28601
|
Matz RL, Andriantsitohaina R. Age-related endothelial dysfunction : potential implications for pharmacotherapy. Drugs Aging 2003; 20:527-50. [PMID: 12749750 DOI: 10.2165/00002512-200320070-00005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging per se is associated with abnormalities of the vascular wall linked to both structural and functional changes that can take place at the level of the extracellular matrix, the vascular smooth muscle and the endothelium of blood vessels. Endothelial dysfunction is generally defined as a decrease in the capacity of the endothelium to dilate blood vessels in response to physical and chemical stimuli. It is one of the characteristic changes that occur with age, independently of other known cardiovascular risk factors. This may account in part for the increased incidence of cardiovascular events in elderly people that can be reversed by restoring endothelial function. A better understanding of the mechanisms involved and the aetiopathogenesis of this process will help in the search for new therapeutic agents.Age-dependent alteration of endothelium-dependent relaxation seems to be a widespread phenomenon both in conductance and resistance arteries from several species. In the course of aging, there is an alteration in the equilibrium between relaxing and contracting factors released by the endothelium. Hence, there is a progressive reduction in the participation of nitric oxide and endothelium-derived hyperpolarising factor associated with increased participation of oxygen-derived free radicals and cyclo-oxygenase-derived prostanoids. Also, the endothelin-1 and angiotensin II pathways may play a role in age-related endothelial dysfunction. The use of drugs acting at different levels of these signalling cascades, including antioxidant therapy, lipid-lowering drugs and estrogens, seems to be promising.
Collapse
Affiliation(s)
- Rachel L Matz
- Biochemisches Institut, Fachbereich Humanmedizin, Justus Liebig Universität, Giessen, Germany
| | | |
Collapse
|
28602
|
Pricci F, Leto G, Amadio L, Iacobini C, Cordone S, Catalano S, Zicari A, Sorcini M, Di Mario U, Pugliese G. Oxidative stress in diabetes-induced endothelial dysfunction involvement of nitric oxide and protein kinase C. Free Radic Biol Med 2003; 35:683-94. [PMID: 12957660 DOI: 10.1016/s0891-5849(03)00401-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) formation plays a major role in diabetes-induced endothelial dysfunction, though the molecular mechanism(s) involved and the contribution of nitric oxide (NO) are still unclear. This study using bovine retinal endothelial cells was aimed at assessing (i) the role of oxygen-dependent vs. NO-dependent oxidative stress in the endothelial cell permeability alterations induced by the diabetic milieu and (ii) whether protein kinase C (PKC) activation ultimately mediates these changes. Superoxide, lipid peroxide, and PKC activity were higher under high glucose (HG) vs. normal glucose throughout the 30 d period. Nitrite/nitrate and endothelial NO synthase levels increased at 1 d and decreased thereafter. Changes in monolayer permeability to 125I-BSA induced by 1 or 30 d incubation in HG or exposure to advanced glycosylation endproduct were reduced by treatment with antioxidants or PKC inhibitors, whereas NO blockade prevented only the effect of 1 d HG. HG-induced changes were mimicked by a PKC activator, a superoxide generating system, an NO and superoxide donor, or peroxynitrite (attenuated by PKC inhibition), but not a NO donor. The short-term effect of HG depends on a combined oxidative and nitrosative stress with peroxynitrite formation, whereas the long-term effect is related to ROS generation; in both cases, PKC ultimately mediates permeability changes.
Collapse
Affiliation(s)
- Flavia Pricci
- Laboratory of Metabolism and Pathological Biochemistry, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28603
|
Szabó G, Buhmann V, Andrási T, Stumpf N, Bährle S, Kékesi V, Hagl S, Szabó C, Juhász-Nagy A. Poly-ADP-ribose polymerase inhibition protects against myocardial and endothelial reperfusion injury after hypothermic cardiac arrest. J Thorac Cardiovasc Surg 2003; 126:651-8. [PMID: 14502135 DOI: 10.1016/s0022-5223(02)73235-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Free radical production and related cytotoxicity during ischemia and reperfusion might lead to DNA strand breakage, which activates the nuclear enzyme poly-ADP-ribose synthetase and initiates an energy-consuming and inefficient cellular metabolic cycle with transfer of the adenosine diphosphate-ribosyl moiety of nicotinamide adenine dinucleotide (NAD(+)) to protein acceptors. We investigated the effects of poly-ADP-ribose synthetase inhibition on myocardial and endothelial function during reperfusion in an experimental model of cardiopulmonary bypass. METHODS Twelve anesthetized dogs underwent hypothermic cardiopulmonary bypass. After 60 minutes of hypothermic cardiac arrest, reperfusion was started after application of either saline vehicle (control, n = 6) or PJ34 (10 mg/kg), a potent poly-ADP-ribose synthetase inhibitor (n = 6). Biventricular hemodynamic variables were measured by means of a combined pressure-volume conductance catheter, and the slope of the end-systolic pressure-volume relationships was calculated at baseline and after 60 minutes of reperfusion. Left anterior descending coronary blood flow, endothelium-dependent vasodilatation to acetylcholine, and endothelium-independent vasodilatation to sodium nitroprusside were also determined. RESULTS The administration of PJ34 led to a significantly better recovery of left and right ventricular systolic function (P <.05) after 60 minutes of reperfusion. In addition, the inotropic adaptation potential of the right ventricle to an increased afterload was better preserved in the PJ34 group. Coronary blood flow was also significantly higher in the PJ34 group (P <.05). Although the vasodilatory response to sodium nitroprusside was similar in both groups, acetylcholine resulted in a significantly higher increase in coronary blood flow in the PJ34 group (P <.05). CONCLUSIONS Poly-ADP-ribose synthetase inhibition improves the recovery of myocardial and endothelial function after cardiopulmonary bypass with hypothermic cardiac arrest.
Collapse
Affiliation(s)
- Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, In Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
28604
|
Alp NJ, Mussa S, Khoo J, Cai S, Guzik T, Jefferson A, Goh N, Rockett KA, Channon KM. Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression. J Clin Invest 2003; 112:725-35. [PMID: 12952921 PMCID: PMC182196 DOI: 10.1172/jci17786] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2003] [Accepted: 06/10/2003] [Indexed: 01/01/2023] Open
Abstract
Increased production of reactive oxygen species and loss of endothelial NO bioactivity are key features of vascular disease states such as diabetes mellitus. Tetrahydrobiopterin (BH4) is a required cofactor for eNOS activity; pharmacologic studies suggest that BH4 may mediate some of the adverse effects of diabetes on eNOS function. We have now investigated the importance and mechanisms of BH4 availability in vivo using a novel transgenic mouse model with endothelial-targeted overexpression of the rate-limiting enzyme in BH4 synthesis, guanosine triphosphate-cyclohydrolase I (GTPCH). Transgenic (GCH-Tg) mice demonstrated selective augmentation of endothelial BH4 levels. In WT mice, induction of diabetes with streptozotocin (STZ) increased vascular oxidative stress, resulting in oxidative loss of BH4, forming BH2 and biopterin. Endothelial cell superoxide production in diabetes was increased, and NO-mediated endothelium-dependent vasodilatation was impaired. In diabetic GCH-Tg mice, superoxide production from the endothelium was markedly reduced compared with that of WT mice, endothelial BH4 levels were maintained despite some oxidative loss of BH4, and NO-mediated vasodilatation was preserved. These findings indicate that BH4 is an important mediator of eNOS regulation in diabetes and is a rational therapeutic target to restore NO-mediated endothelial function in diabetes and other vascular disease states.
Collapse
Affiliation(s)
- Nicholas J Alp
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffr Hospital, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
28605
|
Bowler RP, Velsor LW, Duda B, Chan ED, Abraham E, Ware LB, Matthay MA, Day BJ. Pulmonary edema fluid antioxidants are depressed in acute lung injury. Crit Care Med 2003; 31:2309-15. [PMID: 14501961 DOI: 10.1097/01.ccm.0000085090.06078.8c] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To test the hypothesis that low concentrations of distal airspace water-soluble antioxidants are associated with acute lung injury. DESIGN Prospective, cohort study. SETTING Medical intensive care unit of two tertiary care hospitals. SUBJECTS Subjects were 29 patients with acute lung injury and 23 normal, healthy, volunteers. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Pulmonary edema fluid from subjects with acute lung injury was aspirated immediately after intubation. Compared with the bronchoalveolar lavage from normal subjects (corrected for dilution using urea concentrations), undiluted edema fluid from acute lung injury subjects had significantly lower concentrations of the antioxidants urate (757 +/- 232 microM vs. 328 +/- 75 microM), glutathione (138 +/- 25 microM vs. 7 +/- 4 microM), and ascorbate (85 +/- 21 microM vs. 27 +/- 10 microM). CONCLUSIONS Acute lung injury is associated with decreased concentrations of water-soluble antioxidants in the distal airspaces. In acute lung injury, the distal airspace antioxidants ascorbate, urate, and glutathione may play a role in attenuating lung injury.
Collapse
Affiliation(s)
- Russell P Bowler
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO, USA
| | | | | | | | | | | | | | | |
Collapse
|
28606
|
Abstract
Insulin has multiple metabolic actions, including effects on blood vessels. Insulin normally increases blood flow by a mechanism which involves generation of nitric oxide (NO) via the arginine-NO pathway. Although insulin itself is a weak and physiologically unimportant vasodilatator, it appears to markedly potentiate endothelium-dependent vasodilatation. Therefore, anything that impairs insulin action in endothelial cells can be expected to be associated with endothelial dysfunction, i.e. loss of NO bioactivity in the vessel wall. Consistent with the idea that insulin resistance and endothelial dysfunction frequently coexist, all insulin-resistant conditions examined to date have been associated with endothelial dysfunction. However, the latter can also be caused by factors other than insulin resistance-such as a high concentration of low-density lipoprotein (LDL) cholesterol. Therapies which reverse insulin resistance-such as exercise, insulin and inhibitors of the renin-angiotensin-aldosterone (RAA) axis-also reverse endothelial dysfunction, which may thus be an inherent feature of insulin resistance.
