301
|
Jackson SK, Abate W, Tonks AJ. Lysophospholipid acyltransferases: novel potential regulators of the inflammatory response and target for new drug discovery. Pharmacol Ther 2008; 119:104-14. [PMID: 18538854 DOI: 10.1016/j.pharmthera.2008.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular and biochemical analyses of membrane phospholipids have revealed that, in addition to their physico-chemical properties, the metabolites of phospholipids play a crucial role in the recognition, signalling and responses of cells to a variety of stimuli. Such responses are mediated in large part by the removal and/or addition of different acyl chains to provide different phospholipid molecular species. The reacylation reactions, catalysed by specific acyltransferases control phospholipid composition and the availability of the important mediators free arachidonic acid and lysophospholipids. Lysophospholipid acyltransferases are therefore key control points for cellular responses to a variety of stimuli including inflammation. Regulation or manipulation of lysophospholipid acyltransferases may thus provide important mechanisms for novel anti-inflammatory therapies. This review will highlight mammalian lysophospholipid acyltransferases with particular reference to the potential role of lysophosphatidylcholine acyltransferase and its substrates in sepsis and other inflammatory conditions and as a potential target for novel anti-inflammatory therapies.
Collapse
Affiliation(s)
- Simon K Jackson
- Centre for Research in Biomedicine, Faculty of Health and Life Sciences, Frenchay Campus, University of the West of England, Bristol, UK.
| | | | | |
Collapse
|
302
|
Blanco AM, Perez-Arago A, Fernandez-Lizarbe S, Guerri C. Ethanol mimics ligand-mediated activation and endocytosis of IL-1RI/TLR4 receptors via lipid rafts caveolae in astroglial cells. J Neurochem 2008; 106:625-39. [PMID: 18419766 DOI: 10.1111/j.1471-4159.2008.05425.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have recently reported that ethanol-induced inflammatory processes in the brain and glial cells are mediated via the activation of interleukin-1 beta receptor type I (IL-1RI)/toll-like receptor type 4 (TLR4) signalling. The mechanism(s) by which ethanol activates these receptors in astroglial cells remains unknown. Recently, plasma membrane microdomains, lipid rafts, have been identified as platforms for receptor signalling and, in astrocytes, rafts/caveolae constitute an important integrators of signal events and trafficking. Here we show that stimulation of astrocytes with IL-1beta, lipopolysaccharide or ethanol (10 and 50 mM), triggers the translocation of IL-1RI and/or TLR4 into lipid rafts caveolae-enriched fractions, promoting the recruitment of signalling molecules (phospho-IL-1R-associated kinase and phospho-extracellular regulated-kinase) into these microdomains. With confocal microscopy, we further demonstrate that IL-1RI is internalized by caveolar endocytosis via enlarged caveosomes organelles upon IL-1beta or ethanol treatment, which sorted their IL-1RI cargo into the endoplasmic reticulum-Golgi compartment and into the nucleus of astrocytes. In short, our findings demonstrate that rafts/caveolae are critical for IL-1RI and TLR4 signalling in astrocytes, and reveal a novel mechanism by which ethanol, by interacting with lipid rafts caveolae, promotes IL-1RI and TLR4 receptors recruitment, triggering their endocytosis via caveosomes and downstream signalling stimulation. These results suggest that TLRs receptors are important targets of ethanol-induced inflammatory damage in the brain.
Collapse
Affiliation(s)
- Ana M Blanco
- Department of Cellular Pathology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | |
Collapse
|
303
|
Jackson SK, Abate W, Parton J, Jones S, Harwood JL. Lysophospholipid metabolism facilitates Toll-like receptor 4 membrane translocation to regulate the inflammatory response. J Leukoc Biol 2008; 84:86-92. [PMID: 18403647 DOI: 10.1189/jlb.0907601] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sepsis, an overwhelming inflammatory response to infection, is a major cause of morbidity and mortality worldwide and has no specific therapy. Phospholipid metabolites, such as lysophospholipids, have been shown to regulate inflammatory responses in sepsis, although their mechanism of action is not well understood. The phospholipid-metabolizing enzymes, lysophospholipid acyltransferases, control membrane phospholipid composition, function, and the inflammatory responses of innate immune cells. Here, we show that lysophosphatidylcholine acyltransferase (LPCAT) regulates inflammatory responses to LPS and other microbial stimuli. Specific inhibition of LPCAT down-regulated inflammatory cytokine production in monocytes and epithelial cells by preventing translocation of TLR4 into membrane lipid raft domains. Our observations demonstrate a new regulatory mechanism that facilitates the innate immune responses to microbial molecular patterns and provide a basis for the anti-inflammatory activity observed in many phospholipid metabolites. This provides the possibility of the development of new classes of anti-inflammatory and antisepsis agents.
Collapse
Affiliation(s)
- Simon K Jackson
- Centre for Research in Biomedicine, University of the West of England, Bristol, BS16 1QY, UK.
| | | | | | | | | |
Collapse
|
304
|
Gehrmann M, Liebisch G, Schmitz G, Anderson R, Steinem C, De Maio A, Pockley G, Multhoff G. Tumor-specific Hsp70 plasma membrane localization is enabled by the glycosphingolipid Gb3. PLoS One 2008; 3:e1925. [PMID: 18382692 PMCID: PMC2271151 DOI: 10.1371/journal.pone.0001925] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 02/28/2008] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Human tumors differ from normal tissues in their capacity to present Hsp70, the major stress-inducible member of the HSP70 family, on their plasma membrane. Membrane Hsp70 has been found to serve as a prognostic indicator of overall patient survival in leukemia, lower rectal and non small cell lung carcinomas. Why tumors, but not normal cells, present Hsp70 on their cell surface and the impact of membrane Hsp70 on cancer progression remains to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS Although Hsp70 has been reported to be associated with cholesterol rich microdomains (CRMs), the partner in the plasma membrane with which Hsp70 interacts has yet to be identified. Herein, global lipid profiling demonstrates that Hsp70 membrane-positive tumors differ from their membrane-negative counterparts by containing significantly higher amounts of globotriaoslyceramide (Gb3), but not of other lipids such as lactosylceramide (LacCer), dodecasaccharideceramide (DoCer), galactosylceramide (GalCer), ceramide (Cer), or the ganglioside GM1. Apart from germinal center B cells, normal tissues are Gb3 membrane-negative. Co-localization of Hsp70 and Gb3 was selectively determined in Gb3 membrane-positive tumor cells, and these cells were also shown to bind soluble Hsp70-FITC protein from outside in a concentration-dependent manner. Given that the latter interaction can be blocked by a Gb3-specific antibody, and that the depletion of globotriaosides from tumors reduces the amount of membrane-bound Hsp70, we propose that Gb3 is a binding partner for Hsp70. The in vitro finding that Hsp70 predominantly binds to artificial liposomes containing Gb3 (PC/SM/Chol/Gb3, 17/45/33/5) confirms that Gb3 is an interaction partner for Hsp70. CONCLUSIONS/SIGNIFICANCE These data indicate that the presence of Gb3 enables anchorage of Hsp70 in the plasma membrane of tumors and thus they might explain tumor-specific membrane localization of Hsp70.
Collapse
Affiliation(s)
- Mathias Gehrmann
- Department of Radiotherapy and Radiooncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
305
|
De Smedt-Peyrusse V, Sargueil F, Moranis A, Harizi H, Mongrand S, Layé S. Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. J Neurochem 2008; 105:296-307. [DOI: 10.1111/j.1471-4159.2007.05129.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
306
|
Gao Q, Zhao J, Song L, Qiu L, Yu Y, Zhang H, Ni D. Molecular cloning, characterization and expression of heat shock protein 90 gene in the haemocytes of bay scallop Argopecten irradians. FISH & SHELLFISH IMMUNOLOGY 2008; 24:379-385. [PMID: 18282767 DOI: 10.1016/j.fsi.2007.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 08/22/2007] [Accepted: 08/31/2007] [Indexed: 05/25/2023]
Abstract
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that plays key roles in the folding, maintenance of structural integrity and regulation of a subset of cytosolic proteins. In the present study, the cDNA of Argopecten irradians HSP90 (designated AiHSP90) was cloned by the combination of homology cloning and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of AiHSP90 was of 2669 bp, including an open reading frame (ORF) of 2175 bp encoding a polypeptide of 724 amino acids with predicted molecular weight of 83.08 kDa and theoretical isoelectric point of 4.81. BLAST analysis revealed that AiHSP90 shared high similarity with other known HSP90s, and the five conserved amino acid blocks defined as HSP90 protein family signatures were also identified in AiHSP90, which indicated that AiHSP90 should be a cytosolic member of the HSP90 family. Fluorescent real-time quantitative PCR was employed to examine the expression pattern of AiHSP90 mRNA in haemocytes of scallops challenged by Gram-negative bacteria Vibrio anguillarum and Gram-positive bacteria Micrococcus luteus. In both bacterial challenged groups, the relative expression level of AiHSP90 transcript was up-regulated and reached maximal level at 9h after injection, and then dropped progressively to the original level at about 48 h post challenge. The results indicated that AiHSP90 was potentially involved in the immune responses against bacteria challenge in scallop A. irradian.
Collapse
Affiliation(s)
- Qiang Gao
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | | | | | | | |
Collapse
|
307
|
Shen W, Stone K, Jales A, Leitenberg D, Ladisch S. Inhibition of TLR Activation and Up-Regulation of IL-1R-Associated Kinase-M Expression by Exogenous Gangliosides. THE JOURNAL OF IMMUNOLOGY 2008; 180:4425-32. [DOI: 10.4049/jimmunol.180.7.4425] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
308
|
Horváth I, Multhoff G, Sonnleitner A, Vígh L. Membrane-associated stress proteins: more than simply chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1653-64. [PMID: 18371297 DOI: 10.1016/j.bbamem.2008.02.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/25/2008] [Accepted: 02/25/2008] [Indexed: 01/13/2023]
Abstract
The protein- and/or lipid-mediated association of chaperone proteins to membranes is a widespread phenomenon and implicated in a number of physiological and pathological events that were earlier partially or completely overlooked. A temporary association of certain HSPs with membranes can re-establish the fluidity and bilayer stability and thereby restore the membrane functionality during stress conditions. The fluidity and microdomain organization of membranes are decisive factors in the perception and transduction of stresses into signals that trigger the activation of specific HS genes. Conversely, the membrane association of HSPs may result in the inactivation of membrane-perturbing signals, thereby switch off the heat shock response. Interactions between certain HSPs and specific lipid microdomains ("rafts") might be a previously unrecognized means for the compartmentalization of HSPs to specific signaling platforms, where key signaling proteins are known to be concentrated. Any modulations of the membranes, especially the raft-lipid composition of the cells can alter the extracellular release and thus the immuno-stimulatory activity of certain HSPs. Reliable techniques, allowing mapping of the composition and dynamics of lipid microdomains and simultaneously the spatio-temporal localization of HSPs in and near the plasma membrane can provide suitable means with which to address fundamental questions, such as how HSPs are transported to and translocated through the plasma membrane. The possession of such information is critical if we are to target the membrane association principles of HSPs for successful drug development in most various diseases.
