-1 adrenergic receptors, is conventionally employed in the treatment of hypertension. Our study pioneers the exploration of Prz in oncology, examining its impact on cellular autophagy and its potential to trigger antitumor immune responses. We have developed a novel Prz-loaded liposome hybrid nanovesicle (Prz@LINV) system, integrating tumor-derived nanovesicles (TNV) with liposomes (LIP) to facilitate targeted Prz delivery to tumor sites. This formulation enhances Prz bioavailability and markedly inhibits tumor cell autophagy, leading to immunogenic cell death (ICD) and the activation of antitumor immune responses. Furthermore, Prz@LINV modulates dendritic cells (DCs), augmenting their antigen cross-presentation capacity and thereby potentiating antitumor immunity. These effects were validated in a colorectal cancer mouse model, demonstrating the good biocompatibility of Prz@LINV and its significant inhibition in tumor growth, along with the enhancement of antitumor immune responses. Our findings elucidate a novel mechanism by which Prz inhibits autophagy and enhances the antitumor immune response, providing a foundation for the development of innovative immunotherapeutic strategies. The efficacy of Prz@LINV suggests that Prz may emerge as a pivotal component in future immunotherapeutic regimens, offering patients more potent therapeutic options.
Collapse
Affiliation(s)
- Xinyang Xuanyuan
- Department of Dermatology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Wenshang Liu
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Jiang
- The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Xin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - BeiBei Wen
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Rui Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Ning Yao
- Department of General Surgery, Joint Support Force 903rd Hospital, Hangzhou, 310013, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Yu Feng
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Chaofeng Qiao
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Huiqi Zhang
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Dong Luo
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Sa Feng
- School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Meng Li
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China.
| | - Zhengmao Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
230
|
Typiak M, Sobczak A, Dobrzyńska Z, Saleem MA, Jaźwińska A. RNA production of IgG receptors is present in podocytes and varies depending on glycemia - preliminary results on Fc gamma receptor presence in kidney cells. Gene 2025; 958:149501. [PMID: 40228757 DOI: 10.1016/j.gene.2025.149501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/17/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Diabetes results from high blood glucose level and is one of the four main noncommunicable diseases. It is also a major cause of kidney failure. An inflammation of renal tissue during diabetic kidney disease (DKD) is aimed to resolve the ongoing homeostatic imbalance, however it leads to renal tissue injury. Because, the kidney glomerulus, where the blood filtration occurs, is an immunologically privileged place with very few leukocytes within, it was suspected that cells within the glomerulus possess immunological features and may initiate or increase the inflammation of renal tissue. One of the cell types in glomerulus, podocytes, are not only crucial for plasma filtration, but also can phagocytose and were described as professional antigen presenting cells. Due to an increased level of IgG-based immune complexes generated in the blood of diabetic patients and deposited in their kidneys, it was also proposed, that podocytes may express receptors for Fc fragment of IgG (FcγRs), which initiate phagocytosis. Many analyses point to that, but it has never been tested before. Thus, in the current study, we have analyzed mRNA expression levels of FcγR-coding genes in human podocytes, compared it to their expression levels in other non-immune epithelial cells (ovarian cells) and to leukocytes, as well as compared FcγR-coding genes' expression levels in podocytes cultured in a medium with standard versus high glucose concentration. The detection of FcγR expression in podocytes could help to understand the pathomechanism of renal tissue inflammation during DKD and subsequently help to prevent or minimize it.
Collapse
Affiliation(s)
- Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland.
| | - Aleksandra Sobczak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Zofia Dobrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Moin A Saleem
- Bristol Renal, University of Bristol, Bristol, United Kingdom
| | - Anna Jaźwińska
- Regional Center of Blood Donation and Blood Treatment in Gdansk, Poland
| |
Collapse
|
231
|
Fang Z, Pan Y, Lu Z, Wang L, Hu X, Ma Y, Li S. LncRNA SNHG1: A novel biomarker and therapeutic target in hepatocellular carcinoma. Gene 2025; 958:149462. [PMID: 40187618 DOI: 10.1016/j.gene.2025.149462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. Increasing evidence suggests that long non-coding RNAs play a critical role in cancer development, with the small nucleolar RNA host gene family being a key participant in multiple types of carcinogenesis, including HCC. Small nucleolar RNA host gene 1 (SNHG1) is a significant member of the SNHG family. SNHG1 expression consistently increases in various HCC-associated processes, such as cell proliferation, apoptosis, angiogenesis, migration, invasion, and treatment resistance. Higher SNHG1 expression levels predict worse prognosis by positively correlating with clinicopathological features, including larger tumour size, poor differentiation, and advanced stages in patients with HCC. Nevertheless, the precise role of SNHG1 in the initiation and progression of HCC remains unclear. Therefore, this review aims to summarise the current investigations on the pathogenesis of SNHG1 in HCC, highlighting its potential as a molecular marker for early prediction and prognostic assessment. As a multifunctional modulator, SNHG1 is extensively involved in molecular signalling pathways in HCC progression and is valuable for therapeutic targeting.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Yong Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 31003, China
| | - Zhengmei Lu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Lingyun Wang
- Department of Infectious Diseases, Zhoushan Hospital, Zhejiang University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Xiaodan Hu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Yingqiu Ma
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Shibo Li
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China.
