401
|
Agregán R, Munekata PE, Feng X, Astray G, Gullón B, Lorenzo JM. Recent advances in the extraction of polyphenols from eggplant and their application in foods. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
402
|
Kumar UP, Rao GSNK, Reddy AR, Umasankar K, Vangoori Y. Protective effect of Acampe praemorsa (Roxb.) Blatt. & McCann against oxidative stress. PLANT SCIENCE TODAY 2021; 8. [DOI: 10.14719/pst.2021.8.3.1207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The current study was carried to make available phytochemical information and evaluation of antioxidant activity of Acampe praemorsa (Roxb.) Blatt. & McCann. The phytochemical analysis was carried out using procedures and quantified phenolic and alkaloid contents. The antioxidant activity was evaluated by in-vitro and in-vivo studies. The In-vitro antioxidant activity was carried on free radicals such as superoxide, hydroxyl DPPH, hydrogen peroxide, evaluation of reducing power. In-vivo study was carried on albino Wistar rats with different doses of extracts. The results provide that, A. praemorsa extracts have diversified phytochemicals in extracts like steroids, alkaloids, phenolics, glycosides, oils, quinones, tannins etc. The hydroalcoholic extract has more phenolic (26.80±0.51) and alkaloid (20.59±0.22) contents. The antioxidant activity results provide information that the extracts possess concentration dependent activity on tested free radicals. The hydroalcoholic extract has more protective nature against superoxide, DPPH, H2O2 free radicals and reducing power but ethyl acetate extract has more potential against hydroxyl free radical than hydroalcoholic extract. The extracts were found to be safe on toxic studies and In-vivo study results and they play significant role in controlling the oxidative enzymes such as catalase, superoxide dismutase, lipid peroxidation (malonaldehyde) in the body. Thus, it was determined that A. praemorsa have potential bioactive compounds and antioxidant activity.
Collapse
|
403
|
Bungsu I, Kifli N, Ahmad SR, Ghani H, Cunningham AC. Herbal Plants: The Role of AhR in Mediating Immunomodulation. Front Immunol 2021; 12:697663. [PMID: 34249001 PMCID: PMC8264659 DOI: 10.3389/fimmu.2021.697663] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
The prevalence of chronic inflammatory diseases including inflammatory bowel disease (IBD), autoimmunity and cancer have increased in recent years. Herbal-based compounds such as flavonoids have been demonstrated to contribute to the modulation of these diseases although understanding their mechanism of action remains limited. Flavonoids are able to interact with cellular immune components in a distinct way and influence immune responses at a molecular level. In this mini review, we highlight recent progress in our understanding of the modulation of immune responses by the aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor whose activity can be regulated by diverse molecules including flavonoids. We focus on the role of AhR in integrating signals from flavonoids to modulate inflammatory responses using in vitro and experimental animal models. We also summarize the limitations of these studies. Medicinal herbs have been widely used to treat inflammatory disorders and may offer a valuable therapeutic strategy to treat aberrant inflammatory responses by modulation of the AhR pathway.
Collapse
Affiliation(s)
- Izzah Bungsu
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB), Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Nurolaini Kifli
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB), Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Siti Rohaiza Ahmad
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB), Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Hazim Ghani
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB), Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Anne Catherine Cunningham
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB), Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| |
Collapse
|
404
|
Danciu C, Cioanca O, Watz Farcaș C, Hancianu M, Racoviceanu R, Muntean D, Zupko I, Oprean C, Tatu C, Paunescu V, Proks M, Diaconeasa Z, Soica C, Pinzaru I, Dehelean C. Botanical Therapeutics (Part II): Antimicrobial and In Vitro Anticancer Activity against MCF7 Human Breast Cancer Cells of Chamomile, Parsley and Celery Alcoholic Extracts. Anticancer Agents Med Chem 2021; 21:187-200. [PMID: 33109067 DOI: 10.2174/1871520620666200807213734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/21/2020] [Accepted: 06/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND This study was designed as a continuation of a complex investigation about the phytochemical composition and biological activity of chamomile, parsley, and celery extracts against A375 human melanoma and dendritic cells. OBJECTIVE The main aim was the evaluation of the antimicrobial potential of selected extracts as well as the in vitro anticancer activity against MCF7 human breast cancer cells. METHODS In order to complete the picture regarding the phytochemical composition, molecular fingerprint was sketched out by the help of FTIR spectroscopy. The activity of two enzymes (acetylcholinesterase and butyrylcholinesterase) after incubation with the three extracts was spectrophotometrically assessed. The antimicrobial potential was evaluated by disk diffusion method. The in vitro anticancer potential against MCF7 human breast cancer cells was appraised by MTT, LDH, wound healing, cell cycle, DAPI, Annexin-V-PI assays. RESULTS The results showed variations between the investigated extracts in terms of inhibitory activity against enzymes, such as acetyl- and butyrilcholinesterase. Chamomile and parsley extracts were active only against tested Gram-positive cocci, while all tested extracts displayed antifungal effects. Among the screened samples at the highest tested concentration, namely 60μg/mL, parsley was the most active extract in terms of reducing the viability of MCF7 - human breast adenocarcinoma cell line and inducing the release of lactate dehydrogenase. On the other hand, chamomile and celery extracts manifested potent anti-migratory effects. Furthermore, celery extract was the most active in terms of total apoptotic events, while chamomile extract induced the highest necrosis rate. CONCLUSION The screened samples containing phytochemicals belonging in majority to the class of flavonoids and polyphenols can represent candidates for antimicrobial and anticancer agents.
Collapse
Affiliation(s)
- Corina Danciu
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Oana Cioanca
- Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T.Popa" Iasi, 700115, Iasi, Romania
| | - Claudia Watz Farcaș
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Monica Hancianu
- Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T.Popa" Iasi, 700115, Iasi, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Delia Muntean
- Faculty of Medicine, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Istvan Zupko
- Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| | - Camelia Oprean
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Calin Tatu
- OncoGen Centre, County Hospital "Pius Branzeu", 300736, Timisoara, Romania
| | - Virgil Paunescu
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Maria Proks
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine ClujNapoca, 400372, Cluj-Napoca, Romania
| | - Codruta Soica
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
405
|
Bamunuarachchi NI, Khan F, Kim YM. Antimicrobial Properties of Actively Purified Secondary Metabolites Isolated from Different Marine Organisms. Curr Pharm Biotechnol 2021; 22:920-944. [PMID: 32744964 DOI: 10.2174/1389201021666200730144536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/30/2020] [Accepted: 06/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The treatment of infection caused by pathogenic bacteria becomes one of the serious concerns globally. The failure in the treatment was found due to the exhibition of multiple resistance mechanisms against the antimicrobial agents. The emergence of resistant bacterial species has also been observed due to prolong treatment using conventional antibiotics. To combat these problems, several alternative strategies have been employed using biological and chemically synthesized compounds as antibacterial agents. Marine organisms are considered as one of the potential sources for the isolation of bioactive compounds due to the easily available, cost-effective, and eco-friendly. METHODS The online search methodology was adapted for the collection of information related to the antimicrobial properties of marine-derived compounds. These compound has been isolated and purified by different purification techniques, and their structure also characterized. Furthermore, the antibacterial activities have been reported by using broth microdilution as well as disc diffusion assays. RESULTS The present review paper describes the antimicrobial effect of diverse secondary metabolites which are isolated and purified from the different marine organisms. The structural elucidation of each secondary metabolite has also been done in the present paper, which will help for the in silico designing of the novel and potent antimicrobial compounds. CONCLUSION A thorough literature search has been made and summarizes the list of antimicrobial compounds that are isolated from both prokaryotic and eukaryotic marine organisms. The information obtained from the present paper will be helpful for the application of marine compounds as antimicrobial agents against different antibiotic-resistant human pathogenic bacteria.
