301
|
Dai CF, Steyger PS. A systemic gentamicin pathway across the stria vascularis. Hear Res 2008; 235:114-24. [PMID: 18082985 PMCID: PMC2703593 DOI: 10.1016/j.heares.2007.10.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/22/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
Abstract
The mechanism(s) by which systemically-administered aminoglycosides enter the cochlea remain poorly understood. To elucidate which mechanisms may be involved, we co-administered different molar ratios of gentamicin and fluorescent gentamicin (GTTR) to mice in three different regimens: (1) gentamicin (150, 300 or 600mg/kg) containing a constant 300:1 molar ratio of gentamicin:GTTR; (2) 300mg/kg gentamicin containing a variable molar ratio of gentamicin:GTTR (150:1-600:1), or (3) an increasing dose of gentamicin (150-900mg/kg), each dose containing 1.7mg/kg GTTR. Three hours later, cochleae were fixed and examined by confocal microscopy. First, increasing doses of a constant molar ratio of gentamicin:GTTR, resulted in increasing intensities of GTTR fluorescence in hair cells and strial tissues. Second, a fixed gentamicin dose with increasing molar dilution of GTTR led to decreasing GTTR fluorescence in hair cells and strial tissues. Third, a fixed GTTR dose with increasing molar dilution by gentamicin led to decreased GTTR uptake in hair cells and marginal cells, but not intra-strial tissues and capillaries. Thus, only hair cell and marginal cell uptake of GTTR is competitively inhibited by gentamicin, suggesting that a regulatable barrier for gentamicin entry into endolymph exists at the interface between marginal cells, the intra-strial space and intermediate cells.
Collapse
Affiliation(s)
- Chun Fu Dai
- Oregon Hearing Research Center, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239
- Dept. of Otolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239
| |
Collapse
|
302
|
Nishikawa S. Styryl Pyridinium Dyes FM1-43 and AM1-43 for Visualization of Sensory Nerve Fibers and Cells in Dental and Craniofacial Tissues of Small Experimental Animals. J Oral Biosci 2008. [DOI: 10.1016/s1349-0079(08)80026-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
303
|
Nishikawa S. Developmental changes in pulpal sensory innervation of rat incisors and molars shown on a single injection of the fluorescent dye AM1-43. Anat Sci Int 2007; 82:227-32. [DOI: 10.1111/j.1447-073x.2007.00190.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
304
|
|
305
|
Binshtok AM, Bean BP, Woolf CJ. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature 2007; 449:607-10. [PMID: 17914397 DOI: 10.1038/nature06191] [Citation(s) in RCA: 341] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/28/2007] [Indexed: 11/09/2022]
Abstract
Most local anaesthetics used clinically are relatively hydrophobic molecules that gain access to their blocking site on the sodium channel by diffusing into or through the cell membrane. These anaesthetics block sodium channels and thereby the excitability of all neurons, not just sensory neurons. We tested the possibility of selectively blocking the excitability of primary sensory nociceptor (pain-sensing) neurons by introducing the charged, membrane-impermeant lidocaine derivative QX-314 through the pore of the noxious-heat-sensitive TRPV1 channel. Here we show that charged sodium-channel blockers can be targeted into nociceptors by the application of TRPV1 agonists to produce a pain-specific local anaesthesia. QX-314 applied externally had no effect on the activity of sodium channels in small sensory neurons when applied alone, but when applied in the presence of the TRPV1 agonist capsaicin, QX-314 blocked sodium channels and inhibited excitability. Inhibition by co-applied QX-314 and capsaicin was restricted to neurons expressing TRPV1. Injection of QX-314 together with capsaicin into rat hindpaws produced a long-lasting (more than 2 h) increase in mechanical and thermal nociceptive thresholds. Long-lasting decreases in pain sensitivity were also seen with regional injection of QX-314 and capsaicin near the sciatic nerve; however, in contrast to the effect of lidocaine, the application of QX-314 and capsaicin together was not accompanied by motor or tactile deficits.
Collapse
Affiliation(s)
- Alexander M Binshtok
- Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
306
|
Abstract
INTRODUCTIONThis protocol describes a method for monitoring the activity-dependent loading and unloading of synaptic vesicles with a fluorescent probe in intact or semi-intact neuronal systems. It is a fairly general method that could be applied to a number of biological preparations other than nervous systems. So far, the method has been applied to Caenorhabditis elegans, Xenopus tadpoles, lamprey spinal cord, fly brain, rat brain, and mouse brain. The method relies on the chemical properties of styryl pyridinium probes, such as FM1-43, that are somewhat water-soluble but preferentially partition into lipid environments. The probe is taken up by endocytosis and only fluoresces once in the membrane. Stimulation of exocytosis releases the probe into the extracellular space, with a consequent decline in fluorescence, allowing the time course of release to be followed. In intact systems such as brain or brain slices, FM1-43 adsorbs to the extracellular surface of the plasma membrane and is resistant to removal by washing. This gives rise to an intense fluorescence signal associated with the extracellular membrane, which obscures the weaker signal associated with vesicular uptake. FM1-43 and its congeners can be removed by using a modified cyclodextrin (Advasep-7) that in effect serves as a soluble high-affinity scavenger for the probe, allowing it to be washed out of the preparation. Cyclodextrins are water-soluble, doughnut-shaped molecules with hydrophobic holes of the right size to accommodate FM1-43, forming what is called an "inclusion" complex.
Collapse
|
307
|
Hu Z, Corwin JT. Inner ear hair cells produced in vitro by a mesenchymal-to-epithelial transition. Proc Natl Acad Sci U S A 2007; 104:16675-80. [PMID: 17895386 PMCID: PMC1994140 DOI: 10.1073/pnas.0704576104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensory hair cell loss is a major contributor to disabling hearing and balance deficits that affect >250 million people worldwide. Sound exposures, infections, drug toxicity, genetic disorders, and aging all can cause hair cell loss and lead to permanent sensory deficits. Progress toward treatments for these deficits has been limited, in part because hair cells have only been obtainable via microdissection of the anatomically complex internal ear. Attempts to produce hair cells in vitro have resulted in reports of some success but have required transplantation into embryonic ears or coculturing with other tissues. Here, we show that avian inner ear cells can be cultured and passaged for months, frozen, and expanded to large numbers without other tissues. At any point from passage 6 up to at least passage 23, these cultures can be fully dissociated and then aggregated in suspension to induce a mesenchymal-to-epithelial transition that reliably yields new polarized sensory epithelia. Those epithelia develop numerous hair cells that are crowned by hair bundles, composed of a single kinocilium and an asymmetric array of stereocilia. These hair cells exhibit rapid permeance to FM1-43, a dye that passes through open mechanotransducing channels. Because a vial of frozen cells can now provide the capacity to produce bona fide hair cells completely in vitro, these discoveries should open new avenues of research that may ultimately contribute to better treatments for hearing loss and other inner ear disorders.
Collapse
Affiliation(s)
- Zhengqing Hu
- Department of Neuroscience, University of Virginia School of Medicine, 409 Lane Road, Charlottesville, VA 22908-1392; and Marine Biological Laboratory, Woods Hole, MA 02543
- *To whom correspondence may be addressed. E-mail:
or
| | - Jeffrey T. Corwin
- Department of Neuroscience, University of Virginia School of Medicine, 409 Lane Road, Charlottesville, VA 22908-1392; and Marine Biological Laboratory, Woods Hole, MA 02543
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
308
|
Xia A, Visosky AMB, Cho JH, Tsai MJ, Pereira FA, Oghalai JS. Altered traveling wave propagation and reduced endocochlear potential associated with cochlear dysplasia in the BETA2/NeuroD1 null mouse. J Assoc Res Otolaryngol 2007; 8:447-63. [PMID: 17701252 PMCID: PMC2538339 DOI: 10.1007/s10162-007-0092-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 07/20/2007] [Indexed: 11/28/2022] Open
Abstract
The BETA2/NeuroD1 null mouse has cochlear dysplasia. Its cochlear duct is shorter than normal, there is a lack of spiral ganglion neurons, and there is hair cell disorganization. We measured vertical movements of the tectorial membrane at acoustic frequencies in excised cochleae in response to mechanical stimulation of the stapes using laser doppler vibrometry. While tuning curve sharpness was similar between wild-type, heterozygotes, and null mice in the base, null mutants had broader tuning in the apex. At both the base and the apex, null mice had less phase lag accumulation with increasing stimulus frequency than wild-type or heterozygote mice. In vivo studies demonstrated that the null mouse lacked distortion product otoacoustic emissions, and the cochlear microphonic and endocochlear potential were found to be severely reduced. Electrically evoked otoacoustic emissions could be elicited, although the amplitudes were lower than those of wild-type mice. Cochlear cross-sections revealed an incomplete partition malformation, with fenestrations within the modiolus that connected the cochlear turns. Outer hair cells from null mice demonstrated the normal pattern of prestin expression within their lateral walls and normal FM 1-43 dye entry. Overall, these data demonstrate that while tonotopicity can exist with cochlear dysplasia, traveling wave propagation is abnormally fast. Additionally, the presence of electrically evoked otoacoustic emissions suggests that outer hair cell reverse transduction is present, although the acoustic response is shaped by the alterations in cochlear mechanics.
