351
|
Yoshimoto T, Furuhata M, Kamiya S, Hisada M, Miyaji H, Magami Y, Yamamoto K, Fujiwara H, Mizuguchi J. Positive modulation of IL-12 signaling by sphingosine kinase 2 associating with the IL-12 receptor beta 1 cytoplasmic region. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1352-9. [PMID: 12874225 DOI: 10.4049/jimmunol.171.3.1352] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-12 is a key immunoregulatory cytokine that promotes Th1 differentiation and cell-mediated immune responses. IL-12 stimulation results in the activation of Janus kinase 2 and tyrosine kinase 2 and, subsequently, STAT4 and STAT3. In addition, mitogen-activated protein kinase kinase 6/p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt pathways have been recently demonstrated to be activated by IL-12 and play an important role in IL-12 signaling. To further elucidate the molecular mechanism underlying IL-12 signaling, we have performed a yeast two-hybrid screening and identified mouse sphingosine kinase 2 (SPHK2) as a molecule associating with the mouse IL-12Rbeta1 cytoplasmic region. Analyses of various mutants of each molecule revealed that the region including the proline-rich domain in SPHK2 is probably responsible for the binding to IL-12Rbeta1, while the regions including the carboxyl terminus and Box II in the IL-12Rbeta1 cytoplasmic region appear to be involved in the binding to SPHK2. Transient expression of wild-type SPHK2 in T cell hybridoma augmented IL-12-induced STAT4-mediated transcriptional activation. Ectopic expression of dominant-negative SPHK2 in Th1 cell clone significantly reduced IL-12-induced IFN-gamma production, while that of wild-type SPHK2 enhanced it. In contrast, the expression minimally affected IL-12-induced proliferation. A similar decrease in IL-12-induced IFN-gamma production was observed when dominant-negative SPHK2 was expressed in activated primary T cells using a retroviral expression system. These results suggest that SPHK2 associates with the IL-12Rbeta1 cytoplasmic region and probably plays a role in modulating IL-12 signaling.
Collapse
Affiliation(s)
- Takayuki Yoshimoto
- Intractable Disease Research Center, Tokyo Medical University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Abstract
The bioactive phospholipid lysophosphatidic acid (LPA) stimulates cell proliferation, migration and survival by acting on its cognate G-protein-coupled receptors. Aberrant LPA production, receptor expression and signalling probably contribute to cancer initiation, progression and metastasis. The recent identification of ecto-enzymes that mediate the production and degradation of LPA, as well as the development of receptor-selective analogues, indicate mechanisms by which LPA production or action could be modulated for cancer therapy.
Collapse
|
353
|
Noguchi K, Ishii S, Shimizu T. Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem 2003; 278:25600-6. [PMID: 12724320 DOI: 10.1074/jbc.m302648200] [Citation(s) in RCA: 444] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid mediator with diverse physiological and pathological actions on many types of cells. LPA has been widely considered to elicit its biological functions through three types of G protein-coupled receptors, Edg-2 (endothelial cell differentiation gene-2)/LPA1/vzg-1 (ventricular zone gene-1), Edg-4/LPA2, and Edg-7/LPA3. We identified an orphan G protein-coupled receptor, p2y9/GPR23, as the fourth LPA receptor (LPA4). Membrane fractions of RH7777 cells transiently expressing p2y9/GPR23 displayed a specific binding for 1-oleoyl-LPA with a Kd value of around 45 nm. Competition binding and reporter gene assays showed that p2y9/GPR23 preferred structural analogs of LPA with a rank order of 1-oleoyl- > 1-stearoyl- > 1-palmitoyl- > 1-myristoyl- > 1-alkyl- > 1-alkenyl-LPA. In Chinese hamster ovary cells expressing p2y9/GPR23, 1-oleoyl-LPA induced an increase in intracellular Ca2+ concentration and stimulated adenylyl cyclase activity. Quantitative real-time PCR demonstrated that mRNA of p2y9/GPR23 was significantly abundant in ovary compared with other tissues. Interestingly, p2y9/GPR23 shares only 20-24% amino acid identities with Edg-2/LPA1, Edg-4/LPA2, and Edg-7/LPA3, and phylogenetic analysis also shows that p2y9/GPR23 is far distant from the Edg family. These facts suggest that p2y9/GPR23 has evolved from different ancestor sequences from the Edg family.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Blotting, Northern
- CHO Cells
- Calcium/metabolism
- Cell Line
- Cell Membrane/metabolism
- Cloning, Molecular
- Cricetinae
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Genes, Reporter
- Genetic Vectors
- Humans
- Kinetics
- Ligands
- Lysophospholipids/metabolism
- PC12 Cells
- Phylogeny
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Rats
- Receptors, G-Protein-Coupled
- Receptors, Purinergic P2/chemistry
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Kyoko Noguchi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
354
|
Abstract
FTY720, a synthetic analogue of myriocin (ISP-1), is derived from culture filtrates of the fungus Isaria sinclairii. As a sphingosine analogue, FTY720 appears to undergo phosphorylation and thereby interact with specific G-protein-linked receptors. In vivo, FTY720 causes emigration of lymphocytes from peripheral blood to secondary lymphoid structures. Thus, the drug is the archetype of a new class of agents that alter cellular homing patterns: the adhesion-migration paradigm. Since FTY720 seems to spare nonspecific elements of host resistance, it may address the not infrequent complications of infections associated with existing therapies. In experimental rodent, canine and non-human primate models, FTY720 produces lymphopenia and immunosuppression, prolonging the survival of allografts. Because of synergistic interactions, it promotes the immunosuppressive effects not only of calcineurin antagonists, but also of proliferation signal inhibitors. These interactions proffer the possibility of large reductions in exposure to and mitigated toxicity of existing drugs. In humans, FTY720 causes dose-dependent peripheral blood lymphopenia, a reduced incidence of acute rejection episodes and only one apparent adverse reaction - a negative chronotropic effect - particularly after the loading dose. While the clinical utility of FTY720 is difficult to predict before completion of Phase III studies that elucidate its benefits versus unanticipated side effects, the initial data suggest several potential advantages: it does not produce hyperlipidaemia, diabetes mellitus, nephrotoxicity, neurotoxicity or myelosuppression, which are characteristic of other immunosuppressants. Furthermore, it displays high oral bioavailability and a low interindividual coefficient of variation. Clearly, structural analogues, as well as other agents that alter the balance of chemokines or affect cellular adhesion to activated endothelium, will represent important components of future regimens.
Collapse
Affiliation(s)
- Fazil Tuncay Aki
- The University of Texas Medical School at Houston, Department of Surgery, Suite 6.240, 6431 Fannin, Houston, TX 77030, USA
| | | |
Collapse
|
355
|
Luquain C, Sciorra VA, Morris AJ. Lysophosphatidic acid signaling: how a small lipid does big things. Trends Biochem Sci 2003; 28:377-83. [PMID: 12878005 DOI: 10.1016/s0968-0004(03)00139-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Celine Luquain
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27699-7090, USA
| | | | | |
Collapse
|
356
|
Bibak N, Hajdu J. A new approach to the synthesis of lysophosphatidylcholines and related derivatives. Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)01419-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
357
|
Abstract
Sphingosine-1-phosphate (SIP) is a bioactive sphingolipid metabolite that regulates diverse cellular responses including, growth, survival, cytoskeleton rearrangements and movement. SIP plays an important role during development, particularly in vascular maturation and has been implicated in pathophysiology of cancer, wound healing, and atherosclerosis. This review summarizes the evidence showing that signaling induced by SIP is complex and involves both intracellular and extracellular actions. The intracellular effects of SIP remain speculative awaiting the identification of specific targets whereas the extracellular effects of SIP are clearly mediated through the activation of five specific G protein coupled receptors, called S1P1-5. Recent studies demonstrate that intracellular generated SIP can act in a paracrine or autocrine manner to activate its cell surface receptors.
Collapse
Affiliation(s)
- Kenneth Watterson
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Tichmond, VA 23298, USA
| | | | | | | |
Collapse
|
358
|
Hunger-Glaser I, Salazar EP, Sinnett-Smith J, Rozengurt E. Bombesin, lysophosphatidic acid, and epidermal growth factor rapidly stimulate focal adhesion kinase phosphorylation at Ser-910: requirement for ERK activation. J Biol Chem 2003; 278:22631-43. [PMID: 12692126 DOI: 10.1074/jbc.m210876200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A rapid increase in the tyrosine phosphorylation of focal adhesion kinase (FAK) has been extensively documented in cells stimulated by multiple signaling molecules, but virtually nothing is known about the regulation of FAK phosphorylation at serine residues. Stimulation of Swiss 3T3 cells with bombesin promoted a striking increase ( approximately 13-fold) in the phosphorylation of FAK at Ser-910, as revealed by site-specific antibodies that recognized the phosphorylated state of this residue. Lysophosphatidic acid and epidermal growth factor (EGF) also stimulated FAK phosphorylation at Ser-910. Direct activation of protein kinase C isoforms with phorbol-12,13-dibutyrate (PDB) also promoted striking phosphorylation of FAK at Ser-910. Treatment with the protein kinase C inhibitor GF I or Ro 31-8220 or chronic exposure to PDB prevented the increase in FAK phosphorylation at Ser-910 induced by bombesin or PDB but not by EGF. Treatment with the ERK inhibitors U0126 and PD98059 prevented FAK phosphorylation at Ser-910 in response to all of the stimuli tested. Furthermore, incubation of activated ERK2 with FAK immunocomplexes leads to FAK phosphorylation at Ser-910 in vitro. Our results demonstrate, for the first time, that stimulation with bombesin, lysophosphatidic acid, PDB, or EGF induces phosphorylation of endogenous FAK at Ser-910 via an ERK-dependent pathway in Swiss 3T3 cells.
