301
|
Differential mucosal IL-10-induced immunoregulation of innate immune responses occurs in influenza infected infants/toddlers and adults. Immunol Cell Biol 2016; 95:252-260. [PMID: 27629065 DOI: 10.1038/icb.2016.91] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 01/17/2023]
Abstract
Young children (<5 years of age but especially those <2-year old) exhibit high rates of morbidity and frequently require hospitalizations due to complications from respiratory viral infections. This is also a population for which we understand less about how their unique level of immunological maturation affects their antiviral immune responses. However, we do know from prior studies that their T cells appear to apoptose in the lungs owing to limited interferon (IFN)γ autocrine signaling during infection. To begin to further understand additional limits, we utilized an infant/toddler murine model infected with influenza virus with an adult comparator. In our model, young mice exhibited lower interleukin (IL)-10+IFNγ+ co-producing CD4 T cells infiltrating the lungs that paralleled with a failed switch from an innate to adaptive immune response at the mid infection stage. Specifically, limited co-IL-10 production correlated with a lack of influenza-specific antibodies and subsequent complement receptor signaling (complement receptor type-1 related gene Y (CCRY)/p65) to the lung infiltrating CD4 T cells therefore limiting their IKAROs upregulation. Thus, limited IL-10 production appeared to diminish signaling to lung macrophages to stop accumulating late into infection. Taken together, our results suggest a novel role for complement mediated signaling in CD4 T cells with respect to IL-10 co-production. Furthermore, a subsequent failure to shift from the unfocused innate immune response to the specific adaptive responses may be a principle cause in the enhanced morbidity common in respiratory viral infection of young children.
Collapse
|
302
|
Backman K, Piippo-Savolainen E, Ollikainen H, Pelli M, Koskela H, Korppi M. Long-term effects of pneumococcal colonization during early childhood wheezing. Pediatr Int 2016; 58:831-5. [PMID: 26833958 DOI: 10.1111/ped.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 01/11/2016] [Accepted: 01/26/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Bacterial colonization during wheezing in early childhood has been associated with short-term relapses of wheezing, but no study has addressed the effects of Streptococcus pneumoniae colonization on long-term outcome of wheezing. The aim of the present study was therefore to evaluate whether pneumococcal (PNC) colonization during the first wheezing episode in early childhood is a determinant of asthma, atopy or lung function in the long term. METHODS In 1981-82 83 infants were hospitalized for first wheezing episode at <24 months of age. PNC colonization was defined as positive nasopharyngeal aspirate for S. pneumoniae either in culture or antigen detection on hospital admission. Atopy and repeated wheezing or asthma were diagnosed on all follow-up visits from infancy until the age of 28-31 years. Spirometry was conducted at the ages of 8-10, 18-20 and 28-31 years. RESULTS PNC colonization was found in 25/83 infants (30%) during hospitalization for wheezing in infancy. PNC colonization was not associated with later atopy, repeated wheezing, asthma or lung function at any time during the 30 year follow up. CONCLUSION PNC colonization during the first wheezing episode in early childhood is not a determinant of subsequent wheezing or later asthma, atopy or lung function in childhood, adolescence or adulthood.
Collapse
Affiliation(s)
- Katri Backman
- Department of Pediatrics, Kuopio University Hospital, Kuopio, Finland. .,Department of Pediatrics, University of Eastern Finland, Kuopio, Finland.
| | | | - Hertta Ollikainen
- Department of Pediatrics, University of Eastern Finland, Kuopio, Finland
| | - Minna Pelli
- Department of Pediatrics, University of Eastern Finland, Kuopio, Finland
| | - Heikki Koskela
- Center of Medicine and Clinical Research, Division of Pulmonology, Kuopio University Hospital, Kuopio, Finland
| | - Matti Korppi
- Pediatric Research Centre, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
303
|
Etiology and Clinical Characteristics of Single and Multiple Respiratory Virus Infections Diagnosed in Croatian Children in Two Respiratory Seasons. J Pathog 2016; 2016:2168780. [PMID: 27656298 PMCID: PMC5021477 DOI: 10.1155/2016/2168780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/20/2016] [Accepted: 08/16/2016] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to determine the causative agent of acute respiratory infection (ARI) in hospitalized children, as well as investigate the characteristics of ARIs with single and multiple virus detection in two respiratory seasons. In 2010 and 2015, nasopharyngeal and pharyngeal swabs from a total of 134 children, admitted to the hospital due to ARI, were tested using multiplex PCR. Viral etiology was established in 81.3% of the patients. Coinfection with two viruses was diagnosed in 27.6% of the patients, and concurrent detection of three or more viruses was diagnosed in 12.8% of the patients. The most commonly diagnosed virus in both seasons combined was respiratory syncytial virus (RSV) (28.6%), followed by parainfluenza viruses (PIVs) types 1–3 (18.4%), rhinovirus (HRV) (14.3%), human metapneumovirus (10.1%), adenovirus (AdV) (7.1%), influenza viruses types A and B (4.8%), and coronaviruses (4.2%). In 2015, additional pathogens were investigated with the following detection rate: enterovirus (13.2%), bocavirus (HBoV) (10.5%), PIV-4 (2.6%), and parechovirus (1.3%). There were no statistical differences between single and multiple virus infection regarding patients age, localization of infection, and severity of disease (P > 0.05). AdV, HRV, HBoV, and PIVs were significantly more often detected in multiple virus infections compared to the other respiratory viruses (P < 0.001).
Collapse
|
304
|
Choi SH, Park BK, Lee KW, Chang J, Lee Y, Kwon HJ. Effect of respiratory syncytial virus on the growth of hepatocellular carcinoma cell-lines. BMB Rep 2016; 48:565-70. [PMID: 25739391 PMCID: PMC4911183 DOI: 10.5483/bmbrep.2015.48.10.268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Indexed: 01/10/2023] Open
Abstract
In several reports, the respiratory syncytial virus (RSV) was identified as an oncolytic virus in cancer cells (e.g., lung and prostate cancer). However, the effects of RSV in hepatocellular carcinoma (HCC) cells have not yet been investigated. Here, we observed the inhibitory effects of RSV infection in HCC cell-lines. Cell growth was significantly decreased by RSV infection in BNL-HCC, Hep3B, Huh-7 and SNU-739 cells. After RSV infection, plaque formation and syncytial formation were observed in affected Hep3B and Huh-7 cells. RSV protein-expression was also detected in Hep3B and Huh-7 cells; however, only Huh-7 cells showed apoptosis after RSV infection. Furthermore, inhibition of cell migration by RSV infection was observed in BNL-HCC, Hep3B, Huh-7 and SNU-739 cells. Therefore, further investigation is required to clarify the molecular mechanism of RSV-mediated inhibition of HCC cell growth, and to develop potential RSV oncolytic viro-therapeutics. [BMB Reports 2015; 48(10): 565-570]
Collapse
Affiliation(s)
- Song Hee Choi
- Departments of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Byoung Kwon Park
- Departments of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Keun-Wook Lee
- Departments of Biomedical Science, College of Natural Science, Hallym University, Chuncheon 24252, Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Hyung-Joo Kwon
- Departments of Microbiology, College of Medicine, Hallym University, Chuncheon 24252; Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
305
|
Detection of Respiratory Co-Infections in Children Less Than Five Years With Adenovirus Infection. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2016. [DOI: 10.5812/pedinfect.36953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
306
|
Zhang Y, Yuan L, Zhang Y, Zhang X, Zheng M, Kyaw MH. Burden of respiratory syncytial virus infections in China: Systematic review and meta-analysis. J Glob Health 2016; 5:020417. [PMID: 26682049 PMCID: PMC4676581 DOI: 10.7189/jogh.05.020417] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is the most important cause of acute respiratory tract infection (ARTI) related morbidity and mortality worldwide. However, the disease burden due to RSV has not been systematically summarized in China. METHOD A systematic search was performed in the Chinese BioMedical Database (CBM), China National Knowledge Infrastructure (CNKI), Wanfang database and PubMed to identify available published RSV studies in China. RESULTS A total of 489 641 patients with ARTIs from 135 studies were included in the analysis. Among patients with ARTIs, RSV accounted for 18.7% (95% confidence interval CI 17.1-20.5%). The prevalence of RSV was highest in infants (26.5%, 95% CI 23.7-29.5%) and lowest in those aged ≥16 years (2.8%, 95% CI 1.3-6.1). A higher prevalence of RSV was seen in inpatients (22%, 95% CI 19.9-24.2%) than in outpatients (14%, 95% CI 9.6-19.9%). RSV type A accounted for 63.1% (95% CI 52.3-72.8%) of all RSV infections. RSV infections occurred mainly in winter and spring. The most common clinical manifestations were cough, production of sputum, wheezing and fever. CONCLUSION RSV is the leading cause of viral ARTIs in China, particularly in infants and young children. Our findings are valuable for guiding the selection of appropriate therapies for ARTIs and implementation of preventive measures against RSV infections. Our data further supports the development of a successful RSV vaccine as a high priority.
Collapse
Affiliation(s)
- Yaowen Zhang
- Infection Management and Disease Prevention Department, China-Japan Friendship Hospital, Beijing, China
| | - Lichao Yuan
- Department of Infectious Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Yongming Zhang
- Department of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xiuping Zhang
- China-Japan Friendship Clinical College, Beijing University of Chinese Medicine, Beijing, China
| | | | | |
Collapse
|
307
|
NICKBAKHSH S, THORBURN F, VON WISSMANN B, McMENAMIN J, GUNSON RN, MURCIA PR. Extensive multiplex PCR diagnostics reveal new insights into the epidemiology of viral respiratory infections. Epidemiol Infect 2016; 144:2064-76. [PMID: 26931455 PMCID: PMC7113017 DOI: 10.1017/s0950268816000339] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/20/2015] [Accepted: 02/03/2016] [Indexed: 12/14/2022] Open
Abstract
Viral respiratory infections continue to pose a major global healthcare burden. At the community level, the co-circulation of respiratory viruses is common and yet studies generally focus on single aetiologies. We conducted the first comprehensive epidemiological analysis to encompass all major respiratory viruses in a single population. Using extensive multiplex PCR diagnostic data generated by the largest NHS board in Scotland, we analysed 44230 patient episodes of respiratory illness that were simultaneously tested for 11 virus groups between 2005 and 2013, spanning the 2009 influenza A pandemic. We measured viral infection prevalence, described co-infections, and identified factors independently associated with viral infection using multivariable logistic regression. Our study provides baseline measures and reveals new insights that will direct future research into the epidemiological consequences of virus co-circulation. In particular, our study shows that (i) human coronavirus infections are more common during influenza seasons and in co-infections than previously recognized, (ii) factors associated with co-infection differ from those associated with viral infection overall, (iii) virus prevalence has increased over time especially in infants aged <1 year, and (iv) viral infection risk is greater in the post-2009 pandemic era, likely reflecting a widespread change in the viral population that warrants further investigation.
Collapse
Affiliation(s)
- S. NICKBAKHSH
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, Glasgow, UK
| | - F. THORBURN
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, Glasgow, UK
| | - B. VON WISSMANN
- Health Protection Scotland, NHS National Services Scotland, Glasgow, UK
| | - J. McMENAMIN
- Health Protection Scotland, NHS National Services Scotland, Glasgow, UK
| | - R. N. GUNSON
- West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, GlasgowUK
| | - P. R. MURCIA
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, Glasgow, UK
| |
Collapse
|
308
|
Hu P, Zheng T, Chen J, Zhou T, Chen Y, Xu X, Pei X. Alternate circulation and genetic variation of human respiratory syncytial virus genotypes in Chengdu, West China, 2009-2014. J Med Virol 2016; 89:32-40. [PMID: 27322084 DOI: 10.1002/jmv.24603] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2016] [Indexed: 11/05/2022]
Abstract
Human respiratory syncytial virus (HRSV) is a major pathogen that causes worldwide seasonal epidemic disease in infants due to its genetic variations. However, published information on the molecular epidemiology of HRSV was never reported particularly in Chengdu of West China. During five consecutive seasons (from 2009 to 2014), 433 (23.7%) of 1827 samples from hospitalized patients were identified as HRSV positive. Epidemiological characteristics of HRSV revealed that subtype A viruses (62.7%) prevailed in the first three epidemic seasons and faded in the next two seasons, while subtype B viruses (37.3%) kept circulating in five epidemic periods. According to the phylogenetic analysis of glycoprotein (G) gene, five HRSV genotypes NA1, ON1, BA9, BA-C, and CB1 were found in Chengdu. The predominant circulating genotype changed from NA1 in the period of 2010-2012 to BA9 of 2013-2014. The newly emerging ON1 was first reported in West China in October 2013. The early genotypes BA-C and CB1 were replaced by the prevailing BA9 after the third epidemic peak. Genetic mutations in glycosylation sites of G protein were found in HRSV variants, suggesting the virus is able to escape the immune recognition and attack. This study elucidated the local HRSV epidemic was associated with the alternate circulation of multiple genotypes and with the change of glycosylation sites of G protein. J. Med. Virol. 89:32-40, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pengwei Hu
- Departmentof Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China.,Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Tianli Zheng
- Departmentof Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Jiayi Chen
- Departmentof Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Tao Zhou
- Departmentof Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Yuhang Chen
- Departmentof Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Xin Xu
- Departmentof Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Xiaofang Pei
- Departmentof Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
309
|
Association of RSV-A ON1 genotype with Increased Pediatric Acute Lower Respiratory Tract Infection in Vietnam. Sci Rep 2016; 6:27856. [PMID: 27306333 PMCID: PMC4910061 DOI: 10.1038/srep27856] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/26/2016] [Indexed: 12/26/2022] Open
Abstract
Since the initial discovery of RSV-A ON1 in Canada in 2010, ON1 has been reported worldwide, yet information regarding its clinical impact and severity has been controversial. To investigate the clinical relevance of RSV-A ON1,acute respiratory infection (ARI) cases enrolled to our population-based prospective pediatric ARI surveillance at Khanh Hoa General Hospital, Central Vietnam from January 2010 through December 2012 were studied. Clinical-epidemiological information and nasopharyngeal samples were collected. Multiplex PCR assays were performed for screening 13 respiratory viruses. RSV-positive samples were further tested for subgroups (A/B) and genotypes information by sequencing the G-glycoprotein 2nd hypervariable region. Statistical analysis was performed to evaluate the clinical-epidemiological characteristics of RSV-A ON1. A total of 1854 ARI cases were enrolled and 426 (23.0%) of them were RSV-positive. During the study period, RSV-A and B had been co-circulating. NA1 was the predominant RSV-A genotype until the appearance of ON1 in 2012. RSV-related ARI hospitalization incidence significantly increased after the emergence of ON1. Moreover, multivariate analysis revealed that risk of lower respiratory tract infection was 2.26 (95% CI: 1.37-3.72) times, and radiologically-confirmed pneumonia was 1.98 (95% CI: 1.01-3.87) times greater in ON1 compared to NA1 cases. Our result suggested that ON1 ARI cases were clinically more severe than NA1.