Collapse
Affiliation(s)
- Anping Xia
- The Bobby R. Alford Department of Otolaryngology – Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, NA102, Houston, TX 77030 USA
| | - Ann Marie B. Visosky
- The Bobby R. Alford Department of Otolaryngology – Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, NA102, Houston, TX 77030 USA
| | - Jang-Hyeon Cho
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Fred A. Pereira
- The Bobby R. Alford Department of Otolaryngology – Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, NA102, Houston, TX 77030 USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Bioengineering, Rice University, Houston, TX 77251 USA
| | - John S. Oghalai
- The Bobby R. Alford Department of Otolaryngology – Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, NA102, Houston, TX 77030 USA
- Department of Bioengineering, Rice University, Houston, TX 77251 USA
| |
Collapse
|
309
|
Moreira THV, Gover TD, Weinreich D. Electrophysiological properties and chemosensitivity of acutely dissociated trigeminal somata innervating the cornea. Neuroscience 2007; 148:766-74. [PMID: 17706884 PMCID: PMC3390199 DOI: 10.1016/j.neuroscience.2007.03.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 03/02/2007] [Accepted: 04/04/2007] [Indexed: 11/25/2022]
Abstract
Adult rat sensory trigeminal ganglion neurons innervating the cornea (cTGNs) were isolated and identified following retrograde dye labeling with FM1-43. Using standard whole-cell patch clamp recording techniques, cTGNs could be subdivided by their action potential (AP) duration. Fast cTGNs had AP durations <1 ms (40%) while slow cTGNs had AP durations >1 ms and an inflection on the repolarization phase of the AP. With the exception of membrane input resistance, the passive membrane properties of fast cTGNs were different from those of slow cTGNs (capacitance: 61+/-4.5 pF vs. 42+/-2.6 pF, resting membrane potential: -59+/-0.7 mV vs. -53+/-0.9 mV, for fast and slow cTGNs respectively). Active membrane properties also differed between fast and slow cTGNs. Slow cTGNs had a higher AP threshold (-25+/-1.6 mV vs. -38+/-0.8 mV), a larger rheobase (14+/-1.9 pA/pF vs. 6.8+/-1.0 pA/pF), and a smaller AP undershoot (-56+/-1.7 mV vs. -67+/-2.5 mV). The AP overshoot, however was similar between the two types of neurons (46+/-3.1 mV vs. 48+/-4 mV). Slow cTGNs were depolarized by capsaicin (1 microM, 80%) and 60% of their APs were blocked by tetrodotoxin (TTX) (100 nM). Fast cTGNs were unaffected by capsaicin and 100% of their APs were blocked by TTX. Similarly, cTGNs were also heterogeneous with respect to their responses to exogenous ATP and 5-HT. The current work shows that cTGNs have distinctive electrophysiological properties and chemosensitivity profiles. These characteristics may mirror the distinct properties of corneal sensory nerve terminals. The availability of isolated identified cTGNs constitutes a tractable model system to investigate the biophysical and pharmacological properties of corneal sensory nerve terminals.
Collapse
Affiliation(s)
- Thaís Helena Veiga Moreira
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, School of Medicine, Baltimore, MD, USA
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tony D Gover
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Daniel Weinreich
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
310
|
Waldman EH, Castillo A, Collazo A. Ablation studies on the developing inner ear reveal a propensity for mirror duplications. Dev Dyn 2007; 236:1237-48. [PMID: 17394250 DOI: 10.1002/dvdy.21144] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The inner ear develops from a simple ectodermal thickening known as the otic placode. Classic embryological manipulations rotating the prospective placode tissue found that the anteroposterior axis was determined before the dorsoventral axis. A small percentage of such rotations also resulted in the formation of mirror duplicated ears, or enantiomorphs. We demonstrate a different embryological manipulation in the frog Xenopus: the physical removal or ablation of either the anterior or posterior half of the placode, which results in an even higher percentage of mirror image ears. Removal of the posterior half results in mirror anterior duplications, whereas removal of the anterior half results in mirror posterior duplications. In contrast, complete extirpation results in more variable phenotypes but never mirror duplications. By the time the otocyst separates from the surface ectoderm, complete extirpation results in no regeneration. To test for a dosage response, differing amounts of the placode or otocyst were ablated. Removal of one third of the placode resulted in normal ears, whereas two-thirds ablations resulted in abnormal ears, including mirror duplications. Recent studies in zebrafish have demonstrated a role for the hedgehog (Hh) signaling pathway in anteroposterior patterning of the developing ear. We have used overexpression of Hedgehog interacting protein (Hip) to block Hh signaling and find that this strategy resulted in mirror duplications of anterior structures, consistent with the results in zebrafish.
Collapse
Affiliation(s)
- Erik H Waldman
- Leslie and Susan Gonda (Goldschmied) Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, California 90057, USA
| | | | | |
Collapse
|
311
|
Christensen AP, Corey DP. TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 2007; 8:510-21. [PMID: 17585304 DOI: 10.1038/nrn2149] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ion channels of the transient receptor potential (TRP) superfamily are involved in a wide variety of neural signalling processes, most prominently in sensory receptor cells. They are essential for mechanosensation in systems ranging from fruitfly hearing, to nematode touch, to mouse mechanical pain. However, it is unclear in many instances whether a TRP channel directly transduces the mechanical stimulus or is part of a downstream signalling pathway. Here, we propose criteria for establishing direct mechanical activation of ion channels and review these criteria in a number of mechanosensory systems in which TRP channels are involved.
Collapse
Affiliation(s)
- Adam P Christensen
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
312
|
Boulais N, Misery L. Merkel cells. J Am Acad Dermatol 2007; 57:147-65. [PMID: 17412453 DOI: 10.1016/j.jaad.2007.02.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 01/16/2007] [Accepted: 02/18/2007] [Indexed: 12/17/2022]
Abstract
Merkel cells are post-mitotic cells scattered throughout the epidermis of vertebrates. They are particularly interesting because of the close connections that they develop with sensory nerve endings and the number of peptides they can secrete. These features suggest that they may make an important contribution to skin homeostasis and cutaneous nerve development. However, these cells remain mysterious because they are difficult to study. They have not been successfully cultured and cannot be isolated, severely hampering molecular biology and functional analysis. Merkel cells probably originate in the neural crest of avians and mammalians, and their "spontaneous" appearance in the epidermis may be caused by a neuron-independent epidermal differentiation process. Their functions are still unclear: they take part in mechanoreception or at least interact with neurons, but little is known about their interactions with other epidermal cells. This review provides a new look at these least-known cells of the skin. The numerous peptides they synthesize and release may allow them to communicate with many cells other than neurons, and it is plausible that Merkel cells play a key role in skin physiology and physiopathology.
Collapse
Affiliation(s)
- Nicholas Boulais
- Unité de Physiologie Comparée et Intégrative, Université de Bretagne Occidentale, Brest, France
| | | |
Collapse
|
313
|
Drew LJ, Rugiero F, Cesare P, Gale JE, Abrahamsen B, Bowden S, Heinzmann S, Robinson M, Brust A, Colless B, Lewis RJ, Wood JN. High-threshold mechanosensitive ion channels blocked by a novel conopeptide mediate pressure-evoked pain. PLoS One 2007; 2:e515. [PMID: 17565368 PMCID: PMC1885214 DOI: 10.1371/journal.pone.0000515] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 05/04/2007] [Indexed: 11/18/2022] Open
Abstract
Little is known about the molecular basis of somatosensory mechanotransduction in mammals. We screened a library of peptide toxins for effects on mechanically activated currents in cultured dorsal root ganglion neurons. One conopeptide analogue, termed NMB-1 for noxious mechanosensation blocker 1, selectively inhibits (IC(50) 1 microM) sustained mechanically activated currents in a subset of sensory neurons. Biotinylated NMB-1 retains activity and binds selectively to peripherin-positive nociceptive sensory neurons. The selectivity of NMB-1 was confirmed by the fact that it has no inhibitory effects on voltage-gated sodium and calcium channels, or ligand-gated channels such as acid-sensing ion channels or TRPA1 channels. Conversely, the tarantula toxin, GsMTx-4, which inhibits stretch-activated ion channels, had no effects on mechanically activated currents in sensory neurons. In behavioral assays, NMB-1 inhibits responses only to high intensity, painful mechanical stimulation and has no effects on low intensity mechanical stimulation or thermosensation. Unexpectedly, NMB-1 was found to also be an inhibitor of rapid FM1-43 loading (a measure of mechanotransduction) in cochlear hair cells. These data demonstrate that pharmacologically distinct channels respond to distinct types of mechanical stimuli and suggest that mechanically activated sustained currents underlie noxious mechanosensation. NMB-1 thus provides a novel diagnostic tool for the molecular definition of channels involved in hearing and pressure-evoked pain.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Behavior, Animal/drug effects
- Cells, Cultured
- Electrophysiology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/metabolism
- Intercellular Signaling Peptides and Proteins
- Ion Channels/drug effects
- Male
- Mechanotransduction, Cellular/drug effects
- Mice
- Mice, Inbred C57BL
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Pain/drug therapy
- Peptide Fragments/pharmacology
- Peptides/pharmacology
- Rats
- Rats, Sprague-Dawley
- Spider Venoms/pharmacology
Collapse
Affiliation(s)
- Liam J. Drew
- Department of Biology, University College London, London, United Kingdom
| | - Francois Rugiero
- Department of Biology, University College London, London, United Kingdom
| | - Paolo Cesare
- Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello, Rome, Italy
| | - Jonathan E. Gale
- Centre for Auditory Research, University College London Ear Institute, London, United Kingdom
| | - Bjarke Abrahamsen
- Department of Biology, University College London, London, United Kingdom
| | - Sarah Bowden
- Ionix Pharmaceuticals Ltd, Cambridge, United Kingdom
| | | | - Michelle Robinson
- Department of Biology, University College London, London, United Kingdom
| | | | | | - Richard J. Lewis
- Xenome Ltd, Indooroopilly, Queensland, Australia
- Institute for Molecular Bioscience and School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - John N. Wood
- Department of Biology, University College London, London, United Kingdom
| |
Collapse
|
314
|
Marasco PD, Tsuruda PR, Bautista DM, Catania KC. Fine structure of Eimer's organ in the coast mole (Scapanus orarius). Anat Rec (Hoboken) 2007; 290:437-48. [PMID: 17387732 DOI: 10.1002/ar.20511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Eimer's organ is a small, densely innervated sensory structure found on the glabrous rhinarium of most talpid moles. This structure consists of an epidermal papilla containing a central circular column of cells associated with intraepidermal free nerve endings, Merkel cell neurite complexes, and lamellated corpuscles. The free nerve endings within the central cell column form a ring invested in the margins of the column, surrounding 1-2 fibers that pass through the center of the column. A group of small-diameter nociceptive free nerve endings that are immunoreactive for substance P surrounds this central ring of larger-diameter free nerve endings. Transmission electron microscopy revealed a high concentration of tonofibrils in the epidermal cells of the central column, suggesting they are more rigid than the surrounding keratinocytes and may play a mechanical role in transducing stimuli to the different receptor terminals. The intraepidermal free nerve endings within the central column begin to degrade 15 microm from the base of the stratum corneum and do not appear to be active within the keratinized outer layer. The peripheral free nerve endings are structurally distinct from their counterparts in the central column and immunocytochemical double labeling with myelin basic protein and substance P indicates these afferents are unmyelinated. Merkel cell-neurite complexes and lamellated corpuscles are similar in morphology to those found in a range of other mammalian skin.
