301
|
Delaney JR, Stöven S, Uvell H, Anderson KV, Engström Y, Mlodzik M. Cooperative control of Drosophila immune responses by the JNK and NF-kappaB signaling pathways. EMBO J 2006; 25:3068-77. [PMID: 16763552 PMCID: PMC1500970 DOI: 10.1038/sj.emboj.7601182] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 05/15/2006] [Indexed: 11/09/2022] Open
Abstract
Jun N-terminal kinase (JNK) signaling is a highly conserved pathway that controls both cytoskeletal remodeling and transcriptional regulation in response to a wide variety of signals. Despite the importance of JNK in the mammalian immune response, and various suggestions of its importance in Drosophila immunity, the actual contribution of JNK signaling in the Drosophila immune response has been unclear. Drosophila TAK1 has been implicated in the NF-kappaB/Relish-mediated activation of antimicrobial peptide genes. However, we demonstrate that Relish activation is intact in dTAK1 mutant animals, and that the immune response in these mutant animals was rescued by overexpression of a downstream JNKK. The expression of a JNK inhibitor and induction of JNK loss-of-function clones in immune responsive tissue revealed a general requirement for JNK signaling in the expression of antimicrobial peptides. Our data indicate that dTAK1 is not required for Relish activation, but instead is required in JNK signaling for antimicrobial peptide gene expression.
Collapse
Affiliation(s)
- Joseph R Delaney
- Brookdale Department of Developmental, Cell and Molecular Biology and Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, NY, USA
| | - Svenja Stöven
- Umeå Center for Molecular Pathogenesis, Umeå University, Umeå, Sweden
| | - Hanna Uvell
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ylva Engström
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | - Marek Mlodzik
- Brookdale Department of Developmental, Cell and Molecular Biology and Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, NY, USA
- The Mount Sinai School of Medicine, One Gustave L Levy Place, Box 1020, New York, NY 10029, USA. Tel.: +1 212 241 6516; Fax: +1 212 241 8610; E-mail:
| |
Collapse
|
302
|
Wang L, Ligoxygakis P. Pathogen recognition and signalling in the Drosophila innate immune response. Immunobiology 2006; 211:251-61. [PMID: 16697918 DOI: 10.1016/j.imbio.2006.01.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 01/18/2006] [Indexed: 01/09/2023]
Abstract
Genetic analysis of the innate immune response in Drosophila has provided important insights into the mechanism of microbial sensing and the subsequent host signalling events. The two major players following immune challenge are the Toll and Immune deficiency (IMD) pathways, which are essential for fruit flies to survive infection. These pathways are homologous to the mammalian Toll-like receptor and tumour necrosis factor pathways, respectively. Moreover, microbial pattern-recognition receptors upstream of Toll and IMD, such as the peptidoglycan recognition proteins, have been isolated and studied at the structural and functional level. In the present, we will review recent data pertaining to the genetic, genomic, RNAi and infection studies that have added new complexities to the system.
Collapse
Affiliation(s)
- Lihui Wang
- Genetics Unit, Department of Biochemistry, University of Oxford, South Parks Road Oxford, OX1 3QU, UK
| | | |
Collapse
|
303
|
Dorer MS, Kirton D, Bader JS, Isberg RR. RNA interference analysis of Legionella in Drosophila cells: exploitation of early secretory apparatus dynamics. PLoS Pathog 2006; 2:e34. [PMID: 16652170 PMCID: PMC1447669 DOI: 10.1371/journal.ppat.0020034] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 03/16/2006] [Indexed: 11/29/2022] Open
Abstract
Legionella pneumophila translocates multiple bacterial effector proteins into host cells to direct formation of a replication vacuole for the bacterium. The emerging consensus is that formation of this compartment involves recruitment of membrane material that traffics between the endoplasmic reticulum (ER) and Golgi. To investigate this model, a targeted approach was used to knock down expression of proteins involved in membrane trafficking, using RNA interference in Drosophila cells. Surprisingly, few single knockdowns of ER–Golgi transport proteins decreased L. pneumophila replication. By analyzing double-stranded RNAs in pairs, combinations were identified that together caused defects in intracellular replication, consistent with the model that membrane traffic funnels into the replication vacuole from multiple sources. In particular, simultaneous depletion of the intermediate compartment and Golgi-tethering factor transport protein particle together with the ER SNARE protein Sec22 reduced replication efficiency, indicating that introduction of lesions at distinct sites in the secretory system reduces replication efficiency. In contrast to knockdowns in secretory traffic, which required multiple simultaneous hits, knockdown of single cytosolic components of ER-associated degradation, including Cdc48/p97 and associated cofactors, was sufficient to inhibit intracellular replication. The requirement for the Cdc48/p97 complex was conserved in mammalian cells, in which replication vacuoles showed intense recruitment of ubiquitinated proteins, the preferred substrates of Cdc48/p97. This complex promoted dislocation of both ubiquitinated proteins and bacterial effectors from the replication vacuole, consistent with the model that maintenance of high-level replication requires surveillance of the vacuole surface. This work demonstrates that L. pneumophila has the ability to gain access to multiple sites in the secretory system and provides the first evidence for a role of the Cdc48/p97 complex in promoting intracellular replication of pathogens and maintenance of replication vacuoles. Legionella pneumophila is a pathogenic bacterium that causes Legionnaires pneumonia. Immune cells, called macrophages, engulf the bacterium and attempt to kill it. Legionella avoids this killing and instead grows inside the macrophage, creating a growth niche using host cell components. The bacterium directs the formation of its replication niche by injecting bacterial proteins, called effectors, into the host cell. These effectors hijack host functions. In this study, the authors identify some of the host pathways that the bacterium hijacks. The authors used macrophage-like cells derived from fruit flies because protein function can be disrupted in these cells using a technique called RNA interference, which destroys the RNA messages that encode for proteins, resulting in directed loss of these proteins. Candidate proteins were chosen to disrupt based upon previous knowledge about the biology of Legionella. This report highlights two observations that contribute to our understanding of the biology of Legionella. Surprisingly, the absence of some host components could be tolerated because other host components could take their place. One exception to this rule was a protein complex on the outside of the Legionella replication vacuole that may help the bacterium deliver its proteins to appropriate sites in the host cell.
Collapse
Affiliation(s)
- Marion S Dorer
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Donald Kirton
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
- School of Medicine, Tufts University, Boston, Massachusetts, United States of America
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Tufts University, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
304
|
Ong ST, Ho JZS, Ho B, Ding JL. Iron-withholding strategy in innate immunity. Immunobiology 2006; 211:295-314. [PMID: 16697921 DOI: 10.1016/j.imbio.2006.02.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
The knowledge of how organisms fight infections has largely been built upon the ability of host innate immune molecules to recognize microbial determinants. Although of overwhelming importance, pathogen recognition is but only one of the facets of innate immunity. A primitive yet effective antimicrobial mechanism which operates by depriving microbial organisms of their nutrients has been brought into the forefront of innate immunity once again. Such a tactic is commonly referred to as the iron-withholding strategy of innate immunity. In this review, we introduce various vertebrate iron-binding proteins and their invertebrate homologues, so as to impress upon readers an obscured arm of innate immune defense. An excellent comprehension of the mechanics of innate immunity paves the way for the possibility that novel antimicrobial therapeutics may emerge one day to overcome the prevalent antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Sek Tong Ong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | | | | | | |
Collapse
|
305
|
Girardot F, Lasbleiz C, Monnier V, Tricoire H. Specific age-related signatures in Drosophila body parts transcriptome. BMC Genomics 2006; 7:69. [PMID: 16584578 PMCID: PMC1481561 DOI: 10.1186/1471-2164-7-69] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 04/04/2006] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND During the last two decades progress in the genetics of aging in invertebrate models such as C. elegans and D. melanogaster has clearly demonstrated the existence of regulatory pathways that control the rate of aging in these organisms, such as the insulin-like pathway, the Jun kinase pathway and the Sir2 deacetylase pathway. Moreover, it was rapidly shown that some of these pathways are conserved from yeast to humans. In parallel to genetic studies, genomic expression approaches have given us significant information on the gene expression modifications that occur during aging either in wild type or long-lived mutant animals. But most of the genomic studies of invertebrate models have been performed so far on whole animals, while several recent studies in mammals have shown that the effects of aging are tissue specific. RESULTS We used oligonucleotide microarrays to address the specificities of transcriptional responses in aging Drosophila in head, thorax or whole body. These fly parts are enriched in transcripts that represent different and complementary sets of genes. We present evidence for both specific and common transcriptional responses during the aging process in these tissues. About half of the genes described as downregulated with age are linked to reproduction and enriched in gonads. Greater downregulation of mitochondrial genes, activation of the JNK pathway and upregulation of proteasome subunits in the thorax of aged flies all suggest that muscle may be particularly sensitive to aging. Simultaneous age-related impairment of synaptic transmission gene expression is observed in fly heads. In addition, a detailed comparison with other microarray data indicates that in aged flies there are significant deviations from the canonical responses to oxidative stress and immune stress. CONCLUSION Our data demonstrates the advantages and value of regionalized and comparative analysis of gene expression in aging animals. Adding to the age-regulated genes already identified in whole animal studies, it provides lists of new regionalized genes to be studied for their functional role in the aging process. This work also emphasizes the need for such experiments to reveal in greater detail the consequences of the transcriptional modifications induced by aging regulatory pathways.
