251
|
Sorek N, Turner S. From the nucleus to the apoplast: building the plant’s cell wall. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:445-7. [PMID: 27119140 PMCID: PMC4699472 DOI: 10.1093/jxb/erv522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
252
|
Silveira RL, Skaf MS. Molecular dynamics of the Bacillus subtilis expansin EXLX1: interaction with substrates and structural basis of the lack of activity of mutants. Phys Chem Chem Phys 2016; 18:3510-21. [DOI: 10.1039/c5cp06674c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Expansins are disruptive proteins that loosen growing plant cell walls and can enhance the enzymatic hydrolysis of cellulose.
Collapse
Affiliation(s)
| | - Munir S. Skaf
- Institute of Chemistry
- University of Campinas
- Campinas
- Brazil
| |
Collapse
|
253
|
|
254
|
Zhou D, Yang Y, Zhang J, Jiang F, Craft E, Thannhauser TW, Kochian LV, Liu J. Quantitative iTRAQ Proteomics Revealed Possible Roles for Antioxidant Proteins in Sorghum Aluminum Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:2043. [PMID: 28119720 PMCID: PMC5220100 DOI: 10.3389/fpls.2016.02043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/21/2016] [Indexed: 05/19/2023]
Abstract
Aluminum (Al) toxicity inhibits root growth and limits crop yields on acid soils worldwide. However, quantitative information is scarce on protein expression profiles under Al stress in crops. In this study, we report on the identification of potential Al responsive proteins from root tips of Al sensitive BR007 and Al tolerant SC566 sorghum lines using a strategy employing iTRAQ and 2D-liquid chromatography (LC) coupled to MS/MS (2D-LC-MS/MS). A total of 771 and 329 unique proteins with abundance changes of >1.5 or <0.67-fold were identified in BR007 and SC566, respectively. Protein interaction and pathway analyses indicated that proteins involved in the antioxidant system were more abundant in the tolerant line than in the sensitive one after Al treatment, while opposite trends were observed for proteins involved in lignin biosynthesis. Higher levels of ROS accumulation in root tips of the sensitive line due to decreased activity of antioxidant enzymes could lead to higher lignin production and hyper-accumulation of toxic Al in cell walls. These results indicated that activities of peroxidases and the balance between production and consumption of ROS could be important for Al tolerance and lignin biosynthesis in sorghum.
Collapse
Affiliation(s)
- Dangwei Zhou
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Cornell UniversityIthaca, NY, USA
- Center of Plateau Ecology, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Cornell UniversityIthaca, NY, USA
| | - Jinbiao Zhang
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Cornell UniversityIthaca, NY, USA
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Fei Jiang
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Cornell UniversityIthaca, NY, USA
- Agricultural Biotechnology Center, Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
| | - Eric Craft
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Cornell UniversityIthaca, NY, USA
| | - Theodore W. Thannhauser
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Cornell UniversityIthaca, NY, USA
| | - Leon V. Kochian
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Cornell UniversityIthaca, NY, USA
| | - Jiping Liu
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Cornell UniversityIthaca, NY, USA
- *Correspondence: Jiping Liu
| |
Collapse
|
255
|
Zuk M, Działo M, Richter D, Dymińska L, Matuła J, Kotecki A, Hanuza J, Szopa J. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters. FRONTIERS IN PLANT SCIENCE 2016; 7:894. [PMID: 27446124 PMCID: PMC4919909 DOI: 10.3389/fpls.2016.00894] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/07/2016] [Indexed: 05/18/2023]
Abstract
The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure.
Collapse
Affiliation(s)
- Magdalena Zuk
- Department of Genetic Biochemistry of Plants, Faculty of Biotechnology, Wroclaw University, WroclawPoland
- Linum Foundation, WroclawPoland
- *Correspondence: Magdalena Zuk,
| | - Magdalena Działo
- Department of Genetic Biochemistry of Plants, Faculty of Biotechnology, Wroclaw University, WroclawPoland
| | - Dorota Richter
- Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, WroclawPoland
| | - Lucyna Dymińska
- Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Economics and Engineering, University of Economics, WroclawPoland
| | - Jan Matuła
- Institute of Biology, Wroclaw University of Environmental and Life Sciences, WroclawPoland
| | - Andrzej Kotecki
- Department of Crop Production, Wroclaw University of Environmental and Life Sciences, WroclawPoland
| | - Jerzy Hanuza
- Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Economics and Engineering, University of Economics, WroclawPoland
| | - Jan Szopa
- Department of Genetic Biochemistry of Plants, Faculty of Biotechnology, Wroclaw University, WroclawPoland
- Linum Foundation, WroclawPoland
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, WroclawPoland
| |
Collapse
|
256
|
Anderson CT. We be jammin': an update on pectin biosynthesis, trafficking and dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:495-502. [PMID: 26590862 DOI: 10.1093/jxb/erv501] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pectins are complex polysaccharides that contain acidic sugars and are major determinants of the cohesion, adhesion, extensibility, porosity and electrostatic potential of plant cell walls. Recent evidence has solidified their positions as key regulators of cellular growth and tissue morphogenesis, although important details of how they achieve this regulation are still missing. Pectins are also hypothesized to function as ligands for wall integrity sensors that enable plant cells to respond to intrinsic defects in wall biomechanics and to wall degradation by attacking pathogens. This update highlights recent advances in our understanding of the biosynthesis of pectins, how they are delivered to the cell surface and become incorporated into the cell wall matrix and how pectins are modified over time in the apoplast. It also poses unanswered questions for further research into this enigmatic but essential class of carbohydrate polymers.
Collapse
Affiliation(s)
- Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
257
|
Radotić K, Mićić M. Methods for Extraction and Purification of Lignin and Cellulose from Plant Tissues. SPRINGER PROTOCOLS HANDBOOKS 2016. [DOI: 10.1007/978-1-4939-3185-9_26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
258
|
Abstract
The pectin matrix of the angiosperm cell wall is regulated in both synthesis and modification and greatly influences the direction and extent of cell growth. Pathogens, herbivory and mechanical stresses all influence this pectin matrix and consequently plant form and function. The cell wall-associated kinases (WAKs) bind to pectin and regulate cell expansion or stress responses depending upon the state of the pectin. This review explores the WAKs in the context of cell wall biology and signal transduction pathways.
Collapse
Affiliation(s)
- Bruce D Kohorn
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
259
|
Lau BYC, Deb-Choudhury S, Morton JD, Clerens S, Dyer JM, Ramli US. Method developments to extract proteins from oil palm chromoplast for proteomic analysis. SPRINGERPLUS 2015; 4:791. [PMID: 26702380 PMCID: PMC4688294 DOI: 10.1186/s40064-015-1576-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/01/2015] [Indexed: 11/23/2022]
Abstract
Proteins from the plant chromoplast are essential for many physiological processes such as fatty acid biosynthesis. Different protein extraction methods were tested to find the most robust method to obtain oil palm chromoplast proteins for mass spectrometry analysis. Initially, two different solvents were employed to reduce the fruit lipids. Then, two plant cell wall digestive enzymes were used to acquire the protoplasts to increase the protein extraction effectiveness. A two-stage centrifugation-based fractionation approach enhanced the number of identified proteins, particularly the fatty acid biosynthetic enzymes. The effectiveness of each extraction method was assessed using protein yields and 2DE gel profiles. The ideal method was successfully used to establish the 2DE chromoplast proteome maps of low and high oleic acid mesocarps of oil palm. Further nanoLC–MS/MS analysis of the extracted chromoplast proteins led to the identification of 162 proteins, including some of the main enzymes involved in the fatty acid biosynthesis. The established procedures would provide a solid foundation for further functional studies, including fatty acid biosynthetic expression profiling and evaluation of regulatory function.
Collapse
Affiliation(s)
- Benjamin Yii Chung Lau
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia ; AgResearch Lincoln Research Centre, Christchurch, New Zealand ; Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | | | - James D Morton
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Stefan Clerens
- AgResearch Lincoln Research Centre, Christchurch, New Zealand
| | - Jolon M Dyer
- AgResearch Lincoln Research Centre, Christchurch, New Zealand ; Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Umi Salamah Ramli
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|
260
|
Raggi S, Ferrarini A, Delledonne M, Dunand C, Ranocha P, De Lorenzo G, Cervone F, Ferrari S. The Arabidopsis Class III Peroxidase AtPRX71 Negatively Regulates Growth under Physiological Conditions and in Response to Cell Wall Damage. PLANT PHYSIOLOGY 2015; 169:2513-25. [PMID: 26468518 PMCID: PMC4677920 DOI: 10.1104/pp.15.01464] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 10/13/2015] [Indexed: 05/18/2023]
Abstract
The structure of the cell wall has a major impact on plant growth and development, and alteration of cell wall structural components is often detrimental to biomass production. However, the molecular mechanisms responsible for these negative effects are largely unknown. Arabidopsis (Arabidopsis thaliana) plants with altered pectin composition because of either the expression of the Aspergillus niger polygalacturonase II (AnPGII; 35S:AnPGII plants) or a mutation in the QUASIMODO2 (QUA2) gene that encodes a putative pectin methyltransferase (qua2-1 plants), display severe growth defects. Here, we show that expression of Arabidopsis PEROXIDASE71 (AtPRX71), encoding a class III peroxidase, strongly increases in 35S:AnPGII and qua2-1 plants as well as in response to treatments with the cellulose synthase inhibitor isoxaben, which also impairs cell wall integrity. Analysis of atprx71 loss-of-function mutants and plants overexpressing AtPRX71 indicates that this gene negatively influences Arabidopsis growth at different stages of development, likely limiting cell expansion. The atprx71-1 mutation partially suppresses the dwarf phenotype of qua2-1, suggesting that AtPRX71 contributes to the growth defects observed in plants undergoing cell wall damage. Furthermore, AtPRX71 seems to promote the production of reactive oxygen species in qua2-1 plants as well as plants treated with isoxaben. We propose that AtPRX71 contributes to strengthen cell walls, therefore restricting cell expansion, during normal growth and in response to cell wall damage.