Collapse
Affiliation(s)
- Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, Hungary
| | | | | | | |
Collapse
|
309
|
Cavaleiro R, Brunn GJ, Albuquerque AS, Victorino RMM, Platt JL, Sousa AE. Monocyte-mediated T cell suppression by HIV-2 envelope proteins. Eur J Immunol 2008; 37:3435-44. [PMID: 18000954 DOI: 10.1002/eji.200737511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV-2 is associated with an attenuated form of HIV disease. We investigate here the immunosuppressive effects of the HIV-2 envelope protein, gp105. We found that gp105 suppresses activation of T cells through a monocyte-mediated mechanism. Suppression of T cell activation by gp105 depends on contact between monocytes and T cells, but not on CD4+CD25+ T cells. The TLR4 pathway is likely involved, since gp105 activates TLR4 signaling and induces TNF-alpha production by monocytes. Immunosuppression is viewed as the main pathophysiologic consequence of infection by HIV. However, the main immunologic defect caused by HIV, depletion of T cells, requires T cell activation. Our findings are consistent with a new concept that HIV-2 envelope proteins act on monocytes to suppress T cell activation and that this property may contribute to the benign course of HIV-2. We hypothesize that the HIV-2 envelope immunosuppressive properties limit bursts of T cell activation, thus reducing viremia and contributing to the slow rate of disease progression that characterizes HIV-2 disease.
Collapse
Affiliation(s)
- Rita Cavaleiro
- Unidade de Imunologia Clínica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
310
|
Escribá PV, González-Ros JM, Goñi FM, Kinnunen PKJ, Vigh L, Sánchez-Magraner L, Fernández AM, Busquets X, Horváth I, Barceló-Coblijn G. Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med 2008; 12:829-75. [PMID: 18266954 PMCID: PMC4401130 DOI: 10.1111/j.1582-4934.2008.00281.x] [Citation(s) in RCA: 296] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and cytosolic organelles but they also display a wide variety of important functions previously ascribed to the activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However, mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as messengers or regulators of signal transduction. Moreover, their alteration has been associated with the development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translational modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding are all involved in the associations among membrane proteins and lipids. The present study reviews these interactions from the molecular and biomedical point of view, and the effects of their modulation on the physiological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influence of lipids on protein function is reflected in the possibility to use these molecular species as targets for therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other diseases, using a new approach called membrane-lipid therapy.
Collapse
Affiliation(s)
- Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, Dept of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Osterloh A, Veit A, Gessner A, Fleischer B, Breloer M. Hsp60-mediated T cell stimulation is independent of TLR4 and IL-12. Int Immunol 2008; 20:433-43. [DOI: 10.1093/intimm/dxn003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
312
|
Ding T, Li Z, Hailemariam T, Mukherjee S, Maxfield FR, Wu MP, Jiang XC. SMS overexpression and knockdown: impact on cellular sphingomyelin and diacylglycerol metabolism, and cell apoptosis. J Lipid Res 2008; 49:376-85. [DOI: 10.1194/jlr.m700401-jlr200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
313
|
Pei J, Turse JE, Ficht TA. Evidence of Brucella abortus OPS dictating uptake and restricting NF-kappaB activation in murine macrophages. Microbes Infect 2008; 10:582-90. [PMID: 18457975 DOI: 10.1016/j.micinf.2008.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 12/08/2007] [Accepted: 01/11/2008] [Indexed: 11/16/2022]
Abstract
Smooth Brucella abortus S2308 is virulent while rough derivatives are attenuated. Intracellular killing is often blamed for these differences. In the studies described, uptake kinetics and interaction of S2308 and S2308 manBA::Tn5 (CA180) rough mutants with macrophages were investigated. The results revealed that smooth B. abortus was rapidly internalized, achieving a maximum level in less than 5 min without additional uptake over the next 30 min. In contrast, continued uptake of the rough mutant was observed and only achieves a maximum level after 30 min. The results were confirmed by the differences in F-actin polymerization, lipid raft staining, early endosome colocalization and electron microscopic observations after smooth and rough Brucella infection. We also demonstrated for the first time that uptake of S2308, but not rough mutant CA180 was PI3-kinase and toll-like receptor 4 (TLR4) dependent. Differences in uptake were associated with differences in macrophage activation with regard to NF-kappaB translocation and cytokine production. These results provide evidence that the presence of B. abortus OPS dictates the interactions between Brucella and specific cell surface receptors minimizing macrophage activation and enhancing Brucella survival and/or persistence.
Collapse
Affiliation(s)
- Jianwu Pei
- Department of Veterinary Pathobiology, Texas A&M University and Texas Agricultural Experiment Station, College Station, TX 77843-4467, USA
| | | | | |
Collapse
|
314
|
Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, Devera ME, Liang X, Tör M, Billiar T. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 2008; 220:60-81. [PMID: 17979840 DOI: 10.1111/j.1600-065x.2007.00579.x] [Citation(s) in RCA: 455] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The response to pathogens and damage in plants and animals involves a series of carefully orchestrated, highly evolved, molecular mechanisms resulting in pathogen resistance and wound healing. In metazoans, damage- or pathogen-associated molecular pattern molecules (DAMPs, PAMPs) execute precise intracellular tasks and are also able to exert disparate functions when released into the extracellular space. The emergent consequence for both inflammation and wound healing of the abnormal extracellular persistence of these factors may underlie many clinical disorders. DAMPs/PAMPs are recognized by hereditable receptors including the Toll-like receptors, the NOD1-like receptors and retinoic-acid-inducible gene I-like receptors, as well as the receptor for advanced glycation end products. These host molecules 'sense' not only pathogens but also misfolded/glycated proteins or exposed hydrophobic portions of molecules, activating intracellular cascades that lead to an inflammatory response. Equally important are means to not only respond to these molecules but also to eradicate them. We have speculated that their destruction through oxidative mechanisms normally exerted by myeloid cells, such as neutrophils and eosinophils, or their persistence in the setting of pathologic extracellular reducing environments, maintained by exuberant necrotic cell death and/or oxidoreductases, represent important molecular means enabling chronic inflammatory states.
Collapse
Affiliation(s)
- Michael T Lotze
- Department of Surgery, G.27A Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Critical involvement of pneumolysin in production of interleukin-1alpha and caspase-1-dependent cytokines in infection with Streptococcus pneumoniae in vitro: a novel function of pneumolysin in caspase-1 activation. Infect Immun 2008; 76:1547-57. [PMID: 18195026 DOI: 10.1128/iai.01269-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pneumolysin is a pore-forming cytolysin known as a major virulence determinant of Streptococcus pneumoniae. This protein toxin has also been shown to activate the Toll-like receptor 4 (TLR4) signaling pathway. In this study, a mutant S. pneumoniae strain deficient in pneumolysin (Deltaply) and a recombinant pneumolysin protein (rPLY) were constructed. Upon infection of macrophages in vitro, the ability to induce the production of interleukin-1alpha (IL-1alpha), IL-1beta, and IL-18 was severely impaired in the Deltaply mutant, whereas there was no marked difference in the induction of tumor necrosis factor alpha (TNF-alpha) and IL-12p40 between the wild type and the Deltaply mutant of S. pneumoniae. When macrophages were stimulated with rPLY, the production of IL-1alpha, IL-1beta, and IL-18 was strongly induced in a TLR4-dependent manner, whereas lipopolysaccharide, a canonical TLR4 agonist, hardly induced these cytokines. In contrast, lipopolysaccharide was more potent than rPLY in inducing the production of TNF-alpha, IL-6, and IL-12p40, the cytokines requiring no caspase activation. Activation of caspase-1 was observed in macrophages stimulated with rPLY but not in those stimulated with lipopolysaccharide, and the level of activation was higher in macrophages infected with wild-type S. pneumoniae than in those infected with the Deltaply mutant. These results clearly indicate that pneumolysin plays a key role in the host response to S. pneumoniae, particularly in the induction of caspase-1-dependent cytokines.
Collapse
|
316
|
Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization. Biochem Pharmacol 2008; 75:494-502. [DOI: 10.1016/j.bcp.2007.08.033] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Revised: 08/25/2007] [Accepted: 08/29/2007] [Indexed: 11/18/2022]
|
317
|
Higuchi M, Matsuo A, Shingai M, Shida K, Ishii A, Funami K, Suzuki Y, Oshiumi H, Matsumoto M, Seya T. Combinational recognition of bacterial lipoproteins and peptidoglycan by chicken Toll-like receptor 2 subfamily. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:147-55. [PMID: 17614130 DOI: 10.1016/j.dci.2007.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 04/27/2007] [Accepted: 05/15/2007] [Indexed: 05/16/2023]
Abstract
Human Toll-like receptor 2 (TLR2) subfamily recognizes bacterial lipoproteins (BLP) and peptidoglycan (PGN). According to the genome information, chicken has structural orthologs of TLRs1 and 2, in addition to TLRs3, 4, 5 and 7. Chicken has two additional TLRs, TLR15 and TLR21, whose orthologs human lacks. The chicken (ch)TLR1 and 2 genes are individually duplicated to encode for four different proteins, chTLR1-1, 1-2, 2-1 and 2-2, of the TLR2 subfamily. Here we investigated the functional profile of these TLR2 subfamily proteins of chicken. By NF-kappaB reporter assay using HEK293 cells, we found that chTLR2-1 and chTLR1-2 cooperatively signal the presence of PGN. A combination of chTLR2-1 and chTLR1-2 also most efficiently recognized diacylated BLP, macrophage-activating lipopeptide 2kDa (Malp-2), while the combination of chTLR2-1 and chTLR1-1 failed to recognize Malp-2. All combinations, however, recognized triacylated BLP, Pam3. Consistent with these results, human TLR2-stimulating mycobacteria preparations, BCG-cell wall and cell lysate of Mycobacterium avium, induced activation of NF-kappaB in cells expressing chTLR2-1 and 1-2 and to lesser extents, cells with chTLR2-2 and either of chTLR1. Strikingly, expression of either of these alone did not activate the reporter for NF-kappaB. These chTLRs are likely to have the combination functional feature as in the human TLR2 subfamily. Confocal and immunoprecipitation analyses of human cell transfectants showed that they cluster on the cell surface by a physical molecular association, causing all of them to merge and coprecipitate. These results suggest that chTLR2 subfamily members discriminate between their ligands by combinational events.
