301
|
Levi G, Mantero S, Barbieri O, Cantatore D, Paleari L, Beverdam A, Genova F, Robert B, Merlo GR. Msx1 and Dlx5 act independently in development of craniofacial skeleton, but converge on the regulation of Bmp signaling in palate formation. Mech Dev 2005; 123:3-16. [PMID: 16330189 DOI: 10.1016/j.mod.2005.10.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 10/27/2005] [Accepted: 10/29/2005] [Indexed: 11/21/2022]
Abstract
Msx and Dlx homeoproteins control the morphogenesis and organization of craniofacial skeletal structures, specifically those derived from the pharyngeal arches. In vitro Msx and Dlx proteins have opposing transcriptional properties and form heterodimeric complexes via their homeodomain with reciprocal functional repression. In this report we examine the skeletal phenotype of Msx1; Dlx5 double knock-out (DKO) mice in relationship with their expression territories during craniofacial development. Co-expression of Dlx5 and Msx1 is only observed in embryonic tissues in which these genes have independent functions, and thus direct protein interactions are unlikely to control morphogenesis of the cranium. The DKO craniofacial phenotypes indicate a complex interplay between these genes, acting independently (mandible and middle ear), synergistically (deposition of bone tissue) or converging on the same morphogenetic process (palate growth and closure). In the latter case, the absence of Dlx5 rescues in part the Msx1-dependent defects in palate growth and elevation. At the basis of this effect, our data implicate the Bmp (Bmp7, Bmp4)/Bmp antagonist (Follistatin) signal: in the Dlx5(-/-) palate changes in the expression level of Bmp7 and Follistatin counteract the reduced Bmp4 expression. These results highlight the importance of precise spatial and temporal regulation of the Bmp/Bmp antagonist system during palate closure.
Collapse
Affiliation(s)
- Giovanni Levi
- Evolution des Régulations Endocriniennes, CNRS UMR5166, Museum National d'Histoire Naturelle, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Ghoul-Mazgar S, Hotton D, Lézot F, Blin-Wakkach C, Asselin A, Sautier JM, Berdal A. Expression pattern of Dlx3 during cell differentiation in mineralized tissues. Bone 2005; 37:799-809. [PMID: 16172034 DOI: 10.1016/j.bone.2005.03.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 03/21/2005] [Accepted: 03/30/2005] [Indexed: 10/25/2022]
Abstract
The present study was designed to compare the expression pattern of Dlx3 in four different mineralized tissues because of: 1-its role in skeleton patterning, 2-its expression in dental epithelium and mesenchyme during morphogenesis, 3-the membranous and endochondral bone and tooth phenotype of tricho-dento-osseous syndrome related to Dlx3 gene mutation and 4-recently emerging knowledge on Dlx family members in the bone field. Ameloblasts, odontoblasts, osteoblasts and chondrocytes were analyzed in vitro and in vivo. Dlx3 transcripts were detected by RT-PCR in established model systems (microdissected dental epithelium and mesenchyme; primary cultures of rat chondrocytes), as recently performed in osteoblasts in vitro. A human 414-bp Dlx3 probe was generated. A 4.5-kb human Dlx3 sense RNA was identified in maxillo-facial samples by Northern blotting. Immunolabeling and in situ hybridization were performed in mice from Theiler stage E 14.5 until birth. In teeth, although Dlx3 was still expressed in differentiated ameloblasts, it was down regulated during odontoblast polarization. During endochondral bone formation, Dlx3 protein was detected in chondrocytes and was most strongly expressed in the prehypertrophic cartilage zone and in differentiating and differentiated osteoblasts of metaphyseal periosteum. In vitro, real-time PCR studies supported this upregulation in prehypertrophic chondrocytes, closely correlated with Ihh variations. In membranous bone, Dlx3 was present in preosteoblasts, osteoblasts and osteoid-osteocytes. The present data on Dlx3 and recently published functional studies show that this transcription factor may be instrumental during growth in the control of matrix deposition and biomineralization in the entire skeleton.
Collapse
Affiliation(s)
- Sonia Ghoul-Mazgar
- Laboratoire de Biologie Oro-faciale et Pathologie INSERM U 714, 15-21 rue de l'Ecole de Médecine 75270, Universités Paris 7 and Paris 6-IFR58, Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
303
|
Abstract
Many events in vertebrate morphogenesis and organogenesis develop from epithelial/mesenchymal interactions. These processes involve a series of sequential and reciprocal interactions between the thickened epithelial sheets and underlying mesenchymal cells. Much has been learned from in vitro assays and knockout experiments in mice on the early signaling molecules that regulate the initial stages of the epithelial/mesenchymal interactions. In this review, we discuss effectors of these initial signals, specifically the p63 and Dlx families of transcription factors, that play central roles in embryonic patterning and regulation of different developmental processes, and provide a review of some of the mutations in these genes that have been associated with ectodermal dysplasias (EDs).
Collapse
Affiliation(s)
- Maria I Morasso
- Developmental Skin Biology Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
304
|
Hamilton SP, Woo JM, Carlson EJ, Ghanem N, Ekker M, Rubenstein JLR. Analysis of four DLX homeobox genes in autistic probands. BMC Genet 2005; 6:52. [PMID: 16266434 PMCID: PMC1310613 DOI: 10.1186/1471-2156-6-52] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 11/02/2005] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Linkage studies in autism have identified susceptibility loci on chromosomes 2q and 7q, regions containing the DLX1/2 and DLX5/6 bigene clusters. The DLX genes encode homeodomain transcription factors that control craniofacial patterning and differentiation and survival of forebrain inhibitory neurons. We investigated the role that sequence variants in DLX genes play in autism by in-depth resequencing of these genes in 161 autism probands from the AGRE collection. RESULTS Sequencing of exons, exon/intron boundaries and known enhancers of DLX1, 2, 5 and 6 identified several nonsynonymous variants in DLX2 and DLX5 and a variant in a DLX5/6 intragenic enhancer. The nonsynonymous variants were detected in 4 of 95 families from which samples were sequenced. Two of these four SNPs were not observed in 378 undiagnosed samples from North American populations, while the remaining 2 were seen in one sample each. CONCLUSION Segregation of these variants in pedigrees did not generally support a contribution to autism susceptibility by these genes, although functional analyses may provide insight into the biological understanding of these important proteins.
Collapse
Affiliation(s)
- Steven P Hamilton
- Department of Psychiatry, University of California, San Francisco, CA, USA
- Center for Human Genetics, University of California, San Francisco, CA, USA
| | - Jonathan M Woo
- Genomics Core Facility, University of California, San Francisco, CA, USA
| | - Elaine J Carlson
- Genomics Core Facility, University of California, San Francisco, CA, USA
| | - Nöel Ghanem
- Department of Biology, University of Ottawa, Ontario, Canada
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ontario, Canada
| | - John LR Rubenstein
- Department of Psychiatry, University of California, San Francisco, CA, USA
- Nina Ireland Laboratory, University of California, San Francisco, CA, USA
| |
Collapse
|
305
|
Abstract
Epigenetic regulation of gene expression is mediated through several mechanisms, including modifications in DNA methylation, covalent modifications of core nucleosomal histones, rearrangement of histones and RNA interference. It is now clear that deregulation of epigenetic mechanisms cooperates with genetic alterations in the development and progression of several Mendelian disorders. Here, we summarize the recent findings that highlight how certain inherited diseases, such as Rett syndrome, Immunodeficiency-centromeric instability-facial anomalies syndrome, and facioscapulohumeral muscular dystrophy, result from altered gene silencing.
Collapse
Affiliation(s)
- G Perini
- Department of Biology, University of Bologna, Italy
| | | |
Collapse
|
306
|
Stopper GF, Wagner GP. Of chicken wings and frog legs: a smorgasbord of evolutionary variation in mechanisms of tetrapod limb development. Dev Biol 2005; 288:21-39. [PMID: 16246321 DOI: 10.1016/j.ydbio.2005.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 09/06/2005] [Accepted: 09/06/2005] [Indexed: 01/24/2023]
Abstract
The tetrapod limb, which has served as a paradigm for the study of development and morphological evolution, is becoming a paradigm for developmental evolution as well. In its origin and diversification, the tetrapod limb has undergone a great deal of remodeling. These morphological changes and other evolutionary phenomena have produced variation in mechanisms of tetrapod limb development. Here, we review that variation in the four major clades of limbed tetrapods. Comparisons in a phylogenetic context reveal details of development and evolution that otherwise may have been unclear. Such details include apparent differences in the mechanisms of dorsal-ventral patterning and limb identity specification between mouse and chick and mechanistic novelties in amniotes, anurans, and urodeles. As we gain a better understanding of the details of limb development, further differences among taxa will be revealed. The use of appropriate comparative techniques in a phylogenetic context thus sheds light on evolutionary transitions in limb morphology and the generality of developmental models across species and is therefore important to both evolutionary and developmental biologists.
Collapse
Affiliation(s)
- Geffrey F Stopper
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA.
| | | |
Collapse
|
307
|
Cheng L, Samad OA, Xu Y, Mizuguchi R, Luo P, Shirasawa S, Goulding M, Ma Q. Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes. Nat Neurosci 2005; 8:1510-5. [PMID: 16234809 DOI: 10.1038/nn1569] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 09/19/2005] [Indexed: 01/15/2023]
Abstract
Most neurons in vertebrates make a developmental choice between two principal neurotransmitter phenotypes (glutamatergic versus GABAergic). Here we show that the homeobox gene Lbx1 determines a GABAergic cell fate in the dorsal spinal cord at early embryonic stages. In Lbx1-/- mice, the presumptive GABAergic neurons are transformed into glutamatergic cells. Furthermore, overexpression of Lbx1 in the chick spinal cord is sufficient to induce GABAergic differentiation. Paradoxically, Lbx1 is also expressed in glutamatergic neurons. We previously reported that the homeobox genes Tlx1 and Tlx3 determine glutamatergic cell fate. Here we show that impaired glutamatergic differentiation, observed in Tlx3-/- mice, is restored in Tlx3-/-Lbx1-/- mice. These genetic studies suggest that Lbx1 expression defines a basal GABAergic differentiation state, and Tlx3 acts to antagonize Lbx1 to promote glutamatergic differentiation.
