301
|
Barbato G, Bianchi E, Ingallinella P, Hurni WH, Miller MD, Ciliberto G, Cortese R, Bazzo R, Shiver JW, Pessi A. Structural analysis of the epitope of the anti-HIV antibody 2F5 sheds light into its mechanism of neutralization and HIV fusion. J Mol Biol 2003; 330:1101-15. [PMID: 12860131 DOI: 10.1016/s0022-2836(03)00611-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inhibition of human immunodeficiency virus (HIV) fusion with the host cell has emerged as a viable therapeutic strategy, and rational design of inhibitors and vaccines, interfering with this process, is a prime target for antiviral research. To advance our knowledge of the structural biology of HIV fusion, we have studied the membrane-proximal region of the fusogenic envelope subunit gp41, which includes the epitope ELDKWA of the broadly neutralizing human antibody 2F5. The structural evidence available for this region is contradictory, with some studies suggesting an overall helical conformation, while the X-ray structure of the ELDKWAS peptide bound to the antibody shows it folded in a type I beta turn. We used a two-step strategy: Firstly, by a competition binding assay, we identified the proper boundaries of the domain recognized by 2F5, which we found considerably larger than the ELDKWAS hexapeptide. Secondly, we studied the structure of the resulting 13 amino acid residue peptide by collecting NMR data and analyzing them by our previously developed statistical method (NAMFIS). Our study revealed that the increase in binding affinity goes in parallel with stabilization of specific local and global conformational propensities, absent from the shorter epitope. When compounded with the available biological evidence, our structural analysis allows us to propose a specific role for the membrane-proximal region during HIV fusion, in terms of a conformational transition between the turn and the helical structure. At the same time, our hypothesis offers a structural explanation for the mechanism of neutralization of mAb 2F5.
Collapse
Affiliation(s)
- Gaetano Barbato
- Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Via Pontina Km 30.600, 00040 Pomezia, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Peisajovich SG, Shai Y. Viral fusion proteins: multiple regions contribute to membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:122-9. [PMID: 12873773 DOI: 10.1016/s0005-2736(03)00170-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In recent years, the simple picture of a viral fusion protein interacting with the cell and/or viral membranes by means of only two localized segments (i.e. the fusion peptide and the transmembrane domain) has given way to a more complex picture in which multiple regions from the viral proteins interact with membranes. Indeed, possible roles in membrane binding and/or destabilization have been postulated for the N-terminal heptad repeats, pre-transmembrane segments, and other internal regions of fusion proteins from distant viruses (such as orthomyxo-, retro-, paramyxo-, or flaviviruses). This review focuses on the experimental evidence and functional models postulated so far about the role of these regions in the process of virus-induced membrane fusion.
Collapse
Affiliation(s)
- Sergio G Peisajovich
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | | |
Collapse
|
303
|
Gallo SA, Finnegan CM, Viard M, Raviv Y, Dimitrov A, Rawat SS, Puri A, Durell S, Blumenthal R. The HIV Env-mediated fusion reaction. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:36-50. [PMID: 12873764 DOI: 10.1016/s0005-2736(03)00161-5] [Citation(s) in RCA: 305] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The current general model of HIV viral entry involves the binding of the trimeric viral envelope glycoprotein gp120/gp41 to cell surface receptor CD4 and chemokine co-receptor CXCR4 or CCR5, which triggers conformational changes in the envelope proteins. Gp120 then dissociates from gp41, allowing for the fusion peptide to be inserted into the target membrane and the pre-hairpin configuration of the ectodomain to form. The C-terminal heptad repeat region and the leucine/isoleucine zipper region then form the thermostable six-helix coiled-coil, which drives the membrane merger and eventual fusion. This model needs updating, as there has been a wealth of data produced in the last few years concerning HIV entry, including target cell dependencies, fusion kinetic data, and conformational intermediates. A more complete model must include the involvement of membrane microdomains, actin polymerization, glycosphingolipids, and possibly CD4 and chemokine signaling in entry. In addition, kinetic experiments involving the addition of fusion inhibitors have revealed some of the rate-limiting steps in this process, adding a temporal component to the model. A review of these data that may require an updated version of the original model is presented here.
Collapse
Affiliation(s)
- Stephen A Gallo
- Laboratory of Experimental and Computational Biology, Center for Cancer Research, NCI-Frederick, National Institute of Health, Miller Drive, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Zheng YH, Plemenitas A, Fielding CJ, Peterlin BM. Nef increases the synthesis of and transports cholesterol to lipid rafts and HIV-1 progeny virions. Proc Natl Acad Sci U S A 2003; 100:8460-5. [PMID: 12824470 PMCID: PMC166251 DOI: 10.1073/pnas.1437453100] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2002] [Accepted: 05/22/2003] [Indexed: 11/18/2022] Open
Abstract
HIV buds from lipid rafts and requires cholesterol for its egress from and entry into cells. Viral accessory protein Nef plays a major role in this process. In this study, it not only increased the biosynthesis of lipid rafts and viral particles with newly synthesized cholesterol, but also enriched them. Furthermore, via the consensus cholesterol recognition motif at its C terminus, Nef bound cholesterol. When this sequence was mutated, Nef became unable to transport newly synthesized cholesterol into lipid rafts and viral particles. Interestingly, although its levels in lipid rafts were not affected, this mutant Nef protein was poorly incorporated into viral particles, and viral infectivity decreased dramatically. Thus, Nef also transports newly synthesized cholesterol to the site of viral budding. As such, it provides essential building blocks for the formation of viruses that replicate optimally in the host.
Collapse
Affiliation(s)
- Yong-Hui Zheng
- Department of Medicine, Rosalind Russell Medical Research Center, University of California, San Francisco, CA 94143-0703, USA
| | | | | | | |
Collapse
|
305
|
Kilgore NR, Salzwedel K, Reddick M, Allaway GP, Wild CT. Direct evidence that C-peptide inhibitors of human immunodeficiency virus type 1 entry bind to the gp41 N-helical domain in receptor-activated viral envelope. J Virol 2003; 77:7669-72. [PMID: 12805467 PMCID: PMC164814 DOI: 10.1128/jvi.77.13.7669-7672.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While it has been established that peptides modeling the C-helical region of human immunodeficiency virus type 1 gp41 are potent in vivo inhibitors of virus replication, their mechanism of action has yet to be determined. It has been proposed, but never directly demonstrated, that these peptides block virus entry by interacting with gp41 to disrupt the formation or function of a six-helix bundle structure. Using a six-helix bundle-specific monoclonal antibody with isolate-restricted Env reactivity, we provide the first direct evidence that, in receptor-activated viral Env, C-peptide entry inhibitors bind to the gp41 N-helical coiled-coil to form a peptide/protein hybrid structure and, in doing so, disrupt native six-helix bundle formation.
Collapse
|
306
|
Land A, Zonneveld D, Braakman I. Folding of HIV-1 envelope glycoprotein involves extensive isomerization of disulfide bonds and conformation-dependent leader peptide cleavage. FASEB J 2003; 17:1058-67. [PMID: 12773488 DOI: 10.1096/fj.02-0811com] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human immunodeficiency virus binds and enters cells via the Envelope glycoprotein gp160 at its surface. In infected cells, gp160 is found not only on the plasma membrane but also in the endoplasmic reticulum (ER). Our aim was to establish rate-determining steps in the maturation process of gp160, using a radioactive pulse-chase approach. We found that gp160 has an intricate folding process: disulfide bonds start to form during synthesis but undergo extensive isomerization until the correct native conformation is reached. Removal of the leader peptide critically depends on formation of at least some disulfide bonds in subunit gp120 during folding. Envelope folds extremely slowly and therefore resides in the ER longer than other proteins, but the yield of properly folded molecules is high and degradation is undetectable. The large quantity of gp160 in the ER hence is a result of its slow transit through this compartment. We show here that newly synthesized HIV-1 Envelope glycoprotein apparently follows a slow but high-yield folding path in which co- and post-translational formation of disulfide bonds in gp120, disulfide isomerization and conformation dependent removal of the leader sequence are determining and intertwined events.
Collapse
Affiliation(s)
- Aafke Land
- Department Bio-Organic Chemistry 1, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
307
|
Aman MJ, Bosio CM, Panchal RG, Burnett JC, Schmaljohn A, Bavari S. Molecular mechanisms of filovirus cellular trafficking. Microbes Infect 2003; 5:639-49. [PMID: 12787740 DOI: 10.1016/s1286-4579(03)00095-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The filoviruses, Ebola and Marburg, are two of the most pathogenic viruses, causing lethal hemorrhagic fever in humans. Recent discoveries suggest that filoviruses, along with other phylogenetically or functionally related viruses, utilize a complex mechanism of replication exploiting multiple cellular components including lipid rafts, endocytic compartments, and vacuolar protein sorting machinery. In this review, we summarize these recent findings and discuss the implications for vaccine and therapeutics development.