Collapse
Affiliation(s)
- Megumi Higuchi
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Authier H, Cassaing S, Coste A, Balard P, Gales A, Berry A, Bans V, Bessières MH, Pipy B. Interleukin-13 primes iNO synthase expression induced by LPS in mouse peritoneal macrophages. Mol Immunol 2008; 45:235-43. [PMID: 17568676 DOI: 10.1016/j.molimm.2007.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 04/02/2007] [Accepted: 04/06/2007] [Indexed: 01/22/2023]
Abstract
Th2 cytokines such as interleukin-13 (IL-13) have both, stimulatory and inhibitory effects on effector functions of macrophages. Reactive nitrogen species are classically induced in Th1 cytokines and/or lipopolysaccharides (LPS) activated macrophages and this response is inhibited by IL-13. In contrast, IL-13 primes macrophages to produce NO in response to LPS when IL-13 treatment happens prior to LPS exposure. This mechanism occurs through a complex signalling pathway, which involves the scavenger receptor CD36, the LPS receptor CD14 and the nuclear receptor PPARgamma. The enhancement of NO production is the consequence of iNOS induction at mRNA and protein levels. The increase of the NO production induced by LPS in IL-13 pre-treated macrophages is found to potentiate the inhibition of Toxoplasma gondii intracellular replication. These results reveal a novel IL-13 signalling pathway that primes the antimicrobial activity of macrophages induced by LPS caused by overexpression of the iNOS-NO axis.
Collapse
Affiliation(s)
- Hélène Authier
- Laboratoire des macrophages, Médiateurs de l'Inflammation et Interactions Cellulaires, Université Paul Sabatier Toulouse III, EA2405, INSERM IFR31 BP84225, 31432 Toulouse, Cedex 4, France
| | | | | | | | | | | | | | | | | |
Collapse
|
319
|
De Schepper S, De Ketelaere A, Bannerman DD, Paape MJ, Peelman L, Burvenich C. The toll-like receptor-4 (TLR-4) pathway and its possible role in the pathogenesis of Escherichia coli mastitis in dairy cattle. Vet Res 2007; 39:5. [PMID: 18073092 DOI: 10.1051/vetres:2007044] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 08/02/2007] [Indexed: 12/30/2022] Open
Abstract
Mastitis is one of the most costly production diseases in the dairy industry that is caused by a wide array of microorganisms. In this review, we focus on the Gram-negative Escherichia coli infections that often occur at periods when the innate immune defence mechanisms are impaired (i.e., parturition through the first 60 days of lactation). There is substantial evidence demonstrating that at these periods, the expected influx of polymorphonuclear neutrophil leukocytes (PMN) into the mammary gland is delayed during inflammation after intramammary infection with E. coli. Here, we provide some hypotheses on the potential mechanisms of action on how the disease may develop under circumstances of immunosuppression, and describe the potential involvement of the toll-like receptor-4 signal transduction pathway in the pathogenesis of E. coli mastitis. In addition, some ideas are proposed to help prevent E. coli mastitis and potentially other diseases caused by Gram-negative infections in general.
Collapse
Affiliation(s)
- Stefanie De Schepper
- Laboratory of Physiology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | | | | | |
Collapse
|
320
|
Cheon IS, Woo SS, Kang SS, Im J, Yun CH, Chung DK, Park DK, Han SH. Peptidoglycan-mediated IL-8 expression in human alveolar type II epithelial cells requires lipid raft formation and MAPK activation. Mol Immunol 2007; 45:1665-73. [PMID: 17997161 DOI: 10.1016/j.molimm.2007.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 09/28/2007] [Accepted: 10/01/2007] [Indexed: 02/02/2023]
Abstract
Staphylococcus aureus, a major sepsis-causing Gram-positive bacterium, invades pulmonary epithelial cells and causes lung diseases. In the lung, alveolar type II epithelial cells play an important role in innate immunity by secreting chemokines and antimicrobial peptides upon bacterial infection whereas type I cells mainly function in gas-exchange. In this study, we investigated the ability of S. aureus peptidoglycan (PGN) to induce expression of a chemokine, IL-8, in a human alveolar type II epithelial cell line, A549. PGN induces IL-8 mRNA and protein expression in a dose- and time-dependent manner. Supplementation of soluble CD14 further enhanced the PGN-induced IL-8 expression. Interestingly, PGN-induced IL-8 expression was inhibited by nystatin, a specific inhibitor for lipid rafts, but not by chlorpromazine, a specific inhibitor for clathrin-coated pits. Furthermore, PGN-induced IL-8 expression was attenuated by inhibitors for MAP kinases such as ERK, p38 kinase, and JNK/SAPK, whereas no inhibitory effect was observed by inhibitors for reactive oxygen species or protein kinase C. Electrophoretic mobility shift assay demonstrates that PGN increased the DNA binding of the transcription factors, AP-1 and NF-kappaB while minimally, NF-IL6, all of which are involved in the transcription of IL-8. Taken together, these results suggest that PGN induces IL-8 expression in a CD14-enhanced manner in human alveolar type II epithelial cells, through the formation of lipid rafts and the activation of MAP kinases, which ultimately leads to activation of AP-1, NF-kappaB, and NF-IL6.
Collapse
Affiliation(s)
- In Su Cheon
- Department of Oral Microbiology & Immunology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
321
|
Li W, Ashok M, Li J, Yang H, Sama AE, Wang H. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PLoS One 2007; 2:e1153. [PMID: 17987129 PMCID: PMC2048740 DOI: 10.1371/journal.pone.0001153] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 10/16/2007] [Indexed: 11/18/2022] Open
Abstract
Background The pathogenesis of sepsis is mediated in part by bacterial endotoxin, which stimulates macrophages/monocytes to sequentially release early (e.g., TNF, IL-1, and IFN-γ) and late (e.g., HMGB1) pro-inflammatory cytokines. Our recent discovery of HMGB1 as a late mediator of lethal sepsis has prompted investigation for development of new experimental therapeutics. We previously reported that green tea brewed from the leaves of the plant Camellia sinensis is effective in inhibiting endotoxin-induced HMGB1 release. Methods and Findings Here we demonstrate that its major component, (-)-epigallocatechin-3-gallate (EGCG), but not catechin or ethyl gallate, dose-dependently abrogated HMGB1 release in macrophage/monocyte cultures, even when given 2–6 hours post LPS stimulation. Intraperitoneal administration of EGCG protected mice against lethal endotoxemia, and rescued mice from lethal sepsis even when the first dose was given 24 hours after cecal ligation and puncture. The therapeutic effects were partly attributable to: 1) attenuation of systemic accumulation of proinflammatory mediator (e.g., HMGB1) and surrogate marker (e.g., IL-6 and KC) of lethal sepsis; and 2) suppression of HMGB1-mediated inflammatory responses by preventing clustering of exogenous HMGB1 on macrophage cell surface. Conclusions Taken together, these data suggest a novel mechanism by which the major green tea component, EGCG, protects against lethal endotoxemia and sepsis.
Collapse
Affiliation(s)
- Wei Li
- Department of Emergency Medicine, North Shore University Hospital-New York University School of Medicine, Manhasset, New York, United States of America
| | - Mala Ashok
- Department of Emergency Medicine, North Shore University Hospital-New York University School of Medicine, Manhasset, New York, United States of America
| | - Jianhua Li
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Huan Yang
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Andrew E. Sama
- Department of Emergency Medicine, North Shore University Hospital-New York University School of Medicine, Manhasset, New York, United States of America
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital-New York University School of Medicine, Manhasset, New York, United States of America
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
322
|
Cuschieri J, Bulger E, Billgrin J, Garcia I, Maier RV. Acid sphingomyelinase is required for lipid Raft TLR4 complex formation. Surg Infect (Larchmt) 2007; 8:91-106. [PMID: 17381401 DOI: 10.1089/sur.2006.050] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Lipid rafts, composed of sphingolipids, are critical to Toll-like receptor 4 (TLR4) assembly during lipopolysaccharide (LPS) exposure as a result of phosphokinase C (PKC)-zeta activation. However, the mechanism responsible for these events remains unknown. PURPOSE We determined whether LPS-induced TLR4 assembly and activation are dependent on the sphingolipid metabolite ceramide, produced by acid sphingomyelinase following the initial binding of LPS to CD14. METHODS Cultured THP-1 cells were stimulated with LPS, exogenous C(2) ceramide, or both. Selected cells were pretreated with the acid sphingomyelinase inhibitor imipramine or CD14 neutralizing antibody. RESULTS Exposure to LPS led to activation of acid sphingomyelinase, production of ceramide, phosphorylation of PKCzeta, and assembly of the TLR4 receptor within lipid rafts. This was followed by activation of the MAPK family of products and the liberation of tumor necrosis factor-alpha. Pretreatment with imipramine or CD14 blockade was associated with attenuation of all of these LPS-induced events. Simultaneous treatment with C(2) ceramide and LPS reversed all the inhibitory effects induced by imipramine, but not those associated with CD14 blockade. CONCLUSION Assembly and activation of the TLR4 receptor following LPS binding to CD14 requires the production of ceramide by acid sphingomyelinase.
