251
|
Simma N, Bose T, Kahlfuss S, Mankiewicz J, Lowinus T, Lühder F, Schüler T, Schraven B, Heine M, Bommhardt U. NMDA-receptor antagonists block B-cell function but foster IL-10 production in BCR/CD40-activated B cells. Cell Commun Signal 2014; 12:75. [PMID: 25477292 PMCID: PMC4269920 DOI: 10.1186/s12964-014-0075-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/12/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND B cells are important effectors and regulators of adaptive and innate immune responses, inflammation and autoimmunity, for instance in anti-NMDA-receptor (NMDAR) encephalitis. Thus, pharmacological modulation of B-cell function could be an effective regimen in therapeutic strategies. Since the non-competitive NMDAR antagonist memantine is clinically applied to treat advanced Alzheimer`s disease and ketamine is supposed to improve the course of resistant depression, it is important to know how these drugs affect B-cell function. RESULTS Non-competitive NMDAR antagonists impaired B-cell receptor (BCR)- and lipopolysaccharide (LPS)-induced B-cell proliferation, reduced B-cell migration towards the chemokines SDF-1α and CCL21 and downregulated IgM and IgG secretion. Mechanistically, these effects were mediated through a blockade of Kv1.3 and KCa3.1 potassium channels and resulted in an attenuated Ca(2+)-flux and activation of Erk1/2, Akt and NFATc1. Interestingly, NMDAR antagonist treatment increased the frequency of IL-10 producing B cells after BCR/CD40 stimulation. CONCLUSIONS Non-competitive NMDAR antagonists attenuate BCR and Toll-like receptor 4 (TLR4) B-cell signaling and effector function and can foster IL-10 production. Consequently, NMDAR antagonists may be useful to target B cells in autoimmune diseases or pathological systemic inflammation. The drugs' additional side effects on B cells should be considered in treatments of neuronal disorders with NMDAR antagonists.
Collapse
Affiliation(s)
- Narasimhulu Simma
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Tanima Bose
- RG Molecular Physiology, Leibniz Institute of Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Judith Mankiewicz
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Theresa Lowinus
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Fred Lühder
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research and The Hertie Foundation, Waldweg 33, 37073, Göttingen, Germany.
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Department of Immune Control, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.
| | - Martin Heine
- RG Molecular Physiology, Leibniz Institute of Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
252
|
Rosser EC, Blair PA, Mauri C. Cellular targets of regulatory B cell-mediated suppression. Mol Immunol 2014; 62:296-304. [PMID: 24556109 DOI: 10.1016/j.molimm.2014.01.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 12/13/2022]
Abstract
Regulatory B cells (Bregs) are defined by their ability to restrain inflammatory responses both in vivo and in vitro. Interleukin 10 (IL-10) production by Bregs is thought to be central to their ability to regulate inflammation, largely due to IL-10s' ability to suppress pro-inflammatory cytokine production by effector lymphocytes and to maintain the differentiation of regulatory T cells (Tregs). However, with an increase in available published data, it has become evident that Bregs utilize a number of suppressive mechanisms in order to alter the activation of a variety of different lymphocytes. Here, we summarize the multiplicity of cellular targets of Breg-mediated suppression and describe the mechanisms employed by Bregs to suppress chronic inflammatory responses.
Collapse
Affiliation(s)
- Elizabeth C Rosser
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, United Kingdom
| | - Paul A Blair
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, United Kingdom
| | - Claudia Mauri
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, United Kingdom.
| |
Collapse
|
253
|
Průcha M, Zazula R, Herold I, Dostál M, Hyánek T, Bellingan G. Presence of Hypogammaglobulinemia – A Risk Factor of Mortality in Patients with Severe Sepsis, Septic Shock, and SIRS. Prague Med Rep 2014; 114:246-57. [DOI: 10.14712/23362936.2014.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In this retrospective study we assessed the frequency of hypogammaglobulinemia in 708 patients with SIRS, severe sepsis and septic shock. We evaluated the relationship between hypogammaglobulinemia IgG, IgM and 28 day mortality. Total of 708 patients and 1,513 samples were analyzed. In the three subgroups we investigated, patients met the criteria of SIRS, severe sepsis and septic shock. IgG hypogammaglobulinemia was demonstrated in 114 patients with severe sepsis (25.2%), 11 septic shock patients (24.4%), and in 29 SIRS patients (13.9%). IgM hypogammaglobulinemia was documented in 55 patients with severe sepsis (12.2%), 6 septic shock patients (13.3%), and in 17 SIRS patients (8.1%). Mortality of patients with severe sepsis and normal IgG levels was significantly lower (111 patients; 32.8%) compared with those with IgG hypogammaglobulinemia (49 patients; 43.0%; p=0.001). Mortality of patients with septic shock and IgG hypogammaglobulinemia (n=5) was significantly higher compared with those with normal IgG levels (45.5% vs. 38.2%; p=0.001). Mortality of patients with severe sepsis and IgM hypogammaglobulinemia did not differ from that of patients with normal IgM levels (37.0 vs. 41.8%). Mortality of patients with septic shock and IgM hypogammaglobulinemia was significantly higher compared with those with normal IgM levels (50% vs. 38.5%; p=0.0001). This study documented relatively high incidence of hypogammaglobulinemia IgG and IgM in patients with severe sepsis, septic shock and SIRS respectively. The presence of IgG hypogammaglobulinemia in patients with severe sepsis is independent factor of mortality.
Collapse
|
254
|
Cabrera-Perez J, Condotta SA, Badovinac VP, Griffith TS. Impact of sepsis on CD4 T cell immunity. J Leukoc Biol 2014; 96:767-77. [PMID: 24791959 PMCID: PMC4197564 DOI: 10.1189/jlb.5mr0114-067r] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/08/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022] Open
Abstract
Sepsis remains the primary cause of death from infection in hospital patients, despite improvements in antibiotics and intensive-care practices. Patients who survive severe sepsis can display suppressed immune function, often manifested as an increased susceptibility to (and mortality from) nosocomial infections. Not only is there a significant reduction in the number of various immune cell populations during sepsis, but there is also decreased function in the remaining lymphocytes. Within the immune system, CD4 T cells are important players in the proper development of numerous cellular and humoral immune responses. Despite sufficient clinical evidence of CD4 T cell loss in septic patients of all ages, the impact of sepsis on CD4 T cell responses is not well understood. Recent findings suggest that CD4 T cell impairment is a multipronged problem that results from initial sepsis-induced cell loss. However, the subsequent lymphopenia-induced numerical recovery of the CD4 T cell compartment leads to intrinsic alterations in phenotype and effector function, reduced repertoire diversity, changes in the composition of naive antigen-specific CD4 T cell pools, and changes in the representation of different CD4 T cell subpopulations (e.g., increases in Treg frequency). This review focuses on sepsis-induced alterations within the CD4 T cell compartment that influence the ability of the immune system to control secondary heterologous infections. The understanding of how sepsis affects CD4 T cells through their numerical loss and recovery, as well as function, is important in the development of future treatments designed to restore CD4 T cells to their presepsis state.
Collapse
Affiliation(s)
- Javier Cabrera-Perez
- Microbiology, Immunology, and Cancer Biology Graduate Program Medical Scientist Training Program
| | | | - Vladimir P Badovinac
- Department of Pathology and Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology Graduate Program Center for Immunology, and Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA; Minneapolis Veterans Administration Health Care System, Minneapolis, Minnesota, USA; and
| |
Collapse
|
255
|
Abstract
The intestinal mucosa harbors the largest population of antibody (Ab)-secreting plasma cells (PC) in the human body, producing daily several grams of immunoglobulin A (IgA). IgA has many functions, serving as a first-line barrier that protects the mucosal epithelium from pathogens, toxins and food antigens (Ag), shaping the intestinal microbiota, and regulating host-commensal homeostasis. Signals induced by commensal colonization are central for regulating IgA induction, maintenance, positioning and function and the number of IgA(+) PC is dramatically reduced in neonates and germ-free (GF) animals. Recent evidence demonstrates that the innate immune effector molecules tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) are required for IgA(+) PC homeostasis during the steady state and infection. Moreover, new functions ascribed to PC independent of Ab secretion continue to emerge, suggesting that PC, including IgA(+) PC, should be re-examined in the context of inflammation and infection. Here, we outline mechanisms of IgA(+) PC generation and survival, reviewing their functions in health and disease.