Collapse
Affiliation(s)
| | - Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan 48513, Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
406
|
Samec M, Liskova A, Koklesova L, Zhai K, Varghese E, Samuel SM, Šudomová M, Lucansky V, Kassayova M, Pec M, Biringer K, Brockmueller A, Kajo K, Hassan STS, Shakibaei M, Golubnitschaja O, Büsselberg D, Kubatka P. Metabolic Anti-Cancer Effects of Melatonin: Clinically Relevant Prospects. Cancers (Basel) 2021; 13:3018. [PMID: 34208645 PMCID: PMC8234897 DOI: 10.3390/cancers13123018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming characterized by alterations in nutrient uptake and critical molecular pathways associated with cancer cell metabolism represents a fundamental process of malignant transformation. Melatonin (N-acetyl-5-methoxytryptamine) is a hormone secreted by the pineal gland. Melatonin primarily regulates circadian rhythms but also exerts anti-inflammatory, anti-depressant, antioxidant and anti-tumor activities. Concerning cancer metabolism, melatonin displays significant anticancer effects via the regulation of key components of aerobic glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP) and lipid metabolism. Melatonin treatment affects glucose transporter (GLUT) expression, glucose-6-phosphate dehydrogenase (G6PDH) activity, lactate production and other metabolic contributors. Moreover, melatonin modulates critical players in cancer development, such as HIF-1 and p53. Taken together, melatonin has notable anti-cancer effects at malignancy initiation, progression and metastasing. Further investigations of melatonin impacts relevant for cancer metabolism are expected to create innovative approaches supportive for the effective prevention and targeted therapy of cancers.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (K.B.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (K.B.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (K.B.)
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (K.Z.); (E.V.); (S.M.S.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (K.Z.); (E.V.); (S.M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (K.Z.); (E.V.); (S.M.S.)
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klašter 1, 66461 Rajhrad, Czech Republic;
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, Slovakia;
| | - Monika Kassayova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafarik University, 04001 Košice, Slovakia;
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (K.B.)
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
- Biomedical Research Centre, Slovak Academy of Sciences, 81439 Bratislava, Slovakia
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Olga Golubnitschaja
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium;
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (K.Z.); (E.V.); (S.M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium;
| |
Collapse
|
407
|
Zalegh I, Akssira M, Bourhia M, Mellouki F, Rhallabi N, Salamatullah AM, Alkaltham MS, Khalil Alyahya H, Mhand RA. A Review on Cistus sp.: Phytochemical and Antimicrobial Activities. PLANTS (BASEL, SWITZERLAND) 2021; 10:1214. [PMID: 34203720 PMCID: PMC8232106 DOI: 10.3390/plants10061214] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Resistance to drugs is reaching alarming levels and is placing human health at risk. With the lack of new antimicrobials drugs, infectious diseases are becoming harder to treat. Hence, there is an increasing awareness of active phytochemicals with therapeutic functions. The tremendous research interest on the Cistus L. genus includes numerous plants used in traditional medicine by people living around the Mediterranean Sea, also resulted in some interesting discoveries and written literature. This review aimed at gathering scientific literature about Cistus species, describing phytochemical profiles and the various pharmacological activities. We also extensively reviewed the antimicrobial activities, including antiviral, antiparasitic, antifungal, and antibacterial potentials of Essential Oils (EO), raw extracts as well as isolated compounds. Mechanisms of action along with methods used are also investigated in this review. Considering the findings of the Cistus species extracts, this genus offers an adequate reserve of active phytochemicals since many have been used to create drugs. Therefore, this review work can serve society by providing a global view on Cistus L. sp. regarding pharmacological potentials and their chemical profiles.
Collapse
Affiliation(s)
- Imane Zalegh
- Research Unit Microbiology, Hygiene & Biomolecule, Laboratory of Virology, Microbiology, Quality & Biotechnology/Ecotoxicology and Biodiversity, FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco; (F.M.); (N.R.); (R.A.M.)
- Laboratory of Physical Chemistry & Bioorganic Chemistry, Research Unit Associated CNRST (URAC 22), FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco;
| | - Mohamed Akssira
- Laboratory of Physical Chemistry & Bioorganic Chemistry, Research Unit Associated CNRST (URAC 22), FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco;
| | - Mohammed Bourhia
- Laboratory of Chemistry, Biochemistry, Nutrition, and Environment, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco;
| | - Fouad Mellouki
- Research Unit Microbiology, Hygiene & Biomolecule, Laboratory of Virology, Microbiology, Quality & Biotechnology/Ecotoxicology and Biodiversity, FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco; (F.M.); (N.R.); (R.A.M.)
| | - Naima Rhallabi
- Research Unit Microbiology, Hygiene & Biomolecule, Laboratory of Virology, Microbiology, Quality & Biotechnology/Ecotoxicology and Biodiversity, FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco; (F.M.); (N.R.); (R.A.M.)
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.S.); (M.S.A.); (H.K.A.)
| | - Mohammed Saeed Alkaltham
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.S.); (M.S.A.); (H.K.A.)
| | - Heba Khalil Alyahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.S.); (M.S.A.); (H.K.A.)
| | - Rajaa Ait Mhand
- Research Unit Microbiology, Hygiene & Biomolecule, Laboratory of Virology, Microbiology, Quality & Biotechnology/Ecotoxicology and Biodiversity, FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco; (F.M.); (N.R.); (R.A.M.)
| |
Collapse
|
408
|
Effects of the Hydroethanolic Extract of Lycopodium selago L. on Scopolamine-Induced Memory Deficits in Zebrafish. Pharmaceuticals (Basel) 2021; 14:ph14060568. [PMID: 34198639 PMCID: PMC8232138 DOI: 10.3390/ph14060568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
This scientific research focused on the production of hydroethanolic extract of the plant species Lycopodium selago L. (L. selago) by the ultrasound-assisted extraction (USAE) and the identification of biocompounds with high antioxidant activity is of interest for possible phytotherapeutic treatment against Alzheimer's disease (AD). The extract was phytochemically analyzed to investigate polyphenols, flavonoids, and identify the sesquiterpenoid alkaloid huperzine A (HupA), which is known in the literature for its great relevance in AD. Evaluation and comparison of the antioxidant activity of the extract were performed by four complementary spectrophotometric methods (DPPH, FRAP, ABTS, ORAC). In vitro tests of the extract showed an excellent reciprocal link between the concentration of polyphenols and the measurement of the antioxidant activity of the extract with the sesquiterpenoid HupA. To confirm the antioxidant activity, L. selago hydroethanolic extract was administered in vivo to zebrafish (Danio rerio) with a pattern of scopolamine-induced cognitive impairment. Moreover, this study explored a possible correlation between the expression of oxidative stress markers in the brain tissue with the behavior of the scopolamine zebrafish model. In vivo tests showed that this fern could be used as a nutritional supply and as a phytotherapeutic method to prevent or treat various neurodegenerative diseases that call for high-nutritive-value medications.
Collapse
|
409
|
Tayarani-Najaran Z, Hadipour E, Seyed Mousavi SM, Emami SA, Mohtashami L, Javadi B. Protective effects of Lavandula stoechas L. methanol extract against 6-OHDA-induced apoptosis in PC12 cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:114023. [PMID: 33716081 DOI: 10.1016/j.jep.2021.114023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is a neurodegenerative disorder associated with oxidative stress-induced neuronal damage and death. In European and Persian Traditional Medicine, aerial parts (leaves, stems, and flowers) of Lavandula stoechas L. have been widely used for treating neurodegenerative disorders including PD. AIM OF THE STUDY Herein, the protective effects of L. stoechas methanol extract were investigated on 6-hydroxydopamine (6-OHDA)-induced cytotoxicity and oxidative damage in PC12 cells. MATERIALS AND METHODS The cells were pretreated with a standardized L. stoechas methanol extract (2.5-20 μg/mL) for 24 h and exposed to 6-OHDA (200 μM) thereafter. The cell viability percentage was determined by AlamarBlue test. Intracellular reactive oxygen species (ROS) production was determined by a fluorimetric method using 2',7'-dichlorodihydrofluorescein diacetate and cellular apoptosis was assessed by the fluorescent probe propidium iodide test. Finally, the expression of proteins involved in apoptosis pathway (Phospho SAPK/JNK, SAPK/JNK, p44/42 MAPK (ERK1/2) and Poly ADP ribose polymerase (PARP)) was measured via Western blot analysis. RESULTS Treatment of PC12 cells with 6-OHDA could significantly increase cytotoxicity, ROS level, and cell apoptosis. Pretreatment of PC12 cells with the extract could significantly decrease 6-OHDA cytotoxicity, ROS production, (2.5 and 5 μg/mL) and cell apoptosis (5 μg/mL). Western blot analysis showed that 6-OHDA exposure could increase the expression of proteins involved in apoptosis signaling, while pretreatment with L. stoechas (5 μg/mL) reduced apoptotic proteins. CONCLUSIONS The present study demonstrated that L. stoechas, which has been traditionally used in Persian Medicine for treating CNS diseases, is a valuable source of active compounds with neuroprotective, anti-oxidant, and anti-apoptotic activity.