Collapse
Affiliation(s)
- Hannele Yki-Järvinen
- Division of Diabetes, Department of Medicine, University of Helsinki, Haartmaninkatu 4, 00290 Helsinki, Finland.
| |
Collapse
|
28607
|
Okada S, Li Q, Whitin JC, Clayberger C, Krensky AM. Intracellular mediators of granulysin-induced cell death. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2556-62. [PMID: 12928406 DOI: 10.4049/jimmunol.171.5.2556] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Granulysin, a molecule present in the granules of CTL and NK cells, is cytolytic against microbes and tumors. Granulysin induces apoptosis of mammalian cells by damaging mitochondria and causing the release of cytochrome c and apoptosis-inducing factor, resulting in DNA fragmentation. Here we show that Ca2+ and K+ channels as well as reactive oxygen species are involved in granulysin-mediated Jurkat cell death. The Ca2+ channel blockers, nickel and econazole, and the K+ channel blockers, tetraethylammonium chloride, apamin, and charybdotoxin, inhibit the granulysin-induced increase in intracellular Ca2+ ([Ca2+](i)), the decrease in intracellular K+, and apoptosis. Thapsigargin, which releases Ca2+ from the endoplasmic reticulum, prevents a subsequent granulysin-induced increase in [Ca2+](i) in Jurkat cells, indicating that the initial increase in [Ca2+](i) is from intracellular stores. The rise in [Ca2+](i) precedes a decrease in intracellular K+, and elevated extracellular K+ prevents granulysin-mediated cell death. In granulysin-treated cells, electron transport is uncoupled, and reactive oxygen species are generated. Finally, an increase in intracellular glutathione protects target cells from granulysin-induced lysis, indicating the importance of the redox state in granulysin-mediated cell death.
Collapse
Affiliation(s)
- Satoshi Okada
- Division of Immunology and Transplantation Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
28608
|
Pohl R, Balon R, Jayaraman A, Doll RG, Yeragani V. Effect of fluoxetine, pemoline and placebo on heart period and QT variability in normal humans. J Psychosom Res 2003; 55:247-51. [PMID: 12932798 DOI: 10.1016/s0022-3999(02)00478-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To measure the effects of fluoxetine and pemoline on heart period and QT variability. METHODS Healthy volunteers were randomly assigned treatment with 20 mg daily of fluoxetine (n=7), 56.25 mg of pemoline (n=7) or placebo (n=9). Twenty-four-hour Holter ECGs were obtained before and after approximately 8 weeks of double-blind treatment. RESULTS There were no significant changes in the fluoxetine group. Pemoline was associated with a significant decrease in the high frequency (HF) power (0.15-0.5 Hz, P=.02) and fractal dimension of RR time series (P=.03). QTvi, a measure of QT interval variability, increased in the pemoline group (P=.05). CONCLUSION Pemoline, but not fluoxetine, decreases heart period variability (HPV) in the HF power, suggesting a vagolytic effect on cardiac autonomic function. Pemoline is also associated with an increase in QT interval variability, a measure that is sensitive to adrenergic agonists.
Collapse
Affiliation(s)
- Robert Pohl
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 2751 E. Jefferson, Detroit, MI 48207, USA
| | | | | | | | | |
Collapse
|
28609
|
Chami M, Ferrari D, Nicotera P, Paterlini-Bréchot P, Rizzuto R. Caspase-dependent alterations of Ca2+ signaling in the induction of apoptosis by hepatitis B virus X protein. J Biol Chem 2003; 278:31745-55. [PMID: 12799372 DOI: 10.1074/jbc.m304202200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The hepatitis B virus X protein (HBx) is a multifunctional protein, acting on different targets (e.g. transcription factors, cytoplasmic kinases, and mitochondrial proteins) and exerting cellular effects as diverse as stimulation of cell proliferation and apoptosis. In its biological effects, the modulation of cellular Ca2+ signals has been proposed to be involved, but the direct assessment of Ca2+ homeostasis in HBx-transfected cells has not been carried out yet. In this work, we have employed for this purpose aequorin-based recombinant probes specifically targeted to intracellular organelles and microdomains. Using these probes, we observed that overexpression of HBx enhanced agonist-evoked cytosolic Ca2+ signals in HepG2 and HeLa cells, without affecting either the steady state of endoplasmic reticulum Ca2+ concentration or the kinetics of Ca2+ release. Rather, caspase-3-dependent cleavage of the plasma membrane Ca2+ ATPase could be demonstrated, and larger rises were detected in the cytoplasmic rim beneath the plasma membrane. In mitochondria, major morphological (fragmentation and swelling) and functional (reduced Ca2+ uptake) alterations were detected in HBx-expressing cells. As to the cellular consequences, we observed that HBx-induced apoptosis was markedly reduced when the alterations in Ca2+ signaling (e.g. by loading a Ca2+ chelator or preventing PMCA cleavage) or the downstream effects (e.g. by inhibiting mitochondrial permeability transition) were prevented. Overall, these results indicate that HBx perturbs intracellular Ca2+ homeostasis, acting on the extrusion mechanisms, and that this effect plays an important role in the control of HBx-related apoptosis.
Collapse
Affiliation(s)
- Mounia Chami
- Department of Experimental and Diagnostic Medicine, Section of General Pathology and Interdiscipliny Center for the Study of Inflammation, Via Borsari 46, I-44100 Ferrara, Italy
| | | | | | | | | |
Collapse
|
28610
|
Abstract
Mitochondria play a key role in determining cell fate during exposure to stress. Their role during ischemia/reperfusion is particularly critical because of the conditions that promote both apoptosis by the mitochondrial pathway and necrosis by irreversible damage to mitochondria in association with mitochondrial permeability transition (MPT). MPT is caused by the opening of permeability transition pores in the inner mitochondrial membrane, leading to matrix swelling, outer membrane rupture, release of apoptotic signaling molecules such as cytochrome c from the intermembrane space, and irreversible injury to the mitochondria. During ischemia (the MPT priming phase), factors such as intracellular Ca2+ accumulation, long-chain fatty acid accumulation, and reactive oxygen species progressively increase mitochondrial susceptibility to MPT, increasing the likelihood that MPT will occur on reperfusion (the MPT trigger phase). Because functional cardiac recovery ultimately depends on mitochondrial recovery, cardioprotection by ischemic and pharmacological preconditioning must ultimately involve the prevention of MPT. Investigations into this area are beginning to unravel some of the mechanistic links between cardioprotective signaling and mitochondria.
Collapse
Affiliation(s)
- James N Weiss
- Cardiovascular Research Laboratory, Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, Calif 90095-1760, USA.
| | | | | | | |
Collapse
|
28611
|
Chen ZT, Li SL, Cai EQ, Wu WL, Jin JS, Zhu B. LPS induces pulmonary intravascular macrophages producing inflammatory mediators via activating NF-kappaB. J Cell Biochem 2003; 89:1206-14. [PMID: 12898518 DOI: 10.1002/jcb.10590] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pulmonary intravascular macrophages (PIMs) are often responsible for the clearance of blood-borne pathogens, including endotoxin, lipopolysaccharide of Gram-negative bacteria. It is well accepted that PIMs play a pivotal role in the pathogenesis of endotoxin-induced acute lung injury. However, the mechanisms by which PIMs are involved in the lipopolysaccharide-induced inflammatory responses remain unclear. Through the present study the following results were found: (1) When challenged with lipopolysaccharide (10 micrograms/ml), PIMs underwent marked cellular enlargement, intercellular adhesion plaques became longer, and some particulates were enwrapped in the pseudopods. (2) Lipopolysaccharide could up-regulate the expression of some inflammatory mediators in PIMs, including TNF-alpha, IL-1beta, IL-6, IL-8, and COX-2, and these up-regulated expression of inflammatory mediators correlated with NF-kappaB activation. (3) Dexamethasone as well as acetylsalicylic acid reduced the expression of TNF-alpha in lipopolysaccharide-challenged PIMs, and the decreased expression of TNF-alpha was also consistent with decreased NF-kappaB activation. Our results suggest that NF-kappaB activation in PIMs followed by phagocytizing lipopolysaccharide resulted in the up-regulation of TNF-alpha, IL-1beta, IL-6, IL-8, and COX-2, which could be alleviated by dexamethasone.
Collapse
Affiliation(s)
- Zheng-Tang Chen
- Cancer Center of People's Liberation Army, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28612
|
Ferraris D, Ficco RP, Dain D, Ginski M, Lautar S, Lee-Wisdom K, Liang S, Lin Q, Lu MXC, Morgan L, Thomas B, Williams LR, Zhang J, Zhou Y, Kalish VJ. Design and synthesis of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. Part 4: biological evaluation of imidazobenzodiazepines as potent PARP-1 inhibitors for treatment of ischemic injuries. Bioorg Med Chem 2003; 11:3695-707. [PMID: 12901915 DOI: 10.1016/s0968-0896(03)00333-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A class of poly(ADP-ribose) polymerase (PARP-1) inhibitors, the imidazobenzodiazepines, are presented in this text. Several derivatives were designed and synthesized with ionizable groups (i.e., tertiary amines) in order to promote the desired pharmaceutical characteristics for administration in ischemic injury. Within this series, several compounds have excellent in vitro potency and our computational models accurately justify the structure-activity relationships (SARs) and highlight essential hydrogen bonding residues and hydrophobic pockets within the catalytic domain of PARP-1. Administration of these compounds (5q, 17a and 17e) in the mouse model of streptozotocin-induced diabetes results in maintainance of glucose levels. Furthermore, one such inhibitor (5g, IC(50)=26 nM) demonstrated significant reduction of infarct volume in the rat model of permanent focal cerebral ischemia.
Collapse
Affiliation(s)
- Dana Ferraris
- Guilford Pharmaceuticals Inc., 6611 Tributary Street, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28613
|
Ward CW, Reiken S, Marks AR, Marty I, Vassort G, Lacampagne A. Defects in ryanodine receptor calcium release in skeletal muscle from post-myocardial infarct rats. FASEB J 2003; 17:1517-9. [PMID: 12824280 DOI: 10.1096/fj.02-1083fje] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Defective calcium (Ca2+) signaling and impaired contractile function have been observed in skeletal muscle secondary to impaired myocardial function. However, the molecular basis for these muscle defects have not been identified. In this study, we evaluated the alterations of the ryanodine-sensitive Ca2+ release channels (RyR1) by analyzing global and local Ca2+ signaling in a rat postmyocardial infarction (PMI) model of myocardial overload. Ca2+ transients, measured with multiphoton imaging in individual fibers within a whole extensor digitorum longus (EDL) muscle, exhibited significantly reduced amplitude and a prolonged time course in PMI. Spatio-temporal properties of spontaneous Ca2+ sparks in fibers isolated from PMI EDL muscles were also significantly altered. In addition, RyR1 from PMI skeletal muscles were PKA-hyperphosphorylated and depleted of the FK506 binding protein (FKBP12). These data show that PMI skeletal muscles exhibit altered local Ca2+ signaling, associated with hyperphosphorylation of RyR1. The observed changes in Ca2+ signaling may contribute to defective excitation-contraction coupling in muscle that can contribute to the reduced exercise capacity in PMI, out of proportion to the degree of cardiac dysfunction.