Collapse
Affiliation(s)
- Leping Cheng
- Dana-Farber Cancer Institute, Harvard Medical School, 1 Jimmy Fund Way, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
308
|
Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:347-99. [PMID: 16003766 DOI: 10.1002/jez.b.21055] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ectodermal placodes comprise the adenohypophyseal, olfactory, lens, profundal, trigeminal, otic, lateral line, and epibranchial placodes. The first part of this review presents a brief overview of placode development. Placodes give rise to a variety of cell types and contribute to many sensory organs and ganglia of the vertebrate head. While different placodes differ with respect to location and derivative cell types, all appear to originate from a common panplacodal primordium, induced at the anterior neural plate border by a combination of mesodermal and neural signals and defined by the expression of Six1, Six4, and Eya genes. Evidence from mouse and zebrafish mutants suggests that these genes promote generic placodal properties such as cell proliferation, cell shape changes, and specification of neurons. The common developmental origin of placodes suggests that all placodes may have evolved in several steps from a common precursor. The second part of this review summarizes our current knowledge of placode evolution. Although placodes (like neural crest cells) have been proposed to be evolutionary novelties of vertebrates, recent studies in ascidians and amphioxus have proposed that some placodes originated earlier in the chordate lineage. However, while the origin of several cellular and molecular components of placodes (e.g., regionalized expression domains of transcription factors and some neuronal or neurosecretory cell types) clearly predates the origin of vertebrates, there is presently little evidence that these components are integrated into placodes in protochordates. A scenario is presented according to which all placodes evolved from an adenohypophyseal-olfactory protoplacode, which may have originated in the vertebrate ancestor from the anlage of a rostral neurosecretory organ (surviving as Hatschek's pit in present-day amphioxus).
Collapse
|
309
|
Abstract
Members of the Dlx gene family play essential roles in the development of the zebrafish and mouse inner ear, but little is known regarding Dlx genes and avian inner ear development. We have examined the inner ear expression patterns of Dlx1, Dlx2, Dlx3, Dlx5, and Dlx6 during the first 7 days of chicken embryonic development. Dlx1 and Dlx2 expression was seen only in nonneuronal cells of the cochleovestibular ganglion and nerves from stage 21 to stage 32. Dlx3 marks the otic placode beginning at stage 9 and becomes limited to epithelium adjacent to the hindbrain as invagination of the placode begins. Dlx3 expression then resolves to the dorsal otocyst and gradually becomes limited to the endolymphatic sac by stage 30. Dlx5 and Dlx6 expression in the developing inner ear is first seen at stages 12 and 13, respectively, in the rim of the otic pit, before spreading throughout the dorsal otocyst. As morphogenesis proceeds, Dlx5 and Dlx6 expression is seen throughout the forming semicircular canals and endolymphatic structures. During later stages, both genes are seen to mark the distal surface of the forming canals and display expression complementary to that of BMP4 in the vestibular sensory regions. Dlx5 expression is also seen in the lagena macula and the cochlear and vestibular nerves by stage 30. These findings suggest important roles for Dlx genes in the vestibular and neural development of the avian inner ear.
Collapse
Affiliation(s)
- Stephen T Brown
- Gonda Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, California 90057-1922, USA
| | | | | |
Collapse
|
310
|
Pueyo JI, Couso JP. Parallels between the proximal-distal development of vertebrate and arthropod appendages: homology without an ancestor? Curr Opin Genet Dev 2005; 15:439-46. [PMID: 15979300 DOI: 10.1016/j.gde.2005.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 06/08/2005] [Indexed: 02/06/2023]
Abstract
Evolutionary studies suggest that the limbs of vertebrates and the appendages of arthropods do not share a common origin. However, recent genetic studies show new similarities in their developmental programmes. These similarities might be caused by the independent recruitment of homologous genes for similar functions or by the conservation of an ancestral proximal-distal development programme. This basic programme might have arisen in an ancestral outgrowth and been independently co-opted in vertebrate and arthropod appendages. It has subsequently diverged in both phyla to fine-pattern the limb and to control phylum-specific cellular events. We suggest that although vertebrate limbs and arthropod appendages are not strictly homologous structures they retain remnants of a common ancestral developmental programme.
Collapse
Affiliation(s)
- Jose Ignacio Pueyo
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | | |
Collapse
|
311
|
Abstract
The clinical signs of Rett syndrome, as well as neuropathology and brain imaging, suggest that the disorder disrupts neuronal circuits. Studies using receptor autoradiography demonstrate abnormalities in the density of excitatory glutamate and inhibitory gamma-aminobutyric acid (GABA) synaptic receptors in postmortem brain from young female subjects with Rett syndrome. MeCP2, the protein that is abnormal in most female individuals with Rett syndrome, is expressed predominantly in neurons and appears during development at the time of synapse formation. Studies of nasal epithelium from patients with Rett syndrome show that the maturation of olfactory receptor neurons is impeded prior to the time of synapse formation. Recent reports indicate that MeCP2 controls the expression of brain-derived neurotrophic factor and the DNA-binding homeobox protein Dlx5. Brain-derived neurotrophic factor enhances glutamate neurotransmission at excitatory synapses, whereas Dlx5 is expressed in most GABAergic neurons and stimulates the synthesis of GABA. Taken together, this information supports the hypothesis that Rett syndrome is a genetic disorder of synapse development, especially synapses that use glutamate and GABA as neurotransmitters.
Collapse
Affiliation(s)
- Michael V Johnston
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
312
|
Brugmann SA, Moody SA. Induction and specification of the vertebrate ectodermal placodes: precursors of the cranial sensory organs. Biol Cell 2005; 97:303-19. [PMID: 15836430 DOI: 10.1042/bc20040515] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The sensory organs of the vertebrate head derive from two embryological structures, the neural crest and the ectodermal placodes. Although quite a lot is known about the secreted and transcription factors that regulate neural crest development, until recently little was known about the molecular pathways that regulate placode development. Herein we review recent findings on the induction and specification of the pre-placodal ectoderm, and the transcription factors that are involved in regulating placode fate and initial differentiation.
Collapse
Affiliation(s)
- Samantha A Brugmann
- Department of Anatomy and Cell Biology, Genetics Program, The George Washington University, Washington, DC, USA
| | | |
Collapse
|
313
|
Ciccolini F, Mandl C, Hölzl-Wenig G, Kehlenbach A, Hellwig A. Prospective isolation of late development multipotent precursors whose migration is promoted by EGFR. Dev Biol 2005; 284:112-25. [PMID: 15950215 DOI: 10.1016/j.ydbio.2005.05.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 04/29/2005] [Accepted: 05/09/2005] [Indexed: 11/29/2022]
Abstract
A simple procedure to isolate neural stem cells would greatly facilitate direct studies of their properties. Here, we exploited the increase in EGF receptor (EGFR) levels, that occurs in late development stem cells or in younger precursors upon exposure to FGF-2, to isolate cells expressing high levels of EGFR (EGFR(high)) from the developing and the adult brain. Independently of age and region of isolation, EGFR(high) cells were highly enriched in multipotent precursors and displayed similar antigenic characteristics, with the exception of GFAP and Lex/SSEA-1 that were mainly expressed in adult EGFR(high) cells. EGFR levels did not correlate with neurogenic potential, indicating that the increase in EGFR expression does not directly affect differentiation. Instead, in the brain, many EGFR(high) precursors showed tangential orientation and, whether isolated from the cortex or striatum, EGFR(high) precursors displayed characteristics of cells originating from the ventral GZ such as expression Dlx and Mash-1 and the ability to generate GABAergic neurons and oligodendrocytes. Moreover, migration of EGFR(high) cells on telencephalic slices required EGFR activity. Thus, the developmentally regulated increase in EGFR levels may affect tangential migration of multipotent precursors. In addition, it can be used as a marker to effectively isolate telencephalic multipotent precursors from embryonic and adult tissue.
Collapse
Affiliation(s)
- Francesca Ciccolini
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
314
|
Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC, Rubenstein JLR. Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci 2005; 8:1059-68. [PMID: 16007083 DOI: 10.1038/nn1499] [Citation(s) in RCA: 395] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 06/13/2005] [Indexed: 11/08/2022]
Abstract
Dlx homeodomain transcription factors are essential during embryonic development for the production of forebrain GABAergic interneurons. Here we show that Dlx1 is also required for regulating the functional longevity of cortical and hippocampal interneurons in the adult brain. We demonstrate preferential Dlx1 expression in a subset of cortical and hippocampal interneurons which, in postnatal Dlx1 mutants, show a time-dependent reduction in number. This reduction preferentially affects calretinin(+) (bipolar cells) and somatostatin(+) subtypes (for example, bitufted cells), whereas parvalbumin(+) subpopulations (basket cells and chandelier cells) seem to be unaffected. Cell transplantation analysis demonstrates that interneuron loss reflects cell-autonomous functions of Dlx1. The decrease in the number of interneurons was associated with a reduction of GABA-mediated inhibitory postsynaptic current in neocortex and hippocampus in vitro and cortical dysrhythmia in vivo. Dlx1 mutant mice show generalized electrographic seizures and histological evidence of seizure-induced reorganization, linking the Dlx1 mutation to delayed-onset epilepsy associated with interneuron loss.
