301
|
Chang SS, Rape AD, Wong SA, Guo WH, Wang YL. Migration regulates cellular mechanical states. Mol Biol Cell 2019; 30:3104-3111. [PMID: 31693433 PMCID: PMC6938245 DOI: 10.1091/mbc.e19-02-0099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent studies indicate that adherent cells are keenly sensitive to external physical environment, such as substrate rigidity and topography, and internal physical states, such as cell shape and spreading area. Many of these responses are believed to involve coupled output and input of mechanical forces, which may constitute the key sensing mechanism to generate downstream regulatory signals for cell growth and differentiation. Here, we show that the state of cell migration also plays a regulatory role. Compared with migrating cells, stationary cells generate stronger, less dynamic, and more peripherally localized traction forces. These changes are coupled to reduced focal adhesion turnover and enhanced paxillin phosphorylation. Further, using cells migrating along checkerboard micropatterns, we show that the appearance of new focal adhesions directly in front of existing focal adhesions is associated with the down-regulation of existing focal adhesions and associated traction forces. Together, our results imply a mechanism where cell migration regulates traction forces by promoting dynamic turnover of focal adhesions, which may then regulate processes such as wound healing and embryogenesis where cell differentiation must coordinate with migration state and proper localization.
Collapse
Affiliation(s)
- Stephanie S Chang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Andrew D Rape
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Stephanie A Wong
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Wei-Hui Guo
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Yu-Li Wang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
302
|
Notbohm J, Napiwocki B, deLange W, Stempien A, Saraswathibhatla A, Craven R, Salick M, Ralphe J, Crone W. Two-Dimensional Culture Systems to Enable Mechanics-Based Assays for Stem Cell-Derived Cardiomyocytes. EXPERIMENTAL MECHANICS 2019; 59:1235-1248. [PMID: 31680699 PMCID: PMC6824432 DOI: 10.1007/s11340-019-00473-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/09/2019] [Indexed: 06/10/2023]
Abstract
Well-controlled 2D cell culture systems advance basic investigations in cell biology and provide innovative platforms for drug development, toxicity testing, and diagnostic assays. These cell culture systems have become more advanced in order to provide and to quantify the appropriate biomechanical and biochemical cues that mimic the milieu of conditions present in vivo. Here we present an innovative 2D cell culture system to investigate human stem cell-derived cardiomyocytes, the muscle cells of the heart responsible for pumping blood throughout the body. We designed our 2D cell culture platform to control intracellular features to produce adult-like cardiomyocyte organization with connectivity and anisotropic conduction comparable to the native heart, and combined it with optical microscopy to quantify cell-cell and cell-substrate mechanical interactions. We show the measurement of forces and displacements that occur within individual cells, between neighboring cells, and between cells and their surrounding matrix. This system has broad potential to expand our understanding of tissue physiology, with particular advantages for the study of the mechanically active heart. Furthermore, this technique should prove valuable in screening potential drugs for efficacy and testing for toxicity.
Collapse
Affiliation(s)
- J. Notbohm
- Department of Engineering Physics, University of Wisconsin-Madison, Madison WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
| | - B.N. Napiwocki
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI, USA
| | - W.J. deLange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - A. Stempien
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI, USA
| | - A. Saraswathibhatla
- Department of Engineering Physics, University of Wisconsin-Madison, Madison WI, USA
| | - R.J. Craven
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI, USA
| | - M.R. Salick
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison WI, USA
| | - J.C. Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - W.C. Crone
- Department of Engineering Physics, University of Wisconsin-Madison, Madison WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison WI, USA
| |
Collapse
|
303
|
Brif A, Laity P, Claeyssens F, Holland C. Dynamic Photo-cross-linking of Native Silk Enables Macroscale Patterning at a Microscale Resolution. ACS Biomater Sci Eng 2019; 6:705-714. [DOI: 10.1021/acsbiomaterials.9b00993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anastasia Brif
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, U.K
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ, U.K
| | - Peter Laity
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, U.K
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ, U.K
| | - Chris Holland
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, U.K
| |
Collapse
|
304
|
Lin Y, Leartprapun N, Adie SG. Spectroscopic photonic force optical coherence elastography. OPTICS LETTERS 2019; 44:4897-4900. [PMID: 31568470 PMCID: PMC6980340 DOI: 10.1364/ol.44.004897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/17/2019] [Indexed: 06/01/2023]
Abstract
We demonstrate spectroscopic photonic force optical coherence elastography (PF-OCE). Oscillations of microparticles embedded in viscoelastic hydrogels were induced by harmonically modulated optical radiation pressure and measured by phase-sensitive spectral-domain optical coherence tomography. PF-OCE can detect microparticle displacements with pico- to nano-meter sensitivity and millimeter-scale volumetric coverage. With spectroscopic PF-OCE, we quantified viscoelasticity over a broad frequency range from 1 Hz to 7 kHz, revealing rich microstructural dynamics of polymer networks across multiple microrheological regimes. Reconstructed frequency-dependent loss moduli of polyacrylamide hydrogels were observed to follow a general power scaling law G''∼ω0.75, consistent with that of semiflexible polymer networks. Spectroscopic PF-OCE provides an all-optical approach to microrheological studies with high sensitivity and high spatiotemporal resolution, and could be especially beneficial for time-lapse and volumetric mechanical characterization of viscoelastic materials.
Collapse
Affiliation(s)
- Yuechuan Lin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
305
|
Stanton AE, Tong X, Yang F. Varying solvent type modulates collagen coating and stem cell mechanotransduction on hydrogel substrates. APL Bioeng 2019; 3:036108. [PMID: 31592041 PMCID: PMC6768796 DOI: 10.1063/1.5111762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023] Open
Abstract
Type I collagen is the most abundant extracellular matrix protein in the human body and is commonly used as a biochemical ligand for hydrogel substrates to support cell adhesion in mechanotransduction studies. Previous protocols for conjugating collagen I have used different solvents; yet, how varying solvent pH and composition impacts the efficiency and distribution of these collagen I coatings remains unknown. Here, we examine the effect of varying solvent pH and type on the efficiency and distribution of collagen I coatings on polyacrylamide hydrogels. We further evaluate the effects of varying solvent on mechanotransduction of human mesenchymal stem cells (MSCs) by characterizing cell spreading and localization of Yes-Associated Protein (YAP), a key transcriptional regulator of mechanotransduction. Increasing solvent pH to 5.2 and above increased the heterogeneity of coating with collagen bundle formation. Collagen I coating highly depends on the solvent type, with acetic acid leading to the highest conjugation efficiency and most homogeneous coating. Compared to HEPES or phosphate-buffered saline buffer, acetic acid-dissolved collagen I coatings substantially enhance MSC adhesion and spreading on both glass and polyacrylamide hydrogel substrates. When acetic acid was used for collagen coatings, even the low collagen concentration (1 μg/ml) induced robust MSC spreading and nuclear YAP localization on both soft (3 kPa) and stiff (38 kPa) substrates. Depending on the solvent type, stiffness-dependent nuclear YAP translocation occurs at a different collagen concentration. Together, the results from this study validate the solvent type as an important parameter to consider when using collagen I as the biochemical ligand to support cell adhesion.
Collapse
Affiliation(s)
- Alice E Stanton
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Xinming Tong
- Department of Orthopaedic Surgery, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
306
|
Zhang Y, Naguro I, Herr AE. In Situ Single-Cell Western Blot on Adherent Cell Culture. Angew Chem Int Ed Engl 2019; 58:13929-13934. [PMID: 31390130 PMCID: PMC6759404 DOI: 10.1002/anie.201906920] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Integrating 2D culture of adherent mammalian cells with single-cell western blotting (in situ scWB) uses microfluidic design to eliminate the requirement for trypsin release of cells to suspension, prior to single-cell isolation and protein analysis. To assay HeLa cells from an attached starting state, we culture adherent cells in fibronectin-functionalized microwells formed in a thin layer of polyacrylamide gel. To integrate the culture, lysis, and assay workflow, we introduce a one-step copolymerization process that creates protein-decorated microwells. After single-cell culture, we lyse each cell in the microwell and perform western blotting on each resultant lysate. We observe cell spreading after overnight microwell-based culture. scWB reports increased phosphorylation of MAP kinases (ERK1/2, p38) under hypertonic conditions. We validate the in situ scWB with slab-gel western blot, while revealing cell-to-cell heterogeneity in stress responses.
Collapse
Affiliation(s)
- Yizhe Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Isao Naguro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
307
|
Abdallah M, Martin M, El Tahchi MR, Balme S, Faour WH, Varga B, Cloitre T, Páll O, Cuisinier FJG, Gergely C, Bassil MJ, Bechelany M. Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32623-32632. [PMID: 31424195 DOI: 10.1021/acsami.9b09337] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic kidney disease is characterized by a gradual decline in renal function that progresses toward end-stage renal disease. Podocytes are highly specialized glomerular epithelial cells which form with the glomerular basement membrane (GBM) and capillary endothelium the glomerular filtration barrier. GBM is an extracellular matrix (ECM) that acts as a mechanical support and provides biophysical signals that control normal podocytes behavior in the process of glomerular filtration. Thus, the ECM stiffness represents an essential characteristic that controls podocyte function. Hydrolyzed Polyacrylamide (PAAm) hydrogels are smart polyelectrolyte materials. Their biophysical properties can be tuned as desired to mimic the natural ECM. Therefore, these hydrogels are investigated as new ECM-like constructs to engineer a podocyte-like basement membrane that forms with cultured human podocytes a functional glomerular-like filtration barrier. Such ECM-like PAAm hydrogel construct will provide unique opportunity to reveal podocyte cell biological responses in an in vivo-like setting by controlling the physical properties of the PAAm membranes. In this work, Hydrolyzed PAAm scaffolds having different stiffness ranging between 0.6-44 kPa are prepared. The correlation between the hydrogel structural and mechanical properties and Podocyte morphology, elasticity, cytoskeleton reorganization, and podocin expression is evaluated. Results show that hydrolyzed PAAm hydrogels promote good cell adhesion and growth and are suitable materials for the development of future 3D smart scaffolds. In addition, the hydrogel properties can be easily modulated over a wide physiological range by controlling the cross-linker concentration. Finally, tuning the hydrogel properties is an effective strategy to control the cells function. This work addressed the complexity of podocytes behavior which will further enhance our knowledge to develop a kidney-on-chip model much needed in kidney function studies in both healthy and diseased states.