Collapse
Affiliation(s)
- Paul D Marasco
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
315
|
De Proost I, Pintelon I, Brouns I, Timmermans JP, Adriaensen D. Selective visualisation of sensory receptors in the smooth muscle layer of ex-vivo airway whole-mounts by styryl pyridinium dyes. Cell Tissue Res 2007; 329:421-31. [PMID: 17522895 DOI: 10.1007/s00441-007-0431-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 04/25/2007] [Indexed: 02/01/2023]
Abstract
Recently, we established the location, morphology and neurochemical coding of vagal smooth-muscle-associated airway receptors (SMARs) in rat lungs. These receptors were characterised as branching laminar terminals that originated from myelinated nerve fibres and were intercalated between airway smooth-muscle bundles. To allow the direct physiological examination of these receptors, the present investigation aimed at visualising SMARs in airway whole-mounts of rat and mouse lungs ex vivo. Short incubation with various styryl pyridinium dyes (AM1-43, FM2-10, FM4-64 or 4-Di-2-ASP) gave a highly selective fluorescent visualisation of both laminar nerve terminals and myelinated fibres from which they originated throughout the intrapulmonary airway tree in mouse and in rat. The reliable and specific labelling of SMARs ex vivo with these lipophilic membrane dyes was confirmed via immunostaining for protein gene-product 9.5 and vesicular glutamate transporters. Similar to the intrapulmonary location of NEBs, these SMARs appeared to be even more explicitly located near airway bifurcations. Both the trachealis muscle and the smooth-muscle bundles of extrapulmonary bronchi were also shown to contain laminar nerve terminals that were morphologically similar to the SMARs reported in the intrapulmonary airways. Thus, this study provides an in-vitro model enabling, for the first time, the fast and reliable visualisation of SMARs and the myelinated nerve fibres from which they originate in airway whole-mount preparations ex vivo. As such, this model opens up further perspectives and creates a valid basis for direct physiological measurement and manipulation of the individually identified airway receptors.
Collapse
Affiliation(s)
- Ian De Proost
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | | | | | | | | |
Collapse
|
316
|
Pintelon I, Brouns I, De Proost I, Van Meir F, Timmermans JP, Adriaensen D. Sensory Receptors in the Visceral Pleura. Am J Respir Cell Mol Biol 2007; 36:541-51. [PMID: 17170382 DOI: 10.1165/rcmb.2006-0256oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Today, diagnosis and treatment of chest pain related to pathologic changes in the visceral pleura are often difficult. Data in the literature on the sensory innervation of the visceral pleura are sparse. The present study aimed at identifying sensory end-organs in the visceral pleura, and at obtaining more information about neurochemical coding. The immunocytochemcial data are mainly based on whole mounts of the visceral pleura of control and vagally denervated rats. It was shown that innervation of the rat visceral pleura is characterized by nerve bundles that enter in the hilus region and gradually split into slender bundles with a few nerve fibers. Separate nerve fibers regularly give rise to characteristic laminar terminals. Because of their unique association with the elastic fibers of the visceral pleura, we decided to refer to them as "visceral pleura receptors" (VPRs). Cryostat sections of rat lungs confirmed a predominant location on mediastinal and interlobar lung surfaces. VPRs can specifically be visualized by protein gene product 9.5 immunostaining, and were shown to express vesicular glutamate transporters, calbindin D28K, Na+/K+-ATPase, and P2X3 ATP-receptors. The sensory nerve fibers giving rise to VPRs appeared to be myelinated and to have a spinal origin. Because several of the investigated proteins have been reported as markers for sensory terminals in other organs, the present study revealed that VPRs display the neurochemical characteristics of mechanosensory and/or nociceptive terminals. The development of a live staining method, using AM1-43, showed that VPRs can be visualized in living tissue, offering an interesting model for future physiologic studies.
Collapse
Affiliation(s)
- Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
317
|
Hernández PP, Olivari FA, Sarrazin AF, Sandoval PC, Allende ML. Regeneration in zebrafish lateral line neuromasts: Expression of the neural progenitor cell marker sox2 and proliferation-dependent and-independent mechanisms of hair cell renewal. Dev Neurobiol 2007; 67:637-54. [PMID: 17443814 DOI: 10.1002/dneu.20386] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mechanosensory hair cells are essential for audition in vertebrates, and in many species, have the capacity for regeneration when damaged. Regeneration is robust in the fish lateral line system as new hair cells can reappear after damage induced by waterborne aminoglycoside antibiotics, platinum-based drugs, and heavy metals. Here, we characterize the loss and reappearance of lateral line hair cells induced in zebrafish larvae treated with copper sulfate using diverse molecular markers. Transgenic fish that express green fluorescent protein in different cell types in the lateral line system have allowed us to follow the regeneration of hair cells after different damage protocols. We show that conditions that damage only differentiated hair cells lead to reappearance of new hair cells within 24 h from nondividing precursors, whereas harsher conditions are followed by a longer recovery period that is accompanied by extensive cell division. In order to characterize the cell population that gives rise to new hair cells, we describe the expression of a neural stem cell marker in neuromasts. The zebrafish sox2 gene is strongly expressed in neuromast progenitor cells, including those of the migrating lateral line primordium, the accessory cells that underlie the hair cells in neuromasts, and in interneuromastic cells that give rise to new neuromasts. Moreover, we find that most of the cells that proliferate within the neuromast during regeneration express this marker. Thus, our results describe the dynamics of hair cell regeneration in zebrafish and suggest the existence of at least two mechanisms for recovery of these cells in neuromasts.
Collapse
Affiliation(s)
- Pedro P Hernández
- Millennium Nucleus in Developmental Biology, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | | | |
Collapse
|
318
|
Watson GM, Graugnard EM, Mire P. The involvement of arl-5b in the repair of hair cells in sea anemones. J Assoc Res Otolaryngol 2007; 8:183-93. [PMID: 17332968 PMCID: PMC2538354 DOI: 10.1007/s10162-007-0078-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 01/12/2007] [Indexed: 10/23/2022] Open
Abstract
The subcellular processes involved in repair of hair cells are not well understood. Sea anemones repair hair bundle mechanoreceptors on their tentacles after severe trauma caused by 1-h exposure to calcium-depleted seawater. Repair is dependent on the synthesis and secretion of large protein complexes named "repair proteins." A cDNA library on traumatized anemone tissue was probed using polyclonal antibodies raised to a specific chromatographic fraction of the repair protein mixture. An ADP-ribosylation factor-like protein, Arl-5b, was identified. The amino acid sequence of the Arl-5b protein in sea anemones is similar to that among several model vertebrates and humans. A polyclonal antibody raised to a peptide of the anemone Arl-5b labels some but not all hair bundles in healthy control animals. The abundance of labeled hair bundles significantly increases above healthy controls after trauma and continuing through the first hour of recovery. Dilute anti-Arl-5b blocks the spontaneous repair of hair bundle mechanoreceptors, suggesting that Arl-5b acts on the extracellular face of the plasma membrane. Immunoelectron microscopy indicates that Arl-5b is located along the length of stereocilia including sites in the vicinity of tip links. We propose that Arl-5b is involved in installing replacement linkages into damaged hair bundle mechanoreceptors.
Collapse
Affiliation(s)
- Glen M Watson
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504-2451, USA.
| | | | | |
Collapse
|
319
|
Davies D, Magnus C, Corwin JT. Developmental changes in cell-extracellular matrix interactions limit proliferation in the mammalian inner ear. Eur J Neurosci 2007; 25:985-98. [PMID: 17331195 DOI: 10.1111/j.1460-9568.2007.05355.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hair cell losses can produce severe hearing and balance deficits in mammals and nonmammals alike, but nonmammals recover after epithelial supporting cells divide and give rise to replacement hair cells. Here, we describe cellular changes that appear to underlie the permanence of hair cell deficits in mammalian vestibular organs. In sensory epithelia isolated from the utricles of embryonic day 18 (E18) mice, supporting cells readily spread and proliferated, but spreading and proliferation were infrequent in supporting cells from postnatal day 6 (P6) mice. Cellular spreading and proliferation were dependent on alpha6 integrin, which disappeared from lateral cell membranes by P6 and colocalized with beta4 integrin near the basement membrane at both ages. In the many well-spread, proliferating E18 supporting cells, beta4 was localized at cell borders, but it was localized to hemidesmosome-like structures in the columnar, nondividing supporting cells that were prevalent in P6 cultures. We treated cultures with phorbol myristate acetate (PMA) to activate protein kinase C (PKC) in an initial test of the possibility that maturational changes in supporting cell cytoskeletons or their anchorage might restrict the proliferation of these progenitor cells in the developing mammalian inner ear. That treatment triggered the disassembly of the hemidesmosome-like beta4 structures and resulted in significantly increased cellular spreading and S-phase entry in the P6 epithelia. The results suggest that maturational changes in cytoskeletal organization and anchorage restrict proliferation of mammalian supporting cells whose counterparts are the progenitors of replacement hair cells in nonmammals, thereby leaving mammals vulnerable to persistent sensory deficits caused by hair cell loss.