Collapse
|
310
|
Farzan SF, Li Z, Korrick SA, Spiegelman D, Enelow R, Nadeau K, Baker E, Karagas MR. Infant Infections and Respiratory Symptoms in Relation to in Utero Arsenic Exposure in a U.S. Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:840-7. [PMID: 26359651 PMCID: PMC4892909 DOI: 10.1289/ehp.1409282] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 09/04/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Arsenic has been linked to disrupted immune function and greater infection susceptibility in highly exposed populations. Well arsenic levels above the U.S. EPA limit occur in our U.S. study area and are of particular concern for pregnant women and infants. OBJECTIVES We investigated whether in utero arsenic exposure affects the risk of infections and respiratory symptoms over the first year of life. METHODS We prospectively obtained information on infant infections and symptoms, including their duration and treatment (n = 412) at 4, 8, and 12 months using a parental telephone survey. Using generalized estimating equation models adjusted for potential confounders, we evaluated the association between maternal pregnancy urinary arsenic and infant infections and symptoms over the first year. RESULTS Each doubling of maternal urinary arsenic was related to increases in the total number of infections requiring prescription medication in the first year [relative risk (RR) = 1.1; 95% CI: 1.0, 1.2]. Urinary arsenic was related specifically to respiratory symptoms (difficulty breathing, wheezing, and cough) lasting ≥ 2 days or requiring prescription medication (RR = 1.1; 95% CI: 1.0, 1.2; and RR = 1.2; 95% CI: 1.0, 1.5, respectively), and wheezing lasting ≥ 2 days, resulting in a doctor visit or prescription medication treatment (RR = 1.3; 95% CI: 1.0, 1.7; RR = 1.3; 95% CI: 1.0, 1.8, and RR = 1.5; 95% CI: 1.0, 2.2, respectively). Associations also were observed with diarrhea (RR = 1.4; 95% CI: 1.1, 1.9) and fever resulting in a doctor visit (RR = 1.2; 95% CI: 1.0, 1.5). CONCLUSIONS In utero arsenic exposure was associated with a higher risk of infection during the first year of life in our study population, particularly infections requiring medical treatment, and with diarrhea and respiratory symptoms. CITATION Farzan SF, Li Z, Korrick SA, Spiegelman D, Enelow R, Nadeau K, Baker E, Karagas MR. 2016. Infant infections and respiratory symptoms in relation to in utero arsenic exposure in a U.S. COHORT Environ Health Perspect 124:840-847; http://dx.doi.org/10.1289/ehp.1409282.
Collapse
Affiliation(s)
- Shohreh F. Farzan
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Zhigang Li
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Susan A. Korrick
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Donna Spiegelman
- Department of Biostatistics, and
- Department of Epidemiology, Global Health and Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Richard Enelow
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Kari Nadeau
- Division of Immunology and Allergy, Stanford Medical School and Lucile Packard Children’s Hospital, Stanford, California, USA
| | - Emily Baker
- Department of Obstetrics and Gynecology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Margaret R. Karagas
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
- Address correspondence to M.R. Karagas, Department of Epidemiology, Geisel School of Medicine, One Medical Center Dr., 7927 Rubin, Lebanon, NH 03756 USA. Telephone: (603) 653-9010. E-mail:
| |
Collapse
|
311
|
Fall A, Dia N, Kébé O, Sarr FD, Kiori DE, Cissé EHAK, Sy S, Goudiaby D, Richard V, Diop OM, Niang MN. Enteroviruses and Rhinoviruses: Molecular Epidemiology of the Most Influenza-Like Illness Associated Viruses in Senegal. Am J Trop Med Hyg 2016; 95:339-47. [PMID: 27246444 DOI: 10.4269/ajtmh.15-0799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/04/2016] [Indexed: 12/31/2022] Open
Abstract
Different viruses have been identified as etiologic agents of respiratory tract infections, including severe cases. Among these, human rhinoviruses (HRVs) and human enteroviruses (HEVs) are recognized as leading causes. The present study describes the molecular epidemiology of HRVs and HEVs in Senegal over a 3-year surveillance period. From January 2012 to December 2014, nasopharyngeal and oropharyngeal swabs specimen were collected from patients with influenza-like illness (ILI). A real-time reverse transcription polymerase chain reaction was performed for HRV and HEV detection using the RV16 kit. Two regions were targeted for the molecular characterization of RVs: 5' untranslated region (5'UTR) and viral protein 4/viral protein 2 (VP4/VP2) transition region. For enteroviruses (EVs) phylogeny, VP1 gene was targeted. A total of 4,194 samples were collected. Children up to 5 years accounted for 52.9%. Among them, 1,415 (33.7%) were positive for HRV, 857 (20.4%) for HEV, and 437 cases of dual infections HRV/HEV. HRVs and HEVs were identified significantly in children aged 5 years or less. Only cough and vomiting signs were observed with significant association with viral infection. Both viruses co-circulated all year long with a marked increase of activity during rainy and cold period. All HRV types circulate in Senegal. HRV-A and C groups were the most common. HEV serotyping identified coxsackie B viruses (CBV) only. VP1 region revealed different CBV (CBV1, CBV2, CBV3, CBV4, and CBV5), echoviruses, coxsackieviruses A4-like strains and a poliovirus 2. The results suggest strong year-round respiratory picornavirus activity in children up to 5 years of age. Molecular studies identified a wide variety of RVs along with diverse EVs in samples from patients with ILI.
Collapse
Affiliation(s)
- Amary Fall
- Unité de Virologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Ndongo Dia
- Unité de Virologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Ousmane Kébé
- Unité de Virologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Fatoumata Diene Sarr
- Unité d'Epidémiologie des Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Davy E Kiori
- Unité de Virologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | | | - Sara Sy
- Unité de Virologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Deborah Goudiaby
- Unité de Virologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Vincent Richard
- Unité d'Epidémiologie des Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Sénégal
| | | | | |
Collapse
|
312
|
Respiratory Syncytial Virus whole-genome sequencing identifies convergent evolution of sequence duplication in the C-terminus of the G gene. Sci Rep 2016; 6:26311. [PMID: 27212633 PMCID: PMC4876326 DOI: 10.1038/srep26311] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/03/2016] [Indexed: 11/25/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) is responsible for considerable morbidity and mortality worldwide and is the most important respiratory viral pathogen in infants. Extensive sequence variability within and between RSV group A and B viruses and the ability of multiple clades and sub-clades of RSV to co-circulate are likely mechanisms contributing to the evasion of herd immunity. Surveillance and large-scale whole-genome sequencing of RSV is currently limited but would help identify its evolutionary dynamics and sites of selective immune evasion. In this study, we performed complete-genome next-generation sequencing of 92 RSV isolates from infants in central Tennessee during the 2012–2014 RSV seasons. We identified multiple co-circulating clades of RSV from both the A and B groups. Each clade is defined by signature N- and O-linked glycosylation patterns. Analyses of specific RSV genes revealed high rates of positive selection in the attachment (G) gene. We identified RSV-A viruses in circulation with and without a recently reported 72-nucleotide G gene sequence duplication. Furthermore, we show evidence of convergent evolution of G gene sequence duplication and fixation over time, which suggests a potential fitness advantage of RSV with the G sequence duplication.
Collapse
|
313
|
Finianos M, Issa R, Curran MD, Afif C, Rajab M, Irani J, Hakimeh N, Naous A, Hajj MJ, Hajj P, El Jisr T, El Chaar M. Etiology, seasonality, and clinical characterization of viral respiratory infections among hospitalized children in Beirut, Lebanon. J Med Virol 2016; 88:1874-81. [PMID: 27061822 PMCID: PMC7167081 DOI: 10.1002/jmv.24544] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 11/23/2022]
Abstract
Acute respiratory tract viral infections occur worldwide and are one of the major global burdens of diseases in children. The aim of this study was to determine the viral etiology of respiratory infections in hospitalized children, to understand the viral seasonality in a major Lebanese hospital, and to correlate disease severity and the presence of virus. Over a 1‐year period, nasal and throat swabs were collected from 236 pediatric patients, aged 16‐year old or less and hospitalized for acute respiratory illness. Samples collected were tested for the presence of 17 respiratory viruses using multiplex real‐time RT‐PCR. Pathogens were identified in 165 children (70%) and were frequently observed during fall and winter seasons. Co‐infection was found in 37% of positive samples. The most frequently detected pathogens were human Rhinovirus (hRV, 23%), Respiratory Syncytial Virus (RSV, 19%), human Bocavirus (hBov, 15%), human Metapneumovirus (hMPV, 10%), and human Adenovirus (hAdV, 10%). A total of 48% of children were diagnosed with bronchiolitis and 25% with pneumonia. While bronchiolitis was often caused by RSV single virus infection and hAdV/hBoV coinfection, pneumonia was significantly associated with hBoV and HP1V1 infections. No significant correlation was observed between a single viral etiology infection and a specific clinical symptom. This study provides relevant facts on the circulatory pattern of respiratory viruses in Lebanon and the importance of using PCR as a useful tool for virus detection. Early diagnosis at the initial time of hospitalization may reduce the spread of the viruses in pediatric units. J. Med. Virol. 88:1874–1881, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mayda Finianos
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Randi Issa
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Martin D Curran
- Public Health England Clinical Microbiology Laboratory, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Claude Afif
- Faculty of Medicine, University of Balamand, Saint Georges University Medical Centre, Beirut, Lebanon
| | - Maryam Rajab
- Department of Pediatrics, Makassed General Hospital, Beirut, Lebanon
| | - Jihad Irani
- Faculty of Medicine, University of Balamand, Saint Georges University Medical Centre, Beirut, Lebanon
| | - Noha Hakimeh
- Faculty of Medicine, University of Balamand, Saint Georges University Medical Centre, Beirut, Lebanon
| | - Amal Naous
- Department of Pediatrics, Makassed General Hospital, Beirut, Lebanon
| | - Marie-Joelle Hajj
- Faculty of Medicine, University of Balamand, Saint Georges University Medical Centre, Beirut, Lebanon
| | - Pierre Hajj
- Faculty of Medicine, University of Balamand, Saint Georges University Medical Centre, Beirut, Lebanon
| | - Tamima El Jisr
- Laboratory Medicine, Makassed General Hospital, Beirut, Lebanon
| | - Mira El Chaar
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| |
Collapse
|
314
|
McDonald JU, Kaforou M, Clare S, Hale C, Ivanova M, Huntley D, Dorner M, Wright VJ, Levin M, Martinon-Torres F, Herberg JA, Tregoning JS. A Simple Screening Approach To Prioritize Genes for Functional Analysis Identifies a Role for Interferon Regulatory Factor 7 in the Control of Respiratory Syncytial Virus Disease. mSystems 2016; 1:e00051-16. [PMID: 27822537 PMCID: PMC5069771 DOI: 10.1128/msystems.00051-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022] Open
Abstract
Greater understanding of the functions of host gene products in response to infection is required. While many of these genes enable pathogen clearance, some enhance pathogen growth or contribute to disease symptoms. Many studies have profiled transcriptomic and proteomic responses to infection, generating large data sets, but selecting targets for further study is challenging. Here we propose a novel data-mining approach combining multiple heterogeneous data sets to prioritize genes for further study by using respiratory syncytial virus (RSV) infection as a model pathogen with a significant health care impact. The assumption was that the more frequently a gene is detected across multiple studies, the more important its role is. A literature search was performed to find data sets of genes and proteins that change after RSV infection. The data sets were standardized, collated into a single database, and then panned to determine which genes occurred in multiple data sets, generating a candidate gene list. This candidate gene list was validated by using both a clinical cohort and in vitro screening. We identified several genes that were frequently expressed following RSV infection with no assigned function in RSV control, including IFI27, IFIT3, IFI44L, GBP1, OAS3, IFI44, and IRF7. Drilling down into the function of these genes, we demonstrate a role in disease for the gene for interferon regulatory factor 7, which was highly ranked on the list, but not for IRF1, which was not. Thus, we have developed and validated an approach for collating published data sets into a manageable list of candidates, identifying novel targets for future analysis. IMPORTANCE Making the most of "big data" is one of the core challenges of current biology. There is a large array of heterogeneous data sets of host gene responses to infection, but these data sets do not inform us about gene function and require specialized skill sets and training for their utilization. Here we describe an approach that combines and simplifies these data sets, distilling this information into a single list of genes commonly upregulated in response to infection with RSV as a model pathogen. Many of the genes on the list have unknown functions in RSV disease. We validated the gene list with new clinical, in vitro, and in vivo data. This approach allows the rapid selection of genes of interest for further, more-detailed studies, thus reducing time and costs. Furthermore, the approach is simple to use and widely applicable to a range of diseases.