Collapse
Affiliation(s)
- Fabrice Girardot
- Biologie du Développement, UMR7009 CNRS/UPMC, Observatoire Océanologique, Quai de la Darse, 06234 Villefranche-sur-Mer Cedex, France
| | - Christelle Lasbleiz
- Département de développement, Institut Jacques Monod, 2 place Jussieu, 75251 Paris, France
| | - Véronique Monnier
- Département de développement, Institut Jacques Monod, 2 place Jussieu, 75251 Paris, France
| | - Hervé Tricoire
- Département de développement, Institut Jacques Monod, 2 place Jussieu, 75251 Paris, France
| |
Collapse
|
306
|
Brun S, Vidal S, Spellman P, Takahashi K, Tricoire H, Lemaitre B. The MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila. Genes Cells 2006; 11:397-407. [PMID: 16611243 DOI: 10.1111/j.1365-2443.2006.00953.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Septic injury triggers a rapid and widespread response in Drosophila adults that involves the up-regulation of many genes required to combat infection and for wound healing. Genome-wide expression profiling has already demonstrated that this response is controlled by signaling through the Toll, Imd, JAK-STAT and JNK pathways. Using oligonucleotide microarrays, we now demonstrate that the MAPKKK Mekk1 regulates a small subset of genes induced by septic injury including Turandot (Tot) stress genes. Our analysis indicates that Tot genes show a complex regulation pattern including signals from both the JAK-STAT and Imd pathways and Mekk1. Interestingly, Mekk1 flies are resistant to microbial infection but susceptible to paraquat, an inducer of oxidative stress. These results point to a role of Mekk1 in the protection against tissue damage and/or protein degradation and indicate complex interactions between stress and immune pathways in Drosophila.
Collapse
Affiliation(s)
- Sylvain Brun
- Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
307
|
Verleyen P, Baggerman G, D'Hertog W, Vierstraete E, Husson SJ, Schoofs L. Identification of new immune induced molecules in the haemolymph of Drosophila melanogaster by 2D-nanoLC MS/MS. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:379-88. [PMID: 16510152 DOI: 10.1016/j.jinsphys.2005.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 05/06/2023]
Abstract
Antimicrobial peptides (AMPs) play an important role in the innate immunity of insects. In Drosophila 17 additional immune induced molecules (DIMs) were found in the haemolymph of adult flies upon septic injury. Previous studies using MALDI mass spectrometry combined with Edman degradation, detected AMPs and DIMs of a predominantly large size. By means of 2D-nanoLC ESI MS/MS, 43 DIMs were identified in this study from the haemolymph of Drosophila third instar larvae 12h after challenge with a mixture of Micrococcus luteus and Escherichia coli. Most peptides were derived from known AMP or DIM precursors, but only four peptides were purified and identified before. The majority of the peptides that we detected were smaller in size. Interestingly, two previously unknown peptide precursors were found and hereby related to immune defense. These include CG7738 and CG32185. Many of the identified peptides are post-translationally modified by an N-terminal pyroglutamic acid and/or a C-terminal amide. Haemolymph of control larvae was treated in the same way and revealed only one peptide.
Collapse
Affiliation(s)
- Peter Verleyen
- Laboratory of Developmental Physiology, Genomics and Proteomics, K.U.Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
308
|
Jang IH, Chosa N, Kim SH, Nam HJ, Lemaitre B, Ochiai M, Kambris Z, Brun S, Hashimoto C, Ashida M, Brey PT, Lee WJ. A Spätzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev Cell 2006; 10:45-55. [PMID: 16399077 DOI: 10.1016/j.devcel.2005.11.013] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 11/08/2005] [Accepted: 11/21/2005] [Indexed: 11/27/2022]
Abstract
The Toll receptor was originally identified as an indispensable molecule for Drosophila embryonic development and subsequently as an essential component of innate immunity from insects to humans. Although in Drosophila the Easter protease processes the pro-Spätzle protein to generate the Toll ligand during development, the identification of the protease responsible for pro-Spätzle processing during the immune response has remained elusive for a decade. Here, we report a protease, called Spätzle-processing enzyme (SPE), required for Toll-dependent antimicrobial response. Flies with reduced SPE expression show no noticeable pro-Spätzle processing and become highly susceptible to microbial infection. Furthermore, activated SPE can rescue ventral and lateral development in embryos lacking Easter, showing the functional homology between SPE and Easter. These results imply that a single ligand/receptor-mediated signaling event can be utilized for different biological processes, such as immunity and development, by recruiting similar ligand-processing proteases with distinct activation modes.
Collapse
Affiliation(s)
- In-Hwan Jang
- Division of Molecular Life Science, Ewha Womans University, Seoul, 120-750, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Liu F, Baggerman G, D'Hertog W, Verleyen P, Schoofs L, Wets G. In Silico Identification of New Secretory Peptide Genes in Drosophila melanogaster. Mol Cell Proteomics 2006; 5:510-22. [PMID: 16291998 DOI: 10.1074/mcp.m400114-mcp200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bioactive peptides play critical roles in regulating most biological processes in animals. The elucidation of the amino acid sequence of these regulatory peptides is crucial for our understanding of animal physiology. Most of the (neuro)peptides currently known were identified by purification and subsequent amino acid sequencing. With the entire genome sequence of some animals now available, it has become possible to predict novel putative peptides. In this way, BLAST (Basic Local Alignment Searching Tool) analysis of the Drosophila melanogaster genome has allowed annotation of 36 secretory peptide genes so far. Peptide precursor genes are, however, poorly predicted by this algorithm, thus prompting an alternative approach described here. With the described searching program we scanned the Drosophila genome for predicted proteins with the structural hallmarks of neuropeptide precursors. As a result, 76 additional putative secretory peptide genes were predicted in addition to the 43 annotated ones. These putative (neuro)peptide genes contain conserved motifs reminiscent of known neuropeptides from other animal species. Peptides that display sequence similarities to the mammalian vasopressin, atrial natriuretic peptide, and prolactin precursors and the invertebrate peptides orcokinin, prothoracicotropic hormones, trypsin modulating oostatic factor, and Drosophila immune induced peptides (DIMs) among others were discovered. Our data hence provide further evidence that many neuropeptide genes were already present in the ancestor of Protostomia and Deuterostomia prior to their divergence. This bioinformatic study opens perspectives for the genome-wide analysis of peptide genes in other eukaryotic model organisms.
Collapse
Affiliation(s)
- Feng Liu
- Laboratory for Developmental Physiology, Genomics, and Proteomics, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
310
|
Papa S, Bubici C, Zazzeroni F, Pham CG, Kuntzen C, Knabb JR, Dean K, Franzoso G. The NF-κB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ 2006; 13:712-29. [PMID: 16456579 DOI: 10.1038/sj.cdd.4401865] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
NF-kappaB/Rel transcription factors have recently emerged as crucial regulators of cell survival. Activation of NF-kappaB antagonizes programmed cell death (PCD) induced by tumor necrosis factor-receptors (TNF-Rs) and several other triggers. This prosurvival activity of NF-kappaB participates in a wide range of biological processes, including immunity, lymphopoiesis and development. It is also crucial for pathogenesis of various cancers, chronic inflammation and certain hereditary disorders. This participation of NF-kappaB in survival signaling often involves an antagonism of PCD triggered by TNF-R-family receptors, and is mediated through a suppression of the formation of reactive oxygen species (ROS) and a control of sustained activation of the Jun-N-terminal kinase (JNK) cascade. Effectors of this antagonistic activity of NF-kappaB on this ROS/JNK pathway have been recently identified. Indeed, further delineating the mechanisms by which NF-kappaB promotes cell survival might hold the key to developing new highly effective therapies for treatment of widespread human diseases.