Collapse
Affiliation(s)
- Maya Abdallah
- Institut Européen des Membranes, ENSCM, CNRS , Université de Montpellier , Montpellier 34090 , France
- Biomaterials and Intelligent Materials Research Laboratory (LBMI) , Lebanese University , Faculty of Sciences 2, Physic Department , Jdeidet 90656 , Lebanon
| | - Marta Martin
- Laboratoire Charles Coulomb , Université de Montpellier , CNRS , Montpellier 34095 , France
| | - Mario R El Tahchi
- Biomaterials and Intelligent Materials Research Laboratory (LBMI) , Lebanese University , Faculty of Sciences 2, Physic Department , Jdeidet 90656 , Lebanon
| | - Sebastien Balme
- Institut Européen des Membranes, ENSCM, CNRS , Université de Montpellier , Montpellier 34090 , France
| | - Wissam H Faour
- Gilbert and Rose-Marie Chagoury School of Medicine , Lebanese American University , P.O. Box 36 , Byblos , Lebanon
| | - Béla Varga
- Laboratoire Charles Coulomb , Université de Montpellier , CNRS , Montpellier 34095 , France
| | - Thierry Cloitre
- Laboratoire Charles Coulomb , Université de Montpellier , CNRS , Montpellier 34095 , France
| | - Orsolya Páll
- Laboratoire de Bioingénierie et Nanosciences , Université de Montpellier , Montpellier 34090 , France
| | - Frédéric J G Cuisinier
- Laboratoire de Bioingénierie et Nanosciences , Université de Montpellier , Montpellier 34090 , France
| | - Csilla Gergely
- Laboratoire Charles Coulomb , Université de Montpellier , CNRS , Montpellier 34095 , France
| | - Maria J Bassil
- Biomaterials and Intelligent Materials Research Laboratory (LBMI) , Lebanese University , Faculty of Sciences 2, Physic Department , Jdeidet 90656 , Lebanon
| | - Mikhael Bechelany
- Institut Européen des Membranes, ENSCM, CNRS , Université de Montpellier , Montpellier 34090 , France
| |
Collapse
|
308
|
Yue D, Zhang M, Lu J, Zhou J, Bai Y, Pan J. The rate of fluid shear stress is a potent regulator for the differentiation of mesenchymal stem cells. J Cell Physiol 2019; 234:16312-16319. [PMID: 30784070 DOI: 10.1002/jcp.28296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/15/2018] [Accepted: 12/19/2018] [Indexed: 01/24/2023]
Abstract
We have previously demonstrated that the rate of fluid shear stress (ΔSS) can manipulate the fate of mesenchymal stem cells (MSCs) to osteogenic or chondrogenic cells. However, whether ΔSS is comparable to other two means of induction medium and substrate stiffness that have been proven to be potent in differentiation control is unknown. In this study, we subjected MSCs to 1-7 days of osteogenic or chondrogenic chemical induction, or 1-4 days of 37 or 86 kPa of substrate stiffness induction, followed by 20 min of Fast ΔSS (0-0') or Slow ΔSS (0-2'), which is a laminar FSS that linearly increased from 0 to 10 dyn/cm 2 in 0 (Fast) or 2 min (Slow) and maintained at 10 dyn/cm 2 for a total of 20 min. We found that 20 min of ΔSS could compete with 5 days' chemical and 2 days' substrate stiffness inductions. Our study confirmed that ΔSS is a powerful tool to control the differentiation of MSCs, which stressed the possible application in MSCs linage specification.
Collapse
Affiliation(s)
- Danyang Yue
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Mengxue Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Juan Lu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jin Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuying Bai
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jun Pan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
309
|
Das A, Barai A, Monteiro M, Kumar S, Sen S. Nuclear softening is essential for protease-independent migration. Matrix Biol 2019; 82:4-19. [DOI: 10.1016/j.matbio.2019.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 02/08/2023]
|
310
|
Kirsch M, Birnstein L, Pepelanova I, Handke W, Rach J, Seltsam A, Scheper T, Lavrentieva A. Gelatin-Methacryloyl (GelMA) Formulated with Human Platelet Lysate Supports Mesenchymal Stem Cell Proliferation and Differentiation and Enhances the Hydrogel's Mechanical Properties. Bioengineering (Basel) 2019; 6:E76. [PMID: 31466260 PMCID: PMC6784140 DOI: 10.3390/bioengineering6030076] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/19/2019] [Accepted: 08/24/2019] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) cell culture is a major focus of current research, since cultivation under physiological conditions provides more reliable information about in vivo cell behavior. 3D cell cultures are used in basic research to better understand intercellular and cell-matrix interactions. However, 3D cell culture plays an increasingly important role in the in vitro testing of bioactive substances and tissue engineering. Gelatin-methacryloyl (GelMA) hydrogels of different degrees of functionalization (DoFs) are a versatile tool for 3D cell culture and related applications such as bioprinting. Human platelet lysate (hPL) has already demonstrated positive effects on 2D cell cultures of different cell types and has proven a valuable alternative to fetal calf serum (FCS). Traditionally, all hydrogels are formulated using buffers. In this study, we supplemented GelMA hydrogels of different DoF with hPL during adipose tissue-derived mesenchymal stem cell (AD-MSCs) encapsulation. We studied the effect of hPL supplementation on the spreading, proliferation, and osteogenic differentiation of AD-MSCs. In addition, the influence of hPL on hydrogel properties was also investigated. We demonstrate that the addition of hPL enhanced AD-MSC spreading, proliferation, and osteogenic differentiation in a concentration-dependent manner. Moreover, the addition of hPL also increased GelMA viscosity and stiffness.
Collapse
Affiliation(s)
- Marline Kirsch
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Luise Birnstein
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Wiebke Handke
- German Red Cross Blood Service NSTOB, 31832 Springe, Germany
| | - Jessica Rach
- German Red Cross Blood Service NSTOB, 31832 Springe, Germany
| | - Axel Seltsam
- German Red Cross Blood Service NSTOB, 31832 Springe, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, 30167 Hannover, Germany.
| |
Collapse
|
311
|
Yan XZ, van den Beucken JJJP, Yuan C, Jansen JA, Yang F. Evaluation of polydimethylsiloxane-based substrates for in vitro culture of human periodontal ligament cells. J Biomed Mater Res A 2019; 107:2796-2805. [PMID: 31408269 DOI: 10.1002/jbm.a.36782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
Periodontal ligament (PDL) cells are regarded as the cell type with the highest potential for periodontal regeneration. Biophysical cues of the culture substrate are increasingly identified as vital parameters to affect cell behavior. Compared to traditional tissue culture polystyrene (TCPS), polydimethylsiloxane (PDMS) substrates corroborate more closely the elastic modulus values of the physiological environment. Consequently, the aim of this study was to evaluate the effect of PDMS-based substrates with different stiffness on cellular responses of human PDL cells. PDMS substrates with different stiffness were fabricated by varying the ratio of base to curing component. The influence of PDMS substrates on PDL cell spreading and cytoskeletal morphologies, motility, proliferation, stemness gene expression, and osteogenic differentiation was evaluated and compared to that on conventional TCPS. PDL cells cultured on PDMS substrates exhibited a smaller cell size and more elongated morphology, with less spreading area, fewer focal adhesions, and faster migration than cells on TCPS. Compared to TCPS, PDMS substrates promoted the rapid in vitro expansion of PDL cells without interfering with their self-renewal ability. In contrast, the osteogenic differentiation ability of PDL cells cultured on PDMS was lower in comparison to cells on TCPS. PDL cells on PDMS exhibited similar cell morphology, motility, proliferation, and self-renewal gene expression. The stiffer PDMS substrate increased the osteogenic gene expression of PDL cells compared to the soft PDMS group in one donor. These data indicate that PDMS-based substrates have the potential for the efficient PDL cell expansion.
Collapse
Affiliation(s)
- Xiang-Zhen Yan
- Department of Periodontology, School and hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | | | - Chunxue Yuan
- College of Materials Science and Engineering, Tongji University, Shanghai, China
| | - John A Jansen
- Department of Dentistry - Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fang Yang
- Department of Dentistry - Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
312
|
Zhang Y, Naguro I, Herr AE. In Situ Single‐Cell Western Blot on Adherent Cell Culture. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yizhe Zhang
- Department of BioengineeringUniversity of California, Berkeley Berkeley CA 94720 USA
| | - Isao Naguro
- Graduate School of Pharmaceutical SciencesThe University of Tokyo Tokyo Japan
| | - Amy E. Herr
- Department of BioengineeringUniversity of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
313
|
Zhao L, Mok S, Moraes C. Micropocket hydrogel devices for all-in-one formation, assembly, and analysis of aggregate-based tissues. Biofabrication 2019; 11:045013. [DOI: 10.1088/1758-5090/ab30b4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
314
|
Díaz-Bello B, Monroy-Romero AX, Pérez-Calixto D, Zamarrón-Hernández D, Serna-Marquez N, Vázquez-Victorio G, Hautefeuille M. Method for the Direct Fabrication of Polyacrylamide Hydrogels with Controlled Stiffness in Polystyrene Multiwell Plates for Mechanobiology Assays. ACS Biomater Sci Eng 2019; 5:4219-4227. [DOI: 10.1021/acsbiomaterials.9b00988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Beatriz Díaz-Bello
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacan 04510, Mexico
| | - Ana Ximena Monroy-Romero
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacan 04510, Mexico
| | - Daniel Pérez-Calixto
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacan 04510, Mexico
| | - Diego Zamarrón-Hernández
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacan 04510, Mexico
| | - Nathalia Serna-Marquez
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacan 04510, Mexico
| | - Genaro Vázquez-Victorio
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacan 04510, Mexico
| | - Mathieu Hautefeuille
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacan 04510, Mexico
| |
Collapse
|
315
|
Meli VS, Veerasubramanian PK, Atcha H, Reitz Z, Downing TL, Liu WF. Biophysical regulation of macrophages in health and disease. J Leukoc Biol 2019; 106:283-299. [PMID: 30861205 PMCID: PMC7001617 DOI: 10.1002/jlb.mr0318-126r] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macrophages perform critical functions for homeostasis and immune defense in tissues throughout the body. These innate immune cells are capable of recognizing and clearing dead cells and pathogens, and orchestrating inflammatory and healing processes that occur in response to injury. In addition, macrophages are involved in the progression of many inflammatory diseases including cardiovascular disease, fibrosis, and cancer. Although it has long been known that macrophages respond dynamically to biochemical signals in their microenvironment, the role of biophysical cues has only recently emerged. Furthermore, many diseases that involve macrophages are also characterized by changes to the tissue biophysical environment. This review will discuss current knowledge about the effects of biophysical cues including matrix stiffness, material topography, and applied mechanical forces, on macrophage behavior. We will also describe the role of molecules that are known to be important for mechanotransduction, including adhesion molecules, ion channels, as well as nuclear mediators such as transcription factors, scaffolding proteins, and epigenetic regulators. Together, this review will illustrate a developing role of biophysical cues in macrophage biology, and also speculate upon molecular targets that may potentially be exploited therapeutically to treat disease.