| |
Collapse
|
232
|
Shen D, Guo H, Zhang F, Chen X, Tong X, Li H, Wu W, Mei S. Highly-sensitive and logic platform based on spatially-constrained T7 transcription enhanced Cas13a for DNA repair enzyme detection and intracellular imaging. Biosens Bioelectron 2025; 280:117406. [PMID: 40179700 DOI: 10.1016/j.bios.2025.117406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/27/2025] [Accepted: 03/20/2025] [Indexed: 04/05/2025]
Abstract
The activity of DNA repair enzymes, particularly Flap endonuclease 1 (FEN1) and apurinic/apyrimidinic endonuclease 1 (APE1), plays a critical role in disease prevention, diagnosis, and prognosis. Accurate detection of these enzymes is therefore essential. Recent advancements in CRISPR-Cas technology, particularly its programmable and trans-cleavage activity, have paved the way for the development of innovative detection methods. However, there is a need for a simple, low-background, highly sensitive detection platform with logical capabilities for FEN1 and APE1. In this study, we present a novel detection platform that integrates spatially constrained T7 transcription with the CRISPR-Cas13a system. This biosensor minimizes background interference and achieves high sensitivity, with limits of detection as low as 5 × 10-7 U/μL for FEN1 and 2 × 10-8 U/μL for APE1, making it one of the most sensitive methods available for detecting these enzymes. The platform supports both OR and logic detection, offering enhanced versatility. It demonstrates robustness by detecting FEN1 activity at concentrations as low as 1 cell/μL and screening enzyme inhibitors. Additionally, the system was successfully used for intracellular imaging of FEN1 activity in cells and reliably measured APE1 activity in ovarian tissue samples, confirming its clinical applicability. This biosensor represents a promising tool for detecting FEN1 and APE1, further expanding the potential of CRISPR-Cas13a in diagnostic applications.
Collapse
Affiliation(s)
- Dongsheng Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Hong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Fubin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315010, Zhejiang Province, China
| | - Xixi Chen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China.
| | - Wenjun Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Shuaikang Mei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
233
|
Yang L, Wang Y, Zhang Y, Cai Y, Fan Z, Liu F. Exploring the relationship and diagnostic targets of seborrheic dermatitis and scalp psoriasis based on multi-omics integration analysis. Gene 2025; 957:149441. [PMID: 40187621 DOI: 10.1016/j.gene.2025.149441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Scalp seborrheic dermatitis (SD) and psoriasis (PSO) are prevalent chronic skin conditions with overlapping clinical manifestations, especially when confined to the scalp, which complicates differential diagnosis. This study integrates transcriptomic profiling and genetic association analyses to investigate potential causal links between SD and scalp PSO. Through RNA sequencing on lesional and non-lesional scalp samples from patients with SD and scalp PSO, as well as healthy controls, we found that seborrheic dermatitis may represent a risk factor for the progression to scalp PSO. Furthermore, TGM1 and IL36RN were identified as key potential molecular targets that could differentiate seborrheic dermatitis from scalp PSO.
Collapse
Affiliation(s)
- Li Yang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; FuRong Laboratory, Changsha, China; CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Yunying Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; FuRong Laboratory, Changsha, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; FuRong Laboratory, Changsha, China
| | - Yisheng Cai
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; FuRong Laboratory, Changsha, China
| | - Zhihua Fan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; FuRong Laboratory, Changsha, China.
| | - Fangfen Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; FuRong Laboratory, Changsha, China.
| |
Collapse
|
234
|
Bräutigam K, Skok K, Szymonski K, Rift CV, Karamitopoulou E. Tumor immune microenvironment in pancreatic ductal adenocarcinoma revisited - Exploring the "Space". Cancer Lett 2025; 622:217699. [PMID: 40204149 DOI: 10.1016/j.canlet.2025.217699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most deadly malignancies with a highly immunosuppressive tumor immune microenvironment (TIME) that hinders effective therapy. PDAC is characterized by significant heterogeneity in immune cell composition, spatial distribution and activation states, which impacts tumor progression and treatment response. Tumour-infiltrating lymphocytes (TILs), including CD4+ T-helper cells, CD8+ cytotoxic T-cells and FOXP3+ regulatory T-cells, play a key role in immune regulation, yet PDAC is largely an immunologically "cold" tumour with limited effector T-cell infiltration. The surrounding cellular microenvironment, particularly Cancer Associated Fibroblasts (CAFs) and macrophages, contributes to immune evasion by promoting a fibrotic and desmoplastic barrier that limits TIL infiltration. The prognostic significance of TILs is increasingly recognized, with higher densities correlating with improved survival, whereas regulatory T-cell infiltration and immunosuppressive stromal interactions are associated with poor outcomes. Emerging therapeutic strategies targeting the TIME (e.g., CAFs), immune checkpoint inhibitors, and TIL-based therapies offer the potential to overcome resistance. Future research must focus on optimizing immunotherapy strategies and unravelling the complex stromal-immune interactions to improve clinical translation.