Collapse
Affiliation(s)
- S Papa
- The Ben May Institute for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
311
|
Gesellchen V, Kuttenkeuler D, Steckel M, Pelte N, Boutros M. An RNA interference screen identifies Inhibitor of Apoptosis Protein 2 as a regulator of innate immune signalling in Drosophila. EMBO Rep 2006; 6:979-84. [PMID: 16170305 PMCID: PMC1369191 DOI: 10.1038/sj.embor.7400530] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 07/22/2005] [Accepted: 08/16/2005] [Indexed: 11/09/2022] Open
Abstract
Innate immunity in vertebrates and invertebrates is of central importance as a biological programme for host defence against pathogenic challenges. To find novel components of the Drosophila immune deficiency (IMD) pathway in cultured haemocyte-like cells, we screened an RNA interference library for modifiers of a pathway-specific reporter. Selected modifiers were further characterized using an independent reporter assay and placed into the pathway in relation to known pathway components. Interestingly, the screen identified the Inhibitor of Apoptosis Protein 2 (IAP 2) as being required for IMD signalling. Whereas loss of DIAP 1, the other member of the IAP protein family in Drosophila, leads to apoptosis, we show that IAP 2 is dispensable for cell viability in haemocyte-like cells. Cell-based epistasis experiments show that IAP 2 acts at the level of Tak 1 (transforming growth factor-beta-activated kinase 1). Our results indicate that IAP gene family members may have acquired other functions, such as the regulation of the tumour necrosis factor-like IMD pathway during innate immune responses.
Collapse
Affiliation(s)
- Viola Gesellchen
- German Cancer Research Center (DKFZ), Boveri-Group Signaling and Functional Genomics, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
312
|
Dorer MS, Isberg RR. Non-vertebrate hosts in the analysis of host-pathogen interactions. Microbes Infect 2006; 8:1637-46. [PMID: 16697687 DOI: 10.1016/j.micinf.2005.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 11/30/2005] [Indexed: 01/12/2023]
Abstract
Mutations in bacterial pathogens have been isolated using many strategies. In contrast, the hosts they attack are significantly less tractable. To overcome this problem, a number of model host systems have been developed for isolation and investigation of mutations that modulate pathogen growth. These novel host models are either unicellular organisms, intact invertebrates or cells derived from invertebrates.
Collapse
Affiliation(s)
- Marion S Dorer
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
313
|
Pletcher SD, Libert S, Skorupa D. Flies and their golden apples: the effect of dietary restriction on Drosophila aging and age-dependent gene expression. Ageing Res Rev 2005; 4:451-80. [PMID: 16263339 DOI: 10.1016/j.arr.2005.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 06/17/2005] [Indexed: 11/25/2022]
Abstract
Reduced nutrient availability (dietary restriction) extends lifespan in species as diverse as yeast, nematode worms, Daphnia, Drosophila, and mammals. Recent demographic experiments have shown that moderate nutrient manipulation in adult Drosophila affects current mortality rate in a completely reversible manner, which suggests that dietary restriction in Drosophila increases lifespan through a reduction of the current risk of death rather than a slowing of aging-related damage. When examined in the light of the new demographic data, age-dependent changes in gene expression in normal and diet-restricted flies can provide unique insight into the biological processes affected by aging and may help identify molecular pathways that regulate it.
Collapse
Affiliation(s)
- Scott D Pletcher
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | |
Collapse
|
314
|
Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, Yamada G, Akira S, Matsumoto K, Ghosh S. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 2005; 19:2668-81. [PMID: 16260493 PMCID: PMC1283960 DOI: 10.1101/gad.1360605] [Citation(s) in RCA: 609] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
TGF-beta-activated kinase 1 (TAK1), a member of the MAPKKK family, is thought to be a key modulator of the inducible transcription factors NF-kappaB and AP-1 and, therefore, plays a crucial role in regulating the genes that mediate inflammation. Although in vitro biochemical studies have revealed the existence of a TAK1 complex, which includes TAK1 and the adapter proteins TAB1 and TAB2, it remains unclear which members of this complex are essential for signaling. To analyze the function of TAK1 in vivo, we have deleted the Tak1 gene in mice, with the resulting phenotype being early embryonic lethality. Using embryonic fibroblasts lacking TAK1, TAB1, or TAB2, we have found that TNFR1, IL-1R, TLR3, and TLR4-mediated NF-kappaB and AP-1 activation are severely impaired in Tak1(m/m) cells, but they are normal in Tab1(-/-) and Tab2(-/-) cells. In addition, Tak1(m/m) cells are highly sensitive to TNF-induced apoptosis. TAK1 mediates IKK activation in TNF-alpha and IL-1 signaling pathways, where it functions downstream of RIP1-TRAF2 and MyD88-IRAK1-TRAF6, respectively. However, TAK1 is not required for NF-kappaB activation through the alternative pathway following LT-beta signaling. In the TGF-beta signaling pathway, TAK1 deletion leads to impaired NF-kappaB and c-Jun N-terminal kinase (JNK) activation without impacting Smad2 activation or TGF-beta-induced gene expression. Therefore, our studies suggests that TAK1 acts as an upstream activating kinase for IKKbeta and JNK, but not IKKalpha, revealing an unexpectedly specific role of TAK1 in inflammatory signaling pathways.
Collapse
Affiliation(s)
- Jae-Hyuck Shim
- Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Wertheim B, Kraaijeveld AR, Schuster E, Blanc E, Hopkins M, Pletcher SD, Strand MR, Partridge L, Godfray HCJ. Genome-wide gene expression in response to parasitoid attack in Drosophila. Genome Biol 2005; 6:R94. [PMID: 16277749 PMCID: PMC1297650 DOI: 10.1186/gb-2005-6-11-r94] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 09/20/2005] [Accepted: 09/30/2005] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Parasitoids are insect parasites whose larvae develop in the bodies of other insects. The main immune defense against parasitoids is encapsulation of the foreign body by blood cells, which subsequently often melanize. The capsule sequesters and kills the parasite. The molecular processes involved are still poorly understood, especially compared with insect humoral immunity. RESULTS We explored the transcriptional response to parasitoid attack in Drosophila larvae at nine time points following parasitism, hybridizing five biologic replicates per time point to whole-genome microarrays for both parasitized and control larvae. We found significantly different expression profiles for 159 probe sets (representing genes), and we classified them into 16 clusters based on patterns of co-expression. A series of functional annotations were nonrandomly associated with different clusters, including several involving immunity and related functions. We also identified nonrandom associations of transcription factor binding sites for three main regulators of innate immune responses (GATA/srp-like, NF-kappaB/Rel-like and Stat), as well as a novel putative binding site for an unknown transcription factor. The appearance or absence of candidate genes previously associated with insect immunity in our differentially expressed gene set was surveyed. CONCLUSION Most genes that exhibited altered expression following parasitoid attack differed from those induced during antimicrobial immune responses, and had not previously been associated with defense. Applying bioinformatic techniques contributed toward a description of the encapsulation response as an integrated system, identifying putative regulators of co-expressed and functionally related genes. Genome-wide studies such as ours are a powerful first approach to investigating novel genes involved in invertebrate immunity.
Collapse
Affiliation(s)
- Bregje Wertheim
- Centre for Evolutionary Genomics, Department of Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- NERC Centre for Population Biology, Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - Alex R Kraaijeveld
- NERC Centre for Population Biology, Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - Eugene Schuster
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Eric Blanc
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Meirion Hopkins
- NERC Centre for Population Biology, Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - Scott D Pletcher
- Centre for Evolutionary Genomics, Department of Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- Huffington Center on Aging and Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael R Strand
- Department of Entomology, 420 Biological Sciences, University of Georgia, Athens, GA 30602-2603, USA
| | - Linda Partridge
- Centre for Evolutionary Genomics, Department of Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - H Charles J Godfray
- NERC Centre for Population Biology, Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| |
Collapse
|
316
|
Castillejo-López C, Häcker U. The serine protease Sp7 is expressed in blood cells and regulates the melanization reaction in Drosophila. Biochem Biophys Res Commun 2005; 338:1075-82. [PMID: 16256951 DOI: 10.1016/j.bbrc.2005.10.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 10/07/2005] [Indexed: 01/15/2023]
Abstract
Serine proteases play a central role in defense against pathogens by regulating processes such as blood clotting, melanization of injured surfaces, and proteolytic activation of signaling pathways involved in innate immunity. Here, we present the functional characterization of the Drosophila serine protease Sp7 (CG3006) by inducible RNA interference. We show that Sp7 is constitutively expressed in blood cells during embryonic and larval stages. Silencing of the gene impairs the melanization reaction upon injury. Our data demonstrate that Sp7 is required for phenoloxidase activation and its activity is restricted to a subclass of blood cells, the crystal cells. Transcriptional up-regulation of Sp7 was observed after clean, septic injury and in flies expressing an activated form of Toll; however, mutations in the Toll or the IMD pathway did not abolish expression of Sp7, indicating the existence of other regulatory pathways and/or independent basal transcription.