Collapse
Affiliation(s)
- C W Ward
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | | | | | | | | | | |
Collapse
|
28614
|
George CH, Higgs GV, Mackrill JJ, Lai FA. Dysregulated ryanodine receptors mediate cellular toxicity: restoration of normal phenotype by FKBP12.6. J Biol Chem 2003; 278:28856-64. [PMID: 12754204 DOI: 10.1074/jbc.m212440200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca2+ homeostasis is a vital cellular control mechanism in which Ca2+ release from intracellular stores plays a central role. Ryanodine receptor (RyR)-mediated Ca2+ release is a key modulator of Ca2+ homeostasis, and the defective regulation of RyR is pathogenic. However, the molecular events underlying RyR-mediated pathology remain undefined. Cells stably expressing recombinant human RyR2 (Chinese hamster ovary cells, CHOhRyR2) had similar resting cytoplasmic Ca2+ levels ([Ca2+]c) to wild-type CHO cells (CHOWT) but exhibited increased cytoplasmic Ca2+ flux associated with decreased cell viability and proliferation. Intracellular Ca2+ flux increased with human RyR2 (hRyR2) expression levels and determined the extent of phenotypic modulation. Co-expression of FKBP12.6, but not FKBP12, or incubation of cells with ryanodine suppressed intracellular Ca2+ flux and restored normal cell viability and proliferation. Restoration of normal phenotype was independent of the status of resting [Ca2+]c or ER Ca2+ load. Heparin inhibition of endogenous inositol trisphosphate receptors (IP3R) had little effect on intracellular Ca2+ handling or viability. However, purinergic stimulation of endogenous IP3R resulted in apoptotic cell death mediated by hRyR2 suggesting functional interaction occurred between IP3R and hRyR2 Ca2+ release channels. These data demonstrate that defective regulation of RyR causes altered cellular phenotype via profound perturbations in intracellular Ca2+ signaling and highlight a key modulatory role of FKBP12.6 in hRyR2 Ca2+ channel function.
Collapse
Affiliation(s)
- Christopher H George
- Department of Cardiology, Wales Heart Research Institute, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom.
| | | | | | | |
Collapse
|
28615
|
Khan TA, Ruel M, Bianchi C, Voisine P, Komjáti K, Szabo C, Sellke FW. Poly(ADP-ribose) polymerase inhibition improves postischemic myocardial function after cardioplegia-cardiopulmonary bypass. J Am Coll Surg 2003; 197:270-7. [PMID: 12892811 DOI: 10.1016/s1072-7515(03)00538-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Poly(ADP-ribose) polymerase activation has been shown to contribute to the pathogenesis of myocardial ischemia-reperfusion injury. We hypothesized that a novel poly(ADP-ribose) polymerase inhibitor, INO-1001, provides myocardial protection and improves cardiac function after regional ischemia and cardioplegia-cardiopulmonary bypass (CPB). STUDY DESIGN Pigs were subjected to 30 minutes of regional ischemia by distal left anterior descending coronary artery ligation followed by CPB (60 minutes) with hyperkalemic cardioplegia (45 minutes). The myocardium then was reperfused post-CPB for 90 minutes. After 15 minutes of ischemia, the treatment group (n = 6) received an INO-1001 bolus (1mg/kg) before a continuous infusion (1mg/kg/hour). Control pigs (n = 6) received vehicle solution. Left ventricular pressure was monitored, from which the maximum, positive first derivative of left ventricular pressure over time (+dP/dt) was calculated. Regional myocardial function in the ischemic area was determined by sonomicrometric analysis. Infarct size was measured as the percent of the ischemic area by tetrazolium staining. Myocardial sections were immunohistochemically stained for poly(ADP-ribose) as a measure of poly(ADP-ribose) polymerase activity and inhibition. RESULTS Pigs treated with INO-1001 showed improvements in the +dP/dt at 60 and 90 minutes of post-CPB reperfusion (both p = 0.03) and percent segmental shortening at 30, 60, and 90 minutes of post-CPB reperfusion (p = 0.03, 0.009, and 0.03, respectively). Infarct size was decreased in the treatment group (18.5 +/- 5.7% versus 52.0 +/- 7.7%, INO-1001 versus control, p = 0.03). Poly(ADP-ribose) was reduced in myocardial sections from INO-1001-treated animals compared with controls. CONCLUSIONS These results suggest that INO-1001 provides myocardial protection by reducing the extent of infarction and improves cardiac function after regional ischemia and cardioplegia-CPB.
Collapse
Affiliation(s)
- Tanveer A Khan
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
28616
|
|
28617
|
Abstract
Falciparum malaria is a complex disease with no simple explanation, affecting organs where the parasite is rare as well as those organs where it is more common. We continue to argue that it can best be understood in terms of excessive stimulation of normally useful pathways mediated by inflammatory cytokines, the prototype being tumor necrosis factor (TNF). These pathways involve downstream mediators, such as nitric oxide (NO) that the host normally uses to control parasites, but which, when uncontrolled, have bioenergetic failure of patient tissues as their predictable end point. Falciparum malaria is no different from many other infectious diseases that are clinically confused with it. The sequestration of parasitized red blood cells, prominent in some tissues but absent in others with equal functional loss, exacerbates, but does not change, these overriding principles. Recent opportunities to stain a wide range of tissues from African pediatric cases of falciparum malaria and sepsis for the inducible NO synthase (iNOS) and migration inhibitory factor (MIF) have strengthened these arguments considerably. The recent demonstration of bioenergetic failure in tissue removed from sepsis patients being able to predict a fatal outcome fulfils a prediction of these principles, and it is plausible that this will be demonstrable in severe falciparum malaria. Understanding the disease caused by falciparum malaria at a molecular level requires an appreciation of the universality of poly(ADP-ribose) polymerase-1 (PARP-1) and Na(+)/K(+)-ATPase and the protean effects of activation by inflammation of the former that include inactivation of the latter.
Collapse
Affiliation(s)
- Ian A Clark
- School of Biochemistry and Molecular Biology, Australian National University, ACT 0200, Canberra, Australia.
| | | |
Collapse
|
28618
|
Minchenko AG, Stevens MJ, White L, Abatan OI, Komjáti K, Pacher P, Szabó C, Obrosova IG. Diabetes-induced overexpression of endothelin-1 and endothelin receptors in the rat renal cortex is mediated via poly(ADP-ribose) polymerase activation. FASEB J 2003; 17:1514-1516. [PMID: 12824290 DOI: 10.1096/fj.03-0013fje] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We hypothesize that poly (ADP-ribosyl)ation, that is, poly (ADP-ribose) polymerase (PARP)-dependent transfer of ADP-ribose moieties from NAD to nuclear proteins, plays a role in diabetic nephropathy. We evaluated whether PARP activation is present and whether two unrelated PARP inhibitors, 3-aminobenzamide (ABA) and 1,5-isoquinolinediol (ISO), counteract overexpression of endothelin-1 (ET-1) and ET receptors in the renal cortex in short-term diabetes. The studies were performed in control rats and streptozotocin-diabetic rats treated with/without ABA or ISO (30 and 3 mg x kg(-1) x day(-1), intraperitoneally, for 2 weeks after 2 weeks of diabetes). Poly (ADP-ribose) immunoreactivity was increased in tubuli, but not glomeruli, of diabetic rats and this increase was corrected by ISO, whereas ABA had a weaker effect. ET-1 concentration (ELISA) was increased in diabetic rats, and this elevation was blunted by ISO. ET-1, ET(A), and ET(B) mRNA (ribonuclease protection assay), but not ET-3 mRNA (RT/PCR), abundance was increased in diabetic rats, and three variables were, at least, partially corrected by ISO. ABA produced a trend towards normalization of ET-1 concentration and ET-1, ET(A), and ET(B) mRNA abundance, but the differences with untreated diabetic group were not significant. Poly(ADP-ribosyl)ation is involved in diabetes-induced renal overexpression of ET-1 and ET receptors. PARP inhibitors could provide a novel therapeutic approach for diabetic complications including nephropathy, and other diseases that involve the endothelin system.
Collapse
Affiliation(s)
- Alexander G Minchenko
- Department of Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
28619
|
Smolders RGV, van der Mooren MJ, Sipkema P, Kenemans P. Estrogens, homocysteine, vasodilatation and menopause: basic mechanisms, interactions and clinical implications. Gynecol Endocrinol 2003; 17:339-54. [PMID: 14503980 DOI: 10.1080/gye.17.4.339.354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Estrogens influence the independent cardiovascular risk factor homocysteine as well as vasodilatation. Homocysteine alone also influences vasodilatation, indicating a relational triangle that seems important in interpreting the isolated effects of estrogens on homocysteine metabolism and vasoreactivity. This paper gives an overview of the current understanding regarding vasoreactivity, homocysteine metabolism and the role of estrogens. This is placed against the background of the clinical trials on the effect of postmenopausal hormone replacement therapy on homocysteine levels and addresses the importance of the interaction between homocysteine, estrogens and vasoreactivity.