Collapse
Affiliation(s)
- Zahra Tayarani-Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Elham Hadipour
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cell and Molecular Biology, Faculty of Science, Kosar University of Bojnord, Bojnord, Iran.
| | - Seyed Mahdi Seyed Mousavi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Leila Mohtashami
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
410
|
Ziaunys M, Mikalauskaite K, Sakalauskas A, Smirnovas V. Using lysozyme amyloid fibrils as a means of scavenging aggregation-inhibiting compounds. Biotechnol J 2021; 16:e2100138. [PMID: 34089232 DOI: 10.1002/biot.202100138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022]
Abstract
The aggregation of amyloidogenic proteins is linked to several amyloidoses, including neurodegenerative disorders, such as Alzheimer's or Parkinson's disease. Currently there are very few effective cures or treatments available, despite countless screenings and clinical trials. One of the most challenging aspects of potential anti-amyloid drug discovery is finding which molecules are the actual inhibitors out of mixtures, which may contain hundreds of distinct compounds. Considering that anti-amyloid compounds would interact with the aggregate, this affinity could be used as a means of separating such compounds from ineffective ones. In this work, we attempt to scavenge potential aggregation-inhibiting molecules out of four, different complexity mixtures, ranging from oxidized gallic acid to tea extract, using lysozyme amyloid fibrils. We show that these compounds bind to aggregates with high affinity and can be later separated from them by different methods.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kamile Mikalauskaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Andrius Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
411
|
Nutraceuticals as Potential Targets for the Development of a Functional Beverage for Improving Sleep Quality. BEVERAGES 2021. [DOI: 10.3390/beverages7020033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Functional beverages can be a valuable component of the human diet with the ability to not only provide essential hydration but to deliver important bioactive compounds that can contribute to chronic disease treatment and prevention. One area of the functional beverage market that has seen an increase in demand in recent years are beverages that promote relaxation and sleep. Sleep is an essential biological process, with optimal sleep being defined as one of adequate duration, quality and timing. It is regulated by a number of neurotransmitters which are, in turn, regulated by dietary intake of essential bioactive compounds. This narrative review aimed to evaluate the latest evidence of the sleep promoting properties of a selection of bioactive compounds (such as L-theanine and L-tryptophan) for the development of a functional beverage to improve sleep quality; and the effectiveness of traditional sleep promoting beverages (such as milk and chamomile). Overall, the bioactive compounds identified in this review, play essential roles in the synthesis and regulation of important neurotransmitters involved in the sleep-wake cycle. There is also significant potential for their inclusion in a number of functional beverages as the main ingredient on their own or in combination. Future studies should consider dosage; interactions with the beverage matrix, medications and other nutraceuticals; bioavailability during storage and following ingestion; as well as the sensory profile of the developed beverages, among others, when determining their effectiveness in a functional beverage to improve sleep quality.
Collapse
|
412
|
Functional components in extracts of Beta vulgaris (Chukandar) parts for antioxidant effect and antiobesity potential with lipase inhibition. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
413
|
Miniaturized Methodologies for Determining the Total Phenol and Flavonoid Concentrations and the Antioxidant Activity. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01934-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
414
|
Wu G, Hui X, Wang R, Dilrukshi H, Zhang Y, Brennan MA, Brennan CS. Sodium caseinate-blackcurrant concentrate powder obtained by spray-drying or freeze-drying for delivering structural and health benefits of cookies. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
415
|
Syafriana V, Febriani A, Suyatno S, Nurfitri N, Hamida F. Antimicrobial Activity of Ethanolic Extract of Sempur (Dillenia suffruticosa (Griff.) Martelli) Leaves against Pathogenic Microorganisms. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i2.1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sempur (Dillenia suffruticosa) leaves are known as a traditional medicine for the people of Bangka-Belitung Island. The local people empirically utilize the boiled water of D. suffruticosa leaves as anti-diarrhea. However, the antimicrobial activity of the ethanol extract of D. suffruticosa leaves has not been reported. This study aims to determine the antimicrobial activity of the ethanol extract of D. suffruticosa leaves against several microorganisms: Staphylococcus aureus as Gram-positive bacteria, Escherichia coli as Gram-negative bacteria, and Candida albicans as fungi. Extraction was carried out by maceration method with 70% ethanol, then screened for phytochemical constituents. The antimicrobial test was carried out by the disc diffusion method using Nutrient Agar (NA) for bacteria, and Sabouraud Dextrose Agar (SDA) for fungi. The results of phytochemical screening showed that the ethanol extract of D. suffruticosa leaves contained alkaloids, flavonoids, tannins, and saponins. The antimicrobial test showed that the extract of D. suffruticosa leaves could inhibit the growth of S. aureus at concentrations of 10%, 20%, and 40% were 8.35±0.05; 9.34±0.32; and 10.52±0.22, respectively. The ethanol extract of D. suffruticosa leaves could inhibit the growth of S. aureus, whereas E. coli and C. albicans did not show any activity.
Collapse
|
416
|
Dang HNP, Quirino JP. Analytical Separation of Carcinogenic and Genotoxic Alkenylbenzenes in Foods and Related Products (2010-2020). Toxins (Basel) 2021; 13:toxins13060387. [PMID: 34071244 PMCID: PMC8228529 DOI: 10.3390/toxins13060387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Alkenylbenzenes are potentially toxic (genotoxic and carcinogenic) compounds present in plants such as basil, tarragon, anise star and lemongrass. These plants are found in various edible consumer products, e.g., popularly used to flavour food. Thus, there are concerns about the possible health consequences upon increased exposure to alkenylbenzenes especially due to food intake. It is therefore important to constantly monitor the amounts of alkenylbenzenes in our food chain. A major challenge in the determination of alkenylbenzenes in foods is the complexity of the sample matrices and the typically low amounts of alkenylbenzenes present. This review will therefore discuss the background and importance of analytical separation methods from papers reported from 2010 to 2020 for the determination of alkenylbenzenes in foods and related products. The separation techniques commonly used were gas and liquid chromatography (LC). The sample preparation techniques used in conjunction with the separation techniques were various variants of extraction (solvent extraction, liquid-liquid extraction, liquid-phase microextraction, solid phase extraction) and distillation (steam and hydro-). Detection was by flame ionisation and mass spectrometry (MS) in gas chromatography (GC) while in liquid chromatography was mainly by spectrophotometry.
Collapse
|
417
|
Badar SN, Iqbal Z, Sajid MS, Rizwan HM, Shareef M, Malik MA, Khan MN. Comparative anthelmintic efficacy of Arundo donax, Areca catechu, and Ferula assa-foetida against Haemonchus contortus. ACTA ACUST UNITED AC 2021; 30:e001221. [PMID: 34076046 DOI: 10.1590/s1984-29612021028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/10/2021] [Indexed: 11/22/2022]
Abstract
In the present study, anthelmintic activities of Arundo (A.) donax L., Areca (Ar.) catechu L., and Ferula (F.) assa-foetida L. were determined. Leaves of A. donax L., latex of F. assa-foetida L. and seeds of Ar. catechu L. in different solvent fractions were subjected to in vitro (egg hatch assay; EHA, and adult motility assay; AMA) and in vivo (faecal egg count reduction test; FECRT) tests of anthelmintic activity using Haemonchus contortus model. In the AMA, crude aqueous methanol extracts (CAME) and ethyl acetate fractions of F. assa-foetida at 10 hr post-treatment showed maximum mortality of H. contortus at 12.5-50 mg mL-1. In the EHA, CAME of F. assa-foetida was identified as a potent ovicide based on its low LC50 (16.9 µg mL-1), followed in order by Ar. catechu and A. donax. Results from the FECRT also showed the extract of F. assa-foetida L. to be more effective than those of Ar. catechu L. and A. donax L., against the gastrointestinal parasitic nematodes. Chloroform and ethyl acetate fractions showed better anthelmintic activities against the adult worms in vitro, while CAME of these plants were better than their crude powders in vivo. It is recommended to document and investigate indigenous knowledge of possible medicinal plants to plan scientific trials that may justify their endorsement.