Collapse
Affiliation(s)
- Casimiro Castillejo-López
- Department of Experimental Medical Science and Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, BMC B13, Klinikgatan 26, 22184 Lund, Sweden.
| | | |
Collapse
|
317
|
Zhou R, Silverman N, Hong M, Liao DS, Chung Y, Chen ZJ, Maniatis T. The Role of Ubiquitination in Drosophila Innate Immunity. J Biol Chem 2005; 280:34048-55. [PMID: 16081424 DOI: 10.1074/jbc.m506655200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Infection of Drosophila by Gram-negative bacteria triggers a signal transduction pathway (the IMD pathway) culminating in the expression of genes encoding antimicrobial peptides. A key component in this pathway is a Drosophila IkappaB kinase (DmIKK) complex, which stimulates the cleavage and activation of the NF-kappaB transcription factor Relish. Activation of the DmIKK complex requires the MAP3K dTAK1, but the mechanism of dTAK1 activation is not understood. In human cells, the activation of TAK1 and IKK requires the human ubiquitin-conjugating enzymes Ubc13 and UEV1a. Here we demonstrate that the Drosophila homologs of Ubc13 and UEV1a are similarly required for the activation of dTAK1 and the DmIKK complex. Surprisingly, we find that the Drosophila caspase DREDD and its partner dFADD are required for the activation of DmIKK and JNK, in addition to their role in Relish cleavage. These studies reveal an evolutionarily conserved role of ubiquitination in IKK activation, and provide new insights into the hierarchy of signaling components in the Drosophila antibacterial immunity pathway.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | |
Collapse
|
318
|
Kleino A, Valanne S, Ulvila J, Kallio J, Myllymäki H, Enwald H, Stöven S, Poidevin M, Ueda R, Hultmark D, Lemaitre B, Rämet M. Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO J 2005; 24:3423-34. [PMID: 16163390 PMCID: PMC1276168 DOI: 10.1038/sj.emboj.7600807] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 08/17/2005] [Indexed: 11/09/2022] Open
Abstract
The Imd signaling cascade, similar to the mammalian TNF-receptor pathway, controls antimicrobial peptide expression in Drosophila. We performed a large-scale RNAi screen to identify novel components of the Imd pathway in Drosophila S2 cells. In all, 6713 dsRNAs from an S2 cell-derived cDNA library were analyzed for their effect on Attacin promoter activity in response to Escherichia coli. We identified seven gene products required for the Attacin response in vitro, including two novel Imd pathway components: inhibitor of apoptosis 2 (Iap2) and transforming growth factor-activated kinase 1 (TAK1)-binding protein (TAB). Iap2 is required for antimicrobial peptide response also by the fat body in vivo. Both these factors function downstream of Imd. Neither TAB nor Iap2 is required for Relish cleavage, but may be involved in Relish nuclear localization in vitro, suggesting a novel mode of regulation of the Imd pathway. Our results show that an RNAi-based approach is suitable to identify genes in conserved signaling cascades.
Collapse
Affiliation(s)
- Anni Kleino
- Institute of Medical Technology, University of Tampere, Tampere, Finland
| | - Susanna Valanne
- Institute of Medical Technology, University of Tampere, Tampere, Finland
| | - Johanna Ulvila
- Department of Pediatrics, University of Oulu, Oulu, Finland
- Biocenter Oulu, Oulu, Finland
| | - Jenni Kallio
- Institute of Medical Technology, University of Tampere, Tampere, Finland
| | - Henna Myllymäki
- Institute of Medical Technology, University of Tampere, Tampere, Finland
| | - Heidi Enwald
- Department of Pediatrics, University of Oulu, Oulu, Finland
- Biocenter Oulu, Oulu, Finland
| | - Svenja Stöven
- Umeå Centre for Molecular Pathogenesis, Umeå University, Umeå, Sweden
| | | | - Ryu Ueda
- Genetic Strains Research Center, National Institute of Genetics, Shizuoka, Japan
| | - Dan Hultmark
- Umeå Centre for Molecular Pathogenesis, Umeå University, Umeå, Sweden
| | - Bruno Lemaitre
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France
| | - Mika Rämet
- Institute of Medical Technology, University of Tampere, Tampere, Finland
- Department of Pediatrics, University of Oulu, Oulu, Finland
- Biocenter Oulu, Oulu, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Institute of Medical Technology, University of Tampere, Tampere 33014, Finland. Tel.: +358 3 35518593; Fax: +358 3 35517710; E-mail:
| |
Collapse
|
319
|
Markowetz F, Bloch J, Spang R. Non-transcriptional pathway features reconstructed from secondary effects of RNA interference. Bioinformatics 2005; 21:4026-32. [PMID: 16159925 DOI: 10.1093/bioinformatics/bti662] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Cellular signaling pathways, which are not modulated on a transcriptional level, cannot be directly deduced from expression profiling experiments. The situation changes, when external interventions such as RNA interference or gene knock-outs come into play. Even if the expression of the signaling genes is not changed, secondary effects in downstream genes shed light on the pathway, and allow partial reconstruction of its topology. RESULTS We introduce an algorithm to infer non-transcriptional pathway features based on differential gene expression in silencing assays. We demonstrate the power of our algorithm in the controlled setting of simulation studies, and explain its practical use in the context of an RNA interference dataset investigating the response to microbial challenge in Drosophila melanogaster.
Collapse
Affiliation(s)
- Florian Markowetz
- Department of Computational Molecular Biology, Computational Diagnostics Group, Max Planck Institute for Molecular Genetics Ihnestrasse 63-73, 14195 Berlin, Germany.
| | | | | |
Collapse
|
320
|
Müller P, Kuttenkeuler D, Gesellchen V, Zeidler MP, Boutros M. Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature 2005; 436:871-5. [PMID: 16094372 DOI: 10.1038/nature03869] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 05/26/2005] [Indexed: 11/09/2022]
Abstract
Signalling pathways mediating the transduction of information between cells are essential for development, cellular differentiation and homeostasis. Their dysregulation is also frequently associated with human malignancies. The Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) pathway represents one such signalling cascade whose evolutionarily conserved roles include cell proliferation and haematopoiesis. Here we describe a systematic genome-wide survey for genes required for JAK/STAT pathway activity. Analysis of 20,026 RNA interference (RNAi)-induced phenotypes in cultured Drosophila melanogaster haemocyte-like cells identified interacting genes encoding 4 known and 86 previously uncharacterized proteins. Subsequently, cell-based epistasis experiments were used to classify these proteins on the basis of their interaction with known components of the signalling cascade. In addition to multiple human disease gene homologues, we have found the tyrosine phosphatase Ptp61F and the Drosophila homologue of BRWD3, a bromo-domain-containing protein disrupted in leukaemia. Moreover, in vivo analysis demonstrates that disrupted dBRWD3 and overexpressed Ptp61F function as suppressors of leukaemia-like blood cell tumours. This screen represents a comprehensive identification of novel loci required for JAK/STAT signalling and provides molecular insights into an important pathway relevant for human cancer. Human homologues of identified pathway modifiers may constitute targets for therapeutic interventions.
Collapse
Affiliation(s)
- Patrick Müller
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
321
|
Abstract
Summary Insects such as Drosophila rely entirely on innate immune responses to combat microbial pathogens. In particular, infection leads to the rapid and massive activation of anti-microbial peptide gene transcription. Drosophila utilize two NF-kappaB signalling pathways to control anti-microbial peptide gene expression, the IMD and Toll pathways. This review highlights recent advances in understanding the mechanisms of bacterial recognition utilized by both these pathways, and in deciphering the mechanisms of intracellular signalling in the IMD pathway. In particular, the peptidoglycan recognition proteins play a critical role in recognizing and discriminating different types of bacterial pathogens, and then activating either the Toll or IMD pathway. Throughout the article, the similarities and differences between Drosophila and mammalian innate immune pathways are discussed.
Collapse
Affiliation(s)
- Takashi Kaneko
- Division of Infectious Disease, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
322
|
Thoetkiattikul H, Beck MH, Strand MR. Inhibitor kappaB-like proteins from a polydnavirus inhibit NF-kappaB activation and suppress the insect immune response. Proc Natl Acad Sci U S A 2005; 102:11426-31. [PMID: 16061795 PMCID: PMC1183600 DOI: 10.1073/pnas.0505240102] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Indexed: 12/26/2022] Open
Abstract
Complex signaling pathways regulate the innate immune system of insects, with NF-kappaB transcription factors playing a central role in the activation of antimicrobial peptides and other immune genes. Although numerous studies have characterized the immune responses of insects to pathogens, comparatively little is known about the counter-strategies pathogens have evolved to circumvent host defenses. Among the most potent immunosuppressive pathogens of insects are polydnaviruses that are symbiotically associated with parasitoid wasps. Here, we report that the Microplitis demolitor bracovirus encodes a family of genes with homology to inhibitor kappaB (IkappaB) proteins from insects and mammals. Functional analysis of two of these genes, H4 and N5, were conducted in Drosophila S2 cells. Recombinant H4 and N5 greatly reduced the expression of drosomycin and attacin reporter constructs, which are under NF-kappaB regulation through the Toll and Imd pathways. Coimmunoprecipitation experiments indicated that H4 and N5 bound to the Rel proteins Dif and Relish, and N5 also weakly bound to Dorsal. H4 and N5 also inhibited binding of Dif and Relish to kappaB sites in the promoters of the drosomycin and cecropin A1 genes. Collectively, these results indicate that H4 and N5 function as IkappaBs and, circumstantially, suggest that other IkappaB-like gene family members are involved in the suppression of the insect immune system.