Collapse
Affiliation(s)
- Joseph Cuschieri
- Department of Surgery, University of Washington, Harborview Medical Center, 325 Ninth Avenue, Seattle, WA 98104, USA.
| | | | | | | | | |
Collapse
|
323
|
Cuschieri J, Bulger E, Biligren J, Garcia I, Maier RV. Vitamin E inhibits endotoxin-mediated transport of phosphatases to lipid rafts. Shock 2007; 27:19-24. [PMID: 17172975 DOI: 10.1097/01.shk.0000238060.61955.f8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The production and release of inflammatory mediators is regulated by the coordinated activity of kinases and phosphatases. These proteins are known to regulate one another through an unknown mechanism. Previously, we have demonstrated that autocrine release of oxidants regulates macrophage activation in a similar fashion. The purpose of this study is to determine if attenuated oxidant activity by antioxidant exposure can regulate endotoxin-mediated kinase and phosphatase activity. Human promonocytic THP-1 cells were stimulated with lipopolysaccharide. Selected cells were pretreated with alpha-tocopherol succinate, LY294002, or an AKT inhibitor (1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate). Lipid raft and cellular protein were analyzed for lipid raft toll-like receptor 4 (TLR4) receptor formation and mitogen-activated protein kinase (MAPK) activation. Harvested supernatants were analyzed for tumor necrosis factor (TNF)-alpha production. Lipopolysaccharide stimulation led to the lipid raft mobilization of TLR4 and heat shock protein 70. This was followed by lipid raft mobilization of SH related complex homology 2 domain-containing inositol-5-phosphate (SHIP), activation of the MAPK, and production of TNF-alpha. Pretreatment with alpha-tocopherol succinate did not affect mobilization of TLR4 or heat shock protein 70, but did result in attenuated mobilization of SHIP, activation of the MAPK, and production of TNF-alpha. In addition, alpha-tocopherol succinate was associated with increased activation of the counter-regulatory kinase protein kinase B. Pretreatment with LY294002 or 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate reversed the effects of alpha-tocopherol succinate. Thus, it seems that endotoxin-mediated activation requires the coordinated activity of kinases and phosphatases. Antioxidant exposure in the form of vitamin E seems to attenuate endotoxin-mediated SHIP activation resulting in increased AKT activity, and attenuated MAPK activation and TNF-alpha production.
Collapse
Affiliation(s)
- Joseph Cuschieri
- Department of Surgery, University of Washington, Seattle, Washington, USA.
| | | | | | | | | |
Collapse
|
324
|
Sorice M, Longo A, Capozzi A, Garofalo T, Misasi R, Alessandri C, Conti F, Buttari B, Riganò R, Ortona E, Valesini G. Anti-beta2-glycoprotein I antibodies induce monocyte release of tumor necrosis factor alpha and tissue factor by signal transduction pathways involving lipid rafts. ACTA ACUST UNITED AC 2007; 56:2687-97. [PMID: 17665396 DOI: 10.1002/art.22802] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To investigate the association of beta(2)-glycoprotein I (beta(2)GPI) with lipid rafts in monocytic cells and to evaluate the proinflammatory and procoagulant effects of anti-beta(2)GPI binding to its target antigen on the monocyte plasma membrane. METHODS Human monocytes were fractionated by sucrose density-gradient centrifugation and analyzed by Western blotting. Immunoprecipitation experiments were performed to analyze the association of beta(2)GPI with lipid rafts and the possible interaction of beta(2)GPI with annexin A2 and Toll-like receptor 4 (TLR-4). Monocytes were then stimulated with affinity-purified anti-beta(2)GPI antibodies from patients with the antiphospholipid syndrome (APS). Interleukin-1 receptor-associated kinase (IRAK) phosphorylation and NF-kappaB activation were evaluated by immunoprecipitation and transcription factor assay, respectively. Supernatants from monocytes were tested for tumor necrosis factor alpha (TNFalpha) and tissue factor (TF) levels by enzyme-linked immunosorbent assay. RESULTS We found beta(2)GPI and its putative receptor annexin A2 in lipid raft fractions of human monocytes. Moreover, there was an association between beta(2)GPI and TLR-4, suggesting that it was partially dependent on raft integrity. Triggering with anti-beta(2)GPI antibodies induced IRAK phosphorylation and consequent NF-kappaB activation, which led to the release of TNFalpha and TF. CONCLUSION Anti-beta(2)GPI antibodies react with their target antigen, likely in association with annexin A2 and TLR-4, in lipid rafts in the monocyte plasma membrane. Anti-beta(2)GPI binding triggers IRAK phosphorylation and NF-kappaB translocation, leading to a proinflammatory and procoagulant monocyte phenotype characterized by the release of TNFalpha and TF, respectively. These findings provide new insight into the pathogenesis of APS, improving our knowledge of valuable therapeutic targets.
Collapse
Affiliation(s)
- Maurizio Sorice
- Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Park EJ, Suh M, Thomson B, Ma DWL, Ramanujam K, Thomson ABR, Clandinin MT. Dietary ganglioside inhibits acute inflammatory signals in intestinal mucosa and blood induced by systemic inflammation of Escherichia coli lipopolysaccharide. Shock 2007; 28:112-7. [PMID: 17510604 DOI: 10.1097/shk.0b013e3180310fec] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our previous study demonstrated that feeding ganglioside increased total ganglioside content while decreasing cholesterol and caveolin-1 content in developing rat intestinal lipid microdomains. Cholesterol or caveolin depletion in membranes inhibits inflammatory signaling by disrupting microdomain structure. We hypothesized that dietary ganglioside-induced reduction in cholesterol content will reduce proinflammatory mediators in the intestinal mucosa after acute exposure to bacterial endotoxin. Weanling rats were fed semipurified diets with 0.1% (wt/wt of total fat) gangliosides (treatment) or without ganglioside (control). After 2 weeks of feeding, half of animals from each diet group were injected with saline or lipopolysaccharide (LPS) endotoxin (Escherichia coli serotype O111:B4, intraperitoneal, 3 mg/kg body weight) to induce acute gut inflammation. Intestinal mucosa and blood were collected after 6 h. The effect of dietary ganglioside on proinflammatory mediators including cholesterol, platelet-activating factor, prostaglandin E2, leukotriene B4 (LTB4), interleukin-1beta (IL-1beta), and tumor necrosis factor-alpha (TNF-alpha) was determined in inflamed mucosa and blood. Feeding animals the control diet increased cholesterol content in intestinal lipid microdomains by 92% after LPS injection compared with saline injection. Animals fed the ganglioside diet significantly decreased cholesterol content in lipid microdomains by 60% compared with animals fed the control diet. Feeding animals the ganglioside diet increased total ganglioside content by 90% while decreasing platelet-activating factor content by 45% in the inflamed mucosa by acute systemic exposure to LPS compared with animals fed the control diet. When animals were fed the ganglioside diet, the levels of prostaglandin E2, LTB4, IL-1beta, and TNF-alpha were lower in inflamed mucosa, and LTB4, IL-1beta, and TNF-alpha were decreased in plasma by 41%, 58%, and 55% compared with control animals, respectively. The present study demonstrates that dietary gangliosides inhibit proinflammatory signals in the intestine and blood induced by acute inflammation of LPS and suggests therapeutic potential in the treatment and management of acute local and systemic inflammatory diseases.
Collapse
Affiliation(s)
- Eek Joong Park
- Nutrition and Metabolism Research Group, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
326
|
Abstract
Oxidant stress, induced under a variety of conditions, is known to lead to the molecular reprogramming of the tissue-fixed macrophage. This reprogramming is associated with an altered response to subsequent inflammatory stimuli, such as lipopolysaccharide (LPS), leading to enhanced liberation of proinflammatory chemokines and cytokines. Due to this altered response, dysregulated immunity ensues, leading to the development of clinical syndromes such as multiple organ dysfunction syndrome (MODS). Although the mechanisms responsible for this altered macrophage activity by oxidant stress remains complex and poorly elucidated, it appears, based on recent research, that early and direct alterations within lipid rafts are responsible. This early and direct interaction with lipid rafts by oxidants leads to the mobilization of annexin VI from lipid raft constructs, leading to the release of calcium. This increased cytosolic concentration of this secondary messenger, in turn, results in the activation of calcium-dependent kinases, leading to further alterations in lipid raft lipids and eventually lipid raft proteins. Due to these lipid raft compositional changes, preassembly of receptor complexes occur, leading to enhanced proinflammatory activation. Within this review, the complexity of oxidant-induced reprogramming within the tissue fixed macrophage as currently understood is explained.
Collapse
Affiliation(s)
- Joseph Cuschieri
- University of Washington, Department of Surgery, Seattle, Washington 98104, USA.
| | | |
Collapse
|
327
|
Osterloh A, Breloer M. Heat shock proteins: linking danger and pathogen recognition. Med Microbiol Immunol 2007; 197:1-8. [PMID: 17638015 DOI: 10.1007/s00430-007-0055-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Indexed: 01/12/2023]
Abstract
Besides their central function in protein folding and transport within the cell, heat shock proteins (HSP) have been shown to modulate innate and adaptive immune response: (1) HSP mediate uptake and MHC presentation of HSP-associated peptides by antigen-presenting cells (APC). (2) HSP function as endogenous danger signals indicating cell stress and tissue damage to the immune system. (3) HSP bind pathogen-associated molecular pattern (PAMP) molecules and modulate PAMP-induced Toll-like receptor (TLR) signaling. Thus, HSP contribute to both, recognition of "danger" defined as uncontrolled tissue destruction and recognition of dangerous "nonself". In this review these different aspects of immune stimulation by HSP will be discussed.
Collapse
Affiliation(s)
- Anke Osterloh
- Department of Immunology, Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany.
| | | |
Collapse
|
328
|
Vigh L, Horváth I, Maresca B, Harwood JL. Can the stress protein response be controlled by 'membrane-lipid therapy'? Trends Biochem Sci 2007; 32:357-63. [PMID: 17629486 DOI: 10.1016/j.tibs.2007.06.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/29/2007] [Accepted: 06/28/2007] [Indexed: 12/22/2022]
Abstract
In addition to high temperature, other stresses and clinical conditions such as cancer and diabetes can lead to the alteration of heat-shock protein (HSP) levels in cells. Moreover, HSPs can associate with either specific lipids or with areas of special membrane topology (such as lipid rafts), and changes in the physical state of cellular membranes can alter hsp gene expression. We propose that membrane microheterogeneity is important for regulating the HSP response. In support of this hypothesis, when particular membrane intercalating compounds are used to alter membrane properties, the simultaneous normalization of dysregulated expression of HSPs causes beneficial responses to disease states. Therefore, these compounds (such as hydroxylamine derivatives) have the potential to become a new class of pharmaceuticals for use in 'membrane-lipid therapy'.