Collapse
Affiliation(s)
- Dawn Davies
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
320
|
Drew LJ, Wood JN. FM1-43 is a permeant blocker of mechanosensitive ion channels in sensory neurons and inhibits behavioural responses to mechanical stimuli. Mol Pain 2007; 3:1. [PMID: 17207285 PMCID: PMC1779769 DOI: 10.1186/1744-8069-3-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 01/06/2007] [Indexed: 01/31/2023] Open
Abstract
The molecular identity and pharmacological properties of mechanically gated ion channels in sensory neurons are poorly understood. We show that FM1-43, a styryl dye used to fluorescently label cell membranes, permeates mechanosensitive ion channels in cultured dorsal root ganglion neurons, resulting in blockade of three previously defined subtypes of mechanically activated currents. Blockade and dye uptake is voltage dependent and regulated by external Ca2+. The structurally related larger dye FM3-25 inhibited mechanically activated currents to a lesser degree and did not permeate the channels. In vivo, FMI-43 decreases pain sensitivity in the Randall-Selitto test and increases the withdrawal threshold from von Frey hairs, together suggesting that the channels expressed at the cell body in culture mediate mechanosensation in the intact animal. These data give further insight into the mechanosensitive ion channels expressed by somatosensory neurons and suggest FM dyes are an interesting tool for studying them.
Collapse
Affiliation(s)
- Liam J Drew
- Dept. of Biology, UCL, Gower Street, London, WC1E 6BT, UK
- Dept. of Physiology and Cellular Biophysics, Columbia University, 630, W168th St, New York, NY10032, USA
| | - John N Wood
- Dept. of Biology, UCL, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
321
|
Abstract
Mechanical stimuli generated by head movements and changes in sound pressure are detected by hair cells with amazing speed and sensitivity. The mechanosensitive organelle, the hair bundle, is a highly elaborated structure of actin-based stereocilia arranged in precise rows of increasing height. Extracellular linkages contribute to its cohesion and convey forces to mechanically gated channels. Channel opening is nearly instantaneous and is followed by a process of sensory adaptation that keeps the channels poised in their most sensitive range. This process is served by motors, scaffolds, and homeostatic mechanisms. The molecular constituents of this process are rapidly being elucidated, especially by the discovery of deafness genes and antibody targets.
Collapse
Affiliation(s)
- Melissa A Vollrath
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
322
|
van Netten SM, Kros CJ. Insights into the Pore of the Hair Cell Transducer Channel from Experiments with Permeant Blockers. CURRENT TOPICS IN MEMBRANES 2007; 59:375-98. [DOI: 10.1016/s1063-5823(06)59013-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
323
|
Abstract
TRPV1, the archetypal member of the vanilloid TRP family, was initially identified as the receptor for capsaicin, the pungent ingredient in hot chili peppers. The receptor has a diverse tissue distribution, with high expression in sensory neurons. TRPV1 is a nonselective cation channel with significant permeability to calcium, protons, and large polyvalent cations. It is the most polymodal TRP channel, being activated by numerous stimuli, including heat, voltage, vanilloids, lipids, and protons/cations. TRPV1 acts as a molecular integrator of physical and chemical stimuli in peripheral nociceptor terminals and plays a critical role in thermal inflammatory hyperalgesia. In addition, TRPV1 may regulate a variety of physiological functions in different organ systems. Various second messenger systems regulate TRPV1 activity, predominantly by serine-threonine phosphorylation. In this review, we provide a concise summary of the information currently available about this channel.
Collapse
Affiliation(s)
- S C Pingle
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Rd NW, Washington, DC 20007, USA
| | | | | |
Collapse
|
324
|
Stepanyan R, Belyantseva IA, Griffith AJ, Friedman TB, Frolenkov GI. Auditory mechanotransduction in the absence of functional myosin-XVa. J Physiol 2006; 576:801-8. [PMID: 16973713 PMCID: PMC1890419 DOI: 10.1113/jphysiol.2006.118547] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 09/11/2006] [Indexed: 12/21/2022] Open
Abstract
In hair cells of all vertebrates, a mechanosensory bundle is formed by stereocilia with precisely graded heights. Unconventional myosin-XVa is critical for formation of this bundle because it transports whirlin and perhaps other molecular components responsible for programmed elongation of stereocilia to the stereocilia tips. A tip of a stereocilium is the site of stereocilia growth and one of the proposed sites of mechano-electrical transduction. In adult shaker 2 mice, a mutation that disables the motor function of myosin-XVa results in profound deafness and abnormally short stereocilia that lack stereocilia links, an indispensable component of mechanotransduction machinery. Therefore, it was assumed that myosin-XVa is required for proper formation of the mechanotransduction apparatus. Here we show that in young postnatal shaker 2 mice, abnormally short stereocilia bundles of auditory hair cells have numerous stereocilia links and 'wild type' mechano-electrical transduction. We compared the mechanotransduction current in auditory hair cells of young normal-hearing littermates, myosin-XVa-deficient shaker 2 mice, and whirler mice that have similarly short stereocilia but intact myosin-XVa at the stereocilia tips. This comparison revealed that the absence of functional myosin-XVa does not disrupt adaptation of the mechanotransduction current during sustained bundle deflection. Thus, the hair cell mechanotransduction complex forms and functions independently from myosin-XVa-based hair bundle morphogenesis.
Collapse
MESH Headings
- Animals
- Cilia/physiology
- Deafness/etiology
- Deafness/genetics
- Deafness/physiopathology
- Evoked Potentials, Auditory, Brain Stem/genetics
- Evoked Potentials, Auditory, Brain Stem/physiology
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/pathology
- Hair Cells, Auditory, Outer/physiology
- Mechanotransduction, Cellular/genetics
- Mechanotransduction, Cellular/physiology
- Mice
- Mutation/genetics
- Myosins/genetics
- Myosins/physiology
- Organ of Corti/cytology
- Organ of Corti/pathology
- Organ of Corti/physiology
- Patch-Clamp Techniques
Collapse
Affiliation(s)
- Ruben Stepanyan
- Department of Physiology, University of Kentucky, MS508, Chandler Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
325
|
Nishikawa S. Systemic labeling and visualization of dental sensory nerves by the novel fluorescent marker AM1-43. Anat Sci Int 2006; 81:181-6. [PMID: 16955669 DOI: 10.1111/j.1447-073x.2006.00147.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Systemic labeling of sensory nerves was performed by injecting a small amount of the styryl dye AM1-43 subcutaneously to the back skin of 4-week-old mice in order to determine its ability to stain sensory nerves. One or 3 days later, dental tissues were fixed and cryosectioned. Molars showed bright nerve fibers in the periodontal ligament and pulp. Nerve fibers in dentinal tubules approximately 100 microm from the pulp were also labeled. In the incisor, there were only few labelings in the pulp, although free nerve endings and Ruffini-type mechanosensors in the periodontal ligament on the lingual side were brightly labeled. The AM1-43-positive fibers were also labeled by anti-PGP9.5. AM1-43 is an excellent marker for sensory nerves and it may be useful for further investigations of dental innervation and in exploring new analgesics for tooth pain.
Collapse
Affiliation(s)
- Sumio Nishikawa
- Department of Biology, Tsurumi University School of Dental Medicine, Yokohama, Japan.
| |
Collapse
|
326
|
McCarter GC, Levine JD. Ionic basis of a mechanotransduction current in adult rat dorsal root ganglion neurons. Mol Pain 2006; 2:28. [PMID: 16923187 PMCID: PMC1563451 DOI: 10.1186/1744-8069-2-28] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 08/21/2006] [Indexed: 01/30/2023] Open
Abstract
Sensory mechanical transduction - necessary for hearing, proprioception, and the senses of touch and pain - remains poorly understood. In somatosensation, even the basic properties of the mechanically sensitive excitatory ionic currents that are assumed to mediate mechanical transduction are largely undescribed. We have recorded, from the soma of rat dorsal root ganglion (DRG) neurons in vitro, whole-cell ionic currents induced by the impact of a piezo-electrically driven glass probe. This transient mechanically activated current was observed in virtually all DRG neurons tested. In ion substitution experiments the current could be carried nonselectively by most cations, including divalent and organic cations, but not by chloride or sulfate ions. In addition, the mechanically activated current carried by monovalent cations was consistently blocked by millimolar concentrations of external calcium or magnesium. Based on these results, the transient mechanical transduction current observed in somatosensory neurons in vitro is mediated by large-pore mechanically gated channels nonselective for cations but impermeable to anions.
Collapse
Affiliation(s)
- Gordon C McCarter
- Department of Oral and Maxillofacial Surgery, Division of Neurosciences, University of California at San Francisco, San Francisco, CA 94143-0440, USA
- College of Pharmacy, Touro University – California, 1310 Johnson Lane, Mare Island, Vallejo, CA 94592-1118, USA
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, Division of Neurosciences, University of California at San Francisco, San Francisco, CA 94143-0440, USA
| |
Collapse
|
327
|
Abstract
In contrast to nearly all other sensory systems, the mechanically sensitive ion channel carrying the receptor current into hair cells of the inner ear has not been identified in molecular terms. A number of candidates from at least two different ion channel families have been considered: these include the epithelial sodium channel (ENaC) and acid-sensing ion channel (ASIC) members of the DEG/ENaC superfamily of amiloride-sensitive sodium channels, as well as the TRP channels TRPN1, TRPV4, TRPML3 and TRPA1. For each, initial supportive results were followed by further studies that cast doubts on their involvement. No promising candidates have recently emerged, but the TRP family continues to be attractive in general.