Collapse
Affiliation(s)
- Vijaykumar S. Meli
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
| | - Praveen K. Veerasubramanian
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
| | - Hamza Atcha
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
| | - Zachary Reitz
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
| | - Timothy L. Downing
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
- Department of Microbiology and Molecular Genetics, University of California Irvine, CA 92697
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
- Department of Chemical and Biomolecular Engineering, University of California Irvine, CA 92697
| |
Collapse
|
316
|
Malik R, Luong T, Cao X, Han B, Shah N, Franco-Barraza J, Han L, Shenoy VB, Lelkes PI, Cukierman E. Rigidity controls human desmoplastic matrix anisotropy to enable pancreatic cancer cell spread via extracellular signal-regulated kinase 2. Matrix Biol 2019; 81:50-69. [PMID: 30412725 PMCID: PMC6504628 DOI: 10.1016/j.matbio.2018.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
It is predicted that pancreatic ductal adenocarcinoma (PDAC) will become the second most lethal cancer in the US by 2030. PDAC includes a fibrous-like stroma, desmoplasia, encompassing most of the tumor mass, which is produced by cancer-associated fibroblasts (CAFs) and includes their cell-derived extracellular matrices (CDMs). Since elimination of desmoplasia has proven detrimental to patients, CDM reprogramming, as opposed to stromal ablation, is therapeutically desirable. Hence, efforts are being made to harness desmoplasia's anti-tumor functions. We conducted biomechanical manipulations, using variations of pathological and physiological substrates in vitro, to culture patient-harvested CAFs and generate CDMs that restrict PDAC growth and spread. We posited that extrinsic modulation of the environment, via substrate rigidity, influences CAF's cell-intrinsic forces affecting CDM production. Substrates used were polyacrylamide gels of physiological (~1.5 kPa) or pathological (~7 kPa) stiffnesses. Results showed that physiological substrates influenced CAFs to generate CDMs similar to normal/control fibroblasts. We found CDMs to be softer than the corresponding underlying substrates, and CDM fiber anisotropy (i.e., alignment) to be biphasic and informed via substrate-imparted morphological CAF aspect ratios. The biphasic nature of CDM fiber anisotropy was mathematically modeled and proposed a correlation between CAF aspect ratios and CDM alignment; regulated by extrinsic and intrinsic forces to conserve minimal free energy. Biomechanical manipulation of CDMs, generated on physiologically soft substrates, leads to reduction in nuclear translocation of pERK1/2 in KRAS mutated pancreatic cells. ERK2 was found essential for CDM-regulated tumor cell spread. In vitro findings correlated with in vivo observations; nuclear pERK1/2 is significantly high in human PDAC samples. The study suggests that altering underlying substrates enable CAFs to remodel CDMs and restrict pancreatic cancer cell spread in an ERK2 dependent manner.
Collapse
Affiliation(s)
- R Malik
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, United States of America; Department Bioengineering, Temple University, United States of America
| | - T Luong
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, United States of America
| | - X Cao
- Materials Science and Engineering, University of Pennsylvania, United States of America
| | - B Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, United States of America
| | - N Shah
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, United States of America
| | - J Franco-Barraza
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, United States of America
| | - L Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, United States of America
| | - V B Shenoy
- Materials Science and Engineering, University of Pennsylvania, United States of America
| | - P I Lelkes
- Department Bioengineering, Temple University, United States of America.
| | - E Cukierman
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, United States of America.
| |
Collapse
|
317
|
Luo Y, Wei X, Wan Y, Lin X, Wang Z, Huang P. 3D printing of hydrogel scaffolds for future application in photothermal therapy of breast cancer and tissue repair. Acta Biomater 2019; 92:37-47. [PMID: 31108260 DOI: 10.1016/j.actbio.2019.05.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
Abstract
Surgical removal remains the main clinical approach to treat breast cancer, although risks including high local recurrence of cancer and loss of breast tissues are the threats for the survival and quality of life of patients after surgery. In this study, bifunctional scaffold based on dopamine-modified alginate and polydopamine (PDA) was fabricated using 3D printing with an aim to treat breast cancer and fill the cavity, thereby achieving tissue repair. The as-prepared alginate-polydopamine (Alg-PDA) scaffold exhibited favorable photothermal effect both in vitro and in vivo upon 808 nm laser irradiation. Further, the Alg-PDA scaffold showed great flexibility and similar modulus with normal breast tissues and facilitated the adhesion and proliferation of normal breast epithelial cells. Moreover, the in vivo performance of the Alg-PDA scaffold could be tracked by magnetic resonance and photoacoustic dual-modality imaging. The scaffold that was fabricated using simple and biocompatible materials with individual-designed structure and macropores, as well as outstanding photothermal effect and enhanced cell proliferation ability, might be a potential option for breast cancer treatment and tissue repair after surgery. STATEMENT OF SIGNIFICANCE: In this study, a three-dimensional porous scaffold was developed using 3D printing for the treatment of local recurrence of breast cancer and the following tissue repair after surgery. In this approach, easily available materials (dopamine-modified alginate and PDA) with excellent biocompatibility were selected and prepared as printing inks. The fabricated scaffold showed effective photothermal effects for cancer therapy, as well as matched mechanical properties with breast tissues. Furthermore, the scaffold supported attachment and proliferation of normal breast cells, which indicates its potential ability for adipose tissue repair. Together, the 3D-printed scaffold might be a promising option for the treatment of locally recurrent breast cancer cells and the following tissue repair after surgery.
Collapse
|
318
|
Maiden MM, Zachos MP, Waters CM. Hydrogels Embedded With Melittin and Tobramycin Are Effective Against Pseudomonas aeruginosa Biofilms in an Animal Wound Model. Front Microbiol 2019; 10:1348. [PMID: 31293530 PMCID: PMC6598697 DOI: 10.3389/fmicb.2019.01348] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
We demonstrate that the antimicrobial peptide, melittin, is effective alone and in combination with the aminoglycosides tobramycin to kill Pseudomonas aeruginosa growing as biofilms both in vitro and in vivo. Melittin and tobramycin show enhanced in vitro activity in combination at micromolar concentrations, resulting in a 2-log10 reduction in the number of cells within mature PAO1 P. aeruginosa biofilms after 6-h of treatment. Alternatively, either agent alone resulted in half-a-log10 reduction. Time-killing assays demonstrated that the combination of melittin and tobramycin was effective at 2-h whereas tobramycin was not effective until after 6-h of treatment. We also found the combination was more effective than tobramycin alone against biofilms of 7 P. aeruginosa cystic fibrosis clinical isolates, resulting in a maximum 1.5-log10 cellular reduction. Additionally, melittin alone was effective at killing biofilms of 4 Staphylococcus aureus isolates, resulting in a maximum 2-log10 cellular reduction. Finally, melittin in combination with tobramycin embedded in an agarose-based hydrogel resulted in a 4-fold reduction in bioluminescent P. aeruginosa colonizing mouse wounds by 4-h. In contrast, tobramycin or melittin treatment alone did not cause a statistically significant reduction in bioluminescence. These data demonstrate that melittin in combination with tobramycin embedded in a hydrogel is a potential treatment for biofilm-associated wound infections.
Collapse
Affiliation(s)
- Michael M. Maiden
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- The BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
| | - Mitchell P. Zachos
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- The BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
319
|
Love HD, Ao M, Jorgensen S, Swearingen L, Ferrell N, Evans R, Gewin L, Harris RC, Zent R, Roy S, Fissell WH. Substrate Elasticity Governs Differentiation of Renal Tubule Cells in Prolonged Culture. Tissue Eng Part A 2019; 25:1013-1022. [PMID: 30484388 DOI: 10.1089/ten.tea.2018.0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
IMPACT STATEMENT Successful clinical tissue engineering requires functional fidelity of the cultured cell to its in vivo counterpart, but this has been elusive in renal tissue engineering. Typically, renal proximal tubule cells in culture have a flattened morphology and do not express key transporters essential to their function. In this article, we show for the first time that in vitro substrate mechanical properties dictate differentiation of cultured renal proximal tubule cells. Remarkably, this effect was only discernable after 4 weeks in culture, longer than usually reported for this cell type. These results demonstrate a new tunable parameter to optimize cell differentiation in renal tissue engineering.
Collapse
Affiliation(s)
- Harold D Love
- 1Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mingfang Ao
- 1Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Seiver Jorgensen
- 2College of Arts and Science, Vanderbilt University, Nashville, Tennessee
| | - Lindsey Swearingen
- 2College of Arts and Science, Vanderbilt University, Nashville, Tennessee
| | - Nicholas Ferrell
- 1Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rachel Evans
- 1Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leslie Gewin
- 1Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Raymond C Harris
- 1Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Roy Zent
- 1Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shuvo Roy
- 3Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California
| | - William H Fissell
- 1Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
320
|
Su EJ, Jeeawoody S, Herr AE. Protein diffusion from microwells with contrasting hydrogel domains. APL Bioeng 2019; 3:026101. [PMID: 31069338 PMCID: PMC6481738 DOI: 10.1063/1.5078650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding and controlling molecular transport in hydrogel materials is important for biomedical tools, including engineered tissues and drug delivery, as well as life sciences tools for single-cell analysis. Here, we scrutinize the ability of microwells-micromolded in hydrogel slabs-to compartmentalize lysate from single cells. We consider both (i) microwells that are "open" to a large fluid (i.e., liquid) reservoir and (ii) microwells that are "closed," having been capped with either a slab of high-density polyacrylamide gel or an impermeable glass slide. We use numerical modeling to gain insight into the sensitivity of time-dependent protein concentration distributions on hydrogel partition and protein diffusion coefficients and open and closed microwell configurations. We are primarily concerned with diffusion-driven protein loss from the microwell cavity. Even for closed microwells, confocal fluorescence microscopy reports that a fluid (i.e., liquid) film forms between the hydrogel slabs (median thickness of 1.7 μm). Proteins diffuse from the microwells and into the fluid (i.e., liquid) layer, yet concentration distributions are sensitive to the lid layer partition coefficients and the protein diffusion coefficient. The application of a glass lid or a dense hydrogel retains protein in the microwell, increasing the protein solute concentration in the microwell by ∼7-fold for the first 15 s. Using triggered release of Protein G from microparticles, we validate our simulations by characterizing protein diffusion in a microwell capped with a high-density polyacrylamide gel lid (p > 0.05, Kolmogorov-Smirnov test). Here, we establish and validate a numerical model useful for understanding protein transport in and losses from a hydrogel microwell across a range of boundary conditions.
Collapse
|
321
|
Zhang H, Wehrman MD, Schultz KM. Structural Changes in Polymeric Gel Scaffolds Around the Overlap Concentration. Front Chem 2019; 7:317. [PMID: 31134188 PMCID: PMC6517517 DOI: 10.3389/fchem.2019.00317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
Cross-linked polymeric gels are an important class of materials with applications that broadly range from synthetic wound healing scaffolds to materials used in enhanced oil recovery. To effectively design these materials for each unique applications a deeper understanding of the structure and rheological properties as a function of polymeric interactions is required. Increasing the concentration of polymer in each scaffold increases physical interactions between the molecules that can be reflected in the material structure. To characterize the structure and material properties, we use multiple particle tracking microrheology (MPT) to measure scaffolds during gelation. In MPT, fluorescently labeled probe particles are embedded in the material and the Brownian motion of these particles is captured using video microscopy. Particle motion is related to rheological properties using the Generalized Stokes-Einstein Relation. In this work, we characterize gelation of a photopolymerized scaffold composed of a poly(ethylene glycol) (PEG)-acrylate backbone and a PEG-dithiol cross-linker. Scaffolds with backbone concentrations below and above the overlap concentration, concentration where polymer pervaded volume begins to overlap, are characterized. Using time-cure superposition (TCS) we determine the critical relaxation exponent, n, of each scaffold. The critical relaxation exponent is a quantitative measure of the scaffold structure and is similar to a complex modulus, G*, which is a measure of energy storage and dissipation. Our results show that below the overlap concentration the scaffold is a tightly cross-linked network, navg = 0.40 ± 0.03, which stores energy but can also dissipate energy. As polymeric interactions increase, we measure a step change in the critical relaxation exponent above the overlap concentration to navg = 0.20 ± 0.03. After the overlap concentration the scaffold has transitioned to a more tightly cross-linked network that primarily stores energy. Additionally, continuing to increase concentration results in no change in the scaffold structure. Therefore, we determined that the properties of this scaffold can be tuned above and below the overlap concentration by changing the polymer concentration but the structure will remain the same in each concentration regime. This is advantageous for a wide range of applications that require scaffolds with varying stiffness and the same scaffold architecture.
