401
|
Cohen AA, Gnanapragasam PNP, Lee YE, Hoffman PR, Ou S, Kakutani LM, Keeffe JR, Wu HJ, Howarth M, West AP, Barnes CO, Nussenzweig MC, Bjorkman PJ. Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science 2021; 371:735-741. [PMID: 33436524 PMCID: PMC7928838 DOI: 10.1126/science.abf6840] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-related emergent zoonotic coronaviruses is urgently needed. We made homotypic nanoparticles displaying the receptor binding domain (RBD) of SARS-CoV-2 or co-displaying SARS-CoV-2 RBD along with RBDs from animal betacoronaviruses that represent threats to humans (mosaic nanoparticles with four to eight distinct RBDs). Mice immunized with RBD nanoparticles, but not soluble antigen, elicited cross-reactive binding and neutralization responses. Mosaic RBD nanoparticles elicited antibodies with superior cross-reactive recognition of heterologous RBDs relative to sera from immunizations with homotypic SARS-CoV-2-RBD nanoparticles or COVID-19 convalescent human plasmas. Moreover, after priming, sera from mosaic RBD-immunized mice neutralized heterologous pseudotyped coronaviruses as well as or better than sera from homotypic SARS-CoV-2-RBD nanoparticle immunizations, demonstrating no loss of immunogenicity against particular RBDs resulting from co-display. A single immunization with mosaic RBD nanoparticles provides a potential strategy to simultaneously protect against SARS-CoV-2 and emerging zoonotic coronaviruses.
Collapse
Affiliation(s)
- Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Yu E Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pauline R Hoffman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Susan Ou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leesa M Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hung-Jen Wu
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
402
|
Tada T, Dcosta BM, Samanovic-Golden M, Herati RS, Cornelius A, Mulligan MJ, Landau NR. Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33564768 DOI: 10.1101/2021.02.05.430003] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The increasing prevalence of SARS-CoV-2 variants with mutations in the spike protein has raised concerns that recovered individuals may not be protected from reinfection and that current vaccines will become less effective. The B.1.1.7 isolate identified in the United Kingdom and B.1.351 isolate identified in the Republic of South Africa encode spike proteins with multiple mutations in the S1 and S2 subunits. In addition, variants have been identified in Columbus, Ohio (COH.20G/677H), Europe (20A.EU2) and in domesticated minks. Analysis by antibody neutralization of pseudotyped viruses showed that convalescent sera from patients infected prior to the emergence of the variant viruses neutralized viruses with the B.1.1.7, B.1.351, COH.20G/677H Columbus Ohio, 20A.EU2 Europe and mink cluster 5 spike proteins with only a minor decrease in titer compared to that of the earlier D614G spike protein. Serum specimens from individuals vaccinated with the BNT162b2 mRNA vaccine neutralized D614G virus with titers that were on average 7-fold greater than convalescent sera. Vaccine elicited antibodies neutralized virus with the B.1.1.7 spike protein with titers similar to D614G virus and neutralized virus with the B.1.351 spike with, on average, a 3-fold reduction in titer (1:500), a titer that was still higher than the average titer with which convalescent sera neutralized D614G (1:139). The reduction in titer was attributable to the E484K mutation in the RBD. The B.1.1.7 and B.1.351 viruses were not more infectious than D614G on ACE2.293T cells in vitro but N501Y, an ACE2 contacting residue present in the B.1.1.7, B.1.351 and COH.20G/677H spike proteins caused higher affinity binding to ACE2, likely contributing to their increased transmissibility. These findings suggest that antibodies elicited by primary infection and by the BNT162b2 mRNA vaccine are likely to maintain protective efficacy against B.1.1.7 and most other variants but that the partial resistance of virus with the B.1.351 spike protein could render some individuals less well protected, supporting a rationale for the development of modified vaccines containing E484K.
Collapse
|
403
|
Beltrán-Pavez C, Riquelme-Barrios S, Oyarzún-Arrau A, Gaete-Argel A, González-Stegmaier R, Cereceda-Solis K, Aguirre A, Travisany D, Palma-Vejares R, Barriga GP, Gaggero A, Martínez-Valdebenito C, Corre NL, Ferrés M, Balcells ME, Fernandez J, Ramírez E, Villarroel F, Valiente-Echeverría F, Soto-Rifo R. Insights into neutralizing antibody responses in individuals exposed to SARS-CoV-2 in Chile. SCIENCE ADVANCES 2021; 7:eabe6855. [PMID: 33579701 PMCID: PMC7880587 DOI: 10.1126/sciadv.abe6855] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/23/2020] [Indexed: 05/08/2023]
Abstract
Chile has one of the worst numbers worldwide in terms of SARS-CoV-2 positive cases and COVID-19-related deaths per million inhabitants; thus, characterization of neutralizing antibody (NAb) responses in the general population is critical to understanding of immunity at the local level. Given our inability to perform massive classical neutralization assays due to the scarce availability of BSL-3 facilities in the country, we developed and fully characterized an HIV-based SARS-CoV-2 pseudotype, which was used in a 96-well plate format to investigate NAb responses in samples from individuals exposed to SARS-CoV-2 or treated with convalescent plasma. We also identified samples with decreased or enhanced neutralization activity against the D614G spike variant compared with the wild type, indicating the relevance of this variant in host immunity. The data presented here represent the first insights into NAb responses in individuals from Chile, serving as a guide for future studies in the country.
Collapse
Affiliation(s)
- Carolina Beltrán-Pavez
- SARS-CoV-2 Research Group, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sebastián Riquelme-Barrios
- SARS-CoV-2 Research Group, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aarón Oyarzún-Arrau
- SARS-CoV-2 Research Group, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aracelly Gaete-Argel
- SARS-CoV-2 Research Group, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Karina Cereceda-Solis
- Translational Medicine Laboratory, Fundación Arturo López Pérez Cancer Center, Santiago, Chile
| | - Adam Aguirre
- Translational Medicine Laboratory, Fundación Arturo López Pérez Cancer Center, Santiago, Chile
| | - Dante Travisany
- Centro de Modelamiento Matemático UMI-CNRS 2807, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile and Fondap Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- INRIA Chile Research Center, Santiago, Chile
| | - Ricardo Palma-Vejares
- Centro de Modelamiento Matemático UMI-CNRS 2807, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile and Fondap Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gonzalo P Barriga
- SARS-CoV-2 Research Group, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Emerging Viruses, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aldo Gaggero
- SARS-CoV-2 Research Group, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Environmental Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Constanza Martínez-Valdebenito
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratorio de Infectología y Virología Molecular, Laboratorio de Bioseguridad Nivel 3, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Le Corre
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratorio de Infectología y Virología Molecular, Laboratorio de Bioseguridad Nivel 3, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela Ferrés
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratorio de Infectología y Virología Molecular, Laboratorio de Bioseguridad Nivel 3, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Elvira Balcells
- Departamento de Enfermedades Infecciosas del Adulto, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Fernandez
- Subdepartamento de Genética Molecular, Instituto de Salud Pública, Santiago, Chile
| | - Eugenio Ramírez
- Sección Virus Oncogénicos, Subdepartamento de Enfermedades Virales, Instituto de Salud Pública, Santiago, Chile
| | - Franz Villarroel
- Translational Medicine Laboratory, Fundación Arturo López Pérez Cancer Center, Santiago, Chile
| | - Fernando Valiente-Echeverría
- SARS-CoV-2 Research Group, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- SARS-CoV-2 Research Group, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
404
|
Abstract
PURPOSE OF REVIEW SARS-CoV-2 is the novel human coronavirus responsible for the COVID19 pandemic. Accurate detection of infection with SARS-CoV-2 is an essential component of efforts to treat individual patients and to contain spread of the virus in the community. The purpose of this review is to describe current diagnostic modalities for SARS-CoV-2 and outline their use. Special considerations for pediatric age groups are included. RECENT FINDINGS RNA PCR from the upper respiratory tract remains the gold standard for detection of infection with SARS-CoV-2. Antigen testing is being widely deployed as a faster and more convenient alternative to PCR, but is less sensitive and should only be used for diagnosis early after symptom onset. Serologic assays can document prior infection and are helpful in diagnosing multisystem inflammatory syndrome in children. Serologic testing should not be used to diagnose acute or active infection. Immune assays are likely to provide a useful measure of protection against COVID19 in the future as knowledge of protective responses improves. SUMMARY A variety of SARS-CoV-2 diagnostics have recently been developed and deployed. Clinicians should understand the appropriate use and interpretation of RNA PCR, antigen testing and immune assays for SARS-CoV-2 in order to diagnose and treat patients in this evolving pandemic.
Collapse
Affiliation(s)
- Paul Spearman
- Infectious Diseases Division, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
405
|
Toon K, Bentley EM, Mattiuzzo G. More Than Just Gene Therapy Vectors: Lentiviral Vector Pseudotypes for Serological Investigation. Viruses 2021; 13:217. [PMID: 33572589 PMCID: PMC7911487 DOI: 10.3390/v13020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Serological assays detecting neutralising antibodies are important for determining the immune responses following infection or vaccination and are also often considered a correlate of protection. The target of neutralising antibodies is usually located in the Envelope protein on the viral surface, which mediates cell entry. As such, presentation of the Envelope protein on a lentiviral particle represents a convenient alternative to handling of a potentially high containment virus or for those viruses with no established cell culture system. The flexibility, relative safety and, in most cases, ease of production of lentiviral pseudotypes, have led to their use in serological assays for many applications such as the evaluation of candidate vaccines, screening and characterization of anti-viral therapeutics, and sero-surveillance. Above all, the speed of production of the lentiviral pseudotypes, once the envelope sequence is published, makes them important tools in the response to viral outbreaks, as shown during the COVID-19 pandemic in 2020. In this review, we provide an overview of the landscape of the serological applications of pseudotyped lentiviral vectors, with a brief discussion on their production and batch quality analysis. Finally, we evaluate their role as surrogates for the real virus and possible alternatives.
Collapse
Affiliation(s)
- Kamilla Toon
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Emma M. Bentley
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| |
Collapse
|
406
|
Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, Schaefer-Babajew D, Cipolla M, Gaebler C, Lieberman JA, Oliveira TY, Yang Z, Abernathy ME, Huey-Tubman KE, Hurley A, Turroja M, West KA, Gordon K, Millard KG, Ramos V, Da Silva J, Xu J, Colbert RA, Patel R, Dizon J, Unson-O'Brien C, Shimeliovich I, Gazumyan A, Caskey M, Bjorkman PJ, Casellas R, Hatziioannou T, Bieniasz PD, Nussenzweig MC. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33501451 DOI: 10.1101/2021.01.15.426911] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To date severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected over 100 million individuals resulting in over two million deaths. Many vaccines are being deployed to prevent coronavirus disease 2019 (COVID-19) including two novel mRNA-based vaccines 1,2 . These vaccines elicit neutralizing antibodies and appear to be safe and effective, but the precise nature of the elicited antibodies is not known 3-6 . Here we report on the antibody and memory B cell responses in a cohort of 20 volunteers who received either the Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccines. Consistent with prior reports, 8 weeks after the second vaccine injection volunteers showed high levels of IgM, and IgG anti-SARS-CoV-2 spike protein (S) and receptor binding domain (RBD) binding titers 3,5,6 . Moreover, the plasma neutralizing activity, and the relative numbers of RBD-specific memory B cells were equivalent to individuals who recovered from natural infection 7,8 . However, activity against SARS-CoV-2 variants encoding E484K or N501Y or the K417N:E484K:N501Y combination was reduced by a small but significant margin. Consistent with these findings, vaccine-elicited monoclonal antibodies (mAbs) potently neutralize SARS-CoV-2, targeting a number of different RBD epitopes in common with mAbs isolated from infected donors. Structural analyses of mAbs complexed with S trimer suggest that vaccine- and virus-encoded S adopts similar conformations to induce equivalent anti-RBD antibodies. However, neutralization by 14 of the 17 most potent mAbs tested was reduced or abolished by either K417N, or E484K, or N501Y mutations. Notably, the same mutations were selected when recombinant vesicular stomatitis virus (rVSV)/SARS-CoV-2 S was cultured in the presence of the vaccine elicited mAbs. Taken together the results suggest that the monoclonal antibodies in clinical use should be tested against newly arising variants, and that mRNA vaccines may need to be updated periodically to avoid potential loss of clinical efficacy.
Collapse
|
407
|
Dogan M, Kozhaya L, Placek L, Gunter C, Yigit M, Hardy R, Plassmeyer M, Coatney P, Lillard K, Bukhari Z, Kleinberg M, Hayes C, Arditi M, Klapper E, Merin N, Liang BTT, Gupta R, Alpan O, Unutmaz D. SARS-CoV-2 specific antibody and neutralization assays reveal the wide range of the humoral immune response to virus. Commun Biol 2021; 4:129. [PMID: 33514825 PMCID: PMC7846565 DOI: 10.1038/s42003-021-01649-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Development of antibody protection during SARS-CoV-2 infection is a pressing question for public health and for vaccine development. We developed highly sensitive SARS-CoV-2-specific antibody and neutralization assays. SARS-CoV-2 Spike protein or Nucleocapsid protein specific IgG antibodies at titers more than 1:100,000 were detectable in all PCR+ subjects (n = 115) and were absent in the negative controls. Other isotype antibodies (IgA, IgG1-4) were also detected. SARS-CoV-2 neutralization was determined in COVID-19 and convalescent plasma at up to 10,000-fold dilution, using Spike protein pseudotyped lentiviruses, which were also blocked by neutralizing antibodies (NAbs). Hospitalized patients had up to 3000-fold higher antibody and neutralization titers compared to outpatients or convalescent plasma donors. Interestingly, some COVID-19 patients also possessed NAbs against SARS-CoV Spike protein pseudovirus. Together these results demonstrate the high specificity and sensitivity of our assays, which may impact understanding the quality or duration of the antibody response during COVID-19 and in determining the effectiveness of potential vaccines.