Collapse
Affiliation(s)
- M Javad Aman
- Clinical Research Management Inc., 1425 Porter Street, Frederick, MD 21702, USA.
| | | | | | | | | | | |
Collapse
|
308
|
Song C, Dubay SR, Hunter E. A tyrosine motif in the cytoplasmic domain of mason-pfizer monkey virus is essential for the incorporation of glycoprotein into virions. J Virol 2003; 77:5192-200. [PMID: 12692221 PMCID: PMC153939 DOI: 10.1128/jvi.77.9.5192-5200.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mason-Pfizer monkey virus (M-PMV) encodes a transmembrane (TM) glycoprotein with a 38-amino-acid-long cytoplasmic domain. After the release of the immature virus, a viral protease-mediated cleavage occurs within the cytoplasmic domain, resulting in the loss of 17 amino acids from the carboxy terminus. This maturational cleavage occurs between a histidine at position 21 and a tyrosine at position 22 in the cytoplasmic domain of the TM protein. We have demonstrated previously that a truncated TM glycoprotein with a 21-amino-acid-long cytoplasmic tail showed enhanced fusogenicity but could not be incorporated into virions. These results suggest that postassembly cleavage of the cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. To investigate the contribution of tyrosine residues to the function of the glycoprotein complex and virus replication, we have introduced amino acid substitutions into two tyrosine residues found in the cytoplasmic domain. The effects of these mutations on glycoprotein biosynthesis and function, as well as on virus infectivity, have been examined. Mutation of tyrosine 34 to alanine had little effect on glycoprotein function. In contrast, substitutions at tyrosine 22 modulated fusion activity in either a positive or negative manner, depending on the substituting amino acid. Moreover, any nonaromatic substitution at this position blocked glycoprotein incorporation into virions and abolished infectivity. These results demonstrate that M-PMV employs a tyrosine signal for the selective incorporation of glycoprotein into budding virions. Antibody uptake studies show that tyrosine 22 is part of an efficient internalization signal in the cytoplasmic domain of the M-PMV glycoprotein that can also be positively and negatively influenced by changes at this site.
Collapse
Affiliation(s)
- Chisu Song
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
309
|
McGaughey GB, Citron M, Danzeisen RC, Freidinger RM, Garsky VM, Hurni WM, Joyce JG, Liang X, Miller M, Shiver J, Bogusky MJ. HIV-1 vaccine development: constrained peptide immunogens show improved binding to the anti-HIV-1 gp41 MAb. Biochemistry 2003; 42:3214-23. [PMID: 12641452 DOI: 10.1021/bi026952u] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human immunodeficiency virus type I (HIV-1) transmembrane glycoprotein gp41 mediates viral entry through fusion of the target cellular and viral membranes. A segment of gp41 containing the sequence Glu-Leu-Asp-Lys-Trp-Ala has previously been identified as the epitope of the HIV-1 neutralizing human monoclonal antibody 2F5 (MAb 2F5). The 2F5 epitope is highly conserved among HIV-1 envelope glycoproteins. Antibodies directed at the 2F5 epitope have neutralizing effects on a broad range of laboratory-adapted HIV-1 variants and primary isolates. Recently, a crystal structure of the epitope bound to the Fab fragment of MAb 2F5 has shown that the 2F5 peptide adopts a beta-turn conformation [Pai, E. F., Klein, M. H., Chong, P., and Pedyczak, A. (2000) World Intellectual Property Organization Patent WO-00/61618]. We have designed cyclic peptides to adopt beta-turn conformations by the incorporation of a side-chain to side-chain lactam bridge between the i and i + 4 residues containing the Asp-Lys-Trp segment. Synthesis of extended, nonconstrained peptides encompassing the 2F5 epitope revealed that the 13 amino acid sequence, Glu-Leu-Leu-Glu-Leu-Asp-Lys-Trp-Ala-Ser-Leu-Trp-Asn, maximized MAb 2F5 binding. Constrained analogues of this sequence were explored to optimize 2F5 binding affinity. The solution conformations of the constrained peptides have been characterized by NMR spectroscopy and molecular modeling techniques. The results presented here demonstrate that both inclusion of the lactam constraint and extension of the 2F5 segment are necessary to elicit optimal antibody binding activity. The ability of these peptide immunogens to stimulate a high titer, peptide-specific immune response incapable of viral neutralization is discussed in regard to developing an HIV-1 vaccine designed to elicit a 2F5-like immune response.
Collapse
Affiliation(s)
- G B McGaughey
- Department of Molecular Systems, Merck Research Laboratories, P.O. Box 4, West Point, Pennsylvania 19486, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Giannecchini S, Di Fenza A, D'Ursi AM, Matteucci D, Rovero P, Bendinelli M. Antiviral activity and conformational features of an octapeptide derived from the membrane-proximal ectodomain of the feline immunodeficiency virus transmembrane glycoprotein. J Virol 2003; 77:3724-33. [PMID: 12610147 PMCID: PMC149492 DOI: 10.1128/jvi.77.6.3724-3733.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV) provides a valuable animal model by which criteria for lentivirus control strategies can be tested. Previous studies have shown that a 20-mer synthetic peptide of the membrane-proximal ectodomain of FIV transmembrane glycoprotein, designated peptide 59, potently inhibited the growth of tissue culture-adapted FIV in feline fibroblastoid CrFK cells. In the present report we describe the potential of this peptide to inhibit the replication of primary FIV isolates in lymphoid cells. Because antiviral activity of peptide 59 was found to map to a short segment containing three conserved Trp residues, further analyses focused on a derivative of eight amino acids ((770)W-I(777)), designated C8. Peptide C8 activity was found to be dependent on conservation of the Trp motif, to be removed from solution by FIV absorbed onto substrate cells, and to be blocked by a peptide derived from the N-terminal portion of FIV transmembrane glycoprotein. Structural studies showed that peptide C8 possesses a conformational propensity highly uncommon for peptides of its size, which may account for its considerable antiviral potency in spite of small size.
Collapse
Affiliation(s)
- Simone Giannecchini
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, I-56127 Pisa, Department of Pharmaceutical Sciences, University of Salerno, I-84084 Fisciano, Italy, Mymetics Corporation, Annapolis, Maryland
| | - Armida Di Fenza
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, I-56127 Pisa, Department of Pharmaceutical Sciences, University of Salerno, I-84084 Fisciano, Italy, Mymetics Corporation, Annapolis, Maryland
| | - Anna Maria D'Ursi
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, I-56127 Pisa, Department of Pharmaceutical Sciences, University of Salerno, I-84084 Fisciano, Italy, Mymetics Corporation, Annapolis, Maryland
| | - Donatella Matteucci
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, I-56127 Pisa, Department of Pharmaceutical Sciences, University of Salerno, I-84084 Fisciano, Italy, Mymetics Corporation, Annapolis, Maryland
| | - Paolo Rovero
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, I-56127 Pisa, Department of Pharmaceutical Sciences, University of Salerno, I-84084 Fisciano, Italy, Mymetics Corporation, Annapolis, Maryland
| | - Mauro Bendinelli
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, I-56127 Pisa, Department of Pharmaceutical Sciences, University of Salerno, I-84084 Fisciano, Italy, Mymetics Corporation, Annapolis, Maryland
- Corresponding author. Mailing address: Dipartimento di Patologia Sperimentale, Università di Pisa, Via San Zeno 37, I-56127 Pisa, Italy. Phone: 39-050-2213641. Fax: 39-050-2213639. E-mail:
| |
Collapse
|
311
|
Kalia V, Sarkar S, Gupta P, Montelaro RC. Rational site-directed mutations of the LLP-1 and LLP-2 lentivirus lytic peptide domains in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41 indicate common functions in cell-cell fusion but distinct roles in virion envelope incorporation. J Virol 2003; 77:3634-46. [PMID: 12610139 PMCID: PMC149489 DOI: 10.1128/jvi.77.6.3634-3646.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Two highly conserved cationic amphipathic alpha-helical motifs, designated lentivirus lytic peptides 1 and 2 (LLP-1 and LLP-2), have been characterized in the carboxyl terminus of the transmembrane (TM) envelope glycoprotein (Env) of lentiviruses. Although various properties have been attributed to these domains, their structural and functional significance is not clearly understood. To determine the specific contributions of the Env LLP domains to Env expression, processing, and incorporation and to viral replication and syncytium induction, site-directed LLP mutants of a primary dualtropic infectious human immunodeficiency virus type 1 (HIV-1) isolate (ME46) were examined. Substitutions were made for highly conserved arginine residues in either the LLP-1 or LLP-2 domain (MX1 or MX2, respectively) or in both domains (MX4). The HIV-1 mutants with altered LLP domains demonstrated distinct phenotypes. The LLP-1 mutants (MX1 and MX4) were replication defective and showed an average of 85% decrease in infectivity, which was associated with an evident decrease in gp41 incorporation into virions without a significant decrease in Env expression or processing in transfected 293T cells. In contrast, MX2 virus was replication competent and incorporated a full complement of Env into its virions, indicating a differential role for the LLP-1 domain in Env incorporation. Interestingly, the replication-competent MX2 virus was impaired in its ability to induce syncytia in T-cell lines. This defect in cell-cell fusion did not correlate with apparent defects in the levels of cell surface Env expression, oligomerization, or conformation. The lack of syncytium formation, however, correlated with a decrease of about 90% in MX2 Env fusogenicity compared to that of wild-type Env in quantitative luciferase-based cell-cell fusion assays. The LLP-1 mutant MX1 and MX4 Envs also exhibited an average of 80% decrease in fusogenicity. Altogether, these results demonstrate for the first time that the highly conserved LLP domains perform critical but distinct functions in Env incorporation and fusogenicity.