Collapse
Affiliation(s)
- R G V Smolders
- Project Aging Women, Institute for Cardiovascular Research, Vrije Universiteit, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
28620
|
Tamminen M, Lassila R, Westerbacka J, Vehkavaara S, Yki-Järvinen H. Obesity is associated with impaired platelet-inhibitory effect of acetylsalicylic acid in nondiabetic subjects. Int J Obes (Lond) 2003; 27:907-11. [PMID: 12861231 DOI: 10.1038/sj.ijo.0802312] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Platelet aggregation responses to acetylsalicylic acid (ASA) show considerable interindividual variation, the causes of which are largely unknown. We determined whether variation in insulin action is associated with that of ASA on platelets. SUBJECTS In all, 10 nonobese (age 50+/-3 y, BMI 25+/-1 kg/m(2)) and 11 obese (age 52+/-2 y, BMI 32+/-1 kg/m(2)) subjects. MEASUREMENTS Insulin sensitivity of glucose uptake was determined by the euglycemic insulin clamp technique. Platelet aggregation responses to four doses of arachidonic acid (AA) and adenosine diphosphate (ADP) were assessed in platelet-rich plasma before and 1 h after ingestion of 50 mg ASA using Born's turbidometric aggregometer. RESULTS Whole-body insulin sensitivity (M-value 0-180 min) was 36% lower in the obese (4.5+/-0.6) than the nonobese (7.1+/-0.6 mg/kg min, P<0.01) group. Before ASA, all doses of AA induced complete aggregation. After ASA ingestion, ASA inhibited maximal aggregation more in the nonobese than the obese group at AA concentrations of 0.75, 1 and 1.5 mmol/l (P=0.016 for ANOVA). ADP-induced aggregation at high doses (2 and 3 micromol/l) was also less inhibited in the obese group. In vivo insulin sensitivity (r=-0.68, P<0.001 for 1 mmol/l AA) and BMI (r=0.58, P<0.01 for 1 mmol/l AA) were closely correlated with residual aggregation after ASA administration. CONCLUSION These data demonstrate that obese insulin-resistant subjects have a blunted response to platelet-inhibitory effect of ASA. If this blunted effect is of a single dose of ASA preserved in continuous use, it could contribute to the increased risk of atherothrombosis in insulin-resistant individuals.
Collapse
Affiliation(s)
- M Tamminen
- Division of Diabetes, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
28621
|
Grohmann U, Fallarino F, Bianchi R, Orabona C, Vacca C, Fioretti MC, Puccetti P. A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice. J Exp Med 2003; 198:153-60. [PMID: 12835483 PMCID: PMC2196078 DOI: 10.1084/jem.20030633] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The predisposition of nonobese diabetic (NOD) mice to develop autoimmunity reflects deficiencies in both peripheral and central tolerance. Several defects have been described in these mice, among which aberrant antigen-presenting cell function and peroxynitrite formation. Prediabetes and diabetes in NOD mice have been targeted with different outcomes by a variety of immunotherapies, including interferon (IFN)-gamma. This cytokine may be instrumental in specific forms of tolerance by virtue of its ability to activate immunosuppressive tryptophan catabolism. Here, we provide evidence that IFN-gamma fails to induce tolerizing properties in dendritic cells from highly susceptible female mice early in prediabetes. This effect is associated with impaired tryptophan catabolism, is related to transient blockade of the Stat1 pathway of intracellular signaling by IFN-gamma, and is caused by peroxynitrite production. However, the use of a peroxynitrite inhibitor can rescue tryptophan catabolism and tolerance in those mice. This is the first report of an experimental autoimmune disease in which defective tolerance is causally linked to impaired tryptophan catabolism.
Collapse
Affiliation(s)
- Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, 06126 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
28622
|
Klem I, Wehinger C, Schneider B, Hartl E, Finsterer J, Stöllberger C. Diabetic atrial fibrillation patients: mortality and risk for stroke or embolism during a 10-year follow-up. Diabetes Metab Res Rev 2003; 19:320-8. [PMID: 12879410 DOI: 10.1002/dmrr.386] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND To compare in atrial fibrillation patients with and without diabetes, (1) baseline characteristics, (2) additional risk factors for stroke or peripheric or visceral embolism (hypertension, previous stroke, age >75 years), (3) mortality, (4) stroke or embolism, and (5) oral anticoagulation in the year 2000. METHODS Included were 409 outpatients with nonrheumatic atrial fibrillation (62 +/- 12 years, 36% female). All underwent transthoracic and transesophageal echocardiography. Patients with thrombi received oral anticoagulation; patients without thrombi received aspirin until the follow-up in 1995; afterwards, oral anticoagulation according to risk factors for stroke or embolism was recommended. Patients were contacted during the year 2000. RESULTS Type 2 diabetes was diagnosed in 73 patients (18%). Sixteen (22%) diabetic and 169 (50%) nondiabetic patients had no other risk factors for stroke or embolism (p < 0.0001). Diabetic patients were older, had more frequent heart failure, hypertension, myocardial infarction, left ventricular dysfunction, valvular abnormalities, left atrial or appendage thrombi, larger left atria, and left atrial appendages than nondiabetic patients. Mean follow-up was 115 months. Diabetic patients had a higher mortality than nondiabetic patients (7%/year versus 4%/year, p < 0.0001). The rate of stroke or embolism of diabetic (3%/year) and nondiabetic patients (2%/year) was similar. The rate of oral anticoagulation was higher in diabetic than in nondiabetic patients (p = 0.0066). CONCLUSIONS Diabetic patients with atrial fibrillation frequently have additional risk factors for stroke or embolism, and thus should be treated with oral anticoagulation. Whether in the rare cases of atrial fibrillation, in whom diabetes is the only clinical risk factor, oral anticoagulation is indicated cannot be answered by the present study.
Collapse
Affiliation(s)
- Igor Klem
- 2nd Medical Department, KA Rudolfstiftung, Juchgasse, Wien, Osterreich
| | | | | | | | | | | |
Collapse
|
28623
|
Hansen MB. The enteric nervous system III: a target for pharmacological treatment. PHARMACOLOGY & TOXICOLOGY 2003; 93:1-13. [PMID: 12828568 DOI: 10.1034/j.1600-0773.2003.930101.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The past decade has seen major advances in the pharmacological understanding of the nervous system of the gastrointestinal tract, the enteric nervous system, and its importance for gut functions in several states of disease. Indeed, the enteric nervous system has become a promising target in the treatment of many gastrointestinal symptoms and disorders. Some of these new therapeutic concepts, such as botulinum toxin for achalasia and serotonergic drugs for functional bowel diseases, are already in clinical use. This paper is part 3 of three Minireviews in Pharmacology & Toxicology, and presents the neurogastrointestinal pharmacological therapeutic options in gastrointestinal pain, functional gastrointestinal disorders, inflammatory bowel diseases, cancer and related conditions with focus on future drug targets. The diagnosis of gastrointestinal neuropathy, the role of serotonin and related neuroendocrine transmitters, serotonergic drugs, and neurotrophic factors in neurogastrointestinal pharmacology will be addressed in this context.
Collapse
Affiliation(s)
- Mark Berner Hansen
- Department of Gastrointestinal Surgery K, H:S Bispebjerg Hospital, University of Copenhagen, DK-2400 Copenhagen NV, Denmark.
| |
Collapse
|
28624
|
Waetzig GH, Schreiber S. Review article: mitogen-activated protein kinases in chronic intestinal inflammation - targeting ancient pathways to treat modern diseases. Aliment Pharmacol Ther 2003; 18:17-32. [PMID: 12848623 DOI: 10.1046/j.1365-2036.2003.01642.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Conventional treatment of chronic inflammatory disorders, including inflammatory bowel diseases, employs broad-range anti-inflammatory drugs. In order to reduce the side-effects and increase the efficacy of treatment, several strategies have been developed in the last decade to interfere with intercellular and intracellular inflammatory signalling processes. The highly conserved mitogen-activated protein kinase pathways regulate most cellular processes, particularly defence mechanisms such as stress reactions and inflammation. In this review, we provide an overview of the current knowledge of the specificity and interconnection of mitogen-activated protein kinase pathways, their functions in the gut immune system and published and ongoing studies on the role of mitogen-activated protein kinases in inflammatory bowel disease. The development of mitogen-activated protein kinase inhibitors and their use for the therapy of inflammatory disorders is a paradigm of the successful bridging of the gap between basic research and clinical practice.
Collapse
Affiliation(s)
- G H Waetzig
- Mucosal Immunology Research Group, Department of General Internal Medicine, University Hospital Schleswig-Holstein, Kiel, Germany.
| | | |
Collapse
|
28625
|
Shimoda K, Murakami K, Enkhbaatar P, Traber LD, Cox RA, Hawkins HK, Schmalstieg FC, Komjati K, Mabley JG, Szabo C, Salzman AL, Traber DL. Effect of poly(ADP ribose) synthetase inhibition on burn and smoke inhalation injury in sheep. Am J Physiol Lung Cell Mol Physiol 2003; 285:L240-9. [PMID: 12626333 DOI: 10.1152/ajplung.00319.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the role of the nuclear enzyme poly (ADP ribose) synthetase (PARS) in the pathogenesis of combined burn and smoke inhalation (burn/smoke) injury in an ovine model. Eighteen sheep were operatively prepared for chronic study. PARS inhibition was achieved by treatment with a novel and selective PARS inhibitor INO-1001. The PARS inhibitor attenuated 1) lung edema formation, 2) deterioration of gas exchange, 3) changes in airway blood flow, 4) changes in airway pressure, 5) lung histological injury, and 6) systemic vascular leakage. Lipid oxidation and plasma nitrite/nitrate (stable breakdown products of nitric oxide) levels were suppressed with the use of INO-1001. We conclude that PARS inhibition attenuates various aspects of the pathophysiological response in a clinically relevant experimental model of burn/smoke inhalation injury.
Collapse
Affiliation(s)
- Katsumi Shimoda
- Department of Anesthesiology, The University of Texas Medical Branch, Shriners Burns Hospital, Galveston, Texas 77555-0833, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28626
|
Xia R, Webb JA, Gnall LLM, Cutler K, Abramson JJ. Skeletal muscle sarcoplasmic reticulum contains a NADH-dependent oxidase that generates superoxide. Am J Physiol Cell Physiol 2003; 285:C215-21. [PMID: 12646413 DOI: 10.1152/ajpcell.00034.2002] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle sarcoplasmic reticulum (SR) is shown to contain an NADH-dependent oxidase (NOX) that reduces molecular oxygen to generate superoxide. Its activity is coupled to an activation of the Ca2+ release mechanism, as evident by stimulation in the rate of high-affinity ryanodine binding. NOX activity, coupled to the production of superoxide, is not derived from the mitochondria but is SR in origin. The SR preparation also contains a significant NADH oxidase activity, which is not coupled to the production of superoxide and appears to be mitochondrial in origin. This mitochondrial component is preferentially associated with the terminal cisternae region of the SR. Its activity is inhibited by diphenylene iodonium (10 microM), antimycin A (200 nM), and rotenone (40 nM) but is not coupled to the generation of superoxide or the stimulation of the ryanodine receptor. The rate of superoxide production per milligram of protein is larger in SR than in mitochondria. This NOX may be a major source of oxidative stress in muscle.
