251
|
Patel V, Chevignon G, Manzano-Marín A, Brandt JW, Strand MR, Russell JA, Oliver KM. Cultivation-Assisted Genome of Candidatus Fukatsuia symbiotica; the Enigmatic "X-Type" Symbiont of Aphids. Genome Biol Evol 2020; 11:3510-3522. [PMID: 31725149 PMCID: PMC7145644 DOI: 10.1093/gbe/evz252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
Heritable symbionts are common in terrestrial arthropods and often provide beneficial services to hosts. Unlike obligate, nutritional symbionts that largely persist under strict host control within specialized host cells, heritable facultative symbionts exhibit large variation in within-host lifestyles and services rendered with many retaining the capacity to transition among roles. One enigmatic symbiont, Candidatus Fukatsuia symbiotica, frequently infects aphids with reported roles ranging from pathogen, defensive symbiont, mutualism exploiter, and nutritional co-obligate symbiont. Here, we used an in vitro culture-assisted protocol to sequence the genome of a facultative strain of Fukatsuia from pea aphids (Acyrthosiphon pisum). Phylogenetic and genomic comparisons indicate that Fukatsuia is an aerobic heterotroph, which together with Regiella insecticola and Hamiltonella defensa form a clade of heritable facultative symbionts within the Yersiniaceae (Enterobacteriales). These three heritable facultative symbionts largely share overlapping inventories of genes associated with housekeeping functions, metabolism, and nutrient acquisition, while varying in complements of mobile DNA. One unusual feature of Fukatsuia is its strong tendency to occur as a coinfection with H. defensa. However, the overall similarity of gene inventories among aphid heritable facultative symbionts suggests that metabolic complementarity is not the basis for coinfection, unless playing out on a H. defensa strain-specific basis. We also compared the pea aphid Fukatsuia with a strain from the aphid Cinara confinis (Lachninae) where it is reported to have transitioned to co-obligate status to support decaying Buchnera function. Overall, the two genomes are very similar with no clear genomic signatures consistent with such a transition, which suggests co-obligate status in C. confinis was a recent event.
Collapse
Affiliation(s)
- Vilas Patel
- Department of Entomology, University of Georgia
| | | | | | | | | | | | | |
Collapse
|
252
|
Zhang Q, Yang ZF, Cheng W, Wijayawardene NN, Hyde KD, Chen Z, Wang Y. Diseases of Cymbopogon citratus (Poaceae) in China: Curvularia nanningensis sp. nov. MycoKeys 2020; 63:49-67. [PMID: 32099520 PMCID: PMC7033261 DOI: 10.3897/mycokeys.63.49264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/30/2020] [Indexed: 01/14/2023] Open
Abstract
Five Curvularia strains isolated from diseased leaves of lemongrass (Cymbopogoncitratus) in Guangxi Province, China, were examined. NCBI-Blast searches of ITS sequences suggested a high degree of similarity (99–100%) to Curvulariaakaii, C.akaiiensis, C.bothriochloae, C.heteropogonis and C.sichuanensis. To accurately identify these strains, we further analysed their morphology and phylogenetic relationships based on combinations of ITS, GAPDH, and tef1 gene sequences. Morphological observations indicated that the key character differing from similar species was conidial size, whereas phylogenetic analyses indicated that the five strains represent one species that is also distinct from C.akaii, C.akaiiensis and C.bothriochloae by conidial size and conidiophore length. Thus, the strains examined are found to represent a new species described herein as Curvulariananningensis. The pathogenicity test on the host and detached leaves confirmed the new species to be pathogenic on Cymbopogoncitratus leaves. Standardised requirements for reliable identification of Curvularia pathogens are also proposed.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Zai-Fu Yang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Wei Cheng
- Department of Practaculture Science, Animal Science College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Nalin N Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Kevin D Hyde
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yong Wang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, Guizhou Province, 550025, China
| |
Collapse
|
253
|
Rolland M, Tovanabutra S, Dearlove B, Li Y, Owen CL, Lewitus E, Sanders-Buell E, Bose M, O’Sullivan A, Rossenkhan R, Labuschagne JPL, Edlefsen PT, Reeves DB, Kijak G, Miller S, Poltavee K, Lee J, Bonar L, Harbolick E, Ahani B, Pham P, Kibuuka H, Maganga L, Nitayaphan S, Sawe FK, Eller LA, Gramzinski R, Kim JH, Michael NL, Robb ML, the RV217 Study Team. Molecular dating and viral load growth rates suggested that the eclipse phase lasted about a week in HIV-1 infected adults in East Africa and Thailand. PLoS Pathog 2020; 16:e1008179. [PMID: 32027734 PMCID: PMC7004303 DOI: 10.1371/journal.ppat.1008179] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/01/2019] [Indexed: 01/21/2023] Open
Abstract
Most HIV-1 infected individuals do not know their infection dates. Precise infection timing is crucial information for studies that document transmission networks or drug levels at infection. To improve infection timing, we used the prospective RV217 cohort where the window when plasma viremia becomes detectable is narrow: the last negative visit occurred a median of four days before the first detectable HIV-1 viremia with an RNA test, referred below as diagnosis. We sequenced 1,280 HIV-1 genomes from 39 participants at a median of 4, 32 and 170 days post-diagnosis. HIV-1 infections were dated by using sequence-based methods and a viral load regression method. Bayesian coalescent and viral load regression estimated that infections occurred a median of 6 days prior to diagnosis (IQR: 9–3 and 11–4 days prior, respectively). Poisson-Fitter, which analyzes the distribution of hamming distances among sequences, estimated a median of 7 days prior to diagnosis (IQR: 15–4 days) based on sequences sampled 4 days post-diagnosis, but it did not yield plausible results using sequences sampled at 32 days. Fourteen participants reported a high-risk exposure event at a median of 8 days prior to diagnosis (IQR: 12 to 6 days prior). These different methods concurred that HIV-1 infection occurred about a week before detectable viremia, corresponding to 20 days (IQR: 34–15 days) before peak viral load. Together, our methods comparison helps define a framework for future dating studies in early HIV-1 infection. HIV-1 infected individuals rarely know when they became infected but knowing when an infection occurred provides critical information regarding HIV-1 pathogenesis and epidemiology. Using a unique cohort in which infection was known to have occurred in a narrow interval, we investigated methods to estimate the timing of infections. Several methods suggested that HIV-1 infection typically occurs a median of one week before the infection can be detected by HIV-1 RNA testing. Going forward, we provide a strategy that can be used to elucidate the origin of an acute/early infection.
Collapse
Affiliation(s)
- Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- * E-mail:
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Bethany Dearlove
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Christopher L. Owen
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Eric Lewitus
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - AnneMarie O’Sullivan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Raabya Rossenkhan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | | | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Daniel B. Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Gustavo Kijak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Shana Miller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Kultida Poltavee
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Jenica Lee
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Lydia Bonar
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Elizabeth Harbolick
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Bahar Ahani
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Phuc Pham
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Lucas Maganga
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya, Tanzania
| | | | - Fred K. Sawe
- Kenya Medical Research Institute/U.S. Army Medical Research Directorate-Africa/Kenya-Henry Jackson Foundation MRI, Kericho, Kenya
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Robert Gramzinski
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | | | - Nelson L. Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | | |
Collapse
|
254
|
Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh DA, Denef VJ, McMahon KD, Konstantinidis KT, Eloe-Fadrosh EA, Kyrpides NC, Woyke T. Giant virus diversity and host interactions through global metagenomics. Nature 2020; 578:432-436. [PMID: 31968354 PMCID: PMC7162819 DOI: 10.1038/s41586-020-1957-x] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Our current knowledge about nucleocytoplasmic large DNA viruses (NCLDVs) is largely derived from viral isolates that are co-cultivated with protists and algae. Here we reconstructed 2,074 NCLDV genomes from sampling sites across the globe by building on the rapidly increasing amount of publicly available metagenome data. This led to an 11-fold increase in phylogenetic diversity and a parallel 10-fold expansion in functional diversity. Analysis of 58,023 major capsid proteins from large and giant viruses using metagenomic data revealed the global distribution patterns and cosmopolitan nature of these viruses. The discovered viral genomes encoded a wide range of proteins with putative roles in photosynthesis and diverse substrate transport processes, indicating that host reprogramming is probably a common strategy in the NCLDVs. Furthermore, inferences of horizontal gene transfer connected viral lineages to diverse eukaryotic hosts. We anticipate that the global diversity of NCLDVs that we describe here will establish giant viruses-which are associated with most major eukaryotic lineages-as important players in ecosystems across Earth's biomes.
Collapse
Affiliation(s)
- Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Paez-Espino
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sean Jungbluth
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Walsh
- Groupe de recherche interuniversitaire en limnologie, Department of Biology, Concordia University, Montréal, Québec, Canada
| | - Vincent J Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Emiley A Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
255
|
Kipper D, Hellfeldt RM, De Carli S, Lehmann FKM, Fonseca ASK, Ikuta N, Lunge VR. Salmonella serotype assignment by sequencing analysis of intergenic regions of ribosomal RNA operons. Poult Sci 2020; 98:5989-5998. [PMID: 31134273 DOI: 10.3382/ps/pez285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 05/03/2019] [Indexed: 02/02/2023] Open
Abstract
Salmonella laboratorial detection is usually carried out by bacteriological culture and serological methods. Salmonella isolates are then classified into more than 2,650 serotypes with different somatic (O) and flagellar (H) antigenic combinations. More recently, DNA analysis methods were developed and applied for the identification of Salmonella serotypes, including intergenic spacer regions (ISRs) that separates DNA-encoding ribosomal subunits (rRNA gene) in Salmonella genomes. The present study aimed to evaluate the nucleotide diversity of the ISRs in 2 rRNA operons (rrnB and rrnH) for the assignment of Salmonella serotypes. A total of 63 Salmonella isolates (bacterial cultures) from 21 serotypes were obtained in the period of 2014 to 2017. DNA was extracted, and PCRs were used to detect the genus Salmonella and 4 important serotypes: Enteritidis, Gallinarum, Heidelberg, and Typhimurium. ISRs of the operons rrnB and rrnH were amplified by PCR and then sequenced. All sequence results were submitted to BLASTn search and were aligned in comparison to 72 Salmonella reference nucleotide sequences. The results demonstrated that 60 (95.2%) samples returned a sequence of the same serotype (determined by the traditional serological procedure) after searching in BLASTn and/or in the alignment with the reference sequences for both operons (rrnB and rrnH). These PCR-sequencing procedures had a general agreement index of 0.792 based on the Kappa analysis, 98.7% sensitivity value, 100% specificity, and 98.4% accuracy. Three different phylogenetic trees were generated from the alignments with the sequences of rrnH, rrnB, and rrnH plus rrnB and isolates clustered in specific branches according to the serotypes.
Collapse
Affiliation(s)
- Diéssy Kipper
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, 92425-900, Brazil
| | - Rafaella Martins Hellfeldt
- Curso de Medicina Veterinária, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, 92425-900, Brazil
| | - Silvia De Carli
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, 92425-900, Brazil.,Laboratório de Virologia Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | | | | | - Nilo Ikuta
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, 92425-900, Brazil.,Curso de Medicina Veterinária, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, 92425-900, Brazil.,Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, 94940-030, Brazil
| | - Vagner Ricardo Lunge
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, 92425-900, Brazil.,Curso de Medicina Veterinária, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, 92425-900, Brazil.,Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, 94940-030, Brazil
| |
Collapse
|
256
|
Xin C, Yang Q. The first complete chloroplast genome sequence of Vicia ramuliflora (Fabaceae). Mitochondrial DNA B Resour 2020; 5:410-411. [PMID: 33366580 PMCID: PMC7748550 DOI: 10.1080/23802359.2019.1705196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Vicia ramuliflora belongs to the Fabaceae. It is a perennial herb, with high economic value. The cpDNA of V. ramuliflora was 124,682 bp long with IR loss. It contains 109 genes, including 76 protein-coding genes, 29 tRNA genes, and 4 rRNA genes. The overall GC content is 35.1%. The phylogenetic tree indicates that Vicia species formed a monophyletic lineage with high bootstrap value. This study has provided new genome information for the phylogenetic analysis of Fabaceae.