Collapse
|
323
|
Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C, Hoffmann JA, Imler JL. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila. Nat Immunol 2005; 6:946-53. [PMID: 16086017 DOI: 10.1038/ni1237] [Citation(s) in RCA: 481] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 06/30/2005] [Indexed: 11/08/2022]
Abstract
The response of drosophila to bacterial and fungal infections involves two signaling pathways, Toll and Imd, which both activate members of the transcription factor NF-kappaB family. Here we have studied the global transcriptional response of flies to infection with drosophila C virus. Viral infection induced a set of genes distinct from those regulated by the Toll or Imd pathways and triggered a signal transducer and activator of transcription (STAT) DNA-binding activity. Genetic experiments showed that the Jak kinase Hopscotch was involved in the control of the viral load in infected flies and was required but not sufficient for the induction of some virus-regulated genes. Our results indicate that in addition to Toll and Imd, a third, evolutionary conserved innate immunity pathway functions in drosophila and counters viral infection.
Collapse
Affiliation(s)
- Catherine Dostert
- Centre National de la Recherche Scientifique UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67000 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
324
|
Geuking P, Narasimamurthy R, Basler K. A genetic screen targeting the tumor necrosis factor/Eiger signaling pathway: identification of Drosophila TAB2 as a functionally conserved component. Genetics 2005; 171:1683-94. [PMID: 16079232 PMCID: PMC1456095 DOI: 10.1534/genetics.105.045534] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signaling by tumor necrosis factors (TNFs) plays a prominent role in mammalian development and disease. To fully understand this complex signaling pathway it is important to identify all regulators and transduction components. A single TNF family member, Eiger, is encoded in the Drosophila genome, offering the possibility of applying genetic approaches for pursuing this goal. Here we present a screen for the isolation of novel genes involved in the TNF/Eiger pathway. On the basis of Eiger's ability to potently activate Jun-N-terminal kinase (JNK) and trigger apoptosis, we used the Drosophila eye to establish an assay for dominant suppressors of this activity. In a large-scale screen the Drosophila homolog of TAB2/3 (dTAB2) was identified as an essential component of the Eiger-JNK pathway. Genetic epistasis and biochemical protein-protein interaction assays assign an adaptor role to dTAB2, linking dTRAF1 to the JNKKK dTAK1, demonstrating a conserved mechanism of TNF signal transduction in mammals and Drosophila. Thus, in contrast to morphogenetic processes, such as dorsal closure of the embryo, in which the JNK pathway is activated by the JNKKK Slipper, Eiger uses the dTAB2-dTAK1 module to induce JNK signaling activity.
Collapse
Affiliation(s)
- Peter Geuking
- Institut für Molekularbiologie, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
325
|
Williams MJ, Ando I, Hultmark D. Drosophila melanogaster Rac2 is necessary for a proper cellular immune response. Genes Cells 2005; 10:813-23. [PMID: 16098145 DOI: 10.1111/j.1365-2443.2005.00883.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been reported that during Drosophila embryonic development, and in cell culture, that the Rac GTPases are redundant. To better elucidate Rac function in Drosophila, we decided to study the role of Rac2 in larval cellular defense reactions against the parasitiod Leptopilina boulardi. Here we show a dramatic effect in the context of cellular immunity where, unlike embryonic development, Rac2 appears to have a non-redundant function. When an invading parasitoid is recognized as foreign, circulating hemocytes (blood cells) should recognize and attach to the egg chorion. After attachment the hemocytes should then spread to form a multilayered capsule surrounding the invader. In Rac2 mutants this process is disrupted. Immune surveillance cells, known as plasmatocytes, adhere to the parasitoid egg but fail to spread, and septate junctions do not assemble, possibly due to mislocalization of the Protein 4.1 homolog Coracle. Finally, larger cells known as lamellocytes attach to the capsule but also fail to spread, and there is a lack of melanization. From these results it appears that Rac2 is necessary for the larval cellular immune response.
Collapse
Affiliation(s)
- Michael J Williams
- Umeå Centre for Molecular Pathogenesis, Umeå University, S-901 87 Umeå, Sweden.
| | | | | |
Collapse
|
326
|
Vodovar N, Vinals M, Liehl P, Basset A, Degrouard J, Spellman P, Boccard F, Lemaitre B. Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci U S A 2005; 102:11414-9. [PMID: 16061818 PMCID: PMC1183552 DOI: 10.1073/pnas.0502240102] [Citation(s) in RCA: 325] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila has been shown to be a valuable model for the investigation of host-pathogen interactions. Study of the Drosophila immune response has been hampered, however, by the lack of true Drosophila pathogens. In nearly all studies reported, the bacteria used were directly injected within the body cavity of the insect, bypassing the initial steps of a natural interaction. Here, we report the identification of a previously uncharacterized bacterial species, Pseudomonas entomophila (Pe), which has the capacity to induce the systemic expression of antimicrobial peptide genes in Drosophila after ingestion. In contrast to previously identified bacteria, Pe is highly pathogenic to both Drosophila larvae and adults, and its persistence in larvae leads to a massive destruction of gut cells. Using this strain, we have analyzed the modulation of the larval transcriptome upon bacterial infection. We found that natural infection by Pe induces a dramatic change in larval gene expression. In addition to immunity genes, our study identifies many genes associated with Pe pathogenesis that have been previously unreported.
Collapse
Affiliation(s)
- Nicolas Vodovar
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
327
|
Mylonakis E, Aballay A. Worms and flies as genetically tractable animal models to study host-pathogen interactions. Infect Immun 2005; 73:3833-41. [PMID: 15972468 PMCID: PMC1168613 DOI: 10.1128/iai.73.7.3833-3841.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
328
|
Michel K, Kafatos FC. Mosquito immunity against Plasmodium. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:677-89. [PMID: 15894185 DOI: 10.1016/j.ibmb.2005.02.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2005] [Indexed: 05/02/2023]
Abstract
Understanding the molecular mechanisms of the innate immune responses of Anopheles gambiae against Plasmodium parasites is of great importance for current efforts to develop novel strategies for malaria disease control. The parasite undergoes substantial stage-specific losses during its development in the mosquito, which in some cases lead to complete refractoriness of the mosquito against the parasite. The underlying genetics of refractoriness are complex and multifactorial. Completion of the genome sequence of An. gambiae 2 years ago, together with the development of DNA microarrays in this species and the extension of the RNAi technique to adult mosquitoes, has allowed comparative and functional genomic approaches of the mosquito innate immune system. A variety of factors were shown to negatively affect the development of Plasmodium parasites in the mosquito, in some cases leading to complete transmission blockage. In addition, mosquito factors have been identified that play positive roles and are required for successful transmission of the parasite. These findings indicate a highly complex interplay between parasite and vector. Research is continuing to identify new factors involved in this interaction and to decipher the interplay of these molecules and their regulation.
Collapse
Affiliation(s)
- K Michel
- European Molecular Biology Laboratory, Meyerhofstr.1, 69117 Heidelberg, Germany
| | | |
Collapse
|
329
|
Abstract
Drosophila protects itself from infection by microbial organisms by means of its pivotal defense, the so-called innate immunity system. This is its sole defense as it lacks an adaptive immunity system such as is found in mammals. The strong conservation of innate immunity systems in organisms from Drosophila to mammals, and the ease with which Drosophila can be manipulated genetically, makes this fly a good model system for investigating the mechanisms of virulence of a number of medically important pathogens. Potentially damaging endogenous and/or exogenous challenges sensed by specific receptors initiate signals via the Toll and/or Imd signaling pathways. These in turn activate the transcription factors Dorsal, Dorsal-related immune factor (Dif) and Relish, culminating in transcription of genes involved in the production of antimicrobial peptides, melanization, phagocytosis, and the cytoskeletal rearrangement required for appropriate responses. Clarifying the regulatory interactions between the various pathways involved is very important for understanding the specificity and termination mechanism of the immune response.