Collapse
Affiliation(s)
- Isabel Hunger-Glaser
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
359
|
Mendel J, Heinecke K, Fyrst H, Saba JD. Sphingosine phosphate lyase expression is essential for normal development in Caenorhabditis elegans. J Biol Chem 2003; 278:22341-9. [PMID: 12682045 DOI: 10.1074/jbc.m302857200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingolipids are ubiquitous membrane constituents whose metabolites function as signaling molecules in eukaryotic cells. Sphingosine 1-phosphate, a key sphingolipid second messenger, regulates proliferation, motility, invasiveness, and programmed cell death. These effects of sphingosine 1-phosphate and similar phosphorylated sphingoid bases have been observed in organisms as diverse as yeast and humans. Intracellular levels of sphingosine 1-phosphate are tightly regulated by the actions of sphingosine kinase, which is responsible for its synthesis and sphingosine-1-phosphate phosphatase and sphingosine phosphate lyase, the two enzymes responsible for its catabolism. In this study, we describe the cloning of the Caenorhabditis elegans sphingosine phosphate lyase gene along with its functional expression in Saccharomyces cerevisiae. Promoter analysis indicates tissue-specific and developmental regulation of sphingosine phosphate lyase gene expression. Inhibition of C. elegans sphingosine phosphate lyase expression by RNA interference causes accumulation of phosphorylated and unphosphorylated long-chain bases and leads to poor feeding, delayed growth, reproductive abnormalities, and intestinal damage similar to the effects seen with exposure to Bacillus thuringiensis toxin. Our results show that sphingosine phosphate lyase is an essential gene in C. elegans and suggest that the sphingolipid degradative pathway plays a conserved role in regulating animal development.
Collapse
Affiliation(s)
- Jane Mendel
- Children's Hospital Oakland Research Institute, Oakland, California 94609-1673, USA
| | | | | | | |
Collapse
|
360
|
Abstract
Maintenance of membrane lipid asymmetry is a dynamic process that influences many events over the lifespan of the cell. With few exceptions, most cells restrict the bulk of the aminophospholipids to the inner membrane leaflet by means of specific transporters. Working in concert with each other, these proteins correct for sporadic incursions of the aminophospholipids to the outer membrane leaflet as a result of bilayer imbalances created by various cellular events. A shift in the relative contribution in each of these activities can result in sustained exposure of the aminophospholipids at the cell surface, which allows capture of the cells by phagocytes before the integrity of the plasma membrane is compromised. The absence of an efficient recognition and elimination mechanism can result in uncontrolled and persistent presentation of self-antigens to the immune system, with development of autoimmune syndromes. To prevent this, phagocytes have developed a diverse array of distinct and redundant receptor systems that drive the postphagocytic events along pathways that facilitate cross-talk between the homeostatic and the immune systems. In this work, we review the basis for the proposed mechanism(s) by which apoptotic ligands appear on the target cell surface and the phagocyte receptors that recognize these moieties.
Collapse
|
361
|
Ariel A, Chiang N, Arita M, Petasis NA, Serhan CN. Aspirin-triggered lipoxin A4 and B4 analogs block extracellular signal-regulated kinase-dependent TNF-alpha secretion from human T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6266-72. [PMID: 12794159 DOI: 10.4049/jimmunol.170.12.6266] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lipoxins (LX) and their aspirin-triggered 15-epimer endogenous isoforms are endogenous anti-inflammatory and pro-resolution eicosanoids. In this study, we examined the impact of LX and aspirin-triggered LXA(4)-stable analogs (ATLa) on human T cell functions. 15-epi-16-(p-fluoro)phenoxy-LXA(4) (ATLa(1)) blocked the secretion of TNF-alpha from human PBMC after stimulation by anti-CD3 Abs, with the IC(50) value of approximately 0.05 nM. A similar action was also exerted by the native aspirin-triggered 15-epi-LXA(4), a new 15-epi-16-(p-trifluoro)phenoxy-LXA(4) analog (ATLa(2)), as well as LXB(4), and its analog 5-(R/S)-methyl-LXB(4). The LXA(4) receptor (ALX) is expressed in peripheral blood T cells and mediates the inhibition of TNF-alpha secretion from activated T cells by ATLa(1). This action was accomplished by inhibition of the anti-CD3-induced activation of extracellular signal-regulated kinase, which is essential for TNF-alpha secretion from anti-CD3-activated T cells. These results demonstrate novel roles for LX and aspirin-triggered LX in the regulation of T cell-mediated responses relevant in inflammation and its resolution. Moreover, they provide potential counterregulatory signals in communication(s) between the innate and acquired immune systems.
Collapse
Affiliation(s)
- Amiram Ariel
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
362
|
Jin Y, Knudsen E, Wang L, Bryceson Y, Damaj B, Gessani S, Maghazachi AA. Sphingosine 1-phosphate is a novel inhibitor of T-cell proliferation. Blood 2003; 101:4909-15. [PMID: 12586615 DOI: 10.1182/blood-2002-09-2962] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a pleiotropic lysosphingophospholipid stored and secreted by platelets. Using reverse transcription-polymerase chain reaction and flow cytometric analyses, we determined the expression of S1P receptors (S1P1, S1P3, S1P4, and S1P5) in peripheral blood T cells. T cells were induced to proliferate in the presence of phorbol 12-myristate 13-acetate (PMA) plus ionomycin, anti-CD3 plus anti-CD28, and allogeneic immature or mature dendritic cells. This activity was inhibited by the addition of S1P. Enhanced T-cell proliferation was observed when these cells were stimulated with the same stimuli, but were incubated in serum-free media (SFM). Addition of S1P to SFM inhibited the stimulation of T cells induced by T-cell stimuli, suggesting that S1P is an important inhibitory molecule present in the serum. T-cell proliferation was also inhibited by the addition of dihydrosphingosine 1-phosphate (DHS1P), sphingosine, and ceramide; however, the latter 2 sphingolipids required higher concentrations than S1P. Pretreatment of T cells with pertussis toxin (PTX) blocked the inhibitory effect of S1P on activation with PMA plus ionomycin, but not on activation with anti-CD3 plus anti-CD28. This is corroborated with the down-regulation of S1P1 in T cells stimulated with anti-CD3 plus anti-CD28. Similarly, PTX did not affect the inhibitory effect of S1P on T-cell proliferation when dendritic cells were used as stimuli. Further, S1P or DHS1P but not ceramide or sphingosine enhanced rather than decreased secretion of interleukin 2 and interferon gamma by T cells stimulated with anti-CD3 plus anti-CD28. These results show differential effects of S1P on polyclonal T-cell proliferation and cytokine secretion.
Collapse
Affiliation(s)
- Yixin Jin
- Department of Anatomy and Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
363
|
Coursol S, Fan LM, Le Stunff H, Spiegel S, Gilroy S, Assmann SM. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 2003; 423:651-4. [PMID: 12789341 DOI: 10.1038/nature01643] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Accepted: 04/07/2003] [Indexed: 11/09/2022]
Abstract
In animals, the sphingolipid metabolite sphingosine-1-phosphate (S1P) functions as both an intracellular messenger and an extracellular ligand for G-protein-coupled receptors of the S1P receptor family, regulating diverse biological processes ranging from cell proliferation to apoptosis. Recently, it was discovered in plants that S1P is a signalling molecule involved in abscisic acid (ABA) regulation of guard cell turgor. Here we report that the enzyme responsible for S1P production, sphingosine kinase (SphK), is activated by ABA in Arabidopsis thaliana, and is involved in both ABA inhibition of stomatal opening and promotion of stomatal closure. Consistent with this observation, inhibition of SphK attenuates ABA regulation of guard cell inward K(+) channels and slow anion channels, which are involved in the regulation of stomatal pore size. Surprisingly, S1P regulates stomatal apertures and guard cell ion channel activities in wild-type plants, but not in knockout lines of the sole prototypical heterotrimeric G-protein alpha-subunit gene, GPA1 (refs 5, 6, 7-8). Our results implicate heterotrimeric G proteins as downstream elements in the S1P signalling pathway that mediates ABA regulation of stomatal function, and suggest that the interplay between S1P and heterotrimeric G proteins represents an evolutionarily conserved signalling mechanism.