Collapse
Affiliation(s)
- Konstantin Bräutigam
- Institute of Cancer Research, Centre for Evolution and Cancer, London, SM2 5NG, United Kingdom; Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland.
| | - Kristijan Skok
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Institute of Biomedical Sciences, Medical Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Krzysztof Szymonski
- Department of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Eva Karamitopoulou
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
235
|
Zhou J, Xu Y, Li Y, Zhang Q, Zhong L, Pan W, Ji K, Zhang S, Chen Z, Liu Y, Fan L, Liu C, Chen Q, Wang Z. Cancer-associated fibroblasts derived amphiregulin promotes HNSCC progression and drug resistance of EGFR inhibitor. Cancer Lett 2025; 622:217710. [PMID: 40216150 DOI: 10.1016/j.canlet.2025.217710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
In clinical oncology, lack of sustained treatment response is very common in cancer patients and largely limits the efficiency of most anticancer targeted-therapies. While anti-EGFR therapeutics have been extensively employed in head and neck squamous cell carcinoma (HNSCC) management, their clinical efficacy remains limited due to unresolved resistance mechanisms. Notably, the functional role of EGFR ligand proteins in both tumor progression and therapeutic response has not been fully elucidated. Here we reveal that amphiregulin (AREG) as a potential driver of drug resistance of EGFR-targeted treatment in HNSCC patients. We identify a PDGFRβ+FAP+αSMA+ myofibroblast (myCAF) subset as the major source of AREG in tumor microenvironment. TCGA database and clinical cohort demonstrated that patients with high AREG expression exhibited significantly higher lymph node metastasis rates (59.35 %) and poorer prognosis (median 5-year survival: 2.2 years). In contrast, patients with low AREG expression showed reduced metastatic potential (metastasis rate: 45.16 %) and more favorable clinical outcomes (median 5-year survival: 4.8 years). Mechanistically, AREG promotes vascular mimicry formation via epithelial-endothelial transition of tumor cells to offer extra blood supply and metastasis channels. Further, live-cell imaging revealed that AREG induces plasma membrane stabilization of over 90 % receptor proteins while concurrently enhancing receptor recycling, driving EGFR inhibitor resistance. Collectively, our study reveals the crucial role of AREG in tumor landscape, informing a new predictive biomarker of EGFR inhibitor efficiency as well as a new potential therapeutic target of HNSCC.
Collapse
Affiliation(s)
- Jinhan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yining Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Qiyue Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Liang Zhong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Weiyi Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Keyan Ji
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Shangjun Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yu Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lijie Fan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Chuanxia Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Zhiyong Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
236
|
Fonta N, Page N, Klimek B, Piccinno M, Di Liberto G, Lemeille S, Kreutzfeldt M, Kastner AL, Ertuna YI, Vincenti I, Wagner I, Pinschewer DD, Merkler D. Oligodendrocyte-derived IL-33 regulates self-reactive CD8+ T cells in CNS auto immunity. J Exp Med 2025; 222:e20241188. [PMID: 40227193 PMCID: PMC11995930 DOI: 10.1084/jem.20241188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/11/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
In chronic inflammatory disorders of the central nervous system (CNS), tissue-resident self-reactive T cells perpetuate disease. The specific tissue factors governing the persistence and continuous differentiation of these cells remain undefined but could represent attractive therapeutic targets. In a model of chronic CNS autoimmunity, we find that oligodendrocyte-derived IL-33, an alarmin, is key for locally regulating the pathogenicity of self-reactive CD8+ T cells. The selective ablation of IL-33 from neo-self-antigen-expressing oligodendrocytes mitigates CNS disease. In this context, fewer self-reactive CD8+ T cells persist in the inflamed CNS, and the remaining cells are impaired in generating TCF-1low effector cells. Importantly, interventional IL-33 blockade by locally administered somatic gene therapy reduces T cell infiltrates and improves the disease course. Our study identifies oligodendrocyte-derived IL-33 as a druggable tissue factor regulating the differentiation and survival of self-reactive CD8+ T cells in the inflamed CNS. This finding introduces tissue factors as a novel category of immune targets for treating chronic CNS autoimmune diseases.
Collapse
Affiliation(s)
- Nicolas Fonta
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Bogna Klimek
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Margot Piccinno
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Giovanni Di Liberto
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Anna Lena Kastner
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Yusuf I. Ertuna
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Daniel D. Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
237
|
Matsumoto M, Yoshida M, Oya T, Tsuneyama K, Matsumoto M, Yoshida H. Role of PRC2 in the stochastic expression of Aire target genes and development of mimetic cells in the thymus. J Exp Med 2025; 222:e20240817. [PMID: 40244172 PMCID: PMC12005117 DOI: 10.1084/jem.20240817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/10/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025] Open
Abstract
The transcriptional targets of Aire and the mechanisms controlling their expression in medullary thymic epithelial cells (mTECs) need to be clarified to understand Aire's tolerogenic function. By using a multi-omics single-cell approach coupled with deep scRNA-seq, we examined how Aire controls the transcription of a wide variety of genes in a small fraction of Aire-expressing cells. We found that chromatin repression by PRC2 is an important step for Aire to achieve stochastic gene expression. Aire unleashed the silenced chromatin configuration caused by PRC2, thereby increasing the expression of its functional targets. Besides this preconditioning for Aire's gene induction, we demonstrated that PRC2 also controls the composition of mTECs that mimic the developmental trait of peripheral tissues, i.e., mimetic cells. Of note, this action of PRC2 was independent of Aire and it was more apparent than Aire. Thus, our study uncovered the essential role of polycomb complex for Aire-mediated promiscuous gene expression and the development of mimetic cells.