Collapse
MESH Headings
- Adult
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/metabolism
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/chemistry
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/chemistry
- COVID-19/diagnosis
- COVID-19/immunology
- COVID-19/virology
- Convalescence
- Coronavirus Nucleocapsid Proteins/chemistry
- Coronavirus Nucleocapsid Proteins/immunology
- Coronavirus Nucleocapsid Proteins/metabolism
- Enzyme-Linked Immunosorbent Assay/methods
- Epitopes/chemistry
- Epitopes/immunology
- Epitopes/metabolism
- Female
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Immune Sera/chemistry
- Immunity, Humoral
- Lentivirus/genetics
- Lentivirus/immunology
- Male
- Middle Aged
- Neutralization Tests
- Phosphoproteins/chemistry
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Protein Binding
- Receptors, Virus/chemistry
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
- SARS-CoV-2/drug effects
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- Severity of Illness Index
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Mikail Dogan
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Lina Kozhaya
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Lindsey Placek
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Courtney Gunter
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mesut Yigit
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Rachel Hardy
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | | | | | - Zaheer Bukhari
- SUNY Downstate Medical Center, Department of Pathology, Brooklyn, NY, USA
| | - Michael Kleinberg
- Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Chelsea Hayes
- Department of Pathology & Laboratory Medicine and Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Moshe Arditi
- Department of Pediatric, Division of Pediatric Infectious Diseases and Immunology, Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen Klapper
- Department of Pathology & Laboratory Medicine and Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Noah Merin
- Department of Internal Medicine, Division of Hematology Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bruce Tsan-Tang Liang
- Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Raavi Gupta
- SUNY Downstate Medical Center, Department of Pathology, Brooklyn, NY, USA
| | | | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
408
|
Trinité B, Tarrés-Freixas F, Rodon J, Pradenas E, Urrea V, Marfil S, Rodríguez de la Concepción ML, Ávila-Nieto C, Aguilar-Gurrieri C, Barajas A, Ortiz R, Paredes R, Mateu L, Valencia A, Guallar V, Ruiz L, Grau E, Massanella M, Puig J, Chamorro A, Izquierdo-Useros N, Segalés J, Clotet B, Carrillo J, Vergara-Alert J, Blanco J. SARS-CoV-2 infection elicits a rapid neutralizing antibody response that correlates with disease severity. Sci Rep 2021; 11:2608. [PMID: 33510275 PMCID: PMC7843981 DOI: 10.1038/s41598-021-81862-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
The protective effect of neutralizing antibodies in SARS-CoV-2 infected individuals is not yet well defined. To address this issue, we have analyzed the kinetics of neutralizing antibody responses and their association with disease severity. Between March and May 2020, the prospective KING study enrolled 72 COVID-19+ participants grouped according to disease severity. SARS-CoV-2 infection was diagnosed by serological and virological tests. Plasma neutralizing responses were assessed against replicative virus and pseudoviral particles. Multiple regression and non-parametric tests were used to analyze dependence of parameters. The magnitude of neutralizing titers significantly increased with disease severity. Hospitalized individuals developed higher titers compared to mild-symptomatic and asymptomatic individuals, which together showed titers below the detection limit in 50% of cases. Longitudinal analysis confirmed the strong differences in neutralizing titers between non-hospitalized and hospitalized participants and showed rapid kinetics of appearance of neutralizing antibodies (50% and 80% of maximal activity reached after 11 and 17 days after symptoms onset, respectively) in hospitalized patients. No significant impact of age, gender or treatment on the neutralizing titers was observed in this limited cohort. These data identify a clear association of humoral immunity with disease severity and point to immune mechanisms other than antibodies as relevant players in COVID-19 protection.
Collapse
Affiliation(s)
- Benjamin Trinité
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain
| | - Ferran Tarrés-Freixas
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain
| | - Jordi Rodon
- IRTA Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193, Bellaterra, Catalonia, Spain
| | - Edwards Pradenas
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain
| | - Víctor Urrea
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain
| | - Silvia Marfil
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain
| | - María Luisa Rodríguez de la Concepción
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain
| | - Carlos Ávila-Nieto
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain
| | - Carmen Aguilar-Gurrieri
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain
| | - Ana Barajas
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain
| | - Raquel Ortiz
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain
| | - Roger Paredes
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain.,Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias I Pujol Hospital, Badalona, Catalonia, Spain
| | - Lourdes Mateu
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias I Pujol Hospital, Badalona, Catalonia, Spain
| | | | - Víctor Guallar
- Barcelona Supercomputing Center, Barcelona, Catalonia, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Lidia Ruiz
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain
| | - Eulàlia Grau
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain
| | - Marta Massanella
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain
| | - Jordi Puig
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias I Pujol Hospital, Badalona, Catalonia, Spain
| | - Anna Chamorro
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias I Pujol Hospital, Badalona, Catalonia, Spain
| | - Nuria Izquierdo-Useros
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain
| | - Joaquim Segalés
- IRTA Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193, Bellaterra, Catalonia, Spain.,UAB, CReSA (IRTA-UAB), Campus de la UAB, 08193, Bellaterra, Cerdanyola del Vallès, Catalonia, Spain
| | - Bonaventura Clotet
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain.,Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias I Pujol Hospital, Badalona, Catalonia, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Catalonia, Spain
| | - Jorge Carrillo
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain
| | - Júlia Vergara-Alert
- IRTA Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193, Bellaterra, Catalonia, Spain
| | - Julià Blanco
- Institut de Recerca de La Sida, IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Hospital Universitari Germans Trias I Pujol, Can Ruti Campus, Ctra, de Canyet s/n, 2a Planta Maternal, 08916, Badalona, Catalonia, Spain. .,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Catalonia, Spain.
| |
Collapse
|
409
|
Rosa A, Pye VE, Graham C, Muir L, Seow J, Ng KW, Cook NJ, Rees-Spear C, Parker E, dos Santos MS, Rosadas C, Susana A, Rhys H, Nans A, Masino L, Roustan C, Christodoulou E, Ulferts R, Wrobel A, Short CE, Fertleman M, Sanders RW, Heaney J, Spyer M, Kjær S, Riddell A, Malim MH, Beale R, MacRae JI, Taylor GP, Nastouli E, van Gils MJ, Rosenthal PB, Pizzato M, McClure MO, Tedder RS, Kassiotis G, McCoy LE, Doores KJ, Cherepanov P. SARS-CoV-2 recruits a haem metabolite to evade antibody immunity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.01.21.21249203. [PMID: 33532784 PMCID: PMC7852234 DOI: 10.1101/2021.01.21.21249203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of haem metabolism, with nanomolar affinity. Using cryo-electron microscopy and X-ray crystallography we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that the virus co-opts the haem metabolite for the evasion of humoral immunity via allosteric shielding of a sensitive epitope and demonstrate the remarkable structural plasticity of the NTD.
Collapse
Affiliation(s)
- Annachiara Rosa
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Valerie E. Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, UK
| | - Luke Muir
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, UK
| | - Kevin W. Ng
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | - Nicola J. Cook
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Chloe Rees-Spear
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Eleanor Parker
- Department of Infectious Disease, St-Mary’s Campus, Imperial College London, UK
| | | | - Carolina Rosadas
- Department of Infectious Disease, St-Mary’s Campus, Imperial College London, UK
| | - Alberto Susana
- Department of Cellular, Computational and Integrative Biology, University of Trento, Italy
| | - Hefin Rhys
- Flow Cytometry Science and Technology Platform, The Francis Crick Institute, London, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Laura Masino
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Chloe Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | | | - Rachel Ulferts
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London, UK
| | - Antoni Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Charlotte-Eve Short
- Department of Infectious Disease, St-Mary’s Campus, Imperial College London, UK
| | | | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Weill Medical College of Cornell University, New York, US
| | - Judith Heaney
- Advanced Pathogen Diagnostic Unit, University College London Hospitals NHS Foundation Trust, London, UK
- Crick COVID-19 Consortium, The Francis Crick Institute, London, UK
| | - Moira Spyer
- Advanced Pathogen Diagnostic Unit, University College London Hospitals NHS Foundation Trust, London, UK
- Crick COVID-19 Consortium, The Francis Crick Institute, London, UK
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Andy Riddell
- Flow Cytometry Science and Technology Platform, The Francis Crick Institute, London, UK
| | - Michael H. Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, UK
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London, UK
| | - James I. MacRae
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Graham P. Taylor
- Department of Infectious Disease, St-Mary’s Campus, Imperial College London, UK
| | - Eleni Nastouli
- Advanced Pathogen Diagnostic Unit, University College London Hospitals NHS Foundation Trust, London, UK
- Crick COVID-19 Consortium, The Francis Crick Institute, London, UK
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, UK
| | - Massimo Pizzato
- Department of Cellular, Computational and Integrative Biology, University of Trento, Italy
| | - Myra O. McClure
- Department of Infectious Disease, St-Mary’s Campus, Imperial College London, UK
| | - Richard S. Tedder
- Department of Infectious Disease, St-Mary’s Campus, Imperial College London, UK
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, St-Mary’s Campus, Imperial College London, UK
| | - Laura E. McCoy
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Katie J. Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, UK
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, St-Mary’s Campus, Imperial College London, UK
| |
Collapse
|
410
|
Yang HS, Racine-Brzostek SE, Karbaschi M, Yee J, Dillard A, Steel PAD, Lee WT, McDonough KA, Qiu Y, Ketas TJ, Francomano E, Klasse PJ, Hatem L, Westblade L, Wu H, Chen H, Zuk R, Tan H, Girardin RC, Dupuis AP, Payne AF, Moore JP, Cushing MM, Chadburn A, Zhao Z. Testing-on-a-probe biosensors reveal association of early SARS-CoV-2 total antibodies and surrogate neutralizing antibodies with mortality in COVID-19 patients. Biosens Bioelectron 2021; 178:113008. [PMID: 33515984 PMCID: PMC7816890 DOI: 10.1016/j.bios.2021.113008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022]
Abstract
The association of mortality with the early humoral response to SARS-CoV-2 infection within the first few days after onset of symptoms (DAOS) has not been thoroughly investigated partly due to a lack of sufficiently sensitive antibody testing methods. Here we report two sensitive and automated testing-on-a-probe (TOP) biosensor assays for SARS-CoV-2 viral specific total antibodies (TAb) and surrogate neutralizing antibodies (SNAb), which are suitable for clinical use. The TOP assays employ an RBD-coated quartz probe using a Cy5-Streptavidin-polysacharide conjugate to improve sensitivity and minimize interference. Disposable cartridges containing pre-dispensed reagents require no liquid manipulation or fluidics during testing. The TOP-TAb assay exhibited higher sensitivity in the 0-7 DAOS window than a widely used FDA-EUA assay. The rapid and automated TOP-SNAb correlated well with two well-established SARS-CoV-2 virus neutralization tests. The clinical utility of the TOP assays was demonstrated by evaluating early antibody responses in 120 SARS-CoV-2 RT-PCR positive adult hospitalized patients. Higher TAb and SNAb positivity rates and more robust antibody responses at patient's initial hospital presentation were seen in inpatients who survived COVID-19 than those who died in the hospital. Survival analysis using the Cox Proportional Hazards Model showed that patients who had negative TAb and/or SNAb at initial hospital presentation were at a higher risk of in-hospital mortality. Furthermore, TAb and SNAb levels at presentation were inversely associated with SARS-CoV-2 viral load based on concurrent RT-PCR testing. Overall, the sensitive and automated TAb and SNAb assays allow the detection of early SARS-CoV-2 antibodies which associate with mortality.
Collapse
Affiliation(s)
- He S Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; NewYork-Presbyterian Hospital/Weill Cornell Medical Campus, New York, NY, USA
| | - Sabrina E Racine-Brzostek
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; NewYork-Presbyterian Hospital/Weill Cornell Medical Campus, New York, NY, USA
| | | | - Jim Yee
- NewYork-Presbyterian Hospital/Weill Cornell Medical Campus, New York, NY, USA
| | - Alicia Dillard
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; NewYork-Presbyterian Hospital/Weill Cornell Medical Campus, New York, NY, USA
| | - Peter A D Steel
- NewYork-Presbyterian Hospital/Weill Cornell Medical Campus, New York, NY, USA; Department of Emergency Medicine, Weill Cornell Medical Center, New York, NY, USA
| | - William T Lee
- Diagnostic Immunology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Kathleen A McDonough
- Diagnostic Immunology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Yuqing Qiu
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Thomas J Ketas
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Erik Francomano
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Layla Hatem
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; NewYork-Presbyterian Hospital/Weill Cornell Medical Campus, New York, NY, USA
| | - Lars Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Heng Wu
- ET HealthCare, Palo Alto, CA, USA
| | | | | | - Hong Tan
- ET HealthCare, Palo Alto, CA, USA
| | - Roxanne C Girardin
- Diagnostic Immunology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Alan P Dupuis
- Diagnostic Immunology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Anne F Payne
- Diagnostic Immunology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Melissa M Cushing
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; NewYork-Presbyterian Hospital/Weill Cornell Medical Campus, New York, NY, USA
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; NewYork-Presbyterian Hospital/Weill Cornell Medical Campus, New York, NY, USA
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; NewYork-Presbyterian Hospital/Weill Cornell Medical Campus, New York, NY, USA.
| |
Collapse
|
411
|
Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Viant C, Gaebler C, Cipolla M, Hoffmann HH, Oliveira TY, Oren DA, Ramos V, Nogueira L, Michailidis E, Robbiani DF, Gazumyan A, Rice CM, Hatziioannou T, Bieniasz PD, Caskey M, Nussenzweig MC. Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci Transl Med 2021; 13:eabf1555. [PMID: 33288661 PMCID: PMC7857415 DOI: 10.1126/scitranslmed.abf1555] [Citation(s) in RCA: 348] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), primarily infects cells at mucosal surfaces. Serum neutralizing antibody responses are variable and generally low in individuals that suffer mild forms of COVID-19. Although potent immunoglobulin G (IgG) antibodies can neutralize the virus, less is known about secretory antibodies such as IgA that might affect the initial viral spread and transmissibility from the mucosa. Here, we characterize the IgA response to SARS-CoV-2 in a cohort of 149 convalescent individuals after diagnosis with COVID-19. IgA responses in plasma generally correlated with IgG responses. Furthermore, clones of IgM-, IgG-, and IgA-producing B cells were derived from common progenitor cells. Plasma IgA monomers specific to SARS-CoV-2 proteins were demonstrated to be twofold less potent than IgG equivalents. However, IgA dimers, the primary form of antibody in the nasopharynx, were, on average, 15 times more potent than IgA monomers against the same target. Thus, dimeric IgA responses may be particularly valuable for protection against SARS-CoV-2 and for vaccine efficacy.