Collapse
Affiliation(s)
- Inma Cobos
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California San Francisco, San Francisco, California 94158, USA.
| | | | | | | | | | | | | |
Collapse
|
315
|
Sun Y, Lu X, Yin L, Zhao F, Feng Y. Inhibition of DLX4 promotes apoptosis in choriocarcinoma cell lines. Placenta 2005; 27:375-83. [PMID: 15975650 DOI: 10.1016/j.placenta.2005.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Revised: 03/15/2005] [Accepted: 03/17/2005] [Indexed: 02/06/2023]
Abstract
Homeodomain (HDM) proteins encoded by homeobox (HBX) genes represent a large family of transcriptional factors that control differentiation and development in certain cell types. DLX4 is a member of Distal-less (DLX) family of HBX genes. Recent studies have demonstrated that abnormal expression of DLX4 is present in several types of human tumors, such as breast cancer, leukemia and colon cancer. In the present study, we investigated DLX4 mRNA and protein expression in both normal placental tissues and human choriocarcinoma cell lines. Also, using RNA interference (RNAi) technique, we knocked down the expression of DLX4 and examined apoptosis in JEG-3 cells. Our studies demonstrated that DLX4 RNAi inhibited DLX4 mRNA expression and decreased DLX4 protein mass specifically and effectively, potentially enhancing apoptosis. Moreover, we examined expression of caspase-3 and caspase-8, and found that both caspases were increased after DLX4 knockdown. However, DLX4 RNAi did not influence Bax expression in JEG-3 cells. In conclusion, this study suggests that DLX4 may be involved in the survival of human choriocarcinoma cells, which may be mediated by the inhibition of apoptosis. The detailed mechanism needs further investigation.
Collapse
Affiliation(s)
- Y Sun
- Hospital of Obstetrics & Gynecology, Fudan University, 419 Fangxie Road, Shanghai 200011, China
| | | | | | | | | |
Collapse
|
316
|
Riccomagno MM, Takada S, Epstein DJ. Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev 2005; 19:1612-23. [PMID: 15961523 PMCID: PMC1172066 DOI: 10.1101/gad.1303905] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The inner ear is partitioned along its dorsal/ventral axis into vestibular and auditory organs, respectively. Gene expression studies suggest that this subdivision occurs within the otic vesicle, the tissue from which all inner ear structures are derived. While the specification of ventral otic fates is dependent on Shh secreted from the notochord, the nature of the signal responsible for dorsal otic development has not been described. In this study, we demonstrate that Wnt signaling is active in dorsal regions of the otic vesicle, where it functions to regulate the expression of genes (Dlx5/6 and Gbx2) necessary for vestibular morphogenesis. We further show that the source of Wnt impacting on dorsal otic development emanates from the dorsal hindbrain, and identify Wnt1 and Wnt3a as the specific ligands required for this function. The restriction of Wnt target genes to the dorsal otocyst is also influenced by Shh. Thus, a balance between Wnt and Shh signaling activities is key in distinguishing between vestibular and auditory cell types.
Collapse
Affiliation(s)
- Martin M Riccomagno
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
317
|
Akin ZN, Nazarali AJ. Hox genes and their candidate downstream targets in the developing central nervous system. Cell Mol Neurobiol 2005; 25:697-741. [PMID: 16075387 PMCID: PMC11529567 DOI: 10.1007/s10571-005-3971-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 04/14/2004] [Indexed: 12/14/2022]
Abstract
1. Homeobox (Hox) genes were originally discovered in the fruit fly Drosophila, where they function through a conserved homeodomain as transcriptional regulators to control embryonic morphogenesis. Since then over 1000 homeodomain proteins have been identified in several species. In vertebrates, 39 Hox genes have been identified as homologs of the original Drosophila complex, and like their Drosophila counterparts they are organized within chromosomal clusters. Vertebrate Hox genes have also been shown to play a critical role in embryonic development as transcriptional regulators. 2. Both the Drosophila and vertebrate Hox genes have been shown to interact with various cofactors, such as the TALE homeodomain proteins, in recognition of consensus sequences within regulatory elements of their target genes. These protein-protein interactions are believed to contribute to enhancing the specificity of target gene recognition in a cell-type or tissue- dependent manner. The regulatory activity of a particular Hox protein on a specific regulatory element is highly variable and dependent on its interacting partners within the transcriptional complex. 3. In vertebrates, Hox genes display spatially restricted patterns of expression within the developing CNS, both along the anterioposterior and dorsoventral axis of the embryo. Their restricted gene expression is suggestive of a regulatory role in patterning of the CNS, as well as in cell specification. Determining the precise function of individual Hox genes in CNS morphogenesis through classical mutational analyses is complicated due to functional redundancy between Hox genes. 4. Understanding the precise mechanisms through which Hox genes mediate embryonic morphogenesis requires the identification of their downstream target genes. Although Hox genes have been implicated in the regulation of several pathways, few target genes have been shown to be under their direct regulatory control. Development of methodologies used for the isolation of target genes and for the analysis of putative targets will be beneficial in establishing the genetic pathways controlled by Hox factors. 5. Within the developing CNS various cell adhesion molecules and signaling molecules have been identified as candidate downstream target genes of Hox proteins. These targets play a role in processes such as cell migration and differentiation, and are implicated in contributing to neuronal processes such as plasticity and/or specification. Hence, Hox genes not only play a role in patterning of the CNS during early development, but may also contribute to cell specification and identity.
Collapse
Affiliation(s)
- Z. N. Akin
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9 Canada
| | - A. J. Nazarali
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9 Canada
| |
Collapse
|
318
|
Moczek AP, Nagy LM. Diverse developmental mechanisms contribute to different levels of diversity in horned beetles. Evol Dev 2005; 7:175-85. [PMID: 15876190 DOI: 10.1111/j.1525-142x.2005.05020.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An ongoing challenge to evolutionary developmental biology is to understand how developmental evolution on the level of populations and closely related species relates to macroevolutionary transformations and the origin of morphological novelties. Here we explore the developmental basis of beetle horns, a morphological novelty that exhibits remarkable diversity on a variety of levels. In this study, we examined two congeneric Onthophagus species in which males develop into alternative horned and hornless morphs and different sexes express marked sexual dimorphism. In addition, both species differ in the body region (head vs. thorax) that develops the horn. Using a comparative morphological approach we show that prepupal growth of horn primordia during late larval development, as well as reabsorption of horn primordia during the pupal stage, contribute to horn expression in adults. We also show that variable combinations of both mechanisms are employed during development to modify horn expression of different horns in the same individual, the same horn in different sexes, and different horns in different species. We then examine expression patterns of two transcription factors, Distal-less (Dll) and aristaless (al), in the context of prepupal horn growth in alternative male morphs and sexual dimorphisms in the same two species. Expression patterns are qualitatively consistent with the hypothesis that both transcription factors function in the context of horn development similar to their known roles in patterning a wide variety of arthropod appendages. Our results suggest that the origin of morphological novelties, such as beetle horns, rests, at least in part, on the redeployment of already existing developmental mechanisms, such as appendage patterning processes. Our results also suggest, however, that little to no phylogenetic distance is needed for the evolution of very different modifier mechanisms that allow for substantial modulation of trait expression at different time points during development in different species, sexes, or tissue regions of the same individual. We discuss the implications of our results for our understanding of the evolution of horned beetle diversity and the origin and diversification of morphological novelties.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, USA.
| | | |
Collapse
|
319
|
McKeown SJ, Newgreen DF, Farlie PG. Dlx2 over-expression regulates cell adhesion and mesenchymal condensation in ectomesenchyme. Dev Biol 2005; 281:22-37. [PMID: 15848386 DOI: 10.1016/j.ydbio.2005.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 12/23/2004] [Accepted: 02/01/2005] [Indexed: 01/05/2023]
Abstract
The Dlx family of homeodomain transcription factors have diverse roles in development including craniofacial morphogenesis and consists of 6 members with overlapping expression patterns. Dlx2 is expressed within the developing branchial arches in both the epithelium and mesenchyme and targeted deletion in mice has revealed roles in patterning and development of the craniofacial skeleton. Defects in Dlx2 null mice include skeletal anomalies of proximal branchial arch 1 derivatives while distal elements are largely spared indicating redundancy within the Dlx family. We have investigated the function of Dlx2 using in ovo electroporation and cell culture. Ectopic expression of Dlx2 within the neural tube beginning prior to emigration of neural crest cells at E1.25 drastically inhibits the migration of transfected cells and induces aggregation of transfected neuroepithelial cells within the neural tube at 24 h post-electroporation. By 48 h post-electroporation, the majority of transfected cells formed multicellular aggregates that were found adjacent to the basal side of the neural tube and very few Dlx2 expressing cells migrated to the level of the branchial arches. Similar results were obtained for Dlx5, suggesting these effects may be common to Dlx genes. Electroporation of the Dlx2 expression construct into branchial arch mesenchyme induced N-cadherin and NCAM, a dramatic increase in cell-cell adhesion relative to controls, and resulted in an increase in mesenchymal condensation. These results suggest a role for Dlx genes in regulating ectomesenchymal cell adhesion and supports the possibility that the skeletal dysmorphology seen in Dlx null mice may derive from abnormalities at the condensation stage.
Collapse
Affiliation(s)
- Sonja J McKeown
- Craniofacial Sciences Consortium, Murdoch Childrens Research Institute, Royal Children's Hospital and University of Melbourne, Parkville 3052, Victoria, Australia
| | | | | |
Collapse
|
320
|
Lin Y, Zhang X, Liang K, Yang H, Zhang H. Phylogenetic analysis and developmental expression of brp-like genes in amphioxus and zebrafish. Comp Biochem Physiol B Biochem Mol Biol 2005; 141:71-6. [PMID: 15820136 DOI: 10.1016/j.cbpc.2005.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 01/20/2005] [Accepted: 01/22/2005] [Indexed: 11/27/2022]
Abstract
The brp-like genes in amphioxus (Branchiostoma belcheri tsingtauense) and in zebrafish (Danio rerio) are reported. The putative brp-like proteins are orthologous to the ancestor of the human brain protein 239FB and 239AB. Previous studies showed that human brain protein 239 might play a role in central nervous system development and function. In this study, the transcripts of zebrafish brp-like gene are mainly located in the developing central neural system in embryo and larva similar to its orthologous genes in human. In contrast, the developmental expression pattern of amphioxus brp-like gene suggests that the gene might be involved in the development of the notochord, pharynx, gills and gut in amphioxus embryos and larvae. Phylogenetic analysis shows that the amphioxus brp-like gene is closer to the orthologous genes in vertebrates than those in invertebrates. The results suggest that the function of the brain protein 239 family genes may change in evolution.