Collapse
Affiliation(s)
- Sara Raggi
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, 00185 Rome, Italy (S.R., G.D.L., F.C., S.F.);Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy (A.F., M.D.);Université de Toulouse, Université Paul Sabatier, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan, France (C.D., P.R.); andCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan, France (C.D., P.R.)
| | - Alberto Ferrarini
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, 00185 Rome, Italy (S.R., G.D.L., F.C., S.F.);Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy (A.F., M.D.);Université de Toulouse, Université Paul Sabatier, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan, France (C.D., P.R.); andCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan, France (C.D., P.R.)
| | - Massimo Delledonne
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, 00185 Rome, Italy (S.R., G.D.L., F.C., S.F.);Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy (A.F., M.D.);Université de Toulouse, Université Paul Sabatier, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan, France (C.D., P.R.); andCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan, France (C.D., P.R.)
| | - Christophe Dunand
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, 00185 Rome, Italy (S.R., G.D.L., F.C., S.F.);Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy (A.F., M.D.);Université de Toulouse, Université Paul Sabatier, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan, France (C.D., P.R.); andCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan, France (C.D., P.R.)
| | - Philippe Ranocha
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, 00185 Rome, Italy (S.R., G.D.L., F.C., S.F.);Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy (A.F., M.D.);Université de Toulouse, Université Paul Sabatier, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan, France (C.D., P.R.); andCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan, France (C.D., P.R.)
| | - Giulia De Lorenzo
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, 00185 Rome, Italy (S.R., G.D.L., F.C., S.F.);Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy (A.F., M.D.);Université de Toulouse, Université Paul Sabatier, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan, France (C.D., P.R.); andCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan, France (C.D., P.R.)
| | - Felice Cervone
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, 00185 Rome, Italy (S.R., G.D.L., F.C., S.F.);Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy (A.F., M.D.);Université de Toulouse, Université Paul Sabatier, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan, France (C.D., P.R.); andCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan, France (C.D., P.R.)
| | - Simone Ferrari
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, 00185 Rome, Italy (S.R., G.D.L., F.C., S.F.);Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy (A.F., M.D.);Université de Toulouse, Université Paul Sabatier, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan, France (C.D., P.R.); andCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan, France (C.D., P.R.)
| |
Collapse
|
261
|
Lyu X, Shen C, Fu Y, Xie J, Jiang D, Li G, Cheng J. Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development. Sci Rep 2015; 5:15565. [PMID: 26531059 PMCID: PMC4632110 DOI: 10.1038/srep15565] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/29/2015] [Indexed: 01/28/2023] Open
Abstract
Our comparative genomic analysis showed that the numbers of plant cell wall (PCW)- and fungal cell wall (FCW)-degradation-associated carbohydrate-active enzymes (CAZymes) in necrotrophic and hemibiotrophic fungi are significantly larger than that in most biotrophic fungi. However, our transcriptional analyses of CAZyme-encoding genes in Melampsora larici-populina, Puccinia graminis and Sclerotinia sclerotiorum showed that many genes encoding PCW- and FCW-degradation-associated CAZymes were significantly up-regulated during the infection of both necrotrophic fungi and biotrophic fungi, indicating an existence of a universal mechanism underlying PCW degradation and FCW reorganization or modification, which are both intimately involved in necrotrophic and biotrophic fungal infection. Furthermore, our results showed that the FCW reorganization or modification was also related to the fungal development. Additionally, our transcriptional analysis of the secretome of S. sclerotiorum showed that many secreted protein-encoding genes were dramatically induced during infection. Among them, a small, cysteine-rich protein SsCVNH was experimentally confirmed to be essential for the virulence and sclerotial development, indicating that the small secreted proteins might also play crucial roles as potential effectors in host-non-specific necrotrophic fungi.
Collapse
Affiliation(s)
- Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Cuicui Shen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Jiatao Xie
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| |
Collapse
|
262
|
Ye Y, Liu B, Zhao M, Wu K, Cheng W, Chen X, Liu Q, Liu Z, Fu X, Wu Y. CEF1/OsMYB103L is involved in GA-mediated regulation of secondary wall biosynthesis in rice. PLANT MOLECULAR BIOLOGY 2015; 89:385-401. [PMID: 26350403 DOI: 10.1007/s11103-015-0376-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/02/2015] [Indexed: 05/19/2023]
Abstract
Although the main genes in rice involved in the biosynthesis of secondary wall components have been characterized, the molecular mechanism underlying coordinated regulation of genes expression is not clear. In this study, we reported a new rice variety, cef1, showed the culm easily fragile (CEF) without other concomitant phenotypes. The CEF1 gene encodes a MYB family transcription factor OsMYB103L, was cloned based on map-based approach. Bioinformatics analyses indicated that CEF1 belongs to the R2R3-MYB subfamily and highly similar to Arabidopsis AtMYB103. Expression pattern analysis indicated that CEF1 is mainly expressed in internodes and panicles. Biochemical assays demonstrated that OsMYB103L is a nuclear protein and shows high transcriptional activation activity at C-terminus. OsMYB103L mediates cellulose biosynthesis and secondary walls formation mainly through directly binding the CESA4, CESA7, CESA9 and BC1 promoters and regulating their expression. OsMYB103L may also function as a master switch to regulate the expression of several downstream TFs, which involved in secondary cell wall biosynthesis. Furthermore, OsMYB103L physically interacts with SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and involved in GA-mediated regulation of cellulose synthesis pathway. Our findings revealed that OsMYB103L plays an important role in GA-regulating secondary cell wall synthesis, and the manipulation of this gene provide a new strategy to help the straw decay in soil.
Collapse
Affiliation(s)
- Yafeng Ye
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, 230031, China
- Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Binmei Liu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, 230031, China
- Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Meng Zhao
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, 230031, China
| | - Kun Wu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, 230031, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weimin Cheng
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, 230031, China
| | - Xiangbin Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zan Liu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, 230031, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuejin Wu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, 230031, China.
- Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
263
|
Zhang J, Zou W, Li Y, Feng Y, Zhang H, Wu Z, Tu Y, Wang Y, Cai X, Peng L. Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:84-91. [PMID: 26398793 DOI: 10.1016/j.plantsci.2015.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/11/2015] [Accepted: 07/18/2015] [Indexed: 05/11/2023]
Abstract
Rice is a typical silicon-accumulating crop with enormous biomass residues for biofuels. Silica is a cell wall component, but its effect on the plant cell wall and biomass production remains largely unknown. In this study, a systems biology approach was performed using 42 distinct rice cell wall mutants. We found that silica levels are significantly positively correlated with three major wall polymers, indicating that silica is associated with the cell wall network. Silicon-supplied hydroculture analysis demonstrated that silica distinctively affects cell wall composition and major wall polymer features, including cellulose crystallinity (CrI), arabinose substitution degree (reverse Xyl/Ara) of xylans, and sinapyl alcohol (S) proportion in three typical rice mutants. Notably, the silicon supplement exhibited dual effects on biomass enzymatic digestibility in the mutant and wild type (NPB) after pre-treatments with 1% NaOH and 1% H2SO4. In addition, silicon supply largely enhanced plant height, mechanical strength and straw biomass production, suggesting that silica rescues mutant growth defects. Hence, this study provides potential approaches for silicon applications in biomass process and bioenergy rice breeding.
Collapse
Affiliation(s)
- Jing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agriculture University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
| | - Weihua Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agriculture University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
| | - Ying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agriculture University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
| | - Yongqing Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agriculture University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
| | - Hui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agriculture University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
| | - Zhiliang Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agriculture University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
| | - Yuanyuan Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agriculture University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
| | - Yanting Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agriculture University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiwen Cai
- Department of Plant Science, North Dakota State University, Loftsgard Hall, P.O. Box 6050, Fargo, ND 58108, USA
| | - Liangcai Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agriculture University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
264
|
Swamy PS, Hu H, Pattathil S, Maloney VJ, Xiao H, Xue LJ, Chung JD, Johnson VE, Zhu Y, Peter GF, Hahn MG, Mansfield SD, Harding SA, Tsai CJ. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6507-18. [PMID: 26246616 PMCID: PMC4588895 DOI: 10.1093/jxb/erv383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.