Collapse
Affiliation(s)
- Sylvie Coursol
- Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, Pennsylvania 16802-5301, USA
| | | | | | | | | | | |
Collapse
|
364
|
Bräuer AU, Savaskan NE, Kühn H, Prehn S, Ninnemann O, Nitsch R. A new phospholipid phosphatase, PRG-1, is involved in axon growth and regenerative sprouting. Nat Neurosci 2003; 6:572-8. [PMID: 12730698 DOI: 10.1038/nn1052] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2003] [Accepted: 02/28/2003] [Indexed: 11/09/2022]
Abstract
Outgrowth of axons in the central nervous system is governed by specific molecular cues. Molecules detected so far act as ligands that bind to specific receptors. Here, we report a new membrane-associated lipid phosphate phosphatase that we have named plasticity-related gene 1 (PRG-1), which facilitates axonal outgrowth during development and regenerative sprouting. PRG-1 is specifically expressed in neurons and is located in the membranes of outgrowing axons. There, it acts as an ecto-enzyme and attenuates phospholipid-induced axon collapse in neurons and facilitates outgrowth in the hippocampus. Thus, we propose a novel mechanism by which axons are able to control phospholipid-mediated signaling and overcome the growth-inhibiting, phospholipid-rich environment of the extracellular space.
Collapse
Affiliation(s)
- Anja U Bräuer
- Institute of Anatomy, Department of Cell Biology and Neurobiology, Philippstr. 12, Humboldt University Medical School Charité, D-10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
365
|
|
366
|
Murph MM, Scaccia LA, Volpicelli LA, Radhakrishna H. Agonist-induced endocytosis of lysophosphatidic acid-coupled LPA1/EDG-2 receptors via a dynamin2- and Rab5-dependent pathway. J Cell Sci 2003; 116:1969-80. [PMID: 12668728 DOI: 10.1242/jcs.00397] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a serum-borne phospholipid that exerts a pleiotropic range of effects on cells through activation of three closely related G-protein-coupled receptors termed LPA1/EDG-2, LPA2/EDG-4 and LPA3/EDG-7. Of these receptors, the LPA1 receptor is the most widely expressed. In this study, we investigated the agonist-induced endocytosis of the human LPA1 receptor, bearing an N-terminal FLAG epitope tag, in stably transfected HeLa cells. Treatment with LPA induced the rapid endocytosis of approximately 40% of surface LPA1 within 15 minutes. Internalization was both dose dependent and LPA specific since neither lysophophatidylcholine nor sphingosine-1-phosphate induced LPA1 endocytosis. Removal of agonist following 30 minutes incubation resulted in recycling of LPA1 back to the cell surface. LPA1 internalization was strongly inhibited by dominant-inhibitory mutants of both dynamin2 (K44A) and Rab5a (S34N). In addition, both dynamin2 K44A and Rab5 S34N mildly inhibited LPA1-dependent activation of serum response factor. Finally, our results also indicate that LPA1 exhibits basal, LPA-dependent internalization in the presence of serum-containing medium.
Collapse
Affiliation(s)
- Mandi M Murph
- School of Biology and Petit Institute for Biosciences and Bioengineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | | | | | | |
Collapse
|
367
|
Abstract
The evolutionarily conserved actions of the sphingolipid metabolite, sphingosine-1-phosphate (S1P), in yeast, plants and mammals have shown that it has important functions. In higher eukaryotes, S1P is the ligand for a family of five G-protein-coupled receptors. These S1P receptors are differentially expressed, coupled to various G proteins, and regulate angiogenesis, vascular maturation, cardiac development and immunity, and are important for directed cell movement.
Collapse
Affiliation(s)
- Sarah Spiegel
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298-0614, USA. sspiegel@vcu..edu
| | | |
Collapse
|
368
|
Frohnert PW, Stonecypher MS, Carroll SL. Lysophosphatidic acid promotes the proliferation of adult Schwann cells isolated from axotomized sciatic nerve. J Neuropathol Exp Neurol 2003; 62:520-9. [PMID: 12769191 DOI: 10.1093/jnen/62.5.520] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have previously found that adult Schwann cells express receptors for lysophosphatidic acid (EDG2, EDG7) and sphingosine-1-phosphate (EDG5) and that expression of these receptors is significantly upregulated in injured sciatic nerve coincident with postaxotomy Schwann cell proliferation. Based on these observations, we hypothesized that lysophosphatidic acid and/or sphingosine-1-phosphate promote Schwann cell mitogenesis in injured adult nerve. We found that both saturated and unsaturated forms of lysophosphatidic acid, but not sphingosine-1-phosphate, induce DNA synthesis in adult Schwann cells isolated from surgically transected sciatic nerve. Lysophosphatidic acid induces adult Schwann cell DNA synthesis in a dose-dependent manner, acting at 0.1- to 10-microM concentrations. Lysophosphatidic acid-mediated stimulation of adult Schwann cell DNA synthesis occurs via a signaling pathway involving a pertussis toxin-sensitive (G(i)/G(o)) G-protein. Activation of phosphatidylinositol-3-kinase, cAMP-dependent protein kinase A and mitogen-activated protein kinase kinase is also required for lysophosphatidic acid-induced Schwann cell mitogenesis. These findings demonstrate that lysophosphatidic acid promotes proliferation of adult Schwann cells isolated from injured nerve and are consistent with the hypothesis that lysophosphatidic acid promotes in vivo Schwann cell mitogenesis in regenerating peripheral nerve.
Collapse
Affiliation(s)
- Paul W Frohnert
- Division of Neuropathology, Department of Pathology, The University of Alabama School of Medicine, Birmingham, Alabama 35294-0017, USA
| | | | | |
Collapse
|
369
|
Lin P, Ye RD. The lysophospholipid receptor G2A activates a specific combination of G proteins and promotes apoptosis. J Biol Chem 2003; 278:14379-86. [PMID: 12586833 DOI: 10.1074/jbc.m209101200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
G2A, a G protein-coupled receptor for which lysophosphatidylcholine (LPC) is a high affinity ligand, belongs to a newly defined lysophospholipid receptor subfamily. Expression of G2A is transcriptionally up-regulated by stress-inducing and cell-damaging agents, and ectopic expression of G2A leads to growth inhibition. However, the G proteins that functionally couple to G2A have not been elucidated in detail. We report here that G2A ligand independently stimulates the accumulation of both inositol phosphates and cAMP. LPC does not further enhance inositol phosphate accumulation but dose-dependently augments intracellular cAMP concentration. Expression of G alpha(q) and G alpha(13) with G2A potentiates G2A-mediated activation of a NF-kappa B-luciferase reporter. These results demonstrate that G2A differentially couples to multiple G proteins including G alpha(s), G alpha(q), and G alpha(13), depending on whether it is bound to ligand. G2A-transfected HeLa cells display apoptotic signs including membrane blebbing, nuclear condensation, and reduction of mitochondrial membrane potential. Furthermore, G2A-induced apoptosis can be rescued by the caspase inhibitors, z-vad-fmk and CrmA. Although apoptosis occurs without LPC stimulation, LPC further enhances G2A-mediated apoptosis and correlates with its ability to induce cAMP elevation in both HeLa cells and primary lymphocytes. Rescue from G2A-induced apoptosis was achieved by co-expression of a G alpha(12/13)-specific inhibitor, p115RGS (regulator of G protein signaling), in combination with 2',5'-dideoxyadenosine treatment. These results demonstrate the ability of G2A to activate a specific combination of G proteins, and that G2A/LPC-induced apoptosis involves both G alpha(13)- and G alpha(s)-mediated pathways.