Collapse
Affiliation(s)
- Minoru Matsumoto
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masaki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Takeshi Oya
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
238
|
Nickel KF, Jämsä A, Konrath S, Papareddy P, Butler LM, Stavrou EX, Frye M, Gelderblom M, Nieswandt B, Hammerschmidt S, Herwald H, Renné T. Factor XII-driven coagulation traps bacterial infections. J Exp Med 2025; 222:e20250049. [PMID: 40261297 PMCID: PMC12013512 DOI: 10.1084/jem.20250049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Blood coagulation is essential for stopping bleeding but also drives thromboembolic disorders. Factor XII (FXII)-triggered coagulation promotes thrombosis while being dispensable for hemostasis, making it a potential anticoagulant target. However, its physiological role remains unclear. Here, we demonstrate that FXII-driven coagulation enhances innate immunity by trapping pathogens and restricting bacterial infection in mice. Streptococcus pneumoniae infection was more severe in FXII-deficient (F12-/-) mice, with increased pulmonary bacterial burden, systemic spread, and mortality. Similarly, Staphylococcus aureus skin infections and systemic dissemination were exacerbated in F12-/- mice. Reconstitution with human FXII restored bacterial containment. Plasma kallikrein amplifies FXII activation, and its deficiency aggravated S. aureus skin infections, similarly to F12-/- mice. FXII deficiency impaired fibrin deposition in abscess walls, leading to leaky capsules and bacterial escape. Bacterial long-chain polyphosphate activated FXII, triggering fibrin formation. Deficiency in FXII substrate factor XI or FXII/factor XI co-deficiency similarly exacerbated S. aureus infection. The data reveal a protective role for FXII-driven coagulation in host defense, urging caution in developing therapeutic strategies targeting this pathway.
Collapse
Affiliation(s)
- Katrin F. Nickel
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Clinical Chemistry, Department of Molecular Medicine and Surgery, and Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Anne Jämsä
- Clinical Chemistry, Medical Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Praveen Papareddy
- Department of Laboratory Medicine, Biomedical Center (BMC), Lund University, Lund, Sweden
| | - Lynn M. Butler
- Clinical Chemistry, Department of Molecular Medicine and Surgery, and Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Evi X. Stavrou
- Medicine Service, Section of Hematology-Oncology, Louis Stokes Veterans Administration Medical Center, Cleveland, OH, USA
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, Chair of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Heiko Herwald
- Department of Laboratory Medicine, Biomedical Center (BMC), Lund University, Lund, Sweden
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
239
|
Stoljar A, Zarodniuk M, Bichele R, Armulik EH, Haljasorg U, Humeau R, Besnard M, Haljasmägi L, Tserel L, Peltser M, Salumets A, Kekäläinen E, Kisand K, Guillonneau C, Laan M, Peterson P. Impaired Aire-dependent IFN signaling in the thymus precedes the protective autoantibodies to IFNα. J Exp Med 2025; 222:e20241403. [PMID: 40304722 PMCID: PMC12042843 DOI: 10.1084/jem.20241403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/28/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Recent studies have highlighted the role of the thymus in maintaining immune tolerance to type 1 interferons (T1 IFNs). Individuals with thymic abnormalities, such as autoimmune regulator (AIRE) gene mutations, frequently develop neutralizing autoantibodies to interferon-alpha (IFNα). Unlike mice, Aire-deficient rats develop robust autoantibodies to IFNα. Using this rat model, we show that Aire regulates the thymic expression of interferon-stimulated genes (ISGs), which occurs before developing anti-IFNα autoantibodies. In the periphery, we observed a widespread downregulation of ISGs across immune cells and reduced activation of natural killer (NK) cells. Furthermore, the presence of anti-IFNα autoantibodies correlated with reduced peripheral tissue inflammation, suggesting their role in dampening T1 IFN signaling and minimizing tissue infiltration. Our findings reveal that Aire-mediated regulation of thymic T1 IFN signaling is linked to the production of protective anti-IFNα autoantibodies, which inversely correlate with autoimmune pathology in peripheral tissues.