Collapse
Affiliation(s)
- László Vigh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | | | | | | |
Collapse
|
329
|
Skopeliti M, Kratzer U, Altenberend F, Panayotou G, Kalbacher H, Stevanovic S, Voelter W, Tsitsilonis OE. Proteomic exploitation on prothymosin α-induced mononuclear cell activation. Proteomics 2007; 7:1814-24. [PMID: 17474146 DOI: 10.1002/pmic.200600870] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Prothymosin alpha (ProTalpha) is an acidic polypeptide associated both with cell proliferation and immune regulation. Although ProTalpha's immunomodulating activity is well established at cellular level, limited information is available regarding the signaling pathways triggered by ProTalpha. Using 2-DE proteomic technology, we investigated changes in protein expression of ProTalpha-stimulated peripheral blood mononuclear cells (PBMC) in the course of a 3-day incubation. Using healthy donor- and cancer patient-derived PBMC, 12 gels were studied, identifying 53 differing protein spots via PMF comparison analysis. Among others, we identified interleukin-1 receptor-associated kinase 4, heat-shock protein 90, lipocalin 2, ribophorin 1, eukaryotic elongation factor 2, 14-3-3 protein, L-plastin, and MX2 protein, all of which were found to be overexpressed upon ProTalpha activation. Based on the physiological role of upregulated proteins, we propose the following model for ProTalpha's immunological mode of action: on day 1, ProTalpha triggers monocyte activation, possibly via toll-like receptor signaling, and enhances antigen presentation, consequently promoting and stabilizing monocyte-T-cell immune synapse; on day 2, activated monocytes produce interleukin (IL)-1, while T-cell receptor triggering promotes T-cell proliferation and IL-2 production; finally, on day 3, ProTalpha-activated PBMC express proteins related to adhesion and cytotoxic effector functions, both contributing to the increase of their lytic activity.
Collapse
Affiliation(s)
- Margarita Skopeliti
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
330
|
Liang S, Wang M, Triantafilou K, Triantafilou M, Nawar HF, Russell MW, Connell TD, Hajishengallis G. The A subunit of type IIb enterotoxin (LT-IIb) suppresses the proinflammatory potential of the B subunit and its ability to recruit and interact with TLR2. THE JOURNAL OF IMMUNOLOGY 2007; 178:4811-9. [PMID: 17404262 DOI: 10.4049/jimmunol.178.8.4811] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The type IIb heat-labile enterotoxin of Escherichia coli (LT-IIb) and its nontoxic pentameric B subunit (LT-IIb-B(5)) display different immunomodulatory activities, the mechanisms of which are poorly understood. We investigated mechanisms whereby the absence of the catalytically active A subunit from LT-IIb-B(5) renders this molecule immunostimulatory through TLR2. LT-IIb-B(5), but not LT-IIb, induced TLR2-mediated NF-kappaB activation and TNF-alpha production. These LT-IIb-B(5) activities were antagonized by LT-IIb; however, inhibitors of adenylate cyclase or protein kinase A reversed this antagonism. The LT-IIb antagonistic effect is thus likely dependent upon the catalytic activity of its A subunit, which causes elevation of intracellular cAMP and activates cAMP-dependent protein kinase A. Consistent with this, a membrane-permeable cAMP analog and a cAMP-elevating agonist, but not catalytically defective point mutants of LT-IIb, mimicked the antagonistic action of wild-type LT-IIb. The mutants moreover displayed increased proinflammatory activity compared with wild-type LT-IIb. Additional mechanisms for the divergent effects on TLR2 activation by LT-IIb and LT-IIb-B(5) were suggested by findings that the latter was significantly stronger in inducing lipid raft recruitment of TLR2 and interacting with this receptor. The selective use of TLR2 by LT-IIb-B(5) was confirmed in an assay for IL-10, which is inducible by both LT-IIb and LT-IIb-B(5) at comparable levels; TLR2-deficient macrophages failed to induce IL-10 in response to LT-IIb-B(5) but not in response to LT-IIb. These differential immunomodulatory effects by LT-IIb and LT-IIb-B(5) have important implications for adjuvant development and, furthermore, suggest that enterotoxic E. coli may suppress TLR-mediated innate immunity through the action of the enterotoxin A subunit.
Collapse
Affiliation(s)
- Shuang Liang
- Center for Oral Health and Systemic Disease, Department of Periodontics, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | |
Collapse
|
331
|
Bellyei S, Szigeti A, Boronkai A, Pozsgai E, Gomori E, Melegh B, Janaky T, Bognar Z, Hocsak E, Sumegi B, Gallyas F. Inhibition of cell death by a novel 16.2 kD heat shock protein predominantly via Hsp90 mediated lipid rafts stabilization and Akt activation pathway. Apoptosis 2007; 12:97-112. [PMID: 17136496 DOI: 10.1007/s10495-006-0486-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AlphaB-crystallin homology, heat stress induction and chaperone activity suggested that a previously encloned gene product is a novel small heat shock protein (Hsp16.2). Suppression of Hsp16.2 by siRNA sensitized cells to hydrogen peroxide or taxol induced cell-death. Over-expressing of Hsp16.2 protected cells against stress stimuli by inhibiting cytochrome c release from the mitochondria, nuclear translocation of AIF and endonuclease G, and caspase 3 activation. Recombinant Hsp16.2 protected mitochondrial membrane potential against calcium induced collapse in vitro indicating that Hsp16.2 stabilizes mitochondrial membrane systems. Hsp16.2 formed self-aggregates and bound to Hsp90. Inhibition of Hsp90 by geldanamycin diminished the cytoprotective effect of Hsp16.2 indicating that this effect was Hsp90-mediated. Hsp16.2 over-expression increased lipid rafts formation as demonstrated by increased cell surface labeling with fluorescent cholera toxin B, and increased Akt phosphorylation. The inhibition of PI-3-kinase-Akt pathway by LY-294002 or wortmannin significantly decreased the protective effect of the Hsp16.2. These data indicate that the over-expression of Hsp16.2 inhibits cell death via the stabilization of mitochondrial membrane system, activation of Hsp90, stabilization of lipid rafts and by the activation of PI-3-kinase-Akt cytoprotective pathway.
Collapse
Affiliation(s)
- Szabolcs Bellyei
- Department of Biochemistry and Medical Chemistry, University of Pécs, 12 Szigeti Street, Pécs, H-7624, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Triantafilou M, Gamper FGJ, Lepper PM, Mouratis MA, Schumann C, Harokopakis E, Schifferle RE, Hajishengallis G, Triantafilou K. Lipopolysaccharides from atherosclerosis-associated bacteria antagonize TLR4, induce formation of TLR2/1/CD36 complexes in lipid rafts and trigger TLR2-induced inflammatory responses in human vascular endothelial cells. Cell Microbiol 2007; 9:2030-9. [PMID: 17419716 DOI: 10.1111/j.1462-5822.2007.00935.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infection with bacteria such as Chlamydia pneumonia, Helicobacter pylori or Porphyromonas gingivalis may be triggering the secretion of inflammatory cytokines that leads to atherogenesis. The mechanisms by which the innate immune recognition of these pathogens could lead to atherosclerosis remain unclear. In this study, using human vascular endothelial cells or HEK-293 cells engineered to express pattern-recognition receptors (PRRs), we set out to determine Toll-like receptors (TLRs) and functionally associated PRRs involved in the innate recognition of and response to lipopolysaccharide (LPS) from H. pylori or P. gingivalis. Using siRNA interference or recombinant expression of cooperating PRRs, we show that H. pylori and P. gingivalis LPS-induced cell activation is mediated through TLR2. Human vascular endothelial cell activation was found to be lipid raft-dependent and to require the formation of heterotypic receptor complexes comprising of TLR2, TLR1, CD36 and CD11b/CD18. In addition, we report that LPS from these bacterial strains are able to antagonize TLR4. This antagonistic activity of H. pylori or P. gingivalis LPS, as well as their TLR2 activation capability may be associated with their ability to contribute to atherosclerosis.
Collapse
Affiliation(s)
- Martha Triantafilou
- Infection and Immunity Group, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Macagno A, Napolitani G, Lanzavecchia A, Sallusto F. Duration, combination and timing: the signal integration model of dendritic cell activation. Trends Immunol 2007; 28:227-33. [PMID: 17403614 DOI: 10.1016/j.it.2007.03.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 03/01/2007] [Accepted: 03/19/2007] [Indexed: 02/07/2023]
Abstract
The activation of resting dendritic cells (DCs) is a crucial step in the initiation of adaptive immunity because it links peripheral events initiated by the encounter with pathogens to the activation and expansion of antigen-specific T lymphocytes in secondary lymphoid organs. It is well recognized that a wide variety of microbial products and endogenous signals can trigger DC activation, and that different DC subsets are specialized in inducing different classes of immune responses. In this review, we will focus on how different aspects of DC maturation are regulated not only by the nature of the DC maturation stimuli, but also by their duration, combination and timing, and provide an overview of how different modes of DC activation can affect T cell responses.
