351
|
Chai N, Chang HE, Nicolas E, Gudima S, Chang J, Taylor J. Assembly of hepatitis B virus envelope proteins onto a lentivirus pseudotype that infects primary human hepatocytes. J Virol 2007; 81:10897-904. [PMID: 17670822 PMCID: PMC2045538 DOI: 10.1128/jvi.00959-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This study demonstrates that the envelope proteins of hepatitis B virus (HBV) could be incorporated into the lipid membrane of lentivirus pseudotype particles. The assembly procedure was initiated by the transfection of 293T cells with three plasmids: (i) a human immunodeficiency virus (HIV) packaging construct, (ii) a transfer plasmid expressing a reporter gene, and (iii) a plasmid expressing large (L), middle (M), and small (S) HBV envelope proteins. After 2 days, hepatitis B surface antigen and the antigenic forms of L, M, and S were detected at the cell surface by flow cytometry. Also, virus particles that were able to infect cultured primary human hepatocytes (PHH) were released. Under optimal conditions, 50% of PHH could be infected. In addition, the susceptibility of PHH and the resistance of other cell types to the pseudotype particles were similar to those observed for HBV and hepatitis delta virus (HDV), which shares the same L, M, and S. Furthermore, the infection of PHH by the pseudotype was sensitive to known inhibitors of HBV and HDV entry. These findings of specific and efficient infection of hepatocytes could be applicable to liver-specific gene therapy and may help clarify the attachment and entry mechanism used by HBV and HDV.
Collapse
Affiliation(s)
- Ning Chai
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA
| | | | | | | | | | | |
Collapse
|
352
|
Hu HP, Hsieh SC, King CC, Wang WK. Characterization of retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope glycoproteins of four serotypes of dengue viruses. Virology 2007; 368:376-87. [PMID: 17662331 PMCID: PMC7126519 DOI: 10.1016/j.virol.2007.06.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 05/14/2007] [Accepted: 06/19/2007] [Indexed: 11/16/2022]
Abstract
In this study, we successfully established retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope (PrM/E) proteins of each of the four serotypes of dengue viruses, which caused the most important arboviral diseases in this century. Co-sedimentation of the dengue E protein and HIV-1 core proteins by sucrose gradient analysis of the pseudotype reporter virus of dengue virus type 2, D2(HIVluc), and detection of HIV-1 core proteins by immunoprecipitation with anti-E monoclonal antibody suggested that dengue viral proteins were incorporated into the pseudotype viral particles. The infectivity in target cells, as assessed by the luciferase activity, can be inhibited by the lysosomotropic agents, suggesting a pH-dependent mechanism of entry. Amino acid substitutions of the leucine at position 107, a critical residue at the fusion loop of E protein, with lysine resulted in severe impairment in infectivity, suggesting that entry of the pseudotype reporter virus is mediated through the fusogenic properties of E protein. With more and more dengue viral sequences available from different outbreaks worldwide, this sensitive and convenient tool has the potential to facilitate molecular characterization of the PrM/E proteins of dengue field isolates.
Collapse
Affiliation(s)
- Hsien-Ping Hu
- Institute of Microbiology, College of Medicine, National Taiwan University, No 1 Sec1 Jen-Ai Rd, Taipei 100, Taiwan
| | - Szu-Chia Hsieh
- Institute of Microbiology, College of Medicine, National Taiwan University, No 1 Sec1 Jen-Ai Rd, Taipei 100, Taiwan
| | - Chwan-Chuen King
- Institute of Epidemiology, College of Public Health, National Taiwan University, No 1 Sec1 Jen-Ai Rd, Taipei 100, Taiwan
| | - Wei-Kung Wang
- Institute of Microbiology, College of Medicine, National Taiwan University, No 1 Sec1 Jen-Ai Rd, Taipei 100, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, No 7 Chung-Shan S Rd, Taipei 100, Taiwan
- Corresponding author. Institute of Microbiology, National Taiwan University, No 1 Sec1 Jen-Ai Rd, Taipei 100, Taiwan. Fax: +886 2 2391 5293.
| |
Collapse
|
353
|
Qin L, Wang X, Wu S, Yuan S, Huang D, Lei M, Pan H, Lin Q. The immunity induced by recombinant spike proteins of SARS coronavirus in Balb/c mice. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2007; 27:221-4. [PMID: 17641827 PMCID: PMC7088728 DOI: 10.1007/s11596-007-0301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Indexed: 12/02/2022]
Abstract
The immune effect of two recombinant protein fragments of spike protein in severe acute respiratory syndrome coronavirus (SARS CoV) was investigated in Balb/c mice. Two partial spike gene fragments S1 (322 1464 bp) and S2 (2170 2814 bp) of SARS coronavirus were amplified by RT-PCR, and cloned into pET-23a prokaryotic expression vector, then transformed into competent Escherichia E. coli BL21 (DE3)(pLysS) respectively. Recombinant proteins were expressed and purified by Ni2+ immobilized metal ion affinity chromatography. The purified proteins mixed with complete Freund adjuvant were injected into Balb/c mice three times at a two-week interval. High titer antibody was detected in the serum of immunized Balb/c mice, and mice immunized with S1 protein produced high titer IgG1, IgG2a, IgG2b and IgG3, while those immunized with S2 protein produced high titer IgG1, IgG2a, but lower titer IgG2b and IgG3. Serum IFN-concentration was increased significantly but the concentrations of Il-2, IL-4 and IL-10 had no significant change. And a marked increase was observed in the number of spleen CD8+ T cells. The results showed that recombinant proteins of SARS coronavirus spike protein induced hormonal and cellular immune response in Balb/c mice.
Collapse
Affiliation(s)
- Li Qin
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Ximing Wang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shaoting Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518020 China
| | - Shishan Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518020 China
| | - Dana Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518020 China
| | - Mingjun Lei
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Huirong Pan
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qiping Lin
- Veterinarian College, South China University of Agriculture, Guangzhou, 510000 China
| |
Collapse
|
354
|
Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents 2007; 30:297-308. [PMID: 17629679 PMCID: PMC7126847 DOI: 10.1016/j.ijantimicag.2007.05.015] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 05/09/2007] [Indexed: 12/17/2022]
Abstract
Chloroquine (CQ) and its hydroxyl analogue hydroxychloroquine (HCQ) are weak bases with a half-century long use as antimalarial agents. Apart from this antimalarial activity, CQ and HCQ have gained interest in the field of other infectious diseases. One of the most interesting mechanisms of action is that CQ leads to alkalinisation of acid vesicles that inhibit the growth of several intracellular bacteria and fungi. The proof of concept of this effect was first used to restore intracellular pH allowing antibiotic efficacy for Coxiella burnetii, the agent of Q fever, and doxycycline plus HCQ is now the reference treatment for chronic Q fever. There is also strong evidence of a similar effect in vitro against Tropheryma whipplei, the agent of Whipple's disease, and a clinical trial is in progress. Other bacteria and fungi multiply in an acidic environment and encouraging in vitro data suggest that this concept may be generalised for all intracellular organisms that multiply in an acidic environment. For viruses, CQ led to inhibition of uncoating and/or alteration of post-translational modifications of newly synthesised proteins, especially inhibition of glycosylation. These effects have been well described in vitro for many viruses, with human immunodeficiency virus (HIV) being the most studied. Preliminary in vivo clinical trials suggest that CQ alone or in combination with antiretroviral drugs might represent an interesting way to treat HIV infection. In conclusion, our review re-emphasises the paradigm that activities mediated by lysosomotropic agents may offer an interesting weapon to face present and future infectious diseases worldwide.
Collapse
Affiliation(s)
- Jean-Marc Rolain
- Unité des Rickettsies, CNRS UMR 6020, Université de la Méditerranée, Faculté de Médecine et de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| | | | | |
Collapse
|
355
|
Zhao GP. SARS molecular epidemiology: a Chinese fairy tale of controlling an emerging zoonotic disease in the genomics era. Philos Trans R Soc Lond B Biol Sci 2007; 362:1063-81. [PMID: 17327210 PMCID: PMC2435571 DOI: 10.1098/rstb.2007.2034] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) was the first natural disaster that challenged the Chinese people at the beginning of the twenty-first century. It was caused by a novel animal coronavirus, never recognized or characterized before. This SARS coronavirus (SARS-CoV) exploited opportunities provided by 'wet markets' in southern China to adapt to the palm civet and human. Under the positive selection pressure of human host, certain mutated lineages of the virus became readily transmissible between humans and thus caused the epidemic of 2002-2003. This review will provide first-hand information, particularly from Guangdong, China, about the initial epidemiology, the identification of the aetiological agent of the disease, the molecular evolution study of the virus, the finding of SARS-like CoV in horseshoe bats and the mechanistic analysis for the cross-host tropism transition. The substantial scientific contributions made by the Chinese scientists towards understanding the virus and the disease will be emphasized. Along with the description of the scientific discoveries and analyses, the significant impact of these researches upon the public health measurement or regulations will be highlighted. It is aimed to appreciate the concerted and coordinated global response that controlled SARS within a short period of time as well as the research strategy and methodology developed along with this process, which can be applied in response to other public health challenges, particularly the future emerging/re-merging infectious diseases.