Collapse
Affiliation(s)
- Yushuang Lin
- Institute of Developmental Biology, Life Science College, Shandong University, Jinan 250100, PR China
| | | | | | | | | |
Collapse
|
321
|
Kaji T, Artinger B. dlx3b and dlx4b function in the development of Rohon-Beard sensory neurons and trigeminal placode in the zebrafish neurula. Dev Biol 2005; 276:523-40. [PMID: 15581883 PMCID: PMC4027963 DOI: 10.1016/j.ydbio.2004.09.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 09/13/2004] [Accepted: 09/14/2004] [Indexed: 12/31/2022]
Abstract
Rohon-Beard sensory neurons, neural crest cells, and sensory placodes can be distinguished at the boundary of the embryonic epidermis (skin) and the neural plate. The inductive signals at the neural plate border region are likely to involve a gradient of bone morphogenic protein (BMP) in conjunction with FGF and Wnts and other signals. However, how these signals are transduced to produce the final cell fate remains to be determined. Recent evidence from Xenopus and chick suggest that Dlx genes are required for the generation of cell fates at the neural plate border (McLarren, K.W., Litsiou, A., Streit, A., 2003. DLX5 positions the neural crest and preplacode region at the border of the neural plate. Dev. Biol. 259, 34-47; Woda, J.M., Pastagia, J., Mercola, M., Artinger, K.B., 2003. Dlx proteins position the neural plate border and determine adjacent cell fates. Development 130, 331-342). In the present study, we extend these findings to zebrafish, where we unequivocally demonstrate that dlx3b and dlx4b function in a dose-dependent manner to specify cell fates such as Rohon-Beard sensory neurons and trigeminal sensory placodes. dlx function was examined by inhibiting: (1) protein levels with antisense morpholino oligonucleotides (MOs), and (2) activity by repressing the ability of dlx-homeodomain to bind to downstream targets (EnR-dlx3bhd mRNA; dlx3b homeodomain fused to Engrailed transcriptional repressor domain). Inhibition of dlx3b and dlx4b protein and activity resulted in the reduction or complete loss of Rohon-Beard (RB) sensory neurons and trigeminal (TG) sensory placodes. These data suggest that dlx3b and dlx4b function in the specification of RB neurons and trigeminal sensory placodes in zebrafish. Further, we have shown that dlx3b and dlx4b function in a non-cell-autonomous manner for RB neuron development; dlx3b and dlx4b act to regulate bmp2b expression at the non-neural ectodermal border. These data suggest that the contribution of dlx3b and dlx4b to neural plate border formation is partially non-cell-autonomous acting via BMP activity.
Collapse
Affiliation(s)
| | - Bruk Artinger
- Corresponding author. Department of Craniofacial Biology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262. Fax: +1 303 315 3013. (K.B. Artinger)
| |
Collapse
|
322
|
Faedo A, Quinn JC, Stoney P, Long JE, Dye C, Zollo M, Rubenstein JLR, Price DJ, Bulfone A. Identification and characterization of a novel transcript down-regulated in Dlx1/Dlx2 and up-regulated in Pax6 mutant telencephalon. Dev Dyn 2005; 231:614-20. [PMID: 15376329 DOI: 10.1002/dvdy.20152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
By using a custom-made array containing cDNAs preferentially expressed in the mouse embryonic telencephalon (Porteus et al. [1992] Brain Res Mol Brain Res 12:7-22; and Alessandro Bulfone, unpublished data), we studied the gene expression profile of the Dlx1/Dlx2(-/-) subpallium and Pax6(-/-) pallium. We identified a transcript corresponding to Unigene Cluster Mm.94021 and rat Evf-1, which is down-regulated in the Dlx1/Dlx2(-/-) subpallium and up-regulated in the Pax6(-/-) pallium. Here, we report the expression pattern of this transcript, designated mouse Evf1 (mEvf1), in the prenatal forebrain of wild-type, Dlx1/Dlx2(-/-) and Pax6(-/-) mice using RNA in situ hybridization and reverse transcriptase-polymerase chain reaction. In the wild-type forebrain mEvf1 expression is restricted to the ventral thalamus, hypothalamus, and subpallial telencephalon (caudal, lateral, and medial ganglionic eminences and septal primordia), whereas it is down-regulated in the Dlx1/Dlx2(-/-) subpallium (mainly in caudal, lateral, and medial ganglionic eminences), and up-regulated in the Pax6(-/-) lateral and ventral pallium at embryonic day 12.5 and in the dorsal, lateral, and ventral pallium at embryonic day 14.5.
Collapse
Affiliation(s)
- Andrea Faedo
- Stem Cell Research Institute, Dibit, H.S. Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Givens ML, Rave-Harel N, Goonewardena VD, Kurotani R, Berdy SE, Swan CH, Rubenstein JLR, Robert B, Mellon PL. Developmental regulation of gonadotropin-releasing hormone gene expression by the MSX and DLX homeodomain protein families. J Biol Chem 2005; 280:19156-65. [PMID: 15743757 PMCID: PMC2932481 DOI: 10.1074/jbc.m502004200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is the central regulator of the hypothalamic-pituitary-gonadal axis, controlling sexual maturation and fertility in diverse species from fish to humans. GnRH gene expression is limited to a discrete population of neurons that migrate through the nasal region into the hypothalamus during embryonic development. The GnRH regulatory region contains four conserved homeodomain binding sites (ATTA) that are essential for basal promoter activity and cell-specific expression of the GnRH gene. MSX and DLX are members of the Antennapedia class of non-Hox homeodomain transcription factors that regulate gene expression and influence development of the craniofacial structures and anterior forebrain. Here, we report that expression patterns of the Msx and Dlx families of homeodomain transcription factors largely coincide with the migratory route of GnRH neurons and co-express with GnRH in neurons during embryonic development. In addition, MSX and DLX family members bind directly to the ATTA consensus sequences and regulate transcriptional activity of the GnRH promoter. Finally, mice lacking MSX1 or DLX1 and 2 show altered numbers of GnRH-expressing cells in regions where these factors likely function. These findings strongly support a role for MSX and DLX in contributing to spatiotemporal regulation of GnRH transcription during development.
Collapse
Affiliation(s)
- Marjory L. Givens
- Departments of Reproductive Medicine and Neuroscience, University of California, San Diego, La Jolla, California 92093-0674
| | - Naama Rave-Harel
- Departments of Reproductive Medicine and Neuroscience, University of California, San Diego, La Jolla, California 92093-0674
| | - Vinodha D. Goonewardena
- Departments of Reproductive Medicine and Neuroscience, University of California, San Diego, La Jolla, California 92093-0674
| | - Reiko Kurotani
- Departments of Reproductive Medicine and Neuroscience, University of California, San Diego, La Jolla, California 92093-0674
| | - Sara E. Berdy
- Departments of Reproductive Medicine and Neuroscience, University of California, San Diego, La Jolla, California 92093-0674
| | - Christo H. Swan
- Department of Psychiatry and Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, California 9414-0984
| | - John L. R. Rubenstein
- Department of Psychiatry and Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, California 9414-0984
| | - Benoit Robert
- Unite de Genetique Moleculaire de la Morphogenese, Institut Pasteur, URA 2578 du CNRS, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Pamela L. Mellon
- Departments of Reproductive Medicine and Neuroscience, University of California, San Diego, La Jolla, California 92093-0674
- To whom correspondence should be addressed: Dept. of Reproductive Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0674. Tel.: 858-534-1312; Fax: 858-534-1438;
| |
Collapse
|
324
|
Stock DW. The Dlx gene complement of the leopard shark, Triakis semifasciata, resembles that of mammals: implications for genomic and morphological evolution of jawed vertebrates. Genetics 2005; 169:807-17. [PMID: 15489533 PMCID: PMC1449088 DOI: 10.1534/genetics.104.031831] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Accepted: 10/29/2004] [Indexed: 11/18/2022] Open
Abstract
Extensive gene duplication is thought to have occurred in the vertebrate lineage after it diverged from cephalochordates and before the divergence of lobe- and ray-finned fishes, but the exact timing remains obscure. This timing was investigated by analysis of the Dlx gene family of a representative cartilaginous fish, the leopard shark, Triakis semifasciata. Dlx genes encode homeodomain transcription factors and are arranged in mammals as three convergently transcribed bigene clusters. Six Dlx genes were cloned from Triakis and shown to be orthologous to single mammalian Dlx genes. At least four of these are arranged in bigene clusters. Phylogenetic analyses of Dlx genes were used to propose an evolutionary scenario in which two genome duplications led to four Dlx bigene clusters in a common ancestor of jawed vertebrates, one of which was lost prior to the diversification of the group. Dlx genes are known to be involved in jaw development, and changes in Dlx gene number are mapped to the same branch of the vertebrate tree as the origin of jaws.
Collapse
Affiliation(s)
- David W Stock
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309-0334, USA.
| |
Collapse
|
325
|
Streit A. Early development of the cranial sensory nervous system: from a common field to individual placodes. Dev Biol 2005; 276:1-15. [PMID: 15531360 DOI: 10.1016/j.ydbio.2004.08.037] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 08/20/2004] [Accepted: 08/23/2004] [Indexed: 01/12/2023]
Abstract
Sensory placodes are unique columnar epithelia with neurogenic potential that develop in the vertebrate head ectoderm next to the neural tube. They contribute to the paired sensory organs and the cranial sensory ganglia generating a wide variety of cell types ranging from lens fibres to sensory receptor cells and neurons. Although progress has been made in recent years to identify the molecular players that mediate placode specification, induction and patterning, the processes that initiate placode development are not well understood. One hypothesis suggests that all placode precursors arise from a common territory, the pre-placodal region, which is then subdivided to generate placodes of specific character. This model implies that their induction begins through molecular and cellular mechanisms common to all placodes. Embryological and molecular evidence suggests that placode induction is a multi-step process and that the molecular networks establishing the pre-placodal domain as well as the acquisition of placodal identity are surprisingly similar to those used in Drosophila to specify sensory structures.