Collapse
Affiliation(s)
- Ruohong Xia
- Department of Physics, Portland State University, Portland, OR 97207, USA
| | | | | | | | | |
Collapse
|
28627
|
Ramasubbu R. Serotonin transporter gene functional polymorphism: a plausible candidate gene for increased vascular risk in depression. Med Hypotheses 2003; 61:36-44. [PMID: 12781638 DOI: 10.1016/s0306-9877(03)00101-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The evidence of increased vascular morbidity and mortality associated with depression has generated research interest in studying the mechanisms or causal pathways underlying this association. Recent advances in molecular genetics have demonstrated that serotonin transporter gene functional polymorphism may confer susceptibility for affective disorder as well as for some cardiovascular risk factors. Taking into account these genetic findings, this article proposes a hypothesis that serotonin transporter gene functional polymorphism may be a plausible candidate gene to study the genetic mechanisms of depression-related increased vascular morbidity and mortality. Future research projects to test this hypothesis is warranted.
Collapse
Affiliation(s)
- R Ramasubbu
- Department of Psychiatry and Clinical Neurosciences, University of Calgary, Calgary, Canada.
| |
Collapse
|
28628
|
Kozlov AV, Szalay L, Umar F, Fink B, Kropik K, Nohl H, Redl H, Bahrami S. Epr analysis reveals three tissues responding to endotoxin by increased formation of reactive oxygen and nitrogen species. Free Radic Biol Med 2003; 34:1555-62. [PMID: 12788475 DOI: 10.1016/s0891-5849(03)00179-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The excessive formation of reactive oxygen and nitrogen species (RONS) in tissue has been implicated in the development of various diseases. In this study we adopted ex vivo low temperature EPR spectroscopy combined with spin trapping technique to measure local RONS levels in frozen tissue samples. CP-H (1-hydroxy-3-carboxy-pyrrolidine), a new nontoxic spin probe, was used to analyze RONS in vivo. In addition, nitrosyl complexes of hemoglobin were determined to trace nitric oxide released into blood. By this technique we found that RONS formation in tissue of control animals increased in the following order: liver < heart < brain < cerebellum < lung < muscle < blood < ileum < kidney < duodenum < jejunum. We also found that endotoxin challenge, which represents the most common model of septic shock, increased the formation of RONS in rat liver, heart, lung, and blood, but decreased RONS formation in jejunum. We did not find changes in RONS levels in other parts of gut, brain, skeletal muscles, and kidney. Scavenging of RONS by CP-H was accompanied by an increase in blood pressure, indicating that LPS-induced vasodilatation may be due to RONS, but not due to nitric oxide. Experiments with tissue homogenates incubated in vitro with CP-H showed that ONOO(-) and O(2)(*)(-), as well as other not identified RONS, are detectable by CP-H in tissue. In summary, low-temperature EPR combined with CP-H infusion allowed detection of local RONS formation in tissues. Increased formation of RONS in response to endotoxin challenge is organ specific.
Collapse
Affiliation(s)
- Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
28629
|
Hofstra CL, Desai PJ, Thurmond RL, Fung-Leung WP. Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells. J Pharmacol Exp Ther 2003; 305:1212-21. [PMID: 12626656 DOI: 10.1124/jpet.102.046581] [Citation(s) in RCA: 348] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The diverse physiological functions of histamine are mediated through distinct histamine receptors. Mast cells are major producers of histamine, yet effects of histamine on mast cells are currently unclear. The present study shows that histamine induces chemotaxis of mouse mast cells, without affecting mast cell degranulation. Mast cell chemotaxis toward histamine could be blocked by the dual H3/H4 receptor antagonist thioperamide, but not by H1 or H2 receptor antagonists. This chemotactic response is mediated by the H4 receptor, because chemotaxis toward histamine was absent in mast cells derived from H4 receptor-deficient mice but was detected in H3 receptor-deficient mast cells. In addition, Northern blot analysis showed the expression of H4 but not H3 receptors on mast cells. Activation of H4 receptors by histamine resulted in calcium mobilization from intracellular calcium stores. Both G alpha i/o proteins and phospholipase C (PLC) are involved in histamine-induced calcium mobilization and chemotaxis in mast cells, because these responses were completely inhibited by pertussis toxin and PLC inhibitor 1-[6-[[17 beta-3-methoxyestra-1,3,5 (10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122). In summary, histamine was shown to mediate signaling and chemotaxis of mast cells via the H4 receptor. This mechanism might be responsible for mast cell accumulation in allergic tissues.
Collapse
Affiliation(s)
- Claudia L Hofstra
- Johnson and Johnson Pharmaceutical Research and Development LLC, 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
28630
|
Abstract
Smoke inhalation injury results in serious respiratory failure. When smoke inhalation injury is combined with burn injury or pneumonia, the physiological responses are different and more severe than those of smoke inhalation injury alone. Treatment strategies should be planned based on these pathophysiological aspects.
Collapse
Affiliation(s)
- Kazunori Murakami
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0591, USA
| | | |
Collapse
|
28631
|
Scharte M, Nofer JR, Aken HV, Waurick R, Meyer J, Bone HG. Nicotinamide increases systemic vascular resistance in ovine endotoxemia. Intensive Care Med 2003; 29:989-994. [PMID: 12728305 DOI: 10.1007/s00134-003-1738-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2002] [Accepted: 03/20/2003] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The nuclear enzyme Poly(ADP-Ribose)-Polymerase (PARP) has been hypothesized as playing a major role in various forms of inflammation. PARP activation is induced by DNA strand breakage and can result in intracellular energy depletion and, ultimately, cell death. Further, it is thought to influence cardiovascular function and organ failure in endotoxemia. Here, we investigated the effect of the PARP inhibitor nicotinamide on cardiovascular and liver function in healthy and chronically endotoxemic sheep. DESIGN Prospective controlled trial. SETTING University research laboratory. SUBJECTS 12 female adult sheep. INTERVENTIONS Six healthy sheep, instrumented for chronic study, received nicotinamide intravenously as a bolus of 40 mg/kg followed by a continuous infusion of 10 mg.kg(-1).h(-1); six animals received the vehicle. One hour after bolus application, a continuous infusion of endotoxin ( Salmonella typhosa, 10 ng.kg(-1).min(-1)) was started. Hemodynamic parameters were determined before and during endotoxemia. MEASUREMENTS AND RESULTS Treatment with nicotinamide resulted in a significantly higher systemic vascular resistance index and lower cardiac index in endotoxemic animals, but not in controls. It also attenuated endotoxin-induced increase in gamma-glutamyl transferase. CONCLUSIONS The PARP inhibitor nicotinamide attenuates impairment of cardiovascular function during endotoxemia. In addition, PARP activation may be involved in endotoxin-induced liver injury.
Collapse
Affiliation(s)
- Marion Scharte
- Klinik und Poliklinik für Anästhesiologie und operative Intensivmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Strasse 33, 48149, Münster, Germany
| | - Jerzy-Roch Nofer
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinikum Münster, Münster, Germany
| | - Hugo Van Aken
- Klinik und Poliklinik für Anästhesiologie und operative Intensivmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Strasse 33, 48149, Münster, Germany
| | - Rene Waurick
- Klinik und Poliklinik für Anästhesiologie und operative Intensivmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Strasse 33, 48149, Münster, Germany
| | - Jörg Meyer
- Klinik und Poliklinik für Anästhesiologie und operative Intensivmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Strasse 33, 48149, Münster, Germany
| | - Hans-Georg Bone
- Klinik und Poliklinik für Anästhesiologie und operative Intensivmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Strasse 33, 48149, Münster, Germany
| |
Collapse
|
28632
|
Mihm MJ, Yu F, Reiser PJ, Bauer JA. Effects of peroxynitrite on isolated cardiac trabeculae: selective impact on myofibrillar energetic controllers. Biochimie 2003; 85:587-96. [PMID: 12829376 DOI: 10.1016/s0300-9084(03)00090-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Formation of peroxynitrite and cardiac protein nitration have been implicated in multiple cardiac disease states, but their contributions to disease initiation remain undefined. We have previously observed nitration of myofibrillar regions of cardiac myocytes in several experimental and clinical settings of cardiac myocyte dysfunction and postulated that oxidative insult to key components of the contractile apparatus may be initiating events. Here we tested the hypothesis that peroxynitrite alters myofibrillar contractile function, and investigated a mechanistic role for nitration in this process. Isolated rat ventricular trabeculae were exposed to physiologically relevant concentrations of peroxynitrite and ATP-dependent contractile responses were measured. Maximal trabecular force generation was significantly impaired following 300 nM peroxynitrite exposures. Several myofibrillar proteins demonstrated increased tyrosine nitration, the most significant increases occurred in the myosin heavy chain and the myofibrillar isoform of creatine kinase. Additional functional experiments were conducted using phosphocreatine (high energy phosphate substrate for myofibrillar creatine kinase) as the primary energy substrate. Myofibrillar creatine kinase-dependent force generation was impaired at peroxynitrite concentrations as low as 50 nM, suggesting potent inactivation of the enzyme. Extent of tyrosine nitration of myofibrillar creatine kinase was negatively correlated to myofibrillar creatine kinase-dependent force generation. These data demonstrate that the cardiac contractile apparatus is highly sensitive to peroxynitrite, and that MM-CK may be a uniquely vulnerable target.