Collapse
Affiliation(s)
- Vandana Kalia
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
312
|
Vincent N, Genin C, Malvoisin E. Identification of a conserved domain of the HIV-1 transmembrane protein gp41 which interacts with cholesteryl groups. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1567:157-64. [PMID: 12488049 DOI: 10.1016/s0005-2736(02)00611-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A soluble form of the HIV-1 envelope glycoprotein gp160 devoid of the transmembrane anchor domain was found to bind to cholesteryl-hemisuccinate agarose. The external subunit gp120 failed to bind to the resin, suggesting that the site responsible for the binding to cholesterol was located in the transmembrane protein gp41. We constructed a series of maltose binding protein (MBP) fusion proteins representing overlapping fragments of the gp41 molecule and we studied their capacity to bind to cholesteryl beads. The domain responsible for binding to cholesterol was localised within the residues 668 to 684 immediately adjacent to the membrane spanning domain. We identified a short sequence (LWYIK, aa 678-683) comparable to the cholesterol interaction amino acid consensus pattern published by Li and Papadopoulos [Endocrinology 139 (1998) 4991]. We demonstrated that the sequence LWYIK synthesized fused to the MBP was able to bind to cholesteryl groups. A synthetic peptide containing the sequence LWYIK was found to inhibit the interaction between cholesteryl beads and MBP44, an MBP fusion HIV-1 envelope protein that contains the putative cholesterol binding domain. Human sera obtained from HIV-1 seropositive patients did not react in ELISA to the LWYIK sequence, suggesting that this region is not exposed to the immune system. The biological significance of the interaction between gp41 and cholesterol is discussed.
Collapse
Affiliation(s)
- Nadine Vincent
- Groupe Immunité des Muqueuses et Agents Pathogènes, University of Saint-Etienne, 15 rue Ambroise Paré, 42023 Saint-Etienne Cedex 02, France
| | | | | |
Collapse
|
313
|
Jeetendra E, Robison CS, Albritton LM, Whitt MA. The membrane-proximal domain of vesicular stomatitis virus G protein functions as a membrane fusion potentiator and can induce hemifusion. J Virol 2002; 76:12300-11. [PMID: 12414970 PMCID: PMC136858 DOI: 10.1128/jvi.76.23.12300-12311.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2002] [Accepted: 08/23/2002] [Indexed: 02/07/2023] Open
Abstract
Recently we showed that the membrane-proximal stem region of the vesicular stomatitis virus (VSV) G protein ectodomain (G stem [GS]), together with the transmembrane and cytoplasmic domains, was sufficient to mediate efficient VSV budding (C. S. Robison and M. A. Whitt, J. Virol. 74:2239-2246, 2000). Here, we show that GS can also potentiate the membrane fusion activity of heterologous viral fusion proteins when GS is coexpressed with those proteins. For some fusion proteins, there was as much as a 40-fold increase in syncytium formation when GS was coexpressed compared to that seen when the fusion protein was expressed alone. Fusion potentiation by GS was not protein specific, since it occurred with both pH-dependent as well as pH-independent fusion proteins. Using a recombinant vesicular stomatitis virus encoding GS that contained an N-terminal hemagglutinin (HA) tag (GS(HA) virus), we found that the GS(HA) virus bound to cells as well as the wild-type virus did at pH 7.0; however, the GS(HA) virus was noninfectious. Analysis of cells expressing GS(HA) in a three-color membrane fusion assay revealed that GS(HA) could induce lipid mixing but not cytoplasmic mixing, indicating that GS can induce hemifusion. Treatment of GS(HA) virus-bound cells with the membrane-destabilizing drug chlorpromazine rescued the hemifusion block and allowed entry and subsequent replication of GS(HA) virus, demonstrating that GS-mediated hemifusion was a functional intermediate in the membrane fusion pathway. Using a series of truncation mutants, we also determined that only 14 residues of GS, together with the VSV G transmembrane and cytoplasmic tail, were sufficient for fusion potentiation. To our knowledge, this is the first report which shows that a small domain of one viral glycoprotein can promote the fusion activity of other, unrelated viral glycoproteins.
Collapse
Affiliation(s)
- E Jeetendra
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
314
|
Joyce JG, Hurni WM, Bogusky MJ, Garsky VM, Liang X, Citron MP, Danzeisen RC, Miller MD, Shiver JW, Keller PM. Enhancement of alpha -helicity in the HIV-1 inhibitory peptide DP178 leads to an increased affinity for human monoclonal antibody 2F5 but does not elicit neutralizing responses in vitro. Implications for vaccine design. J Biol Chem 2002; 277:45811-20. [PMID: 12237296 DOI: 10.1074/jbc.m205862200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synthetic peptide DP178, derived from the carboxyl-terminal heptad repeat region of human immunodeficiency virus type 1 GP41 protein is a potent inhibitor of viral-mediated fusion and contains the sequence ELDKWA, which constitutes the recognition epitope for the broadly neutralizing human monoclonal antibody 2F5. Efforts at eliciting a 2F5-like immune response by immunization with peptides or fusion proteins containing this sequence have not met with success, possibly because of incorrect structural presentation of the epitope. Although the structure of the carboxyl-terminal heptad repeat on the virion is not known, several recent reports have suggested a propensity for alpha-helical conformation. We have examined DP178 in the context of a model for optimized alpha-helices and show that the native sequence conforms poorly to the model. Solution conformation of DP178 was studied by circular dichroism and NMR spectroscopy and found to be predominantly random, consistent with previous reports. NMR mapping was used to show that the low percentage of alpha-helix present was localized to residues Glu(662) through Asn(671), a region encompassing the 2F5 epitope. Using NH(2)-terminal extensions derived from either GP41 or the yeast GCN4 leucine zipper dimerization domain, we designed peptide analogs in which the average helicity is significantly increased compared with DP178 and show that these peptides exhibit both a modest increase in affinity for 2F5 using a novel competitive solution-based binding assay and an increased ability to inhibit viral entry in a single-cycle infectivity model. Selected peptides were conjugated to carrier protein and used for guinea pig immunizations. High peptide-specific titers were achieved using these immunogens, but the resulting sera were incapable of viral neutralization. We discuss these findings in terms of structural and immunological considerations as to the utility of a 2F5-like response.
Collapse
Affiliation(s)
- Joseph G Joyce
- Department of Virus and Cell Biology, Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Johnston ER, Albritton LM, Radke K. Envelope proteins containing single amino acid substitutions support a structural model of the receptor-binding domain of bovine leukemia virus surface protein. J Virol 2002; 76:10861-72. [PMID: 12368329 PMCID: PMC136609 DOI: 10.1128/jvi.76.21.10861-10872.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Functional domains of the strikingly conserved envelope (Env) glycoproteins of bovine leukemia virus (BLV) and its close relative, human T-cell leukemia virus type 1 (HTLV-1), are still being defined. We have used BLV Env protein variants to gain insights into the structure and function of this important determinant of viral infectivity. Each of 23 different single amino acid variants found in cDNA clones of env transcripts present after short-term culture of peripheral blood mononuclear cells from BLV-infected sheep was expressed in COS-1 cells and tested for the ability to mediate cell fusion and to be cleaved to surface (SU) and transmembrane (TM) protein subunits. Of 11 Env variants that failed to induce syncytia or did so poorly, 7 contained changes in amino acids identical or chemically conserved in the HTLV-1 Env protein. These seven included the four variants that showed aberrant proteolytic cleavage and poor cell surface expression, underscoring their importance for Env structure. Ten of 12 variants that retained wild-type syncytium-inducing ability clustered in the N-terminal half of BLV SU, which forms the putative receptor-binding domain (RBD). Several variants in the RBD showed evidence of subtle misfolding, as judged by reduced binding to monoclonal antibodies recognizing conformational epitopes F, G, and H formed by the N terminus of SU. We modeled the BLV RBD by aligning putative structural elements with known elements of the ecotropic Friend murine leukemia virus RBD monomer. All the variant RBD residues but one are exposed on the surface of this BLV model. These variants as well as function-altering, antibody-reactive residues defined by other investigators group on one face of the molecular model. They are strikingly absent from the opposite face, implying that it is likely to face inward in Env complexes. This surface might interact with the C-terminal domain of SU or with an adjacent monomer in the Env oligomer. This location suggests an orientation for the monomer of ecotropic Friend murine leukemia virus RBD.
Collapse
Affiliation(s)
- Elizabeth R Johnston
- Department of Animal Science and Graduate Group in Biochemistry and Molecular Biology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
316
|
Biron Z, Khare S, Samson AO, Hayek Y, Naider F, Anglister J. A monomeric 3(10)-helix is formed in water by a 13-residue peptide representing the neutralizing determinant of HIV-1 on gp41. Biochemistry 2002; 41:12687-96. [PMID: 12379111 DOI: 10.1021/bi026261y] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The peptide gp41(659-671) (ELLELDKWASLWN) comprises the entire epitope for one of the three known antibodies capable of neutralizing a broad spectrum of primary HIV-1 isolates and is the only such epitope that is sequential. Here we present the NMR structure of gp41(659-671) in water. This peptide forms a monomeric 3(10)-helix stabilized by i,i+3 side chain-side chain interactions favored by its primary sequence. In this conformation the peptide presents an exposed surface, which is mostly hydrophobic and consists of conserved HIV-1 residues. The presence of the 3(10)-helix is confirmed by its characteristic CD pattern. Studies of the 3(10)-helix have been hampered by the absence of a model peptide adopting this conformation. gp41(659-671) can serve as such a model to investigate the spectral characteristics of the 3(10)-helix, the factors that influence its stability, and the propensity of different amino acids to form a 3(10)-helix. The observation that the 3(10)-helical conformation is highly populated in the peptide gp41(659-671) indicates that the corresponding segment in the cognate protein is an autonomous folding unit. As such, it is very likely that the helical conformation is maintained in gp41 throughout the different tertiary structures of the envelope protein that form during the process of viral fusion. However, the exposure of the gp41(659-671) segment may vary, leading to changes in the reactivity of anti-gp41 antibodies in the different stages of viral fusion. Since gp41(659-671) is an autonomous folding unit, peptide immunogens consisting of the complete gp41(659-671) sequence are likely to induce antibodies highly cross-reactive with HIV-1.