Collapse
Affiliation(s)
- Andrea Streit
- Department of Craniofacial Development, King's College London, Guy's Campus, London SE1 9RT, UK.
| |
Collapse
|
326
|
Ozeki H, Kurihara Y, Tonami K, Watatani S, Kurihara H. Endothelin-1 regulates the dorsoventral branchial arch patterning in mice. Mech Dev 2005; 121:387-95. [PMID: 15110048 DOI: 10.1016/j.mod.2004.02.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Revised: 12/26/2003] [Accepted: 02/06/2004] [Indexed: 10/26/2022]
Abstract
Endothelin-1 (ET-1), a 21-amino acid peptide secreted by the epithelium and core mesenchyme in the branchial arches as well as vascular endothelium, is involved in craniofacial and cardiovascular development through endothelin receptor type-A (EdnrA) expressed in the neural crest-derived ectomesenchyme. Here we show that ET-1(-/-) mutant mice exhibit a homeotic-like transformation of the lower jaw to an upper jaw. Most of the maxillary arch-derived components are duplicated and replaced mandibular arch-derived structures, resulting in a mirror image of the upper and lower jaws in the ET-1(-/-) mutant. As for hyoid arch-derivatives, the ventral structures are severely affected in comparison to the dorsal ones in the ET-1(-/-) mutant. Correspondingly, the expression of Dlx5 and Dlx6, Distalless-related homeobox genes determining the ventral identity of the anterior branchial arches, and of the mandibular marker gene Pitx1 is significantly downregulated in the ET-1(-/-) mutant, whereas the expression of Dlx2 and the maxillary marker gene Prx2 is unaffected or rather upregulated. These findings indicate that the ET-1/EdnrA signaling may contribute to the dorsoventral axis patterning of the branchial arch system as a mediator of the regional intercellular interactions.
Collapse
Affiliation(s)
- Hidenori Ozeki
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
327
|
Cobos I, Broccoli V, Rubenstein JLR. The vertebrate ortholog ofAristaless is regulated byDlx genes in the developing forebrain. J Comp Neurol 2005; 483:292-303. [PMID: 15682394 DOI: 10.1002/cne.20405] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Dlx transcription factors have a central role in controlling the development of gamma-aminobutyric acid (GABA)-ergic neurons in the forebrain. However, little is known about how they control the properties of GABAergic neurons. One candidate is the Aristaless (Arx) homeobox gene, which lies genetically downstream of the fly Dlx gene (Distal-less, Dll). The expression of Arx in the mouse forebrain includes Dlx-expressing territories, such us the ventral thalamus, parts of the hypothalamus, and the ganglionic eminences and their derivatives in the subpallial telencephalon, and is expressed, as with the Dlx genes, in cortical GABAergic neurons. By using gain-of-function and loss-of-function assays in mouse and chicken embryos, we show that the Dlx genes have a conserved role in regulating the expression of Arx in the forebrain of vertebrates. Ectopic expression of Dlx genes with electroporation in brain slices from mouse embryos and in the neural tube of chick embryos shows that Dlx genes are sufficient to induce Arx ectopically. Moreover, we provide evidence that the Dlx genes exert a functionally relevant role in regulating Arx in vivo, as shown by the severe reduction in the expression of Arx in Dlx1/2 double-knockout mice. Therefore, our results suggest evolutionarily conserved functions of Dlx genes in regulating Arx expression between Drosophila and vertebrates.
Collapse
Affiliation(s)
- Inma Cobos
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California, San Francisco, San Francisco, California 94158-2611, USA
| | | | | |
Collapse
|
328
|
Hassan MQ, Javed A, Morasso MI, Karlin J, Montecino M, van Wijnen AJ, Stein GS, Stein JL, Lian JB. Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol Cell Biol 2004; 24:9248-61. [PMID: 15456894 PMCID: PMC517873 DOI: 10.1128/mcb.24.20.9248-9261.2004] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genetic studies show that Msx2 and Dlx5 homeodomain (HD) proteins support skeletal development, but null mutation of the closely related Dlx3 gene results in early embryonic lethality. Here we find that expression of Dlx3 in the mouse embryo is associated with new bone formation and regulation of osteoblast differentiation. Dlx3 is expressed in osteoblasts, and overexpression of Dlx3 in osteoprogenitor cells promotes, while specific knock-down of Dlx3 by RNA interference inhibits, induction of osteogenic markers. We characterized gene regulation by Dlx3 in relation to that of Msx2 and Dlx5 during osteoblast differentiation. Chromatin immunoprecipitation assays revealed a molecular switch in HD protein association with the bone-specific osteocalcin (OC) gene. The transcriptionally repressed OC gene was occupied by Msx2 in proliferating osteoblasts, while Dlx3, Dlx5, and Runx2 were recruited postproliferatively to initiate transcription. Dlx5 occupancy increased over Dlx3 in mature osteoblasts at the mineralization stage of differentiation, coincident with increased RNA polymerase II occupancy. Dlx3 protein-DNA interactions stimulated OC promoter activity, while Dlx3-Runx2 protein-protein interaction reduced Runx2-mediated transcription. Deletion analysis showed that the Dlx3 interacting domain of Runx2 is from amino acids 376 to 432, which also include the transcriptionally active subnuclear targeting sequence (376 to 432). Thus, we provide cellular and molecular evidence for Dlx3 in regulating osteoprogenitor cell differentiation and for both positive and negative regulation of gene transcription. We propose that multiple HD proteins in osteoblasts constitute a regulatory network that mediates development of the bone phenotype through the sequential association of distinct HD proteins with promoter regulatory elements.
Collapse
Affiliation(s)
- Mohammad Q Hassan
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Ave., North, Worcester, MA 01655-0106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Horike SI, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 2004; 37:31-40. [PMID: 15608638 DOI: 10.1038/ng1491] [Citation(s) in RCA: 396] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 11/22/2004] [Indexed: 11/09/2022]
Abstract
Mutations in MECP2 are associated with Rett syndrome, an X-linked neurodevelopmental disorder. To identify genes targeted by Mecp2, we sequenced 100 in vivo Mecp2-binding sites in mouse brain. Several sequences mapped to an imprinted gene cluster on chromosome 6, including Dlx5 and Dlx6, whose transcription was roughly two times greater in brains of Mecp2-null mice compared with those of wild-type mice. The maternally expressed gene DLX5 showed a loss of imprinting in lymphoblastoid cells from individuals with Rett syndrome. Because Dlx5 regulates production of enzymes that synthesize gamma-aminobutyric acid (GABA), loss of imprinting of Dlx5 may alter GABAergic neuron activity in individuals with Rett syndrome. In mouse brain, Dlx5 imprinting was relaxed, yet Mecp2-mediated silent-chromatin structure existed at the Dlx5-Dlx6 locus in brains of wild-type, but not Mecp2-null, mice. Mecp2 targeted histone deacetylase 1 to a sharply defined, approximately 1-kb region at the Dlx5-Dlx6 locus and promoted repressive histone methylation at Lys9 at this site. Chromatin immunoprecipitation-combined loop assays showed that Mecp2 mediated the silent chromatin-derived 11-kb chromatin loop at the Dlx5-Dlx6 locus. This loop was absent in chromatin of brains of Mecp2-null mice, and Dlx5-Dlx6 interacted with far distant sequences, forming distinct active chromatin-associated loops. These results show that formation of a silent-chromatin loop is a new mechanism underlying gene regulation by Mecp2.
Collapse
Affiliation(s)
- Shin-ichi Horike
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mail Stop 84-171, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
330
|
Jackman WR, Draper BW, Stock DW. Fgf signaling is required for zebrafish tooth development. Dev Biol 2004; 274:139-57. [PMID: 15355794 DOI: 10.1016/j.ydbio.2004.07.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 06/29/2004] [Accepted: 07/01/2004] [Indexed: 11/24/2022]
Abstract
We have investigated fibroblast growth factor (FGF) signaling during the development of the zebrafish pharyngeal dentition with the goal of uncovering novel roles for FGFs in tooth development as well as phylogenetic and topographic diversity in the tooth developmental pathway. We found that the tooth-related expression of several zebrafish genes is similar to that of their mouse orthologs, including both epithelial and mesenchymal markers. Additionally, significant differences in gene expression between zebrafish and mouse teeth are indicated by the apparent lack of fgf8 and pax9 expression in zebrafish tooth germs. FGF receptor inhibition with SU5402 at 32 h blocked dental epithelial morphogenesis and tooth mineralization. While the pharyngeal epithelium remained intact as judged by normal pitx2 expression, not only was the mesenchymal expression of lhx6 and lhx7 eliminated as expected from mouse studies, but the epithelial expression of dlx2a, dlx2b, fgf3, and fgf4 was as well. This latter result provides novel evidence that the dental epithelium is a target of FGF signaling. However, the failure of SU5402 to block localized expression of pitx2 suggests that the earliest steps of tooth initiation are FGF-independent. Investigations of specific FGF ligands with morpholino antisense oligonucleotides revealed only a mild tooth shape phenotype following fgf4 knockdown, while fgf8 inhibition revealed only a subtle down-regulation of dental dlx2b expression with no apparent effect on tooth morphology. Our results suggest redundant FGF signals target the dental epithelium and together are required for dental morphogenesis. Further work will be required to elucidate the nature of these signals, particularly with respect to their origins and whether they act through the mesenchyme.