Collapse
Affiliation(s)
- Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Shlomo Finkin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Charlotte Viant
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Deena A Oren
- Structural Biology Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Davide F Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
412
|
A stable platform for the production of virus-like particles pseudotyped with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein. Virus Res 2021; 295:198305. [PMID: 33482242 PMCID: PMC7817443 DOI: 10.1016/j.virusres.2021.198305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
In this study, we showed that a codon optimized version of the spike (S) protein of SARS-CoV-2 can migrate to the cell membrane. However, efficient production of Moloney murine leukemia (MLV) infectious viral particles was only achieved with stable expression of a shorter S version in C-terminal (ΔS) in MLV Gag-pol expressing cells. As compared to transient transfections, this platform generated viruses with a 1000-fold higher titer. ΔS was 15-times more efficiently incorporated into VLPs as compared to S, and that was not due to steric interference between the cytoplasmic tail and the MLV capsid, as similar differences were also observed with extracellular vesicles. The amount of ΔS incorporated into VLPs released from producer cells was high and estimated at 1.25 μg/mL S2 equivalent (S is comprised of S1 and S2). The resulting VLPs could potentially be used alone or as a boost of other immunization strategies for COVID-19.
Collapse
|
413
|
Honjo K, Russell RM, Li R, Liu W, Stoltz R, Tabengwa EM, Hua Y, Prichard L, Kornbrust AN, Sterrett S, Marques MB, Lima JL, Lough CM, McCarty TP, Ketas TJ, Hatziioannou T, Bieniasz PD, Redden DT, Moore JP, Goepfert PA, Heath SL, Hahn BH, Davis RS. Convalescent plasma-mediated resolution of COVID-19 in a patient with humoral immunodeficiency. Cell Rep Med 2021; 2:100164. [PMID: 33521696 PMCID: PMC7817775 DOI: 10.1016/j.xcrm.2020.100164] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/31/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Convalescent plasma (CP) is widely used to treat COVID-19, but without formal evidence of efficacy. Here, we report the beneficial effects of CP in a severely ill COVID-19 patient with prolonged pneumonia and advanced chronic lymphocytic leukemia (CLL), who was unable to generate an antiviral antibody response of her own. On day 33 after becoming symptomatic, the patient received CP containing high-titer (ID50 > 5,000) neutralizing antibodies (NAbs), defervesced, and improved clinically within 48 h and was discharged on day 37. Hence, when present in sufficient quantities, NAbs to SARS-CoV-2 have clinical benefit even if administered relatively late in the disease course. However, analysis of additional CP units revealed widely varying NAb titers, with many recipients exhibiting endogenous NAb responses far exceeding those of the administered units. To obtain the full therapeutic benefits of CP immunotherapy, it will thus be important to determine the neutralizing activity in both CP units and transfusion candidates.
Collapse
Affiliation(s)
- Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ronnie M. Russell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ran Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Regina Stoltz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edlue M. Tabengwa
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yutao Hua
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lynn Prichard
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ashton N. Kornbrust
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sarah Sterrett
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Marisa B. Marques
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jose L. Lima
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chris M. Lough
- LifeSouth Community Blood Centers, Gainesville, FL 32607, USA
| | - Todd P. McCarty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas J. Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10028, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10028, USA
| | - David T. Redden
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sonya L. Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Beatrice H. Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
414
|
Weissman D, Alameh MG, de Silva T, Collini P, Hornsby H, Brown R, LaBranche CC, Edwards RJ, Sutherland L, Santra S, Mansouri K, Gobeil S, McDanal C, Pardi N, Hengartner N, Lin PJC, Tam Y, Shaw PA, Lewis MG, Boesler C, Şahin U, Acharya P, Haynes BF, Korber B, Montefiori DC. D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. Cell Host Microbe 2021; 29:23-31.e4. [PMID: 33306985 PMCID: PMC7707640 DOI: 10.1016/j.chom.2020.11.012] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/25/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein acquired a D614G mutation early in the pandemic that confers greater infectivity and is now the globally dominant form. To determine whether D614G might also mediate neutralization escape that could compromise vaccine efficacy, sera from spike-immunized mice, nonhuman primates, and humans were evaluated for neutralization of pseudoviruses bearing either D614 or G614 spike. In all cases, the G614 pseudovirus was moderately more susceptible to neutralization. The G614 pseudovirus also was more susceptible to neutralization by receptor-binding domain (RBD) monoclonal antibodies and convalescent sera from people infected with either form of the virus. Negative stain electron microscopy revealed a higher percentage of the 1-RBD "up" conformation in the G614 spike, suggesting increased epitope exposure as a mechanism of enhanced vulnerability to neutralization. Based on these findings, the D614G mutation is not expected to be an obstacle for current vaccine development.
Collapse
Affiliation(s)
- Drew Weissman
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Thushan de Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Paul Collini
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Hailey Hornsby
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Rebecca Brown
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Celia C LaBranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Duke University, Department of Medicine, Durham, NC, USA
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sophie Gobeil
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Charlene McDanal
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Norbert Pardi
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nick Hengartner
- T6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM USA
| | | | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, CA
| | - Pamela A Shaw
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Bette Korber
- T6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
415
|
Valdivia A, Torres I, Latorre V, Francés-Gómez C, Albert E, Gozalbo-Rovira R, Alcaraz MJ, Buesa J, Rodríguez-Díaz J, Geller R, Navarro D. Inference of SARS-CoV-2 spike-binding neutralizing antibody titers in sera from hospitalized COVID-19 patients by using commercial enzyme and chemiluminescent immunoassays. Eur J Clin Microbiol Infect Dis 2021; 40:485-494. [PMID: 33404891 PMCID: PMC7785927 DOI: 10.1007/s10096-020-04128-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023]
Abstract
Whether antibody levels measured by commercially available enzyme or chemiluminescent immunoassays targeting the SARS-CoV-2 spike (S) protein can act as a proxy for serum neutralizing activity remains to be established for many of these assays. We evaluated the degree of correlation between neutralizing antibodies (NtAb) binding the SARS-CoV-2 spike (S) protein and SARS-CoV-2-S-IgG levels measured by four commercial immunoassays in sera drawn from hospitalized COVID-19 patients. Ninety sera from 51 hospitalized COVID-19 patients were tested by a pseudotyped virus neutralization assay, the LIAISON SARS-CoV-2 S1/S2 IgG, the Euroimmun SARS-CoV-2 IgG ELISA, the MAGLUMI 2019-nCoV IgG, and the COVID-19 ELISA IgG assays. Overall, the results obtained with the COVID-19 ELISA IgG test showed the highest agreement with the NtAb assay (κ, 0.85; 95% CI, 0.63–1). The most sensitive tests were the pseudotyped virus NtAb assay and the COVID-19 ELISA IgG assay (92.2% for both). Overall, the degree correlation between antibody titers resulting in 50% virus neutralization (NtAb50) in the pseudotyped virus assay and SARS-CoV-2 IgG levels was strong for the Euroimmun SARS-CoV-2 IgG ELISA (rho = 0.73) and moderate for the remaining assays (rho = 0.48 to 0.59). The kinetic profile of serum NtAb50 titers could not be reliably predicted by any of the SARS-CoV-2 IgG immunoassays. The suitability of SARS-CoV-2-S-IgG commercial immunoassays for inferring neutralizing activity of sera from hospitalized COVID-19 patients varies widely across tests and is influenced by the time of sera collection after the onset of symptoms.
Collapse
Affiliation(s)
- Arantxa Valdivia
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Ignacio Torres
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Víctor Latorre
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, Valencia, Spain
| | - Clara Francés-Gómez
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, Valencia, Spain
| | - Eliseo Albert
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - María Jesús Alcaraz
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Javier Buesa
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain.,Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - Ron Geller
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain. .,Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 17, 46010, Valencia, Spain.
| |
Collapse
|
416
|
Cohen AA, Gnanapragasam PN, Lee YE, Hoffman PR, Ou S, Kakutani LM, Keeffe JR, Wu HJ, Howarth M, West AP, Barnes CO, Nussenzweig MC, Bjorkman PJ. Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.11.17.387092. [PMID: 33236016 PMCID: PMC7685334 DOI: 10.1101/2020.11.17.387092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protection against SARS-CoV-2 and SARS-related emergent zoonotic coronaviruses is urgently needed. We made homotypic nanoparticles displaying the receptor-binding domain (RBD) of SARS-CoV-2 or co-displaying SARS-CoV-2 RBD along with RBDs from animal betacoronaviruses that represent threats to humans (mosaic nanoparticles; 4-8 distinct RBDs). Mice immunized with RBD-nanoparticles, but not soluble antigen, elicited cross-reactive binding and neutralization responses. Mosaic-RBD-nanoparticles elicited antibodies with superior cross-reactive recognition of heterologous RBDs compared to sera from immunizations with homotypic SARS-CoV-2-RBD-nanoparticles or COVID-19 convalescent human plasmas. Moreover, sera from mosaic-RBD-immunized mice neutralized heterologous pseudotyped coronaviruses equivalently or better after priming than sera from homotypic SARS-CoV-2-RBD-nanoparticle immunizations, demonstrating no immunogenicity loss against particular RBDs resulting from co-display. A single immunization with mosaic-RBD-nanoparticles provides a potential strategy to simultaneously protect against SARS-CoV-2 and emerging zoonotic coronaviruses.
Collapse
Affiliation(s)
- Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Yu E. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pauline R. Hoffman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Susan Ou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leesa M. Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hung-Jen Wu
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
417
|
Baisa G, Rancour D, Mansfield K, Burns M, Martin L, Cunha D, Fischer J, Muecksch F, Hatziioannou T, Bieniasz PD, Schomburg F, Luke K. A Recombinant Protein SARS-CoV-2 Candidate Vaccine Elicits High-titer Neutralizing Antibodies in Macaques. RESEARCH SQUARE 2021:rs.3.rs-137857. [PMID: 33442678 PMCID: PMC7805460 DOI: 10.21203/rs.3.rs-137857/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background Vaccines that generate robust and long-lived protective immunity against SARS-CoV-2 infection are urgently required. Methods We assessed the potential of vaccine candidates based on the SARS-CoV-2 spike in cynomolgus macaques (M. fascicularis) by examining their ability to generate spike binding antibodies with neutralizing activity. Antigens were derived from two distinct regions of the spike S1 subunit, either the N-terminal domain or an extended C-terminal domain containing the receptor-binding domain and were fused to the human IgG1 Fc domain. Three groups of 2 animals each were immunized with either antigen, alone or in combination. The development of antibody responses was evaluated through 20 weeks post-immunization. Results A robust IgG response to the spike protein was detected as early as 2 weeks after immunization with either protein and maintained for over 20 weeks. Sera from animals immunized with antigens derived from the RBD were able to prevent binding of soluble spike proteins to the ACE2 receptor, shown by in vitro binding assays, while sera from animals immunized with the N-terminal domain alone lacked this activity. Crucially, sera from animals immunized with the extended receptor binding domain but not the N-terminal domain had potent neutralizing activity against SARS-CoV-2 pseudotyped virus, with titers in excess of 10,000, greatly exceeding that typically found in convalescent humans. Neutralizing activity persisted for more than 20 weeks. Conclusions These data support the utility of spike subunit-based antigens as a vaccine for use in humans.
Collapse
Affiliation(s)
| | | | | | | | - Lori Martin
- Novartis Institutes for BioMedical Research Inc
| | | | | | | | | | | | | | | |
Collapse
|
418
|
Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M, Cho A, Jankovic M, Schaefer-Babajew D, Oliveira TY, Cipolla M, Viant C, Barnes CO, Hurley A, Turroja M, Gordon K, Millard KG, Ramos V, Schmidt F, Weisblum Y, Jha D, Tankelevich M, Yee J, Shimeliovich I, Robbiani DF, Zhao Z, Gazumyan A, Hatziioannou T, Bjorkman PJ, Mehandru S, Bieniasz PD, Caskey M, Nussenzweig MC, Hagglof T, Schwartz RE, Bram Y, Martinez-Delgado G, Mendoza P, Breton G, Dizon J, Unson-O'Brien C, Patel R. Evolution of Antibody Immunity to SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33173867 DOI: 10.1101/2020.11.03.367391] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with development of variable levels of antibodies with neutralizing activity that can protect against infection in animal models. Antibody levels decrease with time, but the nature and quality of the memory B cells that would be called upon to produce antibodies upon re-infection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection. We find that IgM, and IgG anti-SARS-CoV-2 spike protein receptor binding domain (RBD) antibody titers decrease significantly with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by five-fold in pseudotype virus assays. In contrast, the number of RBD-specific memory B cells is unchanged. Memory B cells display clonal turnover after 6.2 months, and the antibodies they express have greater somatic hypermutation, increased potency and resistance to RBD mutations, indicative of continued evolution of the humoral response. Analysis of intestinal biopsies obtained from asymptomatic individuals 4 months after coronavirus disease-2019 (COVID-19) onset, using immunofluorescence, or polymerase chain reaction, revealed persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 volunteers. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.
Collapse
|
419
|
|
420
|
Sharov KS. HIV/SARS-CoV-2 co-infection: T cell profile, cytokine dynamics and role of exhausted lymphocytes. Int J Infect Dis 2021; 102:163-169. [PMID: 33115677 PMCID: PMC7585731 DOI: 10.1016/j.ijid.2020.10.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES The aim was to investigate if there is synergy in HIV infection and COVID-19 in their influence on human immunity, if there is an exacerbation of HIV patients' immune status caused by SARS-CoV-2; and if HIV infection without antiretroviral therapy (ART) leads to a more serious COVID-19 course than HIV infection with ART. DESIGN Anonymised blood samples and clinical data were collected in 47 hospitals, clinics and medical centres in six Russian cities/regions in the period from 20 March to 15 June 2020. Three hundred and seventy-six HIV/COVID-19 patients were studied (171 without ART and 205 with ART). The control group consisted of 382 SARS-CoV-2-positive patients without HIV infection. Lymphocyte and cytokine amounts were measured by flow cytometry and ELISA. This work is a retrospective study. RESULTS COVID-19 led to rapid augmentation of the process of T-cell exhaustion initially caused by HIV, and this T cell degradation was most pronounced in patients without ART. A rise in IL-10 and TGFβ serum concentrations was observed. Diminishing CD4+/CD8+ cell and Th1/Th2 cell ratios characteristic for HIV progression were accompanied by a surge in exhausted T cell count with simultaneous exacerbation of COVID-19-related respiratory distress. CONCLUSIONS HIV infection without ART may be a very serious comorbidity of COVID-19, whereas immunity of HIV/COVID-19 patients with proper ART is not generally affected by SARS-CoV-2. HIV-1 and SARS-CoV-2 are likely to exhibit a synergic effect, and exhausted T lymphocyte dynamics may be its effective marker.