Collapse
Affiliation(s)
- Phoebe Lin
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago 60612, USA
| | | |
Collapse
|
370
|
Silliman CC, Elzi DJ, Ambruso DR, Musters RJ, Hamiel C, Harbeck RJ, Paterson AJ, Bjornsen AJ, Wyman TH, Kelher M, England KM, McLaughlin-Malaxecheberria N, Barnett CC, Aiboshi J, Bannerjee A. Lysophosphatidylcholines prime the NADPH oxidase and stimulate multiple neutrophil functions through changes in cytosolic calcium. J Leukoc Biol 2003; 73:511-24. [PMID: 12660226 DOI: 10.1189/jlb.0402179] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A mixture of lysophosphatidylcholines (lyso-PCs) are generated during blood storage and are etiologic in models of acute lung injury. We hypothesize that lyso-PCs stimulate polymorphonuclear neutrophils (PMNs) through Ca(2)(+)-dependent signaling. The lyso-PC mix (0.45-14.5 micro M) and the individual lyso-PCs primed formyl-Met-Leu-Phe (fMLP) activation of the oxidase (1.8- to 15.7-fold and 1.7- to 14.8-fold; P<0.05). Labeled lyso-PCs demonstrated a membrane association with PMNs and caused rapid increases in cytosolic Ca(2)(+). Receptor desensitization studies implicated a common receptor or a family of receptors for the observed lyso-PC-mediated changes in PMN priming, and cytosolic Ca(2)(+) functions were pertussis toxin-sensitive. Lyso-PCs caused rapid serine phosphorylation of a 68-kD protein but did not activate mitogen-activated protein kinases or cause changes in tyrosine phosphorylation. With respect to alterations in PMN function, lyso-PCs caused PMN adherence, increased expression of CD11b and the fMLP receptor, reduced chemotaxis, provoked changes in morphology, elicited degranulation, and augmented fMLP-induced azurophilic degranulation (P<0.05). Cytosolic Ca(2)(+) chelation inhibited lyso-PC-mediated priming of the oxidase, CD11b surface expression, changes in PMN morphology, and serine phosphorylation of the 68-kD protein. In conclusion, lyso-PCs affect multiple PMN functions in a Ca(2)(+)-dependent manner that involves the activation of a pertussis toxin-sensitive G-protein.
Collapse
|
371
|
Fueller M, Wang DA, Tigyi G, Siess W. Activation of human monocytic cells by lysophosphatidic acid and sphingosine-1-phosphate. Cell Signal 2003; 15:367-75. [PMID: 12618211 DOI: 10.1016/s0898-6568(02)00117-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are serum-borne lipid mediators with potential proinflammatory and atherogenic properties. We studied the effects of LPA and S1P on [Ca(2+)](i), a second messenger of cellular activation, in human monocytic Mono Mac 6 (MM6) cells. LPA and S1P induced [Ca(2+)](i) transients with EC(50) values of 47 and 340 nM, respectively. Ca(2+) signals evoked by LPA and S1P originated mainly from the stimulation of Ca(2+) entry, were blocked by the phospholipase C inhibitor U73122, and were inhibited by pertussis toxin. The LPA(1) and LPA(3) receptor antagonist dioctylglycerol pyrophosphate inhibited the LPA-induced Ca(2+) signal. Notably, serum and minimally modified LDL (mm-LDL) evoked [Ca(2+)](i) increases that were mediated entirely through activation of LPA receptors. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis showed the presence of the LPA and S1P receptor subtypes LPA(1), LPA(2,) S1P(1), S1P(2), S1P(4) in MM6 cells, human monocytes and macrophages. Together these results indicate that LPA, mm-LDL and serum induce via activation of the LPA(1) receptor a G(i)/phospholipase C/Ca(2+) signalling pathway in monocytes. Our study is the first report showing the receptor-mediated activation of human monocytic cells by low nanomolar concentrations of LPA and S1P, and suggests a role of these lipid mediators in inflammation and atherogenesis.
Collapse
Affiliation(s)
- Markus Fueller
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Klinikum der Universität München, Pettenkoferstr 9, D 80336 Munich, Germany
| | | | | | | |
Collapse
|
372
|
Itoh K, Udagawa N, Kobayashi K, Suda K, Li X, Takami M, Okahashi N, Nishihara T, Takahashi N. Lipopolysaccharide promotes the survival of osteoclasts via Toll-like receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3688-95. [PMID: 12646634 DOI: 10.4049/jimmunol.170.7.3688] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lipopolysaccharide is a pathogen that causes inflammatory bone loss. Monocytes and macrophages produce proinflammatory cytokines such as IL-1, TNF-alpha, and IL-6 in response to LPS. We examined the effects of LPS on the function of osteoclasts formed in vitro in comparison with its effect on bone marrow macrophages, osteoclast precursors. Both osteoclasts and bone marrow macrophages expressed mRNA of Toll-like receptor 4 (TLR4) and CD14, components of the LPS receptor system. LPS induced rapid degradation of I-kappaB in osteoclasts, and stimulated the survival of osteoclasts. LPS failed to support the survival of osteoclasts derived from C3H/HeJ mice, which possess a missense mutation in the TLR4 gene. The LPS-promoted survival of osteoclasts was not mediated by any of the cytokines known to prolong the survival of osteoclasts, such as IL-1beta, TNF-alpha, and receptor activator of NF-kappaB ligand. LPS stimulated the production of proinflammatory cytokines such as IL-1beta, TNF-alpha, and IL-6 in bone marrow macrophages and peritoneal macrophages, but not in osteoclasts. These results indicate that osteoclasts respond to LPS through TLR4, but the characteristics of osteoclasts are quite different from those of their precursors, macrophages, in terms of proinflammatory cytokine production in response to LPS.
Collapse
Affiliation(s)
- Kanami Itoh
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
373
|
Holland WL, Stauter EC, Stith BJ. Quantification of phosphatidic acid and lysophosphatidic acid by HPLC with evaporative light-scattering detection. J Lipid Res 2003; 44:854-8. [PMID: 12562857 DOI: 10.1194/jlr.d200040-jlr200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidic acid (PA) and lysophosphatidic acid (LPA) are lipids that regulate cellular processes. PA stimulates kinases and may play a role in exocytosis and membrane fusion. LPA can induce cell proliferation, platelet aggregation, and microfilament formation. Due to the growing interest in these lipids, rapid purification and quantification of these lipids is desirable. We now describe a method that utilizes one HPLC run to separate trace amounts of PA and LPA from large amounts of lipids found in cellular extracts. A two-pump HPLC with a solvent system consisting of chloroform, methanol, water, and ammonium hydroxide was employed to produce a reliable, efficient purification of the two lipids. Lipid mass was quantified by a sensitive evaporative light-scattering detector. Using this new method, insulin addition increased both PA (87%) and LPA (217%) mass in Xenopus laevis oocytes.
Collapse
Affiliation(s)
- William L Holland
- Department of Biology, University of Colorado at Denver, 80217-3364, USA
| | | | | |
Collapse
|
374
|
Devchand PR, Arita M, Hong S, Bannenberg G, Moussignac RL, Gronert K, Serhan CN. Human ALX receptor regulates neutrophil recruitment in transgenic mice: roles in inflammation and host defense. FASEB J 2003; 17:652-9. [PMID: 12665478 DOI: 10.1096/fj.02-0770com] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Signaling pathways instrumental in the temporal and spatial progression of acute inflammation toward resolution are of wide interest. Here a transgenic mouse with myeloid-selective expression of human lipoxin A4 receptor (hALX) was prepared and used to evaluate in vivo the effect of hALX expression. hALX-transfected HEK293 cells transmitted LXA4 signals that inhibit TNFalpha-induced NFkappaB activation. Transgenic FvB mice were generated by DNA injections of a 3.8 kb transgene consisting of the full-length hALX cDNA driven by a fragment of the hCD11b promoter. When topically challenged via dermal ear skin, hALX transgenic mice gave attenuated neutrophil infiltration (approximately 80% reduction) in response to leukotriene B4 (LTB4) plus prostaglandin E2 (PGE2) as well as approximately 50% reduction in PMN infiltrates (P<0.02) to receptor-bypass inflammation evoked by phorbol ester. The hALX transgenic mice gave markedly decreased PMN infiltrates to the peritoneum with zymosan and altered the dynamics of this response. Transgenic hALX mice displayed increased sensitivity with >50% reduction in PMN infiltrates to suboptimal doses (10 ng/mouse) of the ligand lipoxin A4 stable analog compared with <10% reduction of PMN in nontransgenic littermates. Soluble mediators generated within the local inflammatory milieu of hALX mice showed diminished ability to activate the proinflammatory transcription factor NFkappaB. Analyses of the lipid-derived mediators from exudates using LC-MS tandem mass spectroscopy indicated an altered profile in hALX transgenic mice that included lower levels of LTB4 and increased amounts of lipoxin A4 compared with nontransgenic littermates. Together these results demonstrate a gain-of-function with hALX transgenic mouse and indicate that ALX is a key receptor and sensor in formation of acute exudates and their resolution.