Collapse
Affiliation(s)
- Artur Stoljar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maksym Zarodniuk
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Rudolf Bichele
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Elise Helene Armulik
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Uku Haljasorg
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Romain Humeau
- Nantes University, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, CNRS, Nantes, France
| | - Marine Besnard
- Nantes University, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, CNRS, Nantes, France
| | - Liis Haljasmägi
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liina Tserel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Merili Peltser
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ahto Salumets
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Carole Guillonneau
- Nantes University, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, CNRS, Nantes, France
| | - Martti Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
240
|
Fortmann SD, Frey BF, Rosencrans RF, Adu-Rutledge Y, Ready V E, Kilchrist KV, Welner RS, Boulton ME, Saban DR, Grant MB. Prenatally derived macrophages support choroidal health and decline in age-related macular degeneration. J Exp Med 2025; 222:e20242007. [PMID: 40261298 PMCID: PMC12013653 DOI: 10.1084/jem.20242007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/02/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Hallmark findings in age-related macular degeneration (AMD) include the accumulation of extracellular lipid and vasodegeneration of the choriocapillaris. Choroidal inflammation has long been associated with AMD, but little is known about the immune landscape of the human choroid. Using 3D multiplex immunofluorescence, single-cell RNA sequencing, and flow cytometry, we unravel the cellular composition and spatial organization of the human choroid and the immune cells within it. We identify two populations of choroidal macrophages with distinct FOLR2 expression that account for the majority of myeloid cells. FOLR2+ macrophages predominate in the nondiseased eye, express lipid-handling machinery, uptake lipoprotein particles, and contain high amounts of lipid. In AMD, FOLR2+ macrophages are decreased in number and exhibit dysfunctional lipoprotein metabolism. In mice, FOLR2+ macrophages are negative for the postnatal fate-reporter Ms4a3, and their depletion causes an accelerated AMD-like phenotype. Our results show that prenatally derived resident macrophages decline in AMD and are implicated in multiple hallmark functions known to be compromised in the disease.
Collapse
Affiliation(s)
- Seth D. Fortmann
- Medical Scientist Training Program (MSTP), University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- Department of Ophthalmology, UAB, Birmingham, AL, USA
| | - Blake F. Frey
- Medical Scientist Training Program (MSTP), University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- Department of Pathology, UAB, Birmingham, AL, USA
| | - Robert F. Rosencrans
- Medical Scientist Training Program (MSTP), University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- Department of Ophthalmology, UAB, Birmingham, AL, USA
| | | | - Edgar Ready V
- Department of Ophthalmology, UAB, Birmingham, AL, USA
| | | | - Robert S. Welner
- Division of Hematology/Oncology, Department of Medicine, UAB, Birmingham, AL, USA
| | | | - Daniel R. Saban
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | | |
Collapse
|
241
|
Almonte AA, Thomas S, Zitvogel L. Microbiota-centered interventions to boost immune checkpoint blockade therapies. J Exp Med 2025; 222:e20250378. [PMID: 40261296 PMCID: PMC12013646 DOI: 10.1084/jem.20250378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
Immune checkpoint blockade therapies have markedly advanced cancer treatment by invigorating antitumor immunity and extending patient survival. However, therapeutic resistance and immune-related toxicities remain major concerns. Emerging evidence indicates that microbial dysbiosis diminishes therapeutic response rates, while a diverse gut ecology and key beneficial taxa correlate with improved treatment outcomes. Therefore, there is a growing understanding that manipulating the gut microbiota could boost therapy efficacy. This review examines burgeoning methods that target the gut microbiome to optimize therapy and innovative diagnostic tools to detect dysbiosis, and highlights challenges that remain to be addressed in the field.
Collapse
Affiliation(s)
- Andrew A. Almonte
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
| | - Simon Thomas
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Kremlin-Bicêtre, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
| |
Collapse
|
242
|
Muñoz Sandoval D, Bach FA, Ivens A, Harding AC, Smith NL, Mazurczyk M, Themistocleous Y, Edwards NJ, Silk SE, Barrett JR, Cowan GJ, Napolitani G, Savill NJ, Draper SJ, Minassian AM, Nahrendorf W, Spence PJ. Plasmodium falciparum infection induces T cell tolerance that is associated with decreased disease severity upon re-infection. J Exp Med 2025; 222:e20241667. [PMID: 40214640 PMCID: PMC11987708 DOI: 10.1084/jem.20241667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 03/12/2025] [Indexed: 04/14/2025] Open
Abstract
Immunity to severe malaria is acquired quickly, operates independently of pathogen load, and represents a highly effective form of disease tolerance. The mechanism that underpins tolerance remains unknown. We used a human rechallenge model of falciparum malaria in which healthy adult volunteers were infected three times over a 12 mo period to track the development of disease tolerance in real-time. We found that parasitemia triggered a hardwired innate immune response that led to systemic inflammation, pyrexia, and hallmark symptoms of clinical malaria across the first three infections of life. In contrast, a single infection was sufficient to reprogram T cell activation and reduce the number and diversity of effector cells upon rechallenge. Crucially, this did not silence stem-like memory cells but instead prevented the generation of cytotoxic effectors associated with autoinflammatory disease. Tolerized hosts were thus able to prevent collateral tissue damage in the absence of antiparasite immunity.