Collapse
Affiliation(s)
- Konstantin S Sharov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
421
|
Laub O, Leipold G, Toncheva AA, Peterhoff D, Einhauser S, Neckermann P, Borchers N, Santos-Valente E, Kheiroddin P, Buntrock-Döpke H, Laub S, Schöberl P, Schweiger-Kabesch A, Ewald D, Horn M, Niggel J, Ambrosch A, Überla K, Gerling S, Brandstetter S, Wagner R, Kabesch M. Symptoms, SARS-CoV-2 Antibodies, and Neutralization Capacity in a Cross Sectional-Population of German Children. Front Pediatr 2021; 9:678937. [PMID: 34671582 PMCID: PMC8522552 DOI: 10.3389/fped.2021.678937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Children and youth are affected rather mildly in the acute phase of COVID-19 and thus, SARS-CoV-2 infection infection may easily be overlooked. In the light of current discussions on the vaccinations of children it seems necessary to better identify children who are immune against SARS-CoV-2 due to a previous infection and to better understand COVID-19 related immune reactions in children. Methods: In a cross-sectional design, children aged 1-17 were recruited through primary care pediatricians for the study (a) randomly, if they had an appointment for a regular health check-up or (b) if parents and children volunteered and actively wanted to participate in the study. Symptoms were recorded and two antibody tests were performed in parallel directed against S (in house test) and N (Roche Elecsys) viral proteins. In children with antibody response in either test, neutralization activity was determined. Results: We identified antibodies against SARS-CoV-2 in 162 of 2,832 eligible children (5.7%) between end of May and end of July 2020 in three, in part strongly affected regions of Bavaria in the first wave of the pandemic. Approximately 60% of antibody positive children (n = 97) showed high levels (>97th percentile) of antibodies against N-protein, and for the S-protein, similar results were found. Sufficient neutralizing activity was detected for only 135 antibody positive children (86%), irrespective of age and sex. Initial COVID-19 symptoms were unspecific in children except for the loss of smell and taste and unrelated to antibody responses or neutralization capacity. Approximately 30% of PCR positive children did not show seroconversion in our small subsample in which PCR tests were performed. Conclusions: Symptoms of SARS-CoV-2 infections are unspecific in children and antibody responses show a dichotomous structure with strong responses in many and no detectable antibodies in PCR positive children and missing neutralization activity in a relevant proportion of the young population.
Collapse
Affiliation(s)
- Otto Laub
- Pediatric Office Laub, Rosenheim, Germany
| | | | - Antoaneta A Toncheva
- University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany.,Institute of Clinical Microbiology and Hygiene, University Hospital, Regensburg, Germany
| | - Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Patrick Neckermann
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Natascha Borchers
- University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Elisangela Santos-Valente
- University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Parastoo Kheiroddin
- University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Heike Buntrock-Döpke
- University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany.,Member of the Research and Development Campus Regensburg (WECARE) at the Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
| | - Sarah Laub
- Pediatric Office Laub, Rosenheim, Germany
| | - Patricia Schöberl
- University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany.,Member of the Research and Development Campus Regensburg (WECARE) at the Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
| | - Andrea Schweiger-Kabesch
- University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Dominik Ewald
- Pediatric Office Dr. Heuschmann & Dr. Ewald, Regenstauf, Germany
| | | | | | - Andreas Ambrosch
- Institute of Laboratory Medicine, Microbiology and Hygiene, Hospital of the Order of St. John, Regensburg, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, FAU Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stephan Gerling
- University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Susanne Brandstetter
- University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany.,Member of the Research and Development Campus Regensburg (WECARE) at the Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany.,Institute of Clinical Microbiology and Hygiene, University Hospital, Regensburg, Germany
| | - Michael Kabesch
- University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany.,Member of the Research and Development Campus Regensburg (WECARE) at the Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
| | | |
Collapse
|
422
|
Recent Developments in SARS-CoV-2 Neutralizing Antibody Detection Methods. Curr Med Sci 2021; 41:1052-1064. [PMID: 34935114 PMCID: PMC8692081 DOI: 10.1007/s11596-021-2470-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
The ongoing Coronavirus disease 19 pandemic has likely changed the world in ways not seen in the past. Neutralizing antibody (NAb) assays play an important role in the management of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak. Using these tools, we can assess the presence and duration of antibody-mediated protection in naturally infected individuals, screen convalescent plasma preparations for donation, test the efficacy of immunotherapy, and analyze NAb titers and persistence after vaccination to predict vaccine-induced protective effects. This review briefly summarizes the various methods used for the detection of SARS-CoV-2 NAbs and compares their advantages and disadvantages to facilitate their development and clinical application.
Collapse
|
423
|
Kemp SA, Collier DA, Datir R, Ferreira I, Gayed S, Jahun A, Hosmillo M, Rees-Spear C, Mlcochova P, Lumb IU, Roberts DJ, Chandra A, Temperton N, Sharrocks K, Blane E, Briggs J, van GM, Smith K, Bradley JR, Smith C, Doffinger R, Ceron-Gutierrez L, Barcenas-Morales G, Pollock DD, Goldstein RA, Smielewska A, Skittrall JP, Gouliouris T, Goodfellow IG, Gkrania-Klotsas E, Illingworth C, McCoy LE, Gupta RK. Neutralising antibodies in Spike mediated SARS-CoV-2 adaptation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.05.20241927. [PMID: 33398302 PMCID: PMC7781345 DOI: 10.1101/2020.12.05.20241927] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SARS-CoV-2 Spike protein is critical for virus infection via engagement of ACE2, and amino acid variation in Spike is increasingly appreciated. Given both vaccines and therapeutics are designed around Wuhan-1 Spike, this raises the theoretical possibility of virus escape, particularly in immunocompromised individuals where prolonged viral replication occurs. Here we report chronic SARS-CoV-2 with reduced sensitivity to neutralising antibodies in an immune suppressed individual treated with convalescent plasma, generating whole genome ultradeep sequences by both short and long read technologies over 23 time points spanning 101 days. Although little change was observed in the overall viral population structure following two courses of remdesivir over the first 57 days, N501Y in Spike was transiently detected at day 55 and V157L in RdRp emerged. However, following convalescent plasma we observed large, dynamic virus population shifts, with the emergence of a dominant viral strain bearing D796H in S2 and ΔH69/ΔV70 in the S1 N-terminal domain NTD of the Spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype diminished in frequency, before returning during a final, unsuccessful course of convalescent plasma. In vitro, the Spike escape double mutant bearing ΔH69/ΔV70 and D796H conferred decreased sensitivity to convalescent plasma, whilst maintaining infectivity similar to wild type. D796H appeared to be the main contributor to decreased susceptibility, but incurred an infectivity defect. The ΔH69/ΔV70 single mutant had two-fold higher infectivity compared to wild type and appeared to compensate for the reduced infectivity of D796H. Consistent with the observed mutations being outside the RBD, monoclonal antibodies targeting the RBD were not impacted by either or both mutations, but a non RBD binding monoclonal antibody was less potent against ΔH69/ΔV70 and the double mutant. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy associated with emergence of viral variants with reduced susceptibility to neutralising antibodies.
Collapse
Affiliation(s)
- S A Kemp
- Division of Infection and Immunity, University College London, London, UK
| | - D A Collier
- Division of Infection and Immunity, University College London, London, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - R Datir
- Division of Infection and Immunity, University College London, London, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Iatm Ferreira
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - S Gayed
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - A Jahun
- Department of Pathology, University of Cambridge, Cambridge
| | - M Hosmillo
- Department of Pathology, University of Cambridge, Cambridge
| | - C Rees-Spear
- Division of Infection and Immunity, University College London, London, UK
| | - P Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ines Ushiro Lumb
- NHS Blood and Transplant, Oxford and BRC Haematology Theme, University of Oxford, UK
| | - David J Roberts
- NHS Blood and Transplant, Oxford and BRC Haematology Theme, University of Oxford, UK
| | - Anita Chandra
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - N Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, UK
| | - K Sharrocks
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - E Blane
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jag Briggs
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Gils Mj van
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Kgc Smith
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - J R Bradley
- Department of Medicine, University of Cambridge, Cambridge, UK
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - C Smith
- Department of Virology, Cambridge University NHS Hospitals Foundation Trust
| | - R Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital
| | - L Ceron-Gutierrez
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital
| | - G Barcenas-Morales
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital
| | - D D Pollock
- Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - R A Goldstein
- Division of Infection and Immunity, University College London, London, UK
| | - A Smielewska
- Department of Pathology, University of Cambridge, Cambridge
- Department of Virology, Cambridge University NHS Hospitals Foundation Trust
| | - J P Skittrall
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK
- Clinical Microbiology and Public Health Laboratory, Addenbrookes' Hospital, Cambridge, UK
| | - T Gouliouris
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - I G Goodfellow
- Department of Pathology, University of Cambridge, Cambridge
| | - E Gkrania-Klotsas
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Cjr Illingworth
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - L E McCoy
- Division of Infection and Immunity, University College London, London, UK
| | - R K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
424
|
Riepler L, Rössler A, Falch A, Volland A, Borena W, von Laer D, Kimpel J. Comparison of Four SARS-CoV-2 Neutralization Assays. Vaccines (Basel) 2020; 9:13. [PMID: 33379160 PMCID: PMC7824240 DOI: 10.3390/vaccines9010013] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 01/05/2023] Open
Abstract
Neutralizing antibodies are a major correlate of protection for many viruses including the novel coronavirus SARS-CoV-2. Thus, vaccine candidates should potently induce neutralizing antibodies to render effective protection from infection. A variety of in vitro assays for the detection of SARS-CoV-2 neutralizing antibodies has been described. However, validation of the different assays against each other is important to allow comparison of different studies. Here, we compared four different SARS-CoV-2 neutralization assays using the same set of patient samples. Two assays used replication competent SARS-CoV-2, a focus forming assay and a TCID50-based assay, while the other two assays used replication defective lentiviral or vesicular stomatitis virus (VSV)-based particles pseudotyped with SARS-CoV-2 spike. All assays were robust and produced highly reproducible neutralization titers. Titers of neutralizing antibodies correlated well between the different assays and with the titers of SARS-CoV-2 S-protein binding antibodies detected in an ELISA. Our study showed that commonly used SARS-CoV-2 neutralization assays are robust and that results obtained with different assays are comparable.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Janine Kimpel
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.R.); (A.R.); (A.F.); (A.V.); (W.B.); (D.v.L.)
| |
Collapse
|
425
|
Reynolds CJ, Swadling L, Gibbons JM, Pade C, Jensen MP, Diniz MO, Schmidt NM, Butler DK, Amin OE, Bailey SNL, Murray SM, Pieper FP, Taylor S, Jones J, Jones M, Lee WYJ, Rosenheim J, Chandran A, Joy G, Di Genova C, Temperton N, Lambourne J, Cutino-Moguel T, Andiapen M, Fontana M, Smit A, Semper A, O'Brien B, Chain B, Brooks T, Manisty C, Treibel T, Moon JC, Noursadeghi M, Altmann DM, Maini MK, McKnight Á, Boyton RJ. Discordant neutralizing antibody and T cell responses in asymptomatic and mild SARS-CoV-2 infection. Sci Immunol 2020; 5:eabf3698. [PMID: 33361161 PMCID: PMC8101131 DOI: 10.1126/sciimmunol.abf3698] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Understanding the nature of immunity following mild/asymptomatic infection with SARS-CoV-2 is crucial to controlling the pandemic. We analyzed T cell and neutralizing antibody responses in 136 healthcare workers (HCW) 16-18 weeks after United Kingdom lockdown, 76 of whom had mild/asymptomatic SARS-CoV-2 infection captured by serial sampling. Neutralizing antibodies (nAb) were present in 89% of previously infected HCW. T cell responses tended to be lower following asymptomatic infection than in those reporting case-definition symptoms of COVID-19, while nAb titers were maintained irrespective of symptoms. T cell and antibody responses were sometimes discordant. Eleven percent lacked nAb and had undetectable T cell responses to spike protein but had T cells reactive with other SARS-CoV-2 antigens. Our findings suggest that the majority of individuals with mild or asymptomatic SARS-CoV-2 infection carry nAb complemented by multispecific T cell responses at 16-18 weeks after mild or asymptomatic SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London, UK
| | - Joseph M Gibbons
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Corinna Pade
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Melanie P Jensen
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Mariana O Diniz
- Division of Infection and Immunity, University College London, London, UK
| | - Nathalie M Schmidt
- Division of Infection and Immunity, University College London, London, UK
| | - David K Butler
- Department of Infectious Disease, Imperial College London, London, UK
| | - Oliver E Amin
- Division of Infection and Immunity, University College London, London, UK
| | - Sasha N L Bailey
- Department of Infectious Disease, Imperial College London, London, UK
| | - Sam M Murray
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Stephen Taylor
- National Infection Service, Public Health England, Porton Down, UK
| | - Jessica Jones
- National Infection Service, Public Health England, Porton Down, UK
| | - Meleri Jones
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Wing-Yiu Jason Lee
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Joshua Rosenheim
- Division of Infection and Immunity, University College London, London, UK
| | - Aneesh Chandran
- Division of Infection and Immunity, University College London, London, UK
| | - George Joy
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Cecilia Di Genova
- Viral Pseudotype Unit, Medway School of Pharmacy, Chatham Maritime, Kent, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Chatham Maritime, Kent, UK
| | | | | | - Mervyn Andiapen
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | | | | | - Amanda Semper
- National Infection Service, Public Health England, Porton Down, UK
| | - Ben O'Brien
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- German Heart Centre and Charité University, Berlin, Germany
| | - Benjamin Chain
- Division of Infection and Immunity, University College London, London, UK
| | - Tim Brooks
- National Infection Service, Public Health England, Porton Down, UK
| | - Charlotte Manisty
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, UK
| | - Thomas Treibel
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, UK
| | - James C Moon
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London, UK
| | - Áine McKnight
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Imperial College London, London, UK.