Collapse
Affiliation(s)
- Pallavi R Devchand
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
375
|
Sugimoto N, Takuwa N, Okamoto H, Sakurada S, Takuwa Y. Inhibitory and stimulatory regulation of Rac and cell motility by the G12/13-Rho and Gi pathways integrated downstream of a single G protein-coupled sphingosine-1-phosphate receptor isoform. Mol Cell Biol 2003; 23:1534-45. [PMID: 12588974 PMCID: PMC151702 DOI: 10.1128/mcb.23.5.1534-1545.2003] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The G protein-coupled receptors S1P2/Edg5 and S1P3/Edg3 both mediate sphingosine-1-phosphate (S1P) stimulation of Rho, yet S1P2 but not S1P3 mediates downregulation of Rac activation, membrane ruffling, and cell migration in response to chemoattractants. Specific inhibition of endogenous Galpha12 and Galpha13, but not of Galphaq, by expression of respective C-terminal peptides abolished S1P2-mediated inhibition of Rac, membrane ruffling, and migration, as well as stimulation of Rho and stress fiber formation. Fusion receptors comprising S1P2 and either Galpha12 or Galpha13, but not Galphaq, mediated S1P stimulation of Rho and also inhibition of Rac and migration. Overexpression of Galphai, by contrast, specifically antagonized S1P2-mediated inhibition of Rac and migration. The S1P2 actions were mimicked by expression of V14Rho and were abolished by C3 toxin and N19Rho, but not Rho kinase inhibitors. In contrast to S1P2, S1P3 mediated S1P-directed, pertussis toxin-sensitive chemotaxis and Rac activation despite concurrent stimulation of Rho via G12/13. Upon inactivation of Gi by pertussis toxin, S1P3 mediated inhibition of Rac and migration just like S1P2. These results indicate that integration of counteracting signals from the Gi- and the G12/13-Rho pathways directs either positive or negative regulation of Rac, and thus cell migration, upon activation of a single S1P receptor isoform.
Collapse
MESH Headings
- 3T3 Cells
- Adenoviridae/genetics
- Adenoviridae/metabolism
- Animals
- Blotting, Western
- Botulinum Toxins/metabolism
- CHO Cells
- COS Cells
- Cell Movement
- Chemotaxis
- Cricetinae
- Culture Media, Serum-Free/pharmacology
- Dose-Response Relationship, Drug
- GTP-Binding Protein alpha Subunits, G12-G13
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Heterotrimeric GTP-Binding Proteins/metabolism
- Mice
- Microscopy, Fluorescence
- Peptides/chemistry
- Pertussis Toxin/pharmacology
- Plasmids/metabolism
- Protein Isoforms
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled
- Receptors, Lysophospholipid
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Time Factors
- Transfection
- rac GTP-Binding Proteins/metabolism
- rac1 GTP-Binding Protein/metabolism
- rho GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Naotoshi Sugimoto
- Department of Physiology, Kanazawa University Graduate School of Medicine, Kanazawa, Ishikawa 920-8640, Japan
| | | | | | | | | |
Collapse
|
376
|
Bhagwat SV, Petrovic N, Okamoto Y, Shapiro LH. The angiogenic regulator CD13/APN is a transcriptional target of Ras signaling pathways in endothelial morphogenesis. Blood 2003; 101:1818-26. [PMID: 12406907 DOI: 10.1182/blood-2002-05-1422] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a critical step for tumor growth and metastasis and an integral component of the pathologic inflammatory response in arthritis and the proliferative retinopathies. The CD13/aminopeptidase N (CD13/APN) metalloprotease is an important regulator of angiogenesis where its expression on activated blood vessels is induced by angiogenic signals. Here, we show that cytokine induction of CD13/APN in endothelial cells is regulated by distinct Ras effector pathways involving Ras/mitogen-activated protein kinase (MAPK) or PI-3K. Signals transduced by activated Ras, Raf, and mitogen-induced extracellular kinase (MEK) stimulate transcription from the CD13/APN proximal promoter. Inhibition of these pathways and extracellular signal-regulated serine/threonine kinase (ERK-2) and PI-3K by expression of dominant-negative proteins or chemical inhibitors prevented induction of CD13/APN transcription in response to basic fibroblast growth factor (bFGF). We show that Ras-induced signal transduction is required for growth factor-induced angiogenesis, because inhibition of downstream mediators of Ras signaling (MEK or PI-3K) abrogated endothelial cell migration, invasion, and morphogenesis in vitro. Reintroduction of CD13/APN, a shared downstream target of these pathways, overrode the suppressive effect of these inhibitors and restored the function of endothelial cells in migration/invasion and capillary morphogenesis assays. Similarly, inhibition of MEK abrogated cell invasion and the formation of endothelial-lined capillaries in vivo, which was effectively rescued by addition of exogenous CD13/APN protein. These studies provide strong evidence that CD13/APN is an important target of Ras signaling in angiogenesis and is a limiting factor in angiogenic progression.
Collapse
Affiliation(s)
- Shripad V Bhagwat
- Departments of Pathology, and Hematology/Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | |
Collapse
|
377
|
Affiliation(s)
- Elif Arioglu Oral
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
378
|
Newman JW, Morisseau C, Harris TR, Hammock BD. The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc Natl Acad Sci U S A 2003; 100:1558-63. [PMID: 12574510 PMCID: PMC149871 DOI: 10.1073/pnas.0437724100] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gene EPXH2 encodes for the soluble epoxide hydrolase (sEH), an enzyme involved in the regulation of cardiovascular and renal physiology containing two distinct domains connected via a proline-rich linker. The C-terminal domain containing the EH catalytic activity has been well studied. In contrast, a function for the N-terminal domain, which has high homology to the haloacid dehalogenase family of phosphatases, has not been definitively reported. In this study we describe the N-terminal domain as a functional phosphatase unaffected by a number of classic phosphatase inhibitors. Assuming a functional association between these catalytic activities, dihydroxy lipid phosphates were rationalized as potential endogenous substrates. A series of phosphorylated hydroxy lipids were therefore synthesized and found to be excellent substrates for the human sEH. The best substrate tested was the monophosphate of dihydroxy stearic acid (threo-910-phosphonoxy-hydroxy-octadecanoic acid) with K(m) = 21 +/- 0.3 microM, V(Max) = 338 +/- 12 nmol x min(-1) x mg(-1), and k(cat) = 0.35 +/- 0.01 s(-1). Therefore dihydroxy lipid phosphates are possible candidates for the endogenous substrates of the sEH N-terminal domain, which would represent a novel branch of fatty acid metabolism with potential signaling functions.
Collapse
Affiliation(s)
- John W Newman
- Department of Entomology and University of California Davis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
379
|
Yuan J, Slice LW, Gu J, Rozengurt E. Cooperation of Gq, Gi, and G12/13 in protein kinase D activation and phosphorylation induced by lysophosphatidic acid. J Biol Chem 2003; 278:4882-91. [PMID: 12477719 DOI: 10.1074/jbc.m211175200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To examine the contribution of different G-protein pathways to lysophosphatidic acid (LPA)-induced protein kinase D (PKD) activation, we tested the effect of LPA on PKD activity in murine embryonic cell lines deficient in Galpha(q/11) (Galpha(q/11) KO cells) or Galpha(12/13) (Galpha(12/13) KO cells) and used cells lacking rhodopsin kinase (RK cells) as a control. In RK and Galpha(12/13) KO cells, LPA induced PKD activation through a phospholipase C/protein kinase C pathway in a concentration-dependent fashion with maximal stimulation (6-fold for RK cells and 4-fold for Galpha(12/13) KO cells in autophosphorylation activity) achieved at 3 microm. In contrast, LPA did not induce any significant increase in PKD activity in Galpha(q/11) KO cells. However, LPA induced a significantly increased PKD activity when Galpha(q/11) KO cells were transfected with Galpha(q). LPA-induced PKD activation was modestly attenuated by prior exposure of RK cells to pertussis toxin (PTx) but abolished by the combination treatments of PTx and Clostridium difficile toxin B. Surprisingly, PTx alone strikingly inhibited LPA-induced PKD activation in a concentration-dependent fashion in Galpha(12/13) KO cells. Similar results were obtained when activation loop phosphorylation at Ser-744 was determined using an antibody that detects the phosphorylated state of this residue. Our results indicate that G(q) is necessary but not sufficient to mediate LPA-induced PKD activation. In addition to G(q), LPA requires additional G-protein pathways to elicit a maximal response with G(i) playing a critical role in Galpha(12/13) KO cells. We conclude that LPA induces PKD activation through G(q), G(i), and G(12) and propose that PKD activation is a point of convergence in the action of multiple G-protein pathways.
Collapse
Affiliation(s)
- Jingzhen Yuan
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
380
|
Kniazeva M, Sieber M, McCauley S, Zhang K, Watts JL, Han M. Suppression of the ELO-2 FA elongation activity results in alterations of the fatty acid composition and multiple physiological defects, including abnormal ultradian rhythms, in Caenorhabditis elegans. Genetics 2003; 163:159-69. [PMID: 12586704 PMCID: PMC1462428 DOI: 10.1093/genetics/163.1.159] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While the general steps of fatty acid (FA) biosynthesis are well understood, the individual enzymes involved in the elongation of long chain saturated and polyunsaturated FA (PUFA) are largely unknown. Recent research indicates that these enzymes might be of considerable physiological importance for human health. We use Caenorhabditis elegans to study FA elongation activities and associated abnormal phenotypes. In this article we report that the predicted C. elegans F11E6.5/ELO-2 is a functional enzyme with the FA elongation activity. It is responsible for the elongation of palmitic acid and is involved in PUFA biosynthesis. RNAi-mediated suppression of ELO-2 causes an accumulation of palmitate and an associated decrease in the PUFA fraction in triacylglycerides and phospholipid classes. This imbalance in the FA composition results in multiple phenotypic defects such as slow growth, small body size, reproductive defects, and changes in rhythmic behavior. ELO-2 cooperates with the previously reported ELO-1 in 20-carbon PUFA production, and at least one of the enzymes must function to provide normal growth and development in C. elegans. The presented data indicate that suppression of a single enzyme of the FA elongation machinery is enough to affect various organs and systems in worms. This effect resembles syndromic disorders in humans.