Collapse
Affiliation(s)
- Guo-ping Zhao
- Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Building 1, 250 Bi-Bo Road, Zhangjiang HiTech Park, Pudong, Shanghai 201203, People's Republic of China.
| |
Collapse
|
356
|
Abstract
Severe acute respiratory syndrome (SARS) presented as an atypical pneumonia that progressed to acute respiratory distress syndrome in approximately 20% of cases and was associated with a mortality of about 10%. The etiological agent was a novel coronavirus (CoV). Angiotensin-converting enzyme 2 is the functional receptor for SARS-CoV; DC-SIGN and CD209L (L-SIGN) can enhance viral entry. Although the virus infects the lungs, gastrointestinal tract, liver, and kidneys, the disease is limited to the lungs, where diffuse alveolar damage is accompanied by a disproportionately sparse inflammatory infiltrate. Pro-inflammatory cytokines and chemokines, particularly IP-10, IL-8, and MCP-1, are elevated in the lungs and peripheral blood, but there is an unusual lack of an antiviral interferon (IFN) response. The virus is susceptible to exogenous type I IFN but suppresses the induction of IFN. Innate immunity is important for viral clearance in the mouse model. Virus-specific neutralizing antibodies that develop during convalescence prevent reinfection in animal models.
Collapse
Affiliation(s)
- Jun Chen
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
357
|
Dye C, Temperton N, Siddell SG. Type I feline coronavirus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines. J Gen Virol 2007; 88:1753-1760. [PMID: 17485536 PMCID: PMC2584236 DOI: 10.1099/vir.0.82666-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 02/05/2007] [Indexed: 11/25/2022] Open
Abstract
There are two types of feline coronaviruses that can be distinguished by serology and sequence analysis. Type I viruses, which are prevalent in the field but are difficult to isolate and propagate in cell culture, and type II viruses, which are less prevalent but replicate well in cell culture. An important determinant of coronavirus infection, in vivo and in cell culture, is the interaction of the virus surface glycoprotein with a cellular receptor. It is generally accepted that feline aminopeptidase N can act as a receptor for the attachment and entry of type II strains, and it has been proposed that the same molecule acts as a receptor for type I viruses. However, the experimental data are inconclusive. The aim of the studies reported here was to provide evidence for or against the involvement of feline aminopeptidase N as a receptor for type I feline coronaviruses. Our approach was to produce retroviral pseudotypes that bear the type I or type II feline coronavirus surface glycoprotein and to screen a range of feline cell lines for the expression of a functional receptor for attachment and entry. Our results show that type I feline coronavirus surface glycoprotein fails to recognize feline aminopeptidase N as a functional receptor on three continuous feline cell lines. This suggests that feline aminopeptidase N is not a receptor for type I feline coronaviruses. Our results also indicate that it should be possible to use retroviral pseudotypes to identify and characterize the cellular receptor for type I feline coronaviruses.
Collapse
Affiliation(s)
- Charlotte Dye
- Division of Virology, Department of Cellular and Molecular Medicine, School of Medical and Veterinary Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Nigel Temperton
- MRC/UCL Centre for Medical Molecular Virology, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | - Stuart G. Siddell
- Division of Virology, Department of Cellular and Molecular Medicine, School of Medical and Veterinary Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
358
|
Hu H, Lu X, Tao L, Bai B, Zhang Z, Chen Y, Zheng F, Chen J, Chen Z, Wang H. Induction of specific immune responses by severe acute respiratory syndrome coronavirus spike DNA vaccine with or without interleukin-2 immunization using different vaccination routes in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:894-901. [PMID: 17494640 PMCID: PMC1951058 DOI: 10.1128/cvi.00019-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNA vaccines induce humoral and cellular immune responses in animal models and humans. To analyze the immunogenicity of the severe acute respiratory syndrome (SARS) coronavirus (CoV), SARS-CoV, spike DNA vaccine and the immunoregulatory activity of interleukin-2 (IL-2), DNA vaccine plasmids pcDNA-S and pcDNA-IL-2 were constructed and inoculated into BALB/c mice with or without pcDNA-IL-2 by using three different immunization routes (the intramuscular route, electroporation, or the oral route with live attenuated Salmonella enterica serovar Typhimurium). The cellular and humoral immune responses were assessed by enzyme-linked immunosorbent assays, lymphocyte proliferation assays, enzyme-linked immunospot assays, and fluorescence-activated cell sorter analyses. The results showed that specific humoral and cellular immunities could be induced in mice by inoculating them with SARS-CoV spike DNA vaccine alone or by coinoculation with IL-2-expressing plasmids. In addition, the immune response levels in the coinoculation groups were significantly higher than those in groups receiving the spike DNA vaccine alone. The comparison between the three vaccination routes indicated that oral vaccination evoked a vigorous T-cell response and a weak response predominantly with subclass immunoglobulin G2a (IgG2a) antibody. However, intramuscular immunization evoked a vigorous antibody response and a weak T-cell response, and vaccination by electroporation evoked a vigorous response with a predominant subclass IgG1 antibody response and a moderate T-cell response. Our findings show that the spike DNA vaccine has good immunogenicity and can induce specific humoral and cellular immunities in BALB/c mice, while IL-2 plays an immunoadjuvant role and enhances the humoral and cellular immune responses. Different vaccination routes also evoke distinct immune responses. This study provides basic information for the design of DNA vaccines against SARS-CoV.
Collapse
Affiliation(s)
- Hui Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
359
|
Liu M, Yang Y, Gu C, Yue Y, Wu KK, Wu J, Zhu Y. Spike protein of SARS-CoV stimulates cyclooxygenase-2 expression via both calcium-dependent and calcium-independent protein kinase C pathways. FASEB J 2007; 21:1586-96. [PMID: 17267381 DOI: 10.1096/fj.06-6589com] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 12/25/2006] [Indexed: 11/11/2022]
Abstract
We have previously shown that the nucleocapsid protein of SARS-associated coronavirus (SARS-CoV) activated cyclooxygenase-2 (COX-2) expression. In this study, we identified another viral protein, the spike of SARS-CoV, which played an important role in virus-stimulated COX-2 expression after screening all genes from the SARS-CoV genome. We found that an upstream calcium-dependent PKC isozyme PKC alpha that modulates the downstream ERK/NF-kappaB pathway through an influx of extracellular Ca2+ is induced by the spike protein of SARS-CoV. The ERK/NF-kappaB was identified to be involved in the activation of COX-2 promoter and production of COX-2 protein in HEK293T cells. We also demonstrated that another unusual pathway, the calcium-independent PI3K/PKC epsilon/JNK/CREB pathway, functioned in cooperation with the calcium-dependent pathway to induce COX-2 expression upon stimulation by spike protein. This pathway can be blocked by PKC epsilon-specific, small interfering RNA, PI3K/JNK kinase-specific inhibitors as well as dominant negative JNK. PKC epsilon-specific siRNA also attenuated the phosphorylation of JNK. Our results provide evidence that helps us understand the function of SRAS-CoV spike protein in SARS pathogenesis.
Collapse
Affiliation(s)
- Mo Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
360
|
Taguchi F. [Cell entry mechanism of coronaviruses: implication in their pathogenesis]. Uirusu 2007; 56:165-71. [PMID: 17446665 DOI: 10.2222/jsv.56.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Coronaviruses infect many species of animals, including humans. Among them, murine coronavirus, mouse hepatitis virus (MHV) has been well studied as a model of human diseases, such as hepatitis and demyelinating disease. An agent causing severe acute respiratory disease (SARS), SARS coronavirus (SARS-CoV), is a newcomer in this genus, however, it is now one of the most studied coronaviruses due to its medical impact. The receptors of those two viruses have been identified and their cell entry mechanism has been actively investigated. Recently, SARS-CoV cell entry mechanism is shown to be different from that of other enveloped viruses, including MHV. In this review, cell entry mechanism of those two viruses is described, stressing on the difference and similarity found between those two viruses.
Collapse
Affiliation(s)
- Fumihiro Taguchi
- Division of Viral Respiratory Diseases and SARS, National Institute of Infectious Diseasses.
| |
Collapse
|
361
|
Balzarini J. Carbohydrate-binding agents: a potential future cornerstone for the chemotherapy of enveloped viruses? Antivir Chem Chemother 2007; 18:1-11. [PMID: 17354647 DOI: 10.1177/095632020701800101] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Carbohydrate-binding agents (CBAs) inhibit HIV-1 and it is proposed that therapy with such agents may have important implications for the future of anti-HIV therapy. Examples of CBAs include the procaryotic cyanovirin-N (CV-N), plant lectins such as HHA, GNA, NPA, CA and UDA, the monoclonal antibody 2G12 directed against a glycan-containing epitope on HIV envelope gp120, and the mannose-specific non-peptidic antibiotic Pradimicin A, which inhibits the entry of HIV-1 into its target cells. CBAs prevent not only virus infection of susceptible cells, but also inhibit syncytia formation between persistently HIV-infected cells and uninfected lymphocytes. In addition, CBAs may also prevent DC-SIGN-mediated transmission of HIV to T-lymphocytes. Therefore, CBAs qualify as potential microbicide drugs. Long-term exposure of HIV to CBAs in cell culture results in the progressive deletion of N-glycans of HIV gpl20 in an attempt of the virus to escape drug pressure. In this respect, the CBAs are endowed with a high genetic barrier. Multiple mutations at N-glycosylation sites are required before pronounced phenotypic drug resistance development becomes evident. CBA treatment of HIV may consist of a novel chemotherapeutic concept with a dual mechanism of antiviral action: a direct antiviral activity by preventing HIV entry and transmission to its target cells, and an indirect antiviral activity by forcing HIV to delete glycans in its gpl20 envelope. The latter phenomenon will result in creating 'holes' in the protective glycan shield of the HIV envelope, whereby the immune system may become triggered to produce neutralizing antibodies against previously hidden immunogenic epitopes of gp120. If this concept can be proven in in vivo, low-molecular-weight non-peptidic CBAs such as Pradimycin A may become the cornerstone for the efficient treatment of infections of those viruses that require a glycosylated envelope (that is, HIV, but also hepatitis C virus) for entry into its target cells. In addition, influenza virus and coronavirus infections may also qualify to be treated by CBAs.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, K.U. Leuven, Leuven, Belgium.