Collapse
Affiliation(s)
- Michael J Mihm
- Center for Developmental Pharmacology and Toxicology, Columbus Children's Research Institute, 700 Children's Drive, Columbus, OH 43205, USA
| | | | | | | |
Collapse
|
28633
|
Hayashi T, Mori T, Sohmiya K, Okada Y, Inamoto S, Okuda N, Mori H, Kitaura Y. Efficacy of edaravone, a free radical scavenger, on left ventricular function and structure in diabetes mellitus. J Cardiovasc Pharmacol 2003; 41:923-9. [PMID: 12775971 DOI: 10.1097/00005344-200306000-00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study was designed to assess the efficacy of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger that possesses anti-oxidant effects, on cardiac function and fine structure of the left ventricular myocardium in diabetes mellitus. Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of spontaneous development of type II diabetes (30 weeks; n = 15) were divided into two groups and treated with edaravone 30 mg/kg/d or vehicle for 2 weeks. OLETF rats showed hyperglycemia (352 +/- 71 mg/dl vs normal control; 128 +/- 52 mg/dl), increased thiobarbituric acid-reactive substances (TBARS; 6.9 +/- 2.5 nM/ml vs 2.8 +/- 0.6 nM/ml), and decreased superoxide dismutase activity (21.5 +/- 0.9 U/ml vs 25.8 +/- 0.7 U/ml). Increased left ventricular end-diastolic pressure (12 +/- 3 mm Hg vs 6 +/- 2 mm Hg) and hypertrophied cardiocytes (23.1 +/- 1.4 vs 17.6 +/- 1.0 microm) were also observed (P < 0.05, respectively). Edaravone could not improve plasma glucose level and hemodynamic parameters but significantly decreased TBARS values (3.8 +/- 0.5) and increased superoxide dismutase activity (24.5 +/- 0.8) (vs OLETF, P < 0.05, respectively). Moreover, edaravone effectively preserved cardiocyte diameter (18.2 +/- 0.9 microm) and the fine structure of mitochondria. Thus, edaravone exhibits modest cardiac protection in diabetes mellitus independent of blood sugar level.
Collapse
Affiliation(s)
- Tetsuya Hayashi
- Third Department of Medicine, Osaka Medical College, Takatsuki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28634
|
Xia Y, Gopal KV, Gross GW. Differential acute effects of fluoxetine on frontal and auditory cortex networks in vitro. Brain Res 2003; 973:151-60. [PMID: 12738058 DOI: 10.1016/s0006-8993(03)02367-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Primary cultures of neuronal networks grown on microelectrode arrays were used to quantify acute effects of fluoxetine (Prozac) on spontaneous spike and burst activity. For frontal cortex cultures, fluoxetine showed consistent inhibitory effects and terminated activity at 10-16 microM. IC(50) mean+/-S.E. for spike rates was 5.4+/-0.7 microM (n=15). For auditory cortex cultures, fluoxetine caused excitation at 1-10 microM, initial inhibition at 15 microM, and activity cessation at 20-25 microM. The spike rate IC(50) was 15.9+/-1.0 microM (n=11). Fluoxetine did not change the action potential waveform shape. However, at high concentrations, it caused total cessation of spike activity on all channels. The inhibition caused by fluoxetine was reversible for both tissues. Based on the results, we conclude that cultures showed repeatable, concentration-dependent sensitivities to fluoxetine but demonstrated tissue-specific responses for frontal and auditory cortex networks. These responses may not be due to the interference with serotonin reuptake, but may be due to a secondary effect on ionic channels.
Collapse
Affiliation(s)
- Yun Xia
- Department of Biological Sciences, P.O. Box 305220, University of North Texas, Denton, TX 76203, USA
| | | | | |
Collapse
|
28635
|
Abstract
Ca(2+) is one of the key regulators of cell survival, but Ca(2+) can also induce apoptosis in response to a variety of pathological conditions. The pro-apoptotic effects of Ca(2+) are mediated by a diverse range of Ca(2+)-sensitive factors that are compartmentalized in various intracellular organelles including the ER, cytoplasm, and mitochondria. The Ca(2+) dynamics of these organelles appear to be modulated by the apoptosis-regulating Bcl-2 family proteins. In this paper, the recent progress of research on the mechanisms mediating the apoptosis-regulating effects of Ca(2+) and the interactions of Bcl-2 family proteins with the Ca(2+) storage organelles are discussed.
Collapse
Affiliation(s)
- György Hajnóczky
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
28636
|
Ceriello A. New insights on oxidative stress and diabetic complications may lead to a "causal" antioxidant therapy. Diabetes Care 2003; 26:1589-96. [PMID: 12716823 DOI: 10.2337/diacare.26.5.1589] [Citation(s) in RCA: 502] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Evidence implicates hyperglycemia-derived oxygen free radicals as mediators of diabetic complications. However, intervention studies with classic antioxidants, such as vitamin E, failed to demonstrate any beneficial effect. Recent studies demonstrate that a single hyperglycemia-induced process of overproduction of superoxide by the mitochondrial electron-transport chain seems to be the first and key event in the activation of all other pathways involved in the pathogenesis of diabetic complications. These include increased polyol pathway flux, increased advanced glycosylation end product formation, activation of protein kinase C, and increased hexosamine pathway flux. Superoxide overproduction is accompanied by increased nitric oxide generation, due to an endothelial NOS and inducible NOS uncoupled state, a phenomenon favoring the formation of the strong oxidant peroxynitrite, which in turn damages DNA. DNA damage is an obligatory stimulus for the activation of the nuclear enzyme poly(ADP-ribose) polymerase. Poly(ADP-ribose) polymerase activation in turn depletes the intracellular concentration of its substrate NAD(+), slowing the rate of glycolysis, electron transport, and ATP formation, and produces an ADP-ribosylation of the GAPDH. These processes result in acute endothelial dysfunction in diabetic blood vessels that, convincingly, also contributes to the development of diabetic complications. These new findings may explain why classic antioxidants, such as vitamin E, which work by scavenging already-formed toxic oxidation products, have failed to show beneficial effects on diabetic complications and may suggest new and attractive "causal" antioxidant therapy. New low-molecular mass compounds that act as SOD or catalase mimetics or L-propionyl-carnitine and lipoic acid, which work as intracellular superoxide scavengers, improving mitochondrial function and reducing DNA damage, may be good candidates for such a strategy, and preliminary studies support this hypothesis. This "causal" therapy would also be associated with other promising tools such as LY 333531, PJ34, and FP15, which block the protein kinase beta isoform, poly(ADP-ribose) polymerase, and peroxynitrite, respectively. While waiting for these focused tools, we may have other options: thiazolinediones, statins, ACE inhibitors, and angiotensin 1 inhibitors can reduce intracellular oxidative stress generation, and it has been suggested that many of their beneficial effects, even in diabetic patients, are due to this property.
Collapse
Affiliation(s)
- Antonio Ceriello
- Department of Pathology and Medicine, Experimental and Clinical, University of Udine, Italy.
| |
Collapse
|
28637
|
Barak Y, Swartz M, Levy D, Weizman R. Age-related differences in the side effect profile of citalopram. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:545-8. [PMID: 12691792 DOI: 10.1016/s0278-5846(03)00041-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The authors evaluated the autonomic and cardiovascular side effects of citalopram with particular emphasis on their relation to the age of treated patients. The data that formed the basis for the U.S. Food and Drug Administration approval of citalopram were provided by Lundbeck (Copenhagen, Denmark). This database included placebo-controlled short- and long-term studies in major depressed patients. The list of side effects comprised all "heart rate and rhythm disorders" as well as "autonomic nervous system disorders" that had been reported by at least 5% more than that reported for the placebo group of subjects. The database encompassed 1344 subjects treated with citalopram (20-60 mg/day) for a period of no less than 6 weeks. Statistically significant age-related distribution was found for five side effects: bradycardia, nausea, diarrhea, sweating and headache. Bradycardia was more prevalent in elderly (>65 years) patients as compared to the younger population (2.4% vs. 0.2%, P<.05), whereas gastrointestinal side effects, sweating and headache were less prevalent in the elderly. The age-related differences in the side effect profile may be attributable to altered sensitivity of the serotonergic system.
Collapse
Affiliation(s)
- Yoram Barak
- Psychogeriatric Department, Abarbanel Mental Health Center, 15 KKL Street, Bat-Yam 59100, Israel.
| | | | | | | |
Collapse
|
28638
|
Skaper SD. Poly(ADP-Ribose) polymerase-1 in acute neuronal death and inflammation: a strategy for neuroprotection. Ann N Y Acad Sci 2003; 993:217-28; discussion 287-8. [PMID: 12853316 DOI: 10.1111/j.1749-6632.2003.tb07532.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is an abundant nuclear enzyme that is activated primarily by DNA damage. Upon activation, the enzyme hydrolyzes NAD(+) to nicotinamide and transfers ADP ribose units to a variety of nuclear proteins, including histones and PARP-1 itself. This process is important in facilitating DNA repair. However, excessive activation of PARP-1 can lead to significant decrements in NAD(+), and ATP depletion, and cell death (suicide hypothesis). In response to cellular damage by oxygen radicals or excitotoxicity, a rapid and strong activation of PARP-1 occurs in neurons. Excessive PARP-1 activation is implicated in a variety of insults, including cerebral and cardiac ischemia, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism, traumatic spinal cord injury, and streptozotocin-induced diabetes. The use of PARP inhibitors has, therefore, been proposed as a protective therapy in decreasing excitotoxic neuronal cell death, as well as ischemic and other tissue damage. Excitotoxic brain lesions initially result in the primary destruction of brain parenchyma and subsequently in secondary damage of neighboring neurons hours after the insult. This secondary damage of initially surviving neurons accounts for most of the volume of the infarcted area and the loss of brain function after a stroke. One major component of secondary neuronal damage is the migration of macrophages and microglial cells toward the sites of injury, where they produce large quantities of toxic cytokines and oxygen radicals. Recent evidence indicates that this microglial migration is strongly controlled in living brain tissue by expression of the integrin CD11a, which is regulated in turn by PARP-1, proposing that PARP-1 downregulation may, therefore, be a promising strategy in protecting neurons from this secondary damage, as well. Studies demonstrating an important role for PARP-1 in the regulation of gene transcription have further increased the intricacy of poly(ADP-ribosyl)ation in the control of cell homeostasis and challenge the notion that energy collapse is the sole mechanism by which poly(ADP-ribose) formation contributes to cell death. The hypothesis that PARPs might regulate cell fate as essential modulators of death and survival transcriptional programs is discussed with relation to nuclear factor kappaB and p53.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Neurophysiology and Cell Sciences, Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, Harlow, United Kingdom.