Collapse
Affiliation(s)
- Cheng Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, China
| | - Qian Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
257
|
Yang Q, Xin C. Characterization of the complete chloroplast genome sequence of Deutzia glabrata (Saxifragaceae). Mitochondrial DNA B Resour 2020; 5:764-765. [PMID: 33366740 PMCID: PMC7748543 DOI: 10.1080/23802359.2020.1715862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deutzia glabrata belongs to the Saxifragaceae, usually perennial herbs, shrubs. The cpDNA of Deutzia glabrata was 157,283 bp long with a large single-copy region (LSC) of 86,839 bp and a small single-copy region(SSC) of 18,748 bp separated by a pair of inverted repeat regions (IRs) of 25,848 bp. It contains 131 genes, including 85 protein-coding genes, 38 tRNA genes, 8 rRNA genes, of which 16 genes are duplicated in the IRs. The overall GC content is 37.6%. The phylogenetic tree indicates that Deutzia species formed a monophyletic lineage with high bootstrap value. This study has provided new genome information for the phylogenetic analysis of Saxifragaceae.
Collapse
Affiliation(s)
- Qian Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Cheng Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
258
|
Pal A, Pal A, Mallick AI, Biswas P, Chatterjee PN. Molecular characterization of Bu-1 and TLR2 gene in Haringhata Black chicken. Genomics 2020; 112:472-483. [PMID: 30902756 DOI: 10.1016/j.ygeno.2019.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/17/2019] [Accepted: 03/18/2019] [Indexed: 11/21/2022]
Abstract
Haringhata Black is the only registered indigenous poultry genetic resource of West Bengal till date. Molecular characterization of HB revealed that Bu-1 to be highly glycoylated transmembrane protein unlike mammalian Bu-1, whereas TLR2 of HB chicken was observed to be rich in Leucine rich repeat. HB chicken was observed to be genetically close to chicken of Japan, while distant to chicken breed of UK and Chicago. Avian species wise evolution study indicates genetic closeness of HB chicken with turkey. Differential mRNA expression profile for the immune response genes (TLR2, TLR4 and Bu1 gene) were studied for HB chicken with respect to other chicken breed and poultry birds, which reveals that HB chicken were better in terms of B cell mediated immunity and hence better response to vaccination. Hence HB chicken is one of the best poultry genetic resources to be reared under backyard system where biosecurity measures are almost lacking.
Collapse
Affiliation(s)
- Aruna Pal
- West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata 37, India.
| | - Abantika Pal
- Indian Institute of technology, Kharagpur, West Bengal, India
| | | | - P Biswas
- West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata 37, India
| | - P N Chatterjee
- West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata 37, India
| |
Collapse
|
259
|
Light SH, Méheust R, Ferrell JL, Cho J, Deng D, Agostoni M, Iavarone AT, Banfield JF, D’Orazio SEF, Portnoy DA. Extracellular electron transfer powers flavinylated extracellular reductases in Gram-positive bacteria. Proc Natl Acad Sci U S A 2019; 116:26892-26899. [PMID: 31818955 PMCID: PMC6936397 DOI: 10.1073/pnas.1915678116] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mineral-respiring bacteria use a process called extracellular electron transfer to route their respiratory electron transport chain to insoluble electron acceptors on the exterior of the cell. We recently characterized a flavin-based extracellular electron transfer system that is present in the foodborne pathogen Listeria monocytogenes, as well as many other Gram-positive bacteria, and which highlights a more generalized role for extracellular electron transfer in microbial metabolism. Here we identify a family of putative extracellular reductases that possess a conserved posttranslational flavinylation modification. Phylogenetic analyses suggest that divergent flavinylated extracellular reductase subfamilies possess distinct and often unidentified substrate specificities. We show that flavinylation of a member of the fumarate reductase subfamily allows this enzyme to receive electrons from the extracellular electron transfer system and support L. monocytogenes growth. We demonstrate that this represents a generalizable mechanism by finding that a L. monocytogenes strain engineered to express a flavinylated extracellular urocanate reductase uses urocanate by a related mechanism and to a similar effect. These studies thus identify an enzyme family that exploits a modular flavin-based electron transfer strategy to reduce distinct extracellular substrates and support a multifunctional view of the role of extracellular electron transfer activities in microbial physiology.
Collapse
Affiliation(s)
- Samuel H. Light
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720
- Innovative Genomics Institute, Berkeley, CA 94704
| | - Jessica L. Ferrell
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298
| | - Jooyoung Cho
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298
| | - David Deng
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Marco Agostoni
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, CA 94720
| | - Jillian F. Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720
- Innovative Genomics Institute, Berkeley, CA 94704
| | - Sarah E. F. D’Orazio
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
260
|
Takahashi K, Gonzalez G, Kobayashi M, Hanaoka N, Carr MJ, Konagaya M, Nojiri N, Ogi M, Fujimoto T. Pediatric Infections by Human mastadenovirus C Types 2, 89, and a Recombinant Type Detected in Japan between 2011 and 2018. Viruses 2019; 11:v11121131. [PMID: 31817764 PMCID: PMC6950085 DOI: 10.3390/v11121131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Between 2011 and 2018, 518 respiratory adenovirus infections were diagnosed in a pediatric clinic in Shizuoka, Japan. Detection and typing were performed by partial sequencing of both hexon- and fiber-coding regions which identified: adenovirus type 1 (Ad-1, n = 85), Ad-2 (n = 160), Ad-3 (n = 193), Ad-4 (n = 18), Ad-5 (n = 27), Ad-11 (n = 2), Ad-54 (n = 3), and Ad-56 (n = 1). Considering previous reports of the circulation of an endemic recombinant Ad-2, e.g., Ad-89, 100 samples typed as Ad-2 were randomly selected for further molecular typing by sequencing the penton base-coding region. Despite the high nucleotide sequence conservation in the penton base- coding region, 27 samples showed 98% identity to Ad-2. Furthermore, 14 samples showed 97.7% identity to Ad-2 and 99.8% identity to Ad-89, while the remaining 13 samples showed an average 98% pairwise identity to other Ad-C types and clustered with Ad-5. The samples typed as Ad-89 (n = 14) and as a recombinant Ad type (P5H2F2) (n = 13) represented 27% of cases originally diagnosed as Ad-2, and were detected sporadically. Therefore, two previously uncharacterized types in Japan, Ad-89 and a recombinant Ad-C, were shown to circulate in children. This study creates a precedent to evaluate the epidemiology and divergence among Ad-C types by comprehensively considering the type classification of adenoviruses.
Collapse
MESH Headings
- Adenovirus Infections, Human/epidemiology
- Adenovirus Infections, Human/history
- Adenovirus Infections, Human/virology
- Adenoviruses, Human/classification
- Adenoviruses, Human/genetics
- Adenoviruses, Human/isolation & purification
- Child
- Child, Preschool
- DNA, Viral
- Female
- Genome, Viral
- Genomics/methods
- Genotype
- History, 21st Century
- Humans
- Infant
- Japan/epidemiology
- Open Reading Frames
- Phylogeny
- Recombination, Genetic
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Kenichiro Takahashi
- Division 4, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (N.H.); (M.K.); (N.N.)
- Department of Pediatrics, Tokyo Women’s Medical University Medical Center East, Tokyo 116-8567, Japan
| | - Gabriel Gonzalez
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
| | | | - Nozomu Hanaoka
- Division 4, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (N.H.); (M.K.); (N.N.)
| | - Michael J. Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland;
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
| | - Masami Konagaya
- Division 4, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (N.H.); (M.K.); (N.N.)
| | - Naomi Nojiri
- Division 4, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (N.H.); (M.K.); (N.N.)
- Kobayashi Pediatric Clinic, Fujieda 426-0067, Japan;
| | - Miki Ogi
- Infectious Disease Research Division, Hyogo Prefectural Institute of Public Health Science, Kakogawa 675-0003, Japan;
| | - Tsuguto Fujimoto
- Division 4, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (N.H.); (M.K.); (N.N.)
- Correspondence: ; Tel.: +81-03-5285-1111
| |
Collapse
|
261
|
Tibpromma S, Mortimer PE, Karunarathna SC, Zhan F, Xu J, Promputtha I, Yan K. Morphology and Multi-Gene Phylogeny Reveal Pestalotiopsis pinicola sp. nov. and a New Host Record of Cladosporium anthropophilum from Edible Pine ( Pinus armandii) Seeds in Yunnan Province, China. Pathogens 2019; 8:E285. [PMID: 31817121 PMCID: PMC6963873 DOI: 10.3390/pathogens8040285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 11/17/2022] Open
Abstract
This study contributes new knowledge on the diversity of conidial fungi in edible pine (Pinus armandii) seeds found in Yunnan Province, China and emphasizes the importance of edible seed products to ensure food safety standards. We isolated two fungal species, one on the pine seed coat and the other on the endosperm of the pine seed. The two fungal species were identified as Pestalotiopsis pinicola sp. nov. and a new host record Cladosporium anthropophilum. Characteristic morphological features of Pestalotiopsis pinicola were used alongside results from multi-gene phylogenetic analysis to distinguish it from currently known species within the genus. Cladosporium anthropophilum was identified as a new host record based on morphological features and phylogenetic analysis. In addition, detailed descriptions, scanned electron microscopy morphology, illustrations, and phylogenetic trees are provided to show the placement of these species.
Collapse
Affiliation(s)
- Saowaluck Tibpromma
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China; (S.T.); (F.Z.)
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China; (S.C.K.); (J.X.)
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China; (S.C.K.); (J.X.)
| | - Samantha C. Karunarathna
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China; (S.C.K.); (J.X.)
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China; (S.T.); (F.Z.)
| | - Jianchu Xu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China; (S.C.K.); (J.X.)
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand
| | - Kai Yan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China; (S.T.); (F.Z.)
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China; (S.C.K.); (J.X.)
| |
Collapse
|
262
|
Blohm GM, Márquez-Colmenarez MC, Lednicky JA, Bonny TS, Mavian C, Salemi M, Delgado-Noguera L, Morris JG, Paniz-Mondolfi AE. Isolation of Mayaro Virus from a Venezuelan Patient with Febrile Illness, Arthralgias, and Rash: Further Evidence of Regional Strain Circulation and Possible Long-Term Endemicity. Am J Trop Med Hyg 2019; 101:1219-1225. [PMID: 31595869 PMCID: PMC6896866 DOI: 10.4269/ajtmh.19-0357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
Fifty-two febrile patients living in Barquisimeto, Venezuela, were screened for arbovirus infection by virus culture during an outbreak of what was thought to be Zika virus infection. We report identification of Mayaro virus (MAYV) on culture of plasma from one patient, an 18-year-old woman with acute febrile illness, arthralgias, and psoriasiform rash. The strain was sequenced and was found to be most closely related to a 1999 strain from French Guiana, which, in turn, was related to two 2014 strains from Haiti. By contrast, previously reported outbreak-related MAYV strains from a sylvatic area approximately 80 miles from where the case patient lived were most closely related to Peruvian isolates. The two strain groups show evidence of having diverged genetically approximately 100 years ago.