| |
Collapse
|
362
|
Nefkens I, Garcia JM, Ling CS, Lagarde N, Nicholls J, Tang DJ, Peiris M, Buchy P, Altmeyer R. Hemagglutinin pseudotyped lentiviral particles: characterization of a new method for avian H5N1 influenza sero-diagnosis. J Clin Virol 2007; 39:27-33. [PMID: 17409017 DOI: 10.1016/j.jcv.2007.02.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 02/21/2007] [Indexed: 12/23/2022]
Abstract
BACKGROUND Highly pathogenic avian influenza (HPAI) H5N1 has spread globally in birds and infected over 270 humans with an apparently high mortality rate. Serologic studies to determine the extent of asymptomatic H5N1 infection in humans and other mammals and to investigate the immunogenicity of current H5N1 vaccine candidates have been hampered by the biosafety requirements needed for H5N1 micro-neutralization tests. OBJECTIVE Development of a serodiagnostic tool for highly pathogenic influenza that reproduces H5N1 biology but can be used with less biohazard. STUDY DESIGN We have generated and evaluated H5 hemagglutinin pseudotyped lentiviral particles encoding the luciferase reporter (H5pp). RESULTS H5pp entry into target cells depends on alpha2-3 cell surface sialic acids and requires low pH for membrane fusion. H5pp infectivity is specifically neutralized by sera from patients and animals infected with H5N1 and correlates well with conventional microneutralization test. CONCLUSIONS H5pp reproduce H5N1 influenza virus entry into target cells and potentially provides a high-throughput and safe method for sero-epidemiology.
Collapse
|
363
|
Callendret B, Lorin V, Charneau P, Marianneau P, Contamin H, Betton JM, van der Werf S, Escriou N. Heterologous viral RNA export elements improve expression of severe acute respiratory syndrome (SARS) coronavirus spike protein and protective efficacy of DNA vaccines against SARS. Virology 2007; 363:288-302. [PMID: 17331558 PMCID: PMC7103356 DOI: 10.1016/j.virol.2007.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 12/19/2006] [Accepted: 01/15/2007] [Indexed: 01/19/2023]
Abstract
The SARS-CoV spike glycoprotein (S) is the main target of the protective immune response in humans and animal models of SARS. Here, we demonstrated that efficient expression of S from the wild-type spike gene in cultured cells required the use of improved plasmid vectors containing donor and acceptor splice sites, as well as heterologous viral RNA export elements, such as the CTE of Mazon-Pfizer monkey virus or the PRE of Woodchuck hepatitis virus (WPRE). The presence of both splice sites and WPRE markedly improved the immunogenicity of S-based DNA vaccines against SARS. Upon immunization of mice with low doses (2 microg) of naked DNA, only intron and WPRE-containing vectors could induce neutralizing anti-S antibodies and provide protection against challenge with SARS-CoV. Our observations are likely to be useful for the construction of plasmid and viral vectors designed for optimal expression of intronless genes derived from cytoplasmic RNA viruses.
Collapse
Affiliation(s)
- Benoît Callendret
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, EA 302 Université Paris 7, France
| | - Valérie Lorin
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, EA 302 Université Paris 7, France
| | - Pierre Charneau
- Groupe à 5 ans de Virologie Moléculaire et de Vectorologie, France
| | - Philippe Marianneau
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Hugues Contamin
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Jean-Michel Betton
- Unité de Biochimie Structurale, URA CNRS 2185, Institut Pasteur, 25 rue du Dr. Roux, 75724 PARIS Cedex 15, France
| | - Sylvie van der Werf
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, EA 302 Université Paris 7, France
| | - Nicolas Escriou
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, EA 302 Université Paris 7, France
- Corresponding author. Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France. Fax: +33 140613241.
| |
Collapse
|
364
|
Chan CM, Ma CW, Chan WY, Chan HYE. The SARS-Coronavirus Membrane protein induces apoptosis through modulating the Akt survival pathway. Arch Biochem Biophys 2007; 459:197-207. [PMID: 17306213 PMCID: PMC7094499 DOI: 10.1016/j.abb.2007.01.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/20/2006] [Accepted: 01/05/2007] [Indexed: 01/12/2023]
Abstract
A number of viral gene products are capable of triggering apoptotic cell death through interfering with cellular signaling cascades, including the Akt kinase pathway. In this study, the pro-apoptotic role of the SARS-CoV Membrane (M) structural protein is described. We found that the SARS-CoV M protein induced apoptosis in both HEK293T cells and transgenic Drosophila. We further showed that M protein-induced apoptosis involved mitochondrial release of cytochrome c protein, and could be suppressed by caspase inhibitors. Over-expression of M caused a dominant rough-eye phenotype in adult Drosophila. By performing a forward genetic modifier screen, we identified phosphoinositide-dependent kinase-1 (PDK-1) as a dominant suppressor of M-induced apoptotic cell death. Both PDK-1 and Akt kinases play essential roles in the cell survival signaling pathway. Altogether, our data show that SARS-CoV M protein induces apoptosis through the modulation of the cellular Akt pro-survival pathway and mitochondrial cytochrome c release.
Collapse
Affiliation(s)
- Chak-Ming Chan
- Laboratory of Drosophila Research, Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | |
Collapse
|
365
|
McBride CE, Li J, Machamer CE. The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein. J Virol 2006; 81:2418-28. [PMID: 17166901 PMCID: PMC1865919 DOI: 10.1128/jvi.02146-06] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Like other coronaviruses, severe acute respiratory syndrome coronavirus (SARS CoV) assembles at and buds into the lumen of the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). Accumulation of the viral envelope proteins at this compartment is a prerequisite for virus assembly. Previously, we reported the identification of a dibasic motif (KxHxx) in the cytoplasmic tail of the SARS CoV spike (S) protein that was similar to a canonical dilysine ER retrieval signal. Here we demonstrate that this motif is a novel and functional ER retrieval signal which reduced the rate of traffic of the full-length S protein through the Golgi complex. The KxHxx motif also partially retained two different reporter proteins in the ERGIC region and reduced their rates of trafficking, although the motif was less potent than the canonical dilysine signal. The dibasic motif bound the coatomer complex I (COPI) in an in vitro binding assay, suggesting that ER retrieval may contribute to the accumulation of SARS CoV S protein near the virus assembly site for interaction with other viral structural proteins. In support of this, we found that the dibasic motif on the SARS S protein was required for its localization to the ERGIC/Golgi region when coexpressed with SARS membrane (M) protein. Thus, the cycling of SARS S through the ER-Golgi system may be required for its incorporation into assembling virions in the ERGIC.
Collapse
Affiliation(s)
- Corrin E McBride
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
366
|
Perlman S, Holmes KV. Interaction between the spike protein of human coronavirus NL63 and its cellular receptor ACE2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:281-4. [PMID: 17037543 PMCID: PMC7123575 DOI: 10.1007/978-0-387-33012-9_47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
367
|
Perlman S, Holmes KV. Avian infectious bronchitis virus enters cells via the endocytic pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:309-12. [PMID: 17037550 PMCID: PMC7123215 DOI: 10.1007/978-0-387-33012-9_54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
368
|
Perlman S, Holmes KV. Intracellular transport of the S proteins of coronaviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:271-5. [PMID: 17037541 PMCID: PMC7123658 DOI: 10.1007/978-0-387-33012-9_45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
369
|
Perlman S, Holmes KV. Proteolysis of SARS-associated coronavirus spike glycoprotein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:235-40. [PMID: 17037535 PMCID: PMC7123722 DOI: 10.1007/978-0-387-33012-9_39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
370
|
Perlman S, Holmes KV. SARS-CoV, but not HCoV-NL63, utilizes cathepsins to infect cells: viral entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:335-8. [PMID: 17037556 PMCID: PMC7123842 DOI: 10.1007/978-0-387-33012-9_60] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
371
|
Pyrc K, Berkhout B, van der Hoek L. The novel human coronaviruses NL63 and HKU1. J Virol 2006; 81:3051-7. [PMID: 17079323 PMCID: PMC1866027 DOI: 10.1128/jvi.01466-06] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Krzysztof Pyrc
- Laboratory of Experimental Virology, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
372
|
Du L, Zhao G, He Y, Guo Y, Zheng BJ, Jiang S, Zhou Y. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine 2006; 25:2832-8. [PMID: 17092615 PMCID: PMC7115660 DOI: 10.1016/j.vaccine.2006.10.031] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2006] [Revised: 09/10/2006] [Accepted: 10/17/2006] [Indexed: 12/16/2022]
Abstract
Development of effective vaccines against severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is still a priority in prevention of re-emergence of SARS. Our previous studies have shown that the receptor-binding domain (RBD) of SARS-CoV spike (S) protein elicits highly potent neutralizing antibody responses in the immunized animals. But it is unknown whether RBD can also induce protective immunity in an animal model, a key aspect for vaccine development. In this study, BALB/c mice were vaccinated intramuscularly (i.m.) with 10 μg of RBD-Fc (RBD fused with human IgG1 Fc) and boosted twice at 3-week intervals and one more time at 12th month. Humoral immune responses of vaccinated mice were investigated for up to 12 months at a 1-month interval and the neutralizing titers of produced antibodies were reported at months 0, 3, 6 and 12 post-vaccination. Mice were challenged with the homologous strain of SARS-CoV 5 days after the last boost, and sacrificed 5 days after the challenge. Mouse lung tissues were collected for detection of viral load, virus replication and histopathological effects. Our results showed that RBD-Fc vaccination induced high titer of S-specific antibodies with long-term and potent SARS-CoV neutralizing activity. Four of five vaccinated mice were protected from subsequent SARS-CoV challenge because no significant virus replication, and no obvious histopathological changes were found in the lung tissues of the vaccinated mice challenged with SARS-CoV. Only one vaccinated mouse had mild alveolar damage in the lung tissues. In contrast, high copies of SARS-CoV RNA and virus replication were detected, and pathological changes were observed in the lung tissues of the control mice. In conclusion, our findings suggest that RBD, which can induce protective antibodies to SARS-CoV, may be further developed as a safe and effective SARS subunit vaccine.