- Lung Division, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
426
|
Lucas C, Klein J, Sundaram M, Liu F, Wong P, Silva J, Mao T, Oh JE, Tokuyama M, Lu P, Venkataraman A, Park A, Israelow B, Wyllie AL, Vogels CBF, Muenker MC, Casanovas-Massana A, Schulz WL, Zell J, Campbell M, Fournier JB, Yale IMPACT Research Team, Grubaugh ND, Farhadian S, Wisnewski AV, Cruz CD, Omer S, Ko AI, Ring A, Iwasaki A. Kinetics of antibody responses dictate COVID-19 outcome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.18.20248331. [PMID: 33398304 PMCID: PMC7781347 DOI: 10.1101/2020.12.18.20248331] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). Yet, the exact feature of antibody responses that governs COVID-19 disease outcomes remain unclear. Here, we analysed humoral immune responses in 209 asymptomatic, mild, moderate and severe COVID-19 patients over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-Spike (S) IgG levels, length of hospitalization and clinical parameters associated with worse clinical progression. While high anti-S IgG levels correlated with worse disease severity, such correlation was time-dependent. Deceased patients did not have higher overall humoral response than live discharged patients. However, they mounted a robust, yet delayed response, measured by anti-S, anti-RBD IgG, and neutralizing antibody (NAb) levels, compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, while sera from 89% of patients displayed some neutralization capacity during their disease course, NAb generation prior to 14 days of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se, but rather with the delayed kinetics of NAb production.
Collapse
Affiliation(s)
- Carolina Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- These authors contributed equally: Carolina Lucas, Jon Klein
| | - Jon Klein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- These authors contributed equally: Carolina Lucas, Jon Klein
| | - Maria Sundaram
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Feimei Liu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick Wong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Julio Silva
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ji Eun Oh
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Tokuyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Peiwen Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Arvind Venkataraman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Annsea Park
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Anne L. Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - M. Catherine Muenker
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Wade L. Schulz
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA
| | - Joseph Zell
- Department of Internal Medicine/Section General Medicine; Yale University School of Medicine, New Haven, CT, USA
| | - Melissa Campbell
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - John B. Fournier
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | | | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Shelli Farhadian
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Adam V. Wisnewski
- Department of Internal Medicine/Section General Medicine; Yale University School of Medicine, New Haven, CT, USA
| | - Charles Dela Cruz
- Department of Medicine, Section of Pulmonary and Critical Care Medicine; Yale University School of Medicine, New Haven, CT, USA
| | - Saad Omer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Aaron Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
427
|
Lucas C, Klein J, Sundaram M, Liu F, Wong P, Silva J, Mao T, Oh JE, Tokuyama M, Lu P, Venkataraman A, Park A, Israelow B, Wyllie AL, Vogels CBF, Muenker MC, Casanovas-Massana A, Schulz WL, Zell J, Campbell M, Fournier JB, Grubaugh ND, Farhadian S, Wisnewski AV, Cruz CD, Omer S, Ko AI, Ring A, Iwasaki A. Kinetics of antibody responses dictate COVID-19 outcome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.18.20248331. [PMID: 33398304 DOI: 10.1101/2020.06.13.20130252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). Yet, the exact feature of antibody responses that governs COVID-19 disease outcomes remain unclear. Here, we analysed humoral immune responses in 209 asymptomatic, mild, moderate and severe COVID-19 patients over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-Spike (S) IgG levels, length of hospitalization and clinical parameters associated with worse clinical progression. While high anti-S IgG levels correlated with worse disease severity, such correlation was time-dependent. Deceased patients did not have higher overall humoral response than live discharged patients. However, they mounted a robust, yet delayed response, measured by anti-S, anti-RBD IgG, and neutralizing antibody (NAb) levels, compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, while sera from 89% of patients displayed some neutralization capacity during their disease course, NAb generation prior to 14 days of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se , but rather with the delayed kinetics of NAb production.
Collapse
|
428
|
Tada T, Fan C, Chen JS, Kaur R, Stapleford KA, Gristick H, Dcosta BM, Wilen CB, Nimigean CM, Landau NR. An ACE2 Microbody Containing a Single Immunoglobulin Fc Domain Is a Potent Inhibitor of SARS-CoV-2. Cell Rep 2020; 33:108528. [PMID: 33326798 PMCID: PMC7705358 DOI: 10.1016/j.celrep.2020.108528] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/26/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Soluble forms of angiotensin-converting enzyme 2 (ACE2) have recently been shown to inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We report on an improved soluble ACE2, termed a "microbody," in which the ACE2 ectodomain is fused to Fc domain 3 of the immunoglobulin (Ig) heavy chain. The protein is smaller than previously described ACE2-Ig Fc fusion proteins and contains an H345A mutation in the ACE2 catalytic active site that inactivates the enzyme without reducing its affinity for the SARS-CoV-2 spike. The disulfide-bonded ACE2 microbody protein inhibits entry of SARS-CoV-2 spike protein pseudotyped virus and replication of live SARS-CoV-2 in vitro and in a mouse model. Its potency is 10-fold higher than soluble ACE2, and it can act after virus bound to the cell. The microbody inhibits the entry of β coronaviruses and virus with the variant D614G spike. The ACE2 microbody may be a valuable therapeutic for coronavirus disease 2019 (COVID-19) that is active against viral variants and future coronaviruses.
Collapse
Affiliation(s)
- Takuya Tada
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Chen Fan
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jennifer S Chen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ramanjit Kaur
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | | | - Harry Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Belinda M Dcosta
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nathaniel R Landau
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
429
|
Baisa G, Rancour D, Mansfield K, Burns M, Martin L, Cunha D, Fischer J, Muecksch F, Hatziioannou T, Bieniasz PD, Schomburg F, Luke K. "A recombinant protein SARS-CoV-2 candidate vaccine elicits high-titer neutralizing antibodies in macaques.". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.20.422693. [PMID: 33398285 PMCID: PMC7781324 DOI: 10.1101/2020.12.20.422693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vaccines that generate robust and long-lived protective immunity against SARS-CoV-2 infection are urgently required. We assessed the potential of vaccine candidates based on the SARS-CoV-2 spike in cynomolgus macaques (M. fascicularis) by examining their ability to generate spike binding antibodies with neutralizing activity. Antigens were derived from two distinct regions of the spike S1 subunit, either the N-terminal domain (NTD) or an extended C-terminal domain containing the receptor-binding domain (RBD) and were fused to the human IgG1 Fc domain. Three groups of 2 animals each were immunized with either antigen, alone or in combination. The development of antibody responses was evaluated through 20 weeks post-immunization. A robust IgG response to the spike protein was detected as early as 2 weeks after immunization with either protein and maintained for over 20 weeks. Sera from animals immunized with antigens derived from the RBD were able to prevent binding of soluble spike proteins to the ACE2 receptor, shown by in vitro binding assays, while sera from animals immunized with the NTD alone lacked this activity. Crucially, sera from animals immunized with the RBD but not the NTD had potent neutralizing activity against SARS-CoV-2 pseudotyped virus, with titers in excess of 10,000, greatly exceeding that typically found in convalescent humans. Neutralizing activity persisted for more than 20 weeks. These data support the utility of spike subunit-based antigens as a vaccine for use in humans.
Collapse
Affiliation(s)
- Gary Baisa
- Intuitive Biosciences, 918 Deming Way, Madison WI 53717
| | | | - Keith Mansfield
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139
| | - Monika Burns
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139
| | - Lori Martin
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139
| | - Daise Cunha
- Covance Greenfield Laboratories, 671 South Meridian Road Greenfield, IN 46140
| | - Jessica Fischer
- Covance Greenfield Laboratories, 671 South Meridian Road Greenfield, IN 46140
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Theodora Hatziioannou
- Laboratory of Retrovirology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York NY 10065
| | | | - Kimberly Luke
- Intuitive Biosciences, 918 Deming Way, Madison WI 53717
| |
Collapse
|
430
|
Galipeau Y, Greig M, Liu G, Driedger M, Langlois MA. Humoral Responses and Serological Assays in SARS-CoV-2 Infections. Front Immunol 2020; 11:610688. [PMID: 33391281 PMCID: PMC7775512 DOI: 10.3389/fimmu.2020.610688] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
In December 2019, the novel betacoronavirus Severe Acute Respiratory Disease Coronavirus 2 (SARS-CoV-2) was first detected in Wuhan, China. SARS-CoV-2 has since become a pandemic virus resulting in hundreds of thousands of deaths and deep socioeconomic implications worldwide. In recent months, efforts have been directed towards detecting, tracking, and better understanding human humoral responses to SARS-CoV-2 infection. It has become critical to develop robust and reliable serological assays to characterize the abundance, neutralization efficiency, and duration of antibodies in virus-exposed individuals. Here we review the latest knowledge on humoral immune responses to SARS-CoV-2 infection, along with the benefits and limitations of currently available commercial and laboratory-based serological assays. We also highlight important serological considerations, such as antibody expression levels, stability and neutralization dynamics, as well as cross-reactivity and possible immunological back-boosting by seasonal coronaviruses. The ability to accurately detect, measure and characterize the various antibodies specific to SARS-CoV-2 is necessary for vaccine development, manage risk and exposure for healthcare and at-risk workers, and for monitoring reinfections with genetic variants and new strains of the virus. Having a thorough understanding of the benefits and cautions of standardized serological testing at a community level remains critically important in the design and implementation of future vaccination campaigns, epidemiological models of immunity, and public health measures that rely heavily on up-to-date knowledge of transmission dynamics.
Collapse
Affiliation(s)
- Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Matthew Greig
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - George Liu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- uOttawa Center for Infection, Immunity and Inflammation (CI3), Ottawa, ON, Canada
| |
Collapse
|
431
|
Farzani TA, Chov A, Herschhorn A. A protocol for displaying viral envelope glycoproteins on the surface of vesicular stomatitis viruses. STAR Protoc 2020; 1:100209. [PMID: 33377103 PMCID: PMC7757661 DOI: 10.1016/j.xpro.2020.100209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We describe the production of single-cycle (sc) and replication-competent recombinant vesicular stomatitis viruses (rcVSVs) displaying heterologous envelope glycoproteins (Envs) on their surface. We prepare scVSVs by transiently expressing HIV-1 Envs or SARS-CoV-2 spike followed by infection of the cells with scVSV particles, which do not carry the vsv-g gene. To prepare rcVSVs, we replace the vsv-g with a specific env-encoding gene, transfect cells with multiple plasmids for production of the genomic RNA and viral proteins, and rescue replication-competent viruses.
Collapse
Affiliation(s)
- Touraj Aligholipour Farzani
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angela Chov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
432
|
SARS-CoV-2 Spike Alterations Enhance Pseudoparticle Titers and Replication-Competent VSV-SARS-CoV-2 Virus. Viruses 2020; 12:v12121465. [PMID: 33353101 PMCID: PMC7767099 DOI: 10.3390/v12121465] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the most recent global pandemic that has caused more than a million deaths around the world. The spike glycoprotein (S) drives the entry and fusion of this virus and is the main determinant of cell tropism. To explore S requirements for entry under BSL2 conditions, S has been pseudotyped onto vesicular stomatitis virus (VSV) or retroviral particles with varied success. Several alterations to S were demonstrated to improve pseudoparticle titers, but they have not been systematically compared. In this study, we produced pseudotyped VSV particles with multiple modifications to S, including truncation, mutation, and tagging strategies. The main objective of this study was to determine which modifications of the S protein optimize cell surface expression, incorporation into pseudotyped particles, and pseudoparticle entry. Removal of the last 19 residues of the cytoplasmic tail produced a hyper-fusogenic S, while removal of 21 residues increased S surface production and VSV incorporation. Additionally, we engineered a replication-competent VSV (rVSV) virus to produce the S-D614G variant with a truncated cytoplasmic tail. While the particles can be used to assess S entry requirements, the rVSV∆G/SMet1D614G∆21 virus has a poor specific infectivity (particle to infectious titer ratio).
Collapse
|
433
|
Valdivia A, Torres I, Latorre V, Francés-Gómez C, Ferrer J, Forqué L, Costa R, de la Asunción CS, Huntley D, Gozalbo-Rovira R, Buesa J, Giménez E, Rodríguez-Díaz J, Geller R, Navarro D. Suitability of two rapid lateral flow immunochromatographic assays for predicting SARS-CoV-2 neutralizing activity of sera. J Med Virol 2020; 93:2301-2306. [PMID: 33236799 PMCID: PMC7753337 DOI: 10.1002/jmv.26697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023]
Abstract
Assessment of commercial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoassays for their capacity to provide reliable information on sera neutralizing activity is an emerging need. We evaluated the performance of two commercially available lateral flow immunochromatographic assays (LFIC; Wondfo SARS-CoV-2 Antibody test and the INNOVITA 2019-nCoV Ab test) in comparison with a SARS-CoV-2 neutralization pseudotyped assay for coronavirus disease 2019 (COVID-19) diagnosis in hospitalized patients and investigate whether the intensity of the test band in LFIC associates with neutralizing antibody (NtAb) titers. Ninety sera were included from 51 patients with moderate to severe COVID-19. A green fluorescent protein (GFP) reporter-based pseudotyped neutralization assay (vesicular stomatitis virus coated with SARS-CoV-2 spike protein) was used. Test line intensity was scored using a 4-level scale (0 to 3+). The overall sensitivity of LFIC assays was 91.1% for the Wondfo SARS-CoV-2 Antibody test, 72.2% for the INNOVITA 2019-nCoV IgG, 85.6% for the INNOVITA 2019-nCoV IgM, and 92.2% for the NtAb assay. Sensitivity increased for all assays in sera collected beyond day 14 after symptoms onset (93.9%, 79.6%, 93.9%, and 93.9%, respectively). Reactivities equal to or more intense than the positive control line (≥2+) in the Wondfo assay had a negative predictive value of 100% and a positive predictive value of 96.4% for high NtAb50 titers (≥1/160). Our findings support the use of LFIC assays evaluated herein, particularly the Wondfo test, for COVID-19 diagnosis. We also find evidence that these rapid immunoassays can be used to predict high SARS-CoV-2-S NtAb50 titers.