Collapse
Affiliation(s)
- Prashant S Swamy
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Hao Hu
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Victoria J Maloney
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hui Xiao
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Liang-Jiao Xue
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Jeng-Der Chung
- Division of Silviculture, Taiwan Forestry Research Institute, Taipei 10066, Taiwan
| | - Virgil E Johnson
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Yingying Zhu
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Gary F Peter
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Scott A Harding
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Chung-Jui Tsai
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
265
|
Mushtaq M, Sultana B, Anwar F, Adnan A, Rizvi SS. Enzyme-assisted supercritical fluid extraction of phenolic antioxidants from pomegranate peel. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.05.020] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
266
|
Voiniciuc C, Schmidt MHW, Berger A, Yang B, Ebert B, Scheller HV, North HM, Usadel B, Günl M. MUCILAGE-RELATED10 Produces Galactoglucomannan That Maintains Pectin and Cellulose Architecture in Arabidopsis Seed Mucilage. PLANT PHYSIOLOGY 2015; 169:403-420. [PMID: 26220953 PMCID: PMC4577422 DOI: 10.1104/pp.15.00851] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/23/2015] [Indexed: 05/17/2023]
Abstract
Plants invest a lot of their resources into the production of an extracellular matrix built of polysaccharides. While the composition of the cell wall is relatively well characterized, the functions of the individual polymers and the enzymes that catalyze their biosynthesis remain poorly understood. We exploited the Arabidopsis (Arabidopsis thaliana) seed coat epidermis (SCE) to study cell wall synthesis. SCE cells produce mucilage, a specialized secondary wall that is rich in pectin, at a precise stage of development. A coexpression search for MUCILAGE-RELATED (MUCI) genes identified MUCI10 as a key determinant of mucilage properties. MUCI10 is closely related to a fenugreek (Trigonella foenumgraecum) enzyme that has in vitro galactomannan α-1,6-galactosyltransferase activity. Our detailed analysis of the muci10 mutants demonstrates that mucilage contains highly branched galactoglucomannan (GGM) rather than unbranched glucomannan. MUCI10 likely decorates glucomannan, synthesized by CELLULOSE SYNTHASE-LIKE A2, with galactose residues in vivo. The degree of galactosylation is essential for the synthesis of the GGM backbone, the structure of cellulose, mucilage density, as well as the adherence of pectin. We propose that GGM scaffolds control mucilage architecture along with cellulosic rays and show that Arabidopsis SCE cells represent an excellent model in which to study the synthesis and function of GGM. Arabidopsis natural varieties with defects similar to muci10 mutants may reveal additional genes involved in GGM synthesis. Since GGM is the most abundant hemicellulose in the secondary walls of gymnosperms, understanding its biosynthesis may facilitate improvements in the production of valuable commodities from softwoods.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Institute for Biosciences and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany (C.V., M.H.-W.S., B.U., M.G.);Institute for Botany and Molecular Genetics, BioEconomy Science Center, RWTH Aachen University, 52056 Aachen, Germany (C.V., M.H.-W.S., B.Y., B.U.);Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, ERL Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (A.B., H.M.N.);Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702 (B.E., H.V.S.); andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
| | - Maximilian Heinrich-Wilhelm Schmidt
- Institute for Biosciences and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany (C.V., M.H.-W.S., B.U., M.G.);Institute for Botany and Molecular Genetics, BioEconomy Science Center, RWTH Aachen University, 52056 Aachen, Germany (C.V., M.H.-W.S., B.Y., B.U.);Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, ERL Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (A.B., H.M.N.);Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702 (B.E., H.V.S.); andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
| | - Adeline Berger
- Institute for Biosciences and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany (C.V., M.H.-W.S., B.U., M.G.);Institute for Botany and Molecular Genetics, BioEconomy Science Center, RWTH Aachen University, 52056 Aachen, Germany (C.V., M.H.-W.S., B.Y., B.U.);Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, ERL Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (A.B., H.M.N.);Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702 (B.E., H.V.S.); andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
| | - Bo Yang
- Institute for Biosciences and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany (C.V., M.H.-W.S., B.U., M.G.);Institute for Botany and Molecular Genetics, BioEconomy Science Center, RWTH Aachen University, 52056 Aachen, Germany (C.V., M.H.-W.S., B.Y., B.U.);Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, ERL Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (A.B., H.M.N.);Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702 (B.E., H.V.S.); andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
| | - Berit Ebert
- Institute for Biosciences and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany (C.V., M.H.-W.S., B.U., M.G.);Institute for Botany and Molecular Genetics, BioEconomy Science Center, RWTH Aachen University, 52056 Aachen, Germany (C.V., M.H.-W.S., B.Y., B.U.);Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, ERL Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (A.B., H.M.N.);Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702 (B.E., H.V.S.); andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
| | - Henrik V Scheller
- Institute for Biosciences and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany (C.V., M.H.-W.S., B.U., M.G.);Institute for Botany and Molecular Genetics, BioEconomy Science Center, RWTH Aachen University, 52056 Aachen, Germany (C.V., M.H.-W.S., B.Y., B.U.);Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, ERL Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (A.B., H.M.N.);Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702 (B.E., H.V.S.); andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
| | - Helen M North
- Institute for Biosciences and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany (C.V., M.H.-W.S., B.U., M.G.);Institute for Botany and Molecular Genetics, BioEconomy Science Center, RWTH Aachen University, 52056 Aachen, Germany (C.V., M.H.-W.S., B.Y., B.U.);Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, ERL Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (A.B., H.M.N.);Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702 (B.E., H.V.S.); andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
| | - Björn Usadel
- Institute for Biosciences and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany (C.V., M.H.-W.S., B.U., M.G.);Institute for Botany and Molecular Genetics, BioEconomy Science Center, RWTH Aachen University, 52056 Aachen, Germany (C.V., M.H.-W.S., B.Y., B.U.);Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, ERL Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (A.B., H.M.N.);Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702 (B.E., H.V.S.); andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
| | - Markus Günl
- Institute for Biosciences and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany (C.V., M.H.-W.S., B.U., M.G.);Institute for Botany and Molecular Genetics, BioEconomy Science Center, RWTH Aachen University, 52056 Aachen, Germany (C.V., M.H.-W.S., B.Y., B.U.);Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, ERL Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (A.B., H.M.N.);Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702 (B.E., H.V.S.); andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
| |
Collapse
|
267
|
Cho WK, Hyun TK, Kumar D, Rim Y, Chen XY, Jo Y, Kim S, Lee KW, Park ZY, Lucas WJ, Kim JY. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli. Mol Cells 2015; 38:685-96. [PMID: 26194822 PMCID: PMC4546940 DOI: 10.14348/molcells.2015.0033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 12/21/2022] Open
Abstract
Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins.
Collapse
Affiliation(s)
- Won Kyong Cho
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, College of Agricultural, Life and Environmental Sciences, Chungbuk National University, Cheongju 361-763,
Korea
| | - Dhinesh Kumar
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Yeonggil Rim
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Xiong Yan Chen
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Yeonhwa Jo
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Suwha Kim
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712,
Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Zee-Yong Park
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712,
Korea
| | - William J. Lucas
- Department of Plant Biology, University of California, Davis, CA 95616,
USA
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| |
Collapse
|
268
|
Drakakaki G. Polysaccharide deposition during cytokinesis: Challenges and future perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:177-84. [PMID: 26025531 DOI: 10.1016/j.plantsci.2015.03.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 05/18/2023]
Abstract
De novo formation of a new cell wall partitions the cytoplasm of the dividing cell during plant cytokinesis. The development of the cell plate, a transient sheet-like structure, requires the accumulation of vesicles directed by the phragmoplast to the cell plate assembly matrix. Fusion and fission of the accumulated vesicles are accompanied by the deposition of polysaccharides and cell wall structural proteins; together, they are leading to the stabilization of the formed structure which after insertion into the parental wall lead to the maturation of the nascent cross wall. Callose is the most abundant polysaccharide during cell plate formation and during maturation is gradually replaced by cellulose. Matrix polysaccharides such as hemicellulose, and pectins presumably are present throughout all developmental stages, being delivered to the cell plate by secretory vesicles. The availability of novel chemical probes such as endosidin 7, which inhibits callose formation at the cell plate, has proved useful for dissecting the temporal accumulation of vesicles at the cell plate and establishing the critical role of callose during cytokinesis. The use of emerging approaches such as chemical genomics combined with live cell imaging; novel techniques of polysaccharide detection including tagged polysaccharide substrates, newly characterized polysaccharide antibodies and vesicle proteomics can be used to develop a comprehensive model of cell plate development.
Collapse
Affiliation(s)
- Georgia Drakakaki
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
269
|
Li L, Pérré P, Frank X, Mazeau K. A coarse-grain force-field for xylan and its interaction with cellulose. Carbohydr Polym 2015; 127:438-50. [PMID: 25965503 DOI: 10.1016/j.carbpol.2015.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/25/2015] [Accepted: 04/05/2015] [Indexed: 11/18/2022]
Abstract
We have built a coarse-grain (CG) model describing xylan and its interaction with crystalline cellulose surfaces. Each xylosyl or glucosyl unit was represented by a single grain. Our calculations rely on force-field parameters adapted from the atomistic description of short xylan fragments and their adsorption on cellulose. This CG model was first validated for xylan chains both isolated and in the bulk where a good match was found with its atomistic counterpart as well as with experimental measurements. A similar agreement was also found when short xylan fragments were adsorbed on the (110) surface of crystalline cellulose. The CG model, which was extended to the (100) and (1-10) surfaces, revealed that the adsorbed xylan, which was essentially extended in the atomistic situation, could also adopt coiled structures, especially when laying on the hydrophobic cellulose surfaces.
Collapse
Affiliation(s)
- Liang Li
- LERFoB, AgroParisTech ENGREF, 14 Rue Girardet, 54000 Nancy, France
| | - Patrick Pérré
- LGPM, Ecole Centrale Paris, Grande Voie des Vignes, 92290 Châtenay-Malabry, France
| | - Xavier Frank
- IATE INRA, CIRAD, Université Montpellier 2, Montpellier SupAgro, 2 Place Pierre Viala, 34000 Montpellier, France
| | - Karim Mazeau
- Univ. Grenoble Alpes, CERMAV, F-38000 Grenoble, France; CNRS, CERMAV, F-38000 Grenoble, France.
| |
Collapse
|
270
|
Andersson S, Wang Y, Pönni R, Hänninen T, Mononen M, Ren H, Serimaa R, Saranpää P. Cellulose structure and lignin distribution in normal and compression wood of the Maidenhair tree (Ginkgo biloba L.). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:388-95. [PMID: 25740619 DOI: 10.1111/jipb.12349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/03/2015] [Indexed: 05/25/2023]
Abstract
We studied in detail the mean microfibril angle and the width of cellulose crystals from the pith to the bark of a 15-year-old Maidenhair tree (Ginkgo biloba L.). The orientation of cellulose microfibrils with respect to the cell axis and the width and length of cellulose crystallites were determined using X-ray diffraction. Raman microscopy was used to compare the lignin distribution in the cell wall of normal/opposite and compression wood, which was found near the pith. Ginkgo biloba showed a relatively large mean microfibril angle, varying between 19° and 39° in the S2 layer, and the average width of cellulose crystallites was 3.1-3.2 nm. Mild compression wood without any intercellular spaces or helical cavities was observed near the pith. Slit-like bordered pit openings and a heavily lignified S2L layer confirmed the presence of compression wood. Ginkgo biloba showed typical features present in the juvenile wood of conifers. The microfibril angle remained large over the 14 annual rings. The entire stem disc, with a diameter of 18 cm, was considered to consist of juvenile wood. The properties of juvenile and compression wood as well as the cellulose orientation and crystalline width indicate that the wood formation of G. biloba is similar to that of modern conifers.