Collapse
Affiliation(s)
- Taeil Kim
- Department of Biochemistry, Yonsei University, Seoul 120-749, Korea
| | | |
Collapse
|
330
|
Abstract
Research into immune defense has been considerably enriched by the increasing focus on innate immunity. This type of immunity is still considered to lack specific memory, largely because there is no evidence of mechanisms that could provide such memory (such as acquired immunity). However, recent experimental data demonstrate specific memory phenomena in invertebrates: these organisms are thought to rely solely on innate defense. Here, I argue that a clear definition of the terms 'specificity' and 'memory', together with dissection of the evolutionary roots of immune defense, show us that innate immunity should not be, and is probably not, necessarily free of specific memory.
Collapse
Affiliation(s)
- Joachim Kurtz
- Department of Evolutionary Ecology, Max Planck Institute of Limnology, August-Thienemann-Str. 2, 24306 Plön, Germany.
| |
Collapse
|
331
|
Abstract
Most of the progress in dissecting the Drosophila antimicrobial response over the past decade has centered around intracellular signaling pathways in immune response tissues and expression of genes encoding antimicrobial peptide genes. The past few years, however, have witnessed significant advances in our understanding of the recognition of microbial invaders and subsequent activation of signaling cascades. In particular, the roles of peptidoglycan recognition proteins, which have known homologues in mammals, have been recognized and examined at the structural and functional levels.
Collapse
Affiliation(s)
- Julien Royet
- UPR 9022 Centre national de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, Strasbourg, France
| | | | | |
Collapse
|
332
|
Kallio J, Leinonen A, Ulvila J, Valanne S, Ezekowitz RA, Rämet M. Functional analysis of immune response genes in Drosophila identifies JNK pathway as a regulator of antimicrobial peptide gene expression in S2 cells. Microbes Infect 2005; 7:811-9. [PMID: 15890554 DOI: 10.1016/j.micinf.2005.03.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 03/28/2005] [Indexed: 10/25/2022]
Abstract
The templates of innate immunity have ancient origins. Thus, such model animals as the fruit fly, Drosophila melanogaster, can be used to identify gene products that also play a key role in the innate immunity in mammals. We have used oligonucleotide microarrays to identify genes that are responsive to gram-negative bacteria in Drosophila macrophage-like S2 cells. In total, 53 genes were induced by greater than threefold in response to Escherichia coli. The induction of all these genes was peptidoglycan recognition protein LC (PGRP-LC) dependent. Twenty-two genes including 10 of the most strongly induced genes are also known to be up-regulated by septic injury in vivo. Importantly, we identified 31 genes that are not known to respond to bacterial challenge. We carried out targeted dsRNA treatments to assess the functional importance of these gene products for microbial recognition, phagocytosis and antimicrobial peptide release in Drosophila S2 cells in vitro. RNAi targeting three of these genes, CG7097, CG15678 and beta-Tubulin 60D, caused altered antimicrobial peptide release in vitro. Our results indicate that the JNK pathway is essential for normal antimicrobial peptide release in Drosophila in vitro.
Collapse
Affiliation(s)
- Jenni Kallio
- Institute of Medical Technology, 33014 University of Tampere, Tampere, Finland
| | | | | | | | | | | |
Collapse
|
333
|
Schlenke TA, McKean KA. A role for alcohol dehydrogenase in the Drosophila immune response? INSECT MOLECULAR BIOLOGY 2005; 14:175-178. [PMID: 15796750 DOI: 10.1111/j.1365-2583.2004.00543.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In a recent study Drosophila larvae were injected with bacterial lipopolysaccharide (LPS) suspended in 1% ethanol and differentially induced protein fractions were identified. The levels of several proteins, including alcohol dehydrogenase (ADH), increased in LPS-treated flies and were labelled as immune response proteins. However, because control larvae were not injected with ethanol alone the identified proteins could represent a response to ethanol. Here, we injected Drosophila larvae with combinations of ethanol and LPS. While ADH activity increased in larvae receiving 1% ethanol, it was not increased after LPS injection. These results suggest that ADH plays no role in the Drosophila immune response, and that other proteins identified in the previous study may instead mediate ethanol tolerance in flies and other organisms.
Collapse
Affiliation(s)
- T A Schlenke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
334
|
Abstract
The innate immune response is the first line of defense against microbial infections in both insects and mammals. Systematic analysis of the innate immune response in the model organism Drosophila melanogaster has provided important insights into the mechanisms of pathogen recognition and host response. Recognition of pathogen-associated molecules, such as peptidoglycans, stimulates the Toll and immune deficiency (Imd) pathways to induce antimicrobial responses. The Toll and Imd pathways are homologous to the mammalian Toll-like receptor (TLR) and tumor necrosis factor receptor (TNFR) signaling pathways, respectively, and are essential for Drosophila to survive infection. In this Review, we will discuss the recent genetic, genomic and RNA interference analyses that have unveiled additional intricacy in the Toll and Imd pathways.
Collapse
Affiliation(s)
- Takahiro Tanji
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
335
|
Abstract
Completion of the Drosophila genome has enabled the use of proteomic approaches for studying complex processes such as the innate immune defense against microorganisms. Microbial infection leads to the activation of responses involving changes at translational and post-translational levels. Proteomics is a tool for assessing such changes in protein expression, localization and post-translational modification. Recently, several studies have reported whole-genome analyses of the Drosophila immune response, both at the transcriptome and proteome levels, leading to a more comprehensive view of fly immunity. In this review, we describe and compare the proteomic techniques used in these analyses and discuss the results obtained by differential protein profiling of the Drosophila immune response.
Collapse
Affiliation(s)
- Ylva Engström
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
336
|
Ha EM, Oh CT, Ryu JH, Bae YS, Kang SW, Jang IH, Brey PT, Lee WJ. An antioxidant system required for host protection against gut infection in Drosophila. Dev Cell 2005; 8:125-32. [PMID: 15621536 DOI: 10.1016/j.devcel.2004.11.007] [Citation(s) in RCA: 248] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 08/31/2004] [Accepted: 10/05/2004] [Indexed: 11/25/2022]
Abstract
A fundamental question that applies to all organisms is how barrier epithelia efficiently manage continuous contact with microorganisms. Here, we show that in Drosophila an extracellular immune-regulated catalase (IRC) mediates a key host defense system that is needed during host-microbe interaction in the gastrointestinal tract. Strikingly, adult flies with severely reduced IRC expression show high mortality rates even after simple ingestion of microbe-contaminated foods. However, despite the central role that the NF-kappaB pathway plays in eliciting antimicrobial responses, NF-kappaB pathway mutant flies are totally resistant to such infections. These results imply that homeostasis of redox balance by IRC is one of the most critical factors affecting host survival during continuous host-microbe interaction in the gastrointestinal tract.
Collapse
Affiliation(s)
- Eun-Mi Ha
- Division of Molecular Life Science and Center for Cell Signaling Research, Ewha Womans University, Seoul 120-750, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
337
|
Irving P, Ubeda JM, Doucet D, Troxler L, Lagueux M, Zachary D, Hoffmann JA, Hetru C, Meister M. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiol 2005; 7:335-50. [PMID: 15679837 DOI: 10.1111/j.1462-5822.2004.00462.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila blood cells or haemocytes comprise three cell lineages, plasmatocytes, crystal cells and lamellocytes, involved in immune functions such as phagocytosis, melanisation and encapsulation. Transcriptional profiling of activities of distinct haemocyte populations and from naive or infected larvae, was performed to find genes contributing to haemocyte functions. Of the 13 000 genes represented on the microarray, over 2500 exhibited significantly enriched transcription in haemocytes. Among these were genes encoding integrins, peptidoglycan recognition proteins (PGRPs), scavenger receptors, lectins, cell adhesion molecules and serine proteases. One relevant outcome of this analysis was the gain of new insights into the lamellocyte encapsulation process. We showed that lamellocytes require betaPS integrin for encapsulation and that they transcribe one prophenoloxidase gene enabling them to produce the enzyme necessary for melanisation of the capsule. A second compelling observation was that following infection, the gene encoding the cytokine Spatzle was uniquely upregulated in haemocytes and not the fat body. This shows that Drosophila haemocytes produce a signal molecule ready to be activated through cleavage after pathogen recognition, informing distant tissues of infection.