Collapse
Affiliation(s)
- Arantxa Valdivia
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, Valencia, Spain
| | - Ignacio Torres
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, Valencia, Spain
| | - Víctor Latorre
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, Valencia, Spain
| | - Clara Francés-Gómez
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, Valencia, Spain
| | - Josep Ferrer
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, Valencia, Spain
| | - Lorena Forqué
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, Valencia, Spain
| | - Rosa Costa
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, Valencia, Spain
| | | | - Dixie Huntley
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, Valencia, Spain
| | | | - Javier Buesa
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, Valencia, Spain.,School of Medicine, Department of Microbiology, University of Valencia, Valencia, Spain
| | - Estela Giménez
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, Valencia, Spain
| | - Jesús Rodríguez-Díaz
- School of Medicine, Department of Microbiology, University of Valencia, Valencia, Spain
| | - Ron Geller
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, Valencia, Spain
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, Valencia, Spain.,School of Medicine, Department of Microbiology, University of Valencia, Valencia, Spain
| |
Collapse
|
434
|
Liu H, Wu NC, Yuan M, Bangaru S, Torres JL, Caniels TG, van Schooten J, Zhu X, Lee CCD, Brouwer PJM, van Gils MJ, Sanders RW, Ward AB, Wilson IA. Cross-Neutralization of a SARS-CoV-2 Antibody to a Functionally Conserved Site Is Mediated by Avidity. Immunity 2020; 53:1272-1280.e5. [PMID: 33242394 PMCID: PMC7687367 DOI: 10.1016/j.immuni.2020.10.023] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/27/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Most antibodies isolated from individuals with coronavirus disease 2019 (COVID-19) are specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, COVA1-16 is a relatively rare antibody that also cross-neutralizes SARS-CoV. Here, we determined a crystal structure of the COVA1-16 antibody fragment (Fab) with the SARS-CoV-2 receptor-binding domain (RBD) and negative-stain electron microscopy reconstructions with the spike glycoprotein trimer to elucidate the structural basis of its cross-reactivity. COVA1-16 binds a highly conserved epitope on the SARS-CoV-2 RBD, mainly through a long complementarity-determining region (CDR) H3, and competes with the angiotensin-converting enzyme 2 (ACE2) receptor because of steric hindrance rather than epitope overlap. COVA1-16 binds to a flexible up conformation of the RBD on the spike and relies on antibody avidity for neutralization. These findings, along with the structural and functional rationale for epitope conservation, provide insights for development of more universal SARS-like coronavirus vaccines and therapies.
Collapse
Affiliation(s)
- Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sandhya Bangaru
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tom G Caniels
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jelle van Schooten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chang-Chun D Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philip J M Brouwer
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
435
|
Stapled Peptides Based on Human Angiotensin-Converting Enzyme 2 (ACE2) Potently Inhibit SARS-CoV-2 Infection In Vitro. mBio 2020; 11:mBio.02451-20. [PMID: 33310780 PMCID: PMC7751257 DOI: 10.1128/mbio.02451-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as the primary receptor to enter host cells and initiate the infection. The critical binding region of ACE2 is an ∼30-amino-acid (aa)-long helix. Here, we report the design of four stapled peptides based on the ACE2 helix, which is expected to bind to SARS-CoV-2 and prevent the binding of the virus to the ACE2 receptor and disrupt the infection. All stapled peptides showed high helical contents (50 to 94% helicity). In contrast, the linear control peptide NYBSP-C showed no helicity (19%). We have evaluated the peptides in a pseudovirus-based single-cycle assay in HT1080/ACE2 cells and human lung cell line A549/ACE2, overexpressing ACE2. Three of the four stapled peptides showed potent antiviral activity in HT1080/ACE2 (50% inhibitory concentration [IC50]: 1.9 to 4.1 μM) and A549/ACE2 (IC50: 2.2 to 2.8 μM) cells. The linear peptide NYBSP-C and the double-stapled peptide StRIP16, used as controls, showed no antiviral activity. Most significantly, none of the stapled peptides show any cytotoxicity at the highest dose tested. We also evaluated the antiviral activity of the peptides by infecting Vero E6 cells with the replication-competent authentic SARS-CoV-2 (US_WA-1/2020). NYBSP-1 was the most efficient, preventing the complete formation of cytopathic effects (CPEs) at an IC100 of 17.2 μM. NYBSP-2 and NYBSP-4 also prevented the formation of the virus-induced CPE with an IC100 of about 33 μM. We determined the proteolytic stability of one of the most active stapled peptides, NYBSP-4, in human plasma, which showed a half-life (T 1/2) of >289 min.IMPORTANCE SARS-CoV-2 is a novel virus with many unknowns. No vaccine or specific therapy is available yet to prevent and treat this deadly virus. Therefore, there is an urgent need to develop novel therapeutics. Structural studies revealed critical interactions between the binding site helix of the ACE2 receptor and SARS-CoV-2 receptor-binding domain (RBD). Therefore, targeting the entry pathway of SARS-CoV-2 is ideal for both prevention and treatment as it blocks the first step of the viral life cycle. We report the design of four double-stapled peptides, three of which showed potent antiviral activity in HT1080/ACE2 cells and human lung carcinoma cells, A549/ACE2. Most significantly, the active stapled peptides with antiviral activity against SARS-CoV-2 showed high α-helicity (60 to 94%). The most active stapled peptide, NYBSP-4, showed substantial resistance to degradation by proteolytic enzymes in human plasma. The lead stapled peptides are expected to pave the way for further optimization of a clinical candidate.
Collapse
|
436
|
Poston D, Weisblum Y, Wise H, Templeton K, Jenks S, Hatziioannou T, Bieniasz P. Absence of Severe Acute Respiratory Syndrome Coronavirus 2 Neutralizing Activity in Prepandemic Sera From Individuals With Recent Seasonal Coronavirus Infection. Clin Infect Dis 2020; 73:e1208-e1211. [PMID: 33270134 PMCID: PMC7799301 DOI: 10.1093/cid/ciaa1803] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/01/2020] [Indexed: 11/12/2022] Open
Abstract
Cross-reactive immune responses elicited by seasonal coronaviruses might affect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) susceptibility and disease outcomes. We measured neutralizing activity against SARS-CoV-2 in prepandemic sera from patients with prior polymerase chain reaction scan-confirmed seasonal coronavirus infection. Although neutralizing activity against seasonal coronaviruses was detected in nearly all sera, cross-reactive neutralizing activity against SARS-CoV-2 was undetectable.
Collapse
Affiliation(s)
- Daniel Poston
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.,Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Helen Wise
- Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, United Kingdom
| | - Kate Templeton
- Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, United Kingdom
| | - Sara Jenks
- Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, United Kingdom
| | | | - Paul Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
437
|
Khoury DS, Wheatley AK, Ramuta MD, Reynaldi A, Cromer D, Subbarao K, O'Connor DH, Kent SJ, Davenport MP. Measuring immunity to SARS-CoV-2 infection: comparing assays and animal models. Nat Rev Immunol 2020; 20:727-738. [PMID: 33139888 PMCID: PMC7605490 DOI: 10.1038/s41577-020-00471-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
The rapid scale-up of research on coronavirus disease 2019 (COVID-19) has spawned a large number of potential vaccines and immunotherapies, accompanied by a commensurately large number of in vitro assays and in vivo models to measure their effectiveness. These assays broadly have the same end-goal - to predict the clinical efficacy of prophylactic and therapeutic interventions in humans. However, the apparent potency of different interventions can vary considerably between assays and animal models, leading to very different predictions of clinical efficacy. Complete harmonization of experimental methods may be intractable at the current pace of research. However, here we analyse a selection of existing assays for measuring antibody-mediated virus neutralization and animal models of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and provide a framework for comparing results between studies and reconciling observed differences in the effects of interventions. Finally, we propose how we might optimize these assays for better comparison of results from in vitro and animal studies to accelerate progress.
Collapse
Affiliation(s)
- David S Khoury
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mitchell D Ramuta
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Victoria, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
438
|
Seow J, Graham C, Merrick B, Acors S, Pickering S, Steel KJA, Hemmings O, O'Byrne A, Kouphou N, Galao RP, Betancor G, Wilson HD, Signell AW, Winstone H, Kerridge C, Huettner I, Jimenez-Guardeño JM, Lista MJ, Temperton N, Snell LB, Bisnauthsing K, Moore A, Green A, Martinez L, Stokes B, Honey J, Izquierdo-Barras A, Arbane G, Patel A, Tan MKI, O'Connell L, O'Hara G, MacMahon E, Douthwaite S, Nebbia G, Batra R, Martinez-Nunez R, Shankar-Hari M, Edgeworth JD, Neil SJD, Malim MH, Doores KJ. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat Microbiol 2020; 5:1598-1607. [PMID: 33106674 PMCID: PMC7610833 DOI: 10.1038/s41564-020-00813-8] [Citation(s) in RCA: 928] [Impact Index Per Article: 185.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10-15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protection from reinfection. Using sequential serum samples collected up to 94 d post onset of symptoms (POS) from 65 individuals with real-time quantitative PCR-confirmed SARS-CoV-2 infection, we show seroconversion (immunoglobulin (Ig)M, IgA, IgG) in >95% of cases and neutralizing antibody responses when sampled beyond 8 d POS. We show that the kinetics of the neutralizing antibody response is typical of an acute viral infection, with declining neutralizing antibody titres observed after an initial peak, and that the magnitude of this peak is dependent on disease severity. Although some individuals with high peak infective dose (ID50 > 10,000) maintained neutralizing antibody titres >1,000 at >60 d POS, some with lower peak ID50 had neutralizing antibody titres approaching baseline within the follow-up period. A similar decline in neutralizing antibody titres was observed in a cohort of 31 seropositive healthcare workers. The present study has important implications when considering widespread serological testing and antibody protection against reinfection with SARS-CoV-2, and may suggest that vaccine boosters are required to provide long-lasting protection.
Collapse
Affiliation(s)
- Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Sam Acors
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Suzanne Pickering
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Kathryn J A Steel
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Oliver Hemmings
- Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Aoife O'Byrne
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Neophytos Kouphou
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Rui Pedro Galao
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Gilberto Betancor
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Harry D Wilson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Adrian W Signell
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Claire Kerridge
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Isabella Huettner
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Jose M Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Maria Jose Lista
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, UK
| | - Luke B Snell
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Karen Bisnauthsing
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Amelia Moore
- Guy's and St Thomas' R&D Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Adrian Green
- Guy's and St Thomas' R&D Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Lauren Martinez
- Guy's and St Thomas' R&D Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Brielle Stokes
- Guy's and St Thomas' R&D Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Johanna Honey
- Guy's and St Thomas' R&D Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Alba Izquierdo-Barras
- Guy's and St Thomas' R&D Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Gill Arbane
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Amita Patel
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mark Kia Ik Tan
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Lorcan O'Connell
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Geraldine O'Hara
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Eithne MacMahon
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Sam Douthwaite
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Gaia Nebbia
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Rahul Batra
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Rocio Martinez-Nunez
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Manu Shankar-Hari
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jonathan D Edgeworth
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
439
|
Schäfer A, Muecksch F, Lorenzi JCC, Leist SR, Cipolla M, Bournazos S, Schmidt F, Maison RM, Gazumyan A, Martinez DR, Baric RS, Robbiani DF, Hatziioannou T, Ravetch JV, Bieniasz PD, Bowen RA, Nussenzweig MC, Sheahan TP. Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. J Exp Med 2020; 218:211549. [PMID: 33211088 PMCID: PMC7673958 DOI: 10.1084/jem.20201993] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 01/21/2023] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, has been responsible for over 42 million infections and 1 million deaths since its emergence in December 2019. There are few therapeutic options and no approved vaccines. Here, we examine the properties of highly potent human monoclonal antibodies (hu-mAbs) in a Syrian hamster model of SARS-CoV-2 and in a mouse-adapted model of SARS-CoV-2 infection (SARS-CoV-2 MA). Antibody combinations were effective for prevention and in therapy when administered early. However, in vitro antibody neutralization potency did not uniformly correlate with in vivo protection, and some hu-mAbs were more protective in combination in vivo. Analysis of antibody Fc regions revealed that binding to activating Fc receptors contributes to optimal protection against SARS-CoV-2 MA. The data indicate that intact effector function can affect hu-mAb protective activity and that in vivo testing is required to establish optimal hu-mAb combinations for COVID-19 prevention.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Sarah R Leist
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | - Rachel M Maison
- Laboratory of Animal Reproduction and Biotechnology, Colorado State University, Fort Collins, CO
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - David R Martinez
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY.,Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | | | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY.,Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Richard A Bowen
- Laboratory of Animal Reproduction and Biotechnology, Colorado State University, Fort Collins, CO
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY.,Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Timothy P Sheahan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
440
|
Terpos E, Politou M, Sergentanis TN, Mentis A, Rosati M, Stellas D, Bear J, Hu X, Felber BK, Pappa V, Pagoni M, Grouzi E, Labropoulou S, Charitaki I, Ntanasis-Stathopoulos I, Moschandreou D, Bouhla A, Saridakis S, Korompoki E, Giatra C, Bagratuni T, Pefanis A, Papageorgiou S, Spyridonidis A, Antoniadou A, Kotanidou A, Syrigos K, Stamoulis K, Panayiotakopoulos G, Tsiodras S, Alexopoulos L, Dimopoulos MA, Pavlakis GN. Anti-SARS-CoV-2 Antibody Responses in Convalescent Plasma Donors Are Increased in Hospitalized Patients; Subanalyses of a Phase 2 Clinical Study. Microorganisms 2020; 8:microorganisms8121885. [PMID: 33260775 PMCID: PMC7760522 DOI: 10.3390/microorganisms8121885] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
We evaluated the antibody responses in 259 potential convalescent plasma donors for Covid-19 patients. Different assays were used: a commercial ELISA detecting antibodies against the recombinant spike protein (S1); a multiplex assay detecting total and specific antibody isotypes against three SARS-CoV-2 antigens (S1, basic nucleocapsid (N) protein and receptor-binding domain (RBD)); and an in-house ELISA detecting antibodies to complete spike, RBD and N in 60 of these donors. Neutralizing antibodies (NAb) were also evaluated in these 60 donors. Analyzed samples were collected at a median time of 62 (14-104) days from the day of first symptoms or positive PCR (for asymptomatic patients). Anti-SARS-CoV-2 antibodies were detected in 88% and 87.8% of donors using the ELISA and the multiplex assay, respectively. The multivariate analysis showed that age ≥50 years (p < 0.001) and need for hospitalization (p < 0.001) correlated with higher antibody titers, while asymptomatic status (p < 0.001) and testing >60 days after symptom onset (p = 0.001) correlated with lower titers. Interestingly, pseudotype virus-neutralizing antibodies (PsNAbs) significantly correlated with spike and with RBD antibodies by ELISA. Sera with high PsNAb also showed a strong ability to neutralize active SARS-CoV-2 virus, with hospitalized patients showing higher titers. Therefore, convalescent plasma donors can be selected based on the presence of high RBD antibody titers.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (T.N.S.); (I.C.); (I.N.-S.); (E.K.); (T.B.); (M.A.D.)