Collapse
Affiliation(s)
- Lanying Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | | | | | | | | | | | | |
Collapse
|
373
|
Hofmann H, Simmons G, Rennekamp AJ, Chaipan C, Gramberg T, Heck E, Geier M, Wegele A, Marzi A, Bates P, Pöhlmann S. Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. J Virol 2006; 80:8639-52. [PMID: 16912312 PMCID: PMC1563880 DOI: 10.1128/jvi.00560-06] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have recently demonstrated that the severe acute respiratory syndrome coronavirus (SARS-CoV) receptor angiotensin converting enzyme 2 (ACE2) also mediates cellular entry of the newly discovered human coronavirus (hCoV) NL63. Here, we show that expression of DC-SIGN augments NL63 spike (S)-protein-driven infection of susceptible cells, while only expression of ACE2 but not DC-SIGN is sufficient for entry into nonpermissive cells, indicating that ACE2 fulfills the criteria of a bona fide hCoV-NL63 receptor. As for SARS-CoV, murine ACE2 is used less efficiently by NL63-S for entry than human ACE2. In contrast, several amino acid exchanges in human ACE2 which diminish SARS-S-driven entry do not interfere with NL63-S-mediated infection, suggesting that SARS-S and NL63-S might engage human ACE2 differentially. Moreover, we observed that NL63-S-driven entry was less dependent on a low-pH environment and activity of endosomal proteases compared to infection mediated by SARS-S, further suggesting differences in hCoV-NL63 and SARS-CoV cellular entry. NL63-S does not exhibit significant homology to SARS-S but is highly related to the S-protein of hCoV-229E, which enters target cells by engaging CD13. Employing mutagenic analyses, we found that the N-terminal unique domain in NL63-S, which is absent in 229E-S, does not confer binding to ACE2. In contrast, the highly homologous C-terminal parts of the NL63-S1 and 229E-S1 subunits in conjunction with distinct amino acids in the central regions of these proteins confer recognition of ACE2 and CD13, respectively. Therefore, despite the high homology of these sequences, they likely form sufficiently distinct surfaces, thus determining receptor specificity.
Collapse
Affiliation(s)
- Heike Hofmann
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
374
|
van der Hoek L, Pyrc K, Berkhout B. Human coronavirus NL63, a new respiratory virus. FEMS Microbiol Rev 2006; 30:760-73. [PMID: 16911043 PMCID: PMC7109777 DOI: 10.1111/j.1574-6976.2006.00032.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 03/30/2006] [Accepted: 04/21/2006] [Indexed: 12/01/2022] Open
Abstract
From the mid-1960s onwards, it was believed that only two human coronavirus species infect humans: HCoV-229E and HCoV-OC43. Then, in 2003, a novel member of the coronavirus family was introduced into the human population: SARS-CoV, causing an aggressive lung disease. Fortunately, this virus was soon expelled from the human population, but it quickly became clear that the human coronavirus group contains more members then previously assumed, with HCoV-NL63 identified in 2004. Despite its recent discovery, ample results from HCoV-NL63 research have been described. We present an overview of the publications on this novel coronavirus.
Collapse
Affiliation(s)
- Lia van der Hoek
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
375
|
Sainz B, Mossel EC, Gallaher WR, Wimley WC, Peters CJ, Wilson RB, Garry RF. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein. Virus Res 2006; 120:146-55. [PMID: 16616792 PMCID: PMC2582734 DOI: 10.1016/j.virusres.2006.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 02/09/2006] [Accepted: 03/01/2006] [Indexed: 11/22/2022]
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is the cause of an atypical pneumonia that affected Asia, North America and Europe in 2002-2003. The viral spike (S) glycoprotein is responsible for mediating receptor binding and membrane fusion. Recent studies have proposed that the carboxyl terminal portion (S2 subunit) of the S protein is a class I viral fusion protein. The Wimley and White interfacial hydrophobicity scale was used to identify regions within the CoV S2 subunit that may preferentially associate with lipid membranes with the premise that peptides analogous to these regions may function as inhibitors of viral infectivity. Five regions of high interfacial hydrophobicity spanning the length of the S2 subunit of SARS-CoV and murine hepatitis virus (MHV) were identified. Peptides analogous to regions of the N-terminus or the pre-transmembrane domain of the S2 subunit inhibited SARS-CoV plaque formation by 40-70% at concentrations of 15-30 microM. Interestingly, peptides analogous to the SARS-CoV or MHV loop region inhibited viral plaque formation by >80% at similar concentrations. The observed effects were dose-dependent (IC50 values of 2-4 microM) and not a result of peptide-mediated cell cytotoxicity. The antiviral activity of the CoV peptides tested provides an attractive basis for the development of new fusion peptide inhibitors corresponding to regions outside the fusion protein heptad repeat regions.
Collapse
Affiliation(s)
- Bruno Sainz
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
376
|
Li F, Berardi M, Li W, Farzan M, Dormitzer PR, Harrison SC. Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J Virol 2006; 80:6794-800. [PMID: 16809285 PMCID: PMC1489032 DOI: 10.1128/jvi.02744-05] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus enters cells through the activities of a spike protein (S) which has receptor-binding (S1) and membrane fusion (S2) regions. We have characterized four sequential states of a purified recombinant S ectodomain (S-e) comprising S1 and the ectodomain of S2. They are S-e monomers, uncleaved S-e trimers, cleaved S-e trimers, and dissociated S1 monomers and S2 trimer rosettes. Lowered pH induces an irreversible transition from flexible, L-shaped S-e monomers to clove-shaped trimers. Protease cleavage of the trimer occurs at the S1-S2 boundary; an ensuing S1 dissociation leads to a major rearrangement of the trimeric S2 and to formation of rosettes likely to represent clusters of elongated, postfusion trimers of S2 associated through their fusion peptides. The states and transitions of S suggest conformational changes that mediate viral entry into cells.
Collapse
Affiliation(s)
- Fang Li
- Laboratory of Molecular Medicine, Children's Hospital, 320 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
377
|
Abstract
Coronaviruses are large, enveloped RNA viruses of both medical and veterinary importance. Interest in this viral family has intensified in the past few years as a result of the identification of a newly emerged coronavirus as the causative agent of severe acute respiratory syndrome (SARS). At the molecular level, coronaviruses employ a variety of unusual strategies to accomplish a complex program of gene expression. Coronavirus replication entails ribosome frameshifting during genome translation, the synthesis of both genomic and multiple subgenomic RNA species, and the assembly of progeny virions by a pathway that is unique among enveloped RNA viruses. Progress in the investigation of these processes has been enhanced by the development of reverse genetic systems, an advance that was heretofore obstructed by the enormous size of the coronavirus genome. This review summarizes both classical and contemporary discoveries in the study of the molecular biology of these infectious agents, with particular emphasis on the nature and recognition of viral receptors, viral RNA synthesis, and the molecular interactions governing virion assembly.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, 12201, USA
| |
Collapse
|
378
|
Kam YW, Kien F, Roberts A, Cheung YC, Lamirande EW, Vogel L, Chu SL, Tse J, Guarner J, Zaki SR, Subbarao K, Peiris M, Nal B, Altmeyer R. Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcgammaRII-dependent entry into B cells in vitro. Vaccine 2006; 25:729-40. [PMID: 17049691 PMCID: PMC7115629 DOI: 10.1016/j.vaccine.2006.08.011] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 07/30/2006] [Accepted: 08/10/2006] [Indexed: 12/28/2022]
Abstract
Vaccine-induced antibodies can prevent or, in the case of feline infectious peritonitis virus, aggravate infections by coronaviruses. We investigated whether a recombinant native full-length S-protein trimer (triSpike) of severe acute respiratory syndrome coronavirus (SARS-CoV) was able to elicit a neutralizing and protective immune response in animals and analyzed the capacity of anti-S antibodies to mediate antibody-dependent enhancement (ADE) of virus entry in vitro and enhancement of replication in vivo. SARS-CoV-specific serum and mucosal immunoglobulins were readily detected in immunized animals. Serum IgG blocked binding of the S-protein to the ACE2 receptor and neutralized SARS-CoV infection in vitro. Entry into human B cell lines occurred in a FcγRII-dependent and ACE2-independent fashion indicating that ADE of virus entry is a novel cell entry mechanism of SARS-CoV. Vaccinated animals showed no signs of enhanced lung pathology or hepatitis and viral load was undetectable or greatly reduced in lungs following challenge with SARS-CoV. Altogether our results indicate that a recombinant trimeric S protein was able to elicit an efficacious protective immune response in vivo and warrant concern in the safety evaluation of a human vaccine against SARS-CoV.