Collapse
Affiliation(s)
- Zohar Biron
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
317
|
Alfsen A, Bomsel M. HIV-1 gp41 envelope residues 650-685 exposed on native virus act as a lectin to bind epithelial cell galactosyl ceramide. J Biol Chem 2002; 277:25649-59. [PMID: 11940580 DOI: 10.1074/jbc.m200554200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The initial step in the interaction between human immunodeficiency virus (HIV-1) and epithelial cells is the binding of HIV-1 envelope glycoproteins to the epithelial cell galactosyl ceramide (GalCer). Here we show that HIV-1 envelope gp41 residues 650-685 bind GalCer in a galactose-specific manner. The gp41 residues that display this lectin activity are highly conserved among HIV-1 isolates and constitute three regions: residues 650-661, which encompass a charged helix; residues 662-667, referred to as the conserved epitope ELDKWA, the epitope recognized by antibodies that neutralize HIV-1 entry in epithelial and CD4(+)-mononucleated cells; and residues 668-685, a hydrophobic Trp-rich sequence that stabilizes the structure of the galactose binding site. Similar to other galactose-specific lectins, the gp41 lectin site is active only as an oligomer. Finally the orientation of the galactose toward the gp41 lectin site appears to be controlled by the lipid microenvironment of the epithelial membrane. From the experimental data we construct a theoretical model of the interaction between gp41 and GalCer based on thermodynamic considerations. This model integrates the dynamics and the spatial organization of the viral envelope glycoproteins, GalCer organized in raft microdomains in the apical region of the epithelial cell membrane and the interfacial water. Characterization of the minimal sequence and structure of gp41 in direct interaction with GalCer may help unravel the still unknown immunogenic determinant able to elicit antibodies against ELDKWA and target of one of the rare neutralizing antibodies against gp41.
Collapse
Affiliation(s)
- Annette Alfsen
- Entrée Muqueuse du VIH et Immunité Muqueuse, Departement de Biologie Cellulaire, Institut Cochin, 22 rue Mechain, 75014 Paris, France
| | | |
Collapse
|
318
|
Follis KE, Larson SJ, Lu M, Nunberg JH. Genetic evidence that interhelical packing interactions in the gp41 core are critical for transition of the human immunodeficiency virus type 1 envelope glycoprotein to the fusion-active state. J Virol 2002; 76:7356-62. [PMID: 12072535 PMCID: PMC136323 DOI: 10.1128/jvi.76.14.7356-7362.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2002] [Accepted: 04/23/2002] [Indexed: 11/20/2022] Open
Abstract
The envelope glycoprotein complex (gp120-gp41) of human immunodeficiency virus type 1 (HIV-1) promotes the fusion of viral and cellular membranes through formation of the fusion-active six-helix bundle in the gp41 ectodomain. This gp41 core structure consists of three C-terminal helices packed in an antiparallel manner into hydrophobic grooves on the surface of the N-terminal trimeric coiled coil. Alanine mutations that destabilize the N- and C-terminal interhelical packing interactions also reduce viral infectivity. Here we show that viruses bearing these mutations exhibit a marked potentiation of inhibition by peptides that make up the gp41 core. By contrast, these viruses are unchanged in their sensitivities to soluble CD4, the CXCR4 coreceptor ligand SDF-1alpha, and human anti-HIV immunoglobulin, reagents that impact the initial, receptor-induced conformational changes in the envelope glycoprotein. Our results support the notion that these alanine mutations specifically affect the conformational transition to the fusion-active gp41 structure. The mutations also increase viral sensitivity to the gp41-directed monoclonal antibody 2F5, suggesting that this broadly neutralizing antibody may also interfere with this transition. The conformational activation of the HIV-1 envelope glycoprotein likely represents a viable target for vaccine and antiviral drug development.
Collapse
Affiliation(s)
- Kathryn E Follis
- Montana Biotechnology Center, The University of Montana, Missoula, Montana 59812, USA
| | | | | | | |
Collapse
|
319
|
Sáez-Cirión A, Nir S, Lorizate M, Agirre A, Cruz A, Pérez-Gil J, Nieva JL. Sphingomyelin and cholesterol promote HIV-1 gp41 pretransmembrane sequence surface aggregation and membrane restructuring. J Biol Chem 2002; 277:21776-85. [PMID: 11929877 DOI: 10.1074/jbc.m202255200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interfacial sequence DKWASLWNWFNITNWLWYIK, preceding the transmembrane anchor of gp41 glycoprotein subunit, has been shown to be essential for fusion activity and incorporation into virions. HIV(c), a peptide representing this region, formed lytic pores in liposomes composed of the main lipids occurring in the human immunodeficiency virus, type 1 (HIV-1), envelope, i.e. 1-palmitoyl-2-oleoylphosphatidylcholine (POPC):sphingomyelin (SPM):cholesterol (Chol) (1:1:1 mole ratio), at low (>1:10,000) peptide-to-lipid mole ratio, and promoted the mixing of vesicular lipids at >1:1000 peptide-to-lipid mole ratios. Inclusion of SPM or Chol in POPC membranes had different effects. Whereas SPM sustained pore formation, Chol promoted fusion activity. Even if partitioning into membranes was not affected in the absence of both SPM and Chol, HIV(c) had virtually no effect on POPC vesicles. Conditions described to disturb occurrence of lateral separation of phases in these systems reproduced the high peptide-dose requirements for leakage as found in pure POPC vesicles and inhibited fusion. Surface aggregation assays using rhodamine-labeled peptides demonstrated that SPM and Chol promoted HIV(c) self-aggregation in membranes. Employing head-group fluorescent phospholipid analogs in planar supported lipid layers, we were able to discern HIV(c) clusters associated to ordered domains. Our results support the notion that the pretransmembrane sequence may participate in the clustering of gp41 monomers within the HIV-1 envelope, and in bilayer architecture destabilization at the loci of fusion.
Collapse
Affiliation(s)
- Asier Sáez-Cirión
- Unidad de Biofísica (Centro Superior de Investigaciones Cientificas-Universidad del País Vasco) and Departamento de Bioquímica, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
320
|
Tian Y, Ramesh CV, Ma X, Naqvi S, Patel T, Cenizal T, Tiscione M, Diaz K, Crea T, Arnold E, Arnold GF, Taylor JW. Structure-affinity relationships in the gp41 ELDKWA epitope for the HIV-1 neutralizing monoclonal antibody 2F5: effects of side-chain and backbone modifications and conformational constraints. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2002; 59:264-76. [PMID: 12010517 DOI: 10.1034/j.1399-3011.2002.02988.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The human monoclonal antibody, mAb 2F5, has broad HIV-1 neutralizing activity and binds a conserved linear epitope within the envelope glycoprotein gp41 having a core recognition sequence ELDKWA. In this study, the structural requirements of this epitope for high-affinity binding to mAb 2F5 were explored using peptide synthesis and competitive enzyme-linked immunosorbant assay (ELISA). Expansion of the minimal epitope to an end-capped, linear nonapeptide, Ac-LELDKWASL-amide, was sufficient to attain maximal affinity within the set of native gp41-sequence peptides assayed. Scanning single-residue alanine and d-residue substitutions then confirmed the essential recognition requirements of 2F5 for the central DKW sequence, and also established the importance of the terminal leucine residues in determining high-affinity binding of the linear nonapeptide. Further studies of side-chain and backbone-modified analogs revealed a high degree of structural specificity for the DK sequence in particular, and delineated the steric requirements of the Leu(3) and Trp(6) residues. The nine-residue 2F5 epitope, flanked by pairs of serine residues, retained a high affinity for 2F5 when it was conformationally constrained as a 15-residue, disulfide-bridged loop. However, analogs with smaller or larger loop sizes resulted in lower 2F5 affinities. The conformational effects of the gp41 C-peptide helix immediately adjacent to the N-terminal end of the ELDKWA epitope were examined through the synthesis of helix-initiated analogs. Circular dichroism (CD) studies indicated that the alpha-helical conformation was propagated efficiently into the LELDKWASL epitope, but without any significant effect on its affinity for 2F5. This study should guide the design of a second generation of conformationally constrained ELDKWA analogs that might elicit an immune response that mimics the HIV-neutralizing actions of 2F5.
Collapse
Affiliation(s)
- Y Tian
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, USA; also Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Peisajovich SG, Shai Y. High similarity between reverse-oriented sequences from HIV and foamy virus envelope glycoproteins. AIDS Res Hum Retroviruses 2002; 18:309-12. [PMID: 11860678 DOI: 10.1089/088922202753472883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
322
|
Johnson WE, Morgan J, Reitter J, Puffer BA, Czajak S, Doms RW, Desrosiers RC. A replication-competent, neutralization-sensitive variant of simian immunodeficiency virus lacking 100 amino acids of envelope. J Virol 2002; 76:2075-86. [PMID: 11836385 PMCID: PMC135934 DOI: 10.1128/jvi.76.5.2075-2086.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coding sequences for the first two variable loops of the gp120 envelope glycoprotein were removed from simian immunodeficiency virus (SIV) strain 239 (SIVmac239). This deletion encompassed 100 amino acids. The resulting virus replicated poorly after transfection into immortalized T-cell lines, with peak replication occurring only after 25 to 30 days. Limited passaging of SIVmac239DeltaV1V2 in cultures gave rise to a variant which had significantly improved replication kinetics but which retained the original 100-amino-acid deletion in gp120. Cloning and sequencing revealed 11 changes in the envelope, including amino acid substitutions in both gp120 (5 substitutions) and gp41(6 substitutions). Four of the five changes in gp120 are predicted to lie within and around the putative coreceptor binding domain, a region which is believed to be covered by the V1 and V2 loops in the native envelope complex. Analysis of recombinant clones surprisingly revealed that the changes in gp41 were sufficient to overcome the replication deficiency created by deletion of the V1 and V2 loops from gp120. The SIVmac239DeltaV1V2 envelope displayed a significant reduction in its ability to mediate cell-cell fusion, and the infectious titer of SIVmac239DeltaV1V2 was approximately four- to eightfold lower than that of parental SIVmac239. Although SIVmac239 is strongly dependent on both CD4 and a coreceptor for entry, envelope protein lacking the V1 and V2 loops was able to mediate fusion with CD4(-) CCR5(+) cells at 60% the level observed with CD4(+) CCR5(+) cells. Plasma from SIVmac239-infected monkeys was at least 100 to 1,000 times more effective at neutralizing SIVmac239DeltaV1V2 than SIVmac239. These results demonstrate the dispensability of the V1-V2 sequences of SIVmac239 for viral replication, a role for V1 and V2 in shielding the coreceptor binding region of the envelope, and the extreme sensitivity of a SIV lacking these sequences to antibody-mediated neutralization.