Collapse
Key Words
- AID, activation-induced deaminase
- APC, antigen-presenting cell
- APRIL, a proliferation-inducing ligand
- Ab, antibody
- Ag, antigen
- Arg, arginase
- Atg, autophagy-related gene
- B cell
- BAFF, B-cell activating factor
- BCMA, B-cell maturation antigen
- BM, bone marrow
- Blimp, B-lymphocyte-induced maturation protein
- CCL, CC chemokine ligand
- CCR, CC chemokine receptor
- CD, cluster of differentiation
- CSR, class-switch recombination
- CXCL, CXC chemokine ligand
- DC, dendritic cell
- ER, endoplasmic reticulum
- FDC, follicular dendritic cells
- FcαR, Fc fragment of IgA receptor
- GALT, gut-associated lymphoid tissues
- GC, germinal center
- GF, germ-free
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- GRP, glucose-regulated proteins
- HIV, human immunodeficiency virus
- IEC, intestinal epithelial cells
- IFN, interferon
- IL, interleukin
- ILC, innate lymphoid cells
- ILF, isolated lymphoid follicles
- IRE, inositol-requiring enzyme
- IRF, interferon regulatory factor
- Id, inhibitor of DNA binding
- IgA, immunoglobulin A
- IgAD, selective IgA deficiency
- L-Arg, L-Arginine
- L-Cit, L-citrulline
- L-Glu, L-Glutamate
- L-Orn, L-Ornithine
- L-Pro, L-Proline
- LIGHT, homologous to lymphotoxin, exhibits inducible expression, and competes with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes
- LP, lamina propria
- LT, lymphotoxinLTβR, LTβ-receptor
- LTi, lymphoid tissue-inducer
- LTo, lymphoid tissue organizing
- Ly, lymphocyte antigen
- MHC, major histocompatibility complex
- MLN, mesenteric lymph nodes
- NO, nitric oxide
- PC, plasma cells
- PP, Peyer's patch
- Pax, paired box
- ROR, Retionic acid receptor (RAR)- or retinoid-related orphan receptor
- SC, stromal cells
- SHM, somatic hypermutation
- SIGNR, specific intercellular adhesion molecule-3-grabbing non-integrin-related
- SIgAsecretory IgA
- TACI, transmembrane activator and calcium-modulator and cyclophilin ligand interactor
- TD, T-dependent
- TFH, T-follicular helper cells
- TGFβR, transforming growth factor β receptor
- TI, T-independent
- TLR, Toll-like receptor
- TNFR, TNF receptor
- TNFα, tumor necrosis factor α
- Th, T helper cell
- Treg, T-regulatory cell
- UPR, unfolded protein response
- XBP, X-box binding protein
- bcl, B-cell lymphoma
- cGMP, cyclic guanosine monophosphate
- iNOS, inducible nitric oxide synthase
- immunoglobulin A (IgA)
- inducible nitric oxide synthase (iNOS)
- innate immune recognition
- intestinal microbiota
- mucosa
- pIgA, polymeric IgA
- pIgR, polymeric Ig receptor
- plasma cell
Collapse
Affiliation(s)
| | - Olga L Rojas
- Department of Immunology; University of Toronto; Toronto, ON Canada
| | - Jörg H Fritz
- Department of Microbiology and Immunology; Department of Physiology; Complex Traits Group; McGill University; Montreal, QC Canada,Correspondence to: Jörg H Fritz;
| |
Collapse
|
256
|
Tsiantoulas D, Sage AP, Mallat Z, Binder CJ. Targeting B cells in atherosclerosis: closing the gap from bench to bedside. Arterioscler Thromb Vasc Biol 2014; 35:296-302. [PMID: 25359862 DOI: 10.1161/atvbaha.114.303569] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Atherosclerotic plaque formation is strongly influenced by different arms of the immune system, including B lymphocytes. B cells are divided into 2 main families: the B1 and the B2 cells. B1 cells are atheroprotective mainly via the production of natural IgM antibodies that bind oxidized low-density lipoprotein and apoptotic cells. B2 cells, which include follicular and marginal zone B cells, are suggested to be proatherogenic. Antibody-mediated depletion of B cells has become a valuable treatment option for certain autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis that are also characterized by the development of premature atherosclerosis. Thus, B cells represent a novel interesting target for therapeutic modulation of the atherosclerotic disease process. Here, we discuss the effect of different of B-cell subsets in experimental atherosclerosis, their mechanism of action as well as potential ways to exploit these findings for the treatment of human disease.
Collapse
Affiliation(s)
- Dimitrios Tsiantoulas
- From the Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria (D.T., C.J.B.); and Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom (A.P.S., Z.M.)
| | - Andrew P Sage
- From the Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria (D.T., C.J.B.); and Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom (A.P.S., Z.M.)
| | - Ziad Mallat
- From the Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria (D.T., C.J.B.); and Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom (A.P.S., Z.M.)
| | - Christoph J Binder
- From the Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria (D.T., C.J.B.); and Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom (A.P.S., Z.M.).
| |
Collapse
|
257
|
The atypical chemokine receptor ACKR2 suppresses Th17 responses to protein autoantigens. Immunol Cell Biol 2014; 93:167-76. [PMID: 25348934 PMCID: PMC4340511 DOI: 10.1038/icb.2014.90] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 08/27/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023]
Abstract
Chemokine-directed leukocyte migration is a critical component of all innate and adaptive immune responses. The atypical chemokine receptor ACKR2 is expressed by lymphatic endothelial cells and scavenges pro-inflammatory CC chemokines to indirectly subdue leukocyte migration. This contributes to the resolution of acute inflammatory responses in vivo. ACKR2 is also universally expressed by innate-like B cells, suppressing their responsiveness to the non-ACKR2 ligand CXCL13, and controlling their distribution in vivo. The role of ACKR2 in autoimmunity remains relatively unexplored, although Ackr2 deficiency reportedly lessens the clinical symptoms of experimental autoimmune encephalomyelitis induced by immunization with encephalogenic peptide (MOG35–55). This was attributed to poor T-cell priming stemming from the defective departure of dendritic cells from the site of immunization. However, we report here that Ackr2-deficient mice, on two separate genetic backgrounds, are not less susceptible to autoimmunity induced by immunization, and in some cases develop enhanced clinical symptoms. Moreover, ACKR2 deficiency does not suppress T-cell priming in response to encephalogenic peptide (MOG35–55), and responses to protein antigen (collagen or MOG1–125) are characterized by elevated interleukin-17 production. Interestingly, after immunization with protein, but not peptide, antigen, Ackr2 deficiency was also associated with an increase in lymph node B cells expressing granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine that enhances T helper type 17 (Th17) cell development and survival. Thus, Ackr2 deficiency does not suppress autoreactive T-cell priming and autoimmune pathology, but can enhance T-cell polarization toward Th17 cells and increase the abundance of GM-CSF+ B cells in lymph nodes draining the site of immunization.
Collapse
|
258
|
Spleen supports a pool of innate-like B cells in white adipose tissue that protects against obesity-associated insulin resistance. Proc Natl Acad Sci U S A 2014; 111:E4638-47. [PMID: 25313053 DOI: 10.1073/pnas.1324052111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lipid accumulation in obesity triggers a low-grade inflammation that results from an imbalance between pro- and anti-inflammatory components of the immune system and acts as the major underlying mechanism for the development of obesity-associated diseases, notably insulin resistance and type 2 diabetes. Innate-like B cells are a subgroup of B cells that respond to innate signals and modulate inflammatory responses through production of immunomodulatory mediators such as the anti-inflammatory cytokine IL-10. In this study, we examined innate-like B cells in visceral white adipose tissue (VAT) and the relationship of these cells with their counterparts in the peritoneal cavity and spleen during diet-induced obesity (DIO) in mice. We show that a considerable number of innate-like B cells bearing a surface phenotype distinct from the recently identified "adipose natural regulatory B cells" populate VAT of lean animals, and that spleen represents a source for the recruitment of these cells in VAT during DIO. However, demand for these cells in the expanding VAT outpaces their recruitment during DIO, and the obese environment in VAT further impairs their function. We further show that removal of splenic precursors of innate-like B cells through splenectomy exacerbates, whereas supplementation of these cells via adoptive transfer ameliorates, DIO-associated insulin resistance. Additional adoptive transfer experiments pointed toward a dominant role of IL-10 in mediating the protective effects of innate-like B cells against DIO-induced insulin resistance. These findings identify spleen-supplied innate-like B cells in VAT as previously unrecognized players and therapeutic targets for obesity-associated diseases.
Collapse
|
259
|
Tarunina M, Hernandez D, Johnson CJ, Rybtsov S, Ramathas V, Jeyakumar M, Watson T, Hook L, Medvinsky A, Mason C, Choo Y. Directed differentiation of embryonic stem cells using a bead-based combinatorial screening method. PLoS One 2014; 9:e104301. [PMID: 25251366 PMCID: PMC4174505 DOI: 10.1371/journal.pone.0104301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/07/2014] [Indexed: 01/25/2023] Open
Abstract
We have developed a rapid, bead-based combinatorial screening method to determine optimal combinations of variables that direct stem cell differentiation to produce known or novel cell types having pre-determined characteristics. Here we describe three experiments comprising stepwise exposure of mouse or human embryonic cells to 10,000 combinations of serum-free differentiation media, through which we discovered multiple novel, efficient and robust protocols to generate a number of specific hematopoietic and neural lineages. We further demonstrate that the technology can be used to optimize existing protocols in order to substitute costly growth factors with bioactive small molecules and/or increase cell yield, and to identify in vitro conditions for the production of rare developmental intermediates such as an embryonic lymphoid progenitor cell that has not previously been reported.
Collapse
Affiliation(s)
- Marina Tarunina
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Diana Hernandez
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
- Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | | | - Stanislav Rybtsov
- MRC Centre for Regenerative Medicine/Institute of Stem cell Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Vidya Ramathas
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | | | - Thomas Watson
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Lilian Hook
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Alexander Medvinsky
- MRC Centre for Regenerative Medicine/Institute of Stem cell Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Chris Mason
- Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Yen Choo
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
- Progenitor Labs Ltd, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| |
Collapse
|
260
|
B-1a transitional cells are phenotypically distinct and are lacking in mice deficient in IκBNS. Proc Natl Acad Sci U S A 2014; 111:E4119-26. [PMID: 25228759 DOI: 10.1073/pnas.1415866111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
B-1 cells mediate early protection against infection by responding to T cell-independent (TI) antigens found on the surface of various pathogens. Mice with impaired expression of the atypical IκB protein IκBNS have markedly reduced frequencies of B-1 cells. We used a mouse strain with dysfunctional IκBNS derived from an N-ethyl-N-nitrosourea (ENU) screen, named bumble, to investigate the point in the development of B-1 cells where IκBNS is required. The presence of wild-type (wt) peritoneal cells in mixed wt/bumble chimeras did not rescue the development of bumble B-1 cells, but wt peritoneal cells transferred to bumble mice restored natural IgM levels and response to TI antigens. The bumble and wt mice displayed similar levels of fetal liver B-1 progenitors and splenic neonatal transitional B (TrB) cells, both of which were previously shown to give rise to B-1 cells. Interestingly, we found that a subset of wt neonatal TrB cells expressed common B-1a markers (TrB-1a) and that this cell population was absent in the bumble neonatal spleen. Sorted TrB-1a (CD93(+)IgM(+)CD5(+)) cells exclusively generated B-1a cells when adoptively transferred, whereas sorted CD93(+)IgM(+)CD5(-) cells gave rise to B-2 cells and, to a lesser extent, B-1b and B-1a cells. This study identifies a phenotypically distinct splenic population of TrB-1a cells and establishes that the development of B-1a cells is blocked before this stage in the absence of IκBNS.