Collapse
Affiliation(s)
- Jacqueline U. McDonald
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Myrsini Kaforou
- Section of Paediatrics, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Simon Clare
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Christine Hale
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Maria Ivanova
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Derek Huntley
- Imperial College Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| | - Marcus Dorner
- Molecular Virology, Section of Virology, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Victoria J. Wright
- Section of Paediatrics, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Michael Levin
- Section of Paediatrics, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Federico Martinon-Torres
- Department of Paediatrics, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Jethro A. Herberg
- Section of Paediatrics, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - John S. Tregoning
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, St. Mary’s Campus, London, United Kingdom
| |
Collapse
|
315
|
Dut R, Kocagöz S. Clinical Signs and Diagnostic Tests in Acute Respiratory Infections. Indian J Pediatr 2016; 83:380-5. [PMID: 26687497 PMCID: PMC7090667 DOI: 10.1007/s12098-015-1943-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/28/2015] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To evaluate clinical manifestations of acute respiratory system infectious diseases and specific tests for causative agents in pediatric patients. METHODS The authors evaluated children aged 0-16 y with clinical symptoms of acute respiratory tract infections who were administered rapid strep A test and/or throat culture test and/or respiratory viral panel test, from February 2012 through January 2013 at pediatric department of Acıbadem Maslak Hospital, Turkey. RESULTS A total of 1654 patients were evaluated; 45.9 % were girls, 54.1 % were boys. Absence of cough and presence of headache were higher in the patients >6 y of age (p 0.0001, p 0.002 respectively). Positive respiratory viral panel test was higher in the patients <2 y of age (p 0.002). Both positive rapid strep A test and positive throat culture test were higher in the patients >6 y of age (p 0.0001). Positivity of rapid strep A or throat culture test were not observed in children <2 y of age. CONCLUSIONS A clinician should mostly consider viral infections in the etiology of acute respiratory infections in children under 2 y of age and there is no need to rush for the use antibiotherapy. Bacterial etiology should be frequently considered after 6 y of age and rapid use of antibiotherapy is essential to avoid the complications.
Collapse
Affiliation(s)
- Raziye Dut
- Department of Pediatrics, Acıbadem Maslak Hospital, 063340, İstanbul, Turkey.
| | - Sesin Kocagöz
- Division of Infectious Diseases, University of Acıbadem, İstanbul, Turkey
| |
Collapse
|
316
|
Mann JFS, Tregoning JS, Aldon Y, Shattock RJ, McKay PF. CD71 targeting boosts immunogenicity of sublingually delivered influenza haemagglutinin antigen and protects against viral challenge in mice. J Control Release 2016; 232:75-82. [PMID: 27094605 DOI: 10.1016/j.jconrel.2016.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 12/27/2022]
Abstract
The delivery of vaccines to the sublingual mucosa is an attractive prospect due to the ease and acceptability of such an approach. However, novel adjuvant and delivery approaches are required to optimally vaccinate at this site. We have previously shown that conjugation of protein antigen to the iron transport molecule, transferrin, can significantly enhance mucosal immune responses. We tested whether conjugating influenza haemagglutinin to transferrin could improve the immune response to sublingually delivered antigen. Transferrin conjugated haemagglutinin induced a significant antibody and T cell response in both naïve animals and previously immunized animals. The immune response generated was able to protect mice against influenza virus challenge. Sublingually administered antigen dispersed more widely through the gastro-intestinal tract than intranasally delivered antigen and transferrin conjugation had a more marked effect on sublingually delivered antigen than intranasal immunisation. From these studies we conclude that transferrin conjugation of antigen is effective at boosting immune responses to sublingually delivered antigen and may be an attractive approach for influenza vaccines, particularly when mass campaigns are required.
Collapse
Affiliation(s)
- Jamie F S Mann
- Imperial College London, Mucosal Infection and Immunity, Section of Virology, St Mary's Campus, London W2 1PG, United Kingdom
| | - John S Tregoning
- Imperial College London, Mucosal Infection and Immunity, Section of Virology, St Mary's Campus, London W2 1PG, United Kingdom
| | - Yoann Aldon
- Imperial College London, Mucosal Infection and Immunity, Section of Virology, St Mary's Campus, London W2 1PG, United Kingdom
| | - Robin J Shattock
- Imperial College London, Mucosal Infection and Immunity, Section of Virology, St Mary's Campus, London W2 1PG, United Kingdom
| | - Paul F McKay
- Imperial College London, Mucosal Infection and Immunity, Section of Virology, St Mary's Campus, London W2 1PG, United Kingdom.
| |
Collapse
|
317
|
Use of the Microparticle Nanoscale Silicon Dioxide as an Adjuvant To Boost Vaccine Immune Responses against Influenza Virus in Neonatal Mice. J Virol 2016; 90:4735-4744. [PMID: 26912628 DOI: 10.1128/jvi.03159-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/19/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Neonates are at a high risk of infection, but vaccines are less effective in this age group; tailored adjuvants could potentially improve vaccine efficacy. Increased understanding about danger sensing by the innate immune system has led to the rational design of novel adjuvants. But differences in the neonatal innate immune response, for example, to Toll-like receptor (TLR) agonists, can reduce the efficacy of these adjuvants in early life. We therefore targeted alternative danger-sensing pathways, focusing on a range of compounds described as inflammasome agonists, including nanoscale silicon dioxide (NanoSiO2), calcium pyrophosphate dihydrate (CPPD) crystals, and muramyl tripeptide (M-Tri-DAP), for their ability to act as adjuvants.In vitro, these compounds induced an interleukin 1-beta (IL-1β) response in the macrophage-like cell line THP1.In vivo, adult CB6F1 female mice were immunized intramuscularly with H1N1 influenza vaccine antigens in combination with NanoSiO2, CPPD, or M-Tri-DAP and subsequently challenged with H1N1 influenza virus (A/England/195/2009). The adjuvants boosted anti-hemagglutinin IgG and IgA antibody levels. Both adult and neonatal animals that received NanoSiO2-adjuvanted vaccines lost significantly less weight and recovered earlier after infection than control animals treated with antigen alone. Administration of the adjuvants led to an influx of activated inflammatory cells into the muscle but to little systemic inflammation measured by serum cytokine levels. Blocking IL-1β or caspase 1 in vivo had little effect on NanoSiO2 adjuvant function, suggesting that it may work through pathways other than the inflammasome. Here we demonstrate that NanoSiO2 can act as an adjuvant and is effective in early life. IMPORTANCE Vaccines can fail to protect the most at-risk populations, including the very young, the elderly, and the immunocompromised. There is a gap in neonatal immunity between the waning of maternal protection and routine infant immunization schedules, exacerbated by the failure of vaccines to work in the first months of life. One approach is to design age-specific formulations, with more-effective adjuvants, based on our understanding of the nature of the neonatal immune response. We chose to target the inflammasome, a molecular complex capable of detecting infection and cell damage and of triggering IL-1β-driven inflammation. We screened a range of compounds in vitro and in vivo and identified three lead candidates: NanoSiO2, CPPD, and M-Tri-DAP. Of these, NanoSiO2 was the most effective and boosted the anti-influenza virus response in both adult and neonatal mice. This finding is important for the development of age-specific vaccines, designed using our knowledge of the neonatal immune response.
Collapse
|
318
|
Esposito S, Zampiero A, Bianchini S, Mori A, Scala A, Tagliabue C, Sciarrabba CS, Fossali E, Piralla A, Principi N. Epidemiology and Clinical Characteristics of Respiratory Infections Due to Adenovirus in Children Living in Milan, Italy, during 2013 and 2014. PLoS One 2016; 11:e0152375. [PMID: 27045588 PMCID: PMC4821614 DOI: 10.1371/journal.pone.0152375] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
To evaluate the predominant human adenovirus (HAdV) species and types associated with pediatric respiratory infections, nasopharyngeal swabs were collected from otherwise healthy children attending an emergency room in Milan, Italy, due to a respiratory tract infection from January 1 to February 28 of two subsequent years, 2013 and 2014. The HAdVs were detected using a respiratory virus panel fast assay (xTAG RVP FAST v2) and with a HAdV-specific real-time polymerase chain reaction; their nucleotides were sequenced, and they were tested for positive selection. Among 307 nasopharyngeal samples, 61 (19.9%) tested positive for HAdV. HAdV was the only virus detected in 31/61 (50.8%) cases, whereas it was found in association with one other virus in 25 (41.0%) cases and with two or more viruses in 5 (8.2%) cases. Human Enterovirus/human rhinovirus and respiratory syncytial virus were the most common co-infecting viral agents and were found in 12 (19.7%) and 7 (11.5%) samples, respectively. Overall, the HAdV strain sequences analyzed were highly conserved. In comparison to HAdV-negative children, those infected with HAdV had a reduced frequency of lower respiratory tract involvement (36.1% vs 55.2%; p = 0.007), wheezing (0.0% vs 12.5%; p = 0.004), and hospitalization (27.9% vs 56.1%; p<0.001). Antibiotic therapy and white blood cell counts were more frequently prescribed (91.9% vs 57.1%; p = 0.04) and higher (17,244 ± 7,737 vs 9,565 ± 3,211 cells/μL; p = 0.04), respectively, in children infected by HAdV-C than among those infected by HAdV-B. On the contrary, those infected by HAdV-B had more frequently lower respiratory tract involvement (57.1% vs 29.7%) but difference did not reach statistical significant (p = 0.21). Children with high viral load were absent from child care attendance for a longer period of time (14.5 ± 7.5 vs 5.5 ± 3.2 days; p = 0.002) and had higher C reactive protein levels (41.3 ± 78.5 vs 5.4 ± 9.6 μg/dL; p = 0.03). This study has shown that HAdV infections are diagnosed more commonly than usually thought and that HAdVs are stable infectious agents that do not frequently cause severe diseases. A trend toward more complex disease in cases due to HAdV species C and in those with higher viral load was demonstrated. However, further studies are needed to clarify factors contributing to disease severity to understand how to develop adequate preventive and therapeutic measures.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- * E-mail:
| | - Alberto Zampiero
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sonia Bianchini
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Mori
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessia Scala
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Tagliabue
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Calogero Sathya Sciarrabba
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emilio Fossali
- Emergency Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Piralla
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Nicola Principi
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
319
|
Currie SM, Gwyer Findlay E, McFarlane AJ, Fitch PM, Böttcher B, Colegrave N, Paras A, Jozwik A, Chiu C, Schwarze J, Davidson DJ. Cathelicidins Have Direct Antiviral Activity against Respiratory Syncytial Virus In Vitro and Protective Function In Vivo in Mice and Humans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:2699-710. [PMID: 26873992 PMCID: PMC4777919 DOI: 10.4049/jimmunol.1502478] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/15/2016] [Indexed: 12/20/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of respiratory tract infection in infants, causing significant morbidity and mortality. No vaccine or specific, effective treatment is currently available. A more complete understanding of the key components of effective host response to RSV and novel preventative and therapeutic interventions are urgently required. Cathelicidins are host defense peptides, expressed in the inflamed lung, with key microbicidal and modulatory roles in innate host defense against infection. In this article, we demonstrate that the human cathelicidin LL-37 mediates an antiviral effect on RSV by inducing direct damage to the viral envelope, disrupting viral particles and decreasing virus binding to, and infection of, human epithelial cells in vitro. In addition, exogenously applied LL-37 is protective against RSV-mediated disease in vivo, in a murine model of pulmonary RSV infection, demonstrating maximal efficacy when applied concomitantly with virus. Furthermore, endogenous murine cathelicidin, induced by infection, has a fundamental role in protection against disease in vivo postinfection with RSV. Finally, higher nasal levels of LL-37 are associated with protection in a healthy human adult RSV infection model. These data lead us to propose that cathelicidins are a key, nonredundant component of host defense against pulmonary infection with RSV, functioning as a first point of contact antiviral shield and having additional later-phase roles in minimizing the severity of disease outcome. Consequently, cathelicidins represent an inducible target for preventative strategies against RSV infection and may inform the design of novel therapeutic analogs for use in established infection.