Collapse
Affiliation(s)
- Marina Kniazeva
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA.
| | | | | | | | | | | |
Collapse
|
381
|
Abstract
Following the purification of the immunosuppressant ISP-1 from a Chinese medicine, Japanese scientists have developed a more potent immune modulator, FTY720, that induces T-cell homing. FTY720, a promising immunosuppressant for use in patients with tissue transplants and autoimmune diseases, is currently in clinical trials. Two recent studies have elucidated that the mechanism of action of FTY720 is via a subset of G-protein-coupled receptors for the lysophospholipid mediator sphingosine-1-phosphate.
Collapse
Affiliation(s)
- Dong Soon Im
- Laboratory of Pharmacology, College of Pharmacy, Pusan National University, San 30, Chang-Jun-dong, Keum-Jung-gu, 609-735, Busan, South Korea.
| |
Collapse
|
382
|
Obeid LM, Okamoto Y, Mao C. Yeast sphingolipids: metabolism and biology. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1585:163-71. [PMID: 12531550 DOI: 10.1016/s1388-1981(02)00337-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sphingolipids have recently emerged as important bioactive molecules in addition to being critical structural components of cellular membranes. These molecules have been implicated in regulating cell growth, differentiation, angiogenesis, apoptosis, and senescene. To study sphingolipid mediated biology, it is necessary to investigate sphingolipid metabolism and its regulation. The yeast Saccharomyces cerevisiae has allowed such studies to take place as the sphingolipid metabolic and regulatory pathways appear conserved across species. Using yeast genetic approaches most enzymes of sphingolipid metabolism have been identified and cloned which has led to identification of their mammalian homologues. Many of the yeast enzymes are targets of fungal toxins thus underscoring the importance of this pathway in yeast cell regulation. This review focuses on the yeast sphingolipid metabolic pathway and its role in regulation of yeast biology. Implication of the insights gained from yeast to mammalian cell regulation are discussed.
Collapse
Affiliation(s)
- Lina M Obeid
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | | | | |
Collapse
|
383
|
Ye X, Ishii I, Kingsbury MA, Chun J. Lysophosphatidic acid as a novel cell survival/apoptotic factor. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1585:108-13. [PMID: 12531543 DOI: 10.1016/s1388-1981(02)00330-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lysophosphatidic acid (LPA) activates its cognate G protein-coupled receptors (GPCRs) LPA(1-3) to exert diverse cellular effects, including cell survival and apoptosis. The potent survival effect of LPA on Schwann cells (SCs) is mediated through the pertussis toxin (PTX)-sensitive G(i/o)/phosphoinositide 3-kinase (PI3K)/Akt signaling pathways and possibly enhanced by the activation of PTX-insensitive Rho-dependent pathways. LPA promotes survival of many other cell types mainly through PTX-sensitive G(i/o) proteins. Paradoxically, LPA also induces apoptosis in certain cells, such as myeloid progenitor cells, hippocampal neurons, and PC12 cells, in which the activation of the Rho-dependent pathways and caspase cascades has been implicated. The effects of LPA on both cell survival and apoptosis underscore important roles for this lipid in normal development and pathological processes.
Collapse
Affiliation(s)
- Xiaoqin Ye
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | | | | | | |
Collapse
|
384
|
van der Kleij D, Latz E, Brouwers JFHM, Kruize YCM, Schmitz M, Kurt-Jones EA, Espevik T, de Jong EC, Kapsenberg ML, Golenbock DT, Tielens AGM, Yazdanbakhsh M. A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization. J Biol Chem 2002; 277:48122-9. [PMID: 12359728 DOI: 10.1074/jbc.m206941200] [Citation(s) in RCA: 443] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schistosome infections are characterized by prominent T cell hyporesponsiveness during the chronic stage of infection. We found that schistosome-specific phosphatidylserine (PS) activated TLR2 and affected dendritic cells such that mature dendritic cells gained the ability to induce the development of IL-10-producing regulatory T cells. Using mass spectrometry, schistosomal lysophosphatidylserine (lyso-PS) was identified as the TLR2-activating molecule. This activity appears to be a unique property of schistosomal lyso-PS, containing specific acyl chains, because neither a synthetic lyso-PS (16:0) nor PS isolated from the mammalian host activates TLR2. Taken together, these findings provide evidence for a novel host-parasite interaction that may be central to long term survival of the parasite and limited host pathology with implications beyond parasitology.
Collapse
|
385
|
Abstract
The physiological and pathological importance of lysophosphatidic acid (LPA) in the nervous system is underscored by its presence, as well as the expression of its receptors in neural tissues. In fact, LPA produces responses in a broad range of cell types related to the function of the nervous system. These cell types include neural cell lines, neural progenitors, primary neurons, oligodendrocytes, Schwann cells, astrocytes, microglia, and brain endothelial cells. LPA-induced cell type-specific effects include changes in cell morphology, promotion of cell proliferation and cell survival, induction of cell death, changes in ion conductance and Ca2+ mobilization, induction of pain transmission, and stimulation of vasoconstriction. These effects are mediated through a number of G protein-coupled LPA receptors that activate various downstream signaling cascades. This review provides a current summary of LPA-induced effects in neural cells in vitro or in vivo in combination with our current understanding of the signaling pathways responsible for these effects.
Collapse
Affiliation(s)
- Xiaoqin Ye
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | | | | | | |
Collapse
|
386
|
Wang DA, Du H, Jaggar JH, Brindley DN, Tigyi GJ, Watsky MA. Injury-elicited differential transcriptional regulation of phospholipid growth factor receptors in the cornea. Am J Physiol Cell Physiol 2002; 283:C1646-54. [PMID: 12388084 DOI: 10.1152/ajpcell.00323.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phospholipid growth factors (PLGFs), including lysophosphatidic acid (LPA), have been implicated in corneal wound healing. PLGF concentrations and activities are elevated after corneal injury. Using real-time PCR, we quantified receptor mRNA levels in the healing rabbit cornea. In intact corneas, transcripts for S1P(1), LPA(1), and LPA(3) receptor subtypes were detected, as was lipid phosphate phosphatase 1 (LPP1). After wounding, the trend for endothelium and keratocytes was for significant decreases in transcript numbers for the three receptor subtypes, whereas epithelial cells showed increased transcript numbers, except for an S1P(1) decrease in healing cells. LPP1 transcript numbers were decreased in keratocytes and endothelium, although LPP-specific activity was unchanged. LPA-elicited Ca(2+) transients were significantly reduced in the healing endothelium. Consistent with reduced LPA(3) receptor numbers, dioctylglycerol pyrophosphate, a selective antagonist, reduced LPA-induced Ca(2+) transients 2.7-fold in nonwounded epithelium but only 1.5-fold in wound-healing endothelium. These data for the first time establish physiologically relevant differential changes in the expression of PLGF receptor subtypes and provide evidence for the changing role of LPA(3) receptors in endothelial cells.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- Cornea/metabolism
- Cornea/pathology
- Corneal Injuries
- Endothelium, Corneal/drug effects
- Endothelium, Corneal/metabolism
- Endothelium, Corneal/pathology
- Epithelium, Corneal/metabolism
- Eye Injuries/genetics
- Eye Injuries/metabolism
- Eye Injuries/pathology
- In Vitro Techniques
- Lysophospholipids/pharmacology
- Phosphatidate Phosphatase/genetics
- Phosphatidate Phosphatase/metabolism
- RNA, Messenger/metabolism
- Rabbits
- Receptors, Cell Surface/genetics
- Receptors, G-Protein-Coupled
- Receptors, Lysophosphatidic Acid
- Receptors, Lysophospholipid
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
Collapse
Affiliation(s)
- De-An Wang
- Department of Physiology, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|
387
|
VanderNoot VA, VanRollins M. Capillary electrophoresis of cytochrome P-450 epoxygenase metabolites of arachidonic acid. 1. Resolution of regioisomers. Anal Chem 2002; 74:5859-65. [PMID: 12463373 DOI: 10.1021/ac025909+] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The essential fatty acid arachidonate is oxidized by cytochrome P-450 epoxygenases to four epoxyeicosatrienoic acids (EETs): 14,15-, 11,12-, 8,9-, and 5,6-EETs. Each of the four EET regioisomers and their hydrolysis products (DHETs) has multiple paracrine and autocrine functions and may also potently dilate blood vessels and activate potassium channels. The present work describes a method to resolve EETs and DHETs by capillary electrophoresis (CE) using trimethyl-beta-cyclodextrin and CH3CN as buffer additives. While stored at 25 degrees C, most of the EET and DHET regioisomers remained intact when suspended in alkaline vehicle. However, under these same conditions, 5,6-EET rapidly broke down to a lactone and was slowly converted to 5,6-DHET. When subjected to CE, the EET and DHET regioisomers were baseline resolved (R > or = 1.3); 10 pg of an EET or a DHET regioisomer was readily detectable at 194 nm. In addition, the UV spectra were regiospecific and identical to those obtained during HPLC except that an additional, weak absorption occurred at 235 nm. Together, the high-sensitivity, high-resolution, and differential UV spectra permitted the identification and quantification of EETs in phospholipids isolated from murine liver. Thus, CE was successfully used for the trace analysis of eicosanoids.