Collapse
Affiliation(s)
- Diana Muñoz Sandoval
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Instituto de Microbiologia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Florian A. Bach
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Adam C. Harding
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Natasha L. Smith
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Michalina Mazurczyk
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jordan R. Barrett
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Graeme J.M. Cowan
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Giorgio Napolitani
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicholas J. Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Angela M. Minassian
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Philip J. Spence
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
243
|
Frolov A, Huang H, Schütz D, Köhne M, Blank-Stein N, Osei-Sarpong C, Büttner M, Elmzzahi T, Khundadze M, Zahid M, Reuter M, Becker M, De Domenico E, Bonaguro L, Kallies A, Morrison H, Hübner CA, Händler K, Stumm R, Mass E, Beyer MD. Microglia and CD8+ T cell activation precede neuronal loss in a murine model of spastic paraplegia 15. J Exp Med 2025; 222:e20232357. [PMID: 40266307 PMCID: PMC12017274 DOI: 10.1084/jem.20232357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
In central nervous system (CNS) diseases characterized by late-onset neurodegeneration, the interplay between innate and adaptive immune responses remains poorly understood. This knowledge gap is exacerbated by the prolonged protracted disease course as it complicates the delineation of brain-resident and infiltrating cells. Here, we conducted comprehensive profiling of innate and adaptive immune cells in a murine model of spastic paraplegia 15 (SPG15), a complicated form of hereditary spastic paraplegia. Using fate-mapping of bone marrow-derived cells, we identified microgliosis accompanied by infiltration and local expansion of T cells in the CNS of Spg15-/- mice. Single-cell analysis revealed an expansion of disease-associated microglia (DAM) and effector CD8+ T cells prior to neuronal loss. Analysis of potential cell-cell communication pathways suggested bidirectional interactions between DAM and effector CD8+ T cells, potentially contributing to disease progression in Spg15-/- mice. In summary, we identified a shift in microglial phenotypes associated with the recruitment and expansion of T cells as a new characteristic of Spg15-driven neuropathology.
Collapse
Affiliation(s)
- Aleksej Frolov
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Hao Huang
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Dagmar Schütz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Maren Köhne
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nelli Blank-Stein
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Collins Osei-Sarpong
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Maren Büttner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Tarek Elmzzahi
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Mukhran Khundadze
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Rare Diseases, University Hospital Jena, Friedrich-Schiller-University, Jena, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marina Zahid
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Michael Reuter
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Matthias Becker
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Modular High-Performance Computing and Artificial Intelligence, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Elena De Domenico
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
| | - Lorenzo Bonaguro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
| | - Christian A. Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Rare Diseases, University Hospital Jena, Friedrich-Schiller-University, Jena, Germany
| | - Kristian Händler
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
- Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, Lübeck, Germany
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Marc D. Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
| |
Collapse
|
244
|
Proulx MK, Wiggins CD, Reames CJ, Wu C, Kiritsy MC, Xu P, Gallant JC, Grace PS, Fenderson BA, Smith CM, Lindestam Arlehamn CS, Alter G, Lauffenburger DA, Sassetti CM. Noncanonical T cell responses are associated with protection from tuberculosis in mice and humans. J Exp Med 2025; 222:e20241760. [PMID: 40192640 PMCID: PMC11974462 DOI: 10.1084/jem.20241760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/02/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
While control of Mycobacterium tuberculosis (Mtb) infection is generally understood to require Th1 cells and IFNγ, infection produces a spectrum of immunological and pathological phenotypes in diverse human populations. By characterizing Mtb infection in mouse strains that model the genetic heterogeneity of an outbred population, we identified strains that control Mtb comparably to a standard IFNγ-dependent mouse model but with substantially lower lung IFNγ levels. We report that these mice have a significantly altered CD4 T cell profile that specifically lacks the terminal effector Th1 subset and that this phenotype is detectable before infection. These mice still require T cells to control bacterial burden but are less dependent on IFNγ signaling. Instead, noncanonical immune features such as Th17-like CD4 and γδT cells correlate with low bacterial burden. We find the same Th17 transcriptional programs are associated with resistance to Mtb infection in humans, implicating specific non-Th1 T cell responses as a common feature of Mtb control across species.