Collapse
Affiliation(s)
- William R Jackman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | | | |
Collapse
|
331
|
Kiecker C, Lumsden A. Hedgehog signaling from the ZLI regulates diencephalic regional identity. Nat Neurosci 2004; 7:1242-9. [PMID: 15494730 DOI: 10.1038/nn1338] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 08/30/2004] [Indexed: 11/09/2022]
Abstract
The zona limitans intrathalamica (ZLI), a narrow compartment in the vertebrate forebrain that bisects the diencephalon transversely, expresses the secreted factor sonic hedgehog (Shh). Because genetic disruption of Shh in mouse causes severe early developmental defects, this strategy has not been useful in identifying a ZLI-specific role for this gene. To modulate Shh signaling in a spatiotemporally restricted manner, we carried out gain- and loss-of-function experiments in chick embryos using in ovo electroporation and found that Shh signaling is required for region-specific gene expression in thalamus and prethalamus, the major diencephalic brain areas flanking the ZLI. We further show that differential competence of thalamic and prethalamic primordia in responding to Shh signaling is regulated by the transcription factor Irx3. We show that, through the release of Shh, the ZLI functions as a local signaling center that regulates the acquisition of identity for these important diencephalic regions.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, 4th Floor, New Hunt's House, Guy's Hospital Campus, King's College, London SE1 1UL, UK
| | | |
Collapse
|
332
|
Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA (NEW YORK, N.Y.) 2004; 10:1507-17. [PMID: 15383676 PMCID: PMC1370637 DOI: 10.1261/rna.5248604] [Citation(s) in RCA: 1933] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
MicroRNAs (miRNAs) are short RNAs that post-transcriptionally regulate the expression of target genes by binding to the target mRNAs. Although a large number of animal miRNAs has been defined, only a few targets are known. In contrast to plant miRNAs, which usually bind nearly perfectly to their targets, animal miRNAs bind less tightly, with a few nucleotides being unbound, thus producing more complex secondary structures of miRNA/target duplexes. Here, we present a program, RNA-hybrid, that predicts multiple potential binding sites of miRNAs in large target RNAs. In general, the program finds the energetically most favorable hybridization sites of a small RNA in a large RNA. Intramolecular hybridizations, that is, base pairings between target nucleotides or between miRNA nucleotides are not allowed. For large targets, the time complexity of the algorithm is linear in the target length, allowing many long targets to be searched in a short time. Statistical significance of predicted targets is assessed with an extreme value statistics of length normalized minimum free energies, a Poisson approximation of multiple binding sites, and the calculation of effective numbers of orthologous targets in comparative studies of multiple organisms. We applied our method to the prediction of Drosophila miRNA targets in 3'UTRs and coding sequence. RNAhybrid, with its accompanying programs RNAcalibrate and RNAeffective, is available for download and as a Web tool on the Bielefeld Bioinformatics Server (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/).
Collapse
Affiliation(s)
- Marc Rehmsmeier
- Universität Bielefeld, International NRW Graduate School in Bioinformatics and Genome Research, Postfach 10 01 31, 33501 Bielefeld, Germany.
| | | | | | | |
Collapse
|
333
|
Aguirre AA, Chittajallu R, Belachew S, Gallo V. NG2-expressing cells in the subventricular zone are type C-like cells and contribute to interneuron generation in the postnatal hippocampus. ACTA ACUST UNITED AC 2004; 165:575-89. [PMID: 15159421 PMCID: PMC2172347 DOI: 10.1083/jcb.200311141] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The subventricular zone (SVZ) is a source of neural progenitors throughout brain development. The identification and purification of these progenitors and the analysis of their lineage potential are fundamental issues for future brain repair therapies. We demonstrate that early postnatal NG2-expressing (NG2+) progenitor cells located in the SVZ self-renew in vitro and display phenotypic features of transit-amplifier type C-like multipotent cells. NG2+ cells in the SVZ are highly proliferative and express the epidermal growth factor receptor, the transcription factors Dlx, Mash1, and Olig2, and the Lewis X (LeX) antigen. We show that grafted early postnatal NG2+ cells generate hippocampal GABAergic interneurons that propagate action potentials and receive functional glutamatergic synaptic inputs. Our work identifies Dlx+/Mash1+/LeX+/NG2+/GFAP-negative cells of the SVZ as a new class of postnatal multipotent progenitor cells that may represent a specific cellular reservoir for renewal of postnatal and adult inhibitory interneurons in the hippocampus.
Collapse
Affiliation(s)
- Adan A Aguirre
- Center for Neuroscience Research, Children's Research Institute, Rm. 5345, Children's National Medical Center, 111 Michigan Ave., N.W., Washington, DC 20010, USA
| | | | | | | |
Collapse
|
334
|
Ruest LB, Hammer RE, Yanagisawa M, Clouthier DE. Dlx5/6-enhancer directed expression of Cre recombinase in the pharyngeal arches and brain. Genesis 2004; 37:188-94. [PMID: 14666512 PMCID: PMC2830754 DOI: 10.1002/gene.10247] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dlx5 and Dlx6, two members of the Distalless gene family, are required for development of numerous tissues during embryogenesis, including facial and limb development. This gene pair is expressed in tandem, transcribed toward each other and separated by a short intergenic region containing multiple putative enhancers. Targeted inactivation of Dlx5 and Dlx6 in mice results in multiple developmental defects in craniofacial and limb structures, suggesting that these genes are crucial for aspects of both neural crest and nonneural crest development. To further investigate potential developmental roles of Dlx5 and Dlx6, we used one of the Dlx5/6 intergenic enhancers to drive Cre recombinase expression in transgenic mice. Crossing Dlx5/6-Cre transgenic mice with mice from the R26R strain results in beta-galactosidase staining in the apical ectodermal ridge, brain, and neural crest-derived mesenchyme of the pharyngeal arches, with staining in term embryos observed in the facial skeleton and specific brain structures. However, in contrast to endogenous expression patterns of Dlx5 and Dlx6, Cre expression within the pharyngeal arches occurs during a very narrow window in early development. Our studies suggest that Dlx5/6-Cre mice may prove useful both in further understanding the function and regulation of Distalless genes during development and in studies of gene function in conditional knockout mice.
Collapse
Affiliation(s)
- Louis-Bruno Ruest
- Department of Molecular, Cellular and Craniofacial Biology and the Birth Defects Center, University of Louisville, Kentucky 40292, USA
| | | | | | | |
Collapse
|
335
|
Peng Y, Kang Q, Cheng H, Li X, Sun MH, Jiang W, Luu HH, Park JY, Haydon RC, He TC. Transcriptional characterization of bone morphogenetic proteins (BMPs)-mediated osteogenic signaling. J Cell Biochem 2004; 90:1149-65. [PMID: 14635189 DOI: 10.1002/jcb.10744] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bone formation is presumably a complex and well-orchestrated process of osteoblast lineage-specific differentiation. As members of the TGFbeta superfamily, bone morphogenetic proteins (BMPs) play an important role in regulating osteoblast differentiation and subsequent bone formation. Several BMPs are able to induce de novo bone formation. Although significant progress has recently been made about the transcriptional control of osteoblast differentiation, detailed molecular events underlying the osteogenic process remain to be elucidated. In order to identify potentially important signaling mediators activated by osteogenic BMPs but not by non-osteogenic BMPs, we sought to determine the transcriptional differences between three osteogenic BMPs (i.e., BMP-2, BMP-6, and BMP-9) and two inhibitory/non-osteogenic BMPs (i.e., BMP-3 and BMP-12). Through the microarray analysis of approximately 12,000 genes in pre-osteoblast progenitor cells, we found that expression level of 203 genes (105 up-regulated and 98 down-regulated) was altered >2-fold upon osteogenic BMP stimulation. Gene ontology analysis revealed that osteogenic BMPs, but not inhibitory/non-osteogenic BMPs, activate genes involved in the proliferation of pre-osteoblast progenitor cells towards osteoblastic differentiation, and simultaneously inhibit myoblast-specific gene expression. BMP-regulated expression of the selected target genes was confirmed by RT-PCR, as well as by the CodeLink Bioarray analysis. Our findings are consistent with the notion that osteogenesis and myogenesis are two divergent processes. Further functional characterization of these downstream target genes should provide important insights into the molecular mechanisms behind BMP-mediated bone formation.
Collapse
Affiliation(s)
- Ying Peng
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Zoueva OP, Rodgers GP. Inhibition of β protein 1 expression enhances β-globin promoter activity and β-globin mRNA levels in the human erythroleukemia (K562) cell line. Exp Hematol 2004; 32:700-8. [PMID: 15308321 DOI: 10.1016/j.exphem.2004.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 05/10/2004] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE In this paper, we report new observations related to the mechanism of the negative regulation of the important adult beta-globin gene in the erythroid cells at the embryonic-fetal stage of their development. We focused on the role of the silencer II region located upstream of the beta-globin gene, which along with its cognate binding protein BP1, negatively regulates beta-globin transcription. MATERIALS AND METHODS We prepared plasmid constructs containing the wild-type silencer II sequence, a mutated silencer II sequence, or a mutated control sequence in the beta-globin promoter 690-bp insert, which in turn was linked to an enhanced green fluorescent protein (EGFP) reporter gene. A human erythroleukemia cell line (K562) with embryonic-fetal phenotype was transfected with these EGFP constructs. RESULTS Flow cytometry and fluorescence digital imaging showed about threefold increase in the beta-globin promoter activity of the mutated silencer II construct. Introduction of a small interfering RNA (siRNA) complementary to BP1 into the cells caused a 75% decrease in BP1 expression and a simultaneous approximately 40% elevation of beta-globin promoter activity as well as an increase in beta-globin mRNA levels, as compared with controls. We detected no changes in the mRNA levels of positive regulators of hemoglobin transcription such as EKLF and GATA-1. CONCLUSION Our results support the involvement of BP1 in the mechanism of the negative regulation of beta-globin transcription. A better understanding of this mechanism may lay the groundwork for novel gene therapy approaches to inhibit the expression of abnormal structural variants of adult beta globin, such as sickle hemoglobin.
Collapse
Affiliation(s)
- Olga P Zoueva
- Molecular and Clinical Hematology Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
337
|
Zhang Z, Song Y, Zhang X, Tang J, Chen J, Chen Y. Msx1/Bmp4 genetic pathway regulates mammalian alveolar bone formation via induction of Dlx5 and Cbfa1. Mech Dev 2004; 120:1469-79. [PMID: 14654219 DOI: 10.1016/j.mod.2003.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the developing mammalian tooth, the cranial neural crest derived dental mesenchyme consists of the dental papilla and dental follicle. The dental papilla gives rise to odontoblasts and dental pulp and the dental follicle gives rise to the periodontium, including the osteoblasts that contribute to the alveolar process. The alveolar process is a specialized intramembranous bone that forms the primary support structure for the dentition. The Msx1 gene controls many aspects of craniofacial development, as evidenced by craniofacial abnormalities seen in Msx1(-/-) mice, including the arrest of tooth development and the absence of the alveolar bone. Previous studies demonstrated that ectopic expression of Bmp4, a downstream target of Msx1, in the Msx1(-/-) dental mesenchyme rescued alveolar bone formation. Here we confirm an early requirement of BMP activity for alveolar bone formation. We show that the expression of Cbfa1 and Dlx5, two genes encode transcription factors that are critical for bone differentiation, overlaps with that of Msx1 and Bmp4 in the developing tooth and alveolar process. We have demonstrated that Dlx5 and Cbfa1 expression is down-regulated in Msx1(-/-) dental mesenchyme and that Msx1 and Bmp4 expression are unaltered in Cbfa1(-/-) mice. These data place Dlx5 and Cbfa1 downstream from the Msx1/Bmp4 in the genetic pathway that regulates tooth development. Ectopic expression of Bmp4 in Msx1 mutants restores the expression of Dlx5, but not Cbfa1, in the dental mesenchyme, and rescues the expression of both Dlx5 and Cbfa1 in the developing alveolar bone. Therefore, the early expression of Cfba1 in the dental mesenchyme appears dispensable for the development of the alveolar bone. Taken together with in vitro gene induction studies, our results demonstrate that BMP4 controls Dlx5 expression in dental mesenchyme, and functions upstream to both Dlx5 and Cbfa1 to regulate alveolar bone formation during tooth development.