Collapse
Affiliation(s)
- Yiu Wing Kam
- HKU-Pasteur Research Centre, 8 Sassoon Road, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Sha Y, Wu Y, Cao Z, Xu X, Wu W, Jiang D, Mao X, Liu H, Zhu Y, Gong R, Li W. A convenient cell fusion assay for the study of SARS-CoV entry and inhibition. IUBMB Life 2006; 58:480-6. [PMID: 16916786 PMCID: PMC7165495 DOI: 10.1080/15216540600820974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SARS-CoV spike (S) protein-mediated cell fusion is important for the viral entry mechanism and identification of SARS-CoV entry inhibitors. In order to avoid the high risks involved in handling SARS-CoV and to facilitate the study of viral fusion mechanism, we established the cell lines: SR-COS7 cells that stably express both SARS-CoV S protein and red fluorescence protein, R-COS7 cells that stably express red fluorescence protein, and AG-COS7 cells that stably express both ACE2 and green fluorescence protein, respectively. When SR-COS7 cells or R-COS7 cells were cocultured with AG-COS7 cells, syncytia with yellow fluorescence were conveniently observed after 12 h in SR-COS7 cells plus AG-COS7 cells, but not in R-COS7 cells plus AG-COS7 cells. The cell-to-cell fusion efficiency was simply determined for quantitative analysis based on the number of syncytium detected by flow cytometry. Such new cell-to-cell fusion model was further assessed by the potent HR2 peptide inhibitor, which led to the obvious decrease of the cell-to-cell fusion efficiency. The successful fusion and inhibition of cell-based binding assay shows that it can be well used for the study of SARS-CoV entry and inhibition.
Collapse
Affiliation(s)
- YongGang Sha
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
380
|
Yeung KS, Yamanaka GA, Meanwell NA. Severe acute respiratory syndrome coronavirus entry into host cells: Opportunities for therapeutic intervention. Med Res Rev 2006; 26:414-33. [PMID: 16521129 PMCID: PMC7168515 DOI: 10.1002/med.20055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel human coronavirus (CoV) has been identified as the etiological agent that caused the severe acute respiratory syndrome (SARS) outbreak in 2003. The spike (S) protein of this virus is a type I surface glycoprotein that mediates binding of the virus to the host receptor and the subsequent fusion between the viral and host membranes. Because of its critical role in viral entry, the S protein is an important target for the development of anti-SARS CoV therapeutics and prophylactics. This article reviews the structure and function of the SARS CoV S protein in the context of its role in virus entry. Topics that are discussed include: the interaction between the S1 domain of the SARS spike protein and the cellular receptor, angiotensin converting enzyme 2 (ACE2), and the structural features of the ectodomain of ACE2; the antigenic determinants presented by the S protein and the nature of neutralizing monoclonal antibodies that are elicited in vivo; the structure of the 4,3-hydrophobic heptad repeats HR1 and HR2 of the S2 domain and their interaction to form a six-helical bundle during the final stages of fusion. Opportunities for the design and development of anti-SARS agents based on the inhibition of receptor binding, the therapeutic uses of S-directed monoclonal antibodies and inhibitors of HR1-HR2 complex formation are presented.
Collapse
Affiliation(s)
- Kap-Sun Yeung
- Department of Chemistry, The Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, P.O. Box 5100, Wallingford, Connecticut 06492, USA.
| | | | | |
Collapse
|
381
|
de Haan CAM, Rottier PJM. Hosting the severe acute respiratory syndrome coronavirus: specific cell factors required for infection. Cell Microbiol 2006; 8:1211-8. [PMID: 16803585 PMCID: PMC7162409 DOI: 10.1111/j.1462-5822.2006.00744.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As with all viruses, the severe acute respiratory syndrome coronavirus (SARS‐CoV) utilizes specific host cell factors during its infection cycle. Some of these factors have been identified and are now increasingly scrutinized as targets to intervene with infection. In this brief review, we describe the current understanding of how the SARS‐CoV is able to use the cellular machinery for its replication.
Collapse
Affiliation(s)
- Cornelis A M de Haan
- Division Virology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands.
| | | |
Collapse
|
382
|
Qiu Z, Hingley ST, Simmons G, Yu C, Das Sarma J, Bates P, Weiss SR. Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry. J Virol 2006; 80:5768-76. [PMID: 16731916 PMCID: PMC1472567 DOI: 10.1128/jvi.00442-06] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 04/05/2006] [Indexed: 01/10/2023] Open
Abstract
Most strains of murine coronavirus mouse hepatitis virus (MHV) express a cleavable spike glycoprotein that mediates viral entry and pH-independent cell-cell fusion. The MHV type 2 (MHV-2) strain of murine coronavirus differs from other strains in that it expresses an uncleaved spike and cannot induce cell-cell fusion at neutral pH values. We show here that while infection of the prototype MHV-A59 strain is not sensitive to pretreatment with lysosomotropic agents, MHV-2 replication is significantly inhibited by these agents. By use of an A59/MHV-2 chimeric virus, the susceptibility to lysosomotropic agents is mapped to the MHV-2 spike, suggesting a requirement of acidification of endosomes for MHV-2 spike-mediated entry. However, acidification is likely not a direct trigger for MHV-2 spike-mediated membrane fusion, as low-pH treatment is unable to overcome ammonium chloride inhibition, and it also cannot induce cell-cell fusion between MHV-2-infected cells. In contrast, trypsin treatment can both overcome ammonium chloride inhibition and promote cell-cell fusion. Inhibitors of the endosomal cysteine proteases cathepsin B and cathepsin L greatly reduce MHV-2 spike-mediated entry, while they have little effect on A59 entry, suggesting that there is a proteolytic step in MHV-2 entry. Finally, a recombinant virus expressing a cleaved MHV-2 spike has the ability to induce cell-cell fusion at neutral pH values and does not require low pH and endosomal cathepsins during infection. These studies demonstrate that endosomal proteolysis by cathepsins is necessary for MHV-2 spike-mediated entry; this is similar to the entry pathway recently described for severe acute respiratory syndrome coronavirus and indicates that coronaviruses may use multiple pathways for entry.
Collapse
Affiliation(s)
- Zhaozhu Qiu
- Department of Microbiology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104-6076, USA
| | | | | | | | | | | | | |
Collapse
|
383
|
Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res 2006; 74:92-101. [PMID: 16730806 PMCID: PMC7114332 DOI: 10.1016/j.antiviral.2006.04.014] [Citation(s) in RCA: 346] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 04/10/2006] [Accepted: 04/11/2006] [Indexed: 12/14/2022]
Abstract
Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel coronavirus (SARS-CoV). SARS-CoV spike (S) protein, a type I membrane-bound protein, is essential for the viral attachment to the host cell receptor angiotensin-converting enzyme 2 (ACE2). By screening 312 controlled Chinese medicinal herbs supervised by Committee on Chinese Medicine and Pharmacy at Taiwan, we identified that three widely used Chinese medicinal herbs of the family Polygonaceae inhibited the interaction of SARS-CoV S protein and ACE2. The IC(50) values for Radix et Rhizoma Rhei (the root tubers of Rheum officinale Baill.), Radix Polygoni multiflori (the root tubers of Polygonum multiflorum Thunb.), and Caulis Polygoni multiflori (the vines of P. multiflorum Thunb.) ranged from 1 to 10 microg/ml. Emodin, an anthraquinone compound derived from genus Rheum and Polygonum, significantly blocked the S protein and ACE2 interaction in a dose-dependent manner. It also inhibited the infectivity of S protein-pseudotyped retrovirus to Vero E6 cells. These findings suggested that emodin may be considered as a potential lead therapeutic agent in the treatment of SARS.