Collapse
Affiliation(s)
- Han Zhang
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, United States
| | - Matthew D Wehrman
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, United States
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
322
|
Medina SH, Bush B, Cam M, Sevcik E, DelRio FW, Nandy K, Schneider JP. Identification of a mechanogenetic link between substrate stiffness and chemotherapeutic response in breast cancer. Biomaterials 2019; 202:1-11. [PMID: 30818087 PMCID: PMC6474249 DOI: 10.1016/j.biomaterials.2019.02.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 01/24/2023]
Abstract
Mechanical feedback from the tumor microenvironment regulates an array of processes underlying cancer biology. For example, increased stiffness of mammary extracellular matrix (ECM) drives malignancy and alters the phenotypes of breast cancer cells. Despite this link, the role of substrate stiffness in chemotherapeutic response in breast cancer remains unclear. This is complicated by routine culture and adaptation of cancer cell lines to unnaturally rigid plastic or glass substrates, leading to profound changes in their growth, metastatic potential and, as we show here, chemotherapeutic response. We demonstrate that primary breast cancer cells undergo dramatic phenotypic changes when removed from the host microenvironment and cultured on rigid surfaces, and that drug responses are profoundly altered by the mechanical feedback cells receive from the culture substrate. Conversely, primary breast cancer cells cultured on substrates mimicking the mechanics of their host tumor ECM have a similar genetic profile to the in situ cells with respect to drug activity and resistance pathways. These results suggest substrate stiffness plays a significant role in susceptibility of breast cancer to clinically-approved chemotherapeutics, and presents an opportunity to improve drug discovery efforts by integrating mechanical rigidity as a parameter in screening campaigns.
Collapse
Affiliation(s)
- Scott H Medina
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States.
| | - Brian Bush
- Materials Measurement Science Division, Nanomechanical Properties Group, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Maggie Cam
- Office of Science and Technology Resources, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Emily Sevcik
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Frank W DelRio
- Applied Chemicals and Materials Division, Nanoscale Reliability Group, National Institute of Standards and Technology, Boulder, CO 80305, United States
| | - Kaustav Nandy
- Optical Microscopy and Analysis Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Joel P Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States.
| |
Collapse
|
323
|
Kureel SK, Mogha P, Khadpekar A, Kumar V, Joshi R, Das S, Bellare J, Majumder A. Soft substrate maintains proliferative and adipogenic differentiation potential of human mesenchymal stem cells on long-term expansion by delaying senescence. Biol Open 2019; 8:bio039453. [PMID: 31023646 PMCID: PMC6503999 DOI: 10.1242/bio.039453] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/22/2019] [Indexed: 12/19/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs), during in vitro expansion, gradually lose their distinct spindle morphology, self-renewal ability, multi-lineage differentiation potential and enter replicative senescence. This loss of cellular function is a major roadblock for clinical applications which demand cells in large numbers. Here, we demonstrate a novel role of substrate stiffness in the maintenance of hMSCs over long-term expansion. When serially passaged for 45 days from passage 3 to passage 18 on polyacrylamide gel of Young's modulus E=5 kPa, hMSCs maintained their proliferation rate and showed nine times higher population doubling in comparison to their counterparts cultured on plastic Petri-plates. They did not express markers of senescence, maintained their morphology and other mechanical properties such as cell stiffness and cellular traction, and were significantly superior in adipogenic differentiation potential. These results were demonstrated in hMSCs from two different sources, umbilical cord and bone marrow. In summary, our result shows that a soft gel is a suitable substrate to maintain the stemness of mesenchymal stem cells. As preparation of polyacrylamide gel is a well-established, and well-standardized protocol, we propose that this novel system of cell expansion will be useful in therapeutic and research applications of hMSCs.
Collapse
Affiliation(s)
- Sanjay Kumar Kureel
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai 400076, India
| | - Pankaj Mogha
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai 400076, India
| | - Akshada Khadpekar
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai 400076, India
| | - Vardhman Kumar
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai 400076, India
| | - Rohit Joshi
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai 400076, India
| | - Siddhartha Das
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai 400076, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai 400076, India
| |
Collapse
|
324
|
Serrano R, Aung A, Yeh YT, Varghese S, Lasheras JC, Del Álamo JC. Three-Dimensional Monolayer Stress Microscopy. Biophys J 2019; 117:111-128. [PMID: 31103228 DOI: 10.1016/j.bpj.2019.03.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 03/07/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023] Open
Abstract
Many biological processes involve the collective generation and transmission of mechanical stresses across cell monolayers. In these processes, the monolayer undergoes lateral deformation and bending because of the tangential and normal components of the cell-generated stresses. Monolayer stress microscopy (MSM) methods have been developed to measure the intracellular stress distribution in cell monolayers. However, current methods assume plane monolayer geometry and neglect the contribution of bending to the intracellular stresses. This work introduces a three-dimensional (3D) MSM method that calculates monolayer stress from measurements of the 3D traction stresses exerted by the cells on a flexible substrate. The calculation is carried out by imposing equilibrium of forces and moments in the monolayer, subject to external loads given by the 3D traction stresses. The equilibrium equations are solved numerically, and the algorithm is validated for synthetic loads with known analytical solutions. We present 3D-MSM measurements of monolayer stress in micropatterned islands of endothelial cells of different sizes and shapes. These data indicate that intracellular stresses caused by lateral deformation emerge collectively over long distances; they increase with the distance from the island edge until they reach a constant value that is independent of island size. On the other hand, bending-induced intracellular stresses are more concentrated spatially and remain confined to within one to two cell lengths of bending sites. The magnitude of these bending stresses is highest at the edges of the cell islands, where they can exceed the intracellular stresses caused by lateral deformations. Our data from nonpatterned monolayers suggests that biomechanical perturbations far away from monolayer edges also cause significant localized alterations in bending tension. The localized effect of bending-induced stresses may be important in processes like cellular extravasation, which are accompanied by significant normal deflections of a cell monolayer (i.e., the endothelium) and require localized changes in monolayer permeability.
Collapse
Affiliation(s)
- Ricardo Serrano
- Department of Mechanical and Aerospace Engineering, San Diego, San Diego, California.
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yi-Ting Yeh
- Department of Mechanical and Aerospace Engineering, San Diego, San Diego, California; Department of Bioengineering, San Diego, San Diego, California; Institute of Engineering in Medicine, University of California, San Diego, San Diego, California
| | - Shyni Varghese
- Department of Biomedical Engineering, Durham, North Carolina; Department of Mechanical Engineering and Material Sciences, Durham, North Carolina; Department of Orthopaedic Surgery, Duke University, Durham, North Carolina
| | - Juan C Lasheras
- Department of Mechanical and Aerospace Engineering, San Diego, San Diego, California; Department of Bioengineering, San Diego, San Diego, California; Institute of Engineering in Medicine, University of California, San Diego, San Diego, California
| | - Juan C Del Álamo
- Department of Mechanical and Aerospace Engineering, San Diego, San Diego, California.
| |
Collapse
|
325
|
Lee JY, Chang JK, Dominguez AA, Lee HP, Nam S, Chang J, Varma S, Qi LS, West RB, Chaudhuri O. YAP-independent mechanotransduction drives breast cancer progression. Nat Commun 2019; 10:1848. [PMID: 31015465 PMCID: PMC6478686 DOI: 10.1038/s41467-019-09755-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Increased tissue stiffness is a driver of breast cancer progression. The transcriptional regulator YAP is considered a universal mechanotransducer, based largely on 2D culture studies. However, the role of YAP during in vivo breast cancer remains unclear. Here, we find that mechanotransduction occurs independently of YAP in breast cancer patient samples and mechanically tunable 3D cultures. Mechanistically, the lack of YAP activity in 3D culture and in vivo is associated with the absence of stress fibers and an order of magnitude decrease in nuclear cross-sectional area relative to 2D culture. This work highlights the context-dependent role of YAP in mechanotransduction, and establishes that YAP does not mediate mechanotransduction in breast cancer.
Collapse
Affiliation(s)
- Joanna Y Lee
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jessica K Chang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Antonia A Dominguez
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Hong-Pyo Lee
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sungmin Nam
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Julie Chang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
326
|
Foyt DA, Taheem DK, Ferreira SA, Norman MDA, Petzold J, Jell G, Grigoriadis AE, Gentleman E. Hypoxia impacts human MSC response to substrate stiffness during chondrogenic differentiation. Acta Biomater 2019; 89:73-83. [PMID: 30844569 PMCID: PMC6481516 DOI: 10.1016/j.actbio.2019.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 12/31/2022]
Abstract
Tissue engineering strategies often aim to direct tissue formation by mimicking conditions progenitor cells experience within native tissues. For example, to create cartilage in vitro, researchers often aim to replicate the biochemical and mechanical milieu cells experience during cartilage formation in the developing limb bud. This includes stimulating progenitors with TGF-β1/3, culturing under hypoxic conditions, and regulating mechanosensory pathways using biomaterials that control substrate stiffness and/or cell shape. However, as progenitors differentiate down the chondrogenic lineage, the pathways that regulate their responses to mechanotransduction, hypoxia and TGF-β may not act independently, but rather also impact one another, influencing overall cell response. Here, to better understand hypoxia's influence on mechanoregulatory-mediated chondrogenesis, we cultured human marrow stromal/mesenchymal stem cells (hMSC) on soft (0.167 kPa) or stiff (49.6 kPa) polyacrylamide hydrogels in chondrogenic medium containing TGF-β3. We then compared cell morphology, phosphorylated myosin light chain 2 staining, and chondrogenic gene expression under normoxic and hypoxic conditions, in the presence and absence of pharmacological inhibition of cytoskeletal tension. We show that on soft compared to stiff substrates, hypoxia prompts hMSC to adopt more spread morphologies, assemble in compact mesenchymal condensation-like colonies, and upregulate NCAM expression, and that inhibition of cytoskeletal tension negates hypoxia-mediated upregulation of molecular markers of chondrogenesis, including COL2A1 and SOX9. Taken together, our findings support a role for hypoxia in regulating hMSC morphology, cytoskeletal tension and chondrogenesis, and that hypoxia's effects are modulated, at least in part, by mechanosensitive pathways. Our insights into how hypoxia impacts mechanoregulation of chondrogenesis in hMSC may improve strategies to develop tissue engineered cartilage. STATEMENT OF SIGNIFICANCE: Cartilage tissue engineering strategies often aim to drive progenitor cell differentiation by replicating the local environment of the native tissue, including by regulating oxygen concentration and mechanical stiffness. However, the pathways that regulate cellular responses to mechanotransduction and hypoxia may not act independently, but rather also impact one another. Here, we show that on soft, but not stiff surfaces, hypoxia impacts human MSC (hMSC) morphology and colony formation, and inhibition of cytoskeletal tension negates the hypoxia-mediated upregulation of molecular markers of chondrogenesis. These observations suggest that hypoxia's effects during hMSC chondrogenesis are modulated, at least in part, by mechanosensitive pathways, and may impact strategies to develop scaffolds for cartilage tissue engineering, as hypoxia's chondrogenic effects may be enhanced on soft materials.