Collapse
|
261
|
Shimura E, Shibui A, Narushima S, Nambu A, Yamaguchi S, Akitsu A, Leonard WJ, Iwakura Y, Matsumoto K, Suto H, Okumura K, Sudo K, Nakae S. Potential role of myeloid cell/eosinophil-derived IL-17 in LPS-induced endotoxin shock. Biochem Biophys Res Commun 2014; 453:1-6. [PMID: 25204502 DOI: 10.1016/j.bbrc.2014.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022]
Abstract
IL-17RA is a shared receptor subunit for several cytokines of the IL-17 family, including IL-17A, IL-17C, IL-17E (also called IL-25) and IL-17F. It has been shown that mice deficient in IL-17RA are more susceptible to sepsis than wild-type mice, suggesting that IL-17RA is important for host defense against sepsis. However, it is unclear which ligands for IL-17RA, such as IL-17A, IL-17C, IL-17E/IL-25 and/or IL-17F, are involved in the pathogenesis of sepsis. Therefore, we examined IL-17A, IL-17E/IL-25 and IL-17F for possible involvement in LPS-induced endotoxin shock. IL-17A-deficient mice, but not IL-25- or IL-17F-deficient mice, were resistant to LPS-induced endotoxin shock, as compared with wild-type mice. Nevertheless, studies using IL-6-deficient, IL-21Rα-deficient and Rag-2-deficient mice, revealed that neither IL-6 and IL-21, both of which are important for Th17 cell differentiation, nor Th17 cells were essential for the development of LPS-induced endotoxin shock, suggesting that IL-17A-producing cells other than Th17 cells were important in the setting. In this connection, IL-17A was produced by macrophages, DCs and eosinophils after LPS injection. Taken together, these findings indicate that IL-17A, but not IL-17F or IL-25, is crucial for LPS-induced endotoxin shock. In addition, macrophages, DCs and eosinophils, but not Th17 cells or γδ T cells, may be sources of IL-17A during LPS-induced endotoxin shock.
Collapse
Affiliation(s)
- Eri Shimura
- Atopy Research Center, Juntendo University, Tokyo 113-8412, Japan
| | - Akiko Shibui
- Department of Medical Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Seiko Narushima
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Aya Nambu
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Sachiko Yamaguchi
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Aoi Akitsu
- Division of Experimental Animal Immunology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Kenji Matsumoto
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Hajime Suto
- Atopy Research Center, Juntendo University, Tokyo 113-8412, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University, Tokyo 113-8412, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama 332-0012, Japan.
| |
Collapse
|
262
|
de Pablo R, Monserrat J, Prieto A, Alvarez-Mon M. Role of circulating lymphocytes in patients with sepsis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:671087. [PMID: 25302303 PMCID: PMC4163419 DOI: 10.1155/2014/671087] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 07/15/2014] [Accepted: 07/29/2014] [Indexed: 01/11/2023]
Abstract
Sepsis is a systemic inflammatory response syndrome due to infection. The incidence rate is estimated to be up to 19 million cases worldwide per year and the number of cases is rising. Infection triggers a complex and prolonged host response, in which both the innate and adaptive immune response are involved. The disturbance of immune system cells plays a key role in the induction of abnormal levels of immunoregulatory molecules. Furthermore, the involvement of effector immune system cells also impairs the host response to the infective agents and tissue damage. Recently, postmortem studies of patients who died of sepsis have provided important insights into why septic patients die and showed an extensive depletion of CD4 and CD8 lymphocytes and they found that circulating blood cells showed similar findings. Thus, the knowledge of the characterization of circulating lymphocyte abnormalities is relevant for the understanding of the sepsis pathophysiology. In addition, monitoring the immune response in sepsis, including circulating lymphocyte subsets count, appears to be potential biomarker for predicting the clinical outcome of the patient. This paper analyzes the lymphocyte involvement and dysfunction found in patients with sepsis and new opportunities to prevent sepsis and guide therapeutic intervention have been revealed.
Collapse
Affiliation(s)
- Raul de Pablo
- Intensive Care Unit, University Hospital “Príncipe de Asturias”, University of Alcala, Alcala de Henares, 28805 Madrid, Spain
- Laboratory of Immune System Diseases and Oncology, National Biotechnology Center (CNB-CSIC) Associated Unit, Department of Medicine and Medical Specialties, University of Alcala, 28871 Madrid, Spain
| | - Jorge Monserrat
- Laboratory of Immune System Diseases and Oncology, National Biotechnology Center (CNB-CSIC) Associated Unit, Department of Medicine and Medical Specialties, University of Alcala, 28871 Madrid, Spain
| | - Alfredo Prieto
- Laboratory of Immune System Diseases and Oncology, National Biotechnology Center (CNB-CSIC) Associated Unit, Department of Medicine and Medical Specialties, University of Alcala, 28871 Madrid, Spain
| | - Melchor Alvarez-Mon
- Laboratory of Immune System Diseases and Oncology, National Biotechnology Center (CNB-CSIC) Associated Unit, Department of Medicine and Medical Specialties, University of Alcala, 28871 Madrid, Spain
- Immune System Diseases and Oncology Service, University Hospital “Príncipe de Asturias”, University of Alcala, Alcala de Henares, 28805 Madrid, Spain
| |
Collapse
|
263
|
Kabat AM, Srinivasan N, Maloy KJ. Modulation of immune development and function by intestinal microbiota. Trends Immunol 2014; 35:507-17. [PMID: 25172617 DOI: 10.1016/j.it.2014.07.010] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/18/2014] [Accepted: 07/30/2014] [Indexed: 12/12/2022]
Abstract
The immune system must constantly monitor the gastrointestinal tract for the presence of pathogens while tolerating trillions of commensal microbiota. It is clear that intestinal microbiota actively modulate the immune system to maintain a mutually beneficial relation, but the mechanisms that maintain homeostasis are not fully understood. Recent advances have begun to shed light on the cellular and molecular factors involved, revealing that a range of microbiota derivatives can influence host immune functions by targeting various cell types, including intestinal epithelial cells, mononuclear phagocytes, innate lymphoid cells, and B and T lymphocytes. Here, we review these findings, highlighting open questions and important challenges to overcome in translating this knowledge into new therapies for intestinal and systemic immune disorders.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Naren Srinivasan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, UK
| | - Kevin J Maloy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
264
|
Abstract
The development of atherosclerosis is the major etiological factor causing cardiovascular disease and constitutes a lipid-induced, chronic inflammatory and autoimmune disease of the large arteries. A long-standing view of the protective role of B cells in atherosclerosis has been challenged by recent studies using B cell depletion in animal models. Whereas complete B cell deficiency increases atherosclerosis, depletion of B2 but not B1 cells reduces atherosclerosis. This has led to a re-evaluation of the multiple potential pathways by which B cells can regulate atherosclerosis, and the apparent opposing roles of B1 and B2 cells. B cells, in addition to having the unique ability to produce antibodies, are now recognized to play a number of important roles in the immune system, including cytokine production and direct regulation of T cell responses. This review summarizes current knowledge on B cell subsets and functions, and how these could distinctly influence atherosclerosis development.
Collapse
Affiliation(s)
- Andrew P Sage
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge , Cambridge , UK
| | | |
Collapse
|
265
|
Abstract
Insights into the important contribution of inflammation and immune functions in the development and progression of atherosclerosis have greatly improved our understanding of this disease. Although the role of T cells has been extensively studied for decades, only recently has the role of B cells gained more attention. Recent studies have identified differential effects of different B-cell subsets and helped to clarify the still poorly understood mechanisms by which these act. B1 cells have been shown to prevent lesion formation, whereas B2 cells have been suggested to promote it. Natural IgM antibodies, mainly derived from B1 cells, have been shown to mediate atheroprotective effects, but the functional role of other immunoglobulin classes, particularly IgG, still remains elusive. In this review, we will focus on recent insights on the role of B cells and various immunoglobulin classes and how these may mediate their effects in atherosclerotic lesion formation. Moreover, we will highlight potential therapeutic approaches focusing on B-cell depletion that could be used to translate experimental evidence to human disease.
Collapse
Affiliation(s)
- Dimitrios Tsiantoulas
- From the Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria (D.T., C.J.B.); Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria (D.T., C.J.B.); and Department of Medicine, University of California San Diego, La Jolla (C.J.D., J.L.W.)
| | - Cody J Diehl
- From the Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria (D.T., C.J.B.); Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria (D.T., C.J.B.); and Department of Medicine, University of California San Diego, La Jolla (C.J.D., J.L.W.)
| | - Joseph L Witztum
- From the Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria (D.T., C.J.B.); Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria (D.T., C.J.B.); and Department of Medicine, University of California San Diego, La Jolla (C.J.D., J.L.W.)
| | - Christoph J Binder
- From the Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria (D.T., C.J.B.); Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria (D.T., C.J.B.); and Department of Medicine, University of California San Diego, La Jolla (C.J.D., J.L.W.).
| |
Collapse
|
266
|
Chalasani G, Rothstein D. Non-Antibody Mediated Roles of B Cells in Allograft Survival. CURRENT TRANSPLANTATION REPORTS 2014. [DOI: 10.1007/s40472-014-0020-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
267
|
Ait-Oufella H, Sage AP, Mallat Z, Tedgui A. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ Res 2014; 114:1640-60. [PMID: 24812352 DOI: 10.1161/circresaha.114.302761] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic inflammation in response to lipoprotein accumulation in the arterial wall is central in the development of atherosclerosis. Both innate and adaptive immunity are involved in this process. Adaptive immune responses develop against an array of potential antigens presented to effector T lymphocytes by antigen-presenting cells, especially dendritic cells. Functional analysis of the role of different T-cell subsets identified the Th1 responses as proatherogenic, whereas regulatory T-cell responses exert antiatherogenic activities. The effect of Th2 and Th17 responses is still debated. Atherosclerosis is also associated with B-cell activation. Recent evidence established that conventional B-2 cells promote atherosclerosis. In contrast, innate B-1 B cells offer protection through secretion of natural IgM antibodies. This review discusses the recent development in our understanding of the role of T- and B-cell subsets in atherosclerosis and addresses the role of dendritic cell subpopulations in the control of adaptive immunity.