Collapse
Affiliation(s)
- Syed Nadeem Badar
- Department of Livestock and Dairy Development, Rawalpindi Division, Punjab, Pakistan
| | - Zafar Iqbal
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sohail Sajid
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan.,One Health Laboratory, Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Muhammad Rizwan
- Section of Parasitology, Department of Pathobiology, KBCMA College of Veterinary and Animal Sciences, Narowal, subcampus UVAS Lahore, Pakistan
| | - Muhammad Shareef
- Institute of Animal and Dairy Science, University of Agriculture, Faisalabad, Pakistan
| | | | | |
Collapse
|
418
|
Senizza B, Zhang L, Rocchetti G, Zengin G, Ak G, Yıldıztugay E, Elbasan F, Jugreet S, Mahomoodally MF, Lucini L. Metabolomic profiling and biological properties of six Limonium species: novel perspectives for nutraceutical purposes. Food Funct 2021; 12:3443-3454. [PMID: 33900332 DOI: 10.1039/d0fo02968h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The genus Limonium includes important halophyte plants containing a variety of bioactive compounds of therapeutic interest. In the present work, the untargeted phytochemical profiles of both aerial part and root extracts from six Limonium species namely, L. bellidifolium, L. globuliferum, L. gmelinii, L. lilacinum, L. sinuatum and L. iconicum from Turkey were determined. Furthermore, several biological activities (in vitro antioxidant and enzyme inhibitory effects) were investigated. Overall, significant amounts of total phenolics (43.64-238.18 mg g-1) and flavonoids (1.61-129.69 mg g-1) were recorded. Particularly, the root extracts of L. gmelinii, L. iconicum and L. globuliferum showed the highest total phenolic content (204.13-238.18 mg g-1), whilst the highest total flavonoid content was recorded in the root extracts of L. gmelinii (129.69 mg g-1). Overall, the tested extracts demonstrated potent radical scavenging activities in both DPPH (2,2- diphenyl-1-picrylhydrazyl) and ABTS (3-ethylbenzothiazoline-6-sulphonic acid) (90.10-507.94 mg g-1 and 163.39-1175.34 mg g-1, respectively). However, the highest scavenging potential (p < 0.05) was displayed by the root extracts of L. iconicum. Conversely, the metal chelating ability assay revealed that L. lilacinum root extract showed the highest activity (21.03 mg g-1). Interestingly, all the extracts were found to be active inhibitors of cholinesterases (AChE (acetylcholinesterase): 4.20-5.11 mg GALAE (galantamine equivalent) per g; BChE (butyrylcholinesterase): 3.89-10.75 mg GALAE per g), amylase (0.52-1.09 mmol ACAE (acarbose equivalent) per g) and tyrosinase (119.41-155.67 mg KAE (kojic acid equivalent) per g), unlike for glucosidase (2.31-2.41 mmol ACAE per g). Taken together, these findings demonstrated a diverse chemical profiles and biological of the extracts, to be potentially considered as phytotherapeutic or functional ingredients due to their antioxidant properties and inhibition of key enzymes involved in several diseases.
Collapse
Affiliation(s)
- Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 29122, Piacenza, Italy.
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 29122, Piacenza, Italy.
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 29122, Piacenza, Italy.
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, 42130 Konya, Turkey
| | - Gunes Ak
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, 42130 Konya, Turkey
| | - Evren Yıldıztugay
- Department of Biotechnology, Science Faculty, Selcuk University, Campus, 42130 Konya, Turkey
| | - Fevzi Elbasan
- Department of Biotechnology, Science Faculty, Selcuk University, Campus, 42130 Konya, Turkey
| | - Sharmeen Jugreet
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 29122, Piacenza, Italy.
| |
Collapse
|
419
|
Munir H, Bilal M, Khan MI, Iqbal HM. Gums‐Based Bionanostructures for Medical Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
420
|
Hosny NS, El Khodary SA, El Boghdadi RM, Shaker OG. Effect of Neem (Azadirachta indica) versus 2.5% sodium hypochlorite as root canal irrigants on the intensity of post-operative pain and the amount of endotoxins in mandibular molars with necrotic pulps: a randomized controlled trial. Int Endod J 2021; 54:1434-1447. [PMID: 33884661 DOI: 10.1111/iej.13532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
AIM To assess the effect of Neem versus 2.5% NaOCl as root canal irrigants on the intensity of post-operative pain and amount of endotoxins following root canal treatment of mandibular molars with necrotic pulps. METHODOLOGY This parallel, prospective, double-blinded, randomized controlled trial with allocation ratio 1:1 was conducted in the out-patient clinic of the Endodontic Department, Faculty of Dentistry, Cairo University, Egypt. Fifty healthy patients with mandibular molars with necrotic pulps were randomly assigned into two equal groups using computer software. In the intervention group, root canals were irrigated using Neem; whilst 2.5% NaOCl was used in the control group. A standard root canal treatment was performed in two visits using ProTaper Next rotary files, with no intracanal medication. Pain intensity was assessed using a numerical rating scale (NRS) 6, 12, 24 and 48 h following instrumentation and canal filling. Endotoxin samples were collected using three paper points before and after canal instrumentation and a sandwich ELISA method was used to quantify the level of endotoxins. Demographic, baseline, and outcome data were collected and analysed using chi-square tests (for the comparisons of categorical variables), Mann-Whitney tests (for non-normally distributed variables) and Student's t tests (for normally distributed variables), A P-value < 0.05 was considered to be statistically significant. RESULTS The mean pain scores within the two groups decreased continually over time. The mean pain scores in the Neem group were lower than those in the 2.5% NaOCl group at 6, 12, 24 and 48 h following instrumentation and canal filling with no significant difference between them except at 24 h following instrumentation (P = 0.012). Both irrigants significantly reduced endotoxin levels compared to the pre-instrumentation samples (P < 0.001) by 8% for the NaOCL group and 18% for the Neem group. CONCLUSION Neem and 2.5% NaOCl were not significantly different in terms of reducing the intensity of post-operative pain during all follow-up periods except at 24 h following instrumentation where Neem was associated with lower pain intensity. Both irrigants significantly reduced endotoxin levels but were not effective in eliminating endotoxins completely from root canals of mandibular molars with necrotic pulps.
Collapse
Affiliation(s)
- N S Hosny
- Department of Endodontics, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - S A El Khodary
- Department of Endodontics, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - R M El Boghdadi
- Department of Endodontics, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - O G Shaker
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
421
|
Moharrami S, Hashempour H. Comparative study of low-voltage electric field-induced, ultrasound-assisted and maceration extraction of phenolic acids. J Pharm Biomed Anal 2021; 202:114149. [PMID: 34029975 DOI: 10.1016/j.jpba.2021.114149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 05/16/2021] [Indexed: 11/16/2022]
Abstract
This study designed to conduction an investigation into the effect of low-voltage electric field (EF) on the phenolic acids extraction from plant materials. In this regards, Nepeta racemosa was selected to study as a source of phenolic acids. The EF extracted phenolic acids amounts were compared with ultrasound-assisted and maceration extractions. Suitable extraction condition was optimized for ultrasound-assisted extraction. The EF method was optimized for voltage (40, 50 and 60 V) and electrodes gap (1, 1.5, 2 and 2.5 cm). Phenolic acid amounts and antioxidant activity of extracts were investigated by HPLC and DPPH radical methods, respectively. The optimal condition for EF method extraction of total studied phenolic acids amount was obtained 2.5 cm of electrodes gap and 40 V for applied voltage. The results showed a considerable increasing in total phenolic acid amounts and antioxidant activity for EF comparison with other methods. Total phenolic acid amount and antioxidant activity of maceration, ultrasound-assisted and EF extraction methods were obtained as 3.58, 7.57, 19.88 mg/g dw of plant and IC50 values of 110.77, 81.44, 43.74 μg/mL, respectively. Based on obtained results, EF extraction method caused to increase of phenolic acids amounts 3-4 times and antioxidant activity 2-3 times rather that other methods. The findings for Nepeta racemosa extract suggest application of electric field extraction method for food and industrial purposes because of increasing bioactive compounds recovery and decreasing of time and cost.