Collapse
Affiliation(s)
- Daniel A Foyt
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Dheraj K Taheem
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Silvia A Ferreira
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Michael D A Norman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Jonna Petzold
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Gavin Jell
- Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| | | | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK.
| |
Collapse
|
327
|
Stiff Substrates Enhance Endothelial Oxidative Stress in Response to Protein Kinase C Activation. Appl Bionics Biomech 2019; 2019:6578492. [PMID: 31110559 PMCID: PMC6487160 DOI: 10.1155/2019/6578492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/28/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
Arterial stiffness, which increases with aging and hypertension, is an independent cardiovascular risk factor. While stiffer substrates are known to affect single endothelial cell morphology and migration, the effect of substrate stiffness on endothelial monolayer function is less understood. The objective of this study was to determine if substrate stiffness increased endothelial monolayer reactive oxygen species (ROS) in response to protein kinase C (PKC) activation and if this oxidative stress then impacted adherens junction integrity. Porcine aortic endothelial cells were cultured on varied stiffness polyacrylamide gels and treated with phorbol 12-myristate 13-acetate (PMA), which stimulates PKC and ROS without increasing actinomyosin contractility. PMA-treated endothelial cells on stiffer substrates increased ROS and adherens junction loss without increased contractility. ROS scavengers abrogated PMA effects on cell-cell junctions, with a more profound effect in cells on stiffer substrates. Finally, endothelial cells in aortae from elastin haploinsufficient mice (Eln+/-), which were stiffer than aortae from wild-type mice, showed decreased VE-cadherin colocalization with peripheral actin following PMA treatment. These data suggest that oxidative stress may be enhanced in endothelial cells in stiffer vessels, which could contribute to the association between arterial stiffness and cardiovascular disease.
Collapse
|
328
|
Molinie N, Rubtsova SN, Fokin A, Visweshwaran SP, Rocques N, Polesskaya A, Schnitzler A, Vacher S, Denisov EV, Tashireva LA, Perelmuter VM, Cherdyntseva NV, Bièche I, Gautreau AM. Cortical branched actin determines cell cycle progression. Cell Res 2019; 29:432-445. [PMID: 30971746 PMCID: PMC6796858 DOI: 10.1038/s41422-019-0160-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 03/06/2019] [Indexed: 12/30/2022] Open
Abstract
The actin cytoskeleton generates and senses forces. Here we report that branched actin networks from the cell cortex depend on ARPC1B-containing Arp2/3 complexes and that they are specifically monitored by type I coronins to control cell cycle progression in mammary epithelial cells. Cortical ARPC1B-dependent branched actin networks are regulated by the RAC1/WAVE/ARPIN pathway and drive lamellipodial protrusions. Accordingly, we uncover that the duration of the G1 phase scales with migration persistence in single migrating cells. Moreover, cortical branched actin more generally determines S-phase entry by integrating soluble stimuli such as growth factors and mechanotransduction signals, ensuing from substratum rigidity or stretching of epithelial monolayers. Many tumour cells lose this dependence for cortical branched actin. But the RAC1-transformed tumour cells stop cycling upon Arp2/3 inhibition. Among all genes encoding Arp2/3 subunits, ARPC1B overexpression in tumours is associated with the poorest metastasis-free survival in breast cancer patients. Arp2/3 specificity may thus provide diagnostic and therapeutic opportunities in cancer.
Collapse
Affiliation(s)
- Nicolas Molinie
- BIOC, Ecole polytechnique, CNRS, IP Paris, Palaiseau, France
| | - Svetlana N Rubtsova
- BIOC, Ecole polytechnique, CNRS, IP Paris, Palaiseau, France.,N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Artem Fokin
- BIOC, Ecole polytechnique, CNRS, IP Paris, Palaiseau, France
| | | | | | - Anna Polesskaya
- BIOC, Ecole polytechnique, CNRS, IP Paris, Palaiseau, France
| | | | - Sophie Vacher
- Department of Genetics, Institut Curie, Paris, France
| | - Evgeny V Denisov
- Tomsk National Research Medical Center, Tomsk, Russia.,Tomsk State University, Tomsk, Russia
| | | | | | - Nadezhda V Cherdyntseva
- Tomsk National Research Medical Center, Tomsk, Russia.,Tomsk State University, Tomsk, Russia
| | - Ivan Bièche
- Department of Genetics, Institut Curie, Paris, France
| | - Alexis M Gautreau
- BIOC, Ecole polytechnique, CNRS, IP Paris, Palaiseau, France. .,School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
329
|
Juettner VV, Kruse K, Dan A, Vu VH, Khan Y, Le J, Leckband D, Komarova Y, Malik AB. VE-PTP stabilizes VE-cadherin junctions and the endothelial barrier via a phosphatase-independent mechanism. J Cell Biol 2019; 218:1725-1742. [PMID: 30948425 PMCID: PMC6504901 DOI: 10.1083/jcb.201807210] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Juettner et al. describe a novel phosphatase-activity–independent mechanism by which the phosphatase VE-PTP restricts endothelial permeability. VE-PTP functions as a scaffold that binds and inhibits the RhoGEF GEF-H1, limiting RhoA-dependent tension across VE-cadherin junctions and decreasing VE-cadherin internalization to stabilize adherens junctions and reduce endothelial permeability. Vascular endothelial (VE) protein tyrosine phosphatase (PTP) is an endothelial-specific phosphatase that stabilizes VE-cadherin junctions. Although studies have focused on the role of VE-PTP in dephosphorylating VE-cadherin in the activated endothelium, little is known of VE-PTP’s role in the quiescent endothelial monolayer. Here, we used the photoconvertible fluorescent protein VE-cadherin-Dendra2 to monitor VE-cadherin dynamics at adherens junctions (AJs) in confluent endothelial monolayers. We discovered that VE-PTP stabilizes VE-cadherin junctions by reducing the rate of VE-cadherin internalization independently of its phosphatase activity. VE-PTP serves as an adaptor protein that through binding and inhibiting the RhoGEF GEF-H1 modulates RhoA activity and tension across VE-cadherin junctions. Overexpression of the VE-PTP cytosolic domain mutant interacting with GEF-H1 in VE-PTP–depleted endothelial cells reduced GEF-H1 activity and restored VE-cadherin dynamics at AJs. Thus, VE-PTP stabilizes VE-cadherin junctions and restricts endothelial permeability by inhibiting GEF-H1, thereby limiting RhoA signaling at AJs and reducing the VE-cadherin internalization rate.
Collapse
Affiliation(s)
- Vanessa V Juettner
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Kevin Kruse
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Arkaprava Dan
- Department of Chemical and Biomolecular Engineering, University of Illinois College of Engineering at Urbana-Champaign, Urbana, IL
| | - Vinh H Vu
- Department of Chemical and Biomolecular Engineering, University of Illinois College of Engineering at Urbana-Champaign, Urbana, IL
| | - Yousaf Khan
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Jonathan Le
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Deborah Leckband
- Department of Chemical and Biomolecular Engineering, University of Illinois College of Engineering at Urbana-Champaign, Urbana, IL
| | - Yulia Komarova
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Asrar B Malik
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| |
Collapse
|
330
|
Peng Y, Chen Z, Chen Y, Li S, Jiang Y, Yang H, Wu C, You F, Zheng C, Zhu J, Tan Y, Qin X, Liu Y. ROCK isoforms differentially modulate cancer cell motility by mechanosensing the substrate stiffness. Acta Biomater 2019; 88:86-101. [PMID: 30771534 DOI: 10.1016/j.actbio.2019.02.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/16/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022]
Abstract
Tumors are characterized by extracellular matrix (ECM) remodeling and stiffening. The importance of ECM stiffness in cancer is well known. However, the biomechanical behavior of tumor cells and the underlying mechanotransduction pathways remain unclear. Here, we used polyacrylamide (PAA) substrates to simulate tissue stiffness at different progress stages of breast cancer in vitro, and we observed that moderate substrate stiffness promoted breast cancer cell motility. The substrate stiffness directly activated integrin β1 and focal adhesion kinase (FAK), which accelerate focal adhesion (FA) maturation and induce the downstream cascades of intracellular signals of the RhoA/ROCK pathway. Interestingly, the differential regulatory mechanism between two ROCK isoforms (ROCK1 and ROCK2) in cell motility and mechanotransduction was clearly identified. ROCK1 phosphorylated the myosin regulatory light chain (MRLC) and facilitated the generation of traction force, while ROCK2 phosphorylated cofilin and regulated the cytoskeletal remodeling by suppressing F-actin depolymerization. The ROCK isoforms differentially regulated the pathways of RhoA/ROCK1/p-MLC and RhoA/ROCK2/p-cofilin in a coordinate fashion to modulate breast cancer cell motility in a substrate stiffness-dependent manner through integrin β1-activated FAK signaling. Our findings provide new insights into the mechanisms of matrix mechanical property-induced cancer cell migration and malignant behaviors. STATEMENT OF SIGNIFICANCE: Here, we examined the relationship between substrate stiffness and tumor cellular motility by using polyacrylamide (PAA) substrates to simulate the stages in vivo of breast cancer. The results elucidated the different regulatory roles between the two ROCK isoforms in cell motility and demonstrated that stiff substrate (38 kPa) mediated RhoA/ROCK1/p-MLC and RhoA/ROCK2/p-cofilin pathways through integrin β1-FAK activation and eventually promoted directional migration. Our discoveries would have significant implications in the understanding of the interaction between cancer cells and tumor microenvironments, and hence, it might provide new insights into the metastasis inhibition, which could be an adjuvant way of cancer therapy.
Collapse
|
331
|
Mogha P, Srivastava A, Kumar S, Das S, Kureel S, Dwivedi A, Karulkar A, Jain N, Sawant A, Nayak C, Majumder A, Purwar R. Hydrogel scaffold with substrate elasticity mimicking physiological-niche promotes proliferation of functional keratinocytes. RSC Adv 2019; 9:10174-10183. [PMID: 31304009 PMCID: PMC6592153 DOI: 10.1039/c9ra00781d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/13/2019] [Indexed: 11/21/2022] Open
Abstract
High numbers of autologous human primary keratinocytes (HPKs) are required for patients with burns, wounds and for gene therapy of skin disorders. Although freshly isolated HPKs exhibit a robust regenerative capacity, traditional methodology fails to provide a sufficient number of cells. Here we demonstrated a well characterized, non-cytotoxic and inert hydrogel as a substrate that mimics skin elasticity, which can accelerate proliferation and generate higher numbers of HPKs compared to existing tissue culture plastic (TCP) dishes. More importantly, this novel method was independent of feeder layer or any exogenous pharmaceutical drug. The HPKs from the hydrogel-substrate were functional as demonstrated by wound-healing assay, and the expression of IFN-γ-responsive genes (CXCL10, HLADR). Importantly, gene delivery efficiency by a lentiviral based delivery system was significantly higher in HPKs cultured on hydrogels compared with TCP. In conclusion, our study provides the first evidence that cell-material mechanical interaction is enough to provide a rapid expansion of functional keratinocytes that might be used as autologous grafts for skin disorders. High numbers of autologous human primary keratinocytes (HPKs) are required for patients with burns, wounds and for gene therapy of skin disorders.![]()
Collapse
Affiliation(s)
- Pankaj Mogha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| | - Ankita Srivastava
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| | - Sushant Kumar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| | - Sreya Das
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| | - Sanjay Kureel
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| | - Alka Dwivedi
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| | - Atharva Karulkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| | - Nikita Jain
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| | - Abhijeet Sawant
- Department of Plastic Surgery, Topiwala National Medical College & B. Y. L. Nair Charitable Hospital, Mumbai, Maharashtra 400008, India
| | - Chitra Nayak
- Department of Dermatology, B. Y. L Nair Ch. Hospital & T. N. Medical College, Mumbai, Maharashtra 400008, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| |
Collapse
|
332
|
Kruger TM, Bell KJ, Lansakara TI, Tivanski AV, Doorn JA, Stevens LL. Reduced Extracellular Matrix Stiffness Prompts SH-SY5Y Cell Softening and Actin Turnover To Selectively Increase Aβ(1-42) Endocytosis. ACS Chem Neurosci 2019; 10:1284-1293. [PMID: 30499651 DOI: 10.1021/acschemneuro.8b00366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by the extracellular deposition of dense amyloid beta plaques. Emerging evidence suggests that the production of these plaques is initiated by the intracellular uptake and lysosomal preconcentration of the amyloid-beta (Aβ) peptide. All previous endocytosis studies assess Aβ uptake with cells plated on traditional tissue culture plastic; however, brain tissue is distinctly soft with a low-kPa stiffness. Use of an ultrastiff plastic/glass substrate prompts a mechanosensitive response (increased cell spreading, cell stiffness, and membrane tension) that potentially distorts a cell's endocytic behavior from that observed in vivo or in a more physiologically relevant mechanical environment. Our studies demonstrate substrate stiffness significantly modifies the behavior of undifferentiated SH-SY5Y neuroblastoma, where cells plated on soft (∼1 kPa) substrates display a rounded morphology, decreased actin polymerization, reduced adhesion (decreased β1 integrin expression), and reduced cell stiffness compared to cells plated on tissue culture plastic. Moreover, these neuroblastoma on softer substrates display a preferential increase in the uptake of the Aβ(1-42) compared to Aβ(1-40), while both isoforms display a clear stiffness-dependent increase of uptake relative to cells plated on plastic. Considering the brain is a soft tissue that continues to soften with age, this mechanosensitive endocytosis of Aβ has significant implications for understanding age-related neurodegeneration and the mechanism behind Aβ uptake and fibril production. Overall, identifying these physical factors that contribute to the pathology of AD may offer novel avenues of therapeutic intervention.