Collapse
Affiliation(s)
- Tin-Yun Ho
- Molecular Biology Laboratory, Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Shih-Lu Wu
- Department of Biochemistry, China Medical University, Taichung, Taiwan
| | - Jaw-Chyun Chen
- Graduate Institute of Chinese Pharmaceutical, China Medical University, Taichung, Taiwan
| | - Chia-Cheng Li
- Department of Microbiology, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan
- Corresponding author. Tel.: +886 4 22053366x8503; fax: +886 4 22053764.
| |
Collapse
|
384
|
Tripet B, Kao DJ, Jeffers SA, Holmes KV, Hodges RS. Template-based coiled-coil antigens elicit neutralizing antibodies to the SARS-coronavirus. J Struct Biol 2006; 155:176-94. [PMID: 16697221 PMCID: PMC7129695 DOI: 10.1016/j.jsb.2006.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 03/09/2006] [Indexed: 11/30/2022]
Abstract
The Spike (S) glycoprotein of coronaviruses (CoV) mediates viral entry into host cells. It contains two hydrophobic heptad repeat (HR) regions, denoted HRN and HRC, which oligomerize the S glycoprotein into a trimer in the native state and when activated collapse into a six-helix bundle structure driving fusion of the host and viral membranes. Previous studies have shown that peptides of the HR regions can inhibit viral infectivity. These studies imply that the HR regions are accessible and that agents which can interact with them may prevent viral entry. In the present study, we have investigated an approach to generate antibodies that specifically recognize the HRN and HRC regions of the SARS-CoV spike (S) glycoprotein in order to evaluate whether these antibodies can inhibit viral infectivity and thus neutralize the SARS-CoV. In this regard, we incorporated HRN and HRC coiled-coil surface residues into a de novo designed two-stranded α-helical coiled-coil template for generating conformation-specific antibodies that recognize α-helices in proteins (Lu, S.M., Hodges, R.S., 2002. J. Biol. Chem. 277, 23515–23524). Eighteen surface residues from two regions of HRN and HRC were incorporated into the template and used to generate four anti-sera, HRN1, HRN2, HRC1, and HRC2. Our results show that all of the elicited anti-sera can specifically recognize HRN or HRC peptides and the native SARS-CoV S protein in an ELISA format. Flow cytometry (FACS) analysis, however, showed only HRC1 and HRC2 anti-sera could bind to native S protein expressed on the cell surface of Chinese hamster ovary cells, i.e., the cell surface structure of the S glycoprotein precluded the ability of the HRN1 or HRN2 anti-sera to see their respective epitope sites. In in vitro viral infectivity assays, no inhibition was observed for either HRN1 or HRN2 anti-serum, whereas both HRC1 and HRC2 anti-sera could inhibit SARS-CoV infection in a dose-dependent manner. Interestingly, the HRC1 anti-serum, which was a more effective inhibitor of viral infectivity compared to HRC2 anti-serum, could only bind the pre-fusogenic state of HRC, i.e., the HRC1 anti-serum did not recognize the six-helix bundle conformation (fusion state) whereas HRC2 anti-serum did. These results suggest that antibodies that are more specific for the pre-fusogenic state of HRC may be better neutralizing antibodies. Overall, these results clearly demonstrate that the two-stranded coiled-coil template acts as an excellent presentation system for eliciting helix-specific antibodies against highly conserved viral antigens and HRC1 and HRC2 peptides may represent potential candidates for use in a peptide vaccine against the SARS-CoV.
Collapse
Affiliation(s)
- Brian Tripet
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Daniel J. Kao
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Scott A. Jeffers
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Robert S. Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
- Corresponding author. Fax: +1 303 724 3249.
| |
Collapse
|
385
|
Chu VC, McElroy LJ, Chu V, Bauman BE, Whittaker GR. The avian coronavirus infectious bronchitis virus undergoes direct low-pH-dependent fusion activation during entry into host cells. J Virol 2006; 80:3180-8. [PMID: 16537586 PMCID: PMC1440383 DOI: 10.1128/jvi.80.7.3180-3188.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Coronaviruses are the causative agents of respiratory disease in humans and animals, including severe acute respiratory syndrome. Fusion of coronaviruses is generally thought to occur at neutral pH, although there is also evidence for a role of acidic endosomes during entry of a variety of coronaviruses. Therefore, the molecular basis of coronavirus fusion during entry into host cells remains incompletely defined. Here, we examined coronavirus-cell fusion and entry employing the avian coronavirus infectious bronchitis virus (IBV). Virus entry into cells was inhibited by acidotropic bases and by other inhibitors of pH-dependent endocytosis. We carried out fluorescence-dequenching fusion assays of R18-labeled virions and show that for IBV, coronavirus-cell fusion occurs in a low-pH-dependent manner, with a half-maximal rate of fusion occurring at pH 5.5. Fusion was reduced, but still occurred, at lower temperatures (20 degrees C). We observed no effect of inhibitors of endosomal proteases on the fusion event. These data are the first direct measure of virus-cell fusion for any coronavirus and demonstrate that the coronavirus IBV employs a direct, low-pH-dependent virus-cell fusion activation reaction. We further show that IBV was not inactivated, and fusion was unaffected, by prior exposure to pH 5.0 buffer. Virions also showed evidence of reversible conformational changes in their surface proteins, indicating that aspects of the fusion reaction may be reversible in nature.
Collapse
Affiliation(s)
- Victor C Chu
- Dept. of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
386
|
Chan WE, Chuang CK, Yeh SH, Chang MS, Chen SSL. Functional characterization of heptad repeat 1 and 2 mutants of the spike protein of severe acute respiratory syndrome coronavirus. J Virol 2006; 80:3225-37. [PMID: 16537590 PMCID: PMC1440416 DOI: 10.1128/jvi.80.7.3225-3237.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To understand the roles of heptad repeat 1(HR1) and HR2 of the spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) in virus-cell interactions, the conserved Leu or Ile residues located at positions 913, 927, 941, and 955 in HR1 and 1151, 1165, and 1179 in HR2 were individually replaced with an alpha-helix-breaker Pro residue. The 913P mutant was expressed mainly as a faster-migrating, lower-molecular-weight S(L) form, while the wild type and all other mutants produced similar levels of both the S(L) form and the slower-migrating, higher-molecular-weight S(H) form. The wild-type S(L) form was processed to the S(H) form, whereas the S(L) form of the 913P mutant was inefficiently converted to the S(H) form after biosynthesis. None of these mutations affected cell surface expression or binding to its cognate ACE2 receptor. In a human immunodeficiency virus type 1/SARS S coexpression study, all mutants except the 913P mutant incorporated the S(H) form into the virions as effectively as did the wild-type S(H) form. The mutation at Ile-1151 did not affect membrane fusion or viral entry. The impaired viral entry of the 927P, 941P, 955P, and 1165P mutants was due to their inability to mediate membrane fusion, whereas the defect in viral entry of the 1179P mutant occurred not at the stage of membrane fusion but rather at a postfusion stage. Our study demonstrates the functional importance of HR1 and HR2 of the SARS-CoV spike protein in membrane fusion and viral entry.
Collapse
Affiliation(s)
- Woan-Eng Chan
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
387
|
Chai N, Bates P. Na+/H+ exchanger type 1 is a receptor for pathogenic subgroup J avian leukosis virus. Proc Natl Acad Sci U S A 2006; 103:5531-6. [PMID: 16567631 PMCID: PMC1459389 DOI: 10.1073/pnas.0509785103] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Subgroup J avian leukosis virus (ALV-J) is a recently identified avian oncogenic retrovirus responsible for severe economic losses worldwide. In contrast with the other ALV subgroups, ALV-J predominantly induces myeloid leukosis in meat-type chickens. Despite significant homology with the other ALV subgroups across most of the genome, the envelope protein of ALV-J (EnvJ) shares low homology with the others. Pathogenicity and myeloid leukosis induction map to the env gene of ALV-J. A chimeric protein composed of the surface domain of EnvJ fused to the constant region of a rabbit IgG and mass spectrometry were used to identify the chicken Na(+)/H(+) exchanger type 1 (chNHE1) as a binding protein for ALV-J. Flow cytometry analysis and coprecipitation experiments demonstrated a specific interaction between EnvJ and chNHE1. When introduced into nonpermissive human 293T cells and quail QT6 cells, chNHE1 conferred susceptibility to EnvJ-mediated infection. Furthermore, 293T cells expressing chNHE1 fused with 293T cells expressing EnvJ in a low-pH-dependent manner. Together, these data identify chNHE1 as a cellular receptor for the highly pathogenic ALV-J.
Collapse
Affiliation(s)
- Ning Chai
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- *To whom correspondence should be addressed at:
Department of Microbiology, University of Pennsylvania, 225 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076. E-mail:
| |
Collapse
|
388
|
Follis KE, York J, Nunberg JH. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry. Virology 2006; 350:358-69. [PMID: 16519916 PMCID: PMC7111780 DOI: 10.1016/j.virol.2006.02.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 01/27/2006] [Accepted: 02/03/2006] [Indexed: 02/07/2023]
Abstract
The fusogenic potential of Class I viral envelope glycoproteins is activated by proteloytic cleavage of the precursor glycoprotein to generate the mature receptor-binding and transmembrane fusion subunits. Although the coronavirus (CoV) S glycoproteins share membership in this class of envelope glycoproteins, cleavage to generate the respective S1 and S2 subunits appears absent in a subset of CoV species, including that responsible for the severe acute respiratory syndrome (SARS). To determine whether proteolytic cleavage of the S glycoprotein might be important for the newly emerged SARS-CoV, we introduced a furin recognition site at single basic residues within the putative S1–S2 junctional region. We show that furin cleavage at the modified R667 position generates discrete S1 and S2 subunits and potentiates membrane fusion activity. This effect on the cell–cell fusion activity by the S glycoprotein is not, however, reflected in the infectivity of pseudotyped lentiviruses bearing the cleaved glycoprotein. The lack of effect of furin cleavage on virion infectivity mirrors that observed in the normally cleaved S glycoprotein of the murine coronavirus and highlights an additional level of complexity in coronavirus entry.