Collapse
Affiliation(s)
- Seppo Andersson
- Department of Physics, University of Helsinki, 00560, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
271
|
Wilson SM, Ho YY, Lampugnani ER, Van de Meene AML, Bain MP, Bacic A, Doblin MS. Determining the subcellular location of synthesis and assembly of the cell wall polysaccharide (1,3; 1,4)-β-D-glucan in grasses. THE PLANT CELL 2015; 27:754-71. [PMID: 25770111 PMCID: PMC4558670 DOI: 10.1105/tpc.114.135970] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 05/05/2023]
Abstract
The current dogma for cell wall polysaccharide biosynthesis is that cellulose (and callose) is synthesized at the plasma membrane (PM), whereas matrix phase polysaccharides are assembled in the Golgi apparatus. We provide evidence that (1,3;1,4)-β-D-glucan (mixed-linkage glucan [MLG]) does not conform to this paradigm. We show in various grass (Poaceae) species that MLG-specific antibody labeling is present in the wall but absent over Golgi, suggesting it is assembled at the PM. Antibodies to the MLG synthases, cellulose synthase-like F6 (CSLF6) and CSLH1, located CSLF6 to the endoplasmic reticulum, Golgi, secretory vesicles, and the PM and CSLH1 to the same locations apart from the PM. This pattern was recreated upon expression of VENUS-tagged barley (Hordeum vulgare) CSLF6 and CSLH1 in Nicotiana benthamiana leaves and, consistent with our biochemical analyses of native grass tissues, shown to be catalytically active with CSLF6 and CSLH1 in PM-enriched and PM-depleted membrane fractions, respectively. These data support a PM location for the synthesis of MLG by CSLF6, the predominant enzymatically active isoform. A model is proposed to guide future experimental approaches to dissect the molecular mechanism(s) of MLG assembly.
Collapse
Affiliation(s)
- Sarah M Wilson
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Yin Ying Ho
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Edwin R Lampugnani
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Allison M L Van de Meene
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Melissa P Bain
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
272
|
Zhao W, Yang X, Yu H, Jiang W, Sun N, Liu X, Liu X, Zhang X, Wang Y, Gu X. RNA-Seq-based transcriptome profiling of early nitrogen deficiency response in cucumber seedlings provides new insight into the putative nitrogen regulatory network. PLANT & CELL PHYSIOLOGY 2015; 56:455-67. [PMID: 25432971 DOI: 10.1093/pcp/pcu172] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nitrogen (N) is both an important macronutrient and a signal for plant growth and development. However, the early regulatory mechanism of plants in response to N starvation is not well understood, especially in cucumber, an economically important crop that normally consumes excessive N during production. In this study, the early time-course transcriptome response of cucumber leaves under N deficiency was monitored using RNA sequencing (RNA-Seq). More than 23,000 transcripts were examined in cucumber leaves, of which 364 genes were differentially expressed in response to N deficiency. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, gene ontology (GO) and protein-protein interaction analysis, 64 signaling-related N-deficiency-responsive genes were identified. Furthermore, the potential regulatory mechanisms of anthocyanin accumulation, Chl decline and cell wall remodeling were assessed at the transcription level. Increased ascorbic acid synthesis was identified in cucumber seedlings and fruit under N-deficient conditions, and a new corresponding regulatory hypothesis has been proposed. A data cross-comparison between model plants and cucumber was made, and some common and specific N-deficient response mechanisms were found in the present study. Our study provides novel insights into the responses of cucumber to nitrogen starvation at the global transcriptome level, which are expected to be highly useful for dissecting the N response pathways in this major vegetable and for improving N fertilization practices.
Collapse
Affiliation(s)
- Wenchao Zhao
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China Beijing Key Laboratory for Agriculture Application and New Technology, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China These authors contributed equally to this work
| | - Xueyong Yang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China These authors contributed equally to this work
| | - Hongjun Yu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China These authors contributed equally to this work
| | - Weijie Jiang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Na Sun
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Xiaoran Liu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Xiaolin Liu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Xiaomeng Zhang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Yan Wang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Xingfang Gu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| |
Collapse
|
273
|
Altartouri B, Geitmann A. Understanding plant cell morphogenesis requires real-time monitoring of cell wall polymers. CURRENT OPINION IN PLANT BIOLOGY 2015; 23:76-82. [PMID: 25449730 DOI: 10.1016/j.pbi.2014.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 05/08/2023]
Abstract
Plant cell development and growth are determined by the expansion pattern of the cell wall, a matrix of mixed polysaccharide polymers and proteins. To understand the different roles of these polymers in the regulation of the morphogenetic process, their spatial dynamics need to be monitored over time. Recent developments in the live cell labeling of polysaccharides include specific dyes whose insertion into the wall does not interfere with wall properties and growth, as well as metabolically inserted labeling. The present review explains the motivation and necessity for novel polysaccharide labeling techniques and provides an overview of the insight gained with these strategies.
Collapse
Affiliation(s)
- Bara Altartouri
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, Québec H1X 2B2, Canada
| | - Anja Geitmann
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, Québec H1X 2B2, Canada.
| |
Collapse
|
274
|
Prabhu SA, Wagenknecht M, Melvin P, Gnanesh Kumar BS, Veena M, Shailasree S, Moerschbacher BM, Kini KR. Immuno-affinity purification of PglPGIP1, a polygalacturonase-inhibitor protein from pearl millet: studies on its inhibition of fungal polygalacturonases and role in resistance against the downy mildew pathogen. Mol Biol Rep 2015; 42:1123-38. [PMID: 25596722 DOI: 10.1007/s11033-015-3850-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/09/2015] [Indexed: 11/30/2022]
Abstract
Polygalacturonase-inhibitor proteins (PGIPs) are important plant defense proteins which modulate the activity of microbial polygalacturonases (PGs) leading to elicitor accumulation. Very few studies have been carried out towards understanding the role of PGIPs in monocot host defense. Hence, present study was taken up to characterize a native PGIP from pearl millet and understand its role in resistance against downy mildew. A native glycosylated PGIP (PglPGIP1) of ~43 kDa and pI 5.9 was immunopurified from pearl millet. Comparative inhibition studies involving PglPGIP1 and its non-glycosylated form (rPglPGIP1; recombinant pearl millet PGIP produced in Escherichia coli) against two PGs, PG-II isoform from Aspergillus niger (AnPGII) and PG-III isoform from Fusarium moniliforme, showed both PGIPs to inhibit only AnPGII. The protein glycosylation was found to impact only the pH and temperature stability of PGIP, with the native form showing relatively higher stability to pH and temperature changes. Temporal accumulation of both PglPGIP1 protein (western blot and ELISA) and transcripts (real time PCR) in resistant and susceptible pearl millet cultivars showed significant Sclerospora graminicola-induced accumulation only in the incompatible interaction. Further, confocal PGIP immunolocalization results showed a very intense immuno-decoration with highest fluorescent intensities observed at the outer epidermal layer and vascular bundles in resistant cultivar only. This is the first native PGIP isolated from millets and the results indicate a role for PglPGIP1 in host defense. This could further be exploited in devising pearl millet cultivars with better pathogen resistance.
Collapse
Affiliation(s)
- Sreedhara Ashok Prabhu
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570 006, Karnataka, India
| | | | | | | | | | | | | | | |
Collapse
|
275
|
Kim K, Ryu BH, Kim SS, An DR, Ngo TD, Pandian R, Kim KK, Kim TD. Structural and biochemical characterization of a carbohydrate acetylesterase from Sinorhizobium meliloti 1021. FEBS Lett 2015; 589:117-122. [PMID: 25436419 DOI: 10.1016/j.febslet.2014.11.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/29/2022]
Abstract
In many microorganisms, carbohydrate acetylesterases remove the acetyl groups from various types of carbohydrates. Sm23 from Sinorhizobium meliloti is a putative member of carbohydrate esterase family 3 (CE3) in the CAZy classification system. Here, we determined the crystal structure of Sm23 at 1.75 Å resolution and investigated functional properties using biochemical methods. Furthermore, immobilized Sm23 exhibited improved stability compared with soluble Sm23, which can be used for the design of plant cell wall degrading-systems.
Collapse
Affiliation(s)
- Kyungmin Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Bum Han Ryu
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-741, Republic of Korea
| | - Sung Soo Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Deu Rae An
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-741, Republic of Korea
| | - Tri Duc Ngo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Ramesh Pandian
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea.
| | - T Doohun Kim
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-741, Republic of Korea.
| |
Collapse
|
276
|
|
277
|
Abstract
Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge. On the basis of recent advances in structural and molecular biology on bacterial cellulose synthases, we review emerging concepts of how the enzymes polymerize glucose molecules, how the nascent polymer is transported across the plasma membrane, and how bacterial cellulose biosynthesis is regulated during biofilm formation. Additionally, we review evolutionary commonalities and differences between cellulose synthases that modulate the nature of the cellulose product formed.
Collapse
Affiliation(s)
- Joshua T. McNamara
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Jacob L.W. Morgan
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Jochen Zimmer
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
278
|
López-González JA, Suárez-Estrella F, Vargas-García MC, López MJ, Jurado MM, Moreno J. Dynamics of bacterial microbiota during lignocellulosic waste composting: Studies upon its structure, functionality and biodiversity. BIORESOURCE TECHNOLOGY 2015; 175:406-416. [PMID: 25459849 DOI: 10.1016/j.biortech.2014.10.123] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 06/04/2023]
Abstract
An intensive isolation program carried out in three replicated composting piles allowed the identification of the resident and transient components of the composting microbiome. More than 4000 bacterial strains were isolated, enzymatically characterized and identified by partial sequencing of their 16S rRNA gene. While microorganisms isolated under mesophilic conditions were prominent throughout the process, thermophilic stages gathered the highest total counts and spore-forming bacteria prevailed at the bio-oxidative phase of composting. Enzymatic capabilities related to the degradation of polymeric materials were exhibited by most of the isolates and as a result of these activities, more soluble compounds could be made available to the entire composting microbiota. A high proportion of isolates showed to be thermotolerant as they were detected at mesophilic and thermophilic phases. Isolated strains belonged to 187 bacterial species. Biodiversity was greater at the central stages of composting and mesophilic, thermophilic and cooling phases shared 50% of species.