Collapse
Affiliation(s)
- Terra M. Kruger
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Kendra J. Bell
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | | | - Alexei V. Tivanski
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonathan A. Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Lewis L. Stevens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
333
|
Colin-York H, Javanmardi Y, Skamrahl M, Kumari S, Chang VT, Khuon S, Taylor A, Chew TL, Betzig E, Moeendarbary E, Cerundolo V, Eggeling C, Fritzsche M. Cytoskeletal Control of Antigen-Dependent T Cell Activation. Cell Rep 2019; 26:3369-3379.e5. [PMID: 30893608 PMCID: PMC6426652 DOI: 10.1016/j.celrep.2019.02.074] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 08/06/2018] [Accepted: 02/20/2019] [Indexed: 11/23/2022] Open
Abstract
Cytoskeletal actin dynamics is essential for T cell activation. Here, we show evidence that the binding kinetics of the antigen engaging the T cell receptor influences the nanoscale actin organization and mechanics of the immune synapse. Using an engineered T cell system expressing a specific T cell receptor and stimulated by a range of antigens, we found that the peak force experienced by the T cell receptor during activation was independent of the unbinding kinetics of the stimulating antigen. Conversely, quantification of the actin retrograde flow velocity at the synapse revealed a striking dependence on the antigen unbinding kinetics. These findings suggest that the dynamics of the actin cytoskeleton actively adjusted to normalize the force experienced by the T cell receptor in an antigen-specific manner. Consequently, tuning actin dynamics in response to antigen kinetics may thus be a mechanism that allows T cells to adjust the lengthscale and timescale of T cell receptor signaling.
Collapse
Affiliation(s)
- Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Mark Skamrahl
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Sudha Kumari
- Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Veronica T Chang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Satya Khuon
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Aaron Taylor
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK; Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK.
| |
Collapse
|
334
|
Stanton AE, Tong X, Lee S, Yang F. Biochemical Ligand Density Regulates Yes-Associated Protein Translocation in Stem Cells through Cytoskeletal Tension and Integrins. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8849-8857. [PMID: 30789697 PMCID: PMC6881158 DOI: 10.1021/acsami.8b21270] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Different tissue types are characterized by varying stiffness and biochemical ligands. Increasing substrate stiffness has been shown to trigger Yes-associated protein (YAP) translocation from the cytoplasm to the nucleus, yet the role of ligand density in modulating mechanotransduction and stem cell fate remains largely unexplored. Using polyacrylamide hydrogels coated with fibronectin as a model platform, we showed that stiffness-induced YAP translocation occurs only at intermediate ligand densities. At low or high ligand densities, YAP localization is dominated by ligand density independent of substrate stiffness. We further showed that ligand density-induced YAP translocation requires cytoskeleton tension and αVβ3-integrin binding. Finally, we demonstrate that increasing ligand density alone can enhance osteogenic differentiation regardless of matrix stiffness. Together, the findings from the present study establish ligand density as an important parameter for modulating stem cell mechanotransduction and differentiation, which is mediated by integrin clustering, focal adhesion, and cytoskeletal tension.
Collapse
Affiliation(s)
- Alice E. Stanton
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Xinming Tong
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Soah Lee
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
335
|
Gryka MC, Comi TJ, Forsyth RA, Hadley PM, Deb S, Bhargava R. Controlled dissolution of freeform 3D printed carbohydrate glass scaffolds in hydrogels using a hydrophobic spray coating. ADDITIVE MANUFACTURING 2019; 26:193-201. [PMID: 30775269 PMCID: PMC6371974 DOI: 10.1016/j.addma.2018.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Freeform 3D printing combined with sacrificial molding promises to lead advances in production of highly complex tubular systems for biomedical applications. Here we leverage a purpose-built isomalt 3D printer to generate complex channel geometries in hydrogels which would be inaccessible with other techniques. To control the dissolution of the scaffold, we propose an enabling technology consisting of an automated nebulizer coating system which applies octadecane to isomalt scaffolds. Octadecane, a saturated hydrocarbon, protects the rigid mold from dissolution and provides ample time for gels to set around the sacrificial structure. With a simplified model of the nebulizer system, the robotic motion was optimized for uniform coating. Using a combination of stimulated Raman scattering (SRS) microscopy and X-ray computed tomography, the coating was characterized to assess surface roughness and consistency. Colorimetric measurements of dissolution rates allowed optimization of sprayer parameters, yielding a decrease in dissolution rates by at least 4 orders of magnitude. High fidelity channels are ensured by surfactant treatment of the coating, which prevents bubbles from clinging to the surface. Spontaneous Raman scattering microspectroscopy and white light microscopy indicate cleared channels are free of octadecane following gentle flushing. The capabilities of the workflow are highlighted with several complex channel architectures including helices, blind channels, and multiple independent channels within polyacrylamide hydrogels of varying stiffnesses.
Collapse
Affiliation(s)
- M C Gryka
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - T J Comi
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - R A Forsyth
- Department of Chemical Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - P M Hadley
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - S Deb
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - R Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL
- Departments of Chemistry, Chemical and Biomolecular Engineering, Mechanical Science and Engineering, and Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
336
|
Iwashita M, Ohta H, Fujisawa T, Cho M, Ikeya M, Kidoaki S, Kosodo Y. Brain-stiffness-mimicking tilapia collagen gel promotes the induction of dorsal cortical neurons from human pluripotent stem cells. Sci Rep 2019; 9:3068. [PMID: 30816128 PMCID: PMC6395773 DOI: 10.1038/s41598-018-38395-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 12/21/2018] [Indexed: 11/08/2022] Open
Abstract
The mechanical properties of the extracellular microenvironment, including its stiffness, play a crucial role in stem cell fate determination. Although previous studies have demonstrated that the developing brain exhibits spatiotemporal diversity in stiffness, it remains unclear how stiffness regulates stem cell fate towards specific neural lineages. Here, we established a culture substrate that reproduces the stiffness of brain tissue using tilapia collagen for in vitro reconstitution assays. By adding crosslinkers, we obtained gels that are similar in stiffness to living brain tissue (150-1500 Pa). We further examined the capability of the gels serving as a substrate for stem cell culture and the effect of stiffness on neural lineage differentiation using human iPS cells. Surprisingly, exposure to gels with a stiffness of approximately 1500 Pa during the early period of neural induction promoted the production of dorsal cortical neurons. These findings suggest that brain-stiffness-mimicking gel has the potential to determine the terminal neural subtype. Taken together, the crosslinked tilapia collagen gel is expected to be useful in various reconstitution assays that can be used to explore the role of stiffness in neurogenesis and neural functions. The enhanced production of dorsal cortical neurons may also provide considerable advantages for neural regenerative applications.
Collapse
Affiliation(s)
- Misato Iwashita
- Korea Brain Research Institute, 61, Chemdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
| | - Hatsumi Ohta
- Ihara & Co, Ltd, 3-263-23, Zenibako, Otaru, Hokkaido, 947-0261, Japan
| | - Takahiro Fujisawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Minyoung Cho
- Korea Brain Research Institute, 61, Chemdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
| | - Makoto Ikeya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Satoru Kidoaki
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoichi Kosodo
- Korea Brain Research Institute, 61, Chemdan-ro, Dong-gu, Daegu, 41068, Republic of Korea.
| |
Collapse
|
337
|
Wei X, Wei R, Jiang G, Jia Y, Lou H, Yang Z, Luo D, Huang Q, Xu S, Yang X, Zhou Y, Li X, Ji T, Hu J, Xi L, Ma D, Ye F, Gao Q. Mechanical cues modulate cellular uptake of nanoparticles in cancer via clathrin-mediated and caveolae-mediated endocytosis pathways. Nanomedicine (Lond) 2019; 14:613-626. [PMID: 30816057 DOI: 10.2217/nnm-2018-0334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM To investigate the influence of tissue mechanics on the cellular uptake efficiency of nanoparticles (NPs) in cancer. MATERIALS & METHODS Collagen-coated polyacrylamide gels were prepared as model substrates. Coumarin 6-loaded poly(lactic-co-glycolic) acid micelles (C6-NPs) were prepared to investigate the cellular uptake of NPs. RESULTS We demonstrated that substrate stiffness modulated the cellular uptake of NPs of cancer. Mechanistically, mechanical cues exerted influence on the clathrin-mediated endocytosis and caveolae-mediated endocytosis pathways, which mediated stiffness-regulated cellular uptake of NPs. CONCLUSION Our findings shed light on the regulatory role of the mechanical cues on the cellular uptake of NPs and will facilitate the selection of clinical patients who might benefit from a given nanotherapy.