Collapse
Affiliation(s)
- Gabriela M. Blohm
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Venezuelan Science Research Incubator, Zoonoses and Emerging Pathogens Collaborative Network, Barquisimeto, Venezuela
| | - Marilianna C. Márquez-Colmenarez
- Venezuelan Science Research Incubator, Zoonoses and Emerging Pathogens Collaborative Network, Barquisimeto, Venezuela
- Department of Medicine, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela
| | - John A. Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Tania S. Bonny
- Department of Pathology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Carla Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Lourdes Delgado-Noguera
- Venezuelan Science Research Incubator, Zoonoses and Emerging Pathogens Collaborative Network, Barquisimeto, Venezuela
| | - John Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Alberto E. Paniz-Mondolfi
- Venezuelan Science Research Incubator, Zoonoses and Emerging Pathogens Collaborative Network, Barquisimeto, Venezuela
- Instituto Diagnóstico Barquisimeto (IDB), Barquisimeto, Venezuela
- Laboratory of Cellular Signaling and Parasite Biochemistry, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| |
Collapse
|
263
|
Schachner A, Gonzalez G, Endler L, Ito K, Hess M. Fowl Adenovirus (FAdV) Recombination with Intertypic Crossovers in Genomes of FAdV-D and FAdV-E, Displaying Hybrid Serological Phenotypes. Viruses 2019; 11:v11121094. [PMID: 31779121 PMCID: PMC6950264 DOI: 10.3390/v11121094] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/15/2022] Open
Abstract
After analyzing 27 new genomes from fowl adenovirus (FAdV) field isolates and so-far unsequenced prototypes, we report the first evidence for recombination in FAdVs. Recombination was confined to species FAdV-D and FAdV-E, accommodating the largest number of, and the intraspecies-wise most differentiated, types. The majority of detected events occurred in FAdV-E, involving segments with parental origin of all constitutive types. Together with the diversity of breakpoints, this suggests widespread recombination in this species. With possible constraints through species-specific genes and diversification patterns, the recombinogenic potential of FAdVs attains particular interest for inclusion body hepatitis (IBH), an important disease in chickens, caused by types from the recombination-prone species. Autonomously evolving, recombinant segments were associated with major sites under positive selection, among them the capsid protein hexon and fiber genes, the right-terminal ORFs 19, 25, and the ORF20/20A family. The observed mosaicism in genes indicated as targets of adaptive pressures points toward an immune evasion strategy. Intertypic hexon/fiber-recombinants demonstrated hybrid neutralization profiles, retrospectively explaining reported controversies on reference strains B3-A, T8-A, and X11-A. Furthermore, cross-neutralization supported sequence-based evidence for interdomain recombination in fiber and contributed to a tentatively new type. Overall, our findings challenge the purported uniformity of types responsible for IBH, urging more complete identification strategies for FAdVs. Finally, important consequences arise for in vivo studies investigating cross-protection against IBH.
Collapse
Affiliation(s)
- Anna Schachner
- Christian Doppler Laboratory for Innovative Poultry Vaccines, University of Veterinary Medicine, 1210 Vienna, Austria;
- Correspondence: ; Tel.: +43-1-25077-4727
| | - Gabriel Gonzalez
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (G.G.); (K.I.)
| | - Lukas Endler
- Bioinformatics and Biostatistics Platform, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (G.G.); (K.I.)
| | - Michael Hess
- Christian Doppler Laboratory for Innovative Poultry Vaccines, University of Veterinary Medicine, 1210 Vienna, Austria;
- University Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
264
|
Gran-Stadniczeñko S, Krabberød AK, Sandaa RA, Yau S, Egge E, Edvardsen B. Seasonal Dynamics of Algae-Infecting Viruses and Their Inferred Interactions with Protists. Viruses 2019; 11:v11111043. [PMID: 31717498 PMCID: PMC6893440 DOI: 10.3390/v11111043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 11/28/2022] Open
Abstract
Viruses are a highly abundant, dynamic, and diverse component of planktonic communities that have key roles in marine ecosystems. We aimed to reveal the diversity and dynamics of marine large dsDNA viruses infecting algae in the Northern Skagerrak, South Norway through the year by metabarcoding, targeting the major capsid protein (MCP) and its correlation to protist diversity and dynamics. Metabarcoding results demonstrated a high diversity of algal viruses compared to previous metabarcoding surveys in Norwegian coastal waters. We obtained 313 putative algal virus operational taxonomic units (vOTUs), all classified by phylogenetic analyses to either the Phycodnaviridae or Mimiviridae families, most of them in clades without any cultured or environmental reference sequences. The viral community showed a clear temporal variation, with some vOTUs persisting for several months. The results indicate co-occurrences between abundant viruses and potential hosts during long periods. This study gives new insights into the virus-algal host dynamics and provides a baseline for future studies of algal virus diversity and temporal dynamics.
Collapse
Affiliation(s)
- Sandra Gran-Stadniczeñko
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway; (A.K.K.); (E.E.); (B.E.)
- Correspondence: ; Tel.: +47-22-85-70-38
| | - Anders K. Krabberød
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway; (A.K.K.); (E.E.); (B.E.)
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway;
| | - Sheree Yau
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), 08003 Barcelona, Spain;
| | - Elianne Egge
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway; (A.K.K.); (E.E.); (B.E.)
| | - Bente Edvardsen
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway; (A.K.K.); (E.E.); (B.E.)
| |
Collapse
|
265
|
Gao F, Zhang BS, Zhao JH, Huang JF, Jia PS, Wang S, Zhang J, Zhou JM, Guo HS. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. NATURE PLANTS 2019; 5:1167-1176. [PMID: 31636399 DOI: 10.1038/s41477-019-0527-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/06/2019] [Indexed: 05/23/2023]
Abstract
Soil-borne fungal pathogens that cause crop disease are major threats to agriculture worldwide. Here, we identified a secretory polysaccharide deacetylase (PDA1) from the soil-borne fungus Verticillium dahliae, the most notorious plant pathogen of the Verticillium genus, that facilitates virulence through direct deacetylation of chitin oligomers whose N-acetyl group contributes to host lysine motif (LysM)-containing receptor perception for ligand-triggered immunity. Polysaccharide deacetylases are widely present in fungi, bacteria, insects and marine invertebrates and have been reported to possess diverse functions in developmental processes rather than virulence. A phylogenetics analysis of more than 5,000 fungal proteins with conserved polysaccharide deacetylase domains showed that the V. dahliae PDA1-containing subtree includes a large number of proteins from the Verticillium genus as well as the Fusarium genus, another group of characterized soil-borne fungal pathogens, suggesting that soil-borne fungal pathogens have adopted chitin deacetylation as a major virulence strategy. We showed that a Fusarium PDA1 is required for virulence in cotton plants. This study reveals a substantial virulence function role of polysaccharide deacetylases in pathogenic fungi and demonstrates a subtle mechanism whereby deacetylation of chitin oligomers converts them to ligand-inactive chitosan, representing a common strategy of preventing chitin-triggered host immunity by soil-borne fungal pathogens.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Agriculture, Shihezi University, Shihezi, China
| | - Bo-Sen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Agriculture, Shihezi University, Shihezi, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jia-Feng Huang
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi, China
| | - Pei-Song Jia
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi, China
| | - Sheng Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
266
|
Yano H, Suzuki H, Maruyama F, Iwamoto T. The recombination-cold region as an epidemiological marker of recombinogenic opportunistic pathogen Mycobacterium avium. BMC Genomics 2019; 20:752. [PMID: 31623552 PMCID: PMC6798384 DOI: 10.1186/s12864-019-6078-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 09/04/2019] [Indexed: 11/10/2022] Open
Abstract
Background The rapid identification of lineage remains a challenge in the genotyping of clinical isolates of recombinogenic pathogens. The chromosome of Mycobacterium avium subsp. hominissuis (MAH), an agent of Mycobacterium avium complex (MAC) lung disease, is often mosaic and is composed of chromosomal segments originating from different lineages. This makes it difficult to infer the MAH lineage in a simple experimental set-up. To overcome this difficulty, we sought to identify chromosomal marker genes containing lineage-specific alleles by genome data mining. Results We conducted genetic population structure analysis, phylogenetic analysis, and a survey of historical recombination using data from 125 global MAH isolates. Six MAH lineages (EA1, EA2, SC1, SC2, SC3, and SC4) were identified in the current dataset. One P-450 gene (locus_tag MAH_0788/MAV_0940) in the recombination-cold region was found to have multiple alleles that could discriminate five lineages. By combining the information about allele type from one additional gene, the six MAH lineages as well as other M. avium subspecies were distinguishable. A recombination-cold region of 116 kb contains an insertion hotspot and is flanked by a mammalian cell-entry protein operon where allelic variants have previously been reported to occur. Hence, we speculate that the acquisition of lineage- or strain-specific insertions has introduced homology breaks in the chromosome, thereby reducing the chance of interlineage recombination. Conclusions The allele types of the newly identified marker genes can be used to predict major lineages of M. avium. The single nucleotide polymorphism typing approach targeting multiallelic loci in recombination-cold regions will facilitate the epidemiological study of MAC, and may also be useful for equivalent studies of other nontuberculous mycobacteria potentially carrying mosaic genomes.
Collapse
Affiliation(s)
- Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Japan.
| | - Haruo Suzuki
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Fumito Maruyama
- Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, Hiroshima, Japan
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Japan.
| |
Collapse
|
267
|
Yin AC, Wang XY, Liu D, Zhang YY, Yang MX, Li LJ, Wang LS. Two New Species of Placolecis (Lichenized Ascomycota) from China. MYCOBIOLOGY 2019; 47:401-407. [PMID: 32010461 PMCID: PMC6968434 DOI: 10.1080/12298093.2019.1672984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/02/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Two new species of the lichen genus Placolecis are discovered in China, namely P. kunmingensis An. C. Yin & Li S. Wang and P. sublaevis An. C. Yin & Li S. Wang. The new combination P. loekoesiana (S.Y. Kondr., Farkas, J.J. Woo & Hur) An. C. Yin is proposed. Placolecis kunmingensis is characterized by having simple, spherical or ellipsoid, hyaline spores, and pear-shaped pycnidia; while P. sublaevis can be distinguished by its thallus forming larger aggregations with slightly flattened lobes at the thallus margin, and urn-shaped pycnidia. Descriptions, a phylogenetic tree and a key are provided for all the known Placolecis species in China.
Collapse
Affiliation(s)
- An Cheng Yin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, CAS, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Xin Yu Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, CAS, Kunming, China
| | - Dong Liu
- Korean Lichen Research Institute (KoLRI), Sunchon National University, Suncheon, Korea
| | - Yan Yun Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, CAS, Kunming, China
| | - Mei Xia Yang
- Snow and Landscape Research (WSL), Federal Institute for Forest, Zurich, Switzerland
- University of Bern, Bern, Switzerland
| | - Li Juan Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, CAS, Kunming, China
| | - Li Song Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, CAS, Kunming, China
| |
Collapse
|
268
|
Feng T, Yang Y, Busta L, Cahoon EB, Wang H, Lü S. FAD2 Gene Radiation and Positive Selection Contributed to Polyacetylene Metabolism Evolution in Campanulids. PLANT PHYSIOLOGY 2019; 181:714-728. [PMID: 31420445 PMCID: PMC6776854 DOI: 10.1104/pp.19.00800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/03/2019] [Indexed: 05/08/2023]
Abstract
Polyacetylenes (PAs) are bioactive, specialized plant defense compounds produced by some species in the eudicot clade campanulids. Early steps of PA biosynthesis are catalyzed by Fatty Acid Desaturase 2 (FAD2). Canonical FAD2s catalyze desaturation, but divergent forms can catalyze hydroxylation, conjugation, acetylenation, and epoxygenation. These alternate reactions give rise to valuable unusual fatty acids, including the precursors to PAs. The extreme functional diversity of FAD2 enzymes and the origin of PA biosynthesis are poorly understood from an evolutionary perspective. We focus here on the evolution of the FAD2 gene family. We uncovered a core eudicot-wide gene duplication event giving rise to two lineages: FAD2-α and FAD2-β. Independent neofunctionalizations in both lineages have resulted in functionally diverse FAD2-LIKEs involved in unusual fatty acid biosynthesis. We found significantly accelerated rates of molecular evolution in FAD2-LIKEs and use this metric to provide a list of uncharacterized candidates for further exploration of FAD2 functional diversity. FAD2-α has expanded extensively in Asterales and Apiales, two main clades of campanulids, by ancient gene duplications. Here, we detected positive selection in both Asterales and Apiales lineages, which may have enabled the evolution of PA metabolism in campanulids. Together, these findings also imply that yet uncharacterized FAD2-α copies are involved in later steps of PA biosynthesis. This work establishes a robust phylogenetic framework in which to interpret functional data and to direct future research into the origin and evolution of PA metabolism.