Collapse
Affiliation(s)
- Welkin E Johnson
- Department of Microbiology and Molecular Genetics, New England Regional Primate Research Center, One Pine Hill Drive, Box 9102, Southborough, MA 01772-9102, USA
| | | | | | | | | | | | | |
Collapse
|
323
|
Parker CE, Deterding LJ, Hager-Braun C, Binley JM, Schülke N, Katinger H, Moore JP, Tomer KB. Fine definition of the epitope on the gp41 glycoprotein of human immunodeficiency virus type 1 for the neutralizing monoclonal antibody 2F5. J Virol 2001; 75:10906-11. [PMID: 11602730 PMCID: PMC114670 DOI: 10.1128/jvi.75.22.10906-10911.2001] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2001] [Accepted: 08/13/2001] [Indexed: 11/20/2022] Open
Abstract
Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), in combination with proteolytic protection assays, has been used to identify the functional epitope on human immunodeficiency virus envelope glycoprotein gp41 for the broadly neutralizing anti-gp41 human monoclonal antibody 2F5. In this protection assay-based procedure, a soluble gp140 protein with a stabilizing intermolecular disulfide bond between the gp120 and gp41 subunits (SOS gp140) was affinity bound to immobilized 2F5 under physiological conditions. A combination of proteolytic enzymatic cleavages was then performed to remove unprotected residues. Residues of SOS gp140 protected by their binding to 2F5 were then identified based on their molecular weights as determined by direct MALDI-MS of the immobilized antibody beads. The epitope, NEQELLELDKWASLWN, determined by this MALDI-MS protection assay approach consists of 16 amino acid residues near the C terminus of gp41. It is significantly longer than the ELDKWA core epitope previously determined for 2F5 by peptide enzyme-linked immunosorbent assay. This new knowledge of the structure of the 2F5 epitope may facilitate the design of vaccine antigens intended to induce antibodies with the breadth and potency of action of the 2F5 monoclonal antibody.
Collapse
Affiliation(s)
- C E Parker
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
324
|
Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, Binley JM, Moore JP, Stiegler G, Katinger H, Burton DR, Parren PW. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol 2001; 75:10892-905. [PMID: 11602729 PMCID: PMC114669 DOI: 10.1128/jvi.75.22.10892-10905.2001] [Citation(s) in RCA: 642] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2001] [Accepted: 07/30/2001] [Indexed: 11/20/2022] Open
Abstract
The identification and epitope mapping of broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) antibodies (Abs) is important for vaccine design, but, despite much effort, very few such Abs have been forthcoming. Only one broadly neutralizing anti-gp41 monoclonal Ab (MAb), 2F5, has been described. Here we report on two MAbs that recognize a region immediately C-terminal of the 2F5 epitope. Both MAbs were generated from HIV-1-seropositive donors, one (Z13) from an antibody phage display library, and one (4E10) as a hybridoma. Both MAbs recognize a predominantly linear and relatively conserved epitope, compete with each other for binding to synthetic peptide derived from gp41, and bind to HIV-1(MN) virions. By flow cytometry, these MAbs appear to bind relatively weakly to infected cells and this binding is not perturbed by pretreatment of the infected cells with soluble CD4. Despite the apparent linear nature of the epitopes of Z13 and 4E10, denaturation of recombinant envelope protein reduces the binding of these MAbs, suggesting some conformational requirements for full epitope expression. Most significantly, Z13 and 4E10 are able to neutralize selected primary isolates from diverse subtypes of HIV-1 (e.g., subtypes B, C, and E). The results suggest that a rather extensive region of gp41 close to the transmembrane domain is accessible to neutralizing Abs and could form a useful target for vaccine design.
Collapse
Affiliation(s)
- M B Zwick
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Schibli DJ, Montelaro RC, Vogel HJ. The membrane-proximal tryptophan-rich region of the HIV glycoprotein, gp41, forms a well-defined helix in dodecylphosphocholine micelles. Biochemistry 2001; 40:9570-8. [PMID: 11583156 DOI: 10.1021/bi010640u] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The membrane-proximal tryptophan-rich region of the HIV transmembrane glycoprotein, gp41, plays an important role in the membrane fusion reaction. Using NMR spectroscopy, we have studied the tertiary structure of a synthetic 19-residue amidated peptide (NH2-KWASLWNWFNITNWLWYIK-CONH2) corresponding to this region in membrane-mimetic environments. Initial experiments in sodium dodecyl sulfate/H2O micelles and trifluoroethanol gave poor results, because of low solubility. However, in dodecylphosphocholine micelles, we obtained excellent 500 and 800 MHz NMR spectra, suggesting that the peptide has a preference for a zwitterionic membrane-like environment. The final NMR structures demonstrated a well-defined helical peptide with a backbone rmsd of 0.47 +/- 0.18 A. Four of the five tryptophan residues, as well as the tyrosine residue, formed a "collar" of aromatic residues along the axial length of the helix. By analogy to related tryptophan-rich antimicrobial peptides, the structure indicates that the aromatic residues of the HIV peptide are positioned within the membrane-water interface of a phospholipid bilayer. This is confirmed by the observation of direct NOEs between the aromatic residues of the peptide to the headgroup and interfacial protons of prototonated dodecylphosphocholine. The bulk of the polar residues are positioned on one face of this structure, with the hydrophobic phenylalanine side chain on the opposing face, forming an amphipathic structure. This work shows that the Trp-rich membrane-proximal region of HIV and related viruses can bind to the surfaces of zwitterioninc membranes in a "Velcro-like" manner.
Collapse
Affiliation(s)
- D J Schibli
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
326
|
Alfsen A, Iniguez P, Bouguyon E, Bomsel M. Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6257-65. [PMID: 11342649 DOI: 10.4049/jimmunol.166.10.6257] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
As one of the initial mucosal transmission pathways of HIV (HIV-1), epithelial cells translocate HIV-1 from apical to basolateral surface by nondegradative transcytosis. Transcytosis is initiated when HIV-1 envelope glycoproteins bind to the epithelial cell membrane. Here we show that the transmembrane gp41 subunit of the viral envelope binds to the epithelial glycosphingolipid galactosyl ceramide (Gal Cer), an alternative receptor for HIV-1, at a site involving the conserved ELDKWA epitope. Disrupting the raft organization of the Gal Cer-containing microdomains at the apical surface inhibited HIV-1 transcytosis. Immunological studies confirmed the critical role of the conserved ELDKWA hexapeptide in HIV-1 transcytosis. Mucosal IgA, but not IgG, from seropositive subjects targeted the conserved peptide, neutralized gp41 binding to Gal Cer, and blocked HIV-1 transcytosis. These results underscore the important role of secretory IgA in designing strategies for mucosal protection against HIV-1 infection.
Collapse
Affiliation(s)
- A Alfsen
- Institut National de la Santé et de la Recherche Médicale, Unité 332, Institut Cochin de Genetique Moleculaire, Paris, France
| | | | | | | |
Collapse
|
327
|
Celma CC, Manrique JM, Affranchino JL, Hunter E, González SA. Domains in the simian immunodeficiency virus gp41 cytoplasmic tail required for envelope incorporation into particles. Virology 2001; 283:253-61. [PMID: 11336550 DOI: 10.1006/viro.2001.0869] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism by which lentivirus envelope (Env) glycoproteins are packaged into budding virions is poorly understood. Simian immunodeficiency virus (SIV) contains an Env protein with an unusually long cytoplasmic tail. To investigate the role of this domain in the incorporation of the SIV Env into virions, we generated a series of SIV Env mutants carrying small in-frame deletions within the cytoplasmic domain. The effects of these mutations on Env synthesis, processing, and association with Gag particles were analyzed by means of the vaccinia virus expression system. All of the mutant Env glycoproteins were synthesized and processed in a manner similar to that of the wild-type Env. However, deletions affecting domains C-terminal to residue 832 in the SIV Env protein significantly impaired Env incorporation into particles. Cell surface biotinylation assays showed that this phenotype could not be attributed to inefficient cell surface expression of the Env mutants. Furthermore, when the Env deletion mutants were tested for their ability to mediate virus entry in single-cycle infectivity assays, those mutations that impaired Env incorporation also caused a severe defect in virus infectivity. Our results suggest that domains in the C-terminal third of the SIV Env protein are required for Env incorporation into particles and Env-mediated virus entry.