Collapse
Affiliation(s)
- Xiao Wei
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Rui Wei
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Guiying Jiang
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Yijuan Jia
- Department of Obstetrics & Gynecology, Wuhan First Hospital, Wuhan, 430022, China
| | - Hua Lou
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Zongyuan Yang
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Danfeng Luo
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Quanfu Huang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Sen Xu
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Xin Yang
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Ying Zhou
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Xiaoting Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Teng Ji
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Junbo Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Ling Xi
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Ding Ma
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Fei Ye
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Qinglei Gao
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| |
Collapse
|
338
|
Hydrogels with enhanced protein conjugation efficiency reveal stiffness-induced YAP localization in stem cells depends on biochemical cues. Biomaterials 2019; 202:26-34. [PMID: 30826537 DOI: 10.1016/j.biomaterials.2019.02.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/24/2019] [Accepted: 02/21/2019] [Indexed: 11/20/2022]
Abstract
Polyacrylamide hydrogels have been widely used in stem cell mechanotransduction studies. Conventional conjugation methods of biochemical cues to polyacrylamide hydrogels suffer from low conjugation efficiency, which leads to poor attachment of human pluripotent stem cells (hPSCs) on soft substrates. In addition, while it is well-established that stiffness-dependent regulation of stem cell fate requires cytoskeletal tension, and is mediated through nuclear translocation of transcription regulator, Yes-associated protein (YAP), the role of biochemical cues in stiffness-dependent YAP regulation remains largely unknown. Here we report a method that enhances the conjugation efficiency of biochemical cues on polyacrylamide hydrogels compared to conventional methods. This modified method enables robust hPSC attachment, proliferation and maintenance of pluripotency across varying substrate stiffness (3 kPa-38 kPa). Using this hydrogel platform, we demonstrate that varying the types of biochemical cues (Matrigel, laminin, GAG-peptide) or density of Matrigel can alter stiffness-dependent YAP localization in hPSCs. In particular, we show that stiffness-dependent YAP localization is overridden at low or high density of Matrigel. Furthermore, human mesenchymal stem cells display stiffness-dependent YAP localization only at intermediate fibronectin density. The hydrogel platform with enhanced conjugation efficiency of biochemical cues provides a powerful tool for uncovering the role of biochemical cues in regulating mechanotransduction of various stem cell types.
Collapse
|
339
|
Counting growth factors in single cells with infrared quantum dots to measure discrete stimulation distributions. Nat Commun 2019; 10:909. [PMID: 30796217 PMCID: PMC6385258 DOI: 10.1038/s41467-019-08754-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 01/29/2019] [Indexed: 12/20/2022] Open
Abstract
The distribution of single-cell properties across a population of cells can be measured using diverse tools, but no technology directly quantifies the biochemical stimulation events regulating these properties. Here we report digital counting of growth factors in single cells using fluorescent quantum dots and calibrated three-dimensional deconvolution microscopy (QDC-3DM) to reveal physiologically relevant cell stimulation distributions. We calibrate the fluorescence intensities of individual compact quantum dots labeled with epidermal growth factor (EGF) and demonstrate the necessity of near-infrared emission to overcome intrinsic cellular autofluoresence at the single-molecule level. When applied to human triple-negative breast cancer cells, we observe proportionality between stimulation and both receptor internalization and inhibitor response, reflecting stimulation heterogeneity contributions to intrinsic variability. We anticipate that QDC-3DM can be applied to analyze any peptidic ligand to reveal single-cell correlations between external stimulation and phenotypic variability, cell fate, and drug response. Measuring growth factors in single cells at physiologically relevant stimulation doses is challenging. Here the authors use fluorescent quantum dots and calibrated three-dimensional deconvolution microscopy to digitally count growth factors in single cells and reveal stimulation distributions in cancer cells.
Collapse
|
340
|
DuChez BJ, Doyle AD, Dimitriadis EK, Yamada KM. Durotaxis by Human Cancer Cells. Biophys J 2019; 116:670-683. [PMID: 30709621 PMCID: PMC6382956 DOI: 10.1016/j.bpj.2019.01.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/11/2018] [Accepted: 01/07/2019] [Indexed: 01/05/2023] Open
Abstract
Durotaxis is a type of directed cell migration in which cells respond to a gradient of extracellular stiffness. Using automated tracking of positional data for large sample sizes of single migrating cells, we investigated 1) whether cancer cells can undergo durotaxis; 2) whether cell durotactic efficiency varies depending on the regional compliance of stiffness gradients; 3) whether a specific cell migration parameter such as speed or time of migration correlates with durotaxis; and 4) whether Arp2/3, previously implicated in leading edge dynamics and migration, contributes to cancer cell durotaxis. Although durotaxis has been characterized primarily in nonmalignant mesenchymal cells, little is known about its role in cancer cell migration. Diffusible factors are known to affect cancer cell migration and metastasis. However, because many tumor microenvironments gradually stiffen, we hypothesized that durotaxis might also govern migration of cancer cells. We evaluated the durotactic potential of multiple cancer cell lines by employing substrate stiffness gradients mirroring the physiological stiffness encountered by cells in a variety of tissues. Automated cell tracking permitted rapid acquisition of positional data and robust statistical analyses for migrating cells. These durotaxis assays demonstrated that all cancer cell lines tested (two glioblastoma, metastatic breast cancer, and fibrosarcoma) migrated directionally in response to changes in extracellular stiffness. Unexpectedly, all cancer cell lines tested, as well as noninvasive human fibroblasts, displayed the strongest durotactic migratory response when migrating on the softest regions of stiffness gradients (2-7 kPa), with decreased responsiveness on stiff regions of gradients. Focusing on glioblastoma cells, durotactic forward migration index and displacement rates were relatively stable over time. Correlation analyses showed the expected correlation with displacement along the gradient but much less with persistence and none with cell speed. Finally, we found that inhibition of Arp2/3, an actin-nucleating protein necessary for lamellipodial protrusion, impaired durotactic migration.
Collapse
Affiliation(s)
- Brian J DuChez
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Andrew D Doyle
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Emilios K Dimitriadis
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Kenneth M Yamada
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
341
|
Cheewaruangroj N, Leonavicius K, Srinivas S, Biggins JS. Peristaltic Elastic Instability in an Inflated Cylindrical Channel. PHYSICAL REVIEW LETTERS 2019; 122:068003. [PMID: 30822054 DOI: 10.1103/physrevlett.122.068003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/21/2018] [Indexed: 06/09/2023]
Abstract
A long cylindrical cavity through a soft solid forms a soft microfluidic channel, or models a vascular capillary. We observe experimentally that, when such a channel bears a pressurized fluid, it first dilates homogeneously, but then becomes unstable to a peristaltic elastic instability. We combine theory and numerics to fully characterize the instability in a channel with initial radius a through an incompressible bulk neo-Hookean solid with shear modulus μ. We show instability occurs supercritically with wavelength 12.278…a when the cavity pressure exceeds 2.052…μ. In finite solids, the wavelength for peristalsis lengthens, with peristalsis ultimately being replaced by a long-wavelength bulging instability in thin-walled cylinders. Peristalsis persists in Gent strain-stiffening materials, provided the material can sustain extension by more than a factor of 6. Although naively a pressure driven failure mode of soft channels, the instability also offers a route to fabricate periodically undulating channels, producing, e.g., waveguides with photonic or phononic stop bands.
Collapse
Affiliation(s)
- Nontawit Cheewaruangroj
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Karolis Leonavicius
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Shankar Srinivas
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - John S Biggins
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
| |
Collapse
|
342
|
Deacon DC, Happe CL, Chen C, Tedeschi N, Manso AM, Li T, Dalton ND, Peng Q, Farah EN, Gu Y, Tenerelli KP, Tran VD, Chen J, Peterson KL, Schork NJ, Adler ED, Engler AJ, Ross RS, Chi NC. Combinatorial interactions of genetic variants in human cardiomyopathy. Nat Biomed Eng 2019; 3:147-157. [PMID: 30923642 PMCID: PMC6433174 DOI: 10.1038/s41551-019-0348-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of morbidity and mortality worldwide; yet how genetic variation and environmental factors impact DCM heritability remains unclear. Here, we report that compound genetic interactions between DNA sequence variants contribute to the complex heritability of DCM. By using genetic data from a large family with a history of DCM, we discovered that heterozygous sequence variants in the TROPOMYOSIN 1 (TPM1) and VINCULIN (VCL) genes cose-gregate in individuals affected by DCM. In vitro studies of patient-derived and isogenic human-pluripotent-stem-cell-derived cardio-myocytes that were genome-edited via CRISPR to create an allelic series of TPM1 and VCL variants revealed that cardiomyocytes with both TPM1 and VCL variants display reduced contractility and sarcomeres that are less organized. Analyses of mice genetically engineered to harbour these human TPM1 and VCL variants show that stress on the heart may also influence the variable penetrance and expressivity of DCM-associated genetic variants in vivo. We conclude that compound genetic variants can interact combinatorially to induce DCM, particularly when influenced by other disease-provoking stressors.
Collapse
Affiliation(s)
- Dekker C Deacon
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Cassandra L Happe
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Chao Chen
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Neil Tedeschi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ana Maria Manso
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Veterans Administration Healthcare San Diego, San Diego, CA, USA
| | - Ting Li
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nancy D Dalton
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Qian Peng
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Department of Human Biology, J. Craig Venter Institute, La Jolla, CA, USA
| | - Elie N Farah
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yusu Gu
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kevin P Tenerelli
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Vivien D Tran
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ju Chen
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kirk L Peterson
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nicholas J Schork
- Department of Human Biology, J. Craig Venter Institute, La Jolla, CA, USA
| | - Eric D Adler
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA.
| | - Robert S Ross
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Veterans Administration Healthcare San Diego, San Diego, CA, USA.
| | - Neil C Chi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
343
|
Verstreken CM, Labouesse C, Agley CC, Chalut KJ. Embryonic stem cells become mechanoresponsive upon exit from ground state of pluripotency. Open Biol 2019; 9:180203. [PMID: 30958114 PMCID: PMC6367133 DOI: 10.1098/rsob.180203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022] Open
Abstract
Stem cell fate decisions are driven by a broad array of signals, both chemical and mechanical. Although much progress has been made in our understanding of the impact of chemical signals on cell fate choice, much less is known about the role and influence of mechanical signalling, particularly in embryonic stem (ES) cells. Many studies use substrates with different stiffness to study mechanical signalling, but changing substrate stiffness can induce secondary effects which are difficult to disentangle from the direct effects of forces/mechanical signals. To probe the direct impact of mechanical stress on cells, we developed an adaptable cell substrate stretcher to exert specific, reproducible forces on cells. Using this device to test the response of ES cells to tensile strain, we found that cells experienced a transient influx of calcium followed by an upregulation of the so-called immediate and early genes. On longer time scales, however, ES cells in ground state conditions were largely insensitive to mechanical stress. Nonetheless, as ES cells exited the ground state, their susceptibility to mechanical signals increased, resulting in broad transcriptional changes. Our findings suggest that exit from ground state of pluripotency is unaffected by mechanical signals, but that these signals could become important during the next stage of lineage specification. A better understanding of this process could improve our understanding of cell fate choice in early development and improve protocols for differentiation guided by mechanical cues.
Collapse
Affiliation(s)
- C M Verstreken
- 1 Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- 2 Wellcome Trust/Medical Research Council Stem Cell Institute , University of Cambridge , Cambridge CB2 1QR , UK
| | - C Labouesse
- 2 Wellcome Trust/Medical Research Council Stem Cell Institute , University of Cambridge , Cambridge CB2 1QR , UK
| | - C C Agley
- 2 Wellcome Trust/Medical Research Council Stem Cell Institute , University of Cambridge , Cambridge CB2 1QR , UK
| | - K J Chalut
- 1 Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- 2 Wellcome Trust/Medical Research Council Stem Cell Institute , University of Cambridge , Cambridge CB2 1QR , UK
| |
Collapse
|
344
|
Moitrier S, Blanch-Mercader C, Garcia S, Sliogeryte K, Martin T, Camonis J, Marcq P, Silberzan P, Bonnet I. Collective stresses drive competition between monolayers of normal and Ras-transformed cells. SOFT MATTER 2019; 15:537-545. [PMID: 30516225 DOI: 10.1039/c8sm01523f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We study the competition for space between two cell lines that differ only in the expression of the Ras oncogene. The two cell populations are initially separated and set to migrate antagonistically towards an in-between stripe of free substrate. After contact, their interface moves towards the population of normal cells. We interpret the velocity and traction force data taken before and after contact thanks to a hydrodynamic description of collectively migrating cohesive cell sheets. The kinematics of cells, before and after contact, allows us to estimate the relative material parameters for both cell lines. As predicted by the model, the transformed cell population with larger collective stresses pushes the wild type cell population.