Collapse
Affiliation(s)
- J A López-González
- Unit of Microbiology, Department of Biology and Geology, University of Almería, Agrifood Campus of International Excellence ceiA3, 04120 Almería, Spain
| | - F Suárez-Estrella
- Unit of Microbiology, Department of Biology and Geology, University of Almería, Agrifood Campus of International Excellence ceiA3, 04120 Almería, Spain
| | - M C Vargas-García
- Unit of Microbiology, Department of Biology and Geology, University of Almería, Agrifood Campus of International Excellence ceiA3, 04120 Almería, Spain
| | - M J López
- Unit of Microbiology, Department of Biology and Geology, University of Almería, Agrifood Campus of International Excellence ceiA3, 04120 Almería, Spain
| | - M M Jurado
- Unit of Microbiology, Department of Biology and Geology, University of Almería, Agrifood Campus of International Excellence ceiA3, 04120 Almería, Spain
| | - J Moreno
- Unit of Microbiology, Department of Biology and Geology, University of Almería, Agrifood Campus of International Excellence ceiA3, 04120 Almería, Spain.
| |
Collapse
|
279
|
Penium margaritaceum: A Unicellular Model Organism for Studying Plant Cell Wall Architecture and Dynamics. PLANTS 2014; 3:543-58. [PMID: 27135519 PMCID: PMC4844280 DOI: 10.3390/plants3040543] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 10/16/2014] [Accepted: 11/06/2014] [Indexed: 11/17/2022]
Abstract
Penium margaritaceum is a new and valuable unicellular model organism for studying plant cell wall structure and developmental dynamics. This charophyte has a cell wall composition remarkably similar to the primary cell wall of many higher plants and clearly-defined inclusive zones containing specific polymers. Penium has a simple cylindrical phenotype with a distinct region of focused wall synthesis. Specific polymers, particularly pectins, can be identified using monoclonal antibodies raised against polymers of higher plant cell walls. Immunofluorescence-based labeling is easily performed using live cells that subsequently can be returned to culture and monitored. This feature allows for rapid assessment of wall expansion rates and identification of multiple polymer types in the wall microarchitecture during the cell cycle. Cryofixation by means of spray freezing provides excellent transmission electron microscopy imaging of the cell, including its elaborate endomembrane and cytoskeletal systems, both integral to cell wall development. Penium’s fast growth rate allows for convenient microarray screening of various agents that alter wall biosynthesis and metabolism. Finally, recent successful development of transformed cell lines has allowed for non-invasive imaging of proteins in cells and for RNAi reverse genetics that can be used for cell wall biosynthesis studies.
Collapse
|
280
|
Li Q, Ng WT, Wu JC. Isolation, characterization and application of a cellulose-degrading strain Neurospora crassa S1 from oil palm empty fruit bunch. Microb Cell Fact 2014; 13:157. [PMID: 25384340 PMCID: PMC4232651 DOI: 10.1186/s12934-014-0157-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/22/2014] [Indexed: 01/05/2023] Open
Abstract
Background Oil palm empty fruit bunch (EFB) is a lignocellulosic waste produced in palm oil industry. EFB mainly consists of cellulose, hemicellulose (mainly xylan) and lignin and has a great potential to be reused. Converting EFB to fermentable sugars and value-added chemicals is a much better choice than treating EFB as waste. Results A cellulase-producing strain growing on oil palm empty fruit bunch (EFB) was isolated and identified as Neurospora crassa S1, which is able to produce cellulases using EFB as the sole carbon source. The strain started to secret cellulases into the medium after 24 h of cultivation at 30°C and reached its maximal cellulase activity at 240 h. Mass spectroscopy (MS) analysis showed that more than 50 proteins were secreted into the medium when EFB was used as the sole carbon source. Among them, 7 proteins were identified as putative enzymes associated with cellulose degradation. The whole cell culture of Neurospora crassa S1 was used to hydrolyze acid-treated EFB, giving a total sugar yield of 83.2%, which is comparable with that (82.0%) using a well-known cellulase producer Trichoderma reesei RUT-C30 (ATCC56765). Conclusion Neurospora crassa S1 is a commercially promising native cellulase producer for EFB hydrolysis especially when the sugars obtained are to be fermented to products that require use of non-genetically engineered strains.
Collapse
Affiliation(s)
- Qingxin Li
- Institute of Chemical & Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.
| | - Wei Ting Ng
- Institute of Chemical & Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.
| | - Jin Chuan Wu
- Institute of Chemical & Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.
| |
Collapse
|
281
|
Rajasundaram D, Runavot JL, Guo X, Willats WGT, Meulewaeter F, Selbig J. Understanding the relationship between cotton fiber properties and non-cellulosic cell wall polysaccharides. PLoS One 2014; 9:e112168. [PMID: 25383868 PMCID: PMC4226482 DOI: 10.1371/journal.pone.0112168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/06/2014] [Indexed: 12/03/2022] Open
Abstract
A detailed knowledge of cell wall heterogeneity and complexity is crucial for understanding plant growth and development. One key challenge is to establish links between polysaccharide-rich cell walls and their phenotypic characteristics. It is of particular interest for some plant material, like cotton fibers, which are of both biological and industrial importance. To this end, we attempted to study cotton fiber characteristics together with glycan arrays using regression based approaches. Taking advantage of the comprehensive microarray polymer profiling technique (CoMPP), 32 cotton lines from different cotton species were studied. The glycan array was generated by sequential extraction of cell wall polysaccharides from mature cotton fibers and screening samples against eleven extensively characterized cell wall probes. Also, phenotypic characteristics of cotton fibers such as length, strength, elongation and micronaire were measured. The relationship between the two datasets was established in an integrative manner using linear regression methods. In the conducted analysis, we demonstrated the usefulness of regression based approaches in establishing a relationship between glycan measurements and phenotypic traits. In addition, the analysis also identified specific polysaccharides which may play a major role during fiber development for the final fiber characteristics. Three different regression methods identified a negative correlation between micronaire and the xyloglucan and homogalacturonan probes. Moreover, homogalacturonan and callose were shown to be significant predictors for fiber length. The role of these polysaccharides was already pointed out in previous cell wall elongation studies. Additional relationships were predicted for fiber strength and elongation which will need further experimental validation.
Collapse
Affiliation(s)
- Dhivyaa Rajasundaram
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jean-Luc Runavot
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej, 40 1.1871, Fredriksberg C, Denmark
| | - William G. T. Willats
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej, 40 1.1871, Fredriksberg C, Denmark
| | - Frank Meulewaeter
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Joachim Selbig
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- * E-mail:
| |
Collapse
|
282
|
Ochs J, LaRue T, Tinaz B, Yongue C, Domozych DS. The cortical cytoskeletal network and cell-wall dynamics in the unicellular charophycean green alga Penium margaritaceum. ANNALS OF BOTANY 2014; 114:1237-49. [PMID: 24603606 PMCID: PMC4195542 DOI: 10.1093/aob/mcu013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/15/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Penium margaritaceum is a unicellular charophycean green alga with a unique bi-directional polar expansion mechanism that occurs at the central isthmus zone prior to cell division. This entails the focused deposition of cell-wall polymers coordinated by the activities of components of the endomembrane system and cytoskeletal networks. The goal of this study was to elucidate the structural organization of the cortical cytoskeletal network during the cell cycle and identify its specific functional roles during key cell-wall developmental events: pre-division expansion and cell division. METHODS Microtubules and actin filaments were labelled during various cell cycle phases with an anti-tubulin antibody and rhodamine phalloidin, respectively. Chemically induced disruption of the cytoskeleton was used to elucidate specific functional roles of microtubules and actin during cell expansion and division. Correlation of cytoskeletal dynamics with cell-wall development included live cell labelling with wall polymer-specific antibodies and electron microscopy. KEY RESULTS The cortical cytoplasm of Penium is highlighted by a band of microtubules found at the cell isthmus, i.e. the site of pre-division wall expansion. This band, along with an associated, transient band of actin filaments, probably acts to direct the deposition of new wall material and to mark the plane of the future cell division. Two additional bands of microtubules, which we identify as satellite bands, arise from the isthmus microtubular band at the onset of expansion and displace toward the poles during expansion, ultimately marking the isthmus of future daughter cells. Treatment with microtubule and actin perturbation agents reversibly stops cell division. CONCLUSIONS The cortical cytoplasm of Penium contains distinct bands of microtubules and actin filaments that persist through the cell cycle. One of these bands, termed the isthmus microtubule band, or IMB, marks the site of both pre-division wall expansion and the zone where a cross wall will form during cytokinesis. This suggests that prior to the evolution of land plants, a dynamic, cortical cytoskeletal array similar to a pre-prophase band had evolved in the charophytes. However, an interesting variation on the cortical band theme is present in Penium, where two satellite microtubule bands are produced at the onset of cell expansion, each of which is destined to become an IMB in the two daughter cells after cytokinesis. These unique cytoskeletal components demonstrate the close temporal control and highly coordinated cytoskeletal dynamics of cellular development in Penium.
Collapse
Affiliation(s)
- Julie Ochs
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Therese LaRue
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Berke Tinaz
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Camille Yongue
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
| | - David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
| |
Collapse
|
283
|
Sarkar P, Bosneaga E, Yap EG, Das J, Tsai WT, Cabal A, Neuhaus E, Maji D, Kumar S, Joo M, Yakovlev S, Csencsits R, Yu Z, Bajaj C, Downing KH, Auer M. Electron tomography of cryo-immobilized plant tissue: a novel approach to studying 3D macromolecular architecture of mature plant cell walls in situ. PLoS One 2014; 9:e106928. [PMID: 25207917 PMCID: PMC4160213 DOI: 10.1371/journal.pone.0106928] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/01/2014] [Indexed: 11/18/2022] Open
Abstract
Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the primary cell walls of a mutant (cob-6) and wild type Arabidopsis hypocotyl parenchyma cells by RT-tomography of HPF-FS-resin sections, and detected a small but significant difference in spatial organization of cellulose microfibrils in the mutant walls.