Collapse
Affiliation(s)
- Megan K. Proulx
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christine D. Wiggins
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charlotte J. Reames
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Claire Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael C. Kiritsy
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ping Xu
- Transgenic Animal Modeling Core, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Judith C. Gallant
- Transgenic Animal Modeling Core, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Patricia S. Grace
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Brooke A. Fenderson
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Clare M. Smith
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Cecilia S. Lindestam Arlehamn
- Center for Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | | | - Christopher M. Sassetti
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
245
|
Saidoune F, Lee D, Di Domizio J, Le Floc’h C, Jenelten R, Le Pen J, Bondet V, Joncic A, Morren MA, Béziat V, Zhang SY, Jouanguy E, Duffy D, Rice CM, Conrad C, Fellay J, Casanova JL, Gilliet M, Yatim A. Enhanced TLR7-dependent production of type I interferon by pDCs underlies pandemic chilblains. J Exp Med 2025; 222:e20231467. [PMID: 40227192 PMCID: PMC11995862 DOI: 10.1084/jem.20231467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/02/2025] [Accepted: 02/28/2025] [Indexed: 04/15/2025] Open
Abstract
Outbreaks of chilblains were reported during the COVID-19 pandemic. Given the essential role of type I interferon (I-IFN) in protective immunity against SARS-CoV-2 and the association of chilblains with inherited type I interferonopathies, we hypothesized that excessive I-IFN responses to SARS-CoV-2 might underlie the occurrence of chilblains in this context. We identified a transient I-IFN signature in chilblain lesions, accompanied by an acral infiltration of activated plasmacytoid dendritic cells (pDCs). Patients with chilblains were otherwise asymptomatic or had mild disease without seroconversion. Their leukocytes produced abnormally high levels of I-IFN upon TLR7 stimulation with agonists or ssRNA viruses-particularly SARS-CoV-2-but not with DNA agonists of TLR9 or the dsDNA virus HSV-1. Moreover, the patients' pDCs displayed cell-intrinsic hyperresponsiveness to TLR7 stimulation regardless of TLR7 levels. Inherited TLR7 or I-IFN deficiency confers a predisposition to life-threatening COVID-19. Conversely, our findings suggest that enhanced TLR7 activity in predisposed individuals could confer innate, pDC-mediated, sterilizing immunity to SARS-CoV-2 infection, with I-IFN-driven chilblains as a trade-off.
Collapse
Affiliation(s)
- Fanny Saidoune
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Jeremy Di Domizio
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Corentin Le Floc’h
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Raphael Jenelten
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Ana Joncic
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie-Anne Morren
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Curdin Conrad
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Michel Gilliet
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ahmad Yatim
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| |
Collapse
|
246
|
Matz HC, Ellebedy AH. Vaccination against influenza viruses annually: Renewing or narrowing the protective shield? J Exp Med 2025; 222:e20241283. [PMID: 40272481 PMCID: PMC12020744 DOI: 10.1084/jem.20241283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Annual vaccines are recommended for the seasonal influenza virus. While yearly updates to the vaccine are necessary due to the constant evolution of influenza viruses, some studies have suggested repeat vaccination may result in a reduction in vaccine effectiveness in subsequent years. This review examines the available evidence that repeated annual influenza virus vaccination may have effects on future vaccine responses, and it synthesizes the available data with studies that may indicate potential immunological mechanisms underlying these effects. The goal is to examine the available literature to determine whether these mechanisms can be subverted to improve seasonal influenza virus vaccine efficacy.
Collapse
Affiliation(s)
- Hanover C. Matz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
247
|
Wu K, Xu Y, Liu P, Chen K, Zhao Y. STING inhibitors and degraders: Potential therapeutic agents in inflammatory diseases. Eur J Med Chem 2025; 291:117632. [PMID: 40262301 DOI: 10.1016/j.ejmech.2025.117632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/30/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
The regulation of the STING (stimulator of interferon genes) pathway represents a promising target for a range of inflammatory diseases. This review provides an overview of the structure of STING and discusses the mechanisms by which the cyclic GMP-AMP synthase (cGAS)-STING pathway is associated with various autoinflammatory and autoimmune diseases. We explore how targeting STING inhibition or degradation can alleviate excessive inflammatory signaling and improve efficacy. Emerging strategies include inhibiting STING expression by covalently binding compounds or using ligands that target the binding pocket. In addition, selective degradation of STING via the ubiquitin-proteasome system or the lysosomal pathway shows promise. In addition, we explore the implications of modulating the cGAS-STING pathway in the context of various inflammatory diseases. Finally, we summarize the chemical properties of recently developed STING compounds and their potential clinical applications. By comprehensively reviewing the current understanding of the role of STING in inflammation and the therapeutic potential of targeting STING, we aim to identify new avenues of intervention that could improve outcomes for patients with inflammatory diseases. This review highlights the important role of STING in the regulation of inflammation and its potential as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Kerong Wu
- Department of General Surgery, Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwen Xu
- Department of General Surgery, Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peizhao Liu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Kexin Chen
- Department of General Surgery, Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yun Zhao
- Department of General Surgery, Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
248
|
Cai XX, Huang YH, Lin YCD, Huang HY, Chen YG, Zhang DP, Zhang T, Liu Y, Zuo HL, Huang HD. A comprehensive review of small molecules, targets, and pathways in ulcerative colitis treatment. Eur J Med Chem 2025; 291:117645. [PMID: 40279769 DOI: 10.1016/j.ejmech.2025.117645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Ulcerative colitis (UC), a chronic inflammatory bowel disease (IBD), poses significant clinical challenges because of its complex pathophysiology, long-term nature, and the limited efficacy of existing treatments. Small-molecule compounds, particularly those that are able to modulate inflammation-related signaling pathways and, in many cases, occur in nature, offer a promising alternative or supplement to conventional therapies. Studies on molecules for UC therapeutics reported in 1394 publications over the past 30 years were collected from the Web of Science (WOS) database. Only studies that verified therapeutic efficacy through animal experiments were included. Through an analysis of the molecular classes, structures, common targets, and pathways using network pharmacology, we identified 14 classes of compounds, 5 direct-target modules, and 3 crucial downstream pathways. Alkaloids, phenylpropanoids, flavonoids, and terpenes (and their derivatives) appeared most frequently and mainly targeted lipid metabolism, oxidative stress, immune regulation, signaling transduction, and cancer-related pathways. Notably, there has been an increasing trend of applying naturally sourced compounds in both preclinical and clinical trials, especially flavonoids, over the last five years. Although progress in UC research has been made, the majority of studies have focused on the overall therapeutic effects and biomarker alterations, with limited emphasis on the direct targets and underlying mechanisms. These findings highlight the need to explore novel small-molecule therapeutic strategies for UC, focusing on clearly defined targets and precise modes of action.