Collapse
Affiliation(s)
- Phil Irving
- UPR 9022 du CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Apidianakis Y, Mindrinos MN, Xiao W, Lau GW, Baldini RL, Davis RW, Rahme LG. Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc Natl Acad Sci U S A 2005; 102:2573-8. [PMID: 15695583 PMCID: PMC549001 DOI: 10.1073/pnas.0409588102] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insights into the host factors and mechanisms mediating the primary host responses after pathogen presentation remain limited, due in part to the complexity and genetic intractability of host systems. Here, we employ the model Drosophila melanogaster to dissect and identify early host responses that function in the initiation and progression of Pseudomonas aeruginosa pathogenesis. First, we use immune potentiation and genetic studies to demonstrate that flies mount a heightened defense against the highly virulent P. aeruginosa strain PA14 when first inoculated with strain CF5, which is avirulent in flies; this effect is mediated via the Imd and Toll signaling pathways. Second, we use whole-genome expression profiling to assess and compare the Drosophila early defense responses triggered by the PA14 vs. CF5 strains to identify genes whose expression patterns are different in susceptible vs. resistant host-pathogen interactions, respectively. Our results identify pathogenesis- and defense-specific genes and uncover a previously undescribed mechanism used by P. aeruginosa in the initial stages of its host interaction: suppression of Drosophila defense responses by limiting antimicrobial peptide gene expression. These results provide insights into the genetic factors that mediate or restrict pathogenesis during the early stages of the bacterial-host interaction to advance our understanding of P. aeruginosa-human infections.
Collapse
Affiliation(s)
- Yiorgos Apidianakis
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
339
|
Meister S, Koutsos AC, Christophides GK. The Plasmodium parasite--a 'new' challenge for insect innate immunity. Int J Parasitol 2005; 34:1473-82. [PMID: 15582524 DOI: 10.1016/j.ijpara.2004.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 09/17/2004] [Accepted: 10/01/2004] [Indexed: 11/23/2022]
Abstract
Though lacking adaptive immunity, insects possess a powerful innate immune system, a genome-encoded defence machinery used to confront infections. Studies in the fruit fly Drosophila melanogaster revealed a remarkable capacity of the innate immune system to differentiate between and subsequently respond to different bacteria and fungi. However, hematophagous compared to non-hematophagous insects encounter additional blood-borne infectious agents, such as parasites and viruses, during their lifetime. Anopheles mosquitoes become infected with the malaria parasite Plasmodium during feeding on infected human hosts and may then transmit the parasite to new hosts during subsequent bites. Whether Anopheles has developed mechanisms to confront these infections is the subject of this review. Initially, we review our current understanding of innate immune reactions and give an overview of the Anopheles immune system as revealed through comparative genomic analyses. Then, we examine and discuss the capacity of mosquitoes to recognize and respond to infections, especially to Plasmodium, and finally, we explore approaches to investigate and potentially utilize the vector immune competence to prevent pathogen transmission. Such approaches constitute a new challenge for insect immunity research, a challenge for global health.
Collapse
Affiliation(s)
- S Meister
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
340
|
Kim T, Yoon J, Cho H, Lee WB, Kim J, Song YH, Kim SN, Yoon JH, Kim-Ha J, Kim YJ. Downregulation of lipopolysaccharide response in drosophila by negative crosstalk between the AP1 and NF-κB signaling modules. Nat Immunol 2005; 6:211-8. [PMID: 15640802 DOI: 10.1038/ni1159] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 12/16/2004] [Indexed: 12/27/2022]
Abstract
IkappaB kinase (IKK) and Jun N-terminal kinase (Jnk) signaling modules are important in the synthesis of immune effector molecules during innate immune responses against lipopolysaccharide and peptidoglycan. However, the regulatory mechanisms required for specificity and termination of these immune responses are unclear. We show here that crosstalk occurred between the drosophila Jnk and IKK pathways, which led to downregulation of each other's activity. The inhibitory action of Jnk was mediated by binding of drosophila activator protein 1 (AP1) to promoters activated by the transcription factor NF-kappaB. This binding led to recruitment of the histone deacetylase dHDAC1 to the promoter of the gene encoding the antibacterial protein Attacin-A and to local modification of histone acetylation content. Thus, AP1 acts as a repressor by recruiting the deacetylase complex to terminate activation of a group of NF-kappaB target genes.
Collapse
Affiliation(s)
- Taeil Kim
- Department of Biochemistry, Yonsei University, Seoul 120-749, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
341
|
Abstract
Specificity in signal transduction is essential to ensure distinct and appropriate cellular responses to extracellular cues. Determining the mechanisms that mediate specificity is key to understanding complex cell behaviors in development, when multiple pathways fire simultaneously and individual pathways are used recurrently. Jun kinase (JNK) signal transduction exemplifies a pathway that is used multiple times in animal development and homeostasis. Indeed, molecular genetic analysis of JNK signaling in Drosophila has shown that a core signaling module consisting of Hep (JNKK), Bsk (JNK), and Jun regulates various processes, including tissue morphogenesis, wound repair, stress response, innate immune response, and others. Six putative JNKK kinase (JNKKK) family members are present in the fly genome, which could activate the core module in response to distinct stimuli. The diversity of kinases at this level of the signaling hierarchy could substantially increase the number of possible signals that feed into activation of the core module. Recent studies have described the distinct phenotypic consequences of mutations in three of the genes, Slpr (dMLK), Tak1, and Mekk1. These data, together with Drosophila cell culture and genomic array analyses support the contention that the choice of JNKKK may contribute to signaling specificity in vivo. Whether this is achieved by individual JNKKKs or by means of a combinatorial mechanism will require a systematic characterization of compound mutants and a toolbox of transcriptional reporters specific for distinct JNK-dependent processes.
Collapse
Affiliation(s)
- Beth Stronach
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, USA.
| |
Collapse
|
342
|
Karlsson C, Korayem AM, Scherfer C, Loseva O, Dushay MS, Theopold U. Proteomic Analysis of the Drosophila Larval Hemolymph Clot. J Biol Chem 2004; 279:52033-41. [PMID: 15466469 DOI: 10.1074/jbc.m408220200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Components of the insect clot, an extremely rapid forming and critical part of insect immunity, are just beginning to be identified (1). Here we present a proteomic comparison of larval hemolymph before and after clotting to learn more about this process. This approach was supplemented by the identification of substrates for the enzyme transglutaminase, which plays a role in both vertebrate blood clotting (as factor XIIIa) and hemolymph coagulation in arthropods. Hemolymph proteins present in lower amounts after clotting include CG8502 (a protein with a mucin-type domain and a domain with similarity to cuticular components), CG11313 (a protein with similarity to prophenoloxidase-activating proteases), and two phenoloxidases, lipophorin, a secreted gelsolin, and CG15825, which had previously been isolated from clots (2). Proteins whose levels increase after clotting include a ferritin-subunit and two members of the immunoglobulin family with a high similarity to the small immunoglobulin-like molecules involved in mammalian innate immunity. Our results correlate with findings from another study of coagulation (2) that involved a different experimental approach. Proteomics allows the isolation of novel candidate clotting factors, leading to a more complete picture of clotting. In addition, our two-dimensional protein map of cell-free Drosophila hemolymph includes many additional proteins that were not found in studies performed on whole hemolymph.
Collapse
Affiliation(s)
- Christine Karlsson
- Department of Molecular Biology and Functional Genomics, University of Stockholm, 10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
343
|
Abstract
To decipher the complexity of host-pathogen interactions the widest possible range of model hosts and of analytical methods is required. As some virulence mechanisms and certain host responses have been conserved throughout evolution, even simple organisms can be used as model hosts to help our understanding of infectious diseases. The availability of molecular genetic tools and a cooperative community of researchers are pivotal to the emergence of model systems. In this review, we first summarize the genetic screens that can be used to identify pathogen virulence factors, then we present a comparative overview of existing or emerging genetically tractable host models.
Collapse
Affiliation(s)
- Elizabeth Pradel
- Centre d'Immunologie de Marseille-Luminy, INSERM/CNRS/Universite de la Mediterranee, Case 906, 13288 Marseille Cedex 09, France.
| | | |
Collapse
|
344
|
Abstract
The response of the fruit fly Drosophila melanogaster to various microorganism infections relies on a multilayered defense. The epithelia constitute a first and efficient barrier. Innate immunity is activated when microorganisms succeed in entering the body cavity of the fly. Invading microorganisms are killed by the combined action of cellular and humoral processes. They are phagocytosed by specialized blood cells, surrounded by toxic melanin, or lysed by antibacterial peptides secreted into the hemolymph by fat body cells. During the last few years, research has focused on the mechanisms of microbial recognition by various pattern recognition receptors and of the subsequent induction of antimicrobial peptide expression. The cellular arm of the Drosophila innate immune system, which was somehow neglected, now constitutes the new frontier.