Collapse
Affiliation(s)
- Hafid Ait-Oufella
- From INSERM UMR-S 970, Paris Cardiovascular Research Center (PARCC), Université Paris Descartes, Sorbonne Paris Cité, Paris, France (H.A.-O., Z.M., A.T.); Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Paris, France (H.A.-O.); and Department of Medicine, University of Cambridge, Cambridge, United Kingdom (A.P.S., Z.M.)
| | | | | | | |
Collapse
|
268
|
Deng J, Yuan S, Pennati A, Murphy J, Wu JH, Lawson D, Galipeau J. Engineered fusokine GIFT4 licenses the ability of B cells to trigger a tumoricidal T-cell response. Cancer Res 2014; 74:4133-44. [PMID: 24938765 DOI: 10.1158/0008-5472.can-14-0708] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Engineered chimeric cytokines can generate gain-of-function activity in immune cells. Here, we report potent antitumor activity for a novel fusion cytokine generated by N-terminal coupling of GM-CSF to IL4, generating a fusokine termed GIFT4. B cells treated with GIFT4 clustered GM-CSF and IL4 receptors on the cell surface and displayed a pan-STAT hyperphosphorylation associated with acquisition of a distinct phenotype and function described to date. In C57BL/6J mice, administration of GIFT4 expanded endogenous B cells and suppressed the growth of B16F0 melanoma cells. Furthermore, B16F0 melanoma cells engineered to secrete GIFT4 were rejected immunologically in a B-cell-dependent manner. This effect was abolished when GIFT4-expressing B16F0 cells were implanted in B-cell-deficient mice, confirming a B-cell-dependent antitumor effect. Human GIFT4-licensed B cells primed cytotoxic T cells and specifically killed melanoma cells in vitro and in vivo. Taken together, our results demonstrated that GIFT4 could mediate expansion of B cells with potent antigen-specific effector function. GIFT4 may offer a novel immunotherapeutic tool and define a previously unrecognized potential for B cells in melanoma immunotherapy.
Collapse
Affiliation(s)
- Jiusheng Deng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Shala Yuan
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Andrea Pennati
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Jordan Murphy
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Jian Hui Wu
- Lady Davis Institute for Medical Research, Department of Oncology, McGill University, Quebec, Canada
| | - David Lawson
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Jacques Galipeau
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia.
| |
Collapse
|
269
|
Affara NI, Ruffell B, Medler TR, Gunderson AJ, Johansson M, Bornstein S, Bergsland E, Steinhoff M, Li Y, Gong Q, Ma Y, Wiesen JF, Wong MH, Kulesz-Martin M, Irving B, Coussens LM. B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 2014; 25:809-821. [PMID: 24909985 PMCID: PMC4063283 DOI: 10.1016/j.ccr.2014.04.026] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/13/2014] [Accepted: 04/30/2014] [Indexed: 02/07/2023]
Abstract
B cells foster squamous cell carcinoma (SCC) development through deposition of immunoglobulin-containing immune complexes in premalignant tissue and Fcγ receptor-dependent activation of myeloid cells. Because human SCCs of the vulva and head and neck exhibited hallmarks of B cell infiltration, we examined B cell-deficient mice and found reduced support for SCC growth. Although ineffective as a single agent, treatment of mice bearing preexisting SCCs with B cell-depleting αCD20 monoclonal antibodies improved response to platinum- and Taxol-based chemotherapy. Improved chemoresponsiveness was dependent on altered chemokine expression by macrophages that promoted tumor infiltration of activated CD8(+) lymphocytes via CCR5-dependent mechanisms. These data reveal that B cells, and the downstream myeloid-based pathways they regulate, represent tractable targets for anticancer therapy in select tumors.
Collapse
Affiliation(s)
- Nesrine I. Affara
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Brian Ruffell
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Terry R. Medler
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Andrew J. Gunderson
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Magnus Johansson
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Sophia Bornstein
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Emily Bergsland
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Martin Steinhoff
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | - Yijin Li
- Genentech, South San Francisco, CA 94080, USA
| | - Qian Gong
- Genentech, South San Francisco, CA 94080, USA
| | - Yan Ma
- Genentech, South San Francisco, CA 94080, USA
| | - Jane F. Wiesen
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Melissa H. Wong
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Dermatology Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Molly Kulesz-Martin
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Dermatology Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Lisa M. Coussens
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Address for correspondence: L.M. Coussens, Ph.D. Cell & Developmental Biology Oregon Health & Sciences University 3181 SW Sam Jackson Park Rd, Mail Code L215, Rm 5508, Richard Jones Hall Portland, OR 97239-3098
| |
Collapse
|
270
|
Li P, Harris D, Liu Z, Rozovski U, Ferrajoli A, Wang Y, Bueso-Ramos C, Hazan-Halevy I, Grgurevic S, Wierda W, Burger J, O'Brien S, Faderl S, Keating M, Estrov Z. STAT3-activated GM-CSFRα translocates to the nucleus and protects CLL cells from apoptosis. Mol Cancer Res 2014; 12:1267-82. [PMID: 24836891 DOI: 10.1158/1541-7786.mcr-13-0652-t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Here, it was determined that chronic lymphocytic leukemia (CLL) cells express the α subunit, but not the β subunit, of the granulocyte-macrophage colony-stimulating factor receptor (GM-CSFR/CSF2R). GM-CSFRα was detected on the surface, in the cytosol, and in the nucleus of CLL cells via confocal microscopy, cell fractionation, and GM-CSFRα antibody epitope mapping. Because STAT3 is frequently activated in CLL and the GM-CSFRα promoter harbors putative STAT3 consensus binding sites, MM1 cells were transfected with truncated forms of the GM-CSFRα promoter, then stimulated with IL6 to activate STAT3 and to identify STAT3-binding sites. Chromatin immunoprecipitation (ChIP) and an electoromobility shift assay (EMSA) confirmed STAT3 occupancy to those promoter regions in both IL6-stimulated MM1 and CLL cells. Transfection of MM1 cells with STAT3-siRNA or CLL cells with STAT3-shRNA significantly downregulated GM-CSFRα mRNA and protein levels. RNA transcripts, involved in regulating cell survival pathways, and the proteins KAP1 (TRIM28) and ISG15 coimmunoprecipitated with GM-CSFRα. GM-CSFRα-bound KAP1 enhanced the transcriptional activity of STAT3, whereas GM-CSFRα-bound ISG15 inhibited the NF-κB pathway. Nevertheless, overexpression of GM-CSFRα protected MM1 cells from dexamethasone-induced apoptosis, and GM-CSFRα knockdown induced apoptosis in CLL cells, suggesting that GM-CSFRα provides a ligand-independent survival advantage. IMPLICATIONS Constitutively, activation of STAT3 induces the expression of GM-CSFRα that protects CLL cells from apoptosis, suggesting that inhibition of STAT3 or GM-CSFRα may benefit patients with CLL.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carlos Bueso-Ramos
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Weber GF, Chousterman BG, Hilgendorf I, Robbins CS, Theurl I, Gerhardt LMS, Iwamoto Y, Quach TD, Ali M, Chen JW, Rothstein TL, Nahrendorf M, Weissleder R, Swirski FK. Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis. ACTA ACUST UNITED AC 2014; 211:1243-56. [PMID: 24821911 PMCID: PMC4042649 DOI: 10.1084/jem.20131471] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In response to lung infection, pleural innate response activator B cells produce GM-CSF–dependent IgM and ensure a frontline defense against bacterial invasion. Pneumonia is a major cause of mortality worldwide and a serious problem in critical care medicine, but the immunophysiological processes that confer either protection or morbidity are not completely understood. We show that in response to lung infection, B1a B cells migrate from the pleural space to the lung parenchyma to secrete polyreactive emergency immunoglobulin M (IgM). The process requires innate response activator (IRA) B cells, a transitional B1a-derived inflammatory subset which controls IgM production via autocrine granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling. The strategic location of these cells, coupled with the capacity to produce GM-CSF–dependent IgM, ensures effective early frontline defense against bacteria invading the lungs. The study describes a previously unrecognized GM-CSF-IgM axis and positions IRA B cells as orchestrators of protective IgM immunity.
Collapse
Affiliation(s)
- Georg F Weber
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 Department of Visceral, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Benjamin G Chousterman
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Ingo Hilgendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Clinton S Robbins
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Igor Theurl
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Louisa M S Gerhardt
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Tam D Quach
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Muhammad Ali
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - John W Chen
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Thomas L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
272
|
Bao Y, Cao X. The immune potential and immunopathology of cytokine-producing B cell subsets: a comprehensive review. J Autoimmun 2014; 55:10-23. [PMID: 24794622 DOI: 10.1016/j.jaut.2014.04.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 02/07/2023]
Abstract
B lymphocytes are generally recognized for their potential to mediate humoral immunity by producing different antibody isotypes and being involved in opsonization and complement fixation. Nevertheless, the non-classical, antibody-independent immune potential of B cell subsets has attracted much attention especially in the past decade. These B cells can release a broad variety of cytokines (such as IL-2, IL-4, IL-6, IL-10, IL-17, IFN-α, IFN-γ, TNF-α, TGF-β, LT), and can be classified into distinct subsets depending on the particular cytokine profile, thus emerging the concept of cytokine-producing B cell subsets. Although there is still controversy surrounding the key cell surface markers, intracellular factors and cellular origins of cytokine-producing B cell subsets, accumulating evidence indicates that these B cells are endowed with great potential to regulate both innate and adaptive arms of immune system though releasing cytokines. On the one hand, they promote immune responses through mounting Th1/Th2/Th17 and neutrophil response, inducing DC maturation and formation of lymphoid structures, increasing NK cell and macrophage activation, enhancing development of themselves and sustaining antibody production. On the other hand, they can negatively regulate immune responses by suppressing Th cell responses, inhibiting Tr1 cell and Foxp3(+) Treg differentiation, impairing APC function and pro-inflammatory cytokine release by monocytes, and inducing CD8(+) T cell anergy and CD4(+) T cell apoptosis. Therefore, cytokine-producing B cell subsets have multifunctional functions in health and diseases, playing pathologic as well as protective roles in autoimmunity, infection, allergy, and even malignancy. In this review, we revisit the history of discovering cytokine-producing B cells, describe the identification of cytokine-producing B cell subsets, introduce the origins of cytokine-producing B cell subsets as well as molecular and cellular mechanisms for their differentiation, and summarize the recent progress made toward understanding the unexpectedly complex and potentially opposing roles of cytokine-producing B cells in immunological disorders.