Collapse
Affiliation(s)
- Victoria A VanderNoot
- Department of Chemical & Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
388
|
Wang L, Cummings R, Usatyuk P, Morris A, Irani K, Natarajan V. Involvement of phospholipases D1 and D2 in sphingosine 1-phosphate-induced ERK (extracellular-signal-regulated kinase) activation and interleukin-8 secretion in human bronchial epithelial cells. Biochem J 2002; 367:751-60. [PMID: 12149127 PMCID: PMC1222936 DOI: 10.1042/bj20020586] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2002] [Revised: 07/29/2002] [Accepted: 07/30/2002] [Indexed: 11/17/2022]
Abstract
Sphingosine 1-phosphate (S1P), a metabolite of sphingomyelin degradation, stimulates interleukin-8 (IL-8) secretion in human bronchial epithelial (Beas-2B) cells. The molecular mechanisms regulating S1P-mediated IL-8 secretion are yet to be completely defined. Here we provide evidence that activation of phospholipases D1 and D2 (PLD1 and PLD2) by S1P regulates the phosphorylation of extracellular-signal-regulated kinase (ERK) and IL-8 secretion in Beas-2B cells. S1P, in a time- and dose-dependent manner, enhanced the threonine/tyrosine phosphorylation of ERK. The inhibition of S1P-induced ERK phosphorylation by pertussis toxin and PD 98059 indicated coupling of S1P receptors to G(i) and the ERK signalling cascade respectively. Treatment of Beas-2B cells with butan-1-ol, but not butan-3-ol, abrogated the S1P-induced phosphorylation of Raf-1 and ERK, suggesting that PLD is involved in this activation. The roles of PLD1 and PLD2 in ERK activation and IL-8 secretion activated by S1P were investigated by infecting cells with adenoviral constructs of wild-type and catalytically inactive mutants of PLD1 and PLD2. Infection of Beas-2B cells with the wild-type constructs resulted in the activation of PLD1 and PLD2 by S1P and PMA. Also, the enhanced production of [(32)P]phosphatidic acid and [(32)P]phosphatidylbutanol in the presence of butan-1-ol and the increased phosphorylation of ERK by S1P were blocked by the catalytically inactive mutants hPLD1-K898R and mPLD2-K758R. Transient transfection of Beas-2B cells with human PLD1 and mouse PLD2 cDNAs potentiated S1P-mediated IL-8 secretion compared with vector controls. In addition, PD 98059 attenuated IL-8 secretion induced by S1P in a dose-dependent fashion. These results demonstrate that both PLD1 and PLD2 participate in S1P stimulation of ERK phosphorylation and IL-8 secretion in bronchial epithelial cells.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
389
|
Osada M, Yatomi Y, Ohmori T, Hosogaya S, Ozaki Y. Modulation of sphingosine 1-phosphate/EDG signaling by tumor necrosis factor-alpha in vascular endothelial cells. Thromb Res 2002; 108:169-74. [PMID: 12590954 DOI: 10.1016/s0049-3848(02)00385-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Makoto Osada
- Department of Clinical Laboratory, Yamanashi Medical University Hospital, Nakakoma, Japan
| | | | | | | | | |
Collapse
|
390
|
Contos JJA, Ye X, Sah VP, Chun J. Tandem genomic arrangement of a G protein (Gna15) and G protein-coupled receptor (s1p(4)/lp(C1)/Edg6) gene. FEBS Lett 2002; 531:99-102. [PMID: 12401211 DOI: 10.1016/s0014-5793(02)03409-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A genomic analysis of the s1p(4)/lp(C1)/Edg6 mouse sphingosine-1-phosphate (S1P) G protein-coupled receptor gene revealed it to be located on central chromosome 10 and to consist of two exons with an intronless coding region. Surprisingly, we found the gene encoding the promiscuously coupling G(alpha15) protein (Gna15) located in tandem just upstream, an arrangement conserved in the human genome (on chromosome 19p13.3). Given that Northern blots demonstrated similar tissue distributions of the mouse s1p(4) and Gna15 transcripts, we propose that transcription of the two genes may be under control of the same enhancer elements and that their protein products may couple in vivo.
Collapse
Affiliation(s)
- James J A Contos
- Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0636, USA
| | | | | | | |
Collapse
|
391
|
McGiffert C, Contos JJA, Friedman B, Chun J. Embryonic brain expression analysis of lysophospholipid receptor genes suggests roles for s1p(1) in neurogenesis and s1p(1-3) in angiogenesis. FEBS Lett 2002; 531:103-8. [PMID: 12401212 DOI: 10.1016/s0014-5793(02)03404-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In a comparison of embryonic brain expression patterns of lysophosphatidic acid and sphingosine 1-phosphate receptor genes (lpa(1-3) and s1p(1-5), respectively), transcripts detected by Northern blot were subsequently localized using in situ hybridization. We found striking s1p(1) expression adjacent to several ventricles. Near the lateral ventricle, s1p(1) expression was temporally and spatially coincident with neurogenesis and overlapped with lpa(1) in the neocortical area. We also observed a widespread diffuse pattern for lpa(2-3) and a scattered punctate pattern for s1p(1-3). The punctate pattern colocalized with vascular endothelial markers. Together, these results suggest that s1p(1) influences neurogenesis and s1p(1-3) influence angiogenesis in the developing brain.
Collapse
MESH Headings
- Animals
- Antigens, CD34/biosynthesis
- Blotting, Northern
- Brain/embryology
- Brain/metabolism
- Bromodeoxyuridine/pharmacology
- Cell Division
- Cerebral Cortex/metabolism
- Endothelium, Vascular/cytology
- In Situ Hybridization
- Lysophospholipids/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Neurons/cytology
- Neurons/metabolism
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- RNA, Messenger/metabolism
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled
- Receptors, Lysophosphatidic Acid
- Receptors, Lysophospholipid
- Time Factors
- Tissue Distribution
Collapse
Affiliation(s)
- Christine McGiffert
- Neurosciences Graduate Program, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | | | | | | |
Collapse
|
392
|
Abstract
The sphingolipid metabolite sphingosine-1-phosphate (S1P) is a serum-borne lipid that regulates many vital cellular processes. S1P is the ligand of a family of five specific G protein-coupled receptors that are differentially expressed in different tissues and regulate diverse cellular actions. Much less is known of the intracellular actions of S1P. It has been suggested that S1P may also function as an intracellular second messenger to regulate calcium mobilization, cell growth and suppression of apoptosis in response to a variety of extracellular stimuli. Dissecting the dual actions and identification of intracellular targets of S1P has been challenging, but there is ample evidence to suggest that the balance between S1P and ceramide and/or sphingosine levels in cells is an important determinant of cell fate.
Collapse
Affiliation(s)
- Shawn G Payne
- Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
393
|
Davaille J, Li L, Mallat A, Lotersztajn S. Sphingosine 1-phosphate triggers both apoptotic and survival signals for human hepatic myofibroblasts. J Biol Chem 2002; 277:37323-30. [PMID: 12138095 DOI: 10.1074/jbc.m202798200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hepatic myofibroblasts (hMFs) are central in the development of liver fibrosis during chronic liver diseases, and their removal by apoptosis contributes to the resolution of liver fibrosis. We previously identified Edg receptors for sphingosine 1-phosphate (S1P) in human hMFs. Here, we investigated the effects of S1P on hMF apoptosis. S1P reduced viability of serum-deprived hMFs by an apoptotic process that was unrelated to the conversion of S1P into sphingosine and ceramide. The apoptotic effects of S1P were receptor-independent because dihydro-S1P, an Edg agonist, had no effect. S1P also stimulated a receptor-dependent survival pathway, revealed by enhanced activation of caspase-3 by S1P in the presence of pertussis toxin. Cell survival relied on two pertussis toxin-sensitive events, activation of ERK and activation of phosphatidylinositol 3-kinase (PI3K)/Akt by S1P. Both pathways were also activated by dihydro-S1P. Blunting either ERK or PI3K enhanced caspase-3 stimulation by S1P, and simultaneous inhibition of both pathways resulted in additive effects on caspase-3 activation. In conclusion, S1P induces apoptosis of human hMFs via a receptor-independent mechanism and stimulates a survival pathway following activation of Edg receptors. The survival pathway arises from the sequential activation of G(i)/G(o) proteins and independent stimulations of ERK and PI3K/Akt. Therefore, blocking Edg receptors may sensitize hepatic myofibroblasts to apoptosis by S1P.