Collapse
Affiliation(s)
- Silke M Currie
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Emily Gwyer Findlay
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Amanda J McFarlane
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Paul M Fitch
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Bettina Böttcher
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Nick Colegrave
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom; and
| | - Allan Paras
- National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Agnieszka Jozwik
- National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Christopher Chiu
- National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Jürgen Schwarze
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Donald J Davidson
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom;
| |
Collapse
|
320
|
Wang H, Zheng Y, Deng J, Wang W, Liu P, Yang F, Jiang H. Prevalence of respiratory viruses among children hospitalized from respiratory infections in Shenzhen, China. Virol J 2016; 13:39. [PMID: 26952107 PMCID: PMC4782311 DOI: 10.1186/s12985-016-0493-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/22/2016] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND The prevalence of local dominant viral etiologies is important for clinical management and prevention of common viral respiratory tract infections. Unfortunately, there is limited large-scale data about common viral respiratory infection in south China. To survey dominant viral etiology and seasonality of acute respiratory infections in hospitalized children, a 4-year consecutive study was conducted in Shenzhen, China. METHODS Nasopharyngeal swab specimens were obtained from 30,443 hospitalized children younger than 14 years with respiratory tract diseases in Shenzhen Children's Hospital from January 2012 to December 2015. Nasopharyngeal swabs were routinely examined by direct immunofluorescence assay to detect respiratory agents including seven respiratory viruses. Data were analyzed to describe the frequency and seasonality. RESULTS Of the 30,443 children enrolled in the study, 4428 (14.55 %) were positive for at least one viral pathogen, among whom 4110 (92.82 %) were ≤3 years of age. The predominant viruses were respiratory syncytial virus (RSV, 68.11 %), adenovirus (ADV, 16.01 %) and parainfluenza virus 3 (PIV-3, 11.0 %). The common respiratory viruses detected peaked in the spring (17.69 %), and were minimal in autumn (9.73 %), but PIVs detection peaked in November. The common virus detection rate in male subjects (15.40 %) was significantly higher than in female subjects (13.02 %). PIVs detection rates were complementary with RSV in autumn in each year. CONCLUSIONS This study demonstrated common respiratory viruses were the major cause of hospitalized acute respiratory infection (ARI) in children in Shenzhen, China. RSV was the most common detected infection, while ADV was the predominant pathogen in hospitalized children. These findings provide a better understanding of virus distribution among children of different ages, infection stratification by gender, and seasonality, all of which will contribute to modification of therapeutic approaches and development of effective prevention strategies for each respiratory virus infection during peak seasons.
Collapse
Affiliation(s)
- Heping Wang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, 7019 Yitian Road, Futian District, Shenzhen, 518026, China.
| | - Yuejie Zheng
- Department of Respiratory Diseases, Shenzhen Children's Hospital, 7019 Yitian Road, Futian District, Shenzhen, 518026, China.
| | - Jikui Deng
- Department of Respiratory Diseases, Shenzhen Children's Hospital, 7019 Yitian Road, Futian District, Shenzhen, 518026, China.
| | - Wenjian Wang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, 7019 Yitian Road, Futian District, Shenzhen, 518026, China.
| | - Ping Liu
- Department of Respiratory Diseases, Shenzhen Children's Hospital, 7019 Yitian Road, Futian District, Shenzhen, 518026, China.
| | - Fanghua Yang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, 7019 Yitian Road, Futian District, Shenzhen, 518026, China.
| | - Hanfang Jiang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, 7019 Yitian Road, Futian District, Shenzhen, 518026, China.
| |
Collapse
|
321
|
Chu HY, Englund JA, Strelitz B, Lacombe K, Jones C, Follmer K, Martin EK, Bradford M, Qin X, Kuypers J, Klein EJ. Rhinovirus Disease in Children Seeking Care in a Tertiary Pediatric Emergency Department. J Pediatric Infect Dis Soc 2016; 5:29-38. [PMID: 26908489 PMCID: PMC4765491 DOI: 10.1093/jpids/piu099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 09/02/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND Rhinovirus is the most common cause of viral respiratory tract infections in children. Virologic predictors of lower respiratory tract infection (LRTI), such as viral load and the presence of another respiratory virus (coinfection), are not well characterized in pediatric outpatients. METHODS Mid-nasal turbinate samples were collected from children presenting for care to the Seattle Children's Hospital emergency department (ED) or urgent care with a symptomatic respiratory infection between December 2011 and May 2013. A subset of samples was tested for rhinovirus viral load by real-time polymerase chain reaction. Clinical data were collected by chart reviews. Multivariate logistic regression was used to evaluate the relationship between viral load and coinfection and the risk for LRTI. RESULTS Rhinovirus was the most frequent respiratory virus detected in children younger than 3 years. Of 445 patients with rhinovirus infection, 262 (58.9%) had LRTIs, 231 (51.9%) required hospital admission and 52 (22.5%) were hospitalized for 3 days or longer. Children with no comorbidities accounted for 142 (54%) of 262 rhinovirus LRTIs. Higher viral load was significantly associated with LRTI among illness episodes with rhinovirus alone (OR, 2.11; 95% confidence interval [CI], 1.24-3.58). Coinfection increased the risk of LRTI (OR, 1.83; 95% CI, 1.01-3.32). CONCLUSIONS Rhinovirus was the most common pathogen detected among symptomatic young children in a pediatric ED who had respiratory viral testing performed, with the majority requiring hospitalization. Higher rhinovirus viral load and coinfection increased disease severity. Virologic data may assist clinical decision making for children with rhinovirus infections in the pediatric ED.
Collapse
Affiliation(s)
- Helen Y. Chu
- Department of Medicine, University of Washington
| | | | | | | | | | | | | | | | - Xuan Qin
- Department of Microbiology, Seattle Children's Hospital, Washington
| | - Jane Kuypers
- Department of Laboratory Medicine, University of Washington
| | | |
Collapse
|
322
|
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a common cause of bronchiolitis in infants with a wide spectrum of disease severity. Besides environmental and genetic factors, it is thought that the innate immune system plays a pivotal role. The aim of this study was to investigate the expression of immune receptors on monocytes and the in vitro responsiveness from infants with severe RSV infections. METHODS Peripheral blood mononuclear cells (PBMCs) from infants with RSV infections were isolated. Classical, intermediate and nonclassical monocytes were immunophenotyped for the expression of CD14, CD16, human leukocyte antigen (HLA)-ABC and HLA-DR. PBMCs were stimulated with lipopolysaccharide to determine the secretion of tumor necrosis factor and interleukin (IL)-10 with enzyme-linked immunosorbent assay. RESULTS During RSV infection, intermediate monocytes are increased in the peripheral blood, whereas classical and nonclassical monocytes are reduced. The expression of CD14 and HLA-ABC is increased on monocytes, whereas the expression of HLA-DR is suppressed. Low HLA-DR expression is correlated with increased disease severity. PBMCs from infants with severe RSV infections show an impaired IL-10 response in vitro. CONCLUSIONS Phenotyping subpopulations of monocytes combined with in vitro responsiveness reveals significant differences between nonsevere and severe RSV infections. Reduced HLA-DR expression and impaired IL-10 production in vitro during severe RSV infections indicate that an imbalanced innate immune response may play an important role in disease severity.
Collapse
|
323
|
Tief F, Hoppe C, Seeber L, Obermeier P, Chen X, Karsch K, Mühlhans S, Adamou E, Conrad T, Beresniak A, Schweiger B, Adam T, Rath B. An inception cohort study assessing the role of pneumococcal and other bacterial pathogens in children with influenza and ILI and a clinical decision model for stringent antibiotic use. Antivir Ther 2016; 21:413-24. [PMID: 26867096 DOI: 10.3851/imp3034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Influenza-like illness (ILI) is a common reason for paediatric consultations. Viral causes predominate, but antibiotics are used frequently. With regard to influenza, pneumococcal coinfections are considered major contributors to morbidity/mortality. METHODS In the context of a perennial quality management (QM) programme at the Charité Departments of Paediatrics and Microbiology in collaboration with the Robert Koch Institute, children aged 0-18 years presenting with signs and symptoms of ILI were followed from the time of initial presentation until hospital discharge (Charité Influenza-Like Disease = ChILD Cohort). An independent QM team performed highly standardized clinical assessments using a disease severity score based on World Health Organization criteria for uncomplicated and complicated/progressive disease. Nasopharyngeal and pharyngeal samples were collected for viral reverse transcription polymerase chain reaction and bacterial culture/sensitivity and MaldiTOF analyses. The term 'detection' was used to denote any evidence of viral or bacterial pathogens in the (naso)pharyngeal cavity. With the ChILD Cohort data collected, a standard operating procedure (SOP) was created as a model system to reduce the inappropriate use of antibiotics in children with ILI. Monte Carlo simulations were performed to assess cost-effectiveness. RESULTS Among 2,569 ChILD Cohort patients enrolled from 12/2010 to 04/2013 (55% male, mean age 3.2 years, range 0-18, 19% >5 years), 411 patients showed laboratory-confirmed influenza, with bacterial co-detection in 35%. Influenza and pneumococcus were detected simultaneously in 12/2,569 patients, with disease severity clearly below average. Pneumococcal vaccination rates were close to 90%. Nonetheless, every fifth patient was already on antibiotics upon presentation; new antibiotic prescriptions were issued in an additional 20%. Simulation of the model SOP in the same dataset revealed that the proposed decision model could have reduced the inappropriate use of antibiotics significantly (P<0.01) with an incremental cost-effectiveness ratio of -99.55€. CONCLUSIONS Physicians should be made aware that in times of pneumococcal vaccination the prevalence and severity of influenza infections complicated by pneumococci may decline. Microbiological testing in combination with standardized disease severity assessments and review of vaccination records could be cost-effective, as well as promoting stringent use of antibiotics and a personalized approach to managing children with ILI.
Collapse
Affiliation(s)
- Franziska Tief
- Department of Paediatrics, Charité University Medical Centre Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
324
|
Giamberardin HIG, Homsani S, Bricks LF, Pacheco APO, Guedes M, Debur MC, Raboni SM. Clinical and epidemiological features of respiratory virus infections in preschool children over two consecutive influenza seasons in southern Brazil. J Med Virol 2016; 88:1325-33. [PMID: 26773605 PMCID: PMC7167150 DOI: 10.1002/jmv.24477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2016] [Indexed: 12/22/2022]
Abstract
This study reports the results of a systematic screening for respiratory viruses in pediatric outpatients from an emergency department (ED) in southern Brazil during two consecutive influenza seasons. Children eligible for enrollment in this study were aged 24–59 months and presented with acute respiratory symptoms and fever. Naso‐ and oropharyngeal swabs were collected and multiplex reverse transcription PCR (RT‐PCR) was performed to identify the respiratory viruses involved. In total, 492 children were included in this study: 248 in 2010 and 244 in 2011. In 2010, 136 samples (55%) were found to be positive for at least one virus and the most frequently detected viruses were human rhinovirus (HRV) (18%), adenovirus (AdV) (13%), and human coronavirus (CoV) (5%). In 2011, 158 samples (65%) were found to be positive for at least one virus, and the most frequently detected were HRV (29%), AdV (12%), and enterovirus (9%). Further, the presence of asthma (OR, 3.17; 95% CI, 1.86–5.46) was independently associated with HRV infection, whereas fever was associated with AdV (OR, 3.86; 95% CI, 1.31–16.52) and influenza infections (OR, 3.74; 95% CI, 1.26–16.06). Ten patients (2%) were diagnosed with pneumonia, and six of these tested positive for viral infection (4 HRV, 1 RSV, and 1 AdV). Thus, this study identified the most common respiratory viruses found in preschool children in the study region and demonstrated their high frequency, highlighting the need for improved data collection, and case management in order to stimulate preventive measures against these infections. J. Med. Virol. 88:1325–1333, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
|
325
|
Verhoeven D, Perry S, Pryharski K. Control of influenza infection is impaired by diminished interferon-γ secretion by CD4 T cells in the lungs of toddler mice. J Leukoc Biol 2016; 100:203-12. [PMID: 26823488 DOI: 10.1189/jlb.4a1014-497rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/04/2016] [Indexed: 11/24/2022] Open
Abstract
Respiratory viral infections, such as influenza, can lead to delayed viral clearance in toddlers, possibly exacerbating disease morbidity. We hypothesized that defective CD4 T cells in toddlers may contribute to a failure to clear virus at a similar rate to adults. Thus, we developed a young mouse model to examine potential divergent responses between toddlers and adults. We determined that young mice (toddler mice, 21 d old) were actively generating and recruiting effector/memory T cells, whereas memory populations were firmly established in older, adult mice (8-10 wk old). We infected toddler and adult mice with influenza A/PR8/34 (H1N1) and found young mice had elevated morbidity, as measured by enhanced weight loss and lower partial pressure of oxygen levels, throughout the infection, thus, modeling the higher morbidity observed in children (<2 y old) during infection. Early viral loads were comparable to adult mice, but toddler mice failed to clear virus by 10 d postinfection. This delayed clearance corresponded to poor lung recruitment of CD4 T cells, lower antiviral T cell responses, and lower B cell/antibodies in the lungs. Mechanistically, diminished interferon-γ was detected in the lungs of toddler mice throughout the infection and corresponded to intrinsic, rather than extrinsic, CD4 T cell limitations in interferon-γ transcription. Moreover, defects in interferon-γ production appeared downstream from signal transducer and activator of transcription 4 in the interleukin-12 signaling pathway, suggesting maturational delays different from neonates. Importantly, recombinant interferon-γ supplementation rescued CD4 T cell numbers in the lungs and influenza-specific antibody formation. This study highlights the intrinsic limitations in CD4 T cell effector functions that may arise in toddlers and contribute to disease pathology.