Collapse
Affiliation(s)
- Sahar Moharrami
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Hossein Hashempour
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
422
|
Ali R, Rooman M, Mussarat S, Norin S, Ali S, Adnan M, Khan SN. A Systematic Review on Comparative Analysis, Toxicology, and Pharmacology of Medicinal Plants Against Haemonchus contortus. Front Pharmacol 2021; 12:644027. [PMID: 34040520 PMCID: PMC8141741 DOI: 10.3389/fphar.2021.644027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Background:Haemonchus contortus is an important pathogenic nematode parasite and major economic constraint of small ruminants in tropics and subtropics regions. This review is an attempt to systematically address the; (a) efficacy of different plants against H. contortus by in vitro and in vivo proof; (b) toxicology, mechanism of action, and active phyto-compounds involve in anti-haemonchiasis activity; (c) and comparative analysis of plant species evaluated both in vitro and in vivo. Methods: Online databases (Google Scholar, PubMed, Scopus, and ScienceDirect) were searched and published research articles (1980–2020) were gathered and reviewed. Results: A total of 187 plant species were reported belonging to 59 families and 145 genera with Asteraceae and Fabaceae being frequently used. Out of the total plant species, 171 species were found to be evaluated in vitro and only 40 species in vivo. Twenty-four species were commonly evaluated for in vitro and in vivo anti-haemonchiasis activity. Among the reported assays, egg hatching test (EHT) and fecal egg count reduction (FECR) were the most widely used assays in vitro and in vivo, respectively. Moreover, sheep were the frequently used experimental model in vivo. After comparative analysis, Lachesiodendron viridiflorum, Corymbia citriodora, Calotropis procera, and Artemisia herba-alba were found highly effective both in vitro and in vivo. L. viridiflorum inhibited enzymatic activities and metabolic processes of the parasite and was found to be safe without toxic effects. C. citriodora was moderately toxic in vivo, however, the plant extract produced promising nematicidal effects by causing muscular disorganization and changes in the mitochondrial profile. Additionally, C. procera and A. herba-alba despite of their high anti-haemonchiasis activity were found to be highly toxic at the tested concentrations. C. procera caused perforation and tegumental disorganization along with adult worm paralysis. Nineteen compounds were reported, among which anethole and carvone completely inhibited egg hatching in vitro and significantly reduced fecal egg count, decreased male length, and reproductive capacity of female in vivo. Conclusion: This review summarized different medicinal plants owing to nematicidal activities against H. contortus eggs, larvae, and adult worms. Plants like L. viridiflorum, C. citriodora, C. procera, and A. herba-alba, while compounds anethole and carvone having promising nematicidal activities and could be an alternative source for developing novel drugs after further investigation.
Collapse
Affiliation(s)
- Rehman Ali
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Rooman
- Department of Zoology, Hazara University Mansehra, Kohat, Pakistan
| | - Sakina Mussarat
- Department of Botanical and Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Sadia Norin
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Shandana Ali
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Adnan
- Department of Botanical and Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| |
Collapse
|
423
|
Antioxidant Properties of Plant-Derived Phenolic Compounds and Their Effect on Skin Fibroblast Cells. Antioxidants (Basel) 2021; 10:antiox10050726. [PMID: 34063059 PMCID: PMC8147979 DOI: 10.3390/antiox10050726] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Plants are rich sources of a diverse range of chemicals, many of which have significant metabolic activity. One large group of secondary compounds are the phenolics, which act as inter alia potent reactive oxygen scavengers in cells, including fibroblasts. These common dermis residue cells play a crucial role in the production of extracellular matrix components, such as collagen, and maintaining the integrity of connective tissue. Chronic wounds or skin exposure to UV-irradiation disrupt fibroblast function by the generation of reactive oxygen species, which may damage cell components and modify various signaling pathways. The resulting imbalance may be reversed by the antioxidant activity of plant-derived phenolic compounds. This paper reviews the current state of knowledge on the impact of phenolics on fibroblast functionality under oxidative stress conditions. It examines a range of compounds in extracts from various species, as well as single specific plant-derived compounds. Phenolics are a good candidate for eliminating the causes of skin damage including wounds and aging and acting as skin care agents.
Collapse
|
424
|
Othman SNS, Mustapa AN, Ku Hamid KH. Extraction of polyphenols from Clinacanthus nutans Lindau ( C. nutans) by vacuum solvent-free microwave extraction (V-SFME). CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2020.1727452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Siti N. S Othman
- Faculty of Chemical Engineering, Universiti Teknologi MARA, Selangor, Malaysia
| | - Ana N. Mustapa
- Faculty of Chemical Engineering, Universiti Teknologi MARA, Selangor, Malaysia
| | - Ku Halim Ku Hamid
- Faculty of Chemical Engineering, Universiti Teknologi MARA, Selangor, Malaysia
| |
Collapse
|
425
|
Guan R, Van Le Q, Yang H, Zhang D, Gu H, Yang Y, Sonne C, Lam SS, Zhong J, Jianguang Z, Liu R, Peng W. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. CHEMOSPHERE 2021; 271:129499. [PMID: 33445014 DOI: 10.1016/j.chemosphere.2020.129499] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Phytochemicals refer to active substances in plant-based diets. Phytochemicals found in for example fruits, vegetables, grains and seed oils are considered relatively safe for consumption due to mammal-plant co-evolution and adaptation. A number of human diseases are related to oxidative stress caused by for example chemical environmental contaminants in air, water and food; while also lifestyle including smoking and lack of exercise and dietary preferences are important factors for disease development in humans. Here we explore the dietary sources of antioxidant phytochemicals that have beneficial effects on oxidative stress, cardiovascular and neurological diseases as well as cancer. Plant-based diets usually contain phenolic acids, flavonoids and carotenoids, which have strong antioxidant properties, and therefore remove the excess of active oxygen in the body, and protect cells from damage, reducing the risk of cardiovascular and Alzheimer's disease. In most cases, obesity is related to diet and inactivity and plant-based diets change lipid composition and metabolism, which reduce obesity related hazards. Cruciferous and Allium vegetables are rich in organic sulphides that can act on the metabolism of carcinogens and therefore used as anti-cancer and suppressing agents while dietary fibres and plant sterols may improve intestinal health and prevent intestinal diseases. Thus, we recommend a diet rich in fruits, vegetables, and grains as its content of phytochemicals may have the potential to prevent or improve a broad sweep of various diseases.
Collapse
Affiliation(s)
- Ruirui Guan
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Han Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangquan Zhang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhu Jianguang
- Pharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Runqiang Liu
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
426
|
Moharram FA, Nagy MM, El Dib RA, El-Tantawy MM, El Hossary GG, El-Hosari DG. Pharmacological activity and flavonoids constituents of Artemisia judaica L aerial parts. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113777. [PMID: 33412247 DOI: 10.1016/j.jep.2021.113777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Artemisia judaica L is an aromatic medicinal plant growing widely in Saint Katherine, Sinai, Egypt, and used in traditional medicine as a herbal remedy for antibacterial, anthelmintic, antidiabetic, analgesic and anti-inflammatory activities. Additionally, other Arabic regions commonly used it in their folk medicines for the treatment of fungal infections, atherosclerosis, cancer, diabetes, arthritis, and inflammatory-related diseases. AIM OF THE STUDY Based on the traditional medicinal uses of A. judaica, the present study was designed to validate some of the traditional uses as the analgesic, anti-inflammatory, antipyretic, hepatoprotective, antidiabetic, and antioxidant activities of 80% aqueous methanol extract (AME) of A. judaica aerial parts as well as isolation and identification of its flavonoid content. MATERIALS AND METHODS AME of A. judaica aerial parts was fractionated using column chromatography and the structures of the isolated compounds were established using different spectroscopic data. Analgesic activity was evaluated using acetic acid-induced writhing in mice; antipyretic activity was assessed using yeast suspension-induced hyperthermia in rats; anti-inflammatory activity was evaluated using carrageenan-induced paw edema; the hepatoprotective effect was studied by measuring liver enzymes in carbon tetrachloride(CCl4)-induced hepatotoxicity rats while antidiabetic activity was estimated in alloxan hyperglycemia. RESULTS Eight flavone compounds namely luteolin 4' methyl ether 7-O-β-D-4C1-glucopyranoside (1), 8-methoxyapigenin 7-O-β-D-4C1-galactopyranoside (2), isovitexin (3), 8-methoxyluteolin 7-O-β-D-4C1-glucopyranoside (4), diosmetin (5), cirsimaritin (6), luteolin (7), and apigenin (8) were identified from AME of A. judaica. The AME was found to be non-toxic to mice up to 5 g/kg b.w. Moreover, it exhibits significant analgesic antipyretic, anti-inflammatory, antidiabetic, hepatoprotective, and antioxidant activities in a dose-dependent manner. CONCLUSION The AME was nontoxic; it exhibits significant analgesic, antipyretic, anti-inflammatory, antidiabetic, hepatoprotective, and antioxidant activities. Moreover, the isolated flavone was identified from AME for the first time.