Collapse
|
394
|
Dixon JL, Shen S, Vuchetich JP, Wysocka E, Sun GY, Sturek M. Increased atherosclerosis in diabetic dyslipidemic swine: protection by atorvastatin involves decreased VLDL triglycerides but minimal effects on the lipoprotein profile. J Lipid Res 2002; 43:1618-29. [PMID: 12364546 DOI: 10.1194/jlr.m200134-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Male Yucatan swine were allocated to four groups (n = 5-6 pigs per group): low fat (3%) fed control, high fat/2% cholesterol (CH) fed (HF), high fat/CH fed with alloxan-induced diabetes (DF) and DF pigs that were treated with atorvastatin (80 mg/day; DF+A). Pigs were fed two meals per day and daily insulin injections were used in diabetic pigs to maintain plasma glucose between 250 and 350 mg/dl. Diabetic dyslipidemic (DF) pigs exhibited greater coronary atherosclerosis and increased collagen deposition in internal mammary artery compared with normoglycemic hyperlipidemic pigs. Although total and LDL CH concentrations did not differ, triglyceride (TG) were increased in DF pigs and FPLC analysis indicated that the LDL/HDL CH ratio was significantly increased in DF compared with HF pigs. The LDL fraction of DF pigs contained larger, lipid enriched particles resembling IDL. Consumption of the high fat/CH diet caused a moderate increase in the percentage of 14:0 fatty acids in plasma lipids and this was compensated by small-moderate declines in several unsaturated fatty acids. There was a significant increase in phospholipid arachidonic acid in DF compared with HF pigs. Atorvastatin protected diabetic pigs from atherosclerosis and decreased total and VLDL TG, but exerted minimal effects on the FPLC lipoprotein and plasma fatty acid profiles and plasma concentrations of total and LDL CH, vitamin A, vitamin E, and lysophosphatidylcholine. Across all groups the plasma CH concentration was positively correlated with hepatic CH concentration. These findings suggest that atorvastatin's protection against coronary artery atherosclerosis in diabetes may involve effects on plasma VLDL TG concentration. Lack of major effects on other lipid parameters, including the LDL/HDL ratio, suggests that atorvastatin may have yet other anti-atherogenic effects, possibly directly in the vessel wall.
Collapse
Affiliation(s)
- Joseph L Dixon
- Dalton Cardiovascular Research Center, University of Missouri, Research Park, Columbia, MO, USA.
| | | | | | | | | | | |
Collapse
|
395
|
Abstract
PURPOSE OF REVIEW Lipid rafts on monocytes/macrophages provide a dynamic microenvironment for an integrated lipopolysaccharide receptor (CD14)-dependent clustering of a set of receptors involved in innate immunity and clearance of atherogenic lipoproteins. The purpose of this review is to summarize the recent advances in our understanding of CD14-dependent receptor clustering and its relevance in atherogenesis. RECENT FINDINGS Upon binding of various ligands, CD14 as a multiligand pattern recognition receptor induces specific coassembly of additional receptors present on circulating monocytes. SUMMARY The composition of the receptor cluster and thus the associated signalling pathways defines a ligand specific cellular response, linking endogenous and exogenous host defense to a common recognition platform in rafts.
Collapse
Affiliation(s)
- Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany.
| | | |
Collapse
|
396
|
Brinkmann V, Lynch KR. FTY720: targeting G-protein-coupled receptors for sphingosine 1-phosphate in transplantation and autoimmunity. Curr Opin Immunol 2002; 14:569-75. [PMID: 12183155 DOI: 10.1016/s0952-7915(02)00374-6] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The novel immunomodulator FTY720 is remarkably effective in models of transplantation and autoimmunity. Recent data show that phosphorylated FTY720 is an agonist at four sphingosine 1-phosphate receptors. Stimulation of sphingosine 1-phosphate receptors leads to sequestration of lymphocytes in secondary lymphatic tissues and thus away from inflammatory lesions and graft sites.
Collapse
Affiliation(s)
- Volker Brinkmann
- Novartis Pharma AG Transplantation Research WSJ-386.101, CH-4002 Basel, Switzerland.
| | | |
Collapse
|
397
|
You J, Marrelli SP, Bryan RM. Role of cytoplasmic phospholipase A2 in endothelium-derived hyperpolarizing factor dilations of rat middle cerebral arteries. J Cereb Blood Flow Metab 2002; 22:1239-47. [PMID: 12368663 DOI: 10.1097/01.wcb.0000037996.34930.2e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Very little is known regarding the mechanism of action for the endothelium-derived hyperpolarizing factor (EDHF) response in cerebral vessels. The authors tested two hypotheses: (1) activation of the cytoplasmic form of phospholipase A (cPLA ) is involved with EDHF-mediated dilations in rat middle cerebral arteries; and (2) activation of the cPLA involves an increase in endothelial Ca through activation of phospholipase C. Middle cerebral arteries were isolated from the rat, pressurized to 85 mm Hg, and luminally perfused. The EDHF response was elicited by luminal application of uridine triphosphate (UTP) after NO synthase and cyclooxygenase inhibition (10 mol/L -nitro-l-arginine methyl ester and 10 mol/L indomethacin, respectively). AACOCF and PACOCF, inhibitors of cPLA (Ca -sensitive) and Ca -insensitive PLA (iPLA ), dose dependently attenuated the EDHF response. A selective inhibitor for iPLA2, haloenol lactone suicide substrate, had no effect on the EDHF response. The EDHF response elicited by UTP was accompanied by an increase in endothelial Ca (144 to 468 nmol/L), and the EDHF dilation was attenuated with U73122, a phospholipase C inhibitor. The authors conclude that the EDHF response elicited by luminal UTP in rat middle cerebral arteries involved activation of phospholipase C, an increase in endothelial Ca, and activation of cPLA.
Collapse
Affiliation(s)
- Junping You
- Department of Anesthesiology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
398
|
Abstract
Since the first discovery of mammalian receptors for adrenaline (beta(2)) and acetylcholine (M(1)) in 1986, many G protein-coupled receptors for known ligands have been cloned by protein purification, PCR (polymerase chain reaction) and low stringency hybridization, and they have been identified by expression cloning techniques. Now we are almost out of the known ligands pool. However, through the achievement of the Human Genome Project, numerous orphan receptors (whose natural ligands are not yet found) are also available for analysis. In this review, I would like to review recent achievements in the discovery of natural ligands, to describe useful orphan receptor strategies, and to predict the future of reverse pharmacology.
Collapse
Affiliation(s)
- Dong-Soon Im
- Laboratory of Pharmacology, College of Pharmacy, Pusan National University, Pusan, Republic of Korea.
| |
Collapse
|
399
|
Le Stunff H, Galve-Roperh I, Peterson C, Milstien S, Spiegel S. Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. J Cell Biol 2002; 158:1039-49. [PMID: 12235122 PMCID: PMC2173216 DOI: 10.1083/jcb.200203123] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that regulates diverse biological processes by binding to a family of G protein-coupled receptors or as an intracellular second messenger. Mammalian S1P phosphatase (SPP-1), which degrades S1P to terminate its actions, was recently cloned based on homology to a lipid phosphohydrolase that regulates the levels of phosphorylated sphingoid bases in yeast. Confocal microscopy surprisingly revealed that epitope-tagged SPP-1 is intracellular and colocalized with the ER marker calnexin. Moreover, SPP-1 activity and protein appeared to be mainly enriched in the intracellular membranes with lower expression in the plasma membrane. Treatment of SPP-1 transfectants with S1P markedly increased ceramide levels, predominantly in the intracellular membranes, diminished survival, and enhanced apoptosis. Remarkably, dihydro-S1P, although a good substrate for SPP-1 in situ, did not cause significant ceramide accumulation or increase apoptosis. Ceramide accumulation induced by S1P was completely blocked by fumonisin B1, an inhibitor of ceramide synthase, but only partially reduced by myriocin, an inhibitor of serine palmitoyltransferase, the first committed step in de novo synthesis of ceramide. Furthermore, S1P, but not dihydro-S1P, stimulated incorporation of [3H]palmitate, a substrate for both serine palmitoyltransferase and ceramide synthase, into C16-ceramide. Collectively, our results suggest that SPP-1 functions in an unprecedented manner to regulate sphingolipid biosynthesis and is poised to influence cell fate.
Collapse
Affiliation(s)
- Hervé Le Stunff
- Department of Biochemistry and Molecular Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
400
|
Travis AJ, Kopf GS. The role of cholesterol efflux in regulating the fertilization potential of mammalian spermatozoa. J Clin Invest 2002. [DOI: 10.1172/jci0216392] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|