Collapse
Affiliation(s)
- Annalisa Macagno
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| | | | | | | |
Collapse
|
334
|
Poulaki V, Iliaki E, Mitsiades N, Mitsiades CS, Paulus YN, Bula DV, Gragoudas ES, Miller JW. Inhibition of Hsp90 attenuates inflammation in endotoxin-induced uveitis. FASEB J 2007; 21:2113-23. [PMID: 17400913 DOI: 10.1096/fj.06-7637com] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heat shock protein (Hsp) 90 inhibitors, such as 17-allylamino-17-demethoxy-geldanamycin (17-AAG), constitute promising novel therapeutic agents. We investigated the anti-inflammatory activity of 17-AAG in endotoxin-induced uveitis (EIU) in rats. After the induction of EIU with a footpad injection of lipopolysaccharide (LPS), female Lewis rats received a single intraperitoneal. (i.p.) injection of 17-AAG or vehicle. Twenty-four hours later, the retinas were extracted and assayed for leukocyte adhesion; blood-retinal barrier breakdown; VEGF, TNF-alpha, IL-1beta, and CD14 protein levels; NF-kappaB and HIF-1alpha activity; hsp90 and 70 levels and expression and phosphorylation of the tight junction proteins ZO-1 and occludin. 17-AAG treatment significantly suppressed the LPS-induced increase in retinal leukocyte adhesion; vascular leakage; NF-kappaB, HIF-1alpha, p38, and PI-3K activity; and VEGF, TNF-alpha, and IL-1beta levels. 17-AAG also suppressed phosphorylation of ZO-1 and occludin by inhibiting their association with p38 and PI-3K. Although 17-AAG treatment did not reduce the LPS-induced increase in total CD14 levels in leukocytes, it significantly decreased membrane CD14 levels. These data suggest that Hsp90 inhibition suppresses several cardinal manifestations of endotoxin-induced uveitis in the rat. 17-AAG has demonstrated a favorable safety profile in clinical trials in cancer patients and represents a promising therapeutic agent for the treatment of inflammatory eye diseases.
Collapse
Affiliation(s)
- Vassiliki Poulaki
- Angiogenesis/Laser Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles St., Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
335
|
Schromm AB, Howe J, Ulmer AJ, Wiesmüller KH, Seyberth T, Jung G, Rössle M, Koch MHJ, Gutsmann T, Brandenburg K. Physicochemical and biological analysis of synthetic bacterial lipopeptides: validity of the concept of endotoxic conformation. J Biol Chem 2007; 282:11030-7. [PMID: 17308304 DOI: 10.1074/jbc.m700287200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importance of the biological function and activity of lipoproteins from the outer or cytoplasmic membranes of Gram-positive and Gram-negative bacteria is being increasingly recognized. It is well established that they are like the endotoxins (lipopolysaccharide (LPS)), which are the main amphiphilic components of the outer membrane of Gram-negative bacteria, potent stimulants of the human innate immune system, and elicit a variety of proinflammatory immune responses. Investigations of synthetic lipopeptides corresponding to N-terminal partial structures of bacterial lipoproteins defined the chemical prerequisites for their biological activity and in particular the number and length of acyl chains and sequence of the peptide part. Here we present experimental data on the biophysical mechanisms underlying lipopeptide bioactivity. Investigation of selected synthetic diacylated and triacylated lipopeptides revealed that the geometry of these molecules (i.e. the molecular conformations and supramolecular aggregate structures) and the preference for membrane intercalation provide an explanation for the biological activities of the different lipopeptides. This refers in particular to the agonistic or antagonistic activity (i.e. their ability to induce cytokines in mononuclear cells or to block this activity, respectively). Biological activity of lipopeptides was hardly affected by the LPS-neutralizing antibiotic polymyxin B, and the biophysical interaction characteristics were found to be in sharp contrast to that of LPS with polymyxin B. The analytical data show that our concept of "endotoxic conformation," originally developed for LPS, can be applied also to the investigated lipopeptide and suggest that the molecular mechanisms of cell activation by amphiphilic molecules are governed by a general principle.
Collapse
Affiliation(s)
- Andra B Schromm
- Research Center Borstel, Leibniz Center for Medicine and Biosciences, Department of Immunochemistry and Biochemical Microbiology, Emmy Noether Group of Immunobiophysics, Division of Biophysics, Borstel, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Månsson LE, Kjäll P, Pellett S, Nagy G, Welch RA, Bäckhed F, Frisan T, Richter-Dahlfors A. Role of the lipopolysaccharide-CD14 complex for the activity of hemolysin from uropathogenic Escherichia coli. Infect Immun 2007; 75:997-1004. [PMID: 17101668 PMCID: PMC1828525 DOI: 10.1128/iai.00957-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 09/19/2006] [Accepted: 10/31/2006] [Indexed: 11/20/2022] Open
Abstract
Bacterial pathogens produce a variety of exotoxins, which often become associated with the bacterial outer membrane component lipopolysaccharide (LPS) during their secretion. LPS is a potent proinflammatory mediator; however, it is not known whether LPS contributes to cell signaling induced by those microbial components to which it is attached. This is partly due to the common view that LPS present in bacterial component preparations is an experimental artifact. The Escherichia coli exotoxin hemolysin (Hly) is a known inducer of proinflammatory signaling in epithelial cells, and the signal transduction pathway involves fluctuation of the intracellular-Ca(2+) concentration. Since LPS is known to interact with Hly, we investigated whether it is required as a cofactor for the activity of Hly. We found that the LPS/Hly complex exploits the CD14/LPS-binding protein recognition system to bring Hly to the cell membrane, where intracellular-Ca(2+) signaling is initiated via specific activation of the small GTPase RhoA. Hly-induced Ca(2+) signaling was found to occur independently of the LPS receptor TLR4, suggesting that the role of LPS/CD14 is to deliver Hly to the cell membrane. In contrast, the cytolytic effect triggered by exposure of cells to high Hly concentrations occurs independently of LPS/CD14. Collectively, our data reveal a novel molecular mechanism for toxin delivery in bacterial pathogenesis, where LPS-associated microbial compounds are targeted to the host cell membrane as a consequence of their association with LPS.
Collapse
Affiliation(s)
- Lisa E Månsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
337
|
Humphries JD, Humphries MJ. CD14 is a ligand for the integrin α4β1. FEBS Lett 2007; 581:757-63. [PMID: 17274987 DOI: 10.1016/j.febslet.2007.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/15/2007] [Accepted: 01/18/2007] [Indexed: 11/16/2022]
Abstract
Cell adhesion mediated by the integrin alpha4beta1 plays a key role in many biological processes reflecting both the number and functional significance of alpha4beta1 ligands. The lipopolysaccharide (LPS) receptor, CD14, is a GPI-linked cell surface glycoprotein with a wide range of reported functions and associations, some of which overlap with that of alpha4beta1. This overlap led us to test the specific hypothesis that alpha4beta1 and CD14 interact directly. Jurkat T cells (alpha4beta1(+)) were found to adhere to a recombinant CD14-Fc protein via alpha4beta1, whilst K562 cells (alpha4beta1(-)) did not. However, stable reexpression of the alpha4-subunit conferred this ability. The adhesion of both cell types to CD14 displayed activation state-dependent binding very similar to the interaction of alpha4beta1 with its prototypic ligand, VCAM-1. In solid-phase assays, CD14-Fc bound to affinity-purified alpha4beta1 in a dose-dependent manner that was induced by activating anti-beta1 mAbs. Finally, in related experiments, JY cells (alpha4beta7(+)) were also found to attach to CD14-Fc in an alpha4-dependent manner. In summary, CD14 is a novel ligand for alpha4beta1, exhibiting similar activation-state dependent binding characteristics as other alpha4beta1 ligands. The biological relevance of this interaction will be the subject of further studies.
Collapse
Affiliation(s)
- Jonathan D Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
338
|
Moreno-Altamirano MMB, Aguilar-Carmona I, Sánchez-García FJ. Expression of GM1, a marker of lipid rafts, defines two subsets of human monocytes with differential endocytic capacity and lipopolysaccharide responsiveness. Immunology 2007; 120:536-43. [PMID: 17250589 PMCID: PMC2265908 DOI: 10.1111/j.1365-2567.2006.02531.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Monocytes constitute 5-10% of total human peripheral blood leucocytes and remain in circulation for several days before replenishing the tissue macrophage populations. Monocytes display heterogeneity in size, granularity and nuclear morphology, and in the expression of cell membrane molecules, such as CD14, CD16, CD32, CD64, major histocompatibility complex class II, CCR2, CCR5, among others. This has led to the suggestion that individual monocyte/macrophage populations have specialized functions within their microenvironments. This study provides evidence for the occurrence of two peripheral blood monocyte subpopulations on the basis of their differential expression of GM1, a sphingolipid found mostly in lipid rafts, a CD14(+) GM1(low) population and a CD14(+) GM1(high) population comprising about 97.5% and 2.5% of total CD14(+) cells, respectively. GM1 expression correlates with functional differences in terms of endocytic activity, susceptibility to mycobacterial infection, and response to lipopolysaccharide (LPS) (modulation of Toll-like receptor-4 expression). CD14(+) GM1(low) cells proved to be less endocytic and more responsive to LPS, whereas CD14(+) GM1(high) cells are more endocytic and less responsive to LPS. In addition, during monocyte to macrophage differentiation in vitro, the percentage of CD14(+) GM1(high) cells increases from about 2.5% at day 1 to more than 50% at day 7 of culture. These results suggest that GM1(low) and GM1(high) monocytes in peripheral blood, represent either different stages of maturation or different subsets with specialized activities. The expression of CD16 on GM1(high) favours the first possibility and, on the other hand that up-regulation of GM1 expression and probably lipid rafts function is involved in the monocyte to macrophage differentiation process.
Collapse
|
339
|
Liang S, Wang M, Tapping RI, Stepensky V, Nawar HF, Triantafilou M, Triantafilou K, Connell TD, Hajishengallis G. Ganglioside GD1a is an essential coreceptor for Toll-like receptor 2 signaling in response to the B subunit of type IIb enterotoxin. J Biol Chem 2007; 282:7532-42. [PMID: 17227759 DOI: 10.1074/jbc.m611722200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Innate recognition and signaling by Toll-like receptors (TLRs) is facilitated by functionally associated coreceptors, although the cooperativity mechanisms involved are poorly understood. As a model we investigated TLR2 interactions with the GD1a ganglioside binding subunit of type IIb Escherichia coli enterotoxin (LT-IIb-B(5)). Both LT-IIb-B(5) and a GD1a binding-defective mutant (LT-IIb-B(5)(T13I)) could modestly bind to TLR2, but only the wild-type molecule displayed a dramatic increase in TLR2 binding activity in the presence of GD1a (although not in the presence of irrelevant gangliosides). Moreover, fluorescence resonance energy transfer experiments indicated that LT-IIb-B(5) induces lipid raft recruitment of TLR2 and TLR1 and their clustering with GD1a, in contrast to the GD1a binding-defective mutant, which moreover fails to activate TLR2 signaling. LT-IIb-B(5)-induced cell activation was critically dependent upon the Toll/IL-1 receptor domain-containing adaptor protein, which was induced to colocalize with TLR2 and GD1a, as shown by confocal imaging. Therefore, GD1a provides TLR2 coreceptor function by enabling the ligand to recruit, bind, and activate TLR2. These findings establish a model of TLR2 coreceptor function and, moreover, suggest novel mechanisms of adjuvanticity by non-toxic derivatives of type II enterotoxins dependent upon GD1a/TLR2 cooperative activity.