Collapse
Affiliation(s)
- C C Celma
- Centro de Virología Animal (CEVAN-CONICET), Serrano 669, (C1414DEM) Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
328
|
Mobley PW, Pilpa R, Brown C, Waring AJ, Gordon LM. Membrane-perturbing domains of HIV type 1 glycoprotein 41. AIDS Res Hum Retroviruses 2001; 17:311-27. [PMID: 11242518 DOI: 10.1089/08892220150503681] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Structural and functional studies were performed to assess the membrane actions of peptides based on HIV-1 glycoprotein 41,000 (gp41). Previous site-directed mutagenesis of gp41 has shown that amino acid changes in either the N-terminal fusion or N-leucine zipper region depressed viral infection and syncytium formation, while modifications in the C-leucine zipper domain both increased and decreased HIV fusion. Here, synthetic peptides were prepared corresponding to the N-terminal fusion region (FP-I; gp41 residues 519-541), the nearby N-leucine zipper domain (DP-107; gp41 residues 560-597), and the C-leucine zipper domain (DP-178; gp41 residues 645-680). With erythrocytes, FP-I or DP-107 induced dose-dependent hemolysis and promoted cell aggregation; FP-I was more hemolytic than DP-107, but each was equally effective in aggregating cells. DP-178 produced neither hemolysis nor aggregation, but blocked either FP-I- or DP-107-induced hemolysis and aggregation. Combined with previous nuclear magnetic resonance and Fourier transform infrared spectroscopic results, circular dichroism (CD) spectroscopy showed that the alpha-helicity for these peptides in solution decreased in the order: DP-107 >> DP-178 > FP-I. CD analysis also indicated binding of DP-178 to either DP-107 or FP-I. Consequently, DP-178 may inhibit the membrane actions mediated by either FP-I or DP-107 through direct peptide interactions in solution. These peptide results suggest that the corresponding N-terminal fusion and N-leucine zipper regions participate in HIV infection, by promoting membrane perturbations underlying the merging of the viral envelope with the cell surface. Further, the C-leucine zipper domain in "prefusion" HIV may inhibit these membrane activities by interacting with the N-terminal fusion and N-leucine zipper domains in unactivated gp41. Last, exogenous DP-178 may bind to the N-terminal and N-leucine zipper domains of gp41 that become exposed on HIV stimulation, thereby preventing the fusogenic actions of these gp41 regions leading to infection.
Collapse
Affiliation(s)
- P W Mobley
- Chemistry Department, California State Polytechnic University, Pomona 91768, USA
| | | | | | | | | |
Collapse
|
329
|
Tong S, Yi F, Martin A, Yao Q, Li M, Compans RW. Three membrane-proximal amino acids in the human parainfluenza type 2 (HPIV 2) F protein are critical for fusogenic activity. Virology 2001; 280:52-61. [PMID: 11162818 DOI: 10.1006/viro.2000.0755] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the role of the membrane-proximal region of the human parainfluenza virus type 2 (HPIV2) F protein by mutational analysis, including deletion, insertion, and substitution. Deletion or replacement of the entire 12 amino acid region (aa 474-485) of the HPIV2 F protein completely abolished its fusion activity when coexpressed with the HPIV2 HN protein. Deletion of groups of four of aa 478-485, single alanine, or other amino acid substitutions among aa 478-485 had minimal or limited effects on HPIV2 F/HN-induced cell fusion. However, a significant reduction in, or complete inhibition of, fusion activity was observed when aa 474-477 were deleted, or the N475, F476, or F477 residues were singly substituted with alanine. In addition, insertions of four amino acids at this region or deletion of eight or more amino acids significantly reduced F protein fusion activity. The oligomerization patterns and levels of cell surface expression of the mutant F proteins were compared to those of the wild-type HPIV2 F protein. The mutant HPIV2 F proteins defective in fusion were also found to be unable to initiate hemifusion, indicating that there is a specific requirement for three specific amino acids as well as the spacing in this region for initiating lipid mixing.
Collapse
Affiliation(s)
- S Tong
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
330
|
Dong XN, Xiao Y, Dierich MP, Chen YH. N- and C-domains of HIV-1 gp41: mutation, structure and functions. Immunol Lett 2001; 75:215-20. [PMID: 11166378 DOI: 10.1016/s0165-2478(00)00302-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies demonstrated that the N- and C-domains of HIV-1 gp41 is involved in virus-mediated membrane fusion resulting in HIV-entry into the target cells. Up to now, viral mutation baffled many scientists to develop effective vaccines and drugs against HIV-1. To acquire more information of mutation of gp41 and to reveal the relationship of structure and function of the N- and C-domains, we compared and analyzed amino acid sequences of the gp41 ectodomain (aa 512-681) of 862 isolates from most HIV-1 clades (including A, B, C, D, E, F, G, H, I, J and O clades). A consensus sequence of the ectodomain with the highest frequency emerging on each position is constituted. The fusion domain and the N-domain belong to the most conserved regions in gp41, and most variable residues assemble partial to the C terminal of gp41. The hydrophobicity of each position is also calculated. The a and d positions in the N-domain for maintaining stabilization of the trimeric coiled coil interactions are highly conservative, and the e and g positions in the C-domain to retain the interaction show also highly conservative. The strange high conservation of the c residues may have an implication in the coiled coil structure. The highly conserved residues form the lining of the hydrophobic cavity and the deep cavity is an ideal target for small molecular inhibitors. On the C-terminal of the C-domain there is a highly conserved segment GIVQQQ. They are intimately involved in forming the three interfaces between neighboring helices. The function of the N- and C-domains, such as binding to the potential cellular receptor and inducing protective activities, are also discussed. These studies on the mutation, structure and functions of the N- and C-domains suggested that both domains become a new focus to develop effective vaccine and antiviral drugs in the new strategies.
Collapse
Affiliation(s)
- X N Dong
- Laboratory of Immunology, Department of Biological Science and Technology, Research Centre for Medical Science, Tsinghua University, 100084, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
331
|
Kliger Y, Gallo SA, Peisajovich SG, Munoz-Barroso I, Avkin S, Blumenthal R, Shai Y. Mode of action of an antiviral peptide from HIV-1. Inhibition at a post-lipid mixing stage. J Biol Chem 2001; 276:1391-7. [PMID: 11027678 DOI: 10.1074/jbc.m004113200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DP178, a synthetic peptide corresponding to a segment of the transmembrane envelope glycoprotein (gp41) of human immunodeficiency virus, type 1 (HIV-1), is a potent inhibitor of viral infection and virus-mediated cell-cell fusion. Nevertheless, DP178 does not contain gp41 coiled-coil cavity binding residues postulated to be essential for inhibiting HIV-1 entry. We find that DP178 inhibits phospholipid redistribution mediated by the HIV-1 envelope glycoprotein at a concentration 8 times greater than that of solute redistribution (the IC(50) values are 43 and 335 nm, respectively). In contrast, C34, a synthetic peptide which overlaps with DP178 but contains the cavity binding residues, did not show this phenomenon (11 and 25 nm, respectively). The ability of DP178 to inhibit membrane fusion at a post-lipid mixing stage correlates with its ability to bind and oligomerize on the surface of membranes. Furthermore, our results are consistent with a model in which DP178 inhibits the formation of gp41 viral hairpin structure at low affinity, whereas C34 inhibits its formation at high affinity: the failure to form the viral hairpin prevents both lipid and solute from redistributing between cells. However, our data also suggest an additional membrane-bound inhibitory site for DP178 in the ectodomain of gp41 within a region immediately adjacent to the membrane-spanning domain. By binding to this higher affinity site, DP178 inhibits the recruitment of several gp41-membrane complexes, thus inhibiting fusion pore formation.