Collapse
Affiliation(s)
- Vincent Leclerc
- Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | |
Collapse
|
345
|
Christophides GK, Vlachou D, Kafatos FC. Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae. Immunol Rev 2004; 198:127-48. [PMID: 15199960 DOI: 10.1111/j.0105-2896.2004.0127.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In much of Africa, the mosquito Anopheles gambiae is the major vector of human malaria, a devastating infectious disease caused by Plasmodium parasites. Vector and parasite interact at multiple stages and locations, and the nature and effectiveness of this reciprocal interaction determines the success of transmission. Many of the interactions engage the mosquito's innate immunity, a primitive but very effective defense system. In some cases, the mosquito kills the parasite, thus blocking the transmission cycle. However, not all interactions are antagonistic; some represent immune evasion. The sequence of the A. gambiae genome revealed numerous potential components of the innate immune system, and it established that they evolve rapidly, as summarized in the present review. Their rapid evolution by gene family expansion diversification as well as the prevalence of haplotype alleles in the best-studied families may reflect selective adaptation of the immune system to the exigencies of multiple immune challenges in a variety of ecologic niches. As a follow-up to the comparative genomic analysis, the development of functional genomic methodologies has provided novel opportunities for understanding the immune system and the nature of its interactions with the parasite. In this context, identification of both Plasmodium antagonists and protectors in the mosquito represents a significant conceptual advance. In addition to providing fundamental understanding of primitive immune systems, studies of mosquito interactions with the parasite open unprecedented opportunities for novel interventions against malaria transmission. The generation of transgenic mosquitoes that resist malaria infection in the wild and the development of antimalarial 'smart sprays' capable of disrupting interactions that are protective of the parasite, or reinforcing others that are antagonistic, represent technical challenges but also immense opportunities for improvement of global health.
Collapse
|
346
|
Abstract
Innate immune responses are mediated by the activation of various signaling processes. Here, we describe our current knowledge on Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling in the Drosophila immune response. First, we briefly introduce the main effectors involved in the humoral and cellular responses, such as anti-bacterial peptides and hemocytes. Second, we describe the canonical JAK/STAT-signaling pathway, as established from extensive studies in mammalian systems, and we introduce the Drosophila components of the JAK/STAT pathway, as discovered from studies on embryonic development. Third, we describe the various roles of JAK/STAT signaling in both humoral and cellular responses. We present the JAK/STAT-dependent humoral factors, such as the thioester-containing proteins and the Tot peptides, produced by the fat body in response to septic injury. We also discuss the possible involvement of the JAK/STAT pathway in cellular responses, including hemocyte proliferation and differentiation. Finally, we present how cytokines, such as Upd3, might contribute to the integration of the immune responses at the organism level by orchestrating the response of various immune cells and organs, such as fat body, hemocytes, and lymph glands.
Collapse
Affiliation(s)
- Hervé Agaisse
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
347
|
Papa S, Zazzeroni F, Pham CG, Bubici C, Franzoso G. Linking JNK signaling to NF-kappaB: a key to survival. J Cell Sci 2004; 117:5197-208. [PMID: 15483317 DOI: 10.1242/jcs.01483] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In addition to marshalling immune and inflammatory responses, transcription factors of the NF-kappaB family control cell survival. This control is crucial to a wide range of biological processes, including B and T lymphopoiesis, adaptive immunity, oncogenesis and cancer chemoresistance. During an inflammatory response, NF-kappaB activation antagonizes apoptosis induced by tumor necrosis factor (TNF)-alpha, a protective activity that involves suppression of the Jun N-terminal kinase (JNK) cascade. This suppression can involve upregulation of the Gadd45-family member Gadd45beta/Myd118, which associates with the JNK kinase MKK7/JNKK2 and blocks its catalytic activity. Upregulation of XIAP, A20 and blockers of reactive oxygen species (ROS) appear to be important additional means by which NF-kappaB blunts JNK signaling. These recent findings might open up entirely new avenues for therapeutic intervention in chronic inflammatory diseases and certain cancers; indeed, the Gadd45beta-MKK7 interaction might be a key target for such intervention.
Collapse
Affiliation(s)
- Salvatore Papa
- The Ben May Institute for Cancer Research, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
348
|
Robalino J, Browdy CL, Prior S, Metz A, Parnell P, Gross P, Warr G. Induction of antiviral immunity by double-stranded RNA in a marine invertebrate. J Virol 2004; 78:10442-8. [PMID: 15367610 PMCID: PMC516398 DOI: 10.1128/jvi.78.19.10442-10448.2004] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 05/08/2004] [Indexed: 11/20/2022] Open
Abstract
Vertebrates mount a strong innate immune response against viruses, largely by activating the interferon system. Double-stranded RNA (dsRNA), a common intermediate formed during the life cycle of many viruses, is a potent trigger of this response. In contrast, no general inducible antiviral defense mechanism has been reported in any invertebrate. Here we show that dsRNA induces antiviral protection in the marine crustacean Litopenaeus vannamei. When treated with dsRNA, shrimp showed increased resistance to infection by two unrelated viruses, white spot syndrome virus and Taura syndrome virus. Induction of this antiviral state is independent of the sequence of the dsRNA used and therefore distinct from the sequence-specific dsRNA-mediated genetic interference phenomenon. This demonstrates for the first time that an invertebrate immune system, like its vertebrate counterparts, can recognize dsRNA as a virus-associated molecular pattern, resulting in the activation of an innate antiviral response.
Collapse
Affiliation(s)
- Javier Robalino
- Center of Marine Biomedicine and Environmental Sciences, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, Clemson Veterinary Diagnostic Center, Columbia, South Carolina
| | - Craig L. Browdy
- Center of Marine Biomedicine and Environmental Sciences, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, Clemson Veterinary Diagnostic Center, Columbia, South Carolina
| | - Sarah Prior
- Center of Marine Biomedicine and Environmental Sciences, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, Clemson Veterinary Diagnostic Center, Columbia, South Carolina
| | - Adrienne Metz
- Center of Marine Biomedicine and Environmental Sciences, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, Clemson Veterinary Diagnostic Center, Columbia, South Carolina
| | - Pamela Parnell
- Center of Marine Biomedicine and Environmental Sciences, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, Clemson Veterinary Diagnostic Center, Columbia, South Carolina
| | - Paul Gross
- Center of Marine Biomedicine and Environmental Sciences, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, Clemson Veterinary Diagnostic Center, Columbia, South Carolina
| | - Gregory Warr
- Center of Marine Biomedicine and Environmental Sciences, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, Clemson Veterinary Diagnostic Center, Columbia, South Carolina
| |
Collapse
|
349
|
Zettervall CJ, Anderl I, Williams MJ, Palmer R, Kurucz E, Ando I, Hultmark D. A directed screen for genes involved in Drosophila blood cell activation. Proc Natl Acad Sci U S A 2004; 101:14192-7. [PMID: 15381778 PMCID: PMC521135 DOI: 10.1073/pnas.0403789101] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An attack by a parasitic wasp activates a vigorous cellular immune response in Drosophila larvae. This response is manifested by an increased number of circulating cells, the hemocytes, and by the appearance of a specialized class of hemocyte, the lamellocytes, which participate in the encapsulation and killing of the parasite. To study the molecular mechanisms of this response, we have overexpressed different genes in the hemocytes, by using the GAL4-upstream activating sequence system and a hemocyte-specific Hemese-GAL4 driver. Multiple transgenes were tested, representing several important signaling pathways. We found that the proliferation response and the activation of lamellocyte formation are independent phenomena. A drastic increase in the number of circulating hemocytes is caused by receptor tyrosine kinases, such as Egfr, Pvr, and Alk, as well as by the downstream signaling components Ras85D and pointed, supporting the notion that the Ras-mitogen-activated protein kinase pathway regulates hemocyte numbers. In the case of Pvr and Alk, this phenotype also is accompanied by lamellocyte formation. By contrast, constitutively active hopscotch and hemipterous give massive activation of lamellocyte formation with little or no increase in total hemocyte numbers. This finding indicates that both the Jak/Stat and the Jun kinase pathways affect lamellocyte formation. Still other signals, mediated by aop(ACT), Toll(10b), and Rac1 expression, cause a simultaneous increase in lamellocyte and total cell numbers, and the same effect is seen when WNT signaling is suppressed. We conclude that the activation of a cellular response is complex and affected by multiple signaling pathways.
Collapse
Affiliation(s)
- Carl-Johan Zettervall
- Umeå Centre for Molecular Pathogenesis, Byggnad 6L, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
350
|
Lehane MJ, Aksoy S, Levashina E. Immune responses and parasite transmission in blood-feeding insects. Trends Parasitol 2004; 20:433-9. [PMID: 15324734 DOI: 10.1016/j.pt.2004.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The detailed model of insect immunity being built for Drosophila, allied to mass sequencing programs for blood-feeding insects, has led to advances in our understanding of the interaction between pathogens and insect vectors. An outline of insect immunity is given here based on the Drosophila studies, which is used as a framework to discuss recent work on Plasmodium-mosquito and Trypanosoma-tsetse interactions.
Collapse
Affiliation(s)
- Michael J Lehane
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | | | | |
Collapse
|