Collapse
Affiliation(s)
- David Verhoeven
- Rochester General Hospital Research Institute, Rochester General Hospital, Rochester, New York, USA; and Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Sheldon Perry
- Rochester General Hospital Research Institute, Rochester General Hospital, Rochester, New York, USA; and
| | - Karin Pryharski
- Rochester General Hospital Research Institute, Rochester General Hospital, Rochester, New York, USA; and
| |
Collapse
|
326
|
Remot A, Descamps D, Jouneau L, Laubreton D, Dubuquoy C, Bouet S, Lecardonnel J, Rebours E, Petit-Camurdan A, Riffault S. Flt3 ligand improves the innate response to respiratory syncytial virus and limits lung disease upon RSV reexposure in neonate mice. Eur J Immunol 2016; 46:874-84. [PMID: 26681580 DOI: 10.1002/eji.201545929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/24/2015] [Accepted: 12/10/2015] [Indexed: 11/11/2022]
Abstract
Respiratory syncytial virus (RSV) causes severe bronchiolitis in infants worldwide. The immunological factors responsible for RSV susceptibility in infants are poorly understood. Here, we used the BALB/c mouse model of neonatal RSV infection to study the mechanisms leading to severe disease upon reexposure to the virus when adults. Two major deficiencies in neonatal lung innate responses were found: a poor DCs mobilization, and a weak engagement of the IFNI pathway. The administration of Flt3 ligand (Flt3-L), a growth factor that stimulates the proliferation of hematopoietic cells, to neonates before RSV-infection, resulted in increased lung DC number, and reconditioned the IFNI pathway upon RSV neonatal infection. Besides, neonates treated with Flt3-L were protected against exacerbated airway disease upon adult reexposure to RSV. This was associated with a reorientation of RSV-specific responses toward Th1-mediated immunity. Thus, the poor lung DCs and IFNI responses to RSV in neonates may be partly responsible for the deleterious long-term consequences revealed upon adult reexposure to RSV, which could be prevented by Flt3-L treatment. These results open new perspectives for developing neonatal immuno-modulating strategies to reduce the burden of bronchiolitis.
Collapse
Affiliation(s)
- Aude Remot
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Luc Jouneau
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Daphné Laubreton
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Stephan Bouet
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jérôme Lecardonnel
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Emmanuelle Rebours
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Sabine Riffault
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
327
|
Complete Genome Sequence of Human Respiratory Syncytial Virus Isolated in Mexico. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01542-15. [PMID: 26769933 PMCID: PMC4714115 DOI: 10.1128/genomea.01542-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human respiratory syncytial virus (HRSV) is a member of the Paramyxoviridae family, which causes lower respiratory tract infections in neonates and children younger than 5 years. Here, we report the complete genome sequence of HRSV, isolated from a nasopharyngeal swab of a pregnant woman with cardiac complications.
Collapse
|
328
|
Richter J, Panayiotou C, Tryfonos C, Koptides D, Koliou M, Kalogirou N, Georgiou E, Christodoulou C. Aetiology of Acute Respiratory Tract Infections in Hospitalised Children in Cyprus. PLoS One 2016; 11:e0147041. [PMID: 26761647 PMCID: PMC4720120 DOI: 10.1371/journal.pone.0147041] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/28/2015] [Indexed: 01/06/2023] Open
Abstract
In order to improve clinical management and prevention of viral infections in hospitalised children improved etiological insight is needed. The aim of the present study was to assess the spectrum of respiratory viral pathogens in children admitted to hospital with acute respiratory tract infections in Cyprus. For this purpose nasopharyngeal swab samples from 424 children less than 12 years of age with acute respiratory tract infections were collected over three epidemic seasons and were analysed for the presence of the most common 15 respiratory viruses. A viral pathogen was identified in 86% of the samples, with multiple infections being observed in almost 20% of the samples. The most frequently detected viruses were RSV (30.4%) and Rhinovirus (27.4%). RSV exhibited a clear seasonality with marked peaks in January/February, while rhinovirus infections did not exhibit a pronounced seasonality being detected almost throughout the year. While RSV and PIV3 incidence decreased significantly with age, the opposite was observed for influenza A and B as well as adenovirus infections. The data presented expand our understanding of the epidemiology of viral respiratory tract infections in Cypriot children and will be helpful to the clinicians and researchers interested in the treatment and control of viral respiratory tract infections.
Collapse
Affiliation(s)
- Jan Richter
- Cyprus Institute of Neurology and Genetics, Department of Molecular Virology, Nicosia, Cyprus
- * E-mail:
| | - Christakis Panayiotou
- Cyprus Institute of Neurology and Genetics, Department of Molecular Virology, Nicosia, Cyprus
| | - Christina Tryfonos
- Cyprus Institute of Neurology and Genetics, Department of Molecular Virology, Nicosia, Cyprus
| | - Dana Koptides
- Cyprus Institute of Neurology and Genetics, Department of Molecular Virology, Nicosia, Cyprus
| | - Maria Koliou
- Archbishop Makarios III Hospital, Department of Pediatrics, Nicosia, Cyprus
| | - Nikolas Kalogirou
- Archbishop Makarios III Hospital, Department of Pediatrics, Nicosia, Cyprus
| | - Eleni Georgiou
- Archbishop Makarios III Hospital, Department of Pediatrics, Nicosia, Cyprus
| | - Christina Christodoulou
- Cyprus Institute of Neurology and Genetics, Department of Molecular Virology, Nicosia, Cyprus
| |
Collapse
|
329
|
Depletion of Human DNA in Spiked Clinical Specimens for Improvement of Sensitivity of Pathogen Detection by Next-Generation Sequencing. J Clin Microbiol 2016; 54:919-27. [PMID: 26763966 DOI: 10.1128/jcm.03050-15] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) technology has shown promise for the detection of human pathogens from clinical samples. However, one of the major obstacles to the use of NGS in diagnostic microbiology is the low ratio of pathogen DNA to human DNA in most clinical specimens. In this study, we aimed to develop a specimen-processing protocol to remove human DNA and enrich specimens for bacterial and viral DNA for shotgun metagenomic sequencing. Cerebrospinal fluid (CSF) and nasopharyngeal aspirate (NPA) specimens, spiked with control bacterial and viral pathogens, were processed using either a commercially available kit (MolYsis) or various detergents followed by DNase prior to the extraction of DNA. Relative quantities of human DNA and pathogen DNA were determined by real-time PCR. The MolYsis kit did not improve the pathogen-to-human DNA ratio, but significant reductions (>95%;P< 0.001) in human DNA with minimal effect on pathogen DNA were achieved in samples that were treated with 0.025% saponin, a nonionic surfactant. Specimen preprocessing significantly decreased NGS reads mapped to the human genome (P< 0.05) and improved the sensitivity of pathogen detection (P< 0.01), with a 20- to 650-fold increase in the ratio of microbial reads to human reads. Preprocessing also permitted the detection of pathogens that were undetectable in the unprocessed samples. Our results demonstrate a simple method for the reduction of background human DNA for metagenomic detection for a broad range of pathogens in clinical samples.
Collapse
|
330
|
Bag N, Jung JA, Kwon KA. Clinical considerations of febrile infants with respiratory symptoms according to the respiratory viral detection. ALLERGY ASTHMA & RESPIRATORY DISEASE 2016. [DOI: 10.4168/aard.2016.4.1.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Nury Bag
- Department of Pediatrics, Dong-A University College of Medicine, Busan, Korea
| | - Jin-A Jung
- Department of Pediatrics, Dong-A University College of Medicine, Busan, Korea
| | - Kyoung Ah Kwon
- Department of Pediatrics, Dong-A University College of Medicine, Busan, Korea
| |
Collapse
|
331
|
Meligy B, Sayed A, Ismail DK, Kamal D, Abdel-Latif W, Erfan DM. Detection of viral acute lower respiratory tract infection in hospitalized infants using real-time PCR. EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE 2015; 64:13-19. [PMID: 32288487 PMCID: PMC7110902 DOI: 10.1016/j.epag.2015.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/28/2015] [Indexed: 11/05/2022] Open
Abstract
Introduction Acute lower respiratory tract infection in children causes significant morbidity in the developing countries. Documentation of virus infection using PCR and clinical characteristics of patients affected with viral pneumonia are reviewed in this study. Methods 51 children less than three years admitted to the Pediatric Hospital, Cairo University with viral pneumonia were included. All patients had undergone nasopharyngeal aspirate for PCR viral detection. Results A total of 51 cases were enrolled in the study, of which 7 cases were negative while 44 children were positive for viruses. The most common respiratory virus was Rhinovirus in 32 patients (72.2%), then parainfluenza virus (PIV) in 12 (27.3%), of which subtypes PIV1 were 2 (4.5%), PIV3 were 5 (11.4%) and PIV4 were 5 (11.4%) cases. The third common viruses were respiratory syncytial virus (RSV) in 9 (20.5%) cases of which 3 (6.8%) were RSVA and 6 (13.6%) were RSVB and adenovirus in 9 cases (20.5%). Boca virus was found in 8 (18.2%) patients, corona virus 2 (4.5%) patients, H1N1 2 (4.5%) patients, enterovirus 2 patients (4.5%) and human metapneumovirus in one case (2.3%). Influenza B and PIV2 were not detected. Coinfection was found in 28 (63.7%). Mortality occurred in 12 (23.5%). There was no significant relation between virus type or coinfection with disease severity. Conclusions RV was the most commonly detected virus in children under 3 years admitted with acute lower respiratory tract infections. Coinfection was present in the majority of our patients; however it was not related significantly to parameters of disease severity.
Collapse
Key Words
- ALRTI, acute lower respiratory tract infection
- Acute lower respiratory tract infection
- Ad, adenovirus
- CMTA, Catcher Melting Temperature Analysis
- CRP, C reactive protein
- CRX, chest X ray
- Infants
- PCR
- PIV, parainfluenza virus
- PaO2, partial pressure of oxygen
- RSV, respiratory syncytial virus
- RV, rhinovirus
- SARS, severe acute respiratory syndrome
- TLC, total leucocytic count
- Viral
- WHO, World Health Organization
- hMPV, human metapneumovirus
Collapse
Affiliation(s)
- Bassant Meligy
- Pediatric Department, Faculty of Medicine, Cairo University, Egypt
| | - Amal Sayed
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Egypt
| | - Dalia Kadry Ismail
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Egypt
| | - Dina Kamal
- Pediatric Department, Faculty of Medicine, Cairo University, Egypt
| | - Walaa Abdel-Latif
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Egypt
| | - Dina M Erfan
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Egypt
| |
Collapse
|
332
|
Annamalai T, Saif LJ, Lu Z, Jung K. Age-dependent variation in innate immune responses to porcine epidemic diarrhea virus infection in suckling versus weaned pigs. Vet Immunol Immunopathol 2015; 168:193-202. [PMID: 26433606 PMCID: PMC7112776 DOI: 10.1016/j.vetimm.2015.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/17/2015] [Accepted: 09/12/2015] [Indexed: 01/02/2023]
Abstract
Porcine epidemic diarrhea (PED) is an enteric coronaviral infection that causes severe morbidity and mortality in suckling pigs, but less severe disease in older pigs. Consequently, it causes significant economic losses to the pork industry. There are limited studies on the innate immune responses to PED virus (PEDV) in pigs. The aims of our study were to investigate differences in innate immune responses to PEDV infection in suckling and weaned pigs and to examine if disease severity coincides with reduced innate immune responses. Weaned 26-day-old pigs (n=20) and 9-day-old nursing pigs (n=20) were assigned to PEDV inoculated or uninoculated control groups. The pigs were observed daily for clinical signs, virus shedding and were euthanized at post-inoculation days (PIDs) 1 and 5 to assay immune responses. Blood samples were collected at PIDs 1, 3 and 5. The natural killer (NK) cell frequencies, NK cell activities (lysis of target K562 tumor cells in vitro), CD3+CD4+ T cell and CD3+CD8+ T cell frequencies were measured in blood and ileum at PIDs 1 and 5. The PEDV infected suckling pigs showed severe diarrhea and vomiting at PID 1, whereas the PEDV infected weaned pigs showed milder clinical signs starting at PID 3. PEDV infected suckling pigs had significantly higher diarrhea scores, earlier fecal PEDV RNA shedding and significantly higher viremia (viral RNA in serum) compared to weaned pigs. There was no mortality in either infected suckling or infected weaned pigs. The control pigs not inoculated with PEDV did not show any clinical signs and no detectable fecal or serum PEDV RNA. Strikingly, PEDV infected suckling pigs had significantly lower NK cell frequencies, undetectable NK cell activity and lower IFNγ producing NK cells in blood and ileum compared to PEDV infected weaned pigs. Pro-inflammatory cytokine profiles of PEDV infected suckling pigs differed from those of PEDV infected weaned pigs and coincided with onset of fecal PEDV RNA shedding and serum PEDV RNA titers. The infected suckling pigs have higher and earlier increases in serum IFNα, but lower serum IL-8 and TNFα levels compared to infected weaned pigs. CD3+CD4+ T cell frequencies were significantly higher in ileum of suckling pigs than in weaned pigs, whereas there was no difference in CD3+CD8+ T cell frequencies. In conclusion, the observations of impaired lytic activity and IFN-γ production by NK cells in suckling pigs coincided with the increased severity of PEDV infection in the suckling pigs compared with the weaned pigs.