Collapse
Affiliation(s)
- Y Kliger
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | | | | | | | | | |
Collapse
|
332
|
Bertoni G, Hertig C, Zahno ML, Vogt HR, Dufour S, Cordano P, Peterhans E, Cheevers WP, Sonigo P, Pancino G. B-cell epitopes of the envelope glycoprotein of caprine arthritis-encephalitis virus and antibody response in infected goats. J Gen Virol 2000; 81:2929-2940. [PMID: 11086124 DOI: 10.1099/0022-1317-81-12-2929] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Goats infected with caprine arthritis-encephalitis virus (CAEV) develop high titres of antibodies to Env. Not only is no consistent neutralizing response found but anti-Env antibodies have even been associated with disease in infected goats. To identify the continuous antigenic determinants involved in this atypical anti-Env response, we mapped CAEV-CO Env by screening an epitope expression library with infected goat sera. In addition to the four previously described epitopes, seven novel antigenic sites were identified, of which five were located on the surface (SU) and two in the transmembrane (TM) subunits of Env. The SU antibody-binding domains located in the variable regions of the C-terminal part of the molecule (SU3 to SU5) showed the strongest reactivity and induced a rapid seroconversion in six experimentally infected goats. However, the response to these immunodominant epitopes did not appear to be associated with any neutralizing activity. The pattern of serum reactivity of naturally infected goats with these epitopes was restricted, suggesting a type-specific reaction. Interestingly, the reactivity of peptides representing SU5 sequences derived from CAEV field isolates varied with the geographical and/or breeding origin of the animals. This suggests that peptides corresponding to the immunodominant SU epitopes may well be useful in the serotyping of CAEV isolates. Furthermore, the identification of the CAEV Env epitopes will permit us to functionally dissect the antibody response and to address the role of anti-Env antibodies either in the protection from or in the pathogenesis of CAEV infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Antibody Specificity
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Arthritis-Encephalitis Virus, Caprine/chemistry
- Arthritis-Encephalitis Virus, Caprine/genetics
- Arthritis-Encephalitis Virus, Caprine/immunology
- Arthritis-Encephalitis Virus, Caprine/physiology
- Binding Sites
- Blotting, Western
- Cloning, Molecular
- Epitope Mapping
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, env/immunology
- Glycoproteins
- Goats/immunology
- Goats/virology
- Immune Sera/biosynthesis
- Immune Sera/immunology
- Immunodominant Epitopes/chemistry
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Lentivirus Infections/immunology
- Lentivirus Infections/veterinary
- Membrane Proteins
- Molecular Sequence Data
- Neutralization Tests
- Peptide Library
- Protein Structure, Tertiary
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Sequence Alignment
- Time Factors
- Viral Proteins
Collapse
Affiliation(s)
- Giuseppe Bertoni
- Institute of Veterinary Virology, University of Berne, Länggass-Str. 122, CH-3012 Berne, Switzerland1
| | - Christian Hertig
- Institute of Veterinary Virology, University of Berne, Länggass-Str. 122, CH-3012 Berne, Switzerland1
| | - Marie-Luise Zahno
- Institute of Veterinary Virology, University of Berne, Länggass-Str. 122, CH-3012 Berne, Switzerland1
| | - Hans-Rudolf Vogt
- Institute of Veterinary Virology, University of Berne, Länggass-Str. 122, CH-3012 Berne, Switzerland1
| | - Sophie Dufour
- Institute of Veterinary Virology, University of Berne, Länggass-Str. 122, CH-3012 Berne, Switzerland1
| | - Pablo Cordano
- Institute of Veterinary Virology, University of Berne, Länggass-Str. 122, CH-3012 Berne, Switzerland1
| | - Ernst Peterhans
- Institute of Veterinary Virology, University of Berne, Länggass-Str. 122, CH-3012 Berne, Switzerland1
| | - William P Cheevers
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-7040, USA2
| | - Pierre Sonigo
- Génétique des Virus (ICGM-CNRS UPR 0415), Institut Cochin de Génétique moléculaire, 75014 Paris, France3
| | - Gianfranco Pancino
- Génétique des Virus (ICGM-CNRS UPR 0415), Institut Cochin de Génétique moléculaire, 75014 Paris, France3
| |
Collapse
|
333
|
Daenke S, Booth S. Molecular mechanisms affecting HTLV type 1-dependent fusion at the cell membrane: implications for inhibiting viral transmission. AIDS Res Hum Retroviruses 2000; 16:1731-6. [PMID: 11080818 DOI: 10.1089/08892220050193227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Infection with human T cell leukemia virus type 1 is detected by screening programs and contact follow-up procedures. Where chronic infection results in overt pathology, this is treated largely symptomatically and control of transmission relies on physical and educational constraints. The poor infectious transmission rate of HTLV-1 has long been described but to date has not been exploited in preventative measures to combat the spread of the virus. We undertook to investigate some of the molecular steps involved in HTLV-1 cell-cell fusion, the main mechanism of transmission. We showed that poor transmission may relate in part to an inefficiency in adopting and maintaining a fusion competent conformation of the HTLV-1 envelope TM protein. In cell-cell fusion, this deficiency can be complemented by accessory molecules on both infected and target cells that stabilize the envelope/receptor interaction. In virion-cell fusion, this is less likely, leading to an inefficient interaction and poor infectious transmission by cell-free virus. A discussion of the accessory molecules involved in HTLV-1 fusion is presented. This weak envelope-dependent interaction with target cells in the host can be potently disrupted by peptides that destabilize the TM protein structure and significantly inhibit HTLV-1 fusion. These observations may be useful in the design of therapeutic agents to prevent HTLV-1 transmission.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line
- Cytopathogenic Effect, Viral
- Fusion Regulatory Protein-1
- Gene Expression Regulation, Viral
- Gene Products, env/genetics
- Gene Products, env/metabolism
- HTLV-I Infections/transmission
- HTLV-I Infections/virology
- Human T-lymphotropic virus 1/physiology
- Humans
- Integrins/genetics
- Integrins/metabolism
- Membrane Fusion
- Molecular Sequence Data
- Receptors, Virus/metabolism
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/metabolism
- env Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- S Daenke
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, England, UK.
| | | |
Collapse
|
334
|
Dhar SK, Tadakuma K, Mori K. Distinct variation pattern in the env of macrophage-tropic simian immunodeficiency virus in vivo demonstrated by denaturing gradient gel electrophoresis. J Virol Methods 2000; 89:49-60. [PMID: 10996639 DOI: 10.1016/s0166-0934(00)00201-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genetic variations, occurring during the infection in the AIDS animal model using a molecular clone virus, often consist of single nucleotide substitutions distributed sparsely in the viral genome. A highly sensitive method was developed to detect such mutations, consisting of denaturing gradient gel electrophoresis (DGGE) and direct sequencing. The genetic variation in the env of a macrophage tropic simian immunodeficiency virus (SIV) in a macaque infected chronically was examined by this technique and compared with that of a T cell tropic SIV in an animal infected chronically. A whole env sequence was amplified by 11 sets of PCR for DNA ranging from 300 to 420 bp. The amplified DNA was subjected to mutational screening by DGGE and to subsequent direct sequencing. Imaging analysis of separated DNA bands by DGGE provided information on the proportion of each variant DNA. The validity of this technique was confirmed by sequencing of variant DNAs cloned by limiting dilutions. Thus, this technique is suitable for analysis of genetic variations in the AIDS animal model using a molecular clone virus.
Collapse
Affiliation(s)
- S K Dhar
- Tsukuba Primate Center for Medical Sciences, National Institute for Infectious Diseases, 1 Hachimandai, 305-0843, Tsukuba, Japan
| | | | | |
Collapse
|
335
|
Suárez T, Gallaher WR, Agirre A, Goñi FM, Nieva JL. Membrane interface-interacting sequences within the ectodomain of the human immunodeficiency virus type 1 envelope glycoprotein: putative role during viral fusion. J Virol 2000; 74:8038-47. [PMID: 10933713 PMCID: PMC112336 DOI: 10.1128/jvi.74.17.8038-8047.2000] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a region within the ectodomain of the fusogenic human immunodeficiency virus type 1 (HIV-1) gp41, different from the fusion peptide, that interacts strongly with membranes. This conserved sequence, which immediately precedes the transmembrane anchor, is not highly hydrophobic according to the Kyte-Doolittle hydropathy prediction algorithm, yet it shows a high tendency to partition into the membrane interface, as revealed by the Wimley-White interfacial hydrophobicity scale. We have investigated here the membrane effects induced by NH(2)-DKWASLWNWFNITNWLWYIK-CONH(2) (HIV(c)), the membrane interface-partitioning region at the C terminus of the gp41 ectodomain, in comparison to those caused by NH(2)-AVGIGALFLGFLGAAGSTMGARS-CONH(2) (HIV(n)), the fusion peptide at the N terminus of the subunit. Both HIV(c) and HIV(n) were seen to induce membrane fusion and permeabilization, although lower doses of HIV(c) were required for comparable effects to be detected. Experiments in which equimolar mixtures of HIV(c) and HIV(n) were used indicated that both peptides may act in a cooperative way. Peptide-membrane and peptide-peptide interactions underlying those effects were further confirmed by analyzing the changes in fluorescence of peptide Trp residues. Replacement of the first three Trp residues by Ala, known to render a defective gp41 phenotype unable to mediate both cell-cell fusion and virus entry, also abrogated the HIV(c) ability to induce membrane fusion or form complexes with HIV(n) but not its ability to associate with vesicles. Hydropathy analysis indicated that the presence of two membrane-partitioning stretches separated by a collapsible intervening sequence is a common structural motif among other viral envelope proteins. Moreover, sequences with membrane surface-residing residues preceding the transmembrane anchor appeared to be a common feature in viral fusion proteins of several virus families. According to our experimental results, such a feature might be related to their fusogenic function.
Collapse
Affiliation(s)
- T Suárez
- Unidad de Biofísica (CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
336
|
Kliger Y, Peisajovich SG, Blumenthal R, Shai Y. Membrane-induced conformational change during the activation of HIV-1 gp41. J Mol Biol 2000; 301:905-14. [PMID: 10966795 DOI: 10.1006/jmbi.2000.4004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human immunodeficiency virus type 1 gp41 ectodomain forms a three-hairpin protease-resistant core in the absence of membranes, namely, the putative gp41 fusion-active state. Here, we show that recombinant proteins corresponding to the ectodomain of gp41, but lacking the fusion peptide, bind membranes and consequently undergo a major conformational change. As a result, the protease-resistant core becomes susceptible to proteolytic digestion. Accordingly, synthetic peptides corresponding to the segments that construct this core bind the membrane. It is remarkable that the hetero-oligomer formed by these peptides dissociates upon binding to the membrane. These results are consistent with a model in which, after the three-hairpin conformation is formed, membrane binding induces opening of the gp41 core complex. We speculate that binding of the segments that constructed the core to the viral and cellular membranes could bring the membranes closer together and facilitate their merging.
Collapse
Affiliation(s)
- Y Kliger
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | |
Collapse
|
337
|
Suárez T, Nir S, Goñi FM, Saéz-Cirión A, Nieva JL. The pre-transmembrane region of the human immunodeficiency virus type-1 glycoprotein: a novel fusogenic sequence. FEBS Lett 2000; 477:145-9. [PMID: 10899326 DOI: 10.1016/s0014-5793(00)01785-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated membrane interactions and perturbations induced by NH(2)-DKWASLWNWFNITNWLWYIK-COOH (HIV(c)), representing the membrane interface-partitioning region that precedes the transmembrane anchor of the human immunodeficiency virus type-1 gp41 fusion protein. The HIV(c) peptide bound with high affinity to electrically neutral vesicles composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine and cholesterol (molar ratio, 1:1:1), and induced vesicle leakage and lipid mixing. Infrared spectra suggest that these effects were promoted by membrane-associated peptides adopting an alpha-helical conformation. A sequence representing a defective gp41 phenotype unable to mediate both cell-cell fusion and virus entry, was equally unable to induce vesicle fusion, and adopted a non-helical conformation in the membrane. We conclude that membrane perturbation and adoption of the alpha-helical conformation by this gp41 region might be functionally meaningful.