Collapse
Affiliation(s)
- Kathryn E Follis
- Montana Biotechnology Center, Science Complex Room 221, The University of Montana, Missoula, MT 59812, USA
| | | | | |
Collapse
|
389
|
Thorp EB, Boscarino JA, Logan HL, Goletz JT, Gallagher TM. Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity. J Virol 2006; 80:1280-9. [PMID: 16415005 PMCID: PMC1346925 DOI: 10.1128/jvi.80.3.1280-1289.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coronavirus spike (S) proteins are palmitoylated at several cysteine residues clustered near their transmembrane-spanning domains. This is achieved by cellular palmitoyl acyltransferases (PATs), which can modify newly synthesized S proteins before they are assembled into virion envelopes at the intermediate compartment of the exocytic pathway. To address the importance of these fatty acylations to coronavirus infection, we exposed infected cells to 2-bromopalmitate (2-BP), a specific PAT inhibitor. 2-BP profoundly reduced the specific infectivities of murine coronaviruses at very low, nontoxic doses that were inert to alphavirus and rhabdovirus infections. 2-BP effected only two- to fivefold reductions in S palmitoylation, yet this correlated with reduced S complexing with virion membrane (M) proteins and consequent exclusion of S from virions. At defined 2-BP doses, underpalmitoylated S proteins instead trafficked to infected cell surfaces and elicited cell-cell membrane fusions, suggesting that the acyl chain adducts are more critical to virion assembly than to S-induced syncytial developments. These studies involving pharmacologic inhibition of S protein palmitoylation were complemented with molecular genetic analyses in which cysteine acylation substrates were mutated. Notably, some mutations (C1347F and C1348S) did not interfere with S incorporation into virions, indicating that only a subset of the cysteine-rich region provides the essential S-assembly functions. However, the C1347F/C1348S mutant viruses exhibited relatively low specific infectivities, similar to virions secreted from 2-BP-treated cultures. Our collective results indicate that the palmitate adducts on coronavirus S proteins are necessary in assembly and also in positioning the assembled envelope proteins for maximal infectivity.
Collapse
Affiliation(s)
- Edward B Thorp
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
390
|
Broer R, Boson B, Spaan W, Cosset FL, Corver J. Important role for the transmembrane domain of severe acute respiratory syndrome coronavirus spike protein during entry. J Virol 2006; 80:1302-10. [PMID: 16415007 PMCID: PMC1346921 DOI: 10.1128/jvi.80.3.1302-1310.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The spike protein (S) of severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for receptor binding and membrane fusion. It contains a highly conserved transmembrane domain that consists of three parts: an N-terminal tryptophan-rich domain, a central domain, and a cysteine-rich C-terminal domain. The cytoplasmic tail of S has previously been shown to be required for assembly. Here, the roles of the transmembrane and cytoplasmic domains of S in the infectivity and membrane fusion activity of SARS-CoV have been studied. SARS-CoV S-pseudotyped retrovirus (SARSpp) was used to measure S-mediated infectivity. In addition, the cell-cell fusion activity of S was monitored by a Renilla luciferase-based cell-cell fusion assay. S(VSV-Cyt), an S chimera with a cytoplasmic tail derived from vesicular stomatitis virus G protein (VSV-G), and S(MHV-TMDCyt), an S chimera with the cytoplasmic and transmembrane domains of mouse hepatitis virus, displayed wild-type-like activity in both assays. S(VSV-TMDCyt), a chimera with the cytoplasmic and transmembrane domains of VSV-G, was impaired in the SARSpp and cell-cell fusion assays, showing 3 to 25% activity compared to the wild type, depending on the assay and the cells used. Examination of the oligomeric state of the chimeric S proteins in SARSpp revealed that S(VSV-TMDCyt) trimers were less stable than wild-type S trimers, possibly explaining the lowered fusogenicity and infectivity.
Collapse
Affiliation(s)
- Rene Broer
- Department of Medical Microbiology, E4-P, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
391
|
Lip KM, Shen S, Yang X, Keng CT, Zhang A, Oh HLJ, Li ZH, Hwang LA, Chou CF, Fielding BC, Tan THP, Mayrhofer J, Falkner FG, Fu J, Lim SG, Hong W, Tan YJ. Monoclonal antibodies targeting the HR2 domain and the region immediately upstream of the HR2 of the S protein neutralize in vitro infection of severe acute respiratory syndrome coronavirus. J Virol 2006; 80:941-50. [PMID: 16378996 PMCID: PMC1346840 DOI: 10.1128/jvi.80.2.941-950.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have previously shown that an Escherichia coli-expressed, denatured spike (S) protein fragment of the severe acute respiratory coronavirus, containing residues 1029 to 1192 which include the heptad repeat 2 (HR2) domain, was able to induce neutralizing polyclonal antibodies (C. T. Keng, A. Zhang, S. Shen, K. M. Lip, B. C. Fielding, T. H. Tan, C. F. Chou, C. B. Loh, S. Wang, J. Fu, X. Yang, S. G. Lim, W. Hong, and Y. J. Tan, J. Virol. 79:3289-3296, 2005). In this study, monoclonal antibodies (MAbs) were raised against this fragment to identify the linear neutralizing epitopes in the functional domain and to investigate the mechanisms involved in neutralization. Eighteen hybridomas secreting the S protein-specific MAbs were obtained. Binding sites of these MAbs were mapped to four linear epitopes. Two of them were located within the HR2 region and two immediately upstream of the HR2 domain. MAbs targeting these epitopes showed in vitro neutralizing activities and were able to inhibit cell-cell membrane fusion. These results provide evidence of novel neutralizing epitopes that are located in the HR2 domain and the spacer region immediately upstream of the HR2 of the S protein.
Collapse
Affiliation(s)
- Kuo-Ming Lip
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
392
|
Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, Farzan M, Wohlford-Lenane C, Perlman S, McCray PB. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 2006; 79:14614-21. [PMID: 16282461 PMCID: PMC1287568 DOI: 10.1128/jvi.79.23.14614-14621.2005] [Citation(s) in RCA: 643] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of patients with severe acute respiratory syndrome (SARS) demonstrate that the respiratory tract is a major site of SARS-coronavirus (CoV) infection and disease morbidity. We studied host-pathogen interactions using native lung tissue and a model of well-differentiated cultures of primary human airway epithelia. Angiotensin converting enzyme 2 (ACE2), the receptor for both the SARS-CoV and the related human respiratory coronavirus NL63, was expressed in human airway epithelia as well as lung parenchyma. As assessed by immunofluorescence staining and membrane biotinylation, ACE2 protein was more abundantly expressed on the apical than the basolateral surface of polarized airway epithelia. Interestingly, ACE2 expression positively correlated with the differentiation state of epithelia. Undifferentiated cells expressing little ACE2 were poorly infected with SARS-CoV, while well-differentiated cells expressing more ACE2 were readily infected. Expression of ACE2 in poorly differentiated epithelia facilitated SARS spike (S) protein-pseudotyped virus entry. Consistent with the expression pattern of ACE2, the entry of SARS-CoV or a lentivirus pseudotyped with SARS-CoV S protein in differentiated epithelia was more efficient when applied to the apical surface. Furthermore, SARS-CoV replicated in polarized epithelia and preferentially exited via the apical surface. The results indicate that infection of human airway epithelia by SARS coronavirus correlates with the state of cell differentiation and ACE2 expression and localization. These findings have implications for understanding disease pathogenesis associated with SARS-CoV and NL63 infections.
Collapse
Affiliation(s)
- Hong Peng Jia
- Department of Pediatrics, 240-G EMRB, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
393
|
Perlman S, Holmes KV. Enhancement of SARS-CoV infection by proteases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:253-8. [PMID: 17037538 PMCID: PMC7123023 DOI: 10.1007/978-0-387-33012-9_42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
394
|
Duan J, Ji X, Feng J, Han W, Zhang P, Cao W, Guo X, Qi C, Yang D, Jin G, Gao G, Yan X. A Human Neutralizing Antibody against a Conformational Epitope Shared by Oligomeric Sars S1 Protein. Antivir Ther 2006. [DOI: 10.1177/135965350601100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An antibody phage-display library was constructed from the B cells of convalescent severe acute respiratory syndrome (SARS) patients and screened using inactivated SARS coronavirus (CoV) virions as antigens. More than 80 positive clones were isolated from the library and one of them, scFv H12, was extensively characterized. scFv H12 bound to SARS-CoV with high affinity (equilibrium dissociation constant, Kd=73.5 nM), and neutralized SARS virions in vitro. The facts that scFv H12 bound to the SARS-S1 protein under non-reducing conditions and that it did not bind to monomeric S1 protein under reducing conditions strongly suggest that scFv H12 recognizes a conformational epitope shared by oligomeric S1 proteins. This study should aid in the manufacture of neutralizing antibody, provide a better understanding the immunological characteristics of SARS protein and facilitate the design of a SARS vaccine.