- Correspondence: or ; Tel.: +30-213-2162846; Fax: +30-213-2162511
| | - Marianna Politou
- Hematology Laboratory Blood Bank, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Theodoros N. Sergentanis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (T.N.S.); (I.C.); (I.N.-S.); (E.K.); (T.B.); (M.A.D.)
| | - Andreas Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.M.); (S.L.)
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA; (M.R.); (D.S.); (G.N.P.)
| | - Dimitris Stellas
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA; (M.R.); (D.S.); (G.N.P.)
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA; (J.B.); (X.H.); (B.K.F.)
| | - Xintao Hu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA; (J.B.); (X.H.); (B.K.F.)
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA; (J.B.); (X.H.); (B.K.F.)
| | - Vassiliki Pappa
- Hematology Unit, Second Department of Internal Medicine, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (V.P.); (A.B.); (S.P.)
| | - Maria Pagoni
- BMT Unit, Department of Hematology and Lymphomas, Evangelismos General Hospital, 10676 Athens, Greece; (M.P.); (C.G.)
| | - Elisavet Grouzi
- Department of Transfusion Service and Clinical Hemostasis, “Saint Savvas” Oncology Hospital, 11522 Athens, Greece; (E.G.); (D.M.)
| | - Stavroula Labropoulou
- Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.M.); (S.L.)
| | - Ioanna Charitaki
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (T.N.S.); (I.C.); (I.N.-S.); (E.K.); (T.B.); (M.A.D.)
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (T.N.S.); (I.C.); (I.N.-S.); (E.K.); (T.B.); (M.A.D.)
| | - Dimitra Moschandreou
- Department of Transfusion Service and Clinical Hemostasis, “Saint Savvas” Oncology Hospital, 11522 Athens, Greece; (E.G.); (D.M.)
| | - Anthi Bouhla
- Hematology Unit, Second Department of Internal Medicine, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (V.P.); (A.B.); (S.P.)
| | | | - Eleni Korompoki
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (T.N.S.); (I.C.); (I.N.-S.); (E.K.); (T.B.); (M.A.D.)
| | - Chara Giatra
- BMT Unit, Department of Hematology and Lymphomas, Evangelismos General Hospital, 10676 Athens, Greece; (M.P.); (C.G.)
| | - Tina Bagratuni
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (T.N.S.); (I.C.); (I.N.-S.); (E.K.); (T.B.); (M.A.D.)
| | - Angelos Pefanis
- Department of Internal Medicine, Sotiria General Hospital of Chest Diseases, 11527 Athens, Greece;
| | - Sotirios Papageorgiou
- Hematology Unit, Second Department of Internal Medicine, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (V.P.); (A.B.); (S.P.)
| | - Alexandros Spyridonidis
- BMT Unit, University Hospital of Patras, School of Medicine, University of Patras, 26500 Patras, Greece;
| | - Anastasia Antoniadou
- Fourth Department of Internal Medicine, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (S.T.)
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Syrigos
- Oncology Unit, Third Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - George Panayiotakopoulos
- Pharmacology Laboratory, School of Medicine, University of Patras, 26500 Patras, Greece;
- National Public Health Organization, 15123 Athens, Greece
| | - Sotirios Tsiodras
- Fourth Department of Internal Medicine, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (S.T.)
- National Public Health Organization, 15123 Athens, Greece
| | - Leonidas Alexopoulos
- Biomedical Systems Laboratory, National Technical University of Athens, 11527 Athens, Greece;
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (T.N.S.); (I.C.); (I.N.-S.); (E.K.); (T.B.); (M.A.D.)
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA; (M.R.); (D.S.); (G.N.P.)
| |
Collapse
|
441
|
Zeng C, Evans JP, Pearson R, Qu P, Zheng YM, Robinson RT, Hall-Stoodley L, Yount J, Pannu S, Mallampalli RK, Saif L, Oltz E, Lozanski G, Liu SL. Neutralizing antibody against SARS-CoV-2 spike in COVID-19 patients, health care workers, and convalescent plasma donors. JCI Insight 2020; 5:143213. [PMID: 33035201 PMCID: PMC7710271 DOI: 10.1172/jci.insight.143213] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/09/2020] [Indexed: 01/16/2023] Open
Abstract
Rapid and specific antibody testing is crucial for improved understanding, control, and treatment of COVID-19 pathogenesis. Herein, we describe and apply a rapid, sensitive, and accurate virus neutralization assay for SARS-CoV-2 antibodies. The assay is based on an HIV-1 lentiviral vector that contains a secreted intron Gaussia luciferase (Gluc) or secreted nano-luciferase reporter cassette, pseudotyped with the SARS-CoV-2 spike (S) glycoprotein, and is validated with a plaque-reduction assay using an authentic, infectious SARS-CoV-2 strain. The assay was used to evaluate SARS-CoV-2 antibodies in serum from individuals with a broad range of COVID-19 symptoms; patients included those in the intensive care unit (ICU), health care workers (HCWs), and convalescent plasma donors. The highest neutralizing antibody titers were observed among ICU patients, followed by general hospitalized patients, HCWs, and convalescent plasma donors. Our study highlights a wide phenotypic variation in human antibody responses against SARS-CoV-2 and demonstrates the efficacy of a potentially novel lentivirus pseudotype assay for high-throughput serological surveys of neutralizing antibody titers in large cohorts.
Collapse
Affiliation(s)
- Cong Zeng
- Center for Retrovirus Research
- Department of Veterinary Biosciences
| | - John P. Evans
- Center for Retrovirus Research
- Department of Veterinary Biosciences
- Molecular, Cellular and Developmental Biology Program
| | | | - Panke Qu
- Center for Retrovirus Research
- Department of Veterinary Biosciences
| | - Yi-Min Zheng
- Center for Retrovirus Research
- Department of Veterinary Biosciences
| | | | | | - Jacob Yount
- Department of Microbial Infection and Immunity, and
| | - Sonal Pannu
- Department of Medicine, The Ohio State University (OSU), Columbus, Ohio, USA
| | - Rama K. Mallampalli
- Department of Medicine, The Ohio State University (OSU), Columbus, Ohio, USA
| | - Linda Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, OSU, Columbus, Ohio, USA
| | - Eugene Oltz
- Department of Microbial Infection and Immunity, and
| | | | - Shan-Lu Liu
- Center for Retrovirus Research
- Department of Veterinary Biosciences
- Department of Microbial Infection and Immunity, and
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, OSU, Columbus, Ohio, USA
| |
Collapse
|
442
|
Ripperger TJ, Uhrlaub JL, Watanabe M, Wong R, Castaneda Y, Pizzato HA, Thompson MR, Bradshaw C, Weinkauf CC, Bime C, Erickson HL, Knox K, Bixby B, Parthasarathy S, Chaudhary S, Natt B, Cristan E, El Aini T, Rischard F, Campion J, Chopra M, Insel M, Sam A, Knepler JL, Capaldi AP, Spier CM, Dake MD, Edwards T, Kaplan ME, Scott SJ, Hypes C, Mosier J, Harris DT, LaFleur BJ, Sprissler R, Nikolich-Žugich J, Bhattacharya D. Orthogonal SARS-CoV-2 Serological Assays Enable Surveillance of Low-Prevalence Communities and Reveal Durable Humoral Immunity. Immunity 2020; 53:925-933.e4. [PMID: 33129373 PMCID: PMC7554472 DOI: 10.1016/j.immuni.2020.10.004] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022]
Abstract
We conducted a serological study to define correlates of immunity against SARS-CoV-2. Compared to those with mild coronavirus disease 2019 (COVID-19) cases, individuals with severe disease exhibited elevated virus-neutralizing titers and antibodies against the nucleocapsid (N) and the receptor binding domain (RBD) of the spike protein. Age and sex played lesser roles. All cases, including asymptomatic individuals, seroconverted by 2 weeks after PCR confirmation. Spike RBD and S2 and neutralizing antibodies remained detectable through 5-7 months after onset, whereas α-N titers diminished. Testing 5,882 members of the local community revealed only 1 sample with seroreactivity to both RBD and S2 that lacked neutralizing antibodies. This fidelity could not be achieved with either RBD or S2 alone. Thus, inclusion of multiple independent assays improved the accuracy of antibody tests in low-seroprevalence communities and revealed differences in antibody kinetics depending on the antigen. We conclude that neutralizing antibodies are stably produced for at least 5-7 months after SARS-CoV-2 infection.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Arizona/epidemiology
- Betacoronavirus/immunology
- Betacoronavirus/isolation & purification
- COVID-19
- COVID-19 Testing
- Clinical Laboratory Techniques/methods
- Coronavirus Infections/blood
- Coronavirus Infections/diagnosis
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Nucleocapsid Proteins
- Female
- Humans
- Immunity, Humoral
- Male
- Middle Aged
- Nucleocapsid Proteins/immunology
- Pandemics
- Phosphoproteins
- Pneumonia, Viral/blood
- Pneumonia, Viral/diagnosis
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Prevalence
- Protein Interaction Domains and Motifs
- SARS-CoV-2
- Seroepidemiologic Studies
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Young Adult
Collapse
Affiliation(s)
- Tyler J Ripperger
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA; University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA; University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Rachel Wong
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA; Division of Biological and Biomedical Sciences, Washington University, St. Louis, MO, USA
| | - Yvonne Castaneda
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA; University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Hannah A Pizzato
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA; Division of Biological and Biomedical Sciences, Washington University, St. Louis, MO, USA
| | - Mallory R Thompson
- Department of Surgery, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA; Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Christine Bradshaw
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA; University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Craig C Weinkauf
- Department of Surgery, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Christian Bime
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Heidi L Erickson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Kenneth Knox
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA; Department of Medicine, University of Arizona, Phoenix, Phoenix, AZ, USA
| | - Billie Bixby
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Sairam Parthasarathy
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Sachin Chaudhary
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Bhupinder Natt
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Elaine Cristan
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Tammer El Aini
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Franz Rischard
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Janet Campion
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Madhav Chopra
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Michael Insel
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Afshin Sam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - James L Knepler
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Andrew P Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ, USA; Functional Genomics Core, University of Arizona, Tucson, AZ, USA
| | - Catherine M Spier
- Department of Pathology, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Michael D Dake
- Office of the Senior Vice-President for Health Sciences, University of Arizona, Tucson, AZ, USA
| | - Taylor Edwards
- University of Arizona Genomics Core and the Arizona Research Labs, University of Arizona Genetics Core, University of Arizona, Tucson, AZ, USA
| | - Matthew E Kaplan
- Functional Genomics Core, University of Arizona, Tucson, AZ, USA
| | - Serena Jain Scott
- Division of Geriatrics, General Medicine and Palliative Care, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Cameron Hypes
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA; Department of Emergency Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - Jarrod Mosier
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA; Department of Emergency Medicine, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA
| | - David T Harris
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA; University of Arizona Health Sciences Biobank, University of Arizona, Tucson, AZ, USA
| | | | - Ryan Sprissler
- University of Arizona Genomics Core and the Arizona Research Labs, University of Arizona Genetics Core, University of Arizona, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Janko Nikolich-Žugich
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA; University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
443
|
Kumar V. Understanding the complexities of SARS-CoV2 infection and its immunology: A road to immune-based therapeutics. Int Immunopharmacol 2020; 88:106980. [PMID: 33182073 PMCID: PMC7843151 DOI: 10.1016/j.intimp.2020.106980] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Emerging infectious diseases always pose a threat to humans along with plant and animal life. SARS-CoV2 is the recently emerged viral infection that originated from Wuhan city of the Republic of China in December 2019. Now, it has become a pandemic. Currently, SARS-CoV2 has infected more than 27.74 million people worldwide, and taken 901,928 human lives. It was named first 'WH 1 Human CoV' and later changed to 2019 novel CoV (2019-nCoV). Scientists have established it as a zoonotic viral disease emerged from Chinese horseshoe bats, which do not develop a severe infection. For example, Rhinolophus Chinese horseshoe bats harboring severe acute respiratory syndrome-related coronavirus (SARSr-CoV) or SARSr-Rh-BatCoV appear healthy and clear the virus within 2-4 months period. The article introduces first the concept of EIDs and some past EIDs, which have affected human life. Next section discusses mysteries regarding SARS-CoV2 origin, its evolution, and human transfer. Third section describes COVID-19 clinical symptoms and factors affecting susceptibility or resistance. The fourth section introduces the SARS-CoV2 entry in the host cell, its replication, and the establishment of productive infection. Section five describes the host's immune response associated with asymptomatic, symptomatic, mild to moderate, and severe COVID-19. The subsequent seventh and eighth sections mention the immune status in COVID-19 convalescent patients and re-emergence of COVID-19 in them. Thereafter, the eighth section describes viral strategies to hijack the host antiviral immune response and generate the "cytokine storm". The ninth section describes about transgenic humane ACE2 (hACE2) receptor expressing mice to study immunity, drugs, and vaccines. The article ends with the development of different immunomodulatory and immunotherapeutics strategies, including vaccines waiting for their approval in humans as prophylaxis or treatment measures.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
444
|
SARS-CoV-2-spezifische neutralisierende Antikörper-Aktivität: neue Messverfahren. TRANSFUSIONSMEDIZIN 2020. [DOI: 10.1055/a-1238-5929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
445
|
Chen DY, Khan N, Close BJ, Goel RK, Blum B, Tavares AH, Kenney D, Conway HL, Ewoldt JK, Kapell S, Chitalia VC, Crossland NA, Chen CS, Kotton DN, Baker SC, Connor JH, Douam F, Emili A, Saeed M. SARS-CoV-2 desensitizes host cells to interferon through inhibition of the JAK-STAT pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33140044 DOI: 10.1101/2020.10.27.358259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 can infect multiple organs, including lung, intestine, kidney, heart, liver, and brain. The molecular details of how the virus navigates through diverse cellular environments and establishes replication are poorly defined. Here, we performed global proteomic analysis of the virus-host interface in a newly established panel of phenotypically diverse, SARS-CoV-2-infectable human cell lines representing different body organs. This revealed universal inhibition of interferon signaling across cell types following SARS-CoV-2 infection. We performed systematic analyses of the JAK-STAT pathway in a broad range of cellular systems, including immortalized cell lines and primary-like cardiomyocytes, and found that several pathway components were targeted by SARS-CoV-2 leading to cellular desensitization to interferon. These findings indicate that the suppression of interferon signaling is a mechanism widely used by SARS-CoV-2 in diverse tissues to evade antiviral innate immunity, and that targeting the viral mediators of immune evasion may help block virus replication in patients with COVID-19.