Collapse
Affiliation(s)
- Thavamathi Annamalai
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Zhongyan Lu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Kwonil Jung
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
333
|
de Souza APD, de Freitas DN, Antuntes Fernandes KE, D'Avila da Cunha M, Antunes Fernandes JL, Benetti Gassen R, Fazolo T, Pinto LA, Scotta M, Mattiello R, Pitrez PM, Bonorino C, Stein RT. Respiratory syncytial virus induces phosphorylation of mTOR at ser2448 in CD8 T cells from nasal washes of infected infants. Clin Exp Immunol 2015; 183:248-57. [PMID: 26437614 DOI: 10.1111/cei.12720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 12/12/2022] Open
Abstract
Respiratory syncytial virus (RSV)-specific CD8(+) T cell responses do not protect against reinfection. Activation of mammalian target of rapamycin (mTOR) impairs memory CD8(+) T cell differentiation. Our hypothesis was that RSV inhibits the formation of CD8(+) T cells memory responses through mTOR activation. To explore this, human and mouse T cells were used. RSV induced mTOR phosphorylation at Ser2448 in CD8 T cells. mTOR activation by RSV was completely inhibited using rapamycin. RSV-infected children presented higher mTOR gene expression on nasal washes comparing to children infected with metapneumovirus and rhinovirus. In addition, RSV-infected infants presented a higher frequency of CD8(+) pmTORser2448(+) T cells in nasal washes compared to RSV-negative infants. Rapamycin treatment increased the frequency of mouse CD8 RSV-M282-90 pentamer-positive T cells and the frequency of RSV-specific memory T cells precursors. These data demonstrate that RSV is activating mTOR directly in CD8 T cells, indicating a role for mTOR during the course of RSV infection.
Collapse
Affiliation(s)
- A P Duarte de Souza
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - D Nascimento de Freitas
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - K E Antuntes Fernandes
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - M D'Avila da Cunha
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - J L Antunes Fernandes
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - R Benetti Gassen
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - T Fazolo
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - L A Pinto
- Laboratório De Respirologia Pediátrica, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - M Scotta
- Laboratório De Respirologia Pediátrica, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - R Mattiello
- Laboratório De Respirologia Pediátrica, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - P M Pitrez
- Laboratório De Respirologia Pediátrica, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - C Bonorino
- Laboratorio De Imunologia Celular E Molecular, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - R T Stein
- Laboratório De Respirologia Pediátrica, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
334
|
Faksh A, Britt RD, Vogel ER, Thompson MA, Pandya HC, Martin RJ, Pabelick CM, Prakash YS. TLR3 activation increases chemokine expression in human fetal airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2015; 310:L202-11. [PMID: 26589477 DOI: 10.1152/ajplung.00151.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/14/2015] [Indexed: 11/22/2022] Open
Abstract
Viral infections, such as respiratory syncytial virus and rhinovirus, adversely affect neonatal and pediatric populations, resulting in significant lung morbidity, including acute asthma exacerbation. Studies in adults have demonstrated that human airway smooth muscle (ASM) cells modulate inflammation through their ability to secrete inflammatory cytokines and chemokines. The role of ASM in the developing airway during infection remains undefined. In our study, we used human fetal ASM cells as an in vitro model to examine the effect of Toll-like receptor (TLR) agonists on chemokine secretion. We found that fetal ASM express multiple TLRs, including TLR3 and TLR4, which are implicated in the pathogenesis of respiratory syncytial virus and rhinovirus infection. Cells were treated with TLR agonists, polyinosinic-polycytidylic acid [poly(I:C)] (TLR3 agonist), lipopolysaccharide (TLR4 agonist), or R848 (TLR7/8 agonist), and IL-8 and chemokine (C-C motif) ligand 5 (CCL5) secretion were evaluated. Interestingly, poly(I:C), but neither lipopolysaccharide nor R848, increased IL-8 and chemokine (C-C motif) ligand 5 secretion. Examination of signaling pathways suggested that the poly(I:C) effects in fetal ASM involve TLR and ERK signaling, in addition to another major inflammatory pathway, NF-κB. Moreover, there are variations between fetal and adult ASM with respect to poly(I:C) effects on signaling pathways. Pharmacological inhibition suggested that ERK pathways mediate poly(I:C) effects. Overall, our data show that poly(I:C) initiates activation of proinflammatory pathways in developing ASM, which may contribute to immune responses to infection and exacerbation of asthma.
Collapse
Affiliation(s)
- Arij Faksh
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rodney D Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth R Vogel
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | | - Hitesh C Pandya
- Department of Pediatrics, University of Leicester, Leicester, United Kingdom; Department of Immunology, University of Leicester, Leicester, United Kingdom; and
| | - Richard J Martin
- Department of Pediatrics, Division of Neonatology, Rainbow Babies Children's Hospital, Case Western Reserve University, Cleveland, Ohio
| | - Christina M Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota;
| |
Collapse
|
335
|
Similar virus spectra and seasonality in paediatric patients with acute respiratory disease, Ghana and Germany. Clin Microbiol Infect 2015; 22:340-346. [PMID: 26585774 PMCID: PMC7172147 DOI: 10.1016/j.cmi.2015.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/22/2015] [Accepted: 11/03/2015] [Indexed: 11/22/2022]
Abstract
Epidemiological differences between tropical and temperate regions regarding viruses causing acute respiratory infection are poorly understood. This is in part because methodological differences limit the comparability of data from these two regions. Using identical molecular detection methods, we tested 1174 Ghanaian and 539 German children with acute respiratory infections sampled over 12 months for the 15 most common respiratory viruses by PCR. A total 43.2% of the Ghanaian and 56.6% of the German children tested positive for at least one respiratory virus. The pneumoviruses respiratory syncytial virus and human metapneumovirus were most frequently detected, in 13.1% and 25.1% within the Ghanaian and German children, respectively. At both study sites, pneumoviruses were more often observed at younger ages (p <0.001). In the Ghanaian rainy season, enveloped viruses were detected twice as often as non-enveloped viruses (prevalence rate ratio (PR) 2.0, 95% CI 1.7-2.4). In contrast, non-enveloped viruses were more frequent during the Ghanaian dry season (PR 0.6, 95% CI 0.4-0.8). In Germany, enveloped viruses were also more frequently detected during the relatively colder winter season (PR 1.6, 95% CI 1.2-2.1) and non-enveloped viruses during summer (PR 0.7, 95% CI 0.5-0.9). Despite a distance of about 5000 km and a difference of 44° latitude separating Germany and Ghana, virus spectra, age associations and seasonal fluctuation showed similarities between sites. Neither respiratory viruses overall, nor environmentally stable (non-enveloped) viruses in particular were more frequent in tropical Ghana. The standardization of our sampling and laboratory testing revealed similarities in acute respiratory infection virus patterns in tropical and temperate climates.
Collapse
|
336
|
Priming of the Respiratory Tract with Immunobiotic Lactobacillus plantarum Limits Infection of Alveolar Macrophages with Recombinant Pneumonia Virus of Mice (rK2-PVM). J Virol 2015; 90:979-91. [PMID: 26537680 DOI: 10.1128/jvi.02279-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Pneumonia virus of mice (PVM) is a natural rodent pathogen that replicates in bronchial epithelial cells and reproduces many clinical and pathological features of the more severe forms of disease associated with human respiratory syncytial virus. In order to track virus-target cell interactions during acute infection in vivo, we developed rK2-PVM, bacterial artificial chromosome-based recombinant PVM strain J3666 that incorporates the fluorescent tag monomeric Katushka 2 (mKATE2). The rK2-PVM pathogen promotes lethal infection in BALB/c mice and elicits characteristic cytokine production and leukocyte recruitment to the lung parenchyma. Using recombinant virus, we demonstrate for the first time PVM infection of both dendritic cells (DCs; CD11c(+) major histocompatibility complex class II(+)) and alveolar macrophages (AMs; CD11c(+) sialic acid-binding immunoglobulin-like lectin F(+)) in vivo and likewise detect mKATE2(+) DCs in mediastinal lymph nodes from infected mice. AMs support both active virus replication and production of infectious virions. Furthermore, we report that priming of the respiratory tract with immunobiotic Lactobacillus plantarum, a regimen that results in protection against the lethal inflammatory sequelae of acute respiratory virus infection, resulted in differential recruitment of neutrophils, DCs, and lymphocytes to the lungs in response to rK2-PVM and a reduction from ∼ 40% to <10% mKATE2(+) AMs in association with a 2-log drop in the release of infectious virions. In contrast, AMs from L. plantarum-primed mice challenged with virus ex vivo exhibited no differential susceptibility to rK2-PVM. Although the mechanisms underlying Lactobacillus-mediated viral suppression remain to be fully elucidated, this study provides insight into the cellular basis of this response. IMPORTANCE Pneumonia virus of mice (PVM) is a natural mouse pathogen that serves as a model for severe human respiratory syncytial virus disease. We have developed a fully functional recombinant PVM strain with a fluorescent reporter protein (rK2-PVM) that permits us to track infection of target cells in vivo. With rK2-PVM, we demonstrate infection of leukocytes in the lung, notably, dendritic cells and alveolar macrophages. Alveolar macrophages undergo productive infection and release infectious virions. We have shown previously that administration of immunobiotic Lactobacillus directly to the respiratory mucosa protects mice from the lethal sequelae of PVM infection in association with profound suppression of the virus-induced inflammatory response. We show here that Lactobacillus administration also limits infection of leukocytes in vivo and results in diminished release of infectious virions from alveolar macrophages. This is the first study to provide insight into the cellular basis of the antiviral impact of immunobiotic L. plantarum.
Collapse
|
337
|
Bhattacharyya S, Gesteland PH, Korgenski K, Bjørnstad ON, Adler FR. Cross-immunity between strains explains the dynamical pattern of paramyxoviruses. Proc Natl Acad Sci U S A 2015; 112:13396-400. [PMID: 26460003 PMCID: PMC4629340 DOI: 10.1073/pnas.1516698112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viral respiratory tract diseases pose serious public health problems. Our ability to predict and thus, be able to prepare for outbreaks is strained by the complex factors driving the prevalence and severity of these diseases. The abundance of diseases and transmission dynamics of strains are not only affected by external factors, such as weather, but also driven by interactions among viruses mediated by human behavior and immunity. To untangle the complex out-of-phase annual and biennial pattern of three common paramyxoviruses, Respiratory Syncytial Virus (RSV), Human Parainfluenza Virus (HPIV), and Human Metapneumovirus (hMPV), we adopt a theoretical approach that integrates ecological and immunological mechanisms of disease interactions. By estimating parameters from multiyear time series of laboratory-confirmed cases from the intermountain west region of the United States and using statistical inference, we show that models of immune-mediated interactions better explain the data than those based on ecological competition by convalescence. The strength of cross-protective immunity among viruses is correlated with their genetic distance in the phylogenetic tree of the paramyxovirus family.
Collapse
Affiliation(s)
- Samit Bhattacharyya
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802; Department of Biology, University of Utah, Salt Lake City, UT 84112;
| | - Per H Gesteland
- Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT 84112; Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84112
| | - Kent Korgenski
- Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT 84112; Pediatric Clinical Program, Intermountain Healthcare, Salt Lake City, UT 84111
| | - Ottar N Bjørnstad
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802; Fogarty International Center, National Institutes of Health, Bethesda, MD 20892
| | - Frederick R Adler
- Department of Biology, University of Utah, Salt Lake City, UT 84112; Department of Mathematics, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
338
|
Seasonal variations of respiratory viruses and etiology of human rhinovirus infection in children. J Clin Virol 2015; 73:14-19. [PMID: 26521224 PMCID: PMC7106374 DOI: 10.1016/j.jcv.2015.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/29/2015] [Accepted: 10/04/2015] [Indexed: 11/20/2022]
Abstract
Nasal aspirates were subjected to real-time PCR to detect 16 respiratory viruses. One or more viruses were detected in 83% of specimens. Rhinoviruses were the most frequently detected viruses. Seasonal distribution was seen for each virus. The clinical severity did not differ among main respiratory viral infections.
Background Using the polymerase chain reaction (PCR) method it is possible to detect uncultivable viruses and discover multiple viral infections. However, the clinical importance of these findings in relation to symptoms is not known. Objectives The seasonal fluctuations of respiratory viruses and the clinical outcomes of single infections and dual infections were investigated. Study design Nasal aspirate samples were obtained from outpatients and inpatients of a children’s hospital and these samples were subjected to real-time PCR to detect 16 respiratory viruses. Seasonal variations of the 16 viruses and the clinical outcomes such as wheezing, the need for oxygenation and prolonged hospitalization of patients with single viral infections and multiple infections were determined for the 5 most often detected viruses. Results Among 512 specimens analyzed, one or more viruses were detected in 424 (83%) specimens. Two or more viruses were detected in 160 samples (31% of all samples). The epidemic peaks of the viruses did not coincide with each other. Rhinoviruses were the most frequently detected viruses and their coinfection rates were also higher. However, the disease severity in the lower respiratory tract did not differ in most respiratory viral infections regardless of whether there was single infection or dual infection with a rhinovirus and other respiratory virus. Conclusions Seasonal distribution was seen for each virus. There were no significant differences in clinical symptoms in the children studied. Because the infection of rhinoviruses is the common occurrence in children, it is hypothesized that the factors related to disease severity are mainly the underlying conditions of the children.