Collapse
Affiliation(s)
- Tao Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, St. Paul, Minnesota 55108
| | - Lucas Busta
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 434200, China
| |
Collapse
|
269
|
Majure LC, Baker MA, Cloud-Hughes M, Salywon A, Neubig KM. Phylogenomics in Cactaceae: A case study using the chollas sensu lato (Cylindropuntieae, Opuntioideae) reveals a common pattern out of the Chihuahuan and Sonoran deserts. AMERICAN JOURNAL OF BOTANY 2019; 106:1327-1345. [PMID: 31545882 DOI: 10.1002/ajb2.1364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/14/2019] [Indexed: 05/23/2023]
Abstract
PREMISE Although numerous phylogenetic studies have been conducted in Cactaceae, whole-plastome datasets have not been employed. We used the chollas to develop a plastome dataset for phylogeny reconstruction to test species relationships, biogeography, clade age, and morphological evolution. METHODS We developed a plastome dataset for most known diploid members of the chollas (42 taxa) as well as for other members of Cylindropuntieae. Paired-end, raw reads from genome skimming were reference-mapped onto a de novo plastome assembly of one species of cholla, Cylindropuntia bigelovii, and were used to build our plastome dataset, which was analyzed using various methods. RESULTS Our plastome dataset resolved the phylogeny of the chollas, including most interspecific and intraspecific relationships. Tribe Cylindropuntieae arose ~18 mya, during the early Miocene in southern South America, and is supported as sister to the South American clade Tephrocacteae. The (Micropuntia (Cylindropuntia + Grusonia)) clade most likely originated in the Chihuahuan Desert region around 16 mya and then migrated into other North American desert regions. Key morphological characters for recognizing traditional taxonomic series in Cylindropuntia (e.g., spiny fruit) are mostly homoplasious. CONCLUSIONS This study provides the first comprehensive plastome phylogeny for any clade within Cactaceae. Although the chollas s.l. are widespread throughout western North American deserts, their most recent common ancestor likely arose in the Chihuahuan Desert region during the mid-Miocene, with much of their species diversity arising in the early to mid-Pliocene, a pattern strikingly similar to those found in other western North American desert groups.
Collapse
Affiliation(s)
- Lucas C Majure
- University of Florida Herbarium (FLAS), Florida Museum of Natural History, Gainesville, Florida, 32611, USA
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, Arizona, 85008, USA
| | - Marc A Baker
- College of Liberal Arts and Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| | - Michelle Cloud-Hughes
- Desert Solitaire Botany and Ecological Restoration, San Diego, California, 92103, USA
| | - Andrew Salywon
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, Arizona, 85008, USA
| | - Kurt M Neubig
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, 62901, USA
| |
Collapse
|
270
|
Martínez-Aquino A, Vidal-Martínez VM, Ceccarelli FS, Méndez O, Soler-Jiménez LC, Aguirre-Macedo ML. Phylogeny, genetics, and the partial life cycle of Oncomegas wageneri in the Gulf of Mexico. Curr Zool 2019; 66:275-283. [PMID: 32440288 PMCID: PMC7233958 DOI: 10.1093/cz/zoz045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/04/2019] [Indexed: 01/20/2023] Open
Abstract
Despite the diversity and ecological importance of cestodes, there is a paucity of studies on their life stages (i.e., complete lists of intermediate, paratenic, and definitive hosts) and genetic variation. For example, in the Gulf of Mexico (GoM) 98 species of cestodes have been reported to date; however, data on their intraspecific genetic variation and population genetic studies are lacking. The trypanorhynch cestode, Oncomegas wageneri, is found (among other places) off the American Western Atlantic Coast, including the GoM, and has been reported as an adult from stingrays and from several teleost species in its larval form (as plerocerci). This study represents the first report of 2 previously unregistered definitive hosts for O. wageneri, namely the Atlantic sharpnose shark Rhizoprionodon terraenovae and the southern stingray Hypanus americanus. In this work, partial sequences of the 28S (region D1-D2) ribosomal DNA were analyzed to include O. wageneri within an eutetrarhynchoid phylogenetic framework. All O. wageneri individuals (which included plerocerci and adults) were recovered as monophyletic and Oncomegas celatus was identified as the sister species of O. wageneri. Furthermore, population genetic analyses of O. wageneri from the southern GoM were carried out using DNA sequences of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene, which reflected high genetic variation and a lack of genetic structure among the 9 oceanographic sampling sites. Based on these results, O. wageneri is panmictic in the southern GoM. More extensive sampling along the species entire distribution is necessary to make more accurate inferences of population genetics of O. wageneri.
Collapse
Affiliation(s)
- Andrés Martínez-Aquino
- Facultad de Ciencias, Universidad Autónoma de Baja California, Carretera Transpeninsular 3917, Fraccionamiento Playitas, Ensenada, Baja California 22860, México
| | - Víctor M Vidal-Martínez
- Laboratorio de Patología Acuática, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Cordemex, Carretera Antigua a Progreso Km. 6, Mérida, Yucatán 97310, México
| | - F Sara Ceccarelli
- Departamento de Biología de la Conservación, CONACYT-Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana, Ensenada, Baja California 22860, México
| | - Oscar Méndez
- Laboratorio de Hidrobiología, Facultad de Biología-Xalapa, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N Zona Universitaria, Xalapa, Veracruz 91090, México
| | - Lilia C Soler-Jiménez
- Laboratorio de Patología Acuática, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Cordemex, Carretera Antigua a Progreso Km. 6, Mérida, Yucatán 97310, México
| | - M Leopoldina Aguirre-Macedo
- Laboratorio de Patología Acuática, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Cordemex, Carretera Antigua a Progreso Km. 6, Mérida, Yucatán 97310, México
| |
Collapse
|
271
|
Kajon AE, Li X, Gonzalez G, Core S, Hofmann-Sieber H, Leng S. Isolation and initial propagation of guinea pig adenovirus (GPAdV) in Cavia porcellus cell lines. F1000Res 2019; 8:1597. [PMID: 32226606 PMCID: PMC7096189 DOI: 10.12688/f1000research.20135.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 11/20/2022] Open
Abstract
Background: The lack of adequate in vitro systems to isolate and propagate guinea pig adenovirus (GPAdV), a prevalent cause of respiratory illness of varaible severity in laboratory guinea pig colonies worldwide, has precluded its formal characterization to allow for the development of comprehensive diagnostic assays, and for the execution of complex pathogenesis and basic virology studies. Methods: Two strains of GPAdV were isolated in guinea pig ( Cavia porcellus) cell cultures from frozen archival infected animal tissue originated from colony outbreaks of pneumonia in Australia and the Czech Republic in 1996. Results: Commercially available guinea pig cell lines from colorectal carcinoma (GPC-16), fetal fibroblast (104-C1) and lung fibroblast (JH4 C1), and the tracheal epithelial cell line GPTEC-T developed in this study were able to support viral infection and early propagation. Sufficient viral DNA was recovered from cell cultures to PCR-amplify and obtain sequence data for the complete hexon gene and partial DNA polymerase and penton base genes. Phylogenetic analysis for the three regions of the genome provided strong evidence confirming GPAdV as a unique species in the genus Mastadenovirus. Conclusions: This study demonstrated the feasibility of propagating GPAdV in cultures of immortalized lines of GP cells of a variety of types, thus establishing a critical foundation for the development of a robust culture platform for virus stock production and titration. The generation and analysis of whole GPAdV genome sequences will provide additional data for a comprehensive description of the genetic organization of the viral genome and for a better assessment of genetic diversity between the two isolated strains.
Collapse
Affiliation(s)
- Adriana E. Kajon
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, 87108, USA
| | - Xiaoxin Li
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, 87108, USA
| | - Gabriel Gonzalez
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Susan Core
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, 87108, USA
| | - Helga Hofmann-Sieber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, 20251, Germany
| | - Shuguang Leng
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, 87108, USA
| |
Collapse
|
272
|
Kajon AE, Li X, Gonzalez G, Core S, Hofmann-Sieber H, Leng S. Isolation and initial propagation of guinea pig adenovirus (GPAdV) in Cavia porcellus cell lines. F1000Res 2019; 8:1597. [PMID: 32226606 PMCID: PMC7096189 DOI: 10.12688/f1000research.20135.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2019] [Indexed: 03/29/2024] Open
Abstract
Background: The lack of adequate in vitro systems to isolate and propagate guinea pig adenovirus (GPAdV), a prevalent cause of respiratory illness of varaible severity in laboratory guinea pig colonies worldwide, has precluded its formal characterization to allow for the development of comprehensive diagnostic assays, and for the execution of complex pathogenesis and basic virology studies. Methods: Two strains of GPAdV were isolated in guinea pig ( Cavia porcellus) cell cultures from frozen archival infected animal tissue originated from colony outbreaks of pneumonia in Australia and the Czech Republic in 1996. Results: Commercially available guinea pig cell lines from colorectal carcinoma (GPC-16), fetal fibroblast (104-C1) and lung fibroblast (JH4 C1), and the tracheal epithelial cell line GPTEC-T developed in this study were able to support viral infection and early propagation. Sufficient viral DNA was recovered from cell cultures to PCR-amplify and obtain sequence data for the complete hexon gene and partial DNA polymerase and penton base genes. Phylogenetic analysis for the three regions of the genome provided strong evidence confirming GPAdV as a unique species in the genus Mastadenovirus. Conclusions: This study demonstrated the feasibility of propagating GPAdV in cultures of immortalized lines of GP cells of a variety of types, thus establishing a critical foundation for the development of a robust culture platform for virus stock production and titration. The generation and analysis of whole GPAdV genome sequences will provide additional data for a comprehensive description of the genetic organization of the viral genome and for a better assessment of genetic diversity between the two isolated strains.
Collapse
Affiliation(s)
- Adriana E Kajon
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, 87108, USA
| | - Xiaoxin Li
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, 87108, USA
| | - Gabriel Gonzalez
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Susan Core
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, 87108, USA
| | - Helga Hofmann-Sieber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, 20251, Germany
| | - Shuguang Leng
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, 87108, USA
| |
Collapse
|
273
|
A kleptoplastidic dinoflagellate and the tipping point between transient and fully integrated plastid endosymbiosis. Proc Natl Acad Sci U S A 2019; 116:17934-17942. [PMID: 31427512 DOI: 10.1073/pnas.1910121116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plastid endosymbiosis has been a major force in the evolution of eukaryotic cellular complexity, but how endosymbionts are integrated is still poorly understood at a mechanistic level. Dinoflagellates, an ecologically important protist lineage, represent a unique model to study this process because dinoflagellate plastids have repeatedly been reduced, lost, and replaced by new plastids, leading to a spectrum of ages and integration levels. Here we describe deep-transcriptomic analyses of the Antarctic Ross Sea dinoflagellate (RSD), which harbors long-term but temporary kleptoplasts stolen from haptophyte prey, and is closely related to dinoflagellates with fully integrated plastids derived from different haptophytes. In some members of this lineage, called the Kareniaceae, their tertiary haptophyte plastids have crossed a tipping point to stable integration, but RSD has not, and may therefore reveal the order of events leading up to endosymbiotic integration. We show that RSD has retained its ancestral secondary plastid and has partitioned functions between this plastid and the kleptoplast. It has also obtained genes for kleptoplast-targeted proteins via horizontal gene transfer (HGT) that are not derived from the kleptoplast lineage. Importantly, many of these HGTs are also found in the related species with fully integrated plastids, which provides direct evidence that genetic integration preceded organelle fixation. Finally, we find that expression of kleptoplast-targeted genes is unaffected by environmental parameters, unlike prey-encoded homologs, suggesting that kleptoplast-targeted HGTs have adapted to posttranscriptional regulation mechanisms of the host.