Collapse
Affiliation(s)
- Purbasha Sarkar
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Elena Bosneaga
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Edgar G. Yap
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jyotirmoy Das
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
| | - Wen-Ting Tsai
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Angelo Cabal
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
| | - Erica Neuhaus
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Dolonchampa Maji
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
| | - Shailabh Kumar
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
| | - Michael Joo
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sergey Yakovlev
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Roseann Csencsits
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Zeyun Yu
- Department of Computer Science, University of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Chandrajit Bajaj
- Department of Computer Sciences & The Institute of Computational Engineering and Sciences, University of Texas, Austin, Texas, United States of America
| | - Kenneth H. Downing
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Manfred Auer
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
284
|
Kirsch R, Gramzow L, Theißen G, Siegfried BD, Ffrench-Constant RH, Heckel DG, Pauchet Y. Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: Key events in the evolution of herbivory in beetles. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:33-50. [PMID: 24978610 DOI: 10.1016/j.ibmb.2014.06.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 05/26/2023]
Abstract
Plant cell walls are the largest reservoir of organic carbon on earth. To breach and utilize this carbohydrate-rich protective barrier, microbes secrete plant cell wall degrading enzymes (PCWDEs) targeting pectin, cellulose and hemicelluloses. There is a growing body of evidence that genomes of some herbivorous insects also encode PCWDEs, raising questions about their evolutionary origins and functions. Among herbivorous beetles, pectin-degrading polygalacturonases (PGs) are found in the diverse superfamilies Chrysomeloidea (leaf beetles, long-horn beetles) and Curculionoidea (weevils). Here our aim was to test whether these arose from a common ancestor of beetles or via horizontal gene transfer (HGT), and whether PGs kept their ancestral function in degrading pectin or evolved novel functions. Transcriptome data derived from 10 beetle species were screened for PG-encoding sequences and used for phylogenetic comparisons with their bacterial, fungal and plant counterparts. These analyses revealed a large family of PG-encoding genes of Chrysomeloidea and Curculionoidea sharing a common ancestor, most similar to PG genes of ascomycete fungi. In addition, 50 PGs from beetle digestive systems were heterologously expressed and functionally characterized, showing a set of lineage-specific consecutively pectin-degrading enzymes, as well as conserved but enzymatically inactive PG proteins. The evidence indicates that a PG gene was horizontally transferred ∼200 million years ago from an ascomycete fungus to a common ancestor of Chrysomeloidea and Curculionoidea. This has been followed by independent duplications in these two lineages, as well as independent replacement in two sublineages of Chrysomeloidea by two other subsequent HGTs. This origin, leading to subsequent functional diversification of the PG gene family within its new hosts, was a key event promoting the evolution of herbivory in these beetles.
Collapse
Affiliation(s)
- Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Lydia Gramzow
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Blair D Siegfried
- Department of Entomology, University of Nebraska, 312A Entomology Hall, Lincoln, 68583-0816 NE, United States
| | | | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| |
Collapse
|
285
|
Que Y, Su Y, Guo J, Wu Q, Xu L. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq. PLoS One 2014; 9:e106476. [PMID: 25171065 PMCID: PMC4149577 DOI: 10.1371/journal.pone.0106476] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/07/2014] [Indexed: 11/17/2022] Open
Abstract
Sugarcane smut caused by Sporisorium scitamineum is a critical fungal disease in the sugarcane industry. However, molecular mechanistic studies of pathological response of sugarcane to S. scitamineum are scarce and preliminary. Here, transcriptome analysis of sugarcane disease induced by S. scitamineum at 24, 48 and 120 h was conducted, using an S. scitamineum-resistant and -susceptible genotype (Yacheng05-179 and “ROC”22). The reliability of Illumina data was confirmed by real-time quantitative PCR. In total, transcriptome sequencing of eight samples revealed gene annotations of 65,852 unigenes. Correlation analysis of differentially expressed genes indicated that after S. scitamineum infection, most differentially expressed genes and related metabolic pathways in both sugarcane genotypes were common, covering most biological activities. However, expression of resistance-associated genes in Yacheng05-179 (24–48 h) occurred earlier than those in “ROC”22 (48–120 h), and more transcript expressions were observed in the former, suggesting resistance specificity and early timing of these genes in non-affinity sugarcane and S. scitamineum interactions. Obtained unigenes were related to cellular components, molecular functions and biological processes. From these data, functional annotations associated with resistance were obtained, including signal transduction mechanisms, energy production and conversion, inorganic ion transport and metabolism, and defense mechanisms. Pathway enrichment analysis revealed that differentially expressed genes are involved in plant hormone signal transduction, flavonoid biosynthesis, plant-pathogen interaction, cell wall fortification pathway and other resistance-associated metabolic pathways. Disease inoculation experiments and the validation of invitro antibacterial activity of the chitinase gene ScChi show that this sugarcane chitinase gene identified through RNA-Seq analysis is relevant to plant-pathogen interactions. In conclusion, expression data here represent the most comprehensive dataset available for sugarcane smut induced by S. scitamineum and will serve as a resource for finally unraveling the molecular mechanisms of sugarcane responses to S. scitamineum.
Collapse
Affiliation(s)
- Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
286
|
Li Z, Zhao C, Zha Y, Wan C, Si S, Liu F, Zhang R, Li F, Yu B, Yi Z, Xu N, Peng L, Li Q. The minor wall-networks between monolignols and interlinked-phenolics predominantly affect biomass enzymatic digestibility in Miscanthus. PLoS One 2014; 9:e105115. [PMID: 25133694 PMCID: PMC4136839 DOI: 10.1371/journal.pone.0105115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/18/2014] [Indexed: 11/19/2022] Open
Abstract
Plant lignin is one of the major wall components that greatly contribute to biomass recalcitrance for biofuel production. In this study, total 79 representative Miscanthus germplasms were determined with wide biomass digestibility and diverse monolignol composition. Integrative analyses indicated that three major monolignols (S, G, H) and S/G ratio could account for lignin negative influence on biomass digestibility upon NaOH and H2SO4 pretreatments. Notably, the biomass enzymatic digestions were predominately affected by the non-KOH-extractable lignin and interlinked-phenolics, other than the KOH-extractable ones that cover 80% of total lignin. Furthermore, a positive correlation was found between the monolignols and phenolics at p<0.05 level in the non-KOH-extractable only, suggesting their tight association to form the minor wall-networks against cellulases accessibility. The results indicated that the non-KOH-extractable lignin-complex should be the target either for cost-effective biomass pretreatments or for relatively simply genetic modification of plant cell walls in Miscanthus.
Collapse
Affiliation(s)
- Zhengru Li
- National Key Laboratory of Crop Genetic Improvement, Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunqiao Zhao
- National Key Laboratory of Crop Genetic Improvement, Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Zha
- National Key Laboratory of Crop Genetic Improvement, Biomass and Bioenergy Research Centre, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Can Wan
- National Key Laboratory of Crop Genetic Improvement, Biomass and Bioenergy Research Centre, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengli Si
- National Key Laboratory of Crop Genetic Improvement, Biomass and Bioenergy Research Centre, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Liu
- National Key Laboratory of Crop Genetic Improvement, Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rui Zhang
- National Key Laboratory of Crop Genetic Improvement, Biomass and Bioenergy Research Centre, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fengcheng Li
- National Key Laboratory of Crop Genetic Improvement, Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Yu
- National Key Laboratory of Crop Genetic Improvement, Biomass and Bioenergy Research Centre, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zili Yi
- Department of Biotechnology, Hunan Agricultural University, Changsha, China
| | - Ning Xu
- National Key Laboratory of Crop Genetic Improvement, Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Liangcai Peng
- National Key Laboratory of Crop Genetic Improvement, Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Biomass and Bioenergy Research Centre, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Biomass and Bioenergy Research Centre, College of Science, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
287
|
Liu D, Ma Z, Wang Z, Tian H, Gu M. Biodegradable poly(vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9544-9550. [PMID: 25062502 DOI: 10.1021/la502723d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In order to capture savings in energy and ambitious environmental targets, biodegradable composite foams of poly(vinyl alcohol) (PVA) supported by cellulose nanofibrils (CNF) were prepared through unidirectional freeze-drying technology. Effects of the content of CNF, the solid content of the precursor suspension, and the quenching temperature on the microstructure and properties of the composite foams were investigated by scanning electron microscopy (SEM), compressive testing, X-ray diffraction (XRD) analysis, water uptake, and biodegradation tests. Results show that the incorporation of CNF preferably at a weight ratio of 30 wt % greatly enhanced the mechanical strength and modulus, energy absorption, water resistance, and dimensional stability of the composite foams because of the rigid and semicrystalline nature of CNF as well as regular and compact pore structures. Furthermore, the biodegradation tests performed in a simulated aerobic compost environment suggested that the involvement of CNF significantly accelerated the pace of biodegradation of the composite foams. Hence, we provided some meaningful information on the biomimetic cellular composite foams with controllable morphs and properties by varying the freeze-drying process and composition.