Collapse
|
339
|
Moreno-Valencia Y, Hernandez-Hernandez VA, Romero-Espinoza JAI, Coronel-Tellez RH, Castillejos-Lopez M, Hernandez A, Perez-Padilla R, Alejandre-Garcia A, de la Rosa-Zamboni D, Ormsby CE, Vazquez-Perez JA. Detection and characterization of respiratory viruses causing acute respiratory illness and asthma exacerbation in children during three different seasons (2011-2014) in Mexico City. Influenza Other Respir Viruses 2015; 9:287-292. [PMID: 26289993 PMCID: PMC4605408 DOI: 10.1111/irv.12346] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2015] [Indexed: 12/15/2022] Open
Abstract
Background Viral infections play a significant role in causing acute respiratory infections (ARIs) and exacerbations of chronic diseases. Acute respiratory infections are now the leading cause of mortality in children worldwide, especially in developing countries. Recently, human rhinovirus (HRV) infection has been emerged as an important cause of pneumonia and asthma exacerbation. Objectives To determine the role of several viral agents principally, respiratory syncytial virus, and HRV in children with ARIs and their relationship with asthma exacerbation and pneumonia. Methods Between October 2011 and March 2014, 432 nasopharyngeal samples of children <15 years of age with ARI hospitalized at a referral hospital for respiratory diseases were tested for the presence of respiratory viruses using a multiplex RT-qPCR. Clinical, epidemiological, and demographic data were collected and associated with symptomatology and viral infections. Results Viral infections were detected in at least 59·7% of the enrolled patients, with HRV (26·6%) being the most frequently detected. HRV infections were associated with clinical features of asthma and difficulty in breathing such as wheezing (P = 0·0003), supraesternal (P = 0·046), and xiphoid retraction (P = 0·030). HRV subtype C (HRV-C) infections were associated with asthma (P = 0·02). Conclusions Human rhinovirus was the virus most commonly detected in pediatric patients with ARI. There is also an association of HRV-C infection with asthma exacerbation, emphasizing the relevance of this virus in severe pediatric respiratory disease.
Collapse
Affiliation(s)
- Yazmin Moreno-Valencia
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | | | | | | | - Andres Hernandez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Rogelio Perez-Padilla
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | | | - Christopher E Ormsby
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Joel A Vazquez-Perez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
340
|
Abraha HY, Lanctôt KL, Paes B. Risk of respiratory syncytial virus infection in preterm infants: reviewing the need for prevention. Expert Rev Respir Med 2015; 9:779-99. [PMID: 26457970 DOI: 10.1586/17476348.2015.1098536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Premature infants are at substantial risk for a spectrum of morbidities that are gestational age dependent. Respiratory syncytial virus (RSV) infection is most common in the first two years of life with the highest burden in children aged <6 months. Preterm infants ≤35 weeks' gestation are handicapped by incomplete immunological and pulmonary maturation and immature premorbid lung function with the added risk of bronchopulmonary dysplasia. Superimposed RSV infection incites marked neutrophilic airway inflammation and innate immunological responses that further compromise normal airway modeling. This review addresses the epidemiology and burden of RSV disease, focusing on the preterm population. Risk factors that determine RSV-disease severity and hospitalization and the impact on healthcare resource utilization and potential long-term respiratory sequelae are discussed. The importance of disease prevention and the evidence-based rationale for prophylaxis with palivizumab is explored, while awaiting the development of a universal vaccine.
Collapse
Affiliation(s)
- Haben Y Abraha
- a Medical Outcomes and Research in Economics (MORE®) Research Group, Sunnybrook Health Sciences Centre , University of Toronto , Toronto , Ontario , Canada
| | - Krista L Lanctôt
- a Medical Outcomes and Research in Economics (MORE®) Research Group, Sunnybrook Health Sciences Centre , University of Toronto , Toronto , Ontario , Canada
| | - Bosco Paes
- b Division of Neonatology, Department of Pediatrics , McMaster University , Hamilton , Ontario , Canada
| |
Collapse
|
341
|
Kawahara T, Takahashi T, Oishi K, Tanaka H, Masuda M, Takahashi S, Takano M, Kawakami T, Fukushima K, Kanazawa H, Suzuki T. Consecutive oral administration of Bifidobacterium longum MM-2 improves the defense system against influenza virus infection by enhancing natural killer cell activity in a murine model. Microbiol Immunol 2015; 59:1-12. [PMID: 25400245 DOI: 10.1111/1348-0421.12210] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/24/2014] [Accepted: 10/30/2014] [Indexed: 12/24/2022]
Abstract
Bifidobacterium, one of the major components of intestinal microflora, shows anti-influenza virus (IFV) potential as a probiotic, partly through enhancement of innate immunity by modulation of the intestinal immune system. Bifidobacterium longum MM-2 (MM-2), a very safe bacterium in humans, was isolated from healthy humans and its protective effect against IFV infection in a murine model shown. In mice that were intranasally inoculated with IFV, oral administration of MM-2 for 17 consecutive days improved clinical symptoms, reduced mortality, suppressed inflammation in the lower respiratory tract, and decreased virus titers, cell death, and pro-inflammatory cytokines such as IL-6 and TNF-α in bronchoalveolar lavage fluid. The anti-IFV mechanism of MM-2 involves innate immunity through significant increases in NK cell activities in the lungs and spleen and a significant increase in pulmonary gene expression of NK cell activators such as IFN-γ, IL-2, IL-12 and IL-18. Even in non-infected mice, MM-2 administration also induced significant enhancement of both IFN-γ production by Peyer's patch cells (PPs) and splenetic NK cell activity. Oral administration of MM-2 for 17 days activates systemic immunoreactivity in PPs, which contributes to innate immunity, including NK cell activation, resulting in an anti-IFV effect. MM-2 as a probiotic may function as a prophylactic agent in the management of an IFV epidemic.
Collapse
Affiliation(s)
- Tomohiro Kawahara
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; Biofermin Kobe Research Institute, Biofermin Pharmaceutical, 7-3-4 Ibukidai-Higashimachi, Nishi-ku, Kobe, 651-2242, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
342
|
Henriksen RE, Thuen F. Marital Quality and Stress in Pregnancy Predict the Risk of Infectious Disease in the Offspring: The Norwegian Mother and Child Cohort Study. PLoS One 2015; 10:e0137304. [PMID: 26422017 PMCID: PMC4589358 DOI: 10.1371/journal.pone.0137304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/16/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES The aim of this study was to explore the degree to which couples' relationship dissatisfaction and stressful life events during pregnancy predict the risk of infectious disease in the offspring during their first year of life. METHODS Data were obtained from the Norwegian Mother and Child Cohort Study, conducted by the Norwegian Institute of Public Health. Pregnant women completed questionnaires in week 30 of pregnancy concerning the couples' relationship satisfaction and stressful life events. In follow-up questionnaires, the women reported whether their children (n = 74,801) had been subject to various categories of infectious disease: the common cold, throat infection, bronchitis, RS virus, pneumonia, pseudocroup, gastric flu, ear infection, conjunctivitis and urinary tract infection. Reports from two age groups of infants were used. Associations between the predictor and outcome variables were assessed via logistic regression and linear regression analyses. RESULTS Separate logistic regression analyses for each disease and age group showed that prenatal relationship dissatisfaction and stressful life events were significantly associated with all reported categories of infectious disease. After controlling for socioeconomic factors, social support, smoking, breastfeeding, maternal depression, the sex of the offspring, and use of child care, 29 out of 32 tested associations were statistically significant. Finally, multivariate linear regression analyses showed that prenatal relationship dissatisfaction and stressful life events were significantly associated with the frequency, as well as the variety, of infectious disease in the offspring.
Collapse
Affiliation(s)
| | - Frode Thuen
- Centre for Evidence-Based Practice, Bergen University College, Bergen, Norway
| |
Collapse
|
343
|
Shrivastava P, Atanley E, Sarkar I, Watkiss E, Gomis S, van Drunen Littel-van den Hurk S. Blunted inflammatory and mucosal IgA responses to pneumonia virus of mice in C57BL/6 neonates are correlated to reduced protective immunity upon re-infection as elderly mice. Virology 2015; 485:233-43. [PMID: 26298860 DOI: 10.1016/j.virol.2015.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 11/17/2022]
Abstract
Respiratory syncytial virus is a major cause of bronchiolitis in infants and pneumonia virus of mice (PVM) causes similar disease in mice. The impact of PVM infection in BALB/c and C57BL/6 neonates, and upon re-infection as elderly mice, was compared. As previously shown for adult mice, PVM caused more disease in BALB/c than in C57BL/6 neonates. After PVM-15 infection BALB/c neonates showed higher production of inflammatory mediators, more influx of plasmacytoid dendritic cells and higher IFN-α expression, and more IgA in the lungs than C57BL/6 neonates. After re-infection as elderly, BALB/c mice developed virus neutralizing antibodies in serum and lung, and were protected from clinical disease, whereas C57BL/6 mice did not develop an anamnestic response and were not protected. These results suggest that an effective local innate response, as well as priming of mucosal adaptive responses in neonates after PVM-15 infection is correlated to decreased susceptibility and protection upon re-infection.
Collapse
Affiliation(s)
- Pratima Shrivastava
- VIDO-InterVac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Ethel Atanley
- VIDO-InterVac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3; Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Indranil Sarkar
- VIDO-InterVac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3; Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Ellen Watkiss
- VIDO-InterVac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3; Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5B4
| | - Susantha Gomis
- Veterinary Pathology, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5B4
| | - Sylvia van Drunen Littel-van den Hurk
- VIDO-InterVac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3; Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5.
| |
Collapse
|
344
|
Hendaus MA, Jomha FA, Alhammadi AH. Virus-induced secondary bacterial infection: a concise review. Ther Clin Risk Manag 2015; 11:1265-71. [PMID: 26345407 PMCID: PMC4554399 DOI: 10.2147/tcrm.s87789] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Respiratory diseases are a very common source of morbidity and mortality among children. Health care providers often face a dilemma when encountering a febrile infant or child with respiratory tract infection. The reason expressed by many clinicians is the trouble to confirm whether the fever is caused by a virus or a bacterium. The aim of this review is to update the current evidence on the virus-induced bacterial infection. We present several clinical as well in vitro studies that support the correlation between virus and secondary bacterial infections. In addition, we discuss the pathophysiology and prevention modes of the virus–bacterium coexistence. A search of the PubMed and MEDLINE databases was carried out for published articles covering bacterial infections associated with respiratory viruses. This review should provide clinicians with a comprehensive idea of the range of bacterial and viral coinfections or secondary infections that could present with viral respiratory illness.
Collapse
Affiliation(s)
- Mohamed A Hendaus
- Department of Pediatrics, Academic General Pediatrics Division, Weill-Cornell Medical College, Hamad Medical Corporation, Doha, Qatar
| | - Fatima A Jomha
- School of Pharmacy, Lebanese International University, Khiara, Lebanon
| | - Ahmed H Alhammadi
- Department of Pediatrics, Academic General Pediatrics Division, Weill-Cornell Medical College, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
345
|
Guo X, Liu T, Shi H, Wang J, Ji P, Wang H, Hou Y, Tan RX, Li E. Respiratory Syncytial Virus Infection Upregulates NLRC5 and Major Histocompatibility Complex Class I Expression through RIG-I Induction in Airway Epithelial Cells. J Virol 2015; 89:7636-45. [PMID: 25972545 PMCID: PMC4505675 DOI: 10.1128/jvi.00349-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/06/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) is the leading cause of acute respiratory tract viral infection in infants, causing bronchiolitis and pneumonia. The host antiviral response to RSV acts via retinoic acid-inducible gene I (RIG-I). We show here that RSV infection upregulates major histocompatibility complex class I (MHC-I) expression through the induction of NLRC5, a NOD-like, CARD domain-containing intracellular protein that has recently been identified as a class I MHC transactivator (CITA). RSV infection of A549 cells promotes upregulation of NLRC5 via beta interferon (IFN-β) production, since the NLRC5-inducing activity in a conditioned medium from RSV-infected A549 cells was removed by antibody to IFN-β, but not by antibody to IFN-γ. RSV infection resulted in RIG-I upregulation and induction of NLRC5 and MHC-I. Suppression of RIG-I induction significantly blocked NLRC5, as well as MHC-I, upregulation and diminished IRF3 activation. Importantly, Vero cells deficient in interferon production still upregulated MHC-I following introduction of the RSV genome by infection or transfection, further supporting a key role for RIG-I. A model is therefore proposed in which the host upregulates MHC-I expression during RSV infection directly via the induction of RIG-I and NLRC5 expression. Since elevated expression of MHC-I molecules can sensitize host cells to T lymphocyte-mediated cytotoxicity or immunopathologic damage, the results have significant implications for the modification of immunity in RSV disease. IMPORTANCE Human respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and pneumonia in infants and young children worldwide. Infection early in life is linked to persistent wheezing and allergic asthma in later life, possibly related to upregulation of major histocompatibility class I (MHC-I) on the cell surface, which facilitates cytotoxic T cell activation and antiviral immunity. Here, we show that RSV infection of lung epithelial cells induces expression of RIG-I, resulting in induction of a class I MHC transactivator, NLRC5, and subsequent upregulation of MHC-I. Suppression of RIG-I induction blocked RSV-induced NLRC5 expression and MHC-I upregulation. Increased MHC-I expression may exacerbate the RSV disease condition due to immunopathologic damage, linking the innate immune response to RSV disease.