Collapse
Affiliation(s)
- Yan Bao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China; Translational Medicine Center, Changzheng Hospital, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
273
|
Baumgarth N. How specific is too specific? B-cell responses to viral infections reveal the importance of breadth over depth. Immunol Rev 2014; 255:82-94. [PMID: 23947349 DOI: 10.1111/imr.12094] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Influenza virus infection induces robust and highly protective B-cell responses. Knowledge gained from the analysis of such protective humoral responses can provide important clues for the design of successful vaccines and vaccination approaches and also provides a window into the regulation of fundamental aspects of B-cell responses that may not be at play when responses to non-replicating agents are studied. Here, I review features of the B-cell response to viruses, with emphasis on influenza virus infection, a highly localized infection of respiratory tract epithelial cells, and a response that is directed against a virus that continuously undergoes genetic changes to its surface spike protein, a major target of neutralizing antibodies. Two aspects of the B-cell response to influenza are discussed here, namely polyreactive natural antibodies and the role and function of germinal center responses. Both these features of the B-cell response raise the question of how important antibody fine-specificity is for long-term protection from infection. As outlined, the pathogenesis of influenza virus and the nature of the antiviral B-cell response seem to emphasize repertoire diversity over affinity maturation as driving forces behind the influenza-specific B-cell immunity.
Collapse
Affiliation(s)
- Nicole Baumgarth
- Center for Comparative Medicine and the Department of Pathology, Microbiology & Immunology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
274
|
Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, Barra CM, Comerma L, Chudnovskiy A, Gentile M, Llige D, Cols M, Serrano S, Aróstegui JI, Juan M, Yagüe J, Merad M, Fagarasan S, Cerutti A. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol 2014; 15:354-364. [PMID: 24562309 PMCID: PMC4005806 DOI: 10.1038/ni.2830] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/16/2014] [Indexed: 12/12/2022]
Abstract
Innate lymphoid cells (ILCs) regulate stromal cells, epithelial cells and cells of the immune system, but their effect on B cells remains unclear. Here we identified RORγt(+) ILCs near the marginal zone (MZ), a splenic compartment that contains innate-like B cells highly responsive to circulating T cell-independent (TI) antigens. Splenic ILCs established bidirectional crosstalk with MAdCAM-1(+) marginal reticular cells by providing tumor-necrosis factor (TNF) and lymphotoxin, and they stimulated MZ B cells via B cell-activation factor (BAFF), the ligand of the costimulatory receptor CD40 (CD40L) and the Notch ligand Delta-like 1 (DLL1). Splenic ILCs further helped MZ B cells and their plasma-cell progeny by coopting neutrophils through release of the cytokine GM-CSF. Consequently, depletion of ILCs impaired both pre- and post-immune TI antibody responses. Thus, ILCs integrate stromal and myeloid signals to orchestrate innate-like antibody production at the interface between the immune system and circulatory system.
Collapse
Affiliation(s)
- Giuliana Magri
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Michio Miyajima
- Laboratory for Mucosal Immunity, RIKEN Center for Integrative Medical Sciences, RIKEN Yokohama, Tsurumi, Yokohama, Japan
| | - Sabrina Bascones
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Arthur Mortha
- Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Irene Puga
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Linda Cassis
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Carolina M Barra
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Laura Comerma
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Aleksey Chudnovskiy
- Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maurizio Gentile
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - David Llige
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Montserrat Cols
- Immunology Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sergi Serrano
- Department of Pathology, Hospital del Mar, Universitat Autònoma de Barcelona and Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Manel Juan
- Immunology Service, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Jordi Yagüe
- Immunology Service, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Miriam Merad
- Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Immunology Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, RIKEN Center for Integrative Medical Sciences, RIKEN Yokohama, Tsurumi, Yokohama, Japan
| | - Andrea Cerutti
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
- Immunology Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona Biomedical Research Park, Barcelona, Spain
| |
Collapse
|
275
|
Ries S, Hilgenberg E, Lampropoulou V, Shen P, Dang VD, Wilantri S, Sakwa I, Fillatreau S. B-type suppression: a role played by "regulatory B cells" or "regulatory plasma cells"? Eur J Immunol 2014; 44:1251-7. [PMID: 24615065 DOI: 10.1002/eji.201343683] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 01/17/2014] [Accepted: 03/06/2014] [Indexed: 01/10/2023]
Abstract
B-cell depletion can improve disease in some patients with rheumatoid arthritis or multiple sclerosis, indicating the pathogenic contribution of B cells to autoimmunity. However, studies in mice have demonstrated that B cells have immunosuppressive functions as well, with IL-10 being a critical mediator of B-cell-mediated suppression. IL-10-secreting B cells have been shown to promote disease remission in some mouse models of autoimmune disorders. Human B cells also produce IL-10, and evidence is accumulating that human IL-10-producing B cells might inhibit immunity. There is considerable interest in identifying the phenotype of B cells providing IL-10 in a suppressive manner, which would facilitate the analysis of the molecular mechanisms controlling this B-cell property. Here, we review current knowledge on the B-cell subpopulations found to provide suppressive functions in mice, considering both the pathological context in which they were identified and the signals that control their induction. We discuss the phenotype of B cells that have IL-10-dependent regulatory activities in mice, which leads us to propose that antibody-secreting cells are, in some cases at least, the major source of B-cell-derived regulatory IL-10 in vivo. Anti-inflammatory cytokine production by antibody-secreting cells offers a novel mechanism for the coordination of innate and humoral immune responses.
Collapse
Affiliation(s)
- Stefanie Ries
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
276
|
Wang M, Subramanian M, Abramowicz S, Murphy AJ, Gonen A, Witztum J, Welch C, Tabas I, Westerterp M, Tall AR. Interleukin-3/granulocyte macrophage colony-stimulating factor receptor promotes stem cell expansion, monocytosis, and atheroma macrophage burden in mice with hematopoietic ApoE deficiency. Arterioscler Thromb Vasc Biol 2014; 34:976-84. [PMID: 24651678 DOI: 10.1161/atvbaha.113.303097] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Coronary heart disease is associated with monocytosis. Studies using animal models of monocytosis and atherosclerosis such as ApoE(-/-) mice have shown bone marrow (BM) hematopoietic stem and multipotential progenitor cell (HSPC) expansion, associated with increased cell surface expression of the common β subunit of the granulocyte macrophage colony-stimulating factor/interleukin-3 receptor (CBS) on HSPCs. ApoE(-/-) mice also display increased granulocyte macrophage colony-stimulating factor-dependent monocyte production in the spleen. We investigated the role of the CBS in cholesterol-driven HSPC expansion, monocytosis, and atherosclerosis. APPROACH AND RESULTS Ldlr(-/-) mice were transplanted with ApoE(-/-)Cbs(-/-) or ApoE(-/-) BM followed by Western-type diet feeding. Compared with ApoE(-/-) BM-transplanted controls, ApoE(-/-)Cbs(-/-) BM-transplanted mice had reduced BM and splenic HSPC proliferation, fewer blood monocytes and neutrophils, and reduced macrophage content and area of early atherosclerotic lesions. More advanced lesions showed diminished macrophage and collagen content; however, lesion size was unchanged, reflecting an increase in necrotic core area, associated with a marked decrease in Abcg1 expression and increased macrophage apoptosis. Compared with wild-type mice, Western-type diet-fed ApoE(-/-) mice showed increased CBS expression on granulocyte macrophage colony-stimulating factor-producing innate response activator B cells and expansion of this population. ApoE(-/-)Cbs(-/-) BM-transplanted Ldlr(-/-) mice showed a marked decrease in innate response activator B cells compared with ApoE(-/-) BM-transplanted Ldlr(-/-) controls. CONCLUSIONS Increased levels of CBS on HSPCs and splenic innate response activator B cells lead to expansion of these populations in ApoE(-/-) BM-transplanted Ldlr(-/-) mice, contributing to monocytosis and increased lesional macrophage content. However, in more advanced lesions, the CBS also has a role in atherosclerotic plaque stabilization.
Collapse
Affiliation(s)
- Mi Wang
- From the Division of Molecular Medicine, Department of Medicine (M. Wang, M.S., S.A., A.J.M., C.W., I.T., M. Westerterp, A.R.T.) and Department of Pharmacology (M. Wang), Columbia University, New York, NY; Department of Medicine, University of California San Diego, La Jolla (A.G., J.W.); and Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M. Westerterp)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Bergquist M, Jirholt P, Nurkkala M, Rylander C, Hedenstierna G, Lindholm C. Glucocorticoid receptor function is decreased in neutrophils during endotoxic shock. J Infect 2014; 69:113-22. [PMID: 24657243 DOI: 10.1016/j.jinf.2014.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVES It remains unclear whether glucocorticoid treatment can improve the outcome of sepsis. The aim of the present study was to investigate if glucocorticoid receptor (GR) expression and function is impaired in lipopolysaccharide (LPS) induced shock, and whether the time point for start of glucocorticoid treatment affects the outcome. METHODS Male C57BL/6J mice were administered LPS i.p. and GR expression and binding ability in blood and spleen leukocytes were analysed by flow cytometry. GR translocation was analysed using Image Stream technique. The effect of dexamethasone treatment started 2 h before or 2, 12 or 36 h after LPS administration on survival was studied. RESULTS Despite increased GR expression in neutrophils after LPS administration, the GR binding capacity was reduced. In addition, GR translocation was decreased in neutrophils and T lymphocytes from endotoxic mice at 12 h compared to control animals. Dexamethasone treatment improved survival only when started early (2 h) after LPS administration. CONCLUSION The decreased glucocorticoid responsiveness displayed by neutrophils, in combination with their increased numbers, may explain why survival is increased only when dexamethasone treatment is given early during LPS induced shock.