| |
Collapse
|
28639
|
Abstract
Diabetic autonomic neuropathy (DAN) is a serious and common complication of diabetes. Despite its relationship to an increased risk of cardiovascular mortality and its association with multiple symptoms and impairments, the significance of DAN has not been fully appreciated. The reported prevalence of DAN varies widely depending on the cohort studied and the methods of assessment. In randomly selected cohorts of asymptomatic individuals with diabetes, approximately 20% had abnormal cardiovascular autonomic function. DAN frequently coexists with other peripheral neuropathies and other diabetic complications, but DAN may be isolated, frequently preceding the detection of other complications. Major clinical manifestations of DAN include resting tachycardia, exercise intolerance, orthostatic hypotension, constipation, gastroparesis, erectile dysfunction, sudomotor dysfunction, impaired neurovascular function, "brittle diabetes," and hypoglycemic autonomic failure. DAN may affect many organ systems throughout the body (e.g., gastrointestinal [GI], genitourinary, and cardiovascular). GI disturbances (e.g., esophageal enteropathy, gastroparesis, constipation, diarrhea, and fecal incontinence) are common, and any section of the GI tract may be affected. Gastroparesis should be suspected in individuals with erratic glucose control. Upper-GI symptoms should lead to consideration of all possible causes, including autonomic dysfunction. Whereas a radiographic gastric emptying study can definitively establish the diagnosis of gastroparesis, a reasonable approach is to exclude autonomic dysfunction and other known causes of these upper-GI symptoms. Constipation is the most common lower-GI symptom but can alternate with episodes of diarrhea. Diagnostic approaches should rule out autonomic dysfunction and the well-known causes such as neoplasia. Occasionally, anorectal manometry and other specialized tests typically performed by the gastroenterologist may be helpful. DAN is also associated with genitourinary tract disturbances including bladder and/or sexual dysfunction. Evaluation of bladder dysfunction should be performed for individuals with diabetes who have recurrent urinary tract infections, pyelonephritis, incontinence, or a palpable bladder. Specialized assessment of bladder dysfunction will typically be performed by a urologist. In men, DAN may cause loss of penile erection and/or retrograde ejaculation. A complete workup for erectile dysfunction in men should include history (medical and sexual); psychological evaluation; hormone levels; measurement of nocturnal penile tumescence; tests to assess penile, pelvic, and spinal nerve function; cardiovascular autonomic function tests; and measurement of penile and brachial blood pressure. Neurovascular dysfunction resulting from DAN contributes to a wide spectrum of clinical disorders including erectile dysfunction, loss of skin integrity, and abnormal vascular reflexes. Disruption of microvascular skin blood flow and sudomotor function may be among the earliest manifestations of DAN and lead to dry skin, loss of sweating, and the development of fissures and cracks that allow microorganisms to enter. These changes ultimately contribute to the development of ulcers, gangrene, and limb loss. Various aspects of neurovascular function can be evaluated with specialized tests, but generally these have not been well standardized and have limited clinical utility. Cardiovascular autonomic neuropathy (CAN) is the most studied and clinically important form of DAN. Meta-analyses of published data demonstrate that reduced cardiovascular autonomic function as measured by heart rate variability (HRV) is strongly (i.e., relative risk is doubled) associated with an increased risk of silent myocardial ischemia and mortality. The determination of the presence of CAN is usually based on a battery of autonomic function tests rather than just on one test. Proceedings from a consensus conference in 1992 recommended that three tests (R-R variation, Valsalva maneuver, and postural blood pressure testing)or longitudinal testing of the cardiovascular autonomic system. Other forms of autonomic neuropathy can be evaluated with specialized tests, but these are less standardized and less available than commonly used tests of cardiovascular autonomic function, which quantify loss of HRV. Interpretability of serial HRV testing requires accurate, precise, and reproducible procedures that use established physiological maneuvers. The battery of three recommended tests for assessing CAN is readily performed in the average clinic, hospital, or diagnostic center with the use of available technology. Measurement of HRV at the time of diagnosis of type 2 diabetes and within 5 years after diagnosis of type 1 diabetes (unless an individual has symptoms suggestive of autonomic dysfunction earlier) serves to establish a baseline, with which 1-year interval tests can be compared. Regular HRV testing provides early detection and thereby promotes timely diagnostic and therapeutic interventions. HRV testing may also facilitate differential diagnosis and the attribution of symptoms (e.g., erectile dysfunction, dyspepsia, and dizziness) to autonomic dysfunction. Finally, knowledge of early autonomic dysfunction can encourage patient and physician to improve metabolic control and to use therapies such as ACE inhibitors and beta-blockers, proven to be effective for patients with CAN.
Collapse
Affiliation(s)
- Aaron I Vinik
- Strelitz Diabetes Research Institutes, Eastern Virginia Medical School, Norfolk 23510, USA.
| | | | | | | |
Collapse
|
28640
|
Gross ER, LaDisa JF, Weihrauch D, Olson LE, Kress TT, Hettrick DA, Pagel PS, Warltier DC, Kersten JR. Reactive oxygen species modulate coronary wall shear stress and endothelial function during hyperglycemia. Am J Physiol Heart Circ Physiol 2003; 284:H1552-9. [PMID: 12543642 DOI: 10.1152/ajpheart.01013.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperglycemia is associated with generation of reactive oxygen species (ROS), and this action may contribute to accelerated atherogenesis. We tested the hypothesis that hyperglycemia produces alterations in left anterior descending coronary artery (LAD) wall shear stress concomitant with endothelial dysfunction and ROS production in dogs (n = 12) instrumented for measurement of LAD blood flow, velocity, and diameter. Dogs were randomly assigned to receive vehicle (0.9% saline) or the superoxide dismutase mimetic 4- hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (tempol) and were administered intravenous infusions of d-glucose to achieve target blood glucose concentrations of 350 and 600 mg/dl (moderate and severe hyperglycemia, respectively). Endothelial function and ROS generation were assessed by coronary blood flow responses to acetylcholine (10, 30, and 100 ng/kg) and dihydroethidium fluorescence of myocardial biopsies, respectively. Indexes of wall shear stress were calculated with conventional fluid dynamics theory. Hyperglycemia produced dose-related endothelial dysfunction, increases in ROS production, and reductions in oscillatory shear stress that were normalized by tempol. The results suggest a direct association between hyperglycemia-induced ROS production, endothelial dysfunction, and decreases in oscillatory shear stress in vivo.
Collapse
Affiliation(s)
- Eric R Gross
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28641
|
De Man JG, Seerden TC, De Winter BY, Van Marck EA, Herman AG, Pelckmans PA. Alteration of the purinergic modulation of enteric neurotransmission in the mouse ileum during chronic intestinal inflammation. Br J Pharmacol 2003; 139:172-184. [PMID: 12746236 PMCID: PMC1573820 DOI: 10.1038/sj.bjp.0705218] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Revised: 01/20/2003] [Accepted: 01/31/2003] [Indexed: 01/03/2023] Open
Abstract
1. The effect of chronic intestinal inflammation on the purinergic modulation of cholinergic neurotransmission was studied in the mouse ileum. Chronic intestinal inflammation was induced by infection of mice with the parasite Schistosoma mansoni during 16 weeks. 2. S. mansoni infection induced a chronic inflammatory response in the small intestine, which was characterised by intestinal granuloma formation, increased intestinal wall thickness, blunted mucosal villi and an enhanced activity of myeloperoxidase. 3. In control ileum and in chronically inflamed ileum, electrical field stimulation (EFS) of longitudinal muscle strips induced frequency-dependent contractions that were abolished by tetrodotoxin (TTX) and atropine. Carbachol induced dose-dependent contractions that were not affected by TTX but abolished by atropine. 4. In control ileum, adenosine and ATP dose-dependently inhibited the contractions to EFS. Theophylline and 8-phenyltheophylline, P(1) and A(1) receptor antagonists respectively, prevented this inhibitory effect of adenosine and ATP. PPADS, DMPX and MRS 1220, antagonists of P(2), A(2) and A(3) receptors, respectively, did not prevent this inhibitory effect of adenosine and ATP. Adenosine and ATP did not affect the contractions to carbachol. 5. The inhibitory effect of adenosine and ATP on contractions to EFS in control ileum was mimicked by the stable adenosine analogue methyladenosine and by the A(1)-receptor agonist N(6)-cyclohexyladenosine, but not by the A3 receptor agonist 2-Cl IB-MECA or by the ATP analogues alphabeta-methylene-ATP and ADPbetaS. The inhibitory effect of adenosine on contractions to EFS was lost after prolonged (90 min) treatment of control ileum with methyladenosine (100 micro M). 6. In chronically inflamed ileum, adenosine, methyladenosine, N(6)-cyclohexyladenosine and ATP all failed to inhibit the cholinergic nerve-mediated contractions to EFS. Also theophylline, 8-phenyltheophylline, PPADS, DMPX and MRS 1220 had no effect on the contractions to EFS and carbachol. The loss of effect of adenosine and ATP was still evident after 52 weeks of infection. 7. These results indicate that in physiological conditions neuronal adenosine A(1) receptors modulate cholinergic nerve activity in the mouse ileum. However, during chronic intestinal inflammation, this purinergic modulation of cholinergic nerve activity is impaired. This suggests that chronic intestinal inflammation leads to a dysfunction of specific neuronal regulatory mechanisms in the enteric nervous system.
Collapse
Affiliation(s)
- Joris G De Man
- Division of Gastroenterology, Faculty of Medicine, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | | | | | | | | | | |
Collapse
|
28642
|
Iványi Z, Hauser B, Pittner A, Asfar P, Vassilev D, Nalos M, Altherr J, Brückner UB, Szabó C, Radermacher P, Fröba G. Systemic and hepatosplanchnic hemodynamic and metabolic effects of the PARP inhibitor PJ34 during hyperdynamic porcine endotoxemia. Shock 2003; 19:415-21. [PMID: 12744483 DOI: 10.1097/01.shk.0000048904.46342.22] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation of the poly(ADP-ribose)polymerase (PARP), a highly energy-consuming DNA-repairing enzyme, plays a crucial role in the pathogenesis of multiorgan failure. Most results, however, were derived from experiments with hypodynamic shock states characterized by a markedly decreased cardiac output (CO) and/or using a pretreatment approach. Therefore, we investigated the effects of the novel potent and selective PARP-1 inhibitor PJ34 in a posttreatment model of long-term, volume-resuscitated porcine endotoxemia. Anesthetized, mechanically ventilated and instrumented pigs received continuous intravenous (i.v.) lipopolysaccharide (LPS) over 24 h. Hydroxyethyl starch was administered to maintain a mean arterial pressure > 65 mmHg. After 12 h of LPS infusion, the animals were randomized to receive either vehicle (Control, n = 9) or i.v. PJ34 (n = 6; 10 mg/kg over 1 h followed by 2 mg/kg/h until the end of the experiment). Measurements were performed before as well as at 12, 18, and 24 h of LPS infusion. In all animals CO increased because of reduced systemic vascular resistance (SVR) and fluid resuscitation. PJ34 further raised CO (P < 0.05 vs. control group) as the result of a higher stroke volume indicating its positive inotropic effect. In addition, it diminished the rise in the ileal mucosal-arterial PCO2 gap, which returned to baseline levels at 24 h of LPS, and improved the gut lactate balance (P = 0.093 PJ34 vs. control) together with significantly lower portal venous lactate/pyruvate ratios. By contrast, it failed to influence the LPS-induced derangements of liver metabolism. Incomplete PARP inhibition because of dilutional effects and/or an only partial efficacy when used in post-treatment approaches may account for this finding.