Collapse
Affiliation(s)
- Jinzhu Duan
- National Laboratory of Biomacromolecules, and Centre for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Ji
- National Laboratory of Biomacromolecules, and Centre for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Feng
- National Laboratory of Biomacromolecules, and Centre for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Han
- National Laboratory of Biomacromolecules, and Centre for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Panhe Zhang
- Department of Epidemiology, Institute of Microbiology and Epidemiology, Beijing, China
| | - Wuchun Cao
- Department of Epidemiology, Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueming Guo
- National Laboratory of Biomacromolecules, and Centre for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Cai Qi
- National Laboratory of Biomacromolecules, and Centre for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongling Yang
- National Laboratory of Biomacromolecules, and Centre for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Gang Jin
- National Laboratory of Biomacromolecules, and Centre for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guangxia Gao
- National Laboratory of Biomacromolecules, and Centre for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiyun Yan
- National Laboratory of Biomacromolecules, and Centre for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
395
|
Perlman S, Holmes KV. Attachment factor and receptor engagement of SARS coronavirus and human coronavirus NL63. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:219-27. [PMID: 17037533 PMCID: PMC7124012 DOI: 10.1007/978-0-387-33012-9_37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
396
|
Abstract
The world was shocked in early 2003 when a pandemic of severe acute respiratory syndrome (SARS) was imminent. The outbreak of this novel disease, caused by a novel coronavirus (the SARS-coronavirus), hit hardest in the Asian Pacific region, though eventually it spread to five continents. The speed of the spread of the SARS epidemic was unprecedented due to the highly efficient intercontinental transportation. An international collaborative effort through the World Health Organization (WHO) has helped to identify the aetiological agent about 1 month after the onset of the epidemic. The power of molecular biology and bioinformatics has enabled the complete decoding of the viral genome within weeks. Over 1000 publications on the phylogeny, epidemiology, genomics, laboratory diagnostics, antiviral, immunization, pathogenesis, clinical disease, and management accumulated within just 1 year. Although the exact animal reservoir of virus and how it evolved into a human pathogen are still obscure, accurate diagnosis and epidemiological control of the disease are now possible. This article reviews what is currently known about the virus and the disease.
Collapse
Affiliation(s)
- Samson S. Y. Wong
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Queen Mary Hospital, Pokfulam Road, Hong Kong
| | - K. Y. Yuen
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Queen Mary Hospital, Pokfulam Road, Hong Kong
| |
Collapse
|
397
|
Huang IC, Bosch BJ, Li F, Li W, Lee KH, Ghiran S, Vasilieva N, Dermody TS, Harrison SC, Dormitzer PR, Farzan M, Rottier PJM, Choe H. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem 2005; 281:3198-203. [PMID: 16339146 PMCID: PMC8010168 DOI: 10.1074/jbc.m508381200] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Viruses require specific cellular receptors to infect their target cells. Angiotensin-converting enzyme 2 (ACE2) is a cellular receptor for two divergent coronaviruses, SARS coronavirus (SARS-CoV) and human coronavirus NL63 (HCoV-NL63). In addition to hostcell receptors, lysosomal cysteine proteases are required for productive infection by some viruses. Here we show that SARS-CoV, but not HCoV-NL63, utilizes the enzymatic activity of the cysteine protease cathepsin L to infect ACE2-expressing cells. Inhibitors of cathepsin L blocked infection by SARS-CoV and by a retrovirus pseudotyped with the SARS-CoV spike (S) protein but not infection by HCoV-NL63 or a retrovirus pseudotyped with the HCoV-NL63 S protein. Expression of exogenous cathepsin L substantially enhanced infection mediated by the SARS-CoV S protein and by filovirus GP proteins but not by the HCoV-NL63 S protein or the vesicular stomatitis virus G protein. Finally, an inhibitor of endosomal acidification had substantially less effect on infection mediated by the HCoV-NL63 S protein than on that mediated by the SARS-CoV S protein. Our data indicate that two coronaviruses that utilize a common receptor nonetheless enter cells through distinct mechanisms.
Collapse
Affiliation(s)
- I-Chueh Huang
- Pulmonary Division, Children's Hospital, Children's Hospital Laboratory of Molecular Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
398
|
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2005; 69:635-64. [PMID: 16339739 PMCID: PMC1306801 DOI: 10.1128/mmbr.69.4.635-664.2005] [Citation(s) in RCA: 772] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are a family of enveloped, single-stranded, positive-strand RNA viruses classified within the Nidovirales order. This coronavirus family consists of pathogens of many animal species and of humans, including the recently isolated severe acute respiratory syndrome coronavirus (SARS-CoV). This review is divided into two main parts; the first concerns the animal coronaviruses and their pathogenesis, with an emphasis on the functions of individual viral genes, and the second discusses the newly described human emerging pathogen, SARS-CoV. The coronavirus part covers (i) a description of a group of coronaviruses and the diseases they cause, including the prototype coronavirus, murine hepatitis virus, which is one of the recognized animal models for multiple sclerosis, as well as viruses of veterinary importance that infect the pig, chicken, and cat and a summary of the human viruses; (ii) a short summary of the replication cycle of coronaviruses in cell culture; (iii) the development and application of reverse genetics systems; and (iv) the roles of individual coronavirus proteins in replication and pathogenesis. The SARS-CoV part covers the pathogenesis of SARS, the developing animal models for infection, and the progress in vaccine development and antiviral therapies. The data gathered on the animal coronaviruses continue to be helpful in understanding SARS-CoV.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104-6076, USA.
| | | |
Collapse
|
399
|
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2005. [PMID: 16339739 DOI: 10.1128/mmbr.69.4.635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Coronaviruses are a family of enveloped, single-stranded, positive-strand RNA viruses classified within the Nidovirales order. This coronavirus family consists of pathogens of many animal species and of humans, including the recently isolated severe acute respiratory syndrome coronavirus (SARS-CoV). This review is divided into two main parts; the first concerns the animal coronaviruses and their pathogenesis, with an emphasis on the functions of individual viral genes, and the second discusses the newly described human emerging pathogen, SARS-CoV. The coronavirus part covers (i) a description of a group of coronaviruses and the diseases they cause, including the prototype coronavirus, murine hepatitis virus, which is one of the recognized animal models for multiple sclerosis, as well as viruses of veterinary importance that infect the pig, chicken, and cat and a summary of the human viruses; (ii) a short summary of the replication cycle of coronaviruses in cell culture; (iii) the development and application of reverse genetics systems; and (iv) the roles of individual coronavirus proteins in replication and pathogenesis. The SARS-CoV part covers the pathogenesis of SARS, the developing animal models for infection, and the progress in vaccine development and antiviral therapies. The data gathered on the animal coronaviruses continue to be helpful in understanding SARS-CoV.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104-6076, USA.
| | | |
Collapse
|
400
|
Gramberg T, Hofmann H, Möller P, Lalor PF, Marzi A, Geier M, Krumbiegel M, Winkler T, Kirchhoff F, Adams DH, Becker S, Münch J, Pöhlmann S. LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology 2005; 340:224-36. [PMID: 16051304 PMCID: PMC7111772 DOI: 10.1016/j.virol.2005.06.026] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 05/10/2005] [Accepted: 06/13/2005] [Indexed: 11/23/2022]
Abstract
Cellular attachment factors like the C-type lectins DC-SIGN and DC-SIGNR (collectively referred to as DC-SIGN/R) can augment viral infection and might promote viral dissemination in and between hosts. The lectin LSECtin is encoded in the same chromosomal locus as DC-SIGN/R and is coexpressed with DC-SIGNR on sinusoidal endothelial cells in liver and lymphnodes. Here, we show that LSECtin enhances infection driven by filovirus glycoproteins (GP) and the S protein of SARS coronavirus, but does not interact with human immunodeficiency virus type-1 and hepatitis C virus envelope proteins. Ligand binding to LSECtin was inhibited by EGTA but not by mannan, suggesting that LSECtin unlike DC-SIGN/R does not recognize high-mannose glycans on viral GPs. Finally, we demonstrate that LSECtin is N-linked glycosylated and that glycosylation is required for cell surface expression. In summary, we identified LSECtin as an attachment factor that in conjunction with DC-SIGNR might concentrate viral pathogens in liver and lymph nodes.
Collapse
Affiliation(s)
- Thomas Gramberg
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Heike Hofmann
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Peggy Möller
- Institute for Virology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Patricia F. Lalor
- Liver Research Group, Institute for Biomedical Science, The University of Birmingham Medical School, Edgbaston, Birmingham, UK
- MRC Centre for Immune Regulation, The University of Birmingham Medical School, Edgbaston, Birmingham, UK
| | - Andrea Marzi
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martina Geier
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mandy Krumbiegel
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Winkler
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Chair of Genetics, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Frank Kirchhoff
- Department of Virology, Universitätsklinikum Ulm, 89081 Ulm, Germany
| | - David H. Adams
- Liver Research Group, Institute for Biomedical Science, The University of Birmingham Medical School, Edgbaston, Birmingham, UK
- MRC Centre for Immune Regulation, The University of Birmingham Medical School, Edgbaston, Birmingham, UK
| | - Stephan Becker
- Institute for Virology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Jan Münch
- Department of Virology, Universitätsklinikum Ulm, 89081 Ulm, Germany
| | - Stefan Pöhlmann
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Corresponding author. Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, Glückstraße 6, 91054 Erlangen, Germany. Fax: +49 9131 8529111.
| |
Collapse
|