Collapse
Affiliation(s)
- Maria Bergquist
- Department of Medical Sciences, The Hedenstierna Laboratory, Uppsala University, Sweden; Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Pernilla Jirholt
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Merja Nurkkala
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Christian Rylander
- Department of Anaesthesia & Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Hedenstierna
- Department of Medical Sciences, The Hedenstierna Laboratory, Uppsala University, Sweden
| | - Catharina Lindholm
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
278
|
From the regulatory functions of B cells to the identification of cytokine-producing plasma cell subsets. Curr Opin Immunol 2014; 28:77-83. [PMID: 24637161 DOI: 10.1016/j.coi.2014.02.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/20/2014] [Accepted: 02/20/2014] [Indexed: 01/08/2023]
Abstract
B lymphocytes have a unique role as antibody-producing cells. Antibodies are key mediators of humoral immunity against infections, and are thought to account for the protection afforded by successful vaccines. B cells can also secrete cytokines and subsequently regulate immune responses mediated by T and innate cells. Remarkably, recent studies identified plasma blasts/plasma cells as the main types of activated B cells producing the cytokines interleukin (IL)-10, IL-35, tumor necrosis factor (TNF)-α, IL-17, and GM-CSF in various contexts in mice. Here, we discuss these observations, which suggest the existence of various subsets of plasma blast/plasma cells distinguishable through their cytokine expression pattern.
Collapse
|
279
|
Abstract
Despite the progress made in the clinical management of sepsis, sepsis morbidity and mortality rates remain high. The inflammatory pathogenesis and organ injury leading to death from sepsis are not fully understood for vital organs, especially the liver. Only recently has the role of the liver in sepsis begun to be revealed. Pre-existing liver dysfunction is a risk factor for the progression of infection to sepsis. Liver dysfunction after sepsis is an independent risk factor for multiple organ dysfunction and sepsis-induced death. The liver works as a lymphoid organ in response to sepsis. Acting as a double-edged sword in sepsis, the liver-mediated immune response is responsible for clearing bacteria and toxins but also causes inflammation, immunosuppression, and organ damage. Attenuating liver injury and restoring liver function lowers morbidity and mortality rates in patients with sepsis. This review summarizes the central role of liver in the host immune response to sepsis and in clinical outcomes.
Collapse
Affiliation(s)
- Jun Yan
- Department of Musculoskeletal Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai , China
| | | | | |
Collapse
|
280
|
Prado C, Rodríguez M, Cortegano I, Ruiz C, Alía M, de Andrés B, Gaspar ML. Postnatal and adult immunoglobulin repertoires of innate-like CD19(+)CD45R(lo) B Cells. J Innate Immun 2014; 6:499-514. [PMID: 24603602 DOI: 10.1159/000358237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/27/2013] [Indexed: 01/06/2023] Open
Abstract
The diversity in antibody repertoire relies on different B cell populations working efficiently to fulfil distinct specific functions. We recently described an innate-like CD19(+)CD45R(-/lo) (19(+)45R(lo)) cell population in postnatal unstimulated adult mice, a heterogeneous population containing cells expressing immunoglobulin M (IgM) and others behaving as differentiated mature B lymphocytes (intracytoplasmic IgG1, AID(+), Blimp-1(+)RAG2(-)). In the present study, we characterized the Ig repertoire expressed by splenic 19(+)45R(lo) cells, assuming that they would bear a restricted repertoire biased for germline rearrangements and low mutation rates similar to other innate-like cells. Sequences from 19(+)45R(lo) cells displayed a variety of V, D and J regions, and the analysis of the CDR-H3 region revealed an intermediate overall CDR-H3 length and moderate hydrophobicity. Both IgM and switched sequences of PD15 19(+)45R(lo) cells had shorter CDR-H3 region and fewer non-template N nucleotides than adult sequences, as expected for profiles that correspond to an immature phenotype. Regarding the mutation rate in the VH regions, IgG1 sequences already carried a high rate of replacement mutations at PD15, which increased further in the sequences obtained from adult mice. Moreover, statistical models suggest that a proportion of the switched sequences in adult 19(+)45R(lo) cells had experienced antigen selection, unlike other innate-like B cell compartments.
Collapse
Affiliation(s)
- Carmen Prado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
281
|
Paradis M, Mindt BC, Duerr CU, Rojas OL, Ng D, Boulianne B, McCarthy DD, Yu MD, Summers deLuca LE, Ward LA, Waldron JB, Philpott DJ, Gommerman JL, Fritz JH. A TNF-α–CCL20–CCR6 Axis Regulates Nod1-Induced B Cell Responses. THE JOURNAL OF IMMUNOLOGY 2014; 192:2787-99. [DOI: 10.4049/jimmunol.1203310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
282
|
Hilgendorf I, Theurl I, Gerhardt LMS, Robbins CS, Weber GF, Gonen A, Iwamoto Y, Degousee N, Holderried TAW, Winter C, Zirlik A, Lin HY, Sukhova GK, Butany J, Rubin BB, Witztum JL, Libby P, Nahrendorf M, Weissleder R, Swirski FK. Innate response activator B cells aggravate atherosclerosis by stimulating T helper-1 adaptive immunity. Circulation 2014; 129:1677-87. [PMID: 24488984 DOI: 10.1161/circulationaha.113.006381] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Atherosclerotic lesions grow via the accumulation of leukocytes and oxidized lipoproteins in the vessel wall. Leukocytes can attenuate or augment atherosclerosis through the release of cytokines, chemokines, and other mediators. Deciphering how leukocytes develop, oppose, and complement each other's function and shape the course of disease can illuminate our understanding of atherosclerosis. Innate response activator (IRA) B cells are a recently described population of granulocyte macrophage colony-stimulating factor-secreting cells of hitherto unknown function in atherosclerosis. METHODS AND RESULTS Here, we show that IRA B cells arise during atherosclerosis in mice and humans. In response to a high-cholesterol diet, IRA B cell numbers increase preferentially in secondary lymphoid organs via Myd88-dependent signaling. Mixed chimeric mice lacking B cell-derived granulocyte macrophage colony-stimulating factor develop smaller lesions with fewer macrophages and effector T cells. Mechanistically, IRA B cells promote the expansion of classic dendritic cells, which then generate interferon γ-producing T helper-1 cells. This IRA B cell-dependent T helper-1 skewing manifests in an IgG1-to-IgG2c isotype switch in the immunoglobulin response against oxidized lipoproteins. CONCLUSIONS Granulocyte macrophage colony-stimulating factor-producing IRA B cells alter adaptive immune processes and shift the leukocyte response toward a T helper-1-associated milieu that aggravates atherosclerosis.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Center for Systems Biology, Massachusetts General Hospital, Boston (I.H., I.T., L.M.S.G., C.S.R., G.F.W., Y.I., C.W., H.Y.L., M.N., R.W., F.K.S.); Department of Internal Medicine VI, Infectious Diseases, Immunology Rheumatology, Pneumology, University Hospital of Innsbruck, Innsbruck, Austria (I.T.); Toronto General Research Institute, University Health Network, Toronto, ON, Canada (C.S.R., N.D.); Department of Medicine, University of California, San Diego, La Jolla (A.G., J.L.W.); Department of Gastroenterology, Hepatology and Infectious Diseases, University of Duesseldorf, Duesseldorf, Germany (T.A.W.H.); Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany (C.W., A.Z.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (G.K.S., P.L.); Department of Pathology (J.B.) and Division of Vascular Surgery (B.B.R.), Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, ON, Canada; and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Bronte V, Pittet MJ. The spleen in local and systemic regulation of immunity. Immunity 2014; 39:806-18. [PMID: 24238338 PMCID: PMC3912742 DOI: 10.1016/j.immuni.2013.10.010] [Citation(s) in RCA: 707] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/22/2013] [Indexed: 02/08/2023]
Abstract
The spleen is the main filter for blood-borne pathogens and antigens, as well as a key organ for iron metabolism and erythrocyte homeostasis. Also, immune and hematopoietic functions have been recently unveiled for the mouse spleen, suggesting additional roles for this secondary lymphoid organ. Here we discuss the integration of the spleen in the regulation of immune responses locally and in the whole body and present the relevance of findings for our understanding of inflammatory and degenerative diseases and their treatments. We consider whether equivalent activities in humans are known, as well as initial therapeutic attempts to target the spleen for modulating innate and adaptive immunity.
Collapse
Affiliation(s)
- Vincenzo Bronte
- Verona University Hospital and Department of Pathology, 37134 Verona, Italy.
| | | |
Collapse
|
284
|
From proliferation to proliferation: monocyte lineage comes full circle. Semin Immunopathol 2014; 36:137-48. [PMID: 24435095 DOI: 10.1007/s00281-013-0409-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/25/2013] [Indexed: 12/15/2022]
Abstract
Monocytes are mononuclear circulating phagocytes that originate in the bone marrow and give rise to macrophages in peripheral tissue. For decades, our understanding of monocyte lineage was bound to a stepwise model that favored an inverse relationship between cellular proliferation and differentiation. Sophisticated molecular and surgical cell tracking tools have transformed our thinking about monocyte topo-ontogeny and function. Here, we discuss how recent studies focusing on progenitor proliferation and differentiation, monocyte mobilization and recruitment, and macrophage differentiation and proliferation are reshaping knowledge of monocyte lineage in steady state and disease.