Collapse
Affiliation(s)
- David P Corey
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
328
|
Kaneko T, Harasztosi C, Mack AF, Gummer AW. Membrane traffic in outer hair cells of the adult mammalian cochlea. Eur J Neurosci 2006; 23:2712-22. [PMID: 16817874 DOI: 10.1111/j.1460-9568.2006.04796.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Outer hair cells (OHCs), the sensory-motor cells responsible for the extraordinary frequency selectivity and dynamic range of the cochlea, rapidly endocytose membrane and protein at their apical surface. Endocytosis and transcytosis in isolated OHCs from the mature guinea-pig cochlea were investigated using the amphipathic membrane probe FM1-43. We observed membrane transport from the apical surface to both the basolateral wall and the subnuclear pole. By double-labelling with DiOC6, a stain for endoplasmic reticulum, and aspiration of the plasma membrane, we showed that the basolateral target was the subsurface cisternae. The fluorescent signal was about three times weaker at the basal than at the apical pole. The speed of vesicle transport to the subnuclear pole was approximately 0.4 microm/s. Changing extracellular Ca2+ concentration from 25 microM to 2 mM accelerated rapid endocytosis. Extracellular application of BAPTA-AM (25 microM), an intracellular Ca2+ chelator, and TFP (20 microM), a specific inhibitor of calmodulin, reduced endocytic activity, as did depolarization of the whole cell. The presence of extracellular Cd2+ (200 microM), a Ca2+-channel blocker, had no effect on the voltage dependence of endocytosis at the apical pole, and inhibited the voltage dependence at the subnuclear pole. These results suggest that rapid endocytosis is a Ca2+/calmodulin-dependent process, with extracellular Ca2+ entering through voltage-gated Ca2+ channels at the basal pole. The two distinct destinations of endocytosed membrane are consistent with the functional polarization of the OHC, with the basolateral wall being dedicated to electromechanical transduction and the subnuclear pole being dedicated to electrochemical transduction processes.
Collapse
Affiliation(s)
- Toshihiko Kaneko
- Department of Otolaryngology, Section of Physiological Acoustics and Communication, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | | | | | | |
Collapse
|
329
|
Bonsacquet J, Brugeaud A, Compan V, Desmadryl G, Chabbert C. AMPA type glutamate receptor mediates neurotransmission at turtle vestibular calyx synapse. J Physiol 2006; 576:63-71. [PMID: 16887871 PMCID: PMC1995632 DOI: 10.1113/jphysiol.2006.116467] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glutamate is thought to be the main neurotransmitter at the synapse between the type I vestibular hair cell and its cognate calyx afferent. The present study was designed to identify the type of glutamate receptors involved in neurotransmission at this unusual synapse. Immunocytochemistry showed that AMPA GluR2, NMDA NR1 and NR2A/B subunits of the glutamate receptors were confined to the synaptic contact. We then examined the electrical activity at calyx terminals using direct electrophysiological recordings from intact dendritic terminals in explanted turtle posterior crista. We found that sodium-based action potentials support a background discharge that could be modulated by the mechanical stimulation of the hair bundle of the sensory cells. These activities were prevented by blocking both the mechano-electrical transduction channels and L-type voltage-gated Ca(2+) channels involved in synaptic transmission. Although pharmacological analysis revealed that NMDA receptors could operate, our results show that AMPA receptors are mainly involved in synaptic neurotransmission. We conclude that although both AMPA and NMDA glutamate receptor subunits are present at the calyx synapse, only AMPA receptors appear to be involved in the synaptic transmission between the type I vestibular hair cell and the calyx afferent.
Collapse
Affiliation(s)
- Jérémie Bonsacquet
- INSERM U583, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, BP74 103, 80 Rue Fliche, 34091 Montpellier Cedex 5 France.
| | | | | | | | | |
Collapse
|
330
|
White PM, Doetzlhofer A, Lee YS, Groves AK, Segil N. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 2006; 441:984-7. [PMID: 16791196 DOI: 10.1038/nature04849] [Citation(s) in RCA: 326] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 04/26/2006] [Indexed: 02/06/2023]
Abstract
Sensory hair cells of the mammalian organ of Corti in the inner ear do not regenerate when lost as a consequence of injury, disease, or age-related deafness. This contrasts with other vertebrates such as birds, where the death of hair cells causes surrounding supporting cells to re-enter the cell cycle and give rise to both new hair cells and supporting cells. It is not clear whether the lack of mammalian hair cell regeneration is due to an intrinsic inability of supporting cells to divide and differentiate or to an absence or blockade of regenerative signals. Here we show that post-mitotic supporting cells purified from the postnatal mouse cochlea retain the ability to divide and trans-differentiate into new hair cells in culture. Furthermore, we show that age-dependent changes in supporting cell proliferative capacity are due in part to changes in the ability to downregulate the cyclin-dependent kinase inhibitor p27(Kip1) (also known as Cdkn1b). These results indicate that postnatal mammalian supporting cells are potential targets for therapeutic manipulation.
Collapse
Affiliation(s)
- Patricia M White
- Gonda Department of Cell and Molecular Biology, House Ear Institute, 2100 W. Third Street, Los Angeles, California 90057, USA
| | | | | | | | | |
Collapse
|
331
|
Taura A, Kojima K, Ito J, Ohmori H. Recovery of hair cell function after damage induced by gentamicin in organ culture of rat vestibular maculae. Brain Res 2006; 1098:33-48. [PMID: 16764839 DOI: 10.1016/j.brainres.2006.04.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 04/13/2006] [Accepted: 04/17/2006] [Indexed: 11/25/2022]
Abstract
Here, we report the functional and morphological evidence of hair cell recovery after damages induced by gentamicin (GM) in cultured explants of rat vestibular maculae. We evaluated mechano-electrical transduction (MET) function in hair cells, by measuring Ca(2+) responses in the explants with fura-2 when hair bundles were stimulated. After the MET testing, hair bundles were observed in high resolution by scanning electron microscopy, or by fluorescence microscopy after staining with phalloidin-FITC (fluorescent isothiocyanate). In the control culture, the number of hair bundles on the explants gradually decreased, and the percentage of explants showing Ca(2+) responses decreased and disappeared after 17 days in culture. Following GM (1-2 mM) treatment, most of the hair bundles were eliminated initially, but the hair bundles gradually increased in number during culture. Short hair bundle-like structures emerged in the areas where hair bundles had been completely lost. Consistent with the morphological observations, Ca(2+) responses disappeared after GM treatment, and they gradually recovered to a peak 13-17 days after treatment and were even induced at 17 days or more in culture. Furthermore, cells accumulated FM1-43, a dye permeable through the MET channel, when Ca(2+) responses recovered after GM treatment. Application of steroid hormone increased the percentage of explants showing MET activity, and enhanced the recovery of MET after GM treatment. We investigated Ki-67 immunoreactivity to detect cell proliferation and TUNEL staining to detect apoptotic cell death. Ki-67 immunoreactivity was negative after GM treatment, however TUNEL staining was positive and the positivity was GM dose dependent. Therefore, this functional recovery of transduction activity was not owing to the proliferation of hair cells but was likely the self-repair of the hair bundle.
Collapse
Affiliation(s)
- Akiko Taura
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University, Japan
| | | | | | | |
Collapse
|
332
|
Marasco PD, Tsuruda PR, Bautista DM, Julius D, Catania KC. Neuroanatomical evidence for segregation of nerve fibers conveying light touch and pain sensation in Eimer's organ of the mole. Proc Natl Acad Sci U S A 2006; 103:9339-44. [PMID: 16751268 PMCID: PMC1482611 DOI: 10.1073/pnas.0603229103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Talpid moles are small insectivores that live in dark underground tunnels. They depend heavily on touch to navigate and find food. Most species have an array of complex epidermal sensory structures called Eimer's organs that cover the tip of the nose. In this study, the anatomy of Eimer's organ was examined in the coast mole and star-nosed mole by using the fluorescent styryl pyridinium dye AM1-43 and immunocytochemical staining for neurofilament 200 and substance P. In addition, DiI was used to label neural components of Eimer's organ. AM1-43 labeled all of the Eimer's organ receptors after systemic injection, suggesting a role in mechanotransduction. Immunostaining with neurofilament 200 and substance P labeled distinct subtypes of sensory fibers. Substance P labeled a group of free nerve endings along the outer edge of Eimer's organ, indicating a nociceptive role for these fibers. In contrast, neurofilament 200 labeled a more central set of nerve endings, suggesting that these fibers function as low-threshold mechanoreceptors. By labeling subsets of trigeminal afferents distant from the receptor array with DiI, we revealed innervation patterns indicating that one afferent supplies the outer, substance P-positive set of free nerve endings, whereas several afferents differentially innervate the central free nerve endings. Our results suggest that the free nerve endings innervating Eimer's organ are largely mechanosensitive and may play an important role in the rapid sensory discrimination observed in these species.
Collapse
Affiliation(s)
- Paul D. Marasco
- *Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University, U1205 Medical Center North, Nashville, TN 37232-2050
| | - Pamela R. Tsuruda
- Department of Cellular and Molecular Pharmacology, University of California, Box 2140, 600 16th Street GH N272E, San Francisco, CA 94143-2140; and
| | - Diana M. Bautista
- Department of Cellular and Molecular Pharmacology, University of California, Box 2140, 600 16th Street GH N272E, San Francisco, CA 94143-2140; and
| | - David Julius
- Department of Cellular and Molecular Pharmacology, University of California, Box 2140, 600 16th Street GH N272E, San Francisco, CA 94143-2140; and
| | - Kenneth C. Catania
- Department of Biological Sciences, Vanderbilt University, VU Station B, Box 35-1634, Nashville, TN 37235-1634
| |
Collapse
|
333
|
Blasiole B, Canfield VA, Vollrath MA, Huss D, Mohideen MAPK, Dickman JD, Cheng KC, Fekete DM, Levenson R. Separate Na,K-ATPase genes are required for otolith formation and semicircular canal development in zebrafish. Dev Biol 2006; 294:148-60. [PMID: 16566913 DOI: 10.1016/j.ydbio.2006.02.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 02/17/2006] [Accepted: 02/21/2006] [Indexed: 11/21/2022]
Abstract
We have investigated the role of Na,K-ATPase genes in zebrafish ear development. Six Na,K-ATPase genes are differentially expressed in the developing zebrafish inner ear. Antisense morpholino knockdown of Na,K-ATPase alpha1a.1 expression blocked formation of otoliths. This effect was phenocopied by treatment of embryos with ouabain, an inhibitor of Na,K-ATPase activity. The otolith defect produced by morpholinos was rescued by microinjection of zebrafish alpha1a.1 or rat alpha1 mRNA, while the ouabain-induced defect was rescued by expression of ouabain-resistant zebrafish alpha1a.1 or rat alpha1 mRNA. Knockdown of a second zebrafish alpha subunit, alpha1a.2, disrupted development of the semicircular canals. Knockdown of Na,K-ATPase beta2b expression also caused an otolith defect, suggesting that the beta2b subunit partners with the alpha1a.1 subunit to form a Na,K-ATPase required for otolith formation. These results reveal novel roles for Na,K-ATPase genes in vestibular system development and indicate that different isoforms play distinct functional roles in formation of inner ear structures. Our results highlight zebrafish gene knockdown-mRNA rescue as an approach that can be used to dissect the functional properties of zebrafish and mammalian Na,K-ATPase genes.