Collapse
Affiliation(s)
- T Suárez
- Unidad de Biofisica, Departamento de Bioquimica, Universidaad del Pais Vasco, Aptdo, 644, 48080, Bilboa, Spain
| | | | | | | | | |
Collapse
|
338
|
Maerz AL, Center RJ, Kemp BE, Kobe B, Poumbourios P. Functional implications of the human T-lymphotropic virus type 1 transmembrane glycoprotein helical hairpin structure. J Virol 2000; 74:6614-21. [PMID: 10864675 PMCID: PMC112171 DOI: 10.1128/jvi.74.14.6614-6621.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Retrovirus entry into cells follows receptor binding by the surface-exposed envelope glycoprotein (Env) subunit (SU), which triggers the membrane fusion activity of the transmembrane (TM) protein. TM protein fragments expressed in the absence of SU adopt helical hairpin structures comprising a central coiled coil, a region of chain reversal containing a disulfide-bonded loop, and a C-terminal segment that packs onto the exterior of the coiled coil in an antiparallel manner. Here we used in vitro mutagenesis to test the functional role of structural elements observed in a model helical hairpin, gp21 of human T-lymphotropic virus type 1. Membrane fusion activity requires the stabilization of the N and C termini of the central coiled coil by a hydrophobic N cap and a small hydrophobic core, respectively. A conserved Gly-Gly hinge motif preceding the disulfide-bonded loop, a salt bridge that stabilizes the chain reversal region, and interactions between the C-terminal segment and the coiled coil are also critical for fusion activity. Our data support a model whereby the chain reversal region transmits a conformational signal from receptor-bound SU to induce the fusion-activated helical hairpin conformation of the TM protein.
Collapse
MESH Headings
- Cell Line
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Gene Products, env/physiology
- HeLa Cells
- Human T-lymphotropic virus 1/chemistry
- Human T-lymphotropic virus 1/metabolism
- Human T-lymphotropic virus 1/physiology
- Humans
- Membrane Fusion
- Models, Molecular
- Mutagenesis, Site-Directed
- Protein Conformation
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/physiology
- Retroviridae Proteins, Oncogenic/chemistry
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/metabolism
- Retroviridae Proteins, Oncogenic/physiology
- env Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- A L Maerz
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | |
Collapse
|
339
|
Weng Y, Yang Z, Weiss CD. Structure-function studies of the self-assembly domain of the human immunodeficiency virus type 1 transmembrane protein gp41. J Virol 2000; 74:5368-72. [PMID: 10799616 PMCID: PMC110894 DOI: 10.1128/jvi.74.11.5368-5372.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coiled-coil region of the human immunodeficiency virus type 1 transmembrane protein (gp41) makes up the interior core of the six-helix bundle structure of the gp41 self-assembly domain. We extended our previous study of this domain (Y. Weng and C. D. Weiss, J. Virol. 72:9676-9682, 1998) by analyzing 23 additional mutants at positions that lie at the interface of the interior core and outer helices. We found nine new functional mutants. For most mutants, the activity could be explained by the ability of the modeled mutants to stabilize the six-helix bundle structure. The present study provides insights into the envelope glycoprotein fusion mechanism and information for rational drug and vaccine design.
Collapse
Affiliation(s)
- Y Weng
- Center for Biologics Evaluation and Research, Food and Drug Administration, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
340
|
Murakami T, Freed EO. Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and alpha-helix 2 of the gp41 cytoplasmic tail. J Virol 2000; 74:3548-54. [PMID: 10729129 PMCID: PMC111863 DOI: 10.1128/jvi.74.8.3548-3554.2000] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The incorporation of envelope (Env) glycoproteins into virions is an essential step in the retroviral replication cycle. Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), encode Env glycoproteins with unusually long cytoplasmic tails, the functions of which have not been fully elucidated. In this study, we examine the effects on virus replication of a number of mutations in a helical motif (alpha-helix 2) located near the center of the HIV-1 gp41 cytoplasmic tail. We find that, in T-cell lines, small deletions in this domain disrupt the incorporation of Env glycoproteins into virions and markedly impair virus infectivity. Through the analysis of viral revertants, we demonstrate that a single amino acid change (34VI) in the matrix domain of Gag reverses the Env incorporation and infectivity defect imposed by a small deletion near the C terminus of alpha-helix 2. These results provide genetic evidence, in the context of infected T cells, for an interaction between HIV-1 matrix and the gp41 cytoplasmic tail and identify domains of both proteins involved in this putative interaction.
Collapse
Affiliation(s)
- T Murakami
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | |
Collapse
|
341
|
Robison CS, Whitt MA. The membrane-proximal stem region of vesicular stomatitis virus G protein confers efficient virus assembly. J Virol 2000; 74:2239-46. [PMID: 10666254 PMCID: PMC111705 DOI: 10.1128/jvi.74.5.2239-2246.2000] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report, we show that the glycoprotein of vesicular stomatitis virus (VSV G) contains within its extracellular membrane-proximal stem (GS) a domain that is required for efficient VSV budding. To determine a minimal sequence in GS that provides for high-level virus assembly, we have generated a series of recombinant DeltaG-VSVs which express chimeric glycoproteins having truncated stem sequences. The recombinant viruses having chimeras with 12 or more membrane-proximal residues of the G stem, and including the G protein transmembrane-cytoplasmic tail domains, produced near-wild-type levels of particles. In contrast, viruses encoding chimeras with shorter or no G-stem sequences produced approximately 10- to 20-fold less. This budding domain when present in chimeric glycoproteins also promoted their incorporation into the VSV envelope. We suggest that the G-stem budding domain promotes virus release by inducing membrane curvature at sites where virus budding occurs or by recruiting condensed nucleocapsids to sites on the plasma membrane which are competent for efficient virus budding.
Collapse
Affiliation(s)
- C S Robison
- Department of Microbiology and Immunology, University of Tennessee-Memphis, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
342
|
Murakami T, Freed EO. The long cytoplasmic tail of gp41 is required in a cell type-dependent manner for HIV-1 envelope glycoprotein incorporation into virions. Proc Natl Acad Sci U S A 2000; 97:343-8. [PMID: 10618420 PMCID: PMC26665 DOI: 10.1073/pnas.97.1.343] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lentiviruses, including HIV-1, have transmembrane envelope (Env) glycoproteins with cytoplasmic tails that are quite long compared with those of other retroviruses. However, mainly because of the lack of biochemical studies performed in cell types that are targets for HIV-1 infection, no clear consensus exists regarding the function of the long lentiviral Env cytoplasmic tail in virus replication. In this report, we characterize the biological and biochemical properties of an HIV-1 mutant lacking the gp41 cytoplasmic tail. We find that the gp41 cytoplasmic tail is necessary for the efficient establishment of a productive, spreading infection in the majority of T cell lines tested, peripheral blood mononuclear cells, and monocyte-derived macrophages. Biochemical studies using a high-level, transient HIV-1 expression system based on pseudotyping with the vesicular stomatitis virus glycoprotein demonstrate that in HeLa and MT-4 cells, mutant Env incorporation into virions is reduced only 3-fold relative to wild type. In contrast, gp120 levels in virions produced from a number of other T cell lines and primary macrophages are reduced more than 10-fold by the gp41 truncation. The Env incorporation defect imposed by the cytoplasmic tail truncation is not the result of increased shedding of gp120 from virions or reduced cell-surface Env expression. These results demonstrate that in the majority of T cell lines, and in primary cell types that serve as natural targets for HIV-1 infection in vivo, the gp41 cytoplasmic tail is essential for efficient Env incorporation into virions.
Collapse
Affiliation(s)
- T Murakami
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0460, USA
| | | |
Collapse
|
343
|
Muñoz-Barroso I, Salzwedel K, Hunter E, Blumenthal R. Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. J Virol 1999; 73:6089-92. [PMID: 10364363 PMCID: PMC112672 DOI: 10.1128/jvi.73.7.6089-6092.1999] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined mutations in the ectodomain of the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 within a region immediately adjacent to the membrane-spanning domain for their effect on the outcome of the fusion cascade. Using the recently developed three-color assay (I. Muñoz-Barroso, S. Durell, K. Sakaguchi, E. Appella, and R. Blumenthal, J. Cell Biol. 140:315-323, 1998), we have assessed the ability of the mutant gp41s to transfer lipid and small solutes from susceptible target cells to the gp120-gp41-expressing cells. The results were compared with the syncytium-inducing capabilities of these gp41 mutants. Two mutant proteins were incapable of mediating both dye transfer and syncytium formation. Two mutant proteins mediated dye transfer but were less effective at inducing syncytium formation than was wild-type gp41. The most interesting mutant proteins were those that were not capable of inducing syncytium formation but still mediated dye transfer, indicating that the fusion cascade was blocked beyond the stage of small fusion pore formation. Fusion mediated by the mutant gp41s was inhibited by the peptides DP178 and C34.
Collapse
Affiliation(s)
- I Muñoz-Barroso
- Laboratory of Experimental and Computational Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | | | | | | |
Collapse
|