Collapse
Affiliation(s)
- Zunyi Zhang
- Department of Cell and Molecular Biology, Tulane University, 2000 Stern Hall, 6400 Freret St, New Orleans, LA 70118, USA. zzhang
| | | | | | | | | | | |
Collapse
|
338
|
Hohenstein KA, Shain DH. Changes in gene expression at the precursor --> stem cell transition in leech. Stem Cells 2004; 22:514-21. [PMID: 15277697 DOI: 10.1634/stemcells.22-4-514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The glossiphoniid leech, Theromyzon trizonare, displays particularly large and accessible embryonic precursor/stem cells during its early embryonic cleavages. We dissected populations of both cell types from staged embryos and examined gene expression profiles by differential display polymerase chain reaction methodology. Among the approximately 10,000 displayed cDNA fragments, 56 (approximately 0.5%) were differentially expressed at the precursor --> stem cell transition; 29 were turned off (degraded, precursor-specific); and 27 were turned on (transcribed, stem cell-specific). Several putative differentially expressed cDNAs from each category were confirmed by Northern blot analysis on staged embryos. DNA sequencing revealed that 19 of the cDNAs were related to a spectrum of genes including the CCR4 antiproliferation gene, Rad family members, and several transcriptional regulators, while the remainder encoded hypothetical (10) or novel (27) sequences. Collectively, these results identify dynamic changes in gene expression during stem cell formation in leech and provide a platform for examining the molecular aspects of stem cell genesis in a simple invertebrate organism.
Collapse
Affiliation(s)
- Kristi A Hohenstein
- Biology Department, Rutgers, The State University of New Jersey, 315 Penn Street, Camden 08102, USA
| | | |
Collapse
|
339
|
Meshorer E, Toiber D, Zurel D, Sahly I, Dori A, Cagnano E, Schreiber L, Grisaru D, Tronche F, Soreq H. Combinatorial Complexity of 5′ Alternative Acetylcholinesterase Transcripts and Protein Products. J Biol Chem 2004; 279:29740-51. [PMID: 15123727 DOI: 10.1074/jbc.m402752200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To explore the scope and significance of alternate promoter usage and its putative inter-relationship to alternative splicing, we searched expression sequence tags for the 5' region of acetylcholinesterase (ACHE) genes. Three and five novel first exons were identified in human and mouse ACHE genes, respectively. Reverse transcription-PCR and in situ hybridization validated most of the predicted transcripts, and sequence analyses of the corresponding genomic DNA regions suggest evolutionarily conserved promoters for each of the novel exons identified. Distinct tissue specificity and stress-related expression patterns of these exons predict combinatorial complexity with known 3' alternative AChE mRNA transcripts. Unexpectedly one of the 5' exons encodes an extended N terminus in-frame with the known AChE sequence, extending the increased complexity to the protein level. The resultant membrane variant(s), designated N-AChE, is developmentally regulated in human brain neurons and blood mononuclear cells. Alternative promoter usage combined with alternative splicing may thus lead to stress-dependent combinatorial complexity of AChE mRNA transcripts and their protein products.
Collapse
Affiliation(s)
- Eran Meshorer
- Department of Biological Chemistry and the Israel Center of Neuronal Computation, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Schlosser G, Ahrens K. Molecular anatomy of placode development in Xenopus laevis. Dev Biol 2004; 271:439-66. [PMID: 15223346 DOI: 10.1016/j.ydbio.2004.04.013] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 04/15/2004] [Accepted: 04/16/2004] [Indexed: 11/18/2022]
Abstract
We analyzed the spatiotemporal pattern of expression of 15 transcription factors (Six1, Six4, Eya1, Sox3, Sox2, Pax6, Pax3, Pax2, Pax8, Dlx3, Msx1, FoxI1c, Tbx2, Tbx3, Xiro1) during placode development in Xenopus laevis from neural plate to late tail bud stages. Out of all genes investigated, only the expression of Eya1, Six1, and Six4 is maintained in all types of placode (except the lens) throughout embryonic development, suggesting that they may promote generic placodal properties and that their crescent-shaped expression domain surrounding the neural plate defines a panplacodal primordium from which all types of placode originate. Double-labeling procedures were employed to reveal the precise position of this panplacodal primordium relative to neural plate, neural crest, and other placodal markers. Already at neural plate stages, the panplacodal primordium is subdivided into several subregions defined by particular combinations of transcription factors allowing us to identify the approximate regions of origin of various types of placode. Whereas some types of placode were already prefigured by molecularly distinct areas at neural plate stages, the epibranchial, otic, and lateral line placodes arise from a common posterior placodal area (characterized by Pax8 and Pax2 expression) and acquire differential molecular signatures only after neural tube closure. Our findings argue for a multistep mechanism of placode induction, support a combinatorial model of placode specification, and suggest that different placodes evolved from a common placodal primordium by successive recruitment of new inducers and target genes.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, University of Bremen, 28334 Bremen, Germany.
| | | |
Collapse
|
341
|
Bhattacharyya S, Bailey AP, Bronner-Fraser M, Streit A. Segregation of lens and olfactory precursors from a common territory: cell sorting and reciprocity of Dlx5 and Pax6 expression. Dev Biol 2004; 271:403-14. [PMID: 15223343 DOI: 10.1016/j.ydbio.2004.04.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 04/23/2004] [Indexed: 11/26/2022]
Abstract
Cranial placodes are focal regions of columnar epithelium next to the neural tube that contribute to sensory ganglia and organs in the vertebrate head, including the olfactory epithelium and the crystalline lens of the eye. Using focal dye labelling within the presumptive placode domain, we show that lens and nasal precursors arise from a common territory surrounding the anterior neural plate. They then segregate over time and converge to their final positions in discrete placodes by apparently directed movements. Since these events closely parallel the separation of eye and antennal primordia (containing olfactory sensory cells) from a common imaginal disc in Drosophila, we investigated whether the vertebrate homologues of Distalless (Dll) and Eyeless (Ey), which determine antennal and eye identity in the fly, play a role in segregation of lens and nasal precursors in the chick. Dlx5 and Pax6 are initially co-expressed by future lens and olfactory cells. As soon as presumptive lens cells acquire columnar morphology all Dlx family members are down-regulated in the placode, while Pax6 is lost in the olfactory region. Lens precursor cells that express ectopic Dlx5 never acquire lens-specific gene expression and are excluded from the lens placode to cluster in the head ectoderm. These results suggest that the loss of Dlx5 is required for cells to adopt a lens fate and that the balance of Pax6 and Dlx expression regulates cell sorting into appropriate placodal domains.
Collapse
Affiliation(s)
- Sujata Bhattacharyya
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
342
|
Park BK, Sperber SM, Choudhury A, Ghanem N, Hatch GT, Sharpe PT, Thomas BL, Ekker M. Intergenic enhancers with distinct activities regulate Dlx gene expression in the mesenchyme of the branchial arches. Dev Biol 2004; 268:532-45. [PMID: 15063187 DOI: 10.1016/j.ydbio.2004.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Revised: 12/19/2003] [Accepted: 01/09/2004] [Indexed: 11/19/2022]
Abstract
The vertebrate Dlx genes, generally organized as tail-to-tail bigene clusters, are expressed in the branchial arch epithelium and mesenchyme with nested proximodistal expression implicating a code that underlies the fates of jaws. Little is known of the regulatory architecture that is responsible for Dlx gene expression in developing arches. We have identified two distinct cis-acting regulatory sequences, I12a and I56i, in the intergenic regions of the Dlx1/2 and Dlx5/6 clusters that act as enhancers in the arch mesenchyme. LacZ transgene expression containing I12a is restricted to a subset of Dlx-expressing ectomesenchyme in the first arch. The I56i enhancer is active in a broader domain in the first arch mesenchyme. Expression of transgenes containing either the I12a or the I56i enhancers is dependent on the presence of epithelium between the onset of their expression at E9-10 until independence at E11. Both enhancers positively respond to FGF8 and FGF9; however, the responses of the reporter transgenes were limited to their normal domain of expression. BMP4 had a negative effect on expression of both transgenes and counteracted the effects of FGF8. Furthermore, bosentan, a pharmacological inhibitor of Endothelin-1 signaling caused a loss of I56i-lacZ expression in the most distal aspects of the expression domain, corresponding to the area of Dlx-6 expression previously shown to be under the control of Endothelin-1. Thus, the combinatorial branchial arch expression of Dlx genes is achieved through interactions between signaling pathways and intrinsic cellular factors. I56i drives the entire expression of Dlx5/6 in the first arch and contains necessary sequences for regulation by at least three separate pathways, whereas I12a only replicates a small domain of endogenous expression, regulated in part by BMP-4 and FGF-8.