Collapse
|
285
|
Yenson V, Baumgarth N. Purification and immune phenotyping of B-1 cells from body cavities of mice. Methods Mol Biol 2014; 1190:17-34. [PMID: 25015270 DOI: 10.1007/978-1-4939-1161-5_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
B-1 cells are innate-like lymphocytes that generate natural, polyreactive antibodies with important functions in tissue homeostasis and immune defense. While B-1-cell frequencies in secondary lymphoid tissues are low, relative high frequencies are found within peritoneal and pleural cavities of mice, including both CD5(+) B-1a and CD5(-) B-1b cells. They represent reservoirs of B-1 cells that can be activated for migration to lymphoid tissues to secrete antibodies and/or cytokines. Here, we outline efficient methods for the extraction and magnetic isolation of B-1a cells from the peritoneal and pleural cavities and the separation and phenotypic characterization of B-1a and B1-b cells by flow cytometry.
Collapse
Affiliation(s)
- Vanessa Yenson
- Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of California, Davis, CA, USA
| | | |
Collapse
|
286
|
Sturrock A, Mir-Kasimov M, Baker J, Rowley J, Paine R. Key role of microRNA in the regulation of granulocyte macrophage colony-stimulating factor expression in murine alveolar epithelial cells during oxidative stress. J Biol Chem 2013; 289:4095-105. [PMID: 24371146 DOI: 10.1074/jbc.m113.535922] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GM-CSF is an endogenous pulmonary cytokine produced by normal alveolar epithelial cells (AEC) that is a key defender of the alveolar space. AEC GM-CSF expression is suppressed by oxidative stress through alternations in mRNA turnover, an effect that is reversed by treatment with recombinant GM-CSF. We hypothesized that specific microRNA (miRNA) would play a key role in AEC GM-CSF regulation. A genome-wide miRNA microarray identified 19 candidate miRNA altered in primary AEC during oxidative stress with reversal by treatment with GM-CSF. Three of these miRNA (miR 133a, miR 133a*, and miR 133b) are also predicted to bind the GM-CSF 3'-untranslated region (UTR). PCR for the mature miRNA confirmed induction during oxidative stress that was reversed by treatment with GM-CSF. Experiments using a GM-CSF 3'-UTR reporter construct demonstrated that miR133a and miR133b effects on GM-CSF expression are through interactions with the GM-CSF 3'-UTR. Using lentiviral transduction of specific mimics and inhibitors in primary murine AEC, we determined that miR133a and miR133b suppress GM-CSF expression and that their inhibition both reverses oxidant-induced suppression of GM-CSF expression and increases basal expression of GM-CSF in cells in normoxia. In contrast, these miRNAs are not active in regulation of GM-CSF expression in murine EL4 T cells. Thus, members of the miR133 family play key roles in regulation of GM-CSF expression through effects on mRNA turnover in AEC during oxidative stress. Increased understanding of GM-CSF gene regulation may provide novel miRNA-based interventions to augment pulmonary innate immune defense in lung injury.
Collapse
Affiliation(s)
- Anne Sturrock
- From the Department of Veterans Affairs Medical Center, Salt Lake City, Utah 84148 and
| | | | | | | | | |
Collapse
|
287
|
Abstract
After myocardial infarction (MI), circulating B cells produce the chemokine Ccl7, which mobilizes inflammatory monocytes from the bone marrow into the blood, after which they are then recruited to the injured heart, a new study shows. B cell depletion after MI limits myocardial injury and improves heart function, suggesting a new approach for the management of acute MI (pages 1273–1280).
Collapse
|
288
|
Morris-Rosenfeld S, Lipinski MJ, McNamara CA. Understanding the role of B cells in atherosclerosis: potential clinical implications. Expert Rev Clin Immunol 2013; 10:77-89. [PMID: 24308836 DOI: 10.1586/1744666x.2014.857602] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atherosclerosis is a progressive inflammatory disease of the medium to large arteries that is the largest contributor to cardiovascular disease. B-cell subsets have been shown in animal models of atherosclerosis to have both atherogenic and atheroprotective properties. In this review, we highlight the research that developed our understanding of the role of B cells in atherosclerosis both in humans and mice. From this we discuss the potential clinical impact B cells could have both as diagnostic biomarkers and as targets for immunotherapy. Finally, we recognize the inherent difficulty in translating findings from animal models into humans given the differences in both cardiovascular disease and the immune system between mice and humans, making the case for greater efforts at addressing the role of B cells in human atherosclerosis.
Collapse
Affiliation(s)
- Samuel Morris-Rosenfeld
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA and Department of Medicine, Cardiovascular Division at the University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
289
|
Luu VP, Vazquez MI, Zlotnik A. B cells participate in tolerance and autoimmunity through cytokine production. Autoimmunity 2013; 47:1-12. [DOI: 10.3109/08916934.2013.856006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
290
|
Giamarellos-Bourboulis EJ, Apostolidou E, Lada M, Perdios I, Gatselis NK, Tsangaris I, Georgitsi M, Bristianou M, Kanni T, Sereti K, Kyprianou MA, Kotanidou A, Armaganidis A. Kinetics of circulating immunoglobulin M in sepsis: relationship with final outcome. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R247. [PMID: 24144038 PMCID: PMC4056013 DOI: 10.1186/cc13073] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/23/2013] [Indexed: 02/07/2023]
Abstract
Introduction The aim of this study was to investigate the kinetics of immunoglobulin M (IgM) during the different stages of sepsis. Methods In this prospective multicenter study, blood sampling for IgM measurement was done within the first 24 hours from diagnosis in 332 critically ill patients; in 83 patients this was repeated upon progression to more severe stages. Among these 83 patients, 30 patients with severe sepsis progressed into shock and IgM was monitored daily for seven consecutive days. Peripheral blood mononuclear cells (PBMCs) were isolated from 55 patients and stimulated for IgM production. Results Serum IgM was decreased in septic shock compared to patients with systemic inflammatory response syndrome (SIRS) and patients with severe sepsis. Paired comparisons at distinct time points of the sepsis course showed that IgM was decreased only when patients deteriorated from severe sepsis to septic shock. Serial measurements in these patients, beginning from the early start of vasopressors, showed that the distribution of IgM over time was significantly greater for survivors than for non-survivors. Production of IgM by PBMCs was significantly lower at all stages of sepsis compared with healthy controls. Conclusions Specific changes of circulating IgM occur when patients with severe sepsis progress into septic shock. The distribution of IgM is lower among non-survivors.
Collapse
|
291
|
Immunopathogenesis of abdominal sepsis. Langenbecks Arch Surg 2013; 399:1-9. [DOI: 10.1007/s00423-013-1129-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 09/29/2013] [Indexed: 12/26/2022]
|
292
|
Zouggari Y, Ait-Oufella H, Bonnin P, Simon T, Sage AP, Guérin C, Vilar J, Caligiuri G, Tsiantoulas D, Laurans L, Dumeau E, Kotti S, Bruneval P, Charo IF, Binder CJ, Danchin N, Tedgui A, Tedder TF, Silvestre JS, Mallat Z. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med 2013; 19:1273-80. [PMID: 24037091 DOI: 10.1038/nm.3284] [Citation(s) in RCA: 436] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/26/2013] [Indexed: 12/13/2022]
Abstract
Acute myocardial infarction is a severe ischemic disease responsible for heart failure and sudden death. Here, we show that after acute myocardial infarction in mice, mature B lymphocytes selectively produce Ccl7 and induce Ly6C(hi) monocyte mobilization and recruitment to the heart, leading to enhanced tissue injury and deterioration of myocardial function. Genetic (Baff receptor deficiency) or antibody-mediated (CD20- or Baff-specific antibody) depletion of mature B lymphocytes impeded Ccl7 production and monocyte mobilization, limited myocardial injury and improved heart function. These effects were recapitulated in mice with B cell-selective Ccl7 deficiency. We also show that high circulating concentrations of CCL7 and BAFF in patients with acute myocardial infarction predict increased risk of death or recurrent myocardial infarction. This work identifies a crucial interaction between mature B lymphocytes and monocytes after acute myocardial ischemia and identifies new therapeutic targets for acute myocardial infarction.
Collapse
Affiliation(s)
- Yasmine Zouggari
- 1] Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 970, Paris Cardiovascular Research Center, Paris, France. [2] Université Paris-Descartes, Paris, France. [3]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Teague H, Fhaner CJ, Harris M, Duriancik DM, Reid GE, Shaikh SR. n-3 PUFAs enhance the frequency of murine B-cell subsets and restore the impairment of antibody production to a T-independent antigen in obesity. J Lipid Res 2013; 54:3130-8. [PMID: 23986558 DOI: 10.1194/jlr.m042457] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of n-3 polyunsaturated fatty acids (PUFA) on in vivo B-cell immunity is unknown. We first investigated how n-3 PUFAs impacted in vivo B-cell phenotypes and antibody production in the absence and presence of antigen compared with a control diet. Lean mice consuming n-3 PUFAs for 4 weeks displayed increased percentage and frequency of splenic transitional 1 B cells. Upon stimulation with trinitrophenylated-lipopolysaccharide, n-3 PUFAs increased the number of splenic transitional 1/2, follicular, premarginal, and marginal zone B cells. n-3 PUFAs also increased surface, but not circulating, IgM. We next tested the effects of n-3 PUFAs in a model of obesity that is associated with suppressed humoral immunity. An obesogenic diet after ten weeks of feeding, relative to a lean control, had no effect on the frequency of B cells but lowered circulating IgM upon antigen stimulation. Administration of n-3 PUFAs to lean and obese mice increased the percentage and/or frequency of transitional 1 and marginal zone B cells. Furthermore, n-3 PUFAs in lean and obese mice increased circulating IgM relative to controls. Altogether, the data show n-3 PUFAs enhance B cell-mediated immunity in vivo, which has implications for immunocompromised populations, such as the obese.