Collapse
Affiliation(s)
- Dagang Liu
- Department of Chemistry, Nanjing University of Information Science and Technology , Nanjing 210044, China
| | | | | | | | | |
Collapse
|
288
|
Balestrini R, Bonfante P. Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism. FRONTIERS IN PLANT SCIENCE 2014; 5:237. [PMID: 24926297 PMCID: PMC4044974 DOI: 10.3389/fpls.2014.00237] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/12/2014] [Indexed: 05/05/2023]
Abstract
Cell walls are deeply involved in the molecular talk between partners during plant and microbe interactions, and their role in mycorrhizae, i.e., the widespread symbiotic associations established between plant roots and soil fungi, has been investigated extensively. All mycorrhizal interactions achieve full symbiotic functionality through the development of an extensive contact surface between the plant and fungal cells, where signals and nutrients are exchanged. The exchange of molecules between the fungal and the plant cytoplasm takes place both through their plasma membranes and their cell walls; a functional compartment, known as the symbiotic interface, is thus defined. Among all the symbiotic interfaces, the complex intracellular interface of arbuscular mycorrhizal (AM) symbiosis has received a great deal of attention since its first description. Here, in fact, the host plasma membrane invaginates and proliferates around all the developing intracellular fungal structures, and cell wall material is laid down between this membrane and the fungal cell surface. By contrast, in ectomycorrhizae (ECM), where the fungus grows outside and between the root cells, plant and fungal cell walls are always in direct contact and form the interface between the two partners. The organization and composition of cell walls within the interface compartment is a topic that has attracted widespread attention, both in ecto- and endomycorrhizae. The aim of this review is to provide a general overview of the current knowledge on this topic by integrating morphological observations, which have illustrated cell wall features during mycorrhizal interactions, with the current data produced by genomic and transcriptomic approaches.
Collapse
Affiliation(s)
- Raffaella Balestrini
- Institute for Sustainable Plant Protection, National Research CouncilTorino, Italy
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of TorinoTorino, Italy
| |
Collapse
|
289
|
Mewalal R, Mizrachi E, Mansfield SD, Myburg AA. Cell wall-related proteins of unknown function: missing links in plant cell wall development. PLANT & CELL PHYSIOLOGY 2014; 55:1031-43. [PMID: 24683037 DOI: 10.1093/pcp/pcu050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lignocellulosic biomass is an important feedstock for the pulp and paper industry as well as emerging biofuel and biomaterial industries. However, the recalcitrance of the secondary cell wall to chemical or enzymatic degradation remains a major hurdle for efficient extraction of economically important biopolymers such as cellulose. It has been estimated that approximately 10-15% of about 27,000 protein-coding genes in the Arabidopsis genome are dedicated to cell wall development; however, only about 130 Arabidopsis genes thus far have experimental evidence validating cell wall function. While many genes have been implicated through co-expression analysis with known genes, a large number are broadly classified as proteins of unknown function (PUFs). Recently the functionality of some of these unknown proteins in cell wall development has been revealed using reverse genetic approaches. Given the large number of cell wall-related PUFs, how do we approach and subsequently prioritize the investigation of such unknown genes that may be essential to or influence plant cell wall development and structure? Here, we address the aforementioned question in two parts; we first identify the different kinds of PUFs based on known and predicted features such as protein domains. Knowledge of inherent features of PUFs may allow for functional inference and a concomitant link to biological context. Secondly, we discuss omics-based technologies and approaches that are helping identify and prioritize cell wall-related PUFs by functional association. In this way, hypothesis-driven experiments can be designed for functional elucidation of many proteins that remain missing links in our understanding of plant cell wall biosynthesis.
Collapse
Affiliation(s)
- Ritesh Mewalal
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
290
|
Yaqoob S, Sultana B, Mushtaq M. In vitro Antioxidant Activities of Trianthema portulacastrum L. Hydrolysates. Prev Nutr Food Sci 2014; 19:27-33. [PMID: 24772406 PMCID: PMC3999805 DOI: 10.3746/pnf.2014.19.1.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/10/2014] [Indexed: 11/13/2022] Open
Abstract
Hydrolysates of Trianthema portulacastrum in acidified methanol were evaluated for their total phenolic (TP) constituents and respective antioxidant activities using in vitro assays (i.e., 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, percent inhibition of linoleic acid peroxidation, and ferric reducing power). The observed results indicate that root, shoot, and leaf fractions of T. portulacastrum contain 50.75~98.09 mg gallic acid equivalents/g dry weight of TP. In addition, these fractions have substantial reducing potentials (0.10~0.59), abilities to inhibit peroxidation (43.26~89.98%), and DPPH radical scavenging capabilities (6.98~311.61 μg/mL IC50). The experimental data not only reveal T. portulacastrum as potential source of valuable antioxidants, but also indicate that acidified methanol may be an ideal choice for the enhanced recovery of phenolic compounds with retained biological potential for the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Sadaf Yaqoob
- Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Bushra Sultana
- Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Mushtaq
- Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan ; Institute of Food Science, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
291
|
Chen L, Cheung PCK. Mushroom dietary fiber from the fruiting body of Pleurotus tuber-regium: fractionation and structural elucidation of nondigestible cell wall components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2891-2899. [PMID: 24625260 DOI: 10.1021/jf500112j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The cell wall of mushroom fruiting body is constituted of nondigestible macromolecules that are a rich source of dietary fiber with biological functions that are beneficial to human health. The cell wall components of an edible mushroom fruiting body from Pleurotus tuber-regium (PTR) were fractionated, and their chemical structures were investigated by chemical, physicochemical, and microscopic analyses. The present results suggest that the cell wall of the PTR mushroom fruiting body contains four main fractions: an outer fraction of polysaccharide and protein complex, which can be extracted using boiling water; a cold alkali-soluble fraction of heteropolysaccharides associated with a small amount of proteins; a hot alkali-soluble fraction of hyper-branched glucans; and an alkali-insoluble fraction of glucan-chitin complex with a normalized relative percentage of 3.6:21.9:55.7:18.8. The anomeric linkage of all the glucans was revealed by infrared spectroscopy to be β type. The structure of the major mushroom fruiting body cell wall polysaccharide (the hot alkali-soluble one, FHA-I) was elucidated by the methylation analysis to be composed of →1)-Glcp-(4→ linkages as the backbone with a 52% degree of branching consisting of →1)-Glcp-(6→ linkages in the side chains, whereas some →1)-Glcp-(3→ linkages might exist in the backbone or side chains. Size exclusion chromatography coupled with multiangle laser light scattering analysis revealed that FHA-I had a molecular weight of 4.224 × 10(6) g/mol and a root-mean-square radius of 30.4 nm. Both scanning electron and atomic force microscopy further showed the highly branched microstructure of FHA-I when dispersed in an aqueous sodium dodecyl sulfate solution.
Collapse
Affiliation(s)
- Lei Chen
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University , Shanghai 200240, China
| | | |
Collapse
|
292
|
Cao Y, Li J, Yu L, Chai G, He G, Hu R, Qi G, Kong Y, Fu C, Zhou G. Cell wall polysaccharide distribution in Miscanthus lutarioriparius stem using immuno-detection. PLANT CELL REPORTS 2014; 33:643-53. [PMID: 24522548 DOI: 10.1007/s00299-014-1574-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 05/08/2023]
Abstract
Cell wall polysaccharides' occurrences in two internodes of different development stages in M. lutarioriparius stem were analyzed and three major differences between them were identified by cell wall polysaccharide probes. Deposition and modification of cell wall polysaccharides during stem development affect biomass yield of the Miscanthus energy crop. The distribution patterns of cell wall polysaccharides in the 2nd and the 11th internodes of M. lutarioriparius stem were studied using in situ immunofluorescence assay. Crystalline cellulose and xylan were present in most of the stem tissues except phloem, where xyloglucan was the major composition of hemicellulose. The distribution of pectin polysaccharides varied in stem tissues, particularly in vascular bundle elements. Xylogalacturonan, feruloylated-1,4-β-D-galactan and (1,3)(1,4)-β-glucans, however, were insufficient for antibodies binding in both internodes. Furthermore, the distribution of cell wall polysaccharides was differentiated in the two internodes of M. lutarioriparius. The significant differences in the pattern of occurrence of long 1,5-α-L-arabinan chain, homogalacturonan and fucosylated xyloglucans epitope were detected between the two internodes. In addition, the relationships between probable functions of polysaccharides and their distribution patterns in M. lutarioriparius stem cell wall were discussed, which would be helpful to understand the growth characteristics of Miscanthus and identify potential targets for either modification or degradation.
Collapse
Affiliation(s)
- Yingping Cao
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences (QIBEBT-CAS), Qingdao, 266101, Shandong, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Xiao C, Somerville C, Anderson CT. POLYGALACTURONASE INVOLVED IN EXPANSION1 functions in cell elongation and flower development in Arabidopsis. THE PLANT CELL 2014; 26:1018-35. [PMID: 24681615 PMCID: PMC4001366 DOI: 10.1105/tpc.114.123968] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 02/10/2014] [Accepted: 03/06/2014] [Indexed: 05/18/2023]
Abstract
Pectins are acidic carbohydrates that comprise a significant fraction of the primary walls of eudicotyledonous plant cells. They influence wall porosity and extensibility, thus controlling cell and organ growth during plant development. The regulated degradation of pectins is required for many cell separation events in plants, but the role of pectin degradation in cell expansion is poorly defined. Using an activation tag screen designed to isolate genes involved in wall expansion, we identified a gene encoding a putative polygalacturonase that, when overexpressed, resulted in enhanced hypocotyl elongation in etiolated Arabidopsis thaliana seedlings. We named this gene POLYGALACTURONASE INVOLVED IN EXPANSION1 (PGX1). Plants lacking PGX1 display reduced hypocotyl elongation that is complemented by transgenic PGX1 expression. PGX1 is expressed in expanding tissues throughout development, including seedlings, roots, leaves, and flowers. PGX1-GFP (green fluorescent protein) localizes to the apoplast, and heterologously expressed PGX1 displays in vitro polygalacturonase activity, supporting a function for this protein in apoplastic pectin degradation. Plants either overexpressing or lacking PGX1 display alterations in total polygalacturonase activity, pectin molecular mass, and wall composition and also display higher proportions of flowers with extra petals, suggesting PGX1's involvement in floral organ patterning. These results reveal new roles for polygalacturonases in plant development.