Collapse
Affiliation(s)
- Fatma A Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| | - Maii M Nagy
- Department of Phytochemistry, National Organization for Drug Control and Research, Giza, Egypt
| | - Rabab A El Dib
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mona M El-Tantawy
- Department of Phytochemistry, National Organization for Drug Control and Research, Giza, Egypt
| | - Ghada G El Hossary
- Department of Pharmacology, Research Institute of Ophthalmology, Giza, Egypt
| | - Doaa G El-Hosari
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
427
|
Jahromi KE, Nematollahi M, Krebbers R, Abbas MA, Khodabakhsh A, Harren FJM. Fourier transform and grating-based spectroscopy with a mid-infrared supercontinuum source for trace gas detection in fruit quality monitoring. OPTICS EXPRESS 2021; 29:12381-12397. [PMID: 33984999 DOI: 10.1364/oe.418072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
We present a multi-species trace gas sensor based on a fast, compact home-built Fourier transform spectrometer (FTS) combined with a broadband mid-infrared supercontinuum (SC) source. The spectrometer covers the spectral bandwidth of the SC source (2 - 4 µm) and provides a best spectral resolution of 1 GHz in 6 seconds. It has a detection sensitivity of a few hundred of ppbv Hz-1/2 for different gas species. We study the performance of the developed spectrometer in terms of precision, linearity, long-term stability, and multi-species detection. We use the spectrometer for measuring fruit-produced volatiles under different atmospheric conditions and compare the performance with a previously developed scanning grating-based spectrometer.
Collapse
|
428
|
Lambrechts IA, Lall N. Traditional usage and biological activity of Plectranthus madagascariensis and its varieties: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113663. [PMID: 33278544 DOI: 10.1016/j.jep.2020.113663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plectranthus madagascariensis (Pers.) Benth. is an indigenous aromatic South African plant species that are traditionally used to treat various dermatological and respiratory ailments. AIM OF THE STUDY Three varieties of P. madagascariensis exist in South Africa, namely, Plectranthus aliciae (Codd) van Jaarsv. & T.J. Edwards, Plectranthus ramosior (Benth.) Van Jaarsv. and Plectranthus madagascariensis (Pers.) Benth var. madagascariensis. This article summarizes the documented ethnobotanical uses and research which has been conducted to date on the chemical constituents and biological effects of P. madagascariensis and its varieties. This review aimed to investigate and highlight the lack scientific reports of the potential activity of these varieties based on their traditional usage and to emphasise the need for further investigation of the benefits of P. madagascariensis and its varieties. MATERIALS AND METHODS Extensive database retrieval using platforms not limited to but including Google Scholar, ScienceDirect and PubMed, was performed by using keywords such as "Plectranthus madagascariensis" "Plectranthus madagascariensis var. aliciae", "Plectranthus aliciae", "Plectranthus ramosior", "Plectranthus madagascariensis var. ramosior" and "Plectranthus hirtus" In addition, relevant books and digital documentation were consulted to collect all available scientific literature to provide a comprehensive review. RESULTS Several studies have reported the traditional usage of P. madagascariensis for the treatment of diseases related to the respiratory system such as coughs, colds and asthma as well as dermatological disorders associated with wounds and inflammation. Whilst there are no reports on the traditional usage of P. madagascariensis varieties to treat other maladies, several other species within the genus are used in other traditional practices. Plectranthus ramosior is used as a toxin for fishing. In literature, seven major phytochemical compounds have been identified from P. madagascariensis. Its extract and essential oil contain polyphenols, abietane diterpenes and abietane diterpenes with a quinone moiety. The extracts and major chemical constituents of P. madagascariensis and its major phytochemicals have reported activity against several biological targets. Reports relating to the antibacterial activity of P. madagascariensis against microbes associated with tuberculosis and wound infections has been consistent and correlates with the documented traditional usage of the plant. Literature reported on the antibacterial activity of P. aliciae targeting bacteria associated with wound infections and lung cancer cells. No further literature reports of the biological activity of the other P. madagascariensis varieties have been found. Other noteworthy biological activities reported in the literature of P. madagascariensis and its compounds include their activities against targets of Alzheimer's disease and breast cancer, in particular. This activity is not related to the traditional usage of the plant. CONCLUSION Plectranthus madagascariensis and its compounds have been proven to be effective in treating a range of maladies. Based on the extensive literature on this plant, it can be concluded that numerous in vitro pharmacological activities of P. madagascariensis have been reported. However, there is a lack of information available for this species with regards to its in vivo data including both pre-clinical and clinical studies. Since the extract of P. madagascariensis and its isolated compounds have displayed noteworthy anticancer potential, we recommend further investigation of pharmacokinetic studies to be included in future research.
Collapse
Affiliation(s)
- Isa Anina Lambrechts
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa.
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa; School of Natural Resources, University of Missouri, Columbia, MO, United States; College of Pharmacy, JSS Academy of Higher Education and Research, India.
| |
Collapse
|
429
|
Rather MA, Gupta K, Mandal M. Inhibition of biofilm and quorum sensing-regulated virulence factors in Pseudomonas aeruginosa by Cuphea carthagenensis (Jacq.) J. F. Macbr. Leaf extract: An in vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113699. [PMID: 33340600 DOI: 10.1016/j.jep.2020.113699] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMCOLOGICAL RELEVANCE Microbial biofilm formation, a quorum sensing (QS) regulated process, is one of the major causes of nosocomial and chronic infections, foodborne diseases, and associated deaths. Various approaches have been used to eradicate the menace of biofilm. Ethnomedicinal plants as potent antibiofilm agents are gaining a lot of interest in an era where the drug resistance is increasing and the availability of potent antibiotics is no longer promised. In this context, the methanol extract of Cuphea carthagenensis (CCMD), an ethno-medicinal and culinary herb, was evaluated as an antibiofilm and anti-QS agent against Pseudomonas aeruginosa. AIM OF THE STUDY The aim of the study is to evaluate the antibiofilm and anti-QS activity of an ethnomedicinal plant against a strong biofilm forming microorganism, P. aeruginosa. METHODS Antibiofilm activity of CCMD was demonstrated at different concentrations by Tissue Culture Plate, Test Tube method and other microscopic techniques. The effect of CCMD on QS and QS-related virulence factors viz. Pyocyanin, exopolymeric substance matrix (EPS), total protease, elastase, pyoverdin and swimming motility in P. aeruginosa were also evaluated. Antioxidant activity (DPPH & FRAP), total phenolic and flavonoid content were also checked. In order to determine the composition of the extract HPLC analysis was also performed. RESULTS In vitro study demonstrated a significant inhibition of biofilm formation (81.88 ± 2.57%) as well as production of QS-dependent virulence factors in P. aeruginosa. The extract also inhibited violacein production (83.31 ± 2.77%) in Chromobacterium violaceum which correlates with the reduction in QS-mediated virulence factors. The extract showed 64.79% ± 0.83% DPPH scavenging activity and reduction of ferricyanide complex (Fe3+) to the ferrous form (Fe2+) in DPPH and FRAP assay, respectively. Furthermore, the extract showed thermal stability and does not have any growth inhibitory effect on P. aeruginosa. The HPLC analysis demonstrated the presence of ellagic acid, ascorbic acid and hippuric acid in the extract. CONCLUSION This work is the first to demonstrate that C. carthagenensis can attenuate biofilm formation and QS-mediated virulence factors of P. aeruginosa. Further investigation is required to use this ethnomedicinal plant (CCMD) as an important source of antibiofilm agents.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India.
| | - Kuldeep Gupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India.
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India.
| |
Collapse
|
430
|
Ojo O, Ndinteh DT. Traditional uses, biological activities, and phytochemicals of Lecaniodiscus cupanioides: a review. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Medicinal plants are indispensable source of therapeutic agents, and have proved to be “warehouse” of lead drug candidates. Lecaniodiscus cupanioides Planch. ex Benth is a medicinal tree plant that is extensively distributed in both Asia and Africa. The species has many ethnomedicinal uses in the treatment of fever, cough, typhoid, wound, skin infection, measles, jaundice, diabetes, sexual dysfunction, cancer, bone fracture, and as galactogogues. In the recent decades, the extracts and phytochemicals of L. cupanioides have been investigated to possess antibacterial, anticancer, aphrodisiac, antifungal, cytotoxic, antidiabetic, antiprotozoal, antioxidant, antidiarrhoeal, analgesic and ameliorative properties. However, triterpenoids which have been linked to its anticancer and antifungal actions, are the only isolated active constituents identified from the species despite the results of the phytochemical screenings and reported biological activities. Moreover, the mechanisms of action of the extracts and active components are yet to be fully elucidated. This paper provides a general review on the ethnomedicinal, phytochemicals, and biological activities of L. cupanioides, and lays a solid foundation for future investigations on the plant.