Collapse
Affiliation(s)
- Brian Blasiole
- Department of Pharmacology, Penn State University College of Medicine, H078, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Mazzone SB, Mori N, Burman M, Palovich M, Belmonte KE, Canning BJ. Fluorescent styryl dyes FM1-43 and FM2-10 are muscarinic receptor antagonists: intravital visualization of receptor occupancy. J Physiol 2006; 575:23-35. [PMID: 16728454 PMCID: PMC1819419 DOI: 10.1113/jphysiol.2006.106351] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The fluorescent styryl dyes FM1-43 and FM2-10 have been used to visualize the endocytic and exocytic processes involved in neurotransmission in a variety of central and peripheral nerve preparations. Their utility is limited to some extent by a poorly understood vesicular-independent labelling of cells and tissues. We show here that one likely cause of this troublesome background labelling is that FM1-43 and FM2-10 are selective and competitive antagonists at both cloned and endogenously expressed muscarinic acetylcholine receptors. In radioligand binding studies, FM1-43 and FM2-10 bound with moderate affinity (23-220 nM) to membranes of Chinese hamster ovary (CHO) cells expressing cloned human muscarinic receptors (M1-M5). In functional studies in vitro, FM1-43 and FM2-10 inhibited electrical field stimulation (EFS) and acetylcholine-induced cholinergic contractions of guinea-pig tracheal strips (IC50: FM1-43, 0.4 +/- 0.1; FM2-10, 1.6 +/- 0.1 microM; concentration of antagonist producing a 2-fold leftward shift in the acetylcholine concentration-response curve (Kb): FM1-43, 0.3 +/- 0.1; FM2-10, 15.8 +/- 10.1 microM). Neither compound inhibited EFS-evoked, non-adrenergic non-cholinergic nerve-mediated relaxations or contractions of the airways, or contractions mediated by histamine H1 receptor or tachykinin NK2 receptor activation. Incubating freshly excised tracheal whole-mount preparations with 5 microM FM1-43 resulted in intense fluorescence labelling of the smooth muscle that was reduced by up to 90% in the presence of selective M2 and M3 receptor antagonists. The potency of the FM dyes as muscarinic receptor antagonists is within the concentration range used to study vesicular cycling at nerve terminals. Given that muscarinic receptors play a key role in the regulation of neurotransmitter release from a variety of neurones, the anticholinergic properties of FM dyes may have important implications when studying vesicular events in the nervous system. In addition, these dyes may provide a novel tool for visualizing muscarinic receptor occupancy in living tissue or cell preparations.
Collapse
|
335
|
Sage C, Huang M, Vollrath MA, Brown MC, Hinds PW, Corey DP, Vetter DE, Chen ZY. Essential role of retinoblastoma protein in mammalian hair cell development and hearing. Proc Natl Acad Sci U S A 2006; 103:7345-50. [PMID: 16648263 PMCID: PMC1450112 DOI: 10.1073/pnas.0510631103] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The retinoblastoma protein pRb is required for cell-cycle exit of embryonic mammalian hair cells but not for their early differentiation. However, its role in postnatal hair cells is unknown. To study the function of pRb in mature animals, we created a new conditional mouse model, with the Rb gene deleted primarily in the inner ear. Progeny survive up to 6 months. During early postnatal development, pRb(-/-) hair cells continue to divide and can transduce mechanical stimuli. However, adult pRb(-/-) mice exhibit profound hearing loss due to progressive degeneration of the organ of Corti. We show that pRb is required for the full maturation of cochlear outer hair cells, likely in a gene-specific manner, and is also essential for their survival. In addition, lack of pRb results in cell division in postnatal auditory supporting cells. In contrast, many pRb(-/-) vestibular hair cells survive and continue to divide in adult mice. Significantly, adult pRb(-/-) vestibular hair cells are functional, and pRb(-/-) mice maintain partial vestibular function. Therefore, the functional adult vestibular pRb(-/-) hair cells, derived from proliferation of postnatal hair cells, are largely integrated into vestibular pathways. This study reveals essential yet distinct roles of pRb in cochlear and vestibular hair cell maturation, function, and survival and suggests that transient block of pRb function in mature hair cells may lead to propagation of functional hair cells.
Collapse
Affiliation(s)
- Cyrille Sage
- *Neurology Service, Center for Nervous System Repair, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Mingqian Huang
- *Neurology Service, Center for Nervous System Repair, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Melissa A. Vollrath
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - M. Christian Brown
- Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA 02114
| | - Philip W. Hinds
- Department of Radiation Oncology, Molecular Oncology Research Institute, Tufts–New England Medical Center, Boston, MA 02111; and
| | - David P. Corey
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Douglas E. Vetter
- Departments of Neuroscience and Biomedical Engineering, Tufts University School of Medicine, Boston, MA 02111
| | - Zheng-Yi Chen
- *Neurology Service, Center for Nervous System Repair, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
336
|
Kelley MW. Hair cell development: commitment through differentiation. Brain Res 2006; 1091:172-85. [PMID: 16626654 DOI: 10.1016/j.brainres.2006.02.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/15/2006] [Accepted: 02/17/2006] [Indexed: 10/24/2022]
Abstract
The perceptions of sound, balance and acceleration are mediated through the vibration of stereociliary bundles located on the lumenal surfaces of mechanosensory hair cells located within the inner ear. In mammals, virtually all hair cells are generated during a relatively brief period in embryogenesis with any subsequent hair cell loss leading to a progressive and permanent loss of sensitivity. In light of the importance of these cells, considerable effort has been focused on understanding the molecular genetic pathways that regulate their development. The results of these studies have begun to elucidate the signaling molecules that regulate several key events in hair cell development. In particular, significant progress has been made in the understanding of hair cell commitment, survival and differentiation. In addition, several aspects of the development of the stereociliary bundle, including its elongation and orientation, have recently been examined. This review will summarize results from each of these developmental events and describe the molecular signaling pathways involved.
Collapse
Affiliation(s)
- Matthew W Kelley
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 35 Convent Drive, Bethesda, MA 20892, USA.
| |
Collapse
|
337
|
Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP. TRPA1 Contributes to Cold, Mechanical, and Chemical Nociception but Is Not Essential for Hair-Cell Transduction. Neuron 2006; 50:277-89. [PMID: 16630838 DOI: 10.1016/j.neuron.2006.03.042] [Citation(s) in RCA: 998] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 02/23/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
TRPA1, a member of the transient receptor potential (TRP) family of ion channels, is expressed by dorsal root ganglion neurons and by cells of the inner ear, where it has proposed roles in sensing sound, painful cold, and irritating chemicals. To test the in vivo roles of TRPA1, we generated a mouse in which the essential exons required for proper function of the Trpa1 gene were deleted. Knockout mice display behavioral deficits in response to mustard oil, to cold ( approximately 0 degrees C), and to punctate mechanical stimuli. These mice have a normal startle reflex to loud noise, a normal sense of balance, a normal auditory brainstem response, and normal transduction currents in vestibular hair cells. TRPA1 is apparently not essential for hair-cell transduction but contributes to the transduction of mechanical, cold, and chemical stimuli in nociceptor sensory neurons.
Collapse
Affiliation(s)
- Kelvin Y Kwan
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
338
|
Hernández PP, Moreno V, Olivari FA, Allende ML. Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio). Hear Res 2006; 213:1-10. [PMID: 16386394 DOI: 10.1016/j.heares.2005.10.015] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Accepted: 10/19/2005] [Indexed: 11/21/2022]
Abstract
In teleosts, the lateral line system is composed of neuromasts containing hair cells that are analogous to those present in the inner ear of all vertebrates. In the zebrafish embryo and early larva, this system is composed of the anterior lateral line (ALL), which covers the head, and the posterior lateral line (PLL), present in the trunk and tail. The mechanosensory hair cells found in neuromasts can be labeled in vivo using fluorescent dyes such as 4-di-2-Asp (DiAsp) or FM1-43. We have studied the effects of water-borne copper exposure on the function of the lateral line system in zebrafish larvae. Our results show that transient incubation of post-hatching larvae for 2h with non-lethal concentrations of copper (1-50 microM CuSO4) induces cellular damage localized to neuromasts, apoptosis, and loss of hair cell markers. This effect is specific to copper, as other metals did not show these effects. Since hair cells in fish can regenerate, we followed the reappearance of viable hair cells in neuromasts after copper removal. In the PLL, we determined that there is a threshold concentration of copper above which regeneration does not occur, whereas, at lower concentrations, the length of time it takes for viable hair cells to reappear is dependent on the amount of copper used during the treatment. The ALL behaves differently though, as regeneration can occur even after treatments with concentrations of copper an order of magnitude higher than the one that irreversibly affects the PLL. Regeneration of hair cells is dependent on cell division within the neuromasts as damage that precludes proliferation prevents reappearance of this cell type.