Collapse
Affiliation(s)
- Heather Teague
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | | | | | | | | | | |
Collapse
|
294
|
Clatworthy MR. B-cell regulation and its application to transplantation. Transpl Int 2013; 27:117-28. [PMID: 23909582 DOI: 10.1111/tri.12160] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/08/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022]
Abstract
There has been increasing interest in the role played by B cells and their associated antibody in the immune response to an allograft, driven by the need to undertake antibody-incompatible transplantation and evidence suggesting that B cells play a role in acute T-cell-mediated rejection and in acute and chronic antibody-mediated rejection. This review focuses on the molecular events, both activating and inhibitory, which control B-cell activation, and considers how this information might inform therapeutic strategies. Potential targets include the BAFF (B-cell-activating factor belonging to the tumour necrosis factor family) and CD40-CD40L pathways and inhibitory molecules, such as CD22 and FcγRIIB. B cells can also play an immunomodulatory role via interleukin (IL)10 production and may contribute to transplant tolerance. The expansion of allograft-specific IL10-producing B cells may be an additional therapeutic goal. Thus, the treatment paradigm required in transplantation has shifted from that of simple B-cell depletion, to that of a more subtle, differential manipulation of different B-cell subsets.
Collapse
|
295
|
Monocyte heterogeneity in cardiovascular disease. Semin Immunopathol 2013; 35:553-62. [PMID: 23839097 DOI: 10.1007/s00281-013-0387-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/20/2013] [Indexed: 02/04/2023]
Abstract
Only a few decades ago, students of the pathophysiology of cardiovascular disease paid little heed to the involvement of inflammation and immunity. Multiple lines of evidence now point to the participation of innate and adaptive immunity and inflammatory signaling in a variety of cardiovascular conditions. Hence, interest has burgeoned in this intersection. This review will focus on the contribution of innate immunity to both acute injury to the heart muscle itself, notably myocardial infarction, and to chronic inflammation in the artery wall, namely atherosclerosis, the cause of most myocardial infarctions. Our discussion of the operation of innate immunity in cardiovascular diseases will focus on functions of the mononuclear phagocytes, with special attention to emerging data regarding the participation of different functional subsets of these cells in cardiovascular pathophysiology.
Collapse
|
296
|
Early alterations of B cells in patients with septic shock: another piece in the complex puzzle of the immune response in sepsis. Crit Care 2013; 17:162. [PMID: 23841966 PMCID: PMC4056756 DOI: 10.1186/cc12778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Impairment of the inflammatory-immune response is currently accepted as a hallmark of severe sepsis even in the early stages of the disease. In this context, the alterations of the circulating B-lymphocytes have never been described in detail. The study by Monserrat and colleagues in the previous issue of Critical Care indicated that, in patients with septic shock, the B-cell compartment is early and deeply altered with different patterns in subset distribution and activation between survivors and non-survivors.
Collapse
|
297
|
Monserrat J, de Pablo R, Diaz-Martín D, Rodríguez-Zapata M, de la Hera A, Prieto A, Alvarez-Mon M. Early alterations of B cells in patients with septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R105. [PMID: 23721745 PMCID: PMC4056890 DOI: 10.1186/cc12750] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/30/2013] [Indexed: 12/15/2022]
Abstract
Introduction It has recently been proposed that B lymphocytes are involved in sepsis pathogenesis. The goal of this study is to investigate potential abnormalities in a subset distribution and activation of circulating B lymphocytes in patients with septic shock. Methods This observational prospective study was conducted in a medical-surgical ICU. All patients with septic shock were eligible for inclusion. B-cell phenotypes (CD19+CD69+, CD19+CD23+, CD19+CD5+, CD19+CD80, CD19+CD86+, CD19+CD40 and CD19+CD95+) were assessed by quantitative flow cytometry upon admission to the ICU and 3, 7, 14 and 28 d later. Results Fifty-two patients were included. Thirty-six healthy volunteers matched for age and sex were used as controls. The patients had lymphopenia that was maintained during 28 d of follow-up. In patients with septic shock who died, the percentage of CD19+CD23+ was lower during the 7 d of follow-up than it was in survival patients. Moreover, the percentage of CD80+ and CD95+ expression on B cells was higher in patients who died than in survivors. Receiver operating characteristic curve analysis showed that a CD19+CD23+ value of 64.6% at ICU admission enabled discrimination between survivors and nonsurvivors with a sensitivity of 90.9% and a specificity of 80.0% (P = 0.0001). Conclusions Patients with septic shock who survive and those who don't have different patterns of abnormalities in circulating B lymphocytes. At ICU admission, a low percentage of CD23+ and a high of CD80+ and CD95+ on B cells were associated with increased mortality of patients with septic shock. Moreover, a drop in circulating B cells persisted during 28 d of ICU follow-up.
Collapse
|
298
|
Serio B, Pezzullo L, Giudice V, Fontana R, Annunziata S, Ferrara I, Rosamilio R, De Luca C, Rocco M, Montuori N, Selleri C. OPSI threat in hematological patients. Transl Med UniSa 2013; 6:2-10. [PMID: 24251241 PMCID: PMC3829791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Overwhelming post-splenectomy infection (OPSI) is a rare medical emergency, mainly caused by encapsulated bacteria, shortly progressing from a mild flu-like syndrome to a fulminant, potentially fatal, sepsis. The risk of OPSI is higher in children and in patients with underlying benign or malignant hematological disorders. We retrospectively assessed OPSI magnitude in a high risk cohort of 162 adult splenectomized patients with malignant (19%) and non malignant (81%) hematological diseases, over a 25-year period: 59 of them splenectomized after immunization against encapsulated bacteria, and 103, splenectomized in the previous 12-year study, receiving only life-long oral penicillin prophylaxis. The influence of splenectomy on the immune system, as well as the incidence, diagnosis, risk factors, preventive measures and management of OPSI are also outlined. OPSI occurred in 7 patients (4%) with a median age of 37 years at time interval from splenectomy ranging from 10 days to 12 years. All OPSIs occurred in non immunized patients, except one fatal Staphylococcus aureus -mediated OPSI in a patient adequately immunized before splenectomy. Our analysis further provides evidence that OPSI is a lifelong risk and that current immune prophylaxis significantly decreases OPSI development. Improvement in patients' education about long-term risk of OPSI and increased physician awareness to face a potentially lethal medical emergency, according to the current surviving sepsis guidelines, represent mandatory strategies for preventing and managing OPSI appropriately.
Collapse
Affiliation(s)
- B Serio
- Hematology and Hematopoietic Stem Cell Transplant Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy;
| | - L Pezzullo
- Hematology and Hematopoietic Stem Cell Transplant Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy;
| | - V Giudice
- Hematology and Hematopoietic Stem Cell Transplant Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy;
| | - R Fontana
- Hematology and Hematopoietic Stem Cell Transplant Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy;
| | - S Annunziata
- Hematology and Hematopoietic Stem Cell Transplant Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy;
| | - I Ferrara
- Hematology and Hematopoietic Stem Cell Transplant Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy;
| | - R Rosamilio
- Hematology and Hematopoietic Stem Cell Transplant Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy;
| | - C De Luca
- Hematology and Hematopoietic Stem Cell Transplant Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy;
| | - M Rocco
- Hematology and Hematopoietic Stem Cell Transplant Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy;
| | - N Montuori
- Department of Translational Medical Sciences, Federico II University of Napoli, Napoli, Italy.
| | - C Selleri
- Hematology and Hematopoietic Stem Cell Transplant Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy;
,
(
)
| |
Collapse
|
299
|
Abstract
Neutrophils use opsonizing antibodies to enhance the clearance of intruding microbes. Recent studies indicate that splenic neutrophils also induce antibody production by providing helper signals to B cells lodged in the MZ of the spleen. Here, we discuss the B cell helper function of neutrophils in the context of growing evidence indicating that neutrophils function as sophisticated regulators of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Andrea Cerutti
- 1.Av. Dr. Aiguader 88, 08003 Barcelona, Spain. ; Twitter: http://www.imim.es/programesrecerca/inflamacio/en_bcellbiology.html or http://www.icrea.cat/Web/ScientificForm.aspx?key=452
| | | | | |
Collapse
|
300
|
Casazza A, Di Conza G, Wenes M, Finisguerra V, Deschoemaeker S, Mazzone M. Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene 2013; 33:1743-54. [PMID: 23604130 DOI: 10.1038/onc.2013.121] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 02/15/2013] [Accepted: 02/21/2013] [Indexed: 12/21/2022]
Abstract
A lot of effort has been done to study how cancer cells react to low-oxygen tension, a condition known as hypoxia. Indeed, abnormal and dysfunctional blood vessels in the tumor are incapable to restore oxygenation, therefore perpetuating hypoxia, which, in turn, will fuel tumor progression, metastasis and resistance to antitumor therapies. Nevertheless, how stromal components including blood and lymphatic endothelial cells, pericytes and fibroblasts, as well as hematopoietic cells, respond to low-oxygen tension in comparison with their normoxic counterparts has been a matter of investigation in the last few years only and, to date, this field of research remains poorly understood. In general, opposing phenotypes can arise from the same stromal component when embedded in different tumor microenvironments, and, vice versa, different stromal components can have opposite reaction to the same tumor microenvironment. In this article, we will discuss the emerging link between tumor stroma and hypoxia, and how this complexity is translated at the molecular level.
Collapse
Affiliation(s)
- A Casazza
- 1] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium, Belgium [2] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, K.U.Leuven, Leuven, Belgium, Belgium
| | - G Di Conza
- 1] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium, Belgium [2] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, K.U.Leuven, Leuven, Belgium, Belgium
| | - M Wenes
- 1] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium, Belgium [2] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, K.U.Leuven, Leuven, Belgium, Belgium
| | - V Finisguerra
- 1] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium, Belgium [2] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, K.U.Leuven, Leuven, Belgium, Belgium
| | - S Deschoemaeker
- 1] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium, Belgium [2] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, K.U.Leuven, Leuven, Belgium, Belgium
| | - M Mazzone
- 1] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium, Belgium [2] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, K.U.Leuven, Leuven, Belgium, Belgium
| |
Collapse
|