Collapse
Affiliation(s)
- Olusesan Ojo
- Department of Chemical Sciences , University of Johannesburg , Doornfontein , Johannesburg 2028, South Africa
| | - Derek T. Ndinteh
- Department of Chemical Sciences , University of Johannesburg , Doornfontein , Johannesburg 2028, South Africa
| |
Collapse
|
431
|
Ilo SU, Akuru EA, Egbo JC, Oyeagu CE, Edeh HO. Dietary effects of Garcinia kola seed meal on growth performance, hematology and serum biochemical parameters of weaned rabbits. Vet World 2021; 14:499-507. [PMID: 33776317 PMCID: PMC7994132 DOI: 10.14202/vetworld.2021.499-507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Aim: Garcinia kola seed (GKS) is used to prevent and cure a number of gastric-related ailments. GKS contain a copious amount of polyphenols and can be utilized as a natural growth promoter in the nutrition of weaned rabbits. This study aimed to determine the dietary effects of GKS meal (GKSM) on the growth performance, hematology and serum biochemical parameters of weaned rabbits. Materials and Methods: GKS were dried and ground into powder. Thirty-two 8-week-old crossbred rabbits with an average weight of 614 g were randomly divided into four dietary groups. The diets were designated as follows: Control (corn-soybean based diet with 0% GKSM) and the GKSM-supplemented diets with 1.5% GKSM, 3% GKSM, and 4.5% GKSM. On the 56th day of the feeding trial, blood was collected from the marginal ear vein of all rabbits and transferred into two separate labeled tubes. The first set of blood was used to determine the hematological indices. The second set of blood was transferred into plain bottles and allowed to coagulate. The coagulated blood was subjected to standard methods of serum separation, and the sera were harvested and used to evaluate serum biochemical parameters. Results: Although the average final body weight was highest in rabbits fed with 1.5% GKSM; this value was similar to rabbits fed with 0% and 4.5% GKSM. The average daily weight gain was highest in rabbits fed with 1.5% GKSM, while the feed conversion ratio was improved in the 0% and 1.5% GKSM groups. The dietary treatments also had a significant effect on the red blood cell count (RBC) and hemoglobin (Hb) concentration, while other blood parameters did not differ significantly (p > 0.05). Higher inclusion levels (3% and 4.5%) of GKSM led to a significant increase in RBC and Hb values (p < 0.05). The total protein increased at all levels of GKSM inclusion (p < 0.05). Bilirubin, sodium, and potassium levels significantly decreased at 4.5% GKSM inclusion (p < 0.05). Urea levels were lowered at 1.5% and 4.5% GKSM inclusion, while cholesterol levels were decreased at 3% and 4.5% dietary levels. Conclusion: From the results of the present study, the supplementation of up to 4.5% GKSM revealed no harmful effect on the hematological and serum biochemical parameters of weaned rabbits, while their growth performance improved at a 1.5% inclusion level of GKSM.
Collapse
Affiliation(s)
| | - Eunice Amaka Akuru
- Department of Animal Science, University of Nigeria Nsukka 410001, Nigeria.,Department of Livestock and Pasture Science, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape, South Africa
| | | | - Chika Ethelbert Oyeagu
- Department of Agriculture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Wellington Campus, Private Bag X8, Wellington 7654, Western Cape, South Africa
| | - Henry Oyeji Edeh
- Department of Animal Science, University of Nigeria Nsukka 410001, Nigeria
| |
Collapse
|
432
|
Kim WS, Seo JH, Lee JI, Ko ES, Cho SM, Kang JR, Jeong JH, Jeong YJ, Kim CY, Cha JD, Ryu YB. The Metabolite Profile in Culture Supernatant of Aster yomena Callus and Its Anti-Photoaging Effect in Skin Cells Exposed to UVB. PLANTS 2021; 10:plants10040659. [PMID: 33808279 PMCID: PMC8066191 DOI: 10.3390/plants10040659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Aster yomena (A. yomena) extract has anti-inflammatory, antioxidant, anti-asthma, and anti-atopic effects. However, the commercial use of A. yomena extract requires a long processing time with specific processing steps (including heat treatment and ethanol precipitation), and there are various environmental problems. We aimed to build a system to produce A. yomena extract by culturing the callus in a bioreactor that can allow rapid process scale-up to test the effect of extract (AYC-CS-E) isolated from culture supernatant of A. yomena callus on photoaging of human keratinocytes (HaCaT) caused by ultraviolet B (UVB) exposure. Through screening analysis based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS), 17 major metabolites were tentatively identified from AYC-CS-E for the first time. The suppression of cell proliferation caused by UVB was effectively alleviated in UVB-irradiated HaCaT cells treated with AYC-CS-E. Treatment with AYC-CS-E strongly induced the formation of type I procollagen and the inhibition of elastase in UVB-irradiated HaCaT cells and significantly reduced the expression of matrix metalloproteinase (MMP)-1. In addition, treatment of UVB-irradiated HaCaT cells with AYC-CS-E effectively improved various factors associated with an inflammatory reaction, skin damage recovery, skin moisture retention, and hyper-keratinization caused by photoaging, such as reactive oxygen species (ROS), pro-inflammatory cytokines, transforming growth factor beta (TGF-β), MMP-3, MMP-9, filaggrin, hyaluronic acid synthase 2 (HAS-2), keratin 1 (KRT-1), nuclear factor-kappa B (NF-κB), and nuclear factor erythroid 2-related factor 2 (Nrf2) at the gene and protein levels. These results suggest that AYC-CS-E can be used as a cosmetic ingredient for various skin diseases caused by photoaging, and the current callus culture system can be used commercially to supply cosmetic ingredients.
Collapse
Affiliation(s)
- Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si 56212, Korea; (W.S.K.); (J.-I.L.); (Y.J.J.); (C.Y.K.)
| | - Jeong Hun Seo
- Department of Bio-Material and Product Development and R&D Center, General Bio, Namwon-si 55793, Korea; (J.H.S.); (E.-S.K.); (S.-M.C.); (J.-R.K.); (J.-H.J.)
| | - Jae-In Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si 56212, Korea; (W.S.K.); (J.-I.L.); (Y.J.J.); (C.Y.K.)
| | - Eun-Sil Ko
- Department of Bio-Material and Product Development and R&D Center, General Bio, Namwon-si 55793, Korea; (J.H.S.); (E.-S.K.); (S.-M.C.); (J.-R.K.); (J.-H.J.)
| | - Sang-Min Cho
- Department of Bio-Material and Product Development and R&D Center, General Bio, Namwon-si 55793, Korea; (J.H.S.); (E.-S.K.); (S.-M.C.); (J.-R.K.); (J.-H.J.)
| | - Jea-Ran Kang
- Department of Bio-Material and Product Development and R&D Center, General Bio, Namwon-si 55793, Korea; (J.H.S.); (E.-S.K.); (S.-M.C.); (J.-R.K.); (J.-H.J.)
| | - Jong-Hoon Jeong
- Department of Bio-Material and Product Development and R&D Center, General Bio, Namwon-si 55793, Korea; (J.H.S.); (E.-S.K.); (S.-M.C.); (J.-R.K.); (J.-H.J.)
| | - Yu Jeong Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si 56212, Korea; (W.S.K.); (J.-I.L.); (Y.J.J.); (C.Y.K.)
| | - Cha Young Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si 56212, Korea; (W.S.K.); (J.-I.L.); (Y.J.J.); (C.Y.K.)
| | - Jeong-Dan Cha
- Department of Bio-Material and Product Development and R&D Center, General Bio, Namwon-si 55793, Korea; (J.H.S.); (E.-S.K.); (S.-M.C.); (J.-R.K.); (J.-H.J.)
- Correspondence: (J.-D.C.); (Y.-B.R.); Tel.: +82-63-263-0001 (J.-D.C.); +82-63-570-5171 (Y.-B.R.)
| | - Young-Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si 56212, Korea; (W.S.K.); (J.-I.L.); (Y.J.J.); (C.Y.K.)