Collapse
|
274
|
Huang YX, Ren FJ, Bartlett CR, Wei YS, Qin DZ. Contribution to the mitogenome diversity in Delphacinae: Phylogenetic and ecological implications. Genomics 2019; 112:1363-1370. [PMID: 31421209 DOI: 10.1016/j.ygeno.2019.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/20/2019] [Accepted: 08/10/2019] [Indexed: 11/26/2022]
Abstract
We document the complete (or nearly complete) mitogenomes of 20 Delphacidae taxa, and together with 17 other delphacid mitogenomes currently in GenBank, to reconstruct the phylogeny of the Delphacinae and to investigate mitogenome differences among members of Delphacini, Tropidocephalini and Saccharosydnini. The mitogenomes of the 20 species encode the complete set of 37 genes usually found in animal mitogenomes. The length of complete mitogenomes in Delphacinae ranges from 15,531 to 16,231 bp. The gene order of all newly sequenced mitogenomes are identical, and the mitogenome gene order of Stenocranus matsumurai Metcalf in Stenocraninae has a transposition of tRNAThr. The two-clade system in Tropidocephalini was supported with high value (PP = 1, BS = 100), and the monophyly of Bambusiphaga was recovered in this study. Finally, we found that the host shift from plants with a C3 to a C4 photosynthetic pathway appears to have occurred independently in several clades.
Collapse
Affiliation(s)
- Yi-Xin Huang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Feng-Juan Ren
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Charles R Bartlett
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716, USA.
| | - Yong-Sheng Wei
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Dao-Zheng Qin
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
275
|
Revision of the Lichen Genus Phaeophyscia and Allied Atranorin Absent Taxa (Physciaceae) in South Korea. Microorganisms 2019; 7:microorganisms7080242. [PMID: 31390815 PMCID: PMC6723189 DOI: 10.3390/microorganisms7080242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/17/2019] [Accepted: 08/04/2019] [Indexed: 11/17/2022] Open
Abstract
The genus Phaeophyscia Moberg, which belongs to the family Physciaceae, includes about 50 species, with 17 species reported in South Korea. This genus is characterized by a foliose thallus, Physcia/Pachysporaria-type ascospores, a paraplectenchymatous-type lower cortex, and lacking atranorin. In this study, about 650 specimens of Phaeophyscia aligned with the atranorin-absent groups collected from South Korea were re-examined. The taxonomy of these groups in South Korea requires revision based on the analyses of the morphology, chemistry, and molecular phylogeny. We infer that (1) each genus of the main foliose groups of Physciaceae forms a monophyletic clade, which also supports the separation of Phaeophyscia species with a prosoplectenchymatous lower cortex into the genus Physciella; (2) three atranorin-lacking genera were confirmed in South Korea: Hyperphyscia, Phaeophyscia, and Physciella, including a new combination named Physciella poeltii (Frey) D. Liu and J.S. Hur, and three new records from South Korea of Phaeophyscia hunana, P. leana, and P. sonorae; and (3) four species should be excluded from the lichen flora of South Korea: Hyperphyscia adglutinata, Phaeophyscia endococcina, Phaeophyscia erythrocardia, and Phaeophyscia imbricata.
Collapse
|
276
|
Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nat Commun 2019; 10:3425. [PMID: 31366885 PMCID: PMC6668415 DOI: 10.1038/s41467-019-11433-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
Single-stranded (ss) DNA viruses are a major component of the earth virome. In particular, the circular, Rep-encoding ssDNA (CRESS-DNA) viruses show high diversity and abundance in various habitats. By combining sequence similarity network and phylogenetic analyses of the replication proteins (Rep) belonging to the HUH endonuclease superfamily, we show that the replication machinery of the CRESS-DNA viruses evolved, on three independent occasions, from the Reps of bacterial rolling circle-replicating plasmids. The CRESS-DNA viruses emerged via recombination between such plasmids and cDNA copies of capsid genes of eukaryotic positive-sense RNA viruses. Similarly, the rep genes of prokaryotic DNA viruses appear to have evolved from HUH endonuclease genes of various bacterial and archaeal plasmids. Our findings also suggest that eukaryotic polyomaviruses and papillomaviruses with dsDNA genomes have evolved via parvoviruses from CRESS-DNA viruses. Collectively, our results shed light on the complex evolutionary history of a major class of viruses revealing its polyphyletic origins. Most single-stranded DNA viruses have small genomes replicated by rolling circle mechanism which is initiated by the Rep protein. Here, using sequence similarity network and phylogenetic analyses, Kazlauskas et al. show that viral Reps evolved from Reps of bacterial and archaeal plasmids on multiple independent occasions.
Collapse
|
277
|
Yang Q, Chen WY, Jiang N, Tian CM. Nectria-related fungi causing dieback and canker diseases in China, with Neothyronectriacitri sp. nov. described. MycoKeys 2019; 56:49-66. [PMID: 31341399 PMCID: PMC6637038 DOI: 10.3897/mycokeys.56.36079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/28/2019] [Indexed: 11/26/2022] Open
Abstract
To clarify phylogenetic relationships amongst Nectria, Neothyronectria and Thyronectria in Nectriaceae, we examined detailed morphological characters and performed phylogenetic analyses of a concatenated dataset, based on the ITS, LSU, tef1 and tub2 DNA sequences of fungal specimens in China. Four species of nectria-related fungi were identified, i.e. Nectriadematiosa, N.pseudotrichia, Neothyronectriacitri and Thyronectriapinicola. The newly described species, Neothyronectriacitri, is characterised by its ascomatal wall with bright yellow scurf, unitunicate asci, each with 4-spored and ascospores allantoid to short-cylindrical, uniseriate, muriform, hyaline to slightly yellowish-brown. This species has affinities with other one known species of Neothyronectria and can be distinguished by molecular data.
Collapse
Affiliation(s)
- Qin Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, P.R. China Beijing Forestry University Beijing China
| | - Wen-Yan Chen
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, P.R. China Beijing Forestry University Beijing China
| | - Ning Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, P.R. China Beijing Forestry University Beijing China
| | - Cheng-Ming Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, P.R. China Beijing Forestry University Beijing China
| |
Collapse
|
278
|
Gawryluk RMR, Tikhonenkov DV, Hehenberger E, Husnik F, Mylnikov AP, Keeling PJ. Non-photosynthetic predators are sister to red algae. Nature 2019; 572:240-243. [DOI: 10.1038/s41586-019-1398-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
|
279
|
Li J, Yang Q, Liu ZL. The complete chloroplast genome sequence of Liparis japonica (Orchidaceae). Mitochondrial DNA B Resour 2019; 4:2405-2406. [PMID: 33365564 PMCID: PMC7687456 DOI: 10.1080/23802359.2019.1636728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Orchidaceae contains numerous species with great ecological and economic values. In this study, the complete chloroplast genome of Liparis japonica was presented by next-generation sequencing technologies. The cpDNA is 152,084 bp in length with a large single copy region (LSC) of 85,398 bp, a small single copy region (SSC) of 14,774 bp, and a pair of inverted repeat regions (IRs) of 25,956 bp. It contains 132 genes, including 79 protein-coding genes, 38 tRNA genes, 8 rRNA genes, and 7 pseudogenes. The overall GC content is 37.0%, while the corresponding values in the LSC, SSC, and IR region are 34.3, 30.0, 43.5%, respectively. The phylogenetic analysis shows that Liparis japonica is sister to Liparis loeselii and the genus Liparis is closely related to Dendrobium.
Collapse
Affiliation(s)
- Jianfang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, China
| | - Qian Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, China
| | - Zhan-Lin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
280
|
Aguilar-Aguilar R, Ruiz-Campos G, Martorelli S, Montes MM, Martínez-Aquino A. A New Species Of Ascarophis (Nematoda: Cystidicolidae) Parasitizing Clinocottus analis (Pisces: Cottidae) From Baja California, Mexico. J Parasitol 2019. [DOI: 10.1645/19-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- R. Aguilar-Aguilar
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.P. 04510, Ciudad Universitaria, Mexico
| | - G. Ruiz-Campos
- Facultad de Ciencias, Universidad Autónoma de Baja California, Campus Ensenada, Carr. Transpeninsular No. 3917, Colonia Playitas, C.P. 22860, Ensenada, Baja California, Mexico
| | - S. Martorelli
- Centro de Estudios Parasitológicos y Vectores (CEPAVE), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata (CONICET-UNLP), boulevard 120 s/n e/ 60 y 64, La Plata, Argentina
| | - M. M. Montes
- Centro de Estudios Parasitológicos y Vectores (CEPAVE), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata (CONICET-UNLP), boulevard 120 s/n e/ 60 y 64, La Plata, Argentina
| | - A. Martínez-Aquino
- Facultad de Ciencias, Universidad Autónoma de Baja California, Campus Ensenada, Carr. Transpeninsular No. 3917, Colonia Playitas, C.P. 22860, Ensenada, Baja California, Mexico
| |
Collapse
|
281
|
Mine J, Uchida Y, Sharshov K, Sobolev I, Shestopalov A, Saito T. Phylogeographic evidence for the inter- and intracontinental dissemination of avian influenza viruses via migration flyways. PLoS One 2019; 14:e0218506. [PMID: 31242207 PMCID: PMC6594620 DOI: 10.1371/journal.pone.0218506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 01/31/2023] Open
Abstract
Genetically related highly pathogenic avian influenza viruses (HPAIVs) of H5N6 subtype caused outbreaks simultaneously in East Asia and Europe—geographically distinct regions—during winter 2017–2018. This situation prompted us to consider whether the application of phylogeographic analysis to a particular gene segment of AIVs could provide clues for understanding how AIV had been disseminated across the continent. Here, the N6 NA genes of influenza viruses isolated across the world were subjected to phylogeographic analysis to illustrate the inter- and intracontinental dissemination of AIVs. Those isolated in East Asia during winter and in Mongolia/Siberia during summer were comingled within particular clades of the phylogeographic tree. For AIVs in one clade, their dissemination in eastern Eurasia extended from Yakutia, Russia, in the north to East Asia in the south. AIVs in western Asia, Europe, and Mongolia were also comingled within other clades, indicating that Mongolia/Siberia plays an important role in the dissemination of AIVs across the Eurasian continent. Mongolia/Siberia may therefore have played a role in the simultaneous outbreaks of H5N6 HPAIVs in Europe and East Asia during the winter of 2017–2018. In addition to the long-distance intracontinental disseminations described above, intercontinental disseminations of AIVs between Eurasia and Africa and between Eurasia and North America were also observed. Integrating these results and known migration flyways suggested that the migration of wild birds and the overlap of flyways, such as that observed in Mongolia/Siberia and along the Alaskan Peninsula, contributed to the long-distance intra- and intercontinental dissemination of AIVs. These findings highlight the importance of understanding the movement of migratory birds and the dynamics of AIVs in breeding areas—especially where several migration flyways overlap—in forecasting outbreaks caused by HPAIVs.