Collapse
Affiliation(s)
- Pedro P Hernández
- Millennium Nucleus in Developmental Biology and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Encinas 3370, Edificio Milenio, Casilla 653, Santiago, Chile
| | | | | | | |
Collapse
|
339
|
Dai C, Mangiardi D, Cotanche D, Steyger P. Uptake of fluorescent gentamicin by vertebrate sensory cells in vivo. Hear Res 2006; 213:64-78. [PMID: 16466873 PMCID: PMC2424187 DOI: 10.1016/j.heares.2005.11.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 10/26/2005] [Accepted: 11/25/2005] [Indexed: 11/16/2022]
Abstract
Aminoglycoside uptake in the inner ear remains poorly understood. We subcutaneously injected a fluorescently-conjugated aminoglycoside, gentamicin-Texas Red (GTTR), to investigate the in vivo uptake of GTTR in the inner ear of several vertebrates, and in various murine sensory cells using confocal microscopy. In bullfrogs, GTTR uptake was prominent in mature hair cells, but not in immature hair cells. Avian hair cells accrued GTTR more rapidly at the base of the basilar papilla. GTTR was associated with the hair bundle; and, in guinea pigs and mice, somatic GTTR fluorescence was initially diffuse before punctate (endosomal) fluorescence could be observed. A baso-apical gradient of intracellular GTTR uptake in guinea pig cochleae could only be detected at early time points (<3h). In 21-28 day mice, cochlear GTTR uptake was greatly reduced compared to guinea pigs, 6-day-old mice, or mice treated with ethacrynic acid. In mice, GTTR was also rapidly taken up, and retained, in the kidney, dorsal root and trigeminal ganglia. In linguinal and vibrissal tissues rapid GTTR uptake cleared over a period of several days. The preferential uptake of GTTR by mature saccular, and proximal hair cells resembles the pattern of aminoglycoside-induced hair cell death in bullfrogs and chicks. Differences in the degree of GTTR uptake in hair cells of different species suggests variation in serum levels, clearance rates from serum, and/or the developmental and functional integrity of the blood-labyrinth barrier. GTTR uptake by hair cells in vivo suggests that GTTR has potential to elucidate aminoglycoside transport mechanisms into the inner ear, and as a bio-tracer for in vivo pharmacokinetic studies.
Collapse
Affiliation(s)
- C.F. Dai
- Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
- Department of Otolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, PR China
| | - D. Mangiardi
- Department of Otolaryngology, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, United States
| | - D.A. Cotanche
- Department of Otolaryngology, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - P.S. Steyger
- Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| |
Collapse
|
340
|
Santos F, MacDonald G, Rubel EW, Raible DW. Lateral line hair cell maturation is a determinant of aminoglycoside susceptibility in zebrafish (Danio rerio). Hear Res 2006; 213:25-33. [PMID: 16459035 DOI: 10.1016/j.heares.2005.12.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 11/07/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
Developmental differences in hair cell susceptibility to aminoglycoside-induced cell death has been observed in multiple species. Increased sensitivity to aminoglycosides has been temporally correlated with the onset of mechanotransduction-dependent activity. We have used in vivo fluorescent vital dye markers to further investigate the determinants of aminoglycoside induced hair cell death in the lateral line of zebrafish (Danio rerio). Labeling hair cells of the lateral line in vivo with the dyes FM 1-43, To-Pro-3, and Yo-Pro-1 served as reliable indicators of hair cell viability. Results indicate that hair cell maturation is a determinant of developmental differences in susceptibility. The age dependent differences in susceptibility to aminoglycosides are independent of the onset of mechanotransduction-dependent activity as measured by FM 1-43 uptake and independent of hair cell ability to take up fluorescently conjugated aminoglycosides.
Collapse
Affiliation(s)
- Felipe Santos
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Box 357923, Seattle, WA 98195-7923, USA
| | | | | | | |
Collapse
|
341
|
Abstract
Transient receptor potential (TRP) receptors are, typically, calcium-permeant cation channels that transduce environmental stimuli. Both kidney epithelial and inner ear sensory cells express TRPV1, are mechanosensors and accumulate the aminoglycoside antibiotic gentamicin. Recently, we showed that Texas Red-conjugated gentamicin (GTTR) enters kidney cells via an endosome-independent pathway. Here, we used GTTR to investigate this non-endocytotic mechanism of gentamicin uptake. In serum-free buffers, GTTR penetrated MDCK cells within 30 s and uptake was modulated by extracellular, multivalent cations (Ca2+, La3+, Gd3+) or protons. We verified the La3+ modulation of GTTR uptake using immunocytochemical detection of unconjugated gentamicin. Membrane depolarization, induced by high extracellular K+ or valinomycin, also reduced GTTR uptake, suggesting electrophoretic permeation through ion channels. GTTR uptake was enhanced by the TRPV1 agonists, resiniferatoxin and anandamide, in Ca2+-free media. Competitive antagonists of the TRPV1 cation current, iodo-resiniferatoxin and SB366791, also enhanced GTTR uptake independently of Ca2+, reinforcing these antagonists' potential as latent agonists in specific situations. Ruthenium Red blocked GTTR uptake in the presence or absence of these TRPV1-agonists and antagonists. In addition, GTTR uptake was blocked by RTX in the presence of more physiological levels (2 mM) of Ca2+. Thus gentamicin enters cells via cation channels, and gentamicin uptake can be modulated by regulators of the TRPV1 channel.
Collapse
Affiliation(s)
- Sigrid E Myrdal
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
342
|
Myrdal SE, Johnson KC, Steyger PS. Cytoplasmic and intra-nuclear binding of gentamicin does not require endocytosis. Hear Res 2006; 204:156-69. [PMID: 15925201 PMCID: PMC2736065 DOI: 10.1016/j.heares.2005.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 02/02/2005] [Indexed: 11/16/2022]
Abstract
Understanding the cellular mechanism(s) by which the oto- and nephrotoxic aminoglycoside antibiotics penetrate cells, and the precise intracellular distribution of these molecules, will enable identification of aminoglycoside-sensitive targets, and potential uptake blockers. Clones of two kidney cell lines, OK and MDCK, were treated with the aminoglycoside gentamicin linked to the fluorophore Texas Red (GTTR). As in earlier reports, endosomal accumulation was observed in live cells, or cells fixed with formaldehyde only. However, delipidation of fixed cells revealed GTTR fluorescence in cytoplasmic and nuclear compartments. Immunolabeling of both GTTR and unconjugated gentamicin corresponded to the cytoplasmic distribution of GTTR fluorescence. Intra-nuclear GTTR binding co-localized with labeled RNA in the nucleoli and trans-nuclear tubules. Cytoplasmic and nuclear distribution of GTTR was quenched by phosphatidylinositol-bisphosphate (PIP2), a known ligand for gentamicin. Cytoplasmic and nuclear GTTR binding increased over time (at 37 degrees C, or on ice to inhibit endocytosis), and was serially competed off by increasing concentrations of unconjugated gentamicin, i.e., GTTR binding is saturable. In contrast, little or no reduction of endocytotic GTTR uptake was observed when cells were co-incubated with up to 4 mg/mL unconjugated gentamicin. Thus, cytoplasmic and nuclear GTTR uptake is time-dependent, weakly temperature-dependent and saturable, suggesting that it occurs via an endosome-independent mechanism, implicating ion channels, transporters or pores in the plasma membrane as bioregulatory routes for gentamicin entry into cells.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/adverse effects
- Anti-Bacterial Agents/metabolism
- Binding Sites/drug effects
- Cell Line
- Dogs
- Dose-Response Relationship, Drug
- Endocytosis/physiology
- Fluorescent Dyes
- Gentamicins/adverse effects
- Gentamicins/metabolism
- Immunohistochemistry
- Kidney Tubules, Distal/cytology
- Kidney Tubules, Distal/drug effects
- Kidney Tubules, Distal/metabolism
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Microscopy, Confocal
- Neurons/drug effects
- Opossums
- Phosphatidylinositol 4,5-Diphosphate/metabolism
- Phosphatidylinositol 4,5-Diphosphate/pharmacology
- Xanthenes
Collapse
Affiliation(s)
- Sigrid E Myrdal
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | |
Collapse
|
343
|
Chapter 13 Finding Sensory Neuron Mechanotransduction Components. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
344
|
Chapter 4 TRPV1: A Polymodal Sensor in the Nociceptor Terminal. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
345
|
Lyall V, Heck GL, Phan THT, Mummalaneni S, Malik SA, Vinnikova AK, Desimone JA. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. II. Effect on chorda tympani salt responses. ACTA ACUST UNITED AC 2005; 125:587-600. [PMID: 15928404 PMCID: PMC2234074 DOI: 10.1085/jgp.200509264] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by direct measurement of intracellular Na+ activity ([Na+]i) using fluorescence imaging in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) taste nerve recordings. CT responses to KCl and NaCl were recorded in Sprague-Dawley rats, and in wild-type (WT) and vanilloid receptor-1 (VR-1) knockout mice (KO). CT responses were monitored in the presence of Bz, a specific blocker of the epithelial Na+ channel (ENaC). CT responses were also recorded in the presence of agonists (resiniferatoxin and elevated temperature) and antagonists (capsazepine and SB-366791) of VR-1 that similarly modulate the Bz-insensitive VR-1 variant salt taste receptor. In the absence of mineral salts, ethanol induced a transient decrease in TRC volume and elicited only transient phasic CT responses. In the presence of mineral salts, ethanol increased the apical cation flux in TRCs without a change in volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a phasic component and a sustained tonic component. At concentrations <50%, ethanol enhanced responses to KCl and NaCl, while at ethanol concentrations >50%, those CT responses were inhibited. Resiniferatoxin and elevated temperature increased the sensitivity of the CT response to ethanol in salt-containing media, and SB-366791 inhibited the effect of ethanol, resiniferatoxin, and elevated temperature on the CT responses to mineral salts. VR-1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to ethanol. We conclude that ethanol increases salt taste sensitivity by its direct action on the Bz-insensitive VR-1 variant salt taste receptor.