Collapse
Affiliation(s)
- Zsolt Iványi
- Sektion Anasthesiologische Pathophysiologie und Verfahrensentwicklung Universitatsklinikum, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28643
|
1H NMR studies on the reductively triggered release of heterocyclic and steroid drugs from 4,7-dioxoindole-3-methyl prodrugs. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)00482-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28644
|
Mabley J, Soriano F, Pacher P, Haskó G, Marton A, Wallace R, Salzman A, Szabó C. The adenosine A3 receptor agonist, N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide, is protective in two murine models of colitis. Eur J Pharmacol 2003; 466:323-329. [PMID: 12694816 DOI: 10.1016/s0014-2999(03)01570-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study evaluated the effects of the adenosine A(3) receptor agonist, N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA), in two murine models of colitis, the dextran sodium sulphate-induced colitis and the spontaneous colitis found in interleukin-10 gene deficient mice. IB-MECA was given orally twice a day at a dose of either 1 or 3 mg/kg/day. Evaluation of colon damage and inflammation was determined grossly (body weight, rectal bleeding) and biochemically (colon levels of myeloperoxidase, malondialdehyde, chemokines and cytokines). There was significantly increased inflammatory cell infiltration into the colon associated with an increase in colon levels of cytokines and chemokines; with subsequent free radical related damage in both dextran sodium sulphate-induced colitis and 10-week-old interleukin-10(-/-) mice. IB-MECA protected in both models against the colitis induced inflammatory cell infiltration and damage and attenuated the increases in colon inflammatory cytokine and chemokine levels. Thus activation of the adenosine A(3) receptor is effective in protecting against colitis.
Collapse
Affiliation(s)
- Jon Mabley
- Inotek Pharmaceuticals Corporation, Suite 419E, 100 Cummings Center, Beverly, MA 01915, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28645
|
Veres B, Gallyas F, Varbiro G, Berente Z, Osz E, Szekeres G, Szabo C, Sumegi B. Decrease of the inflammatory response and induction of the Akt/protein kinase B pathway by poly-(ADP-ribose) polymerase 1 inhibitor in endotoxin-induced septic shock. Biochem Pharmacol 2003; 65:1373-82. [PMID: 12694878 DOI: 10.1016/s0006-2952(03)00077-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The lack of efficacy of anti-inflammatory drugs, anti-coagulants, anti-oxidants, etc. in critically ill patients has shifted interest towards developing alternative treatments. Since inhibitors of the nuclear enzyme poly-(ADP-ribose) polymerase (PARP) were found to be beneficial in many pathophysiological conditions associated with oxidative stress and PARP-1 knock-out mice proved to be resistant to bacterial lipopolysaccharide (LPS)-induced septic shock, PARP inhibitors are candidates for such a role. In this study, the mechanism of the protective effect of a potent PARP-1 inhibitor, PJ34 was studied in LPS-induced (20mg/kg, i.p.) septic shock in mice. We demonstrated a significant inflammatory response by magnetic resonance imaging in the dorsal subcutaneous region, in the abdominal regions around the kidneys and in the inter-intestinal cavities. We have found necrotic and apoptotic histological changes as well as obstructed blood vessels in the liver and small intestine. Additionally, we have detected elevated tumor necrosis factor-alpha levels in the serum and nuclear factor kappa B activation in liver of LPS-treated mice. Pre-treating the animals with PJ34 (10mg/kg, i.p.), before the LPS challenge, besides rescuing the animals from LPS-induced death, attenuated all these changes presumably by activating the phosphatidylinositol 3-kinase-Akt/protein kinase B cytoprotective pathway.
Collapse
Affiliation(s)
- Balazs Veres
- Department of Biochemistry and Medical Chemistry, Faculty of Medicine, Pecs University, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
28646
|
Lum MG, Nagley P. Two phases of signalling between mitochondria during apoptosis leading to early depolarisation and delayed cytochrome c release. J Cell Sci 2003; 116:1437-47. [PMID: 12640029 DOI: 10.1242/jcs.00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We investigated the mode of signalling between mitochondria during apoptosis by monitoring the behaviour of non-irradiated mitochondria following microscopic photosensitisation of half the mitochondria in single human osteosarcoma cells loaded with CMXRos. Following partial irradiation of cells, non-irradiated mitochondria underwent a rapid depolarisation (within 10 minutes). The depolarisation was not inhibited by the caspase inhibitor zVAD-fmk but was suppressed by the intracellular Ca(2+) chelator BAPTA and overexpression of Bcl-2. Significantly, such depolarisation occurred even after prior conversion of extended filamentous mitochondria into individual punctate structures, indicating that lumenal continuity is not required for communication between the irradiated and non-irradiated mitochondria. Partial irradiation of cells expressing cytochrome c-GFP revealed cytochrome c-GFP release from non-irradiated mitochondria at a delayed but unpredictable time interval (between 30 minutes and more than 2.5 hours) following irradiation, which was unaffected by zVAD-fmk. Once activated, cytochrome c-GFP release occurred within a 10 minute period. Immunocytochemistry failed to reveal the recruitment of Bax to non-irradiated mitochondria, which suggests that Bax does not mediate the release of cytochrome c from mitochondria. We conclude that signals (mediated by Ca(2+)) emanating from irradiated mitochondria are processed by their non-irradiated counterparts and comprise two temporally distinct phases, both independent of caspase-mediated amplification, which generate an initial rapid depolarisation and subsequent delayed release of cytochrome c.
Collapse
Affiliation(s)
- May-Ghee Lum
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | | |
Collapse
|
28647
|
Serafeim A, Holder MJ, Grafton G, Chamba A, Drayson MT, Luong QT, Bunce CM, Gregory CD, Barnes NM, Gordon J. Selective serotonin reuptake inhibitors directly signal for apoptosis in biopsy-like Burkitt lymphoma cells. Blood 2003; 101:3212-9. [PMID: 12515726 DOI: 10.1182/blood-2002-07-2044] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the treatment of choice for clinical depression and a range of anxiety-related disorders. They are well tolerated over extended periods with more than 50 million people worldwide benefiting from their use. Here we show that 3 structurally distinct SSRIs--fluoxetine, paroxetine, and citalopram--act directly on Burkitt lymphoma (BL) cells to trigger rapid and extensive programmed cell death. SSRIs unexpectedly stimulated calcium flux, tyrosine phosphorylation, and down-regulation of the c-myc and nm23 genes in Burkitt lymphoma cells remaining faithful to the biopsy phenotype. Resultant SSRI-induced apoptosis was preceded by caspase activation, poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, DNA fragmentation, a loss of mitochondrial membrane potential, and the externalization of phosphatidylserine, and reversed by the overexpression of bcl-2. Normal peripheral blood mononuclear cells and tonsil B cells, whether resting or stimulated into cycle, were largely resistant to SSRI-induced death as were 5 non-BL lymphoid cell lines tested. We discuss these findings within the context of whether the SSRI class of antidepressants could find future application as potential therapeutics for the highly aggressive and-because of its association with AIDS-increasingly more common Burkitt lymphoma.
Collapse
Affiliation(s)
- Adamantios Serafeim
- Medical Research Council Centre for Immune Regulation, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28648
|
Abstract
Peroxynitrite is a reactive oxidant produced from nitric oxide (NO) and superoxide, which reacts with a variety of biomolecules including proteins, lipids and DNA. Peroxynitrite is produced by the body in response to a variety of toxicologically relevant molecules including environmental toxins. It is also produced by the body in response to environmental toxins, as well as in reperfusion injury and inflammation. Here we overview the multiple pathways of peroxynitrite cytotoxicity. Initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3-phosphate dehydrogenase, inhibition of membrane Na(+)/K(+) ATP-ase activity, inactivation of membrane sodium channels, and other oxidative protein modifications contribute to the cytotoxic effect of peroxynitrite. In addition, peroxynitrite is a potent trigger of DNA strand breakage, with subsequent activation of the nuclear enzyme poly-ADP ribosyl synthetase or polymerase (PARP), with eventual severe energy depletion and necrosis of the cells. Studies conducted with peroxynitrite decomposition catalysts suggest that neutralization of peroxynitrite is of significant therapeutic benefit after exposure to various environmental toxins as well as in a variety of inflammatory and reperfusion disease conditions.
Collapse
Affiliation(s)
- Csaba Szabó
- Inotek Pharmaceuticals Corporation, 100 Cummings Center, Suite #419E, Beverly, MA 01915, USA.
| |
Collapse
|
28649
|
Bers DM. Dynamic imaging in living cells: windows into local signaling. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:PE13. [PMID: 12684526 DOI: 10.1126/stke.2003.177.pe13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Highly localized changes in intracellular calcium concentration [Ca2+]i play a critical role in regulating numerous cellular functions, ranging from muscle contraction to neurotransmitter and hormone secretion to gene transcription. Fluorescent Ca2+ indicators have been invaluable tools in elucidating the role of localized changes in [Ca2+]i in regulating ion channels and other key proteins in various signaling pathways. Other techniques used to investigate localized changes in [Ca2+]i include approaches based on fluorescence resonance energy transfer, and electrophysiological measurements of ionic flux through Ca2+-sensitive channels. This Perspective discusses research using fluorescent Ca2+ indicators to study excitation-contraction coupling in cardiac myocytes, presenting both key findings and limitations of this approach. Complementary approaches useful in studying localized changes in Ca2+ and other second messengers (such as cyclic adenosine monophosphate) are also discussed.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
28650
|
Affiliation(s)
- Nicolas Demaurex
- Department of Physiology, University of Geneva Medical Center, Geneva, Switzerland.
| | | |
Collapse
|