Collapse
|
446
|
Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JCC, Muecksch F, Rutkowska M, Hoffmann HH, Michailidis E, Gaebler C, Agudelo M, Cho A, Wang Z, Gazumyan A, Cipolla M, Luchsinger L, Hillyer CD, Caskey M, Robbiani DF, Rice CM, Nussenzweig MC, Hatziioannou T, Bieniasz PD. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife 2020; 9:e61312. [PMID: 33112236 PMCID: PMC7723407 DOI: 10.7554/elife.61312] [Citation(s) in RCA: 1025] [Impact Index Per Article: 205.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Neutralizing antibodies elicited by prior infection or vaccination are likely to be key for future protection of individuals and populations against SARS-CoV-2. Moreover, passively administered antibodies are among the most promising therapeutic and prophylactic anti-SARS-CoV-2 agents. However, the degree to which SARS-CoV-2 will adapt to evade neutralizing antibodies is unclear. Using a recombinant chimeric VSV/SARS-CoV-2 reporter virus, we show that functional SARS-CoV-2 S protein variants with mutations in the receptor-binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected. Notably, SARS-CoV-2 S variants that resist commonly elicited neutralizing antibodies are now present at low frequencies in circulating SARS-CoV-2 populations. Finally, the emergence of antibody-resistant SARS-CoV-2 variants that might limit the therapeutic usefulness of monoclonal antibodies can be mitigated by the use of antibody combinations that target distinct neutralizing epitopes.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/metabolism
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Base Sequence
- COVID-19/immunology
- COVID-19/therapy
- COVID-19/virology
- COVID-19 Vaccines/immunology
- Epitopes/genetics
- Epitopes/immunology
- Genes, Reporter
- Humans
- Immunization, Passive
- Mutation
- Neutralization Tests
- Protein Domains
- Protein Isoforms/immunology
- Reassortant Viruses/immunology
- Receptors, Virus/metabolism
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/physiology
- Selection, Genetic
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Vesiculovirus/genetics
- Virus Replication
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Daniel Poston
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Julio CC Lorenzi
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Magdalena Rutkowska
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease The Rockefeller UniversityNew YorkUnited States
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease The Rockefeller UniversityNew YorkUnited States
| | - Christian Gaebler
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Marianna Agudelo
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Alice Cho
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Zijun Wang
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Anna Gazumyan
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Melissa Cipolla
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Larry Luchsinger
- Lindsley F. Kimball Research Institute, New York Blood CenterNew YorkUnited States
| | | | - Marina Caskey
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Davide F Robbiani
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
- Institute for Research in Biomedicine, Università della Svizzera italianaBellinzonaSwitzerland
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease The Rockefeller UniversityNew YorkUnited States
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
447
|
Brochot E, Demey B, Touzé A, Belouzard S, Dubuisson J, Schmit JL, Duverlie G, Francois C, Castelain S, Helle F. Anti-spike, Anti-nucleocapsid and Neutralizing Antibodies in SARS-CoV-2 Inpatients and Asymptomatic Individuals. Front Microbiol 2020; 11:584251. [PMID: 33193227 PMCID: PMC7604306 DOI: 10.3389/fmicb.2020.584251] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
A better understanding of the anti-SARS-CoV-2 immune response is necessary to finely evaluate commercial serological assays but also to predict protection against reinfection and to help the development of vaccines. For this reason, we monitored the anti-SARS-CoV-2 antibody response in infected patients. In order to assess the time of seroconversion, we used 151 samples from 30 COVID-19 inpatients and monitored the detection kinetics of anti-S1, anti-S2, anti-RBD and anti-N antibodies with in-house ELISAs. We observed that specific antibodies were detectable in all inpatients 2 weeks post-symptom onset and that the detection of the SARS-CoV-2 Nucleocapsid and RBD was more sensitive than the detection of the S1 or S2 subunits. Using retroviral particles pseudotyped with the spike of the SARS-CoV-2, we also monitored the presence of neutralizing antibodies in these samples as well as 25 samples from asymptomatic individuals that were shown SARS-CoV-2 seropositive using commercial serological tests. Neutralizing antibodies reached a plateau 2 weeks post-symptom onset and then declined in the majority of inpatients but they were undetectable in 56% of asymptomatic patients. Our results indicate that the SARS-CoV-2 does not induce a prolonged neutralizing antibody response. They also suggest that induction of neutralizing antibodies is not the only strategy to adopt for the development of a vaccine. Finally, they imply that anti-SARS-CoV-2 neutralizing antibodies should be titrated to optimize convalescent plasma therapy.
Collapse
Affiliation(s)
- Etienne Brochot
- Department of Virology, Amiens University Medical Center, Amiens, France
- AGIR Research Unit, UR UPJV 4294, Jules Verne University of Picardie, Amiens, France
| | - Baptiste Demey
- Department of Virology, Amiens University Medical Center, Amiens, France
- AGIR Research Unit, UR UPJV 4294, Jules Verne University of Picardie, Amiens, France
| | | | - Sandrine Belouzard
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Jean Dubuisson
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Luc Schmit
- Department of Virology, Amiens University Medical Center, Amiens, France
- AGIR Research Unit, UR UPJV 4294, Jules Verne University of Picardie, Amiens, France
| | - Gilles Duverlie
- Department of Virology, Amiens University Medical Center, Amiens, France
- AGIR Research Unit, UR UPJV 4294, Jules Verne University of Picardie, Amiens, France
| | - Catherine Francois
- Department of Virology, Amiens University Medical Center, Amiens, France
- AGIR Research Unit, UR UPJV 4294, Jules Verne University of Picardie, Amiens, France
| | - Sandrine Castelain
- Department of Virology, Amiens University Medical Center, Amiens, France
- AGIR Research Unit, UR UPJV 4294, Jules Verne University of Picardie, Amiens, France
| | - Francois Helle
- AGIR Research Unit, UR UPJV 4294, Jules Verne University of Picardie, Amiens, France
| |
Collapse
|
448
|
Beaudoin-Bussières G, Laumaea A, Anand SP, Prévost J, Gasser R, Goyette G, Medjahed H, Perreault J, Tremblay T, Lewin A, Gokool L, Morrisseau C, Bégin P, Tremblay C, Martel-Laferrière V, Kaufmann DE, Richard J, Bazin R, Finzi A. Decline of Humoral Responses against SARS-CoV-2 Spike in Convalescent Individuals. mBio 2020; 11:e02590-20. [PMID: 33067385 PMCID: PMC7569150 DOI: 10.1128/mbio.02590-20] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023] Open
Abstract
In the absence of effective vaccines and with limited therapeutic options, convalescent plasma is being collected across the globe for potential transfusion to coronavirus disease 2019 (COVID-19) patients. The therapy has been deemed safe, and several clinical trials assessing its efficacy are ongoing. While it remains to be formally proven, the presence of neutralizing antibodies is thought to play a positive role in the efficacy of this treatment. Indeed, neutralizing titers of ≥1:160 have been recommended in some convalescent plasma trials for inclusion. Here, we performed repeated analyses at 1-month intervals on 31 convalescent individuals to evaluate how the humoral responses against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein, including neutralization, evolve over time. We observed that the levels of receptor-binding-domain (RBD)-specific IgG and IgA slightly decreased between 6 and 10 weeks after the onset of symptoms but that RBD-specific IgM levels decreased much more abruptly. Similarly, we observed a significant decrease in the capacity of convalescent plasma to neutralize pseudoparticles bearing wild-type SARS-CoV-2 S or its D614G variant. If neutralization activity proves to be an important factor in the clinical efficacy of convalescent plasma transfer, our results suggest that plasma from convalescent donors should be recovered rapidly after resolution of symptoms.IMPORTANCE While waiting for an efficient vaccine to protect against SARS-CoV-2 infection, alternative approaches to treat or prevent acute COVID-19 are urgently needed. Transfusion of convalescent plasma to treat COVID-19 patients is currently being explored; neutralizing activity in convalescent plasma is thought to play a central role in the efficacy of this treatment. Here, we observed that plasma neutralization activity decreased a few weeks after the onset of the symptoms. If neutralizing activity is required for the efficacy of convalescent plasma transfer, our results suggest that convalescent plasma should be recovered rapidly after the donor recovers from active infection.
Collapse
Affiliation(s)
- Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Annemarie Laumaea
- Centre de Recherche du CHUM, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | | | - Josée Perreault
- Affaires Médicales et Innovation, Héma-Québec, Montreal, Quebec, Canada
| | - Tony Tremblay
- Affaires Médicales et Innovation, Héma-Québec, Montreal, Quebec, Canada
| | - Antoine Lewin
- Affaires Médicales et Innovation, Héma-Québec, Montreal, Quebec, Canada
| | | | | | - Philippe Bégin
- Centre de Recherche du CHUM, Quebec, Canada
- CHU Ste-Justine, Montreal, Quebec, Canada
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Quebec, Canada
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Renée Bazin
- Affaires Médicales et Innovation, Héma-Québec, Montreal, Quebec, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
449
|
Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein. J Virol 2020; 94:JVI.01062-20. [PMID: 32788194 PMCID: PMC7565639 DOI: 10.1128/jvi.01062-20] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/06/2020] [Indexed: 12/23/2022] Open
Abstract
In work with pathogenic viruses, it is useful to have rapid quantitative tests for viral infectivity that can be performed without strict biocontainment restrictions. A common way of accomplishing this is to generate viral pseudoparticles that contain the surface glycoprotein from the pathogenic virus incorporated into a replication-defective viral particle that contains a sensitive reporter system. These pseudoparticles enter cells using the glycoprotein from the pathogenic virus, leading to a readout for infection. Conditions that block entry of the pathogenic virus, such as neutralizing antibodies, will also block entry of the viral pseudoparticles. However, viral glycoproteins often are not readily suited for generating pseudoparticles. Here, we describe a series of modifications that result in the production of relatively high-titer SARS-COV-2 pseudoparticles that are suitable for the detection of neutralizing antibodies from COVID-19 patients. The severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) Spike glycoprotein is solely responsible for binding to the host cell receptor and facilitating fusion between the viral and host membranes. The ability to generate viral particles pseudotyped with SARS-COV-2 Spike is useful for many types of studies, such as characterization of neutralizing antibodies or development of fusion-inhibiting small molecules. Here, we characterized the use of a codon-optimized SARS-COV-2 Spike glycoprotein for the generation of pseudotyped HIV-1, murine leukemia virus (MLV), and vesicular stomatitis virus (VSV) particles. The full-length Spike protein functioned inefficiently with all three systems but was enhanced over 10-fold by deleting the last 19 amino acids of the cytoplasmic tail. Infection of 293FT target cells was possible only if the cells were engineered to stably express the human angiotensin-converting enzyme 2 (ACE2) receptor, but stably introducing an additional copy of this receptor did not further enhance susceptibility. Stable introduction of the Spike-activating protease TMPRSS2 further enhanced susceptibility to infection by 5- to 10-fold. Replacement of the signal peptide of the Spike protein with an optimal signal peptide did not enhance or reduce infectious particle production. However, modifications D614G and R682Q further enhanced infectious particle production. With all enhancing elements combined, the titer of pseudotyped HIV-1 particles reached almost 106 infectious particles/ml. Finally, HIV-1 particles pseudotyped with SARS-COV-2 Spike were successfully used to detect neutralizing antibodies in plasma from coronavirus disease 2019 (COVID-19) patients, but not in plasma from uninfected individuals. IMPORTANCE In work with pathogenic viruses, it is useful to have rapid quantitative tests for viral infectivity that can be performed without strict biocontainment restrictions. A common way of accomplishing this is to generate viral pseudoparticles that contain the surface glycoprotein from the pathogenic virus incorporated into a replication-defective viral particle that contains a sensitive reporter system. These pseudoparticles enter cells using the glycoprotein from the pathogenic virus, leading to a readout for infection. Conditions that block entry of the pathogenic virus, such as neutralizing antibodies, will also block entry of the viral pseudoparticles. However, viral glycoproteins often are not readily suited for generating pseudoparticles. Here, we describe a series of modifications that result in the production of relatively high-titer SARS-COV-2 pseudoparticles that are suitable for the detection of neutralizing antibodies from COVID-19 patients.
Collapse
|
450
|
Boppana S, Qin K, Files JK, Russell RM, Stoltz R, Bibollet-Ruche F, Bansal A, Erdmann N, Hahn BH, Goepfert P. SARS-CoV-2-specific peripheral T follicular helper cells correlate with neutralizing antibodies and increase during convalescence. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.07.20208488. [PMID: 33052359 PMCID: PMC7553179 DOI: 10.1101/2020.10.07.20208488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T-cell immunity is likely to play a role in protection against SARS-CoV-2 by helping generate neutralizing antibodies. We longitudinally studied CD4 T-cell responses to the M, N, and S structural proteins of SARS-CoV-2 in 21 convalescent individuals. Within the first two months following symptom onset, a majority of individuals (81%) mount at least one CD4 T-cell response, and 48% of individuals mount detectable SARS-CoV-2-specific peripheral T follicular helper cells (pTfh, defined as CXCR5+PD1+ CD4 T cells). SARS-CoV-2-specific pTfh responses across all three protein specificities correlate with antibody neutralization with the strongest correlation observed for S protein-specific responses. When examined over time, pTfh responses increase in frequency and magnitude in convalescence, and robust responses with magnitudes greater than 5% were detected only at the second convalescent visit, an average of 38 days post-symptom onset. These data deepen our understanding of antigen-specific pTfh responses in SARS-CoV-2 infection, suggesting that M and N protein-specific pTfh may also assist in the development of neutralizing antibodies and that pTfh response formation may be delayed in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sushma Boppana
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kai Qin
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jacob K Files
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ronnie M. Russell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - Regina Stoltz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Frederic Bibollet-Ruche
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - Anju Bansal
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nathan Erdmann
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Beatrice H. Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - Paul Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|