Collapse
Affiliation(s)
- Shuang Liang
- Center for Oral Health and Systemic Disease and Department of Periodontics, University of Louisville Health Sciences Center, Louisville, Kentucky 40292, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Hajishengallis G, Tapping RI, Harokopakis E, Nishiyama SI, Ratti P, Schifferle RE, Lyle EA, Triantafilou M, Triantafilou K, Yoshimura F. Differential interactions of fimbriae and lipopolysaccharide from Porphyromonas gingivalis with the Toll-like receptor 2-centred pattern recognition apparatus. Cell Microbiol 2006; 8:1557-70. [PMID: 16984411 DOI: 10.1111/j.1462-5822.2006.00730.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lipopolysaccharide (LPS) and fimbriae of Porphyromonas gingivalis play important roles in periodontal inflammation and pathogenesis. We investigated fimbriae and LPS from several P. gingivalis strains in terms of relative dependence on Toll-like receptor (TLR) signalling partners or accessory pattern-recognition molecules mediating ligand transfer to TLRs, and determined induced assembly of receptor complexes in lipid rafts. Fimbriae could utilize TLR1 or TLR6 for cooperative TLR2-dependent activation of transfected cell lines, in contrast to LPS and a mutant version of fimbriae which displayed preference for TLR1. Whether used to activate human cell lines or mouse macrophages, fimbriae exhibited strong dependence on membrane-expressed CD14 (mCD14), which could not be substituted for by soluble CD14 (sCD14). In contrast, sCD14 efficiently substituted for mCD14 in LPS-induced cellular activation. LPS-binding protein was more important for LPS- than for fimbria-induced cell activation, whereas the converse was true for CD11b/CD18. Cell activation by LPS or fimbriae required lipid raft function and formation of heterotypic receptor complexes (TLR1-2/CD14/CD11b/CD18), although wild-type fimbriae additionally recruited TLR6. In summary, TLR2 activation by P. gingivalis LPS or fimbriae involves differential dependence on accessory signalling or ligand-binding receptors, which may differentially influence innate immune responses.
Collapse
Affiliation(s)
- George Hajishengallis
- Center for Oral Health and Systemic Disease and Department of Periodontics/Endodontics, University of Louisville Health Sciences Center, Louisville, KY 40292, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
341
|
Hajishengallis G, Wang M, Harokopakis E, Triantafilou M, Triantafilou K. Porphyromonas gingivalis fimbriae proactively modulate beta2 integrin adhesive activity and promote binding to and internalization by macrophages. Infect Immun 2006; 74:5658-66. [PMID: 16988241 PMCID: PMC1594907 DOI: 10.1128/iai.00784-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In monocytes, the fimbriae of the oral pathogen Porphyromonas gingivalis activate cross talk signaling from Toll-like receptor 2 (TLR2) to the beta2 integrin CD11b/CD18, leading to the induction of the high-affinity state of the latter receptor. CD14 plays an important role in this "inside-out" proadhesive pathway by binding fimbriae and facilitating the activation of TLR2 and phosphatidylinositol 3-kinase signaling. In its high-affinity state, CD11b/CD18 mediates monocyte adhesion to endothelial cells and transmigration to sites of infection. We have now shown that P. gingivalis fimbriae function as both an activator and a ligand of CD11b/CD18; thus, fimbriae proactively promote their own binding to monocytes. Indeed, treatments that interfered with fimbria-induced activation of CD11b/CD18 (i.e., blockade of CD14, TLR2, or phosphatidylinositol 3-kinase signaling) also suppressed the cell binding activity of fimbriae, which was largely inducible and CD11b/CD18 dependent. Development of a recombinant inside-out signaling system in Chinese hamster ovary cells confirmed the ability of fimbriae to activate CD14/TLR2 signaling and induce their own CD11b/CD18-dependent binding. Induction of this proadhesive pathway by P. gingivalis fimbriae appeared to take place in lipid rafts. Indeed, methyl-beta-cyclodextrin, a cholesterol-sequestering agent that disrupts lipid raft organization, was found to inhibit the fimbria-induced assembly of CD14/TLR2 signaling complexes and the activation of the high-affinity state of CD11b/CD18. Experiments using macrophages from mice deficient in various pattern recognition receptors indicated that the receptors involved in the inside-out proadhesive pathway (CD14, TLR2, and CD11b/CD18) are important for mediating P. gingivalis internalization within macrophages. It therefore appears that P. gingivalis proactively modulates beta2 integrin adhesive activity for intracellular uptake.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Louisville Health Sciences Center, 501 South Preston Street, Room 206, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
342
|
Zhang S, Jin H, Zhou J, Wei T. Disruption of lipid rafts impairs the production of nitric oxide in lipopolysaccharide-stimulated murine RAW264.7 macrophages. RESEARCH ON CHEMICAL INTERMEDIATES 2006. [DOI: 10.1163/156856706778938455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
343
|
Wang R, Town T, Gokarn V, Flavell RA, Chandawarkar RY. HSP70 Enhances Macrophage Phagocytosis by Interaction With Lipid Raft-Associated TLR-7 and Upregulating p38 MAPK and PI3K Pathways. J Surg Res 2006; 136:58-69. [PMID: 16979664 DOI: 10.1016/j.jss.2006.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 05/26/2006] [Accepted: 06/06/2006] [Indexed: 01/26/2023]
Abstract
BACKGROUND Exogenous Heat Shock Protein-70 (HSP70), a product of necrotic cell death, binds the lipid raft microdomains of macrophages and, within minutes, stimulates the phagocytosis and presentation of internalized antigens. The aim of this study was to identify (a) the receptor on the lipid raft microdomain that interacts with HSP70 and (b) the subsequent signaling pathways that mediate HSP70-enhanced phagocytosis. METHODS Cells including RAW264.7, bone-marrow-derived macrophages from TLR7-/- mice or controls and cells subjected to genetic methods reducing the mRNA expression of TLR7 were used to examine the interaction of HSP70 with TLR7. The effect of HSP70-TLR7 interaction on phagocytosis was assessed using phagocytosis assays described earlier. RESULTS HSP70 binds Toll-like receptor-7 (TLR7) on the lipid raft microdomain of macrophage plasma membrane. Subsequent signaling is mediated through phosphoinositide 3-kinase (PI3K) and the up-regulation of the p38 MAP kinase pathways, both known activators of the phagocytic mechanisms. Reduced expression of TLR7 either via short interfering RNA for TLR7 (siRNA-TLR7) or using bone-marrow derived macrophages from TLR7-/- mice show that, as macrophages lose expression of TLR7, their ability to mediate HSP70-induced phagocytosis undergoes a corresponding diminution. Similarly, disruption of lipid rafts or blocking HSP70-TLR7-interaction or treatment with wortmannin and SB203580, inhibitors of PI3K or p38 MAPK, respectively, abrogates HSP70-induced macrophage phagocytosis. CONCLUSIONS The interaction of HSP70 and LR-associated TLR7, two phylogenetically conserved molecules, activates a rapid, membrane-bound signaling pathway that enhances phagocytosis, a vital innate defense mechanism. This study elucidates critical mechanistic elements that mediate HSP70-enhanced phagocytosis by macrophages.
Collapse
Affiliation(s)
- Ruibo Wang
- Center for Immunotherapy, University of Connecticut School of Medicine, Farmington, Connecticut 06030-1601, USA
| | | | | | | | | |
Collapse
|
344
|
Nakahira K, Kim HP, Geng XH, Nakao A, Wang X, Murase N, Drain PF, Wang X, Sasidhar M, Nabel EG, Takahashi T, Lukacs NW, Ryter SW, Morita K, Choi AMK. Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. ACTA ACUST UNITED AC 2006; 203:2377-89. [PMID: 17000866 PMCID: PMC2118097 DOI: 10.1084/jem.20060845] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbon monoxide (CO), a byproduct of heme catabolism by heme oxygenase (HO), confers potent antiinflammatory effects. Here we demonstrate that CO derived from HO-1 inhibited Toll-like receptor (TLR) 2, 4, 5, and 9 signaling, but not TLR3-dependent signaling, in macrophages. Ligand-mediated receptor trafficking to lipid rafts represents an early event in signal initiation of immune cells. Trafficking of TLR4 to lipid rafts in response to LPS was reactive oxygen species (ROS) dependent because it was inhibited by diphenylene iodonium, an inhibitor of NADPH oxidase, and in gp91phox-deficient macrophages. CO selectively inhibited ligand-induced recruitment of TLR4 to lipid rafts, which was also associated with the inhibition of ligand-induced ROS production in macrophages. TLR3 did not translocate to lipid rafts by polyinosine-polycytidylic acid (poly(I:C)). CO had no effect on poly(I:C)-induced ROS production and TLR3 signaling. The inhibitory effect of CO on TLR-induced cytokine production was abolished in gp91phox-deficient macrophages, also indicating a role for NADPH oxidase. CO attenuated LPS-induced NADPH oxidase activity in vitro, potentially by binding to gp91phox. Thus, CO negatively controlled TLR signaling pathways by inhibiting translocation of TLR to lipid rafts through suppression of NADPH oxidase–dependent ROS generation.