Collapse
Affiliation(s)
- Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Thailand–Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, Thailand
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Thailand–Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, Thailand
| | - Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Ivan Sobolev
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alexander Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Thailand–Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, Thailand
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- * E-mail:
| |
Collapse
|
282
|
Bernier CR, Petrov AS, Kovacs NA, Penev PI, Williams LD. Translation: The Universal Structural Core of Life. Mol Biol Evol 2019; 35:2065-2076. [PMID: 29788252 PMCID: PMC6063299 DOI: 10.1093/molbev/msy101] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Universal Gene Set of Life (UGSL) is common to genomes of all extant organisms. The UGSL is small, consisting of <100 genes, and is dominated by genes encoding the translation system. Here we extend the search for biological universality to three dimensions. We characterize and quantitate the universality of structure of macromolecules that are common to all of life. We determine that around 90% of prokaryotic ribosomal RNA (rRNA) forms a common core, which is the structural and functional foundation of rRNAs of all cytoplasmic ribosomes. We have established a database, which we call the Sparse and Efficient Representation of the Extant Biology (the SEREB database). This database contains complete and cross-validated rRNA sequences of species chosen, as far as possible, to sparsely and efficiently sample all known phyla. Atomic-resolution structures of ribosomes provide data for structural comparison and validation of sequence-based models. We developed a similarity statistic called pairing adjusted sequence entropy, which characterizes paired nucleotides by their adherence to covariation and unpaired nucleotides by conventional conservation of identity. For canonically paired nucleotides the unit of structure is the nucleotide pair. For unpaired nucleotides, the unit of structure is the nucleotide. By quantitatively defining the common core of rRNA, we systematize the conservation and divergence of the translational system across the tree of life, and can begin to understand the unique evolutionary pressures that cause its universality. We explore the relationship between ribosomal size and diversity, geological time, and organismal complexity.
Collapse
Affiliation(s)
- Chad R Bernier
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Nicholas A Kovacs
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Petar I Penev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
283
|
Vialle RA, Tamuri AU, Goldman N. Alignment Modulates Ancestral Sequence Reconstruction Accuracy. Mol Biol Evol 2019; 35:1783-1797. [PMID: 29618097 PMCID: PMC5995191 DOI: 10.1093/molbev/msy055] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Accurate reconstruction of ancestral states is a critical evolutionary analysis when studying ancient proteins and comparing biochemical properties between parental or extinct species and their extant relatives. It relies on multiple sequence alignment (MSA) which may introduce biases, and it remains unknown how MSA methodological approaches impact ancestral sequence reconstruction (ASR). Here, we investigate how MSA methodology modulates ASR using a simulation study of various evolutionary scenarios. We evaluate the accuracy of ancestral protein sequence reconstruction for simulated data and compare reconstruction outcomes using different alignment methods. Our results reveal biases introduced not only by aligner algorithms and assumptions, but also tree topology and the rate of insertions and deletions. Under many conditions we find no substantial differences between the MSAs. However, increasing the difficulty for the aligners can significantly impact ASR. The MAFFT consistency aligners and PRANK variants exhibit the best performance, whereas FSA displays limited performance. We also discover a bias towards reconstructed sequences longer than the true ancestors, deriving from a preference for inferring insertions, in almost all MSA methodological approaches. In addition, we find measures of MSA quality generally correlate highly with reconstruction accuracy. Thus, we show MSA methodological differences can affect the quality of reconstructions and propose MSA methods should be selected with care to accurately determine ancestral states with confidence.
Collapse
Affiliation(s)
- Ricardo Assunção Vialle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom.,Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Genetics and Molecular Biology, Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Pará, Brazil
| | - Asif U Tamuri
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom.,Research IT Services, University College London, London, United Kingdom
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
284
|
Águeda-Pinto A, Lemos de Matos A, Abrantes M, Kraberger S, Risalde MA, Gortázar C, McFadden G, Varsani A, Esteves PJ. Genetic Characterization of a Recombinant Myxoma Virus in the Iberian Hare ( Lepus granatensis). Viruses 2019; 11:v11060530. [PMID: 31181645 PMCID: PMC6631704 DOI: 10.3390/v11060530] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 01/15/2023] Open
Abstract
Myxomatosis is a lethal disease in wild European and domestic rabbits (Oryctolagus cuniculus), which is caused by a Myxoma virus (MYXV) infection-a leporipoxvirus that is found naturally in some Sylvilagus rabbit species in South America and California. The introduction of MYXV into feral European rabbit populations of Australia and Europe, in the early 1950s, demonstrated the best-documented field example of host-virus coevolution, following a cross-species transmission. Recently, a new cross-species jump of MYXV has been suggested in both Great Britain and Spain, where European brown hares (Lepus europaeus) and Iberian hares (Lepus granatensis) were found dead with lesions consistent with those observed in myxomatosis. To investigate the possibility of a new cross-species transmission event by MYXV, tissue samples collected from a wild Iberian hare found dead in Spain (Toledo region) were analyzed and deep sequenced. Our results reported a new MYXV isolate (MYXV Toledo) in the tissues of this species. The genome of this new virus was found to encode three disruptive genes (M009L, M036L, and M152R) and a novel ~2.8 kb recombinant region, which resulted from an insertion of four novel poxviral genes towards the 3' end of the negative strand of its genome. From the open reading frames inserted into the MYXV Toledo virus, a new orthologue of a poxvirus host range gene family member was identified, which was related to the MYXV gene M064R. Overall, we confirmed the identity of a new MYXV isolate in Iberian hares, which, we hypothesized, was able to more effectively counteract the host defenses in hares and start an infectious process in this new host.
Collapse
Affiliation(s)
- Ana Águeda-Pinto
- CIBIO/InBio-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Ana Lemos de Matos
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Mário Abrantes
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Maria A Risalde
- Dpto. de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba, Agrifood Excellence International Campus (ceiA3), 14071 Córdoba, Spain.
| | - Christian Gortázar
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo, 28005 Ciudad Real, Spain.
| | - Grant McFadden
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life sciences, Arizona State University, Tempe, AZ 85287, USA.
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town 7701, South Africa.
| | - Pedro J Esteves
- CIBIO/InBio-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
- CITS-Centro de Investigação em Tecnologias da Saúde, IPSN, CESPU, 4585-116 Gandra, Portugal.
| |
Collapse
|
285
|
Liu D, Yu Wang X, Wang LS, Maekawa N, Hur JS. Sulzbacheromyces sinensis, an Unexpected Basidiolichen, was Newly Discovered from Korean Peninsula and Philippines, with a Phylogenetic Reconstruction of Genus Sulzbacheromyces. MYCOBIOLOGY 2019; 47:191-199. [PMID: 31448139 PMCID: PMC6691760 DOI: 10.1080/12298093.2019.1617825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 06/10/2023]
Abstract
Most of lichens are formed by Ascomycota, less than 1% are lichenized Basidiomycota. The flora investigation of lichenized Ascomycota of South Korea has been well studied in the past three decades; however, prior to this study, none of basidiolichens was discovered. During the recent excursion, an unexpected clavarioid basidiolichen, Sulzbacheromyces sinensis was collected. Morphology and ecology has been recorded in detail. DNA was extracted, and ITS, 18S, 28S nuclear rDNA were generated. In order to further confirm the systematic position of the Korean specimens, maximum likelihood and Bayesian inference analysis including all the species of the order Lepidostromatales were conducted based on the ITS. As a result, the phylogenetic tree of the order Lepidostromatales was reconstructed, which differed from the previous studies. The inferred phylogenetic tree showed that species of Sulzbacheromyces in three different continents (Asia, South Africa and South America) were separated into three clades with support. In this study, the species worldwide distribution map of Lepidostromatales was illustrated, and S. sinensis had a widest distribution range (paleotropical extend to the Sino-Japanese) than other species (paleotropical or neotropical). Prior to this study, the range of distribution, southernmost and northernmost points and the fruiting time of S. sinensis were recorded, and the genus Sulzbacheromyces was firstly reported from Korean peninsula and Philippines.
Collapse
Affiliation(s)
- Dong Liu
- Korean Lichen Research Institute (KoLRI), Sunchon National University, Suncheon, Korea
| | - Xin Yu Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Li Song Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Nitaro Maekawa
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Jae-Seoun Hur
- Korean Lichen Research Institute (KoLRI), Sunchon National University, Suncheon, Korea
| |
Collapse
|
286
|
Mine J, Uchida Y, Nakayama M, Tanikawa T, Tsunekuni R, Sharshov K, Takemae N, Sobolev I, Shestpalov A, Saito T. Genetics and pathogenicity of H5N6 highly pathogenic avian influenza viruses isolated from wild birds and a chicken in Japan during winter 2017-2018. Virology 2019; 533:1-11. [PMID: 31071540 DOI: 10.1016/j.virol.2019.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 01/27/2023]
Abstract
An H5N6 highly pathogenic avian influenza virus (HPAIV) outbreak occurred in poultry in Japan during January 2018, and H5N6 HPAIVs killed several wild birds in 3 prefectures during Winter 2017-2018. Time-measured phylogenetic analyses demonstrated that the Hemagglutinin (HA) and internal genes of these isolates were genetically similar to clade 2.3.4.4.B H5N8 HPAIVs in Europe during Winter 2016-2017, and Neuraminidase (NA) genes of the poultry and wild bird isolates were gained through distinct reassortments with AIVs that were estimated to have circulated possibly in Siberia during Summer 2017 and Summer 2016, respectively. Lethal infectious dose to chickens was similar between the poultry and wild-bird isolates. H5N6 HPAIVs during Winter 2017-2018 in Japan had higher 50% chicken lethal doses and lower transmission efficiency than the H5Nx HPAIVs that caused previous outbreaks in Japan, thus explaining in part why cases during the 2017-2018 outbreak were sporadic.
Collapse
Affiliation(s)
- Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Momoko Nakayama
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Ivan Sobolev
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alexander Shestpalov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand; United Graduate School of Veterinary Sciences, Gifu University, 1-1, Yanagito, Gifu, Gifu, 501-1112, Japan.
| |
Collapse
|
287
|
Nute M, Saleh E, Warnow T. Evaluating Statistical Multiple Sequence Alignment in Comparison to Other Alignment Methods on Protein Data Sets. Syst Biol 2019; 68:396-411. [PMID: 30329135 PMCID: PMC6472439 DOI: 10.1093/sysbio/syy068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 01/15/2023] Open
Abstract
The estimation of multiple sequence alignments of protein sequences is a basic step in many bioinformatics pipelines, including protein structure prediction, protein family identification, and phylogeny estimation. Statistical coestimation of alignments and trees under stochastic models of sequence evolution has long been considered the most rigorous technique for estimating alignments and trees, but little is known about the accuracy of such methods on biological benchmarks. We report the results of an extensive study evaluating the most popular protein alignment methods as well as the statistical coestimation method BAli-Phy on 1192 protein data sets from established benchmarks as well as on 120 simulated data sets. Our study (which used more than 230 CPU years for the BAli-Phy analyses alone) shows that BAli-Phy has better precision and recall (with respect to the true alignments) than the other alignment methods on the simulated data sets but has consistently lower recall on the biological benchmarks (with respect to the reference alignments) than many of the other methods. In other words, we find that BAli-Phy systematically underaligns when operating on biological sequence data but shows no sign of this on simulated data. There are several potential causes for this change in performance, including model misspecification, errors in the reference alignments, and conflicts between structural alignment and evolutionary alignments, and future research is needed to determine the most likely explanation. We conclude with a discussion of the potential ramifications for each of these possibilities. [BAli-Phy; homology; multiple sequence alignment; protein sequences; structural alignment.]
Collapse
Affiliation(s)
- Michael Nute
- Department of Statistics, University of Illinois at Urbana-Champaign, 725 S Wright St #101, Champaign, IL 61820, USA
| | - Ehsan Saleh
- Department of Computer Science, University of Illinois at Urbana-Champaign, 201 N. Goodwin Ave, Urbana, IL 61801, USA
| | - Tandy Warnow
- Department of Computer Science, University of Illinois at Urbana-Champaign, 201 N. Goodwin Ave, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana, IL 61801, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
288
|
Lin CG, J. Bhat D, Liu JK, D. Hyde K, Yong Wang. The genus Castanediella. MycoKeys 2019; 51:1-14. [PMID: 31048984 PMCID: PMC6477871 DOI: 10.3897/mycokeys.51.32272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/23/2019] [Indexed: 11/12/2022] Open
Abstract
Two new species, Castanediellabrevis and C.monoseptata, are described, illustrated and compared with other Castanediella taxa. Evidence for the new species is provided by morphological comparison and sequence data analyses. Castanediellabrevis can be distinguished from other Castanediella species by the short hyaline conidiophores and fusiform, aseptate hyaline conidia, while C.monoseptata differs from other Castanediella species by its unbranched conidiophores and fusiform, curved, 0-1-sepatate, hyaline conidia. Phylogenetic analysis of combined ITS and LSU sequence data was carried out to determine the phylogenetic placement of the species. A synopsis of hitherto described Castanediella species is provided. In addition, Castanediella is also compared with morphologically similar-looking genera such as Idriella, Idriellopsis, Microdochium, Neoidriella, Paraidriella and Selenodriella.