Collapse
Affiliation(s)
- Xuancheng Guo
- State Key Laboratory of Pharmaceutical Biotechnology and School of Medicine, Nanjing University, Nanjing, Jiangsu, China Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Taixiang Liu
- Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China Jiangsu Province Blood Center, Nanjing, Jiangsu, China
| | - Hengfei Shi
- State Key Laboratory of Pharmaceutical Biotechnology and School of Medicine, Nanjing University, Nanjing, Jiangsu, China Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Jingjing Wang
- State Key Laboratory of Pharmaceutical Biotechnology and School of Medicine, Nanjing University, Nanjing, Jiangsu, China College of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Ji
- State Key Laboratory of Pharmaceutical Biotechnology and School of Medicine, Nanjing University, Nanjing, Jiangsu, China Jiangsu Province Blood Center, Nanjing, Jiangsu, China
| | - Hongwei Wang
- Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yayi Hou
- State Key Laboratory of Pharmaceutical Biotechnology and School of Medicine, Nanjing University, Nanjing, Jiangsu, China Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology and School of Medicine, Nanjing University, Nanjing, Jiangsu, China College of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Erguang Li
- State Key Laboratory of Pharmaceutical Biotechnology and School of Medicine, Nanjing University, Nanjing, Jiangsu, China Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
346
|
Eberle KC, Neill JD, Venn-Watson SK, McGill JL, Sacco RE. Novel Atlantic bottlenose dolphin parainfluenza virus TtPIV-1 clusters with bovine PIV-3 genotype B strains. Virus Genes 2015; 51:198-208. [PMID: 26174699 DOI: 10.1007/s11262-015-1224-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/30/2015] [Indexed: 01/02/2023]
Abstract
Parainfluenza virus 3 (PIV-3) is a common viral infection not only in humans, but also in many other species. Serological evidence suggests that nearly 100 % of children in the United States have been infected with PIV-3 by 5 years of age. Similarly, in cattle, PIV-3 is commonly associated with bovine respiratory disease complex. A novel dolphin PIV-3 (TtPIV-1) was described by Nollens et al. in 2008 from a dolphin that was diagnosed with an unknown respiratory illness. At that time, TtPIV-1 was found to be most similar to, but distinct from, bovine PIV-3 (BPIV-3). In the present study, similar viral growth kinetics and pro-inflammatory cytokine (IL-1β, IL-6, and CXCL8) production were seen between BPIV-3 and TtPIV-1 in BEAS-2B, MDBK, and Vero cell lines. Initial nomenclature of TtPIV-1 was based on partial sequence of the fusion and RNA polymerase genes. Based on the similarities we saw with the in vitro work, it was important to examine the TtPIV-1 genome in more detail. Full genome sequencing and subsequent phylogenetic analysis revealed that all six viral genes of TtPIV-1 clustered within the recently described BPIV-3 genotype B strains, and it is proposed that TtPIV-1 be re-classified with BPIV-3 genotype B strains.
Collapse
Affiliation(s)
- Kirsten C Eberle
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.,Molecular Cellular and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA.,Immunobiology Graduate Program, Iowa State University, Ames, IA, USA
| | - John D Neill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Stephanie K Venn-Watson
- Translational Medicine & Research Program, National Marine Mammal Foundation, San Diego, CA, USA
| | - Jodi L McGill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.,Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA. .,Molecular Cellular and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA. .,Immunobiology Graduate Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|
347
|
Clinical and epidemiological characteristics of acute respiratory virus infections in Vietnamese children. Epidemiol Infect 2015; 144:527-36. [PMID: 26145204 DOI: 10.1017/s095026881500134x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Information about viral acute respiratory infections (ARIs) is essential for prevention, diagnosis and treatment, but it is limited in tropical developing countries. This study described the clinical and epidemiological characteristics of ARIs in children hospitalized in Vietnam. Nasopharyngeal samples were collected from children with ARIs at Ho Chi Minh City Children's Hospital 2 between April 2010 and May 2011 in order to detect respiratory viruses by polymerase chain reaction. Viruses were found in 64% of 1082 patients, with 12% being co-infections. The leading detected viruses were human rhinovirus (HRV; 30%), respiratory syncytial virus (RSV; 23·8%), and human bocavirus (HBoV; 7·2%). HRV was detected all year round, while RSV epidemics occurred mainly in the rainy season. Influenza A (FluA) was found in both seasons. The other viruses were predominant in the dry season. HRV was identified in children of all age groups. RSV, parainfluenza virus (PIV) 1, PIV3 and HBoV, and FluA were detected predominantly in children aged 24 months, respectively. Significant associations were found between PIV1 with croup (P < 0·005) and RSV with bronchiolitis (P < 0·005). HBoV and HRV were associated with hypoxia (P < 0·05) and RSV with retraction (P < 0·05). HRV, RSV, and HBoV were detected most frequently and they may increase the severity of ARIs in children.
Collapse
|
348
|
|
349
|
Madhi SA, Govender N, Dayal K, Devadiga R, Van Dyke MK, van Niekerk N, Cutland CL, Adrian PV, Nunes MC. Bacterial and Respiratory Viral Interactions in the Etiology of Acute Otitis Media in HIV-infected and HIV-uninfected South African Children. Pediatr Infect Dis J 2015; 34:753-60. [PMID: 25923426 PMCID: PMC4463031 DOI: 10.1097/inf.0000000000000733] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Bacteria and respiratory viruses are implicated in the pathogenesis of acute otitis media (AOM); however, data from low-middle income countries are sparse. We investigated the etiology of AOM in HIV-infected (HIV+), HIV-uninfected (HIV-) and HIV-exposed clinically asymptomatic for HIV-infection (HEU) South African children. METHODS Children ≥3 months to <5 years of age with AOM were enrolled between May 2009 and April 2010 (NCT01031082). Middle ear fluid samples were cultured for bacteria; antibacterial susceptibility was done and serotyping undertaken for Streptococcus pneumoniae and Haemophilus influenzae. Nasopharyngeal aspirates were analyzed for respiratory viruses using immunofluorescence assay and polymerase chain reaction. RESULTS Of 260 AOM episodes (HIV+:15; HIV-:182; HEU:63), bacteria were found in 54.6%, including Haemophilus influenzae (30.8%), 98.8% of which were nontypeable, and Streptococcus pneumoniae (20.4%), Staphylococcus aureus (15.8%), Moraxella catarrhalis (5.0%) and Streptococcus pyogenes (1.5%). Nonsusceptibility of Streptococcus pneumoniae to penicillin was 64.2%. Respiratory viruses were detected in 74.2% of cases. Human rhinovirus was most frequently detected (37.7%), followed by adenovirus (14.2%) and human bocavirus (11.5%) overall and irrespective of HIV status. Respiratory viruses were identified concurrently with S. pneumoniae, H. influenzae, M. catarrhalis (76.9-78.8%) and Staphylococcus aureus (63.4%) cultured from middle ear fluid, as well as in 72.0% of episodes negative for any bacteria. CONCLUSION The study suggests that respiratory viruses and pathogenic bacteria play an important role in the development of AOM in children. A similar spectrum of pathogens was observed independently of HIV status. Vaccines targeting both nontypeable Haemophilus influenzae and S. pneumoniae may have a broad impact on AOM in South Africa.
Collapse
Affiliation(s)
- Shabir A. Madhi
- From the Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Department of Science and Technology National Research Foundation, Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases, A division of National Health Laboratory Services, Sandringham, Gauteng, South Africa; Department of Ear, Nose and Throat Surgery, Chris Hani-Baragwanath Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; GlaxoSmithKline Pharmaceuticals Ltd., Bangalore, India; and GlaxoSmithKline Vaccines, Wavre, Belgium
| | - Niresha Govender
- From the Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Department of Science and Technology National Research Foundation, Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases, A division of National Health Laboratory Services, Sandringham, Gauteng, South Africa; Department of Ear, Nose and Throat Surgery, Chris Hani-Baragwanath Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; GlaxoSmithKline Pharmaceuticals Ltd., Bangalore, India; and GlaxoSmithKline Vaccines, Wavre, Belgium
| | - Kishen Dayal
- From the Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Department of Science and Technology National Research Foundation, Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases, A division of National Health Laboratory Services, Sandringham, Gauteng, South Africa; Department of Ear, Nose and Throat Surgery, Chris Hani-Baragwanath Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; GlaxoSmithKline Pharmaceuticals Ltd., Bangalore, India; and GlaxoSmithKline Vaccines, Wavre, Belgium
| | - Raghavendra Devadiga
- From the Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Department of Science and Technology National Research Foundation, Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases, A division of National Health Laboratory Services, Sandringham, Gauteng, South Africa; Department of Ear, Nose and Throat Surgery, Chris Hani-Baragwanath Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; GlaxoSmithKline Pharmaceuticals Ltd., Bangalore, India; and GlaxoSmithKline Vaccines, Wavre, Belgium
| | - Melissa K. Van Dyke
- From the Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Department of Science and Technology National Research Foundation, Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases, A division of National Health Laboratory Services, Sandringham, Gauteng, South Africa; Department of Ear, Nose and Throat Surgery, Chris Hani-Baragwanath Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; GlaxoSmithKline Pharmaceuticals Ltd., Bangalore, India; and GlaxoSmithKline Vaccines, Wavre, Belgium
| | - Nadia van Niekerk
- From the Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Department of Science and Technology National Research Foundation, Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases, A division of National Health Laboratory Services, Sandringham, Gauteng, South Africa; Department of Ear, Nose and Throat Surgery, Chris Hani-Baragwanath Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; GlaxoSmithKline Pharmaceuticals Ltd., Bangalore, India; and GlaxoSmithKline Vaccines, Wavre, Belgium
| | - Clare Louise Cutland
- From the Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Department of Science and Technology National Research Foundation, Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases, A division of National Health Laboratory Services, Sandringham, Gauteng, South Africa; Department of Ear, Nose and Throat Surgery, Chris Hani-Baragwanath Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; GlaxoSmithKline Pharmaceuticals Ltd., Bangalore, India; and GlaxoSmithKline Vaccines, Wavre, Belgium
| | - Peter V. Adrian
- From the Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Department of Science and Technology National Research Foundation, Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases, A division of National Health Laboratory Services, Sandringham, Gauteng, South Africa; Department of Ear, Nose and Throat Surgery, Chris Hani-Baragwanath Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; GlaxoSmithKline Pharmaceuticals Ltd., Bangalore, India; and GlaxoSmithKline Vaccines, Wavre, Belgium
| | - Marta C. Nunes
- From the Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Department of Science and Technology National Research Foundation, Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases, A division of National Health Laboratory Services, Sandringham, Gauteng, South Africa; Department of Ear, Nose and Throat Surgery, Chris Hani-Baragwanath Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; GlaxoSmithKline Pharmaceuticals Ltd., Bangalore, India; and GlaxoSmithKline Vaccines, Wavre, Belgium
| |
Collapse
|
350
|
Ramos M, Lao Y, Eguiluz C, Del Val M, Martínez I. Urokinase receptor-deficient mice mount an innate immune response to and clarify respiratory viruses as efficiently as wild-type mice. Virulence 2015; 6:710-5. [PMID: 26115163 DOI: 10.1080/21505594.2015.1057389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The plasminogen activator receptor (uPAR) is required for lung infiltration by innate immune cells in respiratory bacterial infections. In order to verify if this held true for respiratory viruses, wild type (WT) and uPAR knockout (uPAR(-/-)) mice were inoculated intranasally with the human respiratory syncytial virus (HRSV) and the influenza A virus. At several days post-infection (dpi), viral titers in the lungs were determined while cell infiltrates in the bronchoalveolar lavage (BAL) were analyzed by flow cytometry. In the case of influenza A, body weight loss and mortality were also monitored. Only minor differences were observed between infected WT and uPAR(-/-) mice, primarily in influenza virus replication and pathology. These results indicate that uPAR does not play a major role in limiting virus replication or in orchestrating the innate immune response against HRSV or influenza infections in mice. This suggests that there are fundamental differences in the immune control of the viral infections studied here and those caused by bacteria.
Collapse
Affiliation(s)
- Manuel Ramos
- a Unidad de Inmunología Viral; Centro Nacional de Microbiología; Instituto de Salud Carlos III ; Madrid , Spain
| | - Yolanda Lao
- a Unidad de Inmunología Viral; Centro Nacional de Microbiología; Instituto de Salud Carlos III ; Madrid , Spain
| | - César Eguiluz
- b Unidad de Veterinaria; Instituto de Salud Carlos III ; Madrid , Spain
| | - Margarita Del Val
- c Centro de Biología Molecular Severo Ochoa; CSIC/Universidad Autónoma de Madrid ; Madrid , Spain
| | - Isidoro Martínez
- d Unidad de Infección Viral e Inmunidad; Centro Nacional de Microbiología; Instituto de Salud Carlos III ; Madrid , Spain.,e Centro de Investigación Biomédica en Red. Enfermedades Respiratorias; Instituto de Salud Carlos III ; Madrid , Spain
| |
Collapse
|