Collapse
Affiliation(s)
- Kiichi Nakahira
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
345
|
Chowdhury P, Sacks SH, Sheerin NS. Toll-like receptors TLR2 and TLR4 initiate the innate immune response of the renal tubular epithelium to bacterial products. Clin Exp Immunol 2006; 145:346-56. [PMID: 16879256 PMCID: PMC1809678 DOI: 10.1111/j.1365-2249.2006.03116.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Renal tubular epithelial cells (TECs) respond diffusely to local infection, with the release of multiple cytokines, chemokines and other factors that are thought to orchestrate the cellular constituents of the innate immune response. We have investigated whether the Toll-like receptors TLR4 and TLR2, which are present on tubular epithelium and potentially detect a range of bacterial components, co-ordinate this inflammatory response acting through nuclear factor-kappa B (NF-kappaB). Primary cultures of TECs were grown from C57BL/6, C3H/HeN, C3H/HeJ, TLR2 and TLR4 knock-out mice. Cell monolayers were stimulated with lipopolysaccharide (LPS) and synthetic TLR2 and 4 agonists. The innate immune response was quantified by measurement of the cytokines tumour necrosis factor (TNF)-alpha and KC (IL-8 homologue) in cell supernatants by enzyme-linked immunosorbent assay. Cultured TECs grown from healthy mice produced the cytokines TNF-alpha and KC in response to stimulation by LPS and synthetic TLR2 and TLR4 agonists. Cells lacking the respective TLRs had a reduced response to stimulation. The TLR2- and TLR4-mediated response to stimulation was dependent on NF-kappaB signalling, as shown by curcumin pretreatment of TECs. Finally, apical stimulation of these TLRs elicited basal surface secretion of TNF-alpha and KC (as well as the reverse), consistent with the biological response in vivo. Our data highlight the potential importance of TLR-dependent mechanisms co-ordinating the innate immune response to upper urinary tract infection.
Collapse
Affiliation(s)
- P Chowdhury
- Department of Nephrology and Transplantation, King's College London, Guy's Hospital, St Thomas Street, London SE1 9RT, UK.
| | | | | |
Collapse
|
346
|
Cuschieri J, Billigren J, Maier RV. Endotoxin tolerance attenuates LPS-induced TLR4 mobilization to lipid rafts: a condition reversed by PKC activation. J Leukoc Biol 2006; 80:1289-97. [PMID: 16959900 DOI: 10.1189/jlb.0106053] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endotoxin tolerance is characterized by attenuated macrophage activation to subsequent LPS challenge and can be reversed through nonspecific protein kinase C (PKC) activation, and activation by LPS within naïve cells requires the activation of the cell surface receptors CD14 and TLR4 on lipid rafts. The effect of PKC activation and endotoxin tolerance on lipid raft receptor complex assembly is unknown and the focus of this study. Tolerance was induced in THP-1 cells through LPS pre-exposure. Naïve and tolerant cells were stimulated with LPS, with or without PMA pretreatment to activate PKC. TLR4 surface expression and LPS binding were determined by flow cytometry and immunohistochemistry. Cellular and lipid raft protein was analyzed for the presence and activation of the TLR4 complex components. Harvested supernatants were examined for TNF-alpha production. Total TLR4 surface expression and LPS binding were not affected by tolerance induction. LPS stimulation of naïve cells resulted in TLR4 and heat shock protein (HSP)70 lipid raft mobilization, MAPK activation, and TNF-alpha production. LPS stimulation of tolerant cells was associated with attenuation of all of these cellular events. Although PKC activation by PMA had no effect on naïve cells, it did result in reversal in tolerance-induced suppression of TLR4 and HSP70 lipid raft mobilization, MAPK activation, and TNF-alpha production. In addition, the effects associated with PMA were reversed with exposure to a myristoylated PKC-zeta pseudosubstrate. Thus, endotoxin tolerance appears to be induced through attenuated TLR4 formation following LPS stimulation. This complex formation appears to be PKC-dependent, and restoration of PKC activity reverses tolerance.
Collapse
Affiliation(s)
- Joseph Cuschieri
- University of Washington, Harborview Medical Center, 325 9th Avenue, Box 359796, Seattle, WA 98104, USA.
| | | | | |
Collapse
|
347
|
Walton KA, Gugiu BG, Thomas M, Basseri RJ, Eliav DR, Salomon RG, Berliner JA. A role for neutral sphingomyelinase activation in the inhibition of LPS action by phospholipid oxidation products. J Lipid Res 2006; 47:1967-74. [PMID: 16775254 DOI: 10.1194/jlr.m600060-jlr200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies from our laboratory and others presented evidence that oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphatidylcholine (OxPAPC) and oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphatidylethanolamine can inhibit lipopolysaccharide (LPS)-mediated induction of interleukin-8 (IL-8) in endothelial cells. Using synthetic derivatives of phosphatidylethanolamine, we now demonstrate that phospholipid oxidation products containing alpha,beta-unsaturated carboxylic acids are the most active inhibitors we examined. 5-Keto-6-octendioic acid ester of 2-phosphatidylcholine (KOdiA-PC) was 500-fold more inhibitory than OxPAPC, being active in the nanomolar range. Our studies in human aortic endothelial cells identify one important mechanism of the inhibitory response as involving the activation of neutral sphingomyelinase. There is evidence that Toll-like receptor-4 and other members of the LPS receptor complex must be colocalized to the caveolar/lipid raft region of the cell, where sphingomyelin is enriched, for effective LPS signaling. Previous work from our laboratory suggested that OxPAPC could disrupt this caveolar fraction. These studies present evidence that OxPAPC activates sphingomyelinase, increasing the levels of 16:0, 22:0, and 24:0 ceramide and that the neutral sphingomyelinase inhibitor GW4869 reduces the inhibitory effect of OxPAPC and KOdiA-PC. We also show that cell-permeant C6 ceramide, like OxPAPC, causes the inhibition of LPS-induced IL-8 synthesis and alters caveolin distribution similar to OxPAPC. Together, these data identify a new pathway by which oxidized phospholipids inhibit LPS action involving the activation of neutral sphingomyelinase, resulting in a change in caveolin distribution. Furthermore, we identify specific oxidized phospholipids responsible for this inhibition.
Collapse
Affiliation(s)
- Kimberly A Walton
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
348
|
Nishiyama A, Kaneko J, Harata M, Kamio Y. Assembly of staphylococcal leukocidin into a pore-forming oligomer on detergent-resistant membrane microdomains, lipid rafts, in human polymorphonuclear leukocytes. Biosci Biotechnol Biochem 2006; 70:1300-7. [PMID: 16794307 DOI: 10.1271/bbb.50499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Staphylococcal leukocidin (Luk) consists of LukS and LukF, which cooperatively lyse human polymorphonuclear leukocytes (HPMNLs), monocytes, and macrophages. Here we found that LukS and LukF assembles into hetero-oligomeric pore complexes on the detergent-resistant membrane microdomains, lipid rafts of HPMNLs. When HPMNLs were treated with LukS alone, 24% of the added LukS was localized in lipid rafts. Furthermore, in HPMNLs treated with both LukS and LukF simultaneously, about 90% of high molecular-mass complexes of 100 kDa, which consists of LukS and LukF, were detected in the lipid raft fractions. In contrast, in HPMNLs treated with LukF alone, LukF was not localized in lipid rafts despite binding to the target cell membranes. Ten mM methyl-beta-cyclodextrin, a dysfunctioning agent of lipid rafts, completely inhibited assembly of Luk on lipid rafts, and resulted in null leukocytolytic activity of Luk. Hence, we concluded that assembly of LukS and LukF into the pore-complex occurs in lipid rafts in HPMNLs and that LukF can bind to LukS, which had already bound to lipid rafts, to assemble into hetero-oligomers.
Collapse
Affiliation(s)
- Akihito Nishiyama
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University
| | | | | | | |
Collapse
|
349
|
Davies EL, Bacelar MMFVG, Marshall MJ, Johnson E, Wardle TD, Andrew SM, Williams JHH. Heat shock proteins form part of a danger signal cascade in response to lipopolysaccharide and GroEL. Clin Exp Immunol 2006; 145:183-9. [PMID: 16792689 PMCID: PMC1941993 DOI: 10.1111/j.1365-2249.2006.03109.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An increasing number of cell types, including peripheral blood mononuclear cells (PBMCs), have been demonstrated to release heat shock proteins (Hsps). In this paper we investigate further the hypothesis that Hsps are danger signals. PBMCs and Jurkat cells released Hsp70 (0.22 and 0.7 ng/10(6) cells, respectively) into medium over 24 h at 37 degrees C. Release of Hsp70 was stimulated 10-fold by GroEL (P < 0.001) and more than threefold by lipopolysaccharide (LPS) (P < 0.001). Although Hsp60 could be detected in the medium of cells cultured at 37 degrees C for 24 h, the low rates of release were due probably to cell damage. Significant release of Hsp60 was observed when Jurkat cells were exposed to GroEL (2.88 ng/10(6) cells) or LPS (1.40 ng/10(6) cells). The data are consistent with the hypothesis that Hsp70 and Hsp60 are part of a danger signalling cascade in response to bacterial infection.
Collapse
Affiliation(s)
- E L Davies
- Chester Centre for Stress Research, Biological Sciences, University of Chester, Chester, UK
| | | | | | | | | | | | | |
Collapse
|
350
|
Jou I, Lee JH, Park SY, Yoon HJ, Joe EH, Park EJ. Gangliosides trigger inflammatory responses via TLR4 in brain glia. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1619-30. [PMID: 16651628 PMCID: PMC1606595 DOI: 10.2353/ajpath.2006.050924] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gangliosides participate in various cellular events of the central nervous system and have been closely implicated in many neuronal diseases. However, the precise molecular mechanisms underlying the pathological activity of gangliosides are poorly understood. Here we report that toll-like receptor 4 (TLR4) may mediate the ganglioside-triggered inflammation in glia, brain resident immune cells. Gangliosides rapidly altered the cell surface expression of TLR4 in microglia and astrocytes within 3 hours. Using TLR4-specific siRNA and a dominant-negative TLR4 gene, we clearly demonstrate the functional importance of TLR4 in ganglioside-triggered activation of glia. Inhibition of TLR4 expression by TLR4-siRNA suppressed nuclear factor (NF)-kappaB-binding activity, NF-kappaB-dependent luciferase activity, and transcription of inflammatory cytokines after exposure to gangliosides. Transient transfection of dominant-negative TLR4 also attenuated NF-kappaB-binding activity and interleukin-6 promoter activity. In contrast, these activities were slightly elevated in cells with wild-type TLR4. In addition, CD14 was required for ganglioside-triggered activation of glia, and lipid raft formation may be associated with ganglioside-stimulated signal propagation. Taken together, these results suggest that TLR4 may provide an explanation for the pathological ability of gangliosides to cause inflammatory conditions in the brain.
Collapse
Affiliation(s)
- Ilo Jou
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, 443-721, Korea
| | | | | | | | | | | |
Collapse
|