Collapse
Affiliation(s)
- Chuan-Gen Lin
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, ChinaMae Fah Luang UniversityChiang RaiThailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandGuizhou UniversityGuiyangChina
| | - Darbhe J. Bhat
- 128/1-J, Azad Housing Society, Curca, Goa Velha 403108, IndiaAzad Housing SocietyGoa VelhaIndia
- Formerly, Department of Botany, Goa University, Goa, IndiaGoa UniversityGoaIndia
| | - Jian-Kui Liu
- Center for Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, ChinaUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandGuizhou UniversityGuiyangChina
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, ChinaMae Fah Luang UniversityChiang RaiThailand
| |
Collapse
|
289
|
Sebastin R, Lee KJ, Cho GT, Lee JR, Shin MJ, Kim SH, Lee GA, Chung JW, Hyun DY. The complete chloroplast genome sequence of Japanese Millet Echinochloa esculenta (A. braun) H. scholz (Poaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2019. [DOI: 10.1080/23802359.2019.1598787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Raveendar Sebastin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Kyung Jun Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Gyu-Taek Cho
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Jung-Ro Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Do Yoon Hyun
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| |
Collapse
|
290
|
Discovery and genetic characterization of diverse smacoviruses in Zambian non-human primates. Sci Rep 2019; 9:5045. [PMID: 30962460 PMCID: PMC6453971 DOI: 10.1038/s41598-019-41358-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/07/2019] [Indexed: 11/12/2022] Open
Abstract
The Smacoviridae has recently been classified as a family of small circular single-stranded DNA viruses. An increasing number of smacovirus genomes have been identified exclusively in faecal matter of various vertebrate species and from insect body parts. However, the genetic diversity and host range of smacoviruses remains to be fully elucidated. Herein, we report the genetic characterization of eleven circular replication-associated protein (Rep) encoding single-stranded (CRESS) DNA viruses detected in the faeces of Zambian non-human primates. Based on pairwise genome-wide and amino acid identities with reference smacovirus species, ten of the identified CRESS DNA viruses are assigned to the genera Porprismacovirus and Huchismacovirus of the family Smacoviridae, which bidirectionally encode two major open reading frames (ORFs): Rep and capsid protein (CP) characteristic of a type IV genome organization. The remaining unclassified CRESS DNA virus was related to smacoviruses but possessed a genome harbouring a unidirectionally oriented CP and Rep, assigned as a type V genome organization. Moreover, phylogenetic and recombination analyses provided evidence for recombination events encompassing the 3′-end of the Rep ORF in the unclassified CRESS DNA virus. Our findings increase the knowledge of the known genetic diversity of smacoviruses and highlight African non-human primates as carrier animals.
Collapse
|
291
|
Morobe JM, Nyiro JU, Brand S, Kamau E, Gicheru E, Eyase F, Otieno GP, Munywoki PK, Agoti CN, Nokes DJ. Human rhinovirus spatial-temporal epidemiology in rural coastal Kenya, 2015-2016, observed through outpatient surveillance. Wellcome Open Res 2019; 3:128. [PMID: 30483602 PMCID: PMC6234744 DOI: 10.12688/wellcomeopenres.14836.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Human rhinovirus (HRV) is the predominant cause of upper respiratory tract infections, resulting in a significant public health burden. The virus circulates as many different types (168), each generating strong homologous, but weak heterotypic, immunity. The influence of these features on transmission patterns of HRV in the community is understudied. Methods: Nasopharyngeal swabs were collected from patients with symptoms of acute respiratory infection (ARI) at nine out-patient facilities across a Health and Demographic Surveillance System between December 2015 and November 2016. HRV was diagnosed by real-time RT-PCR, and the VP4/VP2 genomic region of the positive samples sequenced. Phylogenetic analysis was used to determine the HRV types. Classification models and G-test statistic were used to investigate HRV type spatial distribution. Demographic characteristics and clinical features of ARI were also compared. Results: Of 5,744 NPS samples collected, HRV was detected in 1057 (18.4%), of which 817 (77.3%) were successfully sequenced. HRV species A, B and C were identified in 360 (44.1%), 67 (8.2%) and 390 (47.7%) samples, respectively. In total, 87 types were determined: 39, 10 and 38 occurred within species A, B and C, respectively. HRV types presented heterogeneous temporal patterns of persistence. Spatially, identical types occurred over a wide distance at similar times, but there was statistically significant evidence for clustering of types between health facilities in close proximity or linked by major road networks. Conclusion: This study records a high prevalence of HRV in out-patient presentations exhibiting high type diversity. Patterns of occurrence suggest frequent and independent community invasion of different types. Temporal differences of persistence between types may reflect variation in type-specific population immunity. Spatial patterns suggest either rapid spread or multiple invasions of the same type, but evidence of similar types amongst close health facilities, or along road systems, indicate type partitioning structured by local spread.
Collapse
Affiliation(s)
- John Mwita Morobe
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Juja, +254, Kenya.,Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, +254, Kenya
| | - Joyce U Nyiro
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, +254, Kenya
| | - Samuel Brand
- Zeeman Institute of Systems Biology and Infectious Disease Research (SBIDER), University of Warwick, Coventry, UK.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Everlyn Kamau
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, +254, Kenya
| | - Elijah Gicheru
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, +254, Kenya
| | - Fredrick Eyase
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Juja, +254, Kenya
| | - Grieven P Otieno
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, +254, Kenya
| | - Patrick K Munywoki
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, +254, Kenya.,Public Health, Pwani University, Kilifi, +254, Kenya
| | - C N Agoti
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, +254, Kenya.,Public Health, Pwani University, Kilifi, +254, Kenya
| | - D J Nokes
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, +254, Kenya.,Zeeman Institute of Systems Biology and Infectious Disease Research (SBIDER), University of Warwick, Coventry, UK.,School of Life Sciences, University of Warwick, Coventry, UK.,Public Health, Pwani University, Kilifi, +254, Kenya
| |
Collapse
|
292
|
Morobe JM, Nyiro JU, Brand S, Kamau E, Gicheru E, Eyase F, Otieno GP, Munywoki PK, Agoti C, Nokes D. Human rhinovirus spatial-temporal epidemiology in rural coastal Kenya, 2015-2016, observed through outpatient surveillance. Wellcome Open Res 2019; 3:128. [PMID: 30483602 PMCID: PMC6234744 DOI: 10.12688/wellcomeopenres.14836.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2019] [Indexed: 05/30/2025] Open
Abstract
Background: Human rhinovirus (HRV) is the predominant cause of upper respiratory tract infections, resulting in a significant public health burden. The virus circulates as many different types (168), each generating strong homologous, but weak heterotypic, immunity. The influence of these features on transmission patterns of HRV in the community is understudied. Methods: Nasopharyngeal swabs were collected from patients with symptoms of acute respiratory infection (ARI) at nine out-patient facilities across a Health and Demographic Surveillance System between December 2015 and November 2016. HRV was diagnosed by real-time RT-PCR, and the VP4/VP2 genomic region of the positive samples sequenced. Phylogenetic analysis was used to determine the HRV types. Classification models and G-test statistic were used to investigate HRV type spatial distribution. Demographic characteristics and clinical features of ARI were also compared. Results: Of 5,744 NPS samples collected, HRV was detected in 1057 (18.4%), of which 817 (77.3%) were successfully sequenced. HRV species A, B and C were identified in 360 (44.1%), 67 (8.2%) and 390 (47.7%) samples, respectively. In total, 87 types were determined: 39, 10 and 38 occurred within species A, B and C, respectively. HRV types presented heterogeneous temporal patterns of persistence. Spatially, identical types occurred over a wide distance at similar times, but there was statistically significant evidence for clustering of types between health facilities in close proximity or linked by major road networks. Conclusion: This study records a high prevalence of HRV in out-patient presentations exhibiting high type diversity. Patterns of occurrence suggest frequent and independent community invasion of different types. Temporal differences of persistence between types may reflect variation in type-specific population immunity. Spatial patterns suggest either rapid spread or multiple invasions of the same type, but evidence of similar types amongst close health facilities, or along road systems, indicate type partitioning structured by local spread.
Collapse
Affiliation(s)
- John Mwita Morobe
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Juja, +254, Kenya
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, +254, Kenya
| | - Joyce U. Nyiro
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, +254, Kenya
| | - Samuel Brand
- Zeeman Institute of Systems Biology and Infectious Disease Research (SBIDER), University of Warwick, Coventry, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Everlyn Kamau
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, +254, Kenya
| | - Elijah Gicheru
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, +254, Kenya
| | - Fredrick Eyase
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Juja, +254, Kenya
| | - Grieven P. Otieno
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, +254, Kenya
| | - Patrick K. Munywoki
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, +254, Kenya
- Public Health, Pwani University, Kilifi, +254, Kenya
| | - C.N. Agoti
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, +254, Kenya
- Public Health, Pwani University, Kilifi, +254, Kenya
| | - D.J. Nokes
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, +254, Kenya
- Zeeman Institute of Systems Biology and Infectious Disease Research (SBIDER), University of Warwick, Coventry, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Public Health, Pwani University, Kilifi, +254, Kenya
| |
Collapse
|
293
|
G-Quadruplexes in Human Ribosomal RNA. J Mol Biol 2019; 431:1940-1955. [PMID: 30885721 DOI: 10.1016/j.jmb.2019.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 11/20/2022]
Abstract
rRNA is the single most abundant polymer in most cells. Mammalian rRNAs are nearly twice as large as those of prokaryotes. Differences in rRNA size are due to expansion segments, which contain extended tentacles in metazoans. Here we show that the terminus of an rRNA tentacle of Homo sapiens contains 10 tandem G-tracts that form highly stable G-quadruplexes in vitro. We characterized rRNA of the H. sapiens large ribosomal subunit by computation, circular dichroism, UV melting, fluorescent probes, nuclease accessibility, electrophoretic mobility shifts, and blotting. We investigated Expansion Segment 7 (ES7), oligomers derived from ES7, intact 28S rRNA, 80S ribosomes, and polysomes. We used mass spectrometry to identify proteins that bind to rRNA G-quadruplexes in cell lysates. These proteins include helicases (DDX3, CNBP, DDX21, DDX17) and heterogeneous nuclear ribonucleoproteins. Finally, by multiple sequence alignments, we observe that G-quadruplex-forming sequences are a general feature of LSU rRNA of Chordata but not, as far as we can tell, of other species. Chordata ribosomes present polymorphic tentacles with the potential to switch between inter- and intramolecular G-quadruplexes. To our knowledge, G-quadruplexes have not been reported previously in ribosomes.