Collapse
Affiliation(s)
- Byung K Park
- Ottawa Health Research Institute at the Ottawa Hospital, Ottawa, ON, Canada K1Y 4E9
| | | | | | | | | | | | | | | |
Collapse
|
343
|
Perera M, Merlo GR, Verardo S, Paleari L, Corte G, Levi G. Defective neuronogenesis in the absence of Dlx5. Mol Cell Neurosci 2004; 25:153-61. [PMID: 14962748 DOI: 10.1016/j.mcn.2003.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Revised: 09/23/2003] [Accepted: 10/07/2003] [Indexed: 11/24/2022] Open
Abstract
Dlx genes play an important role in the control of the development of the central nervous system (CNS). Single or compound inactivation of Dlx1, Dlx2, or Dlx5 in the mouse causes defects of neuronal migration and differentiation. Dlx5, in particular, is essential for the correct development of the olfactory system. Targeted inactivation of Dlx1 and Dlx2 in the mouse results in abnormal neuronal differentiation in the embryonic subcortical forebrain and is associated to the loss of Dlx5 and Dlx6 expression. So far, however, it has been impossible to investigate the role of Dlx genes on late neurogenesis, as their inactivation leads to perinatal death. We have now generated cultures of neural stem cells (NSCs) derived from embryonic and newborn Dlx5-null mice, and we have compared their capacity to differentiate in vitro to that of equivalent cells derived from normal littermates. We show here that in the absence of Dlx5, NSCs derived from newborn animals have a severely reduced capacity to generate neurons. This is not the case for cells derived from E12.5 embryos. Forced expression of Dlx5 in cultures of newborn mutant NSCs fully restores their neuronogenic potential. Our data suggest that Dlx5 is essential for secondary (postnatal) neuronogenesis.
Collapse
Affiliation(s)
- Marzia Perera
- Laboratorio di Biologia dello Sviluppo, Istituto Nazionale per la Ricerca sul Cancro-IST, 16132 Genova, Italy
| | | | | | | | | | | |
Collapse
|
344
|
Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 2004; 36:636-41. [PMID: 15146185 DOI: 10.1038/ng1363] [Citation(s) in RCA: 445] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 04/28/2004] [Indexed: 11/09/2022]
Abstract
Cornelia de Lange syndrome (CdLS) is a multiple malformation disorder characterized by dysmorphic facial features, mental retardation, growth delay and limb reduction defects. We indentified and characterized a new gene, NIPBL, that is mutated in individuals with CdLS and determined its structure and the structures of mouse, rat and zebrafish homologs. We named its protein product delangin. Vertebrate delangins have substantial homology to orthologs in flies, worms, plants and fungi, including Scc2-type sister chromatid cohesion proteins, and D. melanogaster Nipped-B. We propose that perturbed delangin function may inappropriately activate DLX genes, thereby contributing to the proximodistal limb patterning defects in CdLS. Genome analyses typically identify individual delangin or Nipped-B-like orthologs in diploid animal and plant genomes. The evolution of an ancestral sister chromatid cohesion protein to acquire an additional role in developmental gene regulation suggests that there are parallels between CdLS and Roberts syndrome.
Collapse
Affiliation(s)
- Emma T Tonkin
- Institute of Human Genetics, University of Newcastle, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | | | | | | | | |
Collapse
|
345
|
Poirier K, Van Esch H, Friocourt G, Saillour Y, Bahi N, Backer S, Souil E, Castelnau-Ptakhine L, Beldjord C, Francis F, Bienvenu T, Chelly J. Neuroanatomical distribution of ARX in brain and its localisation in GABAergic neurons. ACTA ACUST UNITED AC 2004; 122:35-46. [PMID: 14992814 DOI: 10.1016/j.molbrainres.2003.11.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2003] [Indexed: 10/26/2022]
Abstract
Recent human genetics approaches identified the Aristaless-related homeobox (ARX) gene as the causative gene in X-linked infantile spasms, Partington syndrome, and non-syndromic mental retardation as well as in forms of lissencephaly with abnormal genitalia. The ARX predicted protein belongs to a large family of homeoproteins and is characterised by a C-terminal Aristaless domain and an octapeptide domain near the N-terminus. In order to learn more about ARX function, we have studied in detail Arx expression in the central nervous system during mouse embryonic development as well as in the adult. During early stages of development, Arx is expressed in a significant proportion of neurons in the cortex, the striatum, the ganglionic eminences and also in the spinal cord. In the adult, expression of Arx is still present and restricted to regions that are known to be rich in GABAergic neurons such as the amygdala and the olfactory bulb. A possible role for Arx in this type of neurons is further reinforced by the expression of Arx in a subset of GABAergic interneurons in young and mature primary cultures of cortical neuronal cells as well as in vivo. Moreover, these data could explain the occurrence of seizures in the great majority of patients with an ARX mutation, due to mislocalisation or dysfunction of GABAergic neurons. We also performed ARX wild-type and mutant over-expression experiments and found that the different ARX mutations tested did not modify the morphology of the cells. Moreover, no abnormal cell death or protein aggregation was observed, hence suggesting that more subtle pathogenic mechanisms are involved.
Collapse
Affiliation(s)
- Karine Poirier
- Laboratoire de Génétique et de Physiopathologie des Retards Mentaux, Institut Cochin. Inserm U567, Université Paris V. 24, rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
346
|
Cheng L, Arata A, Mizuguchi R, Qian Y, Karunaratne A, Gray PA, Arata S, Shirasawa S, Bouchard M, Luo P, Chen CL, Busslinger M, Goulding M, Onimaru H, Ma Q. Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nat Neurosci 2004; 7:510-7. [PMID: 15064766 DOI: 10.1038/nn1221] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 03/08/2004] [Indexed: 01/03/2023]
Abstract
Glutamatergic and GABAergic neurons mediate much of the excitatory and inhibitory neurotransmission, respectively, in the vertebrate nervous system. The process by which developing neurons select between these two cell fates is poorly understood. Here we show that the homeobox genes Tlx3 and Tlx1 determine excitatory over inhibitory cell fates in the mouse dorsal spinal cord. First, we found that Tlx3 was required for specification of, and expressed in, glutamatergic neurons. Both generic and region-specific glutamatergic markers, including VGLUT2 and the AMPA receptor Gria2, were absent in Tlx mutant dorsal horn. Second, spinal GABAergic markers were derepressed in Tlx mutants, including Pax2 that is necessary for GABAergic differentiation, Gad1/2 and Viaat that regulate GABA synthesis and transport, and the kainate receptors Grik2/3. Third, ectopic expression of Tlx3 was sufficient to suppress GABAergic differentiation and induce formation of glutamatergic neurons. Finally, excess GABA-mediated inhibition caused dysfunction of central respiratory circuits in Tlx3 mutant mice.
Collapse
Affiliation(s)
- Leping Cheng
- The Dana-Farber Cancer Institute, and Department of Neurobiology, Harvard Medical School, 1 Jimmy Fund Way, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
347
|
Abstract
During development of higher organisms, most patterning events occur in growing tissues. Thus, unraveling the mechanism of how growing tissues are patterned into final morphologies has been an essential subject of developmental biology. Limb or appendage development in both vertebrates and invertebrates has attracted great attention from many researchers for a long time, because they involve almost all developmental processes required for tissue patterning, such as generation of the positional information by morphogen, subdivision of the tissue into distinct parts according to the positional information, localized cell growth and proliferation, and control of adhesivity, movement and shape changes of cells. The Drosophila leg development is a good model system, upon which a substantial amount of knowledge has been accumulated. In this review, the current understanding of the mechanism of Drosophila leg development is described.
Collapse
Affiliation(s)
- Tetsuya Kojima
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
348
|
Gangemi RMR, Perera M, Corte G. Regulatory genes controlling cell fate choice in embryonic and adult neural stem cells. J Neurochem 2004; 89:286-306. [PMID: 15056273 DOI: 10.1046/j.1471-4159.2004.02310.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural stem cells are the most immature progenitor cells in the nervous system and are defined by their ability to self-renew by symmetric division as well as to give rise to more mature progenitors of all neural lineages by asymmetric division (multipotentiality). The interest in neural stem cells has been growing in the past few years following the demonstration of their presence also in the adult nervous system of several mammals, including humans. This observation implies that the brain, once thought to be entirely post-mitotic, must have at least a limited capacity for self-renewal. This raises the possibility that the adult nervous system may still have the necessary plasticity to undergo repair of inborn defects and acquired injuries, if ways can be found to exploit the potential of neural stem cells (either endogenous or derived from other sources) to replace damaged or defective cells. A full understanding of the molecular mechanisms regulating generation and maintenance of neural stem cells, their choice between different differentiation programmes and their migration properties is essential if these cells are to be used for therapeutic applications. Here, we summarize what is currently known of the genes and the signalling pathways involved in these mechanisms.
Collapse
|
349
|
Rouzankina I, Abate-Shen C, Niswander L. Dlx genes integrate positive and negative signals during feather bud development. Dev Biol 2004; 265:219-33. [PMID: 14697365 DOI: 10.1016/j.ydbio.2003.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the embryonic chicken skin, feather buds and the intervening interbud tissue form in a reiterated and sequential pattern that is dependent on interactions between the epidermis and dermis. Feather promoting and inhibiting signals such as fibroblast growth factors (FGF) and bone morphogenetic proteins (BMP), respectively, direct the formation of this periodic pattern. However, the transcription factors that mediate the response to these signals and transmit this information to downstream effector genes are largely unknown. Here we have explored the DLX transcription factors as candidate transcriptional mediators downstream of the described feather patterning signals. We show that several Dlx members are expressed in the dermis and epidermis of the developing feather buds and their expression is induced in embryonic chick skin by the ectopic activation of BMP and FGF signaling. Misexpression of Dlx in the chick skin leads to both feather loss and feather bud fusions, suggesting that DLX proteins play a negative as well as a positive role in feather development. Moreover, DLX regulates the expression of NCAM and tenascin, molecules that are important for feather bud initiation as well as bud outgrowth and morphogenesis. Our results suggest that DLX transcription factors serve to integrate and transduce feather patterning signals to downstream effector molecules.
Collapse
Affiliation(s)
- Iaroslava Rouzankina
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan-Kettering Institute and Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
350
|
Stuckenholz C, Ulanch PE, Bahary N. From guts to brains: using zebrafish genetics to understand the innards of organogenesis. Curr Top Dev Biol 2004; 65:47-82. [PMID: 15642379 DOI: 10.1016/s0070-2153(04)65002-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Carsten Stuckenholz
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|