Collapse
Affiliation(s)
- Vijay Lyall
- Department of Physiology, Division of Nephrology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | | | | | | | |
Collapse
|
346
|
Marcotti W, van Netten SM, Kros CJ. The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol 2005; 567:505-21. [PMID: 15994187 PMCID: PMC1474200 DOI: 10.1113/jphysiol.2005.085951] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 06/27/2005] [Indexed: 11/08/2022] Open
Abstract
The most serious side-effect of the widely used aminoglycoside antibiotics is irreversible intracellular damage to the auditory and vestibular hair cells of the inner ear. The mechanism of entry into the hair cells has not been unequivocally resolved. Here we report that extracellular dihydrostreptomycin not only blocks the mechano-electrical transducer channels of mouse outer hair cells at negative membrane potentials, as previously shown, but also enters the cells through these channels, which are located in the cells' mechanosensory hair bundles. The voltage-dependent blocking kinetics indicate an open-channel block mechanism, which can be well described by a two barrier-one binding site model, quantifying the antibiotic's block of the channel as well as its permeation in terms of the associated rate constants. The results identify the open transducer channels as the main route for aminoglycoside entry. Intracellularly applied dihydrostreptomycin also blocks the transducer channels, but at positive membrane potentials. However, the potency of the block was two orders of magnitude lower than that due to extracellular dihydrostreptomycin. Extracellular Ca2+ increases the free energy of the barrier nearest the extracellular side and of the binding site for dihydrostreptomycin. This reduces both the entry of dihydrostreptomycin into the channel and the channel's affinity for the drug. In vivo, where the extracellular Ca2+ concentration in the endolymph surrounding the hair bundles is < 100 microM, we predict that some 9000 dihydrostreptomycin molecules per second enter each hair cell at therapeutic drug concentrations.
Collapse
MESH Headings
- Aminoglycosides/administration & dosage
- Animals
- Anti-Bacterial Agents/administration & dosage
- Cells, Cultured
- Dihydrostreptomycin Sulfate/administration & dosage
- Dihydrostreptomycin Sulfate/pharmacokinetics
- Dose-Response Relationship, Drug
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Ion Channels/drug effects
- Ion Channels/physiology
- Mechanotransduction, Cellular/drug effects
- Mechanotransduction, Cellular/physiology
- Membrane Potentials/drug effects
- Metabolic Clearance Rate
- Mice
- Models, Biological
- Models, Chemical
Collapse
Affiliation(s)
- Walter Marcotti
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | |
Collapse
|
347
|
Shin JB, Adams D, Paukert M, Siba M, Sidi S, Levin M, Gillespie PG, Gründer S. Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells. Proc Natl Acad Sci U S A 2005; 102:12572-7. [PMID: 16116094 PMCID: PMC1194908 DOI: 10.1073/pnas.0502403102] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In vertebrates, the senses of hearing and balance depend on hair cells, which transduce sounds with their hair bundles, containing actin-based stereocilia and microtubule-based kinocilia. A longstanding question in auditory science is the identity of the mechanically sensitive transduction channel of hair cells, thought to be localized at the tips of their stereocilia. Experiments in zebrafish implicated the transient receptor potential (TRP) channel NOMPC (drTRPN1) in this role; TRPN1 is absent from the genomes of higher vertebrates, however, and has not been localized in hair cells. Another candidate for the transduction channel, TRPA1, apparently is required for transduction in mammalian and nonmammalian vertebrates. This discrepancy raises the question of the relative contribution of TRPN1 and TRPA1 to transduction in nonmammalian vertebrates. To address this question, we cloned the TRPN1 ortholog from the amphibian Xenopus laevis, generated an antibody against the protein, and determined the protein's cellular and subcellular localization. We found that TRPN1 is prominently located in lateral-line hair cells, auditory hair cells, and ciliated epidermal cells of developing Xenopus embryos. In ciliated epidermal cells TRPN1 staining was enriched at the tips and bases of the cilia. In saccular hair cells, TRPN1 was located prominently in the kinocilial bulb, a component of the mechanosensory hair bundles. Moreover, we observed redistribution of TRPN1 upon treatment of hair cells with calcium chelators, which disrupts the transduction apparatus. This result suggests that although TRPN1 is unlikely to be the transduction channel of stereocilia, it plays an essential role, functionally related to transduction, in the kinocilium.
Collapse
Affiliation(s)
- Jung-Bum Shin
- Oregon Hearing Research Center and Vollum Institute, Portland, OR 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
348
|
Meyer J, Preyer S, Hofmann SI, Gummer AW. Tonic mechanosensitivity of outer hair cells after loss of tip links. Hear Res 2005; 202:97-113. [PMID: 15811703 DOI: 10.1016/j.heares.2004.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 11/30/2004] [Indexed: 11/16/2022]
Abstract
Tip links - the extracellular connectors between the distal ends of adjacent stereocilia - are essential for the fast mechanical gating of hair-cell transducer channels. Transduction in the absence of tip links was investigated for outer hair cells of the adult guinea-pig cochlea by patch-clamp recordings of the whole-cell current during mechanical stimulation of the hair bundle. Loss of tip links induced by application of BAPTA led to permanently opened transducer channels, as evidenced by a constant inward current, loss of response to sinusoidal mechanical deflection of the hair bundle and block by the open-channel blocker dihydrostreptomycin (100 microM). Step deflection of the hair bundle (200-500 nm) in the inhibitory direction exponentially reduced this current to a constant value with time constant, tau(on), of the order of seconds. The current returned exponentially to the pre-stimulus level with time-constant, tau(off), also of the order of seconds. tau(on) was dependent on the inter-stimulus interval, Deltat, such that reducing this interval below about 40 s resulted in an exponentially faster response. tau(off) was independent of Deltat. Application of the calcium ionophore, ionomycin (10 microM), showed that tau(on) became independent of Deltat after saturating elevation of the intracellular Ca(2+) concentration. Flash-photolytic release of intracellular caged calcium (25-microM NP-EGTA/AM) showed that tau(on) is dependent on intracellular Ca(2+) concentration. These experiments imply an intracellular, calcium-dependent gating mechanism for hair-cell transducer channels.
Collapse
Affiliation(s)
- Jens Meyer
- Department of Otolaryngology, Section of Physiological Acoustics and Communication, University of Tübingen, Germany
| | | | | | | |
Collapse
|
349
|
Lin SY, Corey DP. TRP channels in mechanosensation. Curr Opin Neurobiol 2005; 15:350-7. [PMID: 15922584 DOI: 10.1016/j.conb.2005.05.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 05/06/2005] [Indexed: 11/28/2022]
Abstract
Channels of the TRP superfamily have sensory roles in a wide variety of receptor cells, especially in mechanosensation. In some cases, the channels appear to be directly activated by mechanical force; in others, they appear to be downstream of a messenger pathway initiated by force on a non-channel sensor. A remaining challenge for most of these mechanosensory TRPs is to clarify the specific mechanism of activation.
Collapse
Affiliation(s)
- Shuh-Yow Lin
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
350
|
Alagramam KN, Stahl JS, Jones SM, Pawlowski KS, Wright CG. Characterization of vestibular dysfunction in the mouse model for Usher syndrome 1F. J Assoc Res Otolaryngol 2005; 6:106-18. [PMID: 15952048 PMCID: PMC2538330 DOI: 10.1007/s10162-004-5032-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 12/03/2004] [Indexed: 11/24/2022] Open
Abstract
The deaf-circling Ames waltzer (av) mouse harbors a mutation in the protocadherin 15 (Pcdh15) gene and is a model for inner ear defects associated with Usher syndrome type 1F. Earlier studies showed altered cochlear hair cell morphology in young av mice. In contrast, no structural abnormality consistent with significant vestibular dysfunction in young av mice was observed. Light and scanning electron microscopic studies showed that vestibular hair cells from presumptive null alleles Pcdh15(av-Tg) and Pcdh15(av-3J) are morphologically similar to vestibular sensory cells from control littermates, suggesting that the observed phenotype in these alleles might be a result of a central, rather than peripheral, defect. In the present study, a combination of physiologic and anatomic methods was used to more thoroughly investigate the source of vestibular dysfunction in Ames waltzer mice. Analysis of vestibular evoked potentials and angular vestibulo-ocular reflexes revealed a lack of physiologic response to linear and angular acceleratory stimuli in Pcdh15 mutant mice. Optokinetic reflex function was diminished but still present in the mutant animals, suggesting that the defect is primarily peripheral in nature. These findings indicate that the mutation in Pcdh15 results in either a functional abnormality in the vestibular receptor organs or that the defects are limited to the vestibular nerve. AM1-43 dye uptake has been shown to correlate with normal transduction function in hair cells. Dye uptake was found to be dramatically reduced in Pcdh15 mutants compared to control littermates, suggesting that the mutation affects hair cell function, although structural abnormalities consistent with significant vestibular dysfunction are not apparent by light and scanning electron microscopy in the vestibular neuroepithelia of young animals.
Collapse
MESH Headings
- Animals
- Cadherin Related Proteins
- Cadherins/genetics
- Coloring Agents/pharmacokinetics
- Disease Models, Animal
- Evoked Potentials, Auditory
- Fluorescent Dyes/pharmacokinetics
- Mice
- Mice, Mutant Strains
- Microscopy, Electron, Scanning
- Mutation
- Nystagmus, Optokinetic
- Protein Precursors/genetics
- Reflex, Vestibulo-Ocular
- Usher Syndromes/genetics
- Usher Syndromes/pathology
- Usher Syndromes/physiopathology
- Vestibule, Labyrinth/metabolism
- Vestibule, Labyrinth/pathology
- Vestibule, Labyrinth/physiopathology
Collapse
Affiliation(s)
- Kumar N Alagramam
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|