Collapse
Affiliation(s)
- Sarah Moitrier
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France. and Sorbonne Université, 75005, Paris, France and Équipe Labellisée Ligue Contre le Cancer, France
| | | | - Simon Garcia
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France. and Sorbonne Université, 75005, Paris, France and Équipe Labellisée Ligue Contre le Cancer, France
| | - Kristina Sliogeryte
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France. and Sorbonne Université, 75005, Paris, France and Équipe Labellisée Ligue Contre le Cancer, France
| | - Tobias Martin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France. and Sorbonne Université, 75005, Paris, France and Équipe Labellisée Ligue Contre le Cancer, France
| | - Jacques Camonis
- Institut Curie, PSL Research University, 75005 Paris, France and ART Group, Inserm U830, 75005 Paris, France
| | - Philippe Marcq
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France. and Sorbonne Université, 75005, Paris, France
| | - Pascal Silberzan
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France. and Sorbonne Université, 75005, Paris, France and Équipe Labellisée Ligue Contre le Cancer, France
| | - Isabelle Bonnet
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France. and Sorbonne Université, 75005, Paris, France and Équipe Labellisée Ligue Contre le Cancer, France
| |
Collapse
|
345
|
de Groot SC, Sliedregt K, van Benthem PPG, Rivolta MN, Huisman MA. Building an Artificial Stem Cell Niche: Prerequisites for Future 3D-Formation of Inner Ear Structures-Toward 3D Inner Ear Biotechnology. Anat Rec (Hoboken) 2019; 303:408-426. [PMID: 30635991 PMCID: PMC7065153 DOI: 10.1002/ar.24067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/03/2018] [Accepted: 08/23/2018] [Indexed: 01/19/2023]
Abstract
In recent years, there has been an increased interest in stem cells for the purpose of regenerative medicine to deliver a wide range of therapies to treat many diseases. However, two‐dimensional cultures of stem cells are of limited use when studying the mechanism of pathogenesis of diseases and the feasibility of a treatment. Therefore, research is focusing on the strengths of stem cells in the three‐dimensional (3D) structures mimicking organs, that is, organoids, or organ‐on‐chip, for modeling human biology and disease. As 3D technology advances, it is necessary to know which signals stem cells need to multiply and differentiate into complex structures. This holds especially true for the complex 3D structure of the inner ear. Recent work suggests that although other factors play a role, the extracellular matrix (ECM), including its topography, is crucial to mimic a stem cell niche in vitro and to drive stem cells toward the formation of the tissue of interest. Technological developments have led to the investigation of biomaterials that closely resemble the native ECM. In the fast forward moving research of organoids and organs‐on‐chip, the inner ear has hardly received attention. This review aims to provide an overview, by describing the general context in which cells, matrix and morphogens cooperate in order to build a tissue, to facilitate research in 3D inner ear technology. Anat Rec, 303:408–426, 2020. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
| | - Karen Sliedregt
- Wageningen University and Research, Wageningen, the Netherlands
| | - Peter Paul G van Benthem
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Marcelo N Rivolta
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Margriet A Huisman
- Hair Science Institute, Maastricht, Maastricht, the Netherlands.,Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
346
|
Li Y, Fanous MJ, Kilian KA, Popescu G. Quantitative phase imaging reveals matrix stiffness-dependent growth and migration of cancer cells. Sci Rep 2019; 9:248. [PMID: 30670739 PMCID: PMC6343033 DOI: 10.1038/s41598-018-36551-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer progression involves complex signals within the tumor microenvironment that orchestrate proliferation and invasive processes. The mechanical properties of the extracellular matrix (ECM) within this microenvironment has been demonstrated to influence growth and the migratory phenotype that precedes invasion. Here we present the integration of a label-free quantitative phase imaging technique, spatial light interference microscopy (SLIM)-with protein-conjugated hydrogel substrates-to explore how the stiffness of the ECM influences melanoma cells of varying metastatic potential. Melanoma cells of high metastatic potential demonstrate increased growth and velocity characteristics relative to cells of low metastatic potential. Cell velocity in the highly metastatic population shows a relative insensitivity to matrix stiffness suggesting adoption of migratory routines that are independent of mechanics to facilitate invasion. The use of SLIM and engineered substrates provides a new approach to characterize the invasive properties of live cells as a function of microenvironment parameters. This work provides fundamental insight into the relationship between growth, migration and metastatic potential, and provides a new tool for profiling cancer cells for clinical grading and development of patient-specific therapeutic regimens.
Collapse
Affiliation(s)
- Yanfen Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Michael J Fanous
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Kristopher A Kilian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
- School of Chemistry, School of Materials Science and Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Gabriel Popescu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| |
Collapse
|
347
|
Vitiello E, Moreau P, Nunes V, Mettouchi A, Maiato H, Ferreira JG, Wang I, Balland M. Acto-myosin force organization modulates centriole separation and PLK4 recruitment to ensure centriole fidelity. Nat Commun 2019; 10:52. [PMID: 30604763 PMCID: PMC6318293 DOI: 10.1038/s41467-018-07965-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/19/2018] [Indexed: 01/09/2023] Open
Abstract
The presence of aberrant number of centrioles is a recognized cause of aneuploidy and hallmark of cancer. Hence, centriole duplication needs to be tightly regulated. It has been proposed that centriole separation limits centrosome duplication. The mechanism driving centriole separation is poorly understood and little is known on how this is linked to centriole duplication. Here, we propose that actin-generated forces regulate centriole separation. By imposing geometric constraints via micropatterns, we were able to prove that precise acto-myosin force arrangements control direction, distance and time of centriole separation. Accordingly, inhibition of acto-myosin contractility impairs centriole separation. Alongside, we observed that organization of acto-myosin force modulates specifically the length of S-G2 phases of the cell cycle, PLK4 recruitment at the centrosome and centriole fidelity. These discoveries led us to suggest that acto-myosin forces might act in fundamental mechanisms of aneuploidy prevention.
Collapse
Affiliation(s)
- Elisa Vitiello
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France.
| | - Philippe Moreau
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France
| | - Vanessa Nunes
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Amel Mettouchi
- Institut Pasteur, Département de Microbiologie, Unité des Toxines Bactériennes, Université Paris Descartes, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Irène Wang
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France
| | - Martial Balland
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France
| |
Collapse
|
348
|
Berg IC, Underhill GH. High Throughput Traction Force Microscopy for Multicellular Islands on Combinatorial Microarrays. Bio Protoc 2019; 9:e3418. [PMID: 31815156 DOI: 10.21769/bioprotoc.3418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The composition and mechanical properties of the cellular microenvironment along with the resulting distribution of cellular devolved forces can affect cellular function and behavior. Traction Force Microscopy (TFM) provides a method to measure the forces applied to a surface by adherent cells. Numerous TFM systems have been described in literature. Broadly, these involve culturing cells on a flexible substrate with embedded fluorescent markers which are imaged before and after relaxion of cell forces. From these images, a displacement field is calculated, and from the displacement field, a traction field. Here we describe a TFM system using polyacrylamide substrates and a microarray spotter to fabricate arrays of multicellular islands on various combinations of extra cellular matrix (ECM) proteins or other biomolecules. A microscope with an automated stage is used to image each of the cellular islands before and after lysing cells with a detergent. These images are analyzed in a semi-automated fashion using a series of MATLAB scripts which produce the displacement and traction fields, and summary data. By combining microarrays with a semi-automated implementation of TFM analysis, this protocol enables evaluation of the impact of substrate stiffness, matrix composition, and tissue geometry on cellular mechanical behavior in high throughput.
Collapse
Affiliation(s)
- Ian C Berg
- Department of Bioengineering, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois Urbana Champaign, Champaign, IL, USA
| |
Collapse
|
349
|
Kaylan KB, Berg IC, Biehl MJ, Brougham-Cook A, Jain I, Jamil SM, Sargeant LH, Cornell NJ, Raetzman LT, Underhill GH. Spatial patterning of liver progenitor cell differentiation mediated by cellular contractility and Notch signaling. eLife 2018; 7:e38536. [PMID: 30589410 PMCID: PMC6342520 DOI: 10.7554/elife.38536] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/24/2018] [Indexed: 12/15/2022] Open
Abstract
The progenitor cells of the developing liver can differentiate toward both hepatocyte and biliary cell fates. In addition to the established roles of TGFβ and Notch signaling in this fate specification process, there is increasing evidence that liver progenitors are sensitive to mechanical cues. Here, we utilized microarrayed patterns to provide a controlled biochemical and biomechanical microenvironment for mouse liver progenitor cell differentiation. In these defined circular geometries, we observed biliary differentiation at the periphery and hepatocytic differentiation in the center. Parallel measurements obtained by traction force microscopy showed substantial stresses at the periphery, coincident with maximal biliary differentiation. We investigated the impact of downstream signaling, showing that peripheral biliary differentiation is dependent not only on Notch and TGFβ but also E-cadherin, myosin-mediated cell contractility, and ERK. We have therefore identified distinct combinations of microenvironmental cues which guide fate specification of mouse liver progenitors toward both hepatocyte and biliary fates.
Collapse
Affiliation(s)
- Kerim B Kaylan
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Ian C Berg
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Matthew J Biehl
- Department of Molecular and Integrative PhysiologyUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Aidan Brougham-Cook
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Ishita Jain
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | | | | | | | - Lori T Raetzman
- Department of Molecular and Integrative PhysiologyUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | | |
Collapse
|
350
|
Roether J, Bertels S, Oelschlaeger C, Bastmeyer M, Willenbacher N. Microstructure, local viscoelasticity and cell culture suitability of 3D hybrid HA/collagen scaffolds. PLoS One 2018; 13:e0207397. [PMID: 30566463 PMCID: PMC6300200 DOI: 10.1371/journal.pone.0207397] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/30/2018] [Indexed: 11/22/2022] Open
Abstract
As mechanical properties of cell culture substrates matter, methods for mechanical characterization of scaffolds on a relevant length scale are required. We used multiple particle tracking microrheology to close the gap between elasticity determined from bulk measurements and elastic properties sensed by cells. Structure and elasticity of macroporous, three-dimensional cryogel scaffolds from mixtures of hyaluronic acid (HA) and collagen (Coll) were characterized. Both one-component gels formed homogeneous networks, whereas hybrid gels were heterogeneous in terms of elasticity. Most strikingly, local elastic moduli were significantly lower than bulk moduli presumably due to non-equilibrium chain conformations between crosslinks. This was more pronounced in Coll and hybrid gels than in pure HA gels. Local elastic moduli were similar for all gels, irrespective of their different swelling ratio and bulk moduli. Fibroblast cell culture proved the biocompatibility of all investigated compositions. Coll containing gels enabled cell migration, adhesion and proliferation inside the gels.
Collapse
Affiliation(s)
- Johanna Roether
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sarah Bertels
- Department of Cell- and Neurobiology, Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Claude Oelschlaeger
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Martin Bastmeyer
- Department of Cell- and Neurobiology, Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|