Collapse
Affiliation(s)
- Chaowen Xiao
- Department of Biology, Pennsylvania State University,
University Park, Pennsylvania 16802
- Center for Lignocellulose Structure and Formation,
Pennsylvania State University, University Park, Pennsylvania 16802
| | - Chris Somerville
- Energy Biosciences Institute, University of California,
Berkeley, California 94704
- Department of Plant and Microbial Biology, University of
California Berkeley, Berkeley, California 94720
| | - Charles T. Anderson
- Department of Biology, Pennsylvania State University,
University Park, Pennsylvania 16802
- Center for Lignocellulose Structure and Formation,
Pennsylvania State University, University Park, Pennsylvania 16802
- Address correspondence to
| |
Collapse
|
294
|
Li Q, Ng WT, Puah SM, Bhaskar RV, Soh LS, MacBeath C, Parakattil P, Green P, Wu JC. Efficient production of fermentable sugars from oil palm empty fruit bunch by combined use of acid and whole cell culture-catalyzed hydrolyses. Biotechnol Appl Biochem 2014; 61:426-31. [PMID: 24329860 DOI: 10.1002/bab.1188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/02/2013] [Indexed: 11/08/2022]
Abstract
Empty fruit bunch (EFB) of oil palm trees was converted to fermentable sugars by the combined use of dilute acids and whole fungal cell culture-catalyzed hydrolyses. EFB (5%, w/v) was hydrolyzed in the presence of 0.5% H2 SO4 and 0.2% H3 PO4 at 160 °C for 10 Min. The solid fraction was separated from the acid hydrolysate by filtration and subjected to enzymatic hydrolysis at 50 °C using the whole cell culture of Trichoderma reesei RUT-C30 (2%, w/v), which was prepared by cultivation at 30 °C for 7 days to reach its maximal cellulase activity. The combined hydrolyses of EFB gave a total sugar yield of 82.0%. When used as carbon sources for cultivating Escherichia coli in M9 medium at 37 °C, the combined EFB hydrolysates were shown to be more favorable or at least as good as pure glucose for cell growth in terms of the higher (1.1 times) optical density of E. coli cells. The by-products generated during the acid-catalyzed hydrolysis did not seem to obviously affect cell growth. The combined use of acid and whole cell culture hydrolyses might be a commercially promising method for pretreatment of lignocellulose to get fermentable sugars.
Collapse
Affiliation(s)
- Qingxin Li
- Institute of Chemical & Engineering Sciences, Singapore
| | - Wei Ting Ng
- Institute of Chemical & Engineering Sciences, Singapore
| | - Sze Min Puah
- Institute of Chemical & Engineering Sciences, Singapore
| | | | - Loon Siong Soh
- Procter & Gamble International Operations, Biopolis, Singapore
| | - Calum MacBeath
- Procter & Gamble International Operations, Biopolis, Singapore
| | - Pius Parakattil
- Procter & Gamble International Operations, Biopolis, Singapore
| | - Phil Green
- Procter & Gamble Company, West Chester, OH, USA
| | - Jin Chuan Wu
- Institute of Chemical & Engineering Sciences, Singapore
| |
Collapse
|
295
|
Tucker MR, Koltunow AMG. Traffic monitors at the cell periphery: the role of cell walls during early female reproductive cell differentiation in plants. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:137-45. [PMID: 24507505 DOI: 10.1016/j.pbi.2013.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/14/2013] [Accepted: 11/27/2013] [Indexed: 05/05/2023]
Abstract
The formation of female gametes in plants occurs within the ovule, a floral organ that is also the precursor of the seed. Unlike animals, plants lack a typical germline separated from the soma early in development and rely on positional signals, including phytohormones, mobile mRNAs and sRNAs, to direct diploid somatic precursor cells onto a reproductive program. In addition, signals moving between plant cells must overcome the architectural limitations of a cell wall which surrounds the plasma membrane. Recent studies have addressed the molecular and histological signatures of young ovule cells and indicate that dynamic cell wall changes occur over a short developmental window. These changes in cell wall properties impact signal flow and ovule cell identity, thereby aiding the establishment of boundaries between reproductive and somatic ovule domains.
Collapse
Affiliation(s)
- Matthew R Tucker
- Australian Research Council (ARC) Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Hartley Grove, Waite Campus, Urrbrae, SA 5064, Australia
| |
Collapse
|
296
|
Domozych DS, Sørensen I, Sacks C, Brechka H, Andreas A, Fangel JU, Rose JKC, Willats WGT, Popper ZA. Disruption of the microtubule network alters cellulose deposition and causes major changes in pectin distribution in the cell wall of the green alga, Penium margaritaceum. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:465-79. [PMID: 24285826 PMCID: PMC3904706 DOI: 10.1093/jxb/ert390] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Application of the dintroaniline compound, oryzalin, which inhibits microtubule formation, to the unicellular green alga Penium margaritaceum caused major perturbations to its cell morphology, such as swelling at the wall expansion zone in the central isthmus region. Cell wall structure was also notably altered, including a thinning of the inner cellulosic wall layer and a major disruption of the homogalacturonan (HG)-rich outer wall layer lattice. Polysaccharide microarray analysis indicated that the oryzalin treatment resulted in an increase in HG abundance in treated cells but a decrease in other cell wall components, specifically the pectin rhamnogalacturonan I (RG-I) and arabinogalactan proteins (AGPs). The ring of microtubules that characterizes the cortical area of the cell isthmus zone was significantly disrupted by oryzalin, as was the extensive peripheral network of actin microfilaments. It is proposed that the disruption of the microtubule network altered cellulose production, the main load-bearing component of the cell wall, which in turn affected the incorporation of HG in the two outer wall layers, suggesting coordinated mechanisms of wall polymer deposition.
Collapse
Affiliation(s)
- David S. Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
- * To whom correspondence should be addressed. E-mail:
| | - Iben Sørensen
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Carly Sacks
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Hannah Brechka
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Amanda Andreas
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Jonatan U. Fangel
- Department of Plant and Environmental Sciences, University of Copenhagen, Faculty of Science, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | | | - William G. T. Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, Faculty of Science, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Zoë A. Popper
- Botany and Plant Science, School of Natural Sciences and Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland, Galway, Ireland
| |
Collapse
|
297
|
Li S, Bashline L, Lei L, Gu Y. Cellulose synthesis and its regulation. THE ARABIDOPSIS BOOK 2014; 12:e0169. [PMID: 24465174 PMCID: PMC3894906 DOI: 10.1199/tab.0169] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cellulose, the most abundant biopolymer synthesized on land, is made of linear chains of ß (1-4) linked D-glucose. As a major structural component of the cell wall, cellulose is important not only for industrial use but also for plant growth and development. Cellulose microfibrils are tethered by other cell wall polysaccharides such as hemicellulose, pectin, and lignin. In higher plants, cellulose is synthesized by plasma membrane-localized rosette cellulose synthase complexes. Despite the recent advances using a combination of molecular genetics, live cell imaging, and spectroscopic tools, many aspects of the cellulose synthesis remain a mystery. In this chapter, we highlight recent research progress towards understanding the mechanism of cellulose synthesis in Arabidopsis.
Collapse
Affiliation(s)
- Shundai Li
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Logan Bashline
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Lei Lei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Address correspondence to
| |
Collapse
|
298
|
|
299
|
Blanco-Ulate B, Morales-Cruz A, Amrine KCH, Labavitch JM, Powell ALT, Cantu D. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts. FRONTIERS IN PLANT SCIENCE 2014; 5:435. [PMID: 25232357 PMCID: PMC4153048 DOI: 10.3389/fpls.2014.00435] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/15/2014] [Indexed: 05/19/2023]
Abstract
Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth), secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes) identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue.
Collapse
Affiliation(s)
- Barbara Blanco-Ulate
- Department of Viticulture and Enology, University of California, DavisDavis, CA, USA
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California, DavisDavis, CA, USA
| | | | - John M. Labavitch
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Ann L. T. Powell
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, DavisDavis, CA, USA
- *Correspondence: Dario Cantu, Department of Viticulture and Enology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA e-mail:
| |
Collapse
|
300
|
Gierlinger N. Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA). FRONTIERS IN PLANT SCIENCE 2014; 5:306. [PMID: 25071792 PMCID: PMC4074855 DOI: 10.3389/fpls.2014.00306] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/09/2014] [Indexed: 05/18/2023]
Abstract
At the molecular level the plant cell walls consist of a few nanometer thick semi-crystalline cellulose fibrils embedded in amorphous matrix polymers such as pectins, hemicelluloses, and lignins. The arrangement of these molecules within the cell wall in different plant tissues, cells and cell wall layers is of crucial importance for a better understanding and thus optimized utilization of plant biomass. During the last years Confocal Raman microscopy evolved as a powerful method in plant science by revealing the different molecules in context with the microstructure. In this study two-dimensional spectral maps have been acquired of micro-cross-sections of spruce (softwood) and beech (hardwood). Raman images have been derived by using univariate (band integration, height ratios) and multivariate methods [vertex component analysis (VCA)]. While univariate analysis only visualizes changes in selected band heights or areas, VCA separates anatomical regions and cell wall layers with the most different molecular structures. Beside visualization of the distinguished regions and features the underlying molecular structure can be derived based on the endmember spectra. VCA revealed that the lumen sided S3 layer has a similar molecular composition as the pit membrane, both revealing a clear change in lignin composition compared to all other cell wall regions. Within the S2 layer a lamellar structure was visualized, which was elucidated to derive from slight changes in lignin composition and content and might be due to successive but not uniform lignification during growth.
Collapse
Affiliation(s)
- Notburga Gierlinger
- Department of Materials Science and Process Engineering, BOKU-University of Natural Resources and Life ScienceVienna, Austria
- Institute for Building Materials, Eidgenössische Technische Hochschule ZurichZurich, Switzerland
- Applied Wood Research Laboratory, Empa – Swiss Federal Laboratories for Material Testing and ResearchDuebendorf, Switzerland
- *Correspondence: Notburga Gierlinger, Department of Materials Science and Process Engineering, BOKU-University of Natural Resources and Life Science, Peter-Jordan Street 82, A-1190 Vienna, Austria e-mail:
| |
Collapse
|