Collapse
Affiliation(s)
- Xiao-Xuan Cai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Yi-Han Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Yi-Gang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Da-Peng Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Tao Zhang
- R&D center, Better Way (Shanghai) Cosmetics Co., Ltd., Shanghai, 201103, PR China
| | - Yue Liu
- R&D center, Better Way (Shanghai) Cosmetics Co., Ltd., Shanghai, 201103, PR China
| | - Hua-Li Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China.
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
| |
Collapse
|
249
|
Yao F, Bao Y, Meng Q, Chen Y, Zhao L, Wang P, Zhou B. Periprosthetic osteolysis: Mechanisms and potential treatment strategies. Cell Signal 2025; 131:111758. [PMID: 40132773 DOI: 10.1016/j.cellsig.2025.111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Periprosthetic osteolysis is a common bone-related disorder that often occurs after total hip arthroplasty. The implants can cause damage to bone and bone-related cells due to mechanical stress and micromotions, resulting in the generation of a large number of wear particles. These wear particles trigger inflammation and oxidative stress in the surrounding tissues, disrupting the delicate balance maintained by osteoblasts and osteoclasts, ultimately leading to bone loss around the implant. Clinical investigations have demonstrated that Epimedium prenylflavonoids, miR-19a-3p, stem cell-derived exosomes, and certain non-PPO category pharmaceuticals have regulatory effects on bone homeostasis through distinct molecular pathways. Notably, this phenomenon reflects inherent biological rationality rather than stochastic occurrence. Extensive research has revealed that multiple natural compounds, non-coding RNAs, exosomes, and non-PPO therapeutics not only exert modulatory influences on critical pathophysiological processes including inflammatory cascades, oxidative stress responses, and tissue regeneration mechanisms, but also effectively regulate bone-related cellular functions to inhibit PPO progression. Therefore, this review comprehensively and systematically summarizes the main pathogenic mechanisms of periprosthetic osteolysis. Furthermore, it delves deeper into the research progress on the applications of currently reported natural products, ncRNAs, exosomes, and non-PPO medications in the treatment of periprosthetic osteolysis. Based on this, we hope that this paper can provide new perspectives and references for the future development of drugs targeting periprosthetic osteolysis.
Collapse
Affiliation(s)
- Fang Yao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yue Bao
- Department of Nursing, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Qian Meng
- Outpatient Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yanrong Chen
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Luxi Zhao
- Department of Anesthesiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Pingmei Wang
- Department of Orthopaedics, The People's Hospital of Shimen County, Shimen 415399, China
| | - Bin Zhou
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
250
|
Wang B, Zhang Q, Liu C, Chen X. Counteracting immunodepression by extracellular matrix hydrogel to promote brain tissue remodeling and neurological function recovery after traumatic brain injury. Biomaterials 2025; 318:123181. [PMID: 39970603 DOI: 10.1016/j.biomaterials.2025.123181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/29/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
Traumatic brain injury (TBI), an intractable disorder of the central nervous system (CNS), is a leading cause of long-term disability and mortality in humans worldwide. However, there is still no effective therapy for TBI, and an important reason for this is TBI-induced immunodepression, which renders TBI patients with low resistance to infections and aggravated brain damage. In this study, a multifunctional extracellular matrix hydrogel was constructed for the treatment of TBI in terms of both counteracting the immunodepression and enhancing neurogenesis. The stromal cell-derived factor-1α (SDF-1α)-loaded hyaluronic acid (HA)/decellularized brain extracellular matrix (BM) hydrogel (SDF@HA/BM) not only mimicked the composition and the biological cues of brain extracellular matrix, but also exhibited the injectability, self-healing, and mechanical properties close to those of brain tissue. The SDF@HA/BM hydrogel protected activated immune cells from dysfunction during the acute phase of TBI for normal levels of inflammatory cytokines, thereby creating a favorable immune microenvironment for subsequent neurogenesis. The SDF-1α and the BM synergistically promoted neurogenesis after TBI by recruiting endogenous neural stem/progenitor cells and inducing their differentiation into neurons. In vivo results demonstrated that the SDF@HA/BM hydrogel exhibited desirable therapeutic effects in severe TBI mice through facilitating brain tissue remodeling and neurological function recovery, including limb balance, autonomous locomotion, and spatial learning and memory abilities, and relieving depression and anxiety. Our work provides a novel strategy for TBI treatment in terms of restoring immune homeostasis and enhancing neurogenesis using advanced biomaterials.
Collapse
Affiliation(s)
- Bixue Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Qiya Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|