Collapse
|
294
|
Wainaina JM, Ateka E, Makori T, Kehoe MA, Boykin LM. A metagenomic study of DNA viruses from samples of local varieties of common bean in Kenya. PeerJ 2019; 7:e6465. [PMID: 30891366 PMCID: PMC6422016 DOI: 10.7717/peerj.6465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/16/2019] [Indexed: 11/20/2022] Open
Abstract
Common bean (Phaseolus vulgaris L.) is the primary source of protein and nutrients in the majority of households in sub-Saharan Africa. However, pests and viral diseases are key drivers in the reduction of bean production. To date, the majority of viruses reported in beans have been RNA viruses. In this study, we carried out a viral metagenomic analysis on virus symptomatic bean plants. Our virus detection pipeline identified three viral fragments of the double-stranded DNA virus Pelargonium vein banding virus (PVBV) (family, Caulimoviridae, genus Badnavirus). This is the first report of the dsDNA virus and specifically PVBV in legumes to our knowledge. In addition two previously reported +ssRNA viruses the bean common mosaic necrosis virus (BCMNVA) (Potyviridae) and aphid lethal paralysis virus (ALPV) (Dicistroviridae) were identified. Bayesian phylogenetic analysis of the Badnavirus (PVBV) using amino acid sequences of the RT/RNA-dependent DNA polymerase region showed the Kenyan sequence (SRF019_MK014483) was closely matched with two Badnavirus viruses: Dracaena mottle virus (DrMV) (YP_610965) and Lucky bamboo bacilliform virus (ABR01170). Phylogenetic analysis of BCMNVA was based on amino acid sequences of the Nib region. The BCMNVA phylogenetic tree resolved two clades identified as clade (I and II). Sequence from this study SRF35_MK014482, clustered within clade I with other Kenyan sequences. Conversely, Bayesian phylogenetic analysis of ALPV was based on nucleotide sequences of the hypothetical protein gene 1 and 2. Three main clades were resolved and identified as clades I-III. The Kenyan sequence from this study (SRF35_MK014481) clustered within clade II, and nested within a sub-clade; comprising of sequences from China and an earlier ALPV sequences from Kenya isolated from maize (MF458892). Our findings support the use of viral metagenomics to reveal the nascent viruses, their viral diversity and evolutionary history of these viruses. The detection of ALPV and PVBV indicate that these viruses have likely been underreported due to the unavailability of diagnostic tools.
Collapse
Affiliation(s)
- James M. Wainaina
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Elijah Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Timothy Makori
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Monica A. Kehoe
- Diagnostic Laboratory Service, Plant Pathology, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Laura M. Boykin
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
295
|
Lüli Y, Cai Q, Chen ZH, Sun H, Zhu XT, Li X, Yang ZL, Luo H. Genome of lethal Lepiota venenata and insights into the evolution of toxin-biosynthetic genes. BMC Genomics 2019; 20:198. [PMID: 30849934 PMCID: PMC6408872 DOI: 10.1186/s12864-019-5575-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/28/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Genomes of lethal Amanita and Galerina mushrooms have gradually become available in the past ten years; in contrast the other known amanitin-producing genus, Lepiota, is still vacant in this aspect. A fatal mushroom poisoning case in China has led to acquisition of fresh L. venenata fruiting bodies, based on which a draft genome was obtained through PacBio and Illumina sequencing platforms. Toxin-biosynthetic MSDIN family and Porlyl oligopeptidase B (POPB) genes were mined from the genome and used for phylogenetic and statistical studies to gain insights into the evolution of the biosynthetic pathway. RESULTS The analysis of the genome data illustrated that only one MSDIN, named LvAMA1, exits in the genome, along with a POPB gene. No POPA homolog was identified by direct homology searching, however, one additional POP gene, named LvPOPC, was cloned and the gene structure determined. Similar to ApAMA1 in A. phalloides and GmAMA1 in G. marginata, LvAMA1 directly encodes α-amanitin. The two toxin genes were mapped to the draft genome, and the structures analyzed. Furthermore, phylogenetic and statistical analyses were conducted to study the evolution history of the POPB genes. Compared to our previous report, the phylogenetic trees unambiguously showed that a monophyletic POPB lineage clearly conflicted with the species phylogeny. In contrast, phylogeny of POPA genes resembled the species phylogeny. Topology and divergence tests showed that the POPB lineage was robust and these genes exhibited significantly shorter genetic distances than those of the house-keeping rbp2, a characteristic feature of genes with horizontal gene transfer (HGT) background. Consistently, same scenario applied to the only MSDIN, LvAMA1, in the genome. CONCLUSIONS To the best of our knowledge, this is the first reported genome of Lepiota. The analyses of the toxin genes indicate that the cyclic peptides are synthesized through a ribosomal mechanism. The toxin genes, LvAMA1 and LvPOPB, are not in the vicinity of each other. Phylogenetic and evolutionary studies suggest that HGT is the underlining cause for the occurrence of POPB and MSDIN in Amanita, Galerina and Lepiota, which are allocated in three distantly-related families.
Collapse
Affiliation(s)
- Yunjiao Lüli
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qing Cai
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Zuo H. Chen
- College of Life Science, Hunan Normal University, Changsha, 410081 China
| | - Hu Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Xue-Tai Zhu
- College of Life Sciences, Northwest Normal University, Lanzhou, 730030 China
| | - Xuan Li
- Department of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650091 Yunnan China
| | - Zhu L. Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Hong Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| |
Collapse
|
296
|
Liu D, Wang L, Wang XY, Hur JS. Two New Species of the Genus Candelariella from China and Korea. MYCOBIOLOGY 2019; 47:40-49. [PMID: 31001449 PMCID: PMC6452912 DOI: 10.1080/12298093.2019.1583785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Candelariella is a widespread lineage of lichenized ascomycetes with ambiguous relationships among species that have not solved completely. In this study, several specimens belonging to Candelariella were collected from China and South Korea, and the internal transcribed spacer region was generated to confirm the system position of the newly collected specimens. Combined with a morphological examination and phylogenetic analysis, two new areolate species, Candelariella rubrisoli and C. subsquamulosa, are new to science. Detail descriptions of each new species are presented. In addition, C. canadensis is firstly reported from China mainland.
Collapse
Affiliation(s)
- Dong Liu
- Korean Lichen Research Institute (KoLRI), Sunchon National University, Suncheon, Korea
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lisong Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xin Yu Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jae-Seoun Hur
- Korean Lichen Research Institute (KoLRI), Sunchon National University, Suncheon, Korea
| |
Collapse
|
297
|
Shang Y, Ren L, Chen W, Zha L, Cai J, Dong J, Guo Y. Comparative Mitogenomic Analysis of Forensically Important Sarcophagid Flies (Diptera: Sarcophagidae) and Implications of Species Identification. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:392-407. [PMID: 30239827 DOI: 10.1093/jme/tjy162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 06/08/2023]
Abstract
The flesh flies (Diptera: Sarcophagidae) are significant in forensic investigations. The mitochondrial genome (mitogeome) has been widely used as genetic markers for phylogenetic analysis and species identification. To further understand the mitogenome-level features in Sarcophagidae, the complete mitogenome of Sarcophaga formosensis (Kirneret Lopes, 1961) (Diptera: Sarcophagidae) and Sarcophaga misera (Walker, 1849) (Diptera: Sarcophagidae) was firstly sequenced, annotated, and compared with other 13 Sarcophagidae species. The result indicated that the gene arrangement, gene content, base composition, and codon usage were conserved in the ancestral arthropod. Evolutionary rate of the mitogenome fragments revealed that the nonsynonymous and synonymous substitution rates (Ka and Ks) ratio was less than 1.00, indicating these variable sites under strong purifying selection. Almost all transfer RNA genes (tRNAs) have typical clover-leaf structures within these sarcophagid mitogenomes, except tRNA-Ser (AGN) is lack of the dihydrouridine arm. This comparative mitogenomic analysis sheds light on the architecture and evolution of mitogenomes in the Sarcophagidae. Phylogenetic analyses containing the interspecific distances from different regions in these species provided us new insights into the application of these effective genetic markers for species identification of flesh flies.
Collapse
Affiliation(s)
- Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Wei Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Lagabaiyila Zha
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jianan Dong
- XiangYa school of Medicine, Central South University, Changsha, Hunan, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
298
|
Pardoux R, Fiévet A, Carreira C, Brochier-Armanet C, Valette O, Dermoun Z, Py B, Dolla A, Pauleta SR, Aubert C. The bacterial Mrp ORP is a novel Mrp/NBP35 protein involved in iron-sulfur biogenesis. Sci Rep 2019; 9:712. [PMID: 30679587 PMCID: PMC6345978 DOI: 10.1038/s41598-018-37021-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Despite recent advances in understanding the biogenesis of iron-sulfur (Fe-S) proteins, most studies focused on aerobic bacteria as model organisms. Accordingly, multiple players have been proposed to participate in the Fe-S delivery step to apo-target proteins, but critical gaps exist in the knowledge of Fe-S proteins biogenesis in anaerobic organisms. Mrp/NBP35 ATP-binding proteins are a subclass of the soluble P-loop containing nucleoside triphosphate hydrolase superfamily (P-loop NTPase) known to bind and transfer Fe-S clusters in vitro. Here, we report investigations of a novel atypical two-domain Mrp/NBP35 ATP-binding protein named MrpORP associating a P-loop NTPase domain with a dinitrogenase iron-molybdenum cofactor biosynthesis domain (Di-Nase). Characterization of full length MrpORP, as well as of its two domains, showed that both domains bind Fe-S clusters. We provide in vitro evidence that the P-loop NTPase domain of the MrpORP can efficiently transfer its Fe-S cluster to apo-target proteins of the ORange Protein (ORP) complex, suggesting that this novel protein is involved in the maturation of these Fe-S proteins. Last, we showed for the first time, by fluorescence microscopy imaging a polar localization of a Mrp/NBP35 protein.
Collapse
Affiliation(s)
| | | | - Cíntia Carreira
- Microbial Stress Lab. UCIBIO, REQUIMTE, Department Química, Faculdade de Ciências e Tecnologica, Universidade NOVA de Lisboa, Campus da Caparica, Caparica, 2829-516, Portugal
| | - Céline Brochier-Armanet
- Univ Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, F-69622, Villeurbanne, France
| | | | | | - Béatrice Py
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | - Alain Dolla
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Sofia R Pauleta
- Microbial Stress Lab. UCIBIO, REQUIMTE, Department Química, Faculdade de Ciências e Tecnologica, Universidade NOVA de Lisboa, Campus da Caparica, Caparica, 2829-516, Portugal
| | | |
Collapse
|
299
|
Ren L, Shang Y, Yang L, Shen X, Chen W, Wang Y, Cai J, Guo Y. Comparative analysis of mitochondrial genomes among four species of muscid flies (Diptera: Muscidae) and its phylogenetic implications. Int J Biol Macromol 2019; 127:357-364. [PMID: 30658142 DOI: 10.1016/j.ijbiomac.2019.01.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Muscidae, commonly known as house flies and their close relatives, is one of the dipteran insects of recognized medical, veterinary, and ecological importance. Mitochondrial genomes (Mitogenomes) have been widely used for exploring phylogenetic analysis and taxonomic diagnosis due to the difficulty in distinguishing them morphologically. In this study, our complete mitogenomes of muscid flies were sequenced and aligned, which ranged from 15,117 bp (Synthesiomyia nudiseta) to 16,089 bp (Musca sorbens) in length, and contained a typical circular molecule comprising 13 protein-coding genes (PCGs), two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs) and a non-coding control region. The order and orientation of genes were identical with that from the ancestral insects. The phylogenetic analysis based on the mitochondrial genes indicated that the subfamily relationships within Muscidae were reconstructed as (Mydaeinae (Muscinae (Reinwardtiinae + Azeliinae))). Similar tree topologies were recovered from both Maximum Likelihood (ML) and Bayesian Inference (BI) analysis. Furthermore, we compared the phylogenetic analyses that were constructed using internal transcribed spacer 2 (ITS2), elongation factor-1α (EF-1α), 13 PCGs and 13 PCGs + ITS2 + EF-1α, respectively. Combined analysis of nuclear gene partitions improved support and resolution for resulting topologies but the positions of branches were obviously inconsistent due to limited species. More mitogenomes should be sequenced representing various taxonomic levels, especially close related species, which will enhance our understanding of phylogenetic relationships among muscids.
Collapse
Affiliation(s)
- Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Li Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xiao Shen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Wei Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
300
|
Peng FF, Chen L, Yang Q, Tian B, Liu ZL. The complete chloroplast genome of Dipelta yunnanensis (Caprifoliaceae), a vulnerable plant in China. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2018.1551084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Fang-Fang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Lu Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Qian Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Bin Tian
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Zhan-Lin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|