- Correspondence: (J.-D.C.); (Y.-B.R.); Tel.: +82-63-263-0001 (J.-D.C.); +82-63-570-5171 (Y.-B.R.)
| |
Collapse
|
433
|
Dall’Acqua S, Sinan KI, Sut S, Ferrarese I, Etienne OK, Mahomoodally MF, Lobine D, Zengin G. Evaluation of Antioxidant and Enzyme Inhibition Properties of Croton hirtus L'Hér. Extracts Obtained with Different Solvents. Molecules 2021; 26:1902. [PMID: 33800622 PMCID: PMC8038089 DOI: 10.3390/molecules26071902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
Croton hirtus L'Hér methanol extract was studied by NMR and two different LC-DAD-MSn using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) sources to obtain a quali-quantitative fingerprint. Forty different phytochemicals were identified, and twenty of them were quantified, whereas the main constituents were dihydro α ionol-O-[arabinosil(1-6) glucoside] (133 mg/g), dihydro β ionol-O-[arabinosil(1-6) glucoside] (80 mg/g), β-sitosterol (49 mg/g), and isorhamnetin-3-O-rutinoside (26 mg/g). C. hirtus was extracted with different solvents-namely, water, methanol, dichloromethane, and ethyl acetate-and the extracts were assayed using different in vitro tests. The methanolic extracts presented the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP) values. All the tested extracts exhibited inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with a higher activity observed for dichloromethane (AChE: 5.03 and BChE: 16.41 mgGALAE/g), while the methanolic extract showed highest impact against tyrosinase (49.83 mgKAE/g). Taken together, these findings suggest C. hirtus as a novel source of bioactive phytochemicals with potential for commercial development.
Collapse
Affiliation(s)
- Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.)
| | - Kouadio Ibrahime Sinan
- Department of Biology, Science Faculty, Selcuk University, Campus, 42130 Konya, Turkey; (K.I.S.); (G.Z.)
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.)
| | - Irene Ferrarese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.)
| | - Ouattara Katinan Etienne
- Laboratoire de Botanique, UFR Biosciences, Université Félix Houphouët-Boigny, 00225 Abidjan, Côte d’Ivoire;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius;
| | - Devina Lobine
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius;
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, 42130 Konya, Turkey; (K.I.S.); (G.Z.)
| |
Collapse
|
434
|
Balkrishna A, Verma S, Sharma P, Tomer M, Srivastava J, Varshney A. Comprehensive and Rapid Quality Evaluation Method for the Ayurvedic Medicine Divya-Swasari-Vati Using Two Analytical Techniques: UPLC/QToF MS and HPLC-DAD. Pharmaceuticals (Basel) 2021; 14:297. [PMID: 33801579 PMCID: PMC8067215 DOI: 10.3390/ph14040297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
Divya-Swasari-Vati (DSV) is a calcium-containing herbal medicine formulated for the symptomatic control of respiratory illnesses observed in the current COVID-19 pandemic. DSV is an Ayurvedic medicine used for the treatment of chronic cough and inflammation. The formulation has shown its pharmacological effects against SARS-CoV-2 induced inflammation in the humanized zebrafish model. The present inventive research aimed to establish comprehensive quality parameters of the DSV formulation using validated chromatographic analytical tools. Exhaustive identification of signature marker compounds present in the plant ingredients was carried out using ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/QToF MS). This was followed by simultaneous estimation of selected marker components using rapid and reliable high-performance liquid chromatography (HPLC) analysis. Eleven marker components, namely gallic acid, protocatechuic acid, methyl gallate, ellagic acid, coumarin, cinnamic acid, glycyrrhizin, eugenol, 6-gingerol, piperine and glabridin, were selected out of seventy-four identified makers for the quantitative analysis in DSV formulation. Validation of the HPLC method was evaluated by its linearity, precision, and accuracy tests as per the International Council of Harmonization (ICH) guidelines. Calibration curves for the eleven marker compounds showed good linear regression (r2 > 0.999). The relative standard deviation (RSD) value of intraday and interday precision tests were within the prescribed limits. The accuracy test results ranged from 92.75% to 100.13%. Thus, the present inclusive approach is first of its kind employing multi-chromatographic platforms for identification and quantification of the marker components in DSV, which could be applied for routine standardization of DSV and other related formulations.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar 249 405, Uttarakhand, India; (A.B.); (S.V.); (P.S.); (M.T.); (J.S.)
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar 249 405, Uttarakhand, India
| | - Sudeep Verma
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar 249 405, Uttarakhand, India; (A.B.); (S.V.); (P.S.); (M.T.); (J.S.)
| | - Priyanka Sharma
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar 249 405, Uttarakhand, India; (A.B.); (S.V.); (P.S.); (M.T.); (J.S.)
| | - Meenu Tomer
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar 249 405, Uttarakhand, India; (A.B.); (S.V.); (P.S.); (M.T.); (J.S.)
| | - Jyotish Srivastava
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar 249 405, Uttarakhand, India; (A.B.); (S.V.); (P.S.); (M.T.); (J.S.)
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar 249 405, Uttarakhand, India; (A.B.); (S.V.); (P.S.); (M.T.); (J.S.)
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar 249 405, Uttarakhand, India
| |
Collapse
|
435
|
Brice Landry K, Tariq S, Malik A, Sufyan M, Ashfaq UA, Ijaz B, Shahid AA. Berberis lyceum and Fumaria indica: in vitro cytotoxicity, antioxidant activity, and in silico screening of their selected phytochemicals as novel hepatitis C virus nonstructural protein 5A inhibitors. J Biomol Struct Dyn 2021; 40:7829-7851. [PMID: 33764266 DOI: 10.1080/07391102.2021.1902395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Berberis lyceum and Fumaria indica are two Pakistani indigenous herbal medicines used to treat liver infections, including hepatitis C virus (HCV). This study aimed to evaluate the cytotoxicity, and antioxidant activity of these plant extracts and computationally screen their selected phytoconstituents as HCV NS5A inhibitors. The viability of HepG2 cells was assessed 24 h and 48 h post-treatment using colorimetric and dye exclusion methods. Antioxidant properties were examined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH), reducing power, and total antioxidant capacity assays. Seventeen known phytochemicals identified from each plant were docked into the active binding site of HCV NS5A protein. The top hit ligands were analyzed for their druglikeness properties and the indices of absorption, distribution, metabolism, elimination, and toxicity (ADMET). The results showed that both plant extracts were non-toxic (CC50 > 200 µg/ml). The IC50 values of DPPH-radical scavenging activity were 51.02 ± 0.94 and 62.91 ± 1.85 µg/ml for B. lyceum and F. indica, respectively. They also exhibited reducing power and total antioxidant capacity.The phytochemicals were identified as potent HCV NS5A inhibitors with good druglikeness and ADMET properties. Six of the docked phytochemicals exhibited higher binding scores (-17.9 to -19.2 kcal/mol) with HCV NS5A protein than the standard drug, daclatasvir (-17.2 kcal/mol). Molecular dynamics (MD) simulation confirmed the stability of two compounds, berbamine and paprafumine at 100 ns with active site of HCV NS5A protein. The identified compounds through molecular docking and MD simulation could have potential as HCV NS5A inhibitor after further validation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Koloko Brice Landry
- Laboratory of Applied and Functional Genomics, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Somayya Tariq
- Laboratory of Applied and Functional Genomics, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ayesha Malik
- Laboratory of Applied and Functional Genomics, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bushra Ijaz
- Laboratory of Applied and Functional Genomics, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ahmad Ali Shahid
- Laboratory of Applied and Functional Genomics, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
436
|
Naß J, Kampf CJ, Efferth T. Increased Stress Resistance and Lifespan in Chaenorhabditis elegans Wildtype and Knockout Mutants-Implications for Depression Treatment by Medicinal Herbs. Molecules 2021; 26:molecules26071827. [PMID: 33805024 PMCID: PMC8036369 DOI: 10.3390/molecules26071827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Depression and anxiety disorders are widespread diseases, and they belong to the leading causes of disability and greatest burdens on healthcare systems worldwide. It is expected that the numbers will dramatically rise during the COVID-19 pandemic. Established medications are not sufficient to adequately treat depression and are not available for everyone. Plants from traditional medicine may be promising alternatives to treat depressive symptoms. The model organism Chaenorhabditis elegans was used to assess the stress reducing effects of methanol/dichlormethane extracts from plants used in traditional medicine. After initial screening for antioxidant activity, nine extracts were selected for in vivo testing in oxidative stress, heat stress, and osmotic stress assays. Additionally, anti-aging properties were evaluated in lifespan assay. The extracts from Acanthopanax senticosus, Campsis grandiflora, Centella asiatica, Corydalis yanhusuo, Dan Zhi, Houttuynia cordata, Psoralea corylifolia, Valeriana officinalis, and Withaniasomnifera showed antioxidant activity of more than 15 Trolox equivalents per mg extract. The extracts significantly lowered ROS in mutants, increased resistance to heat stress and osmotic stress, and the extended lifespan of the nematodes. The plant extracts tested showed promising results in increasing stress resistance in the nematode model. Further analyses are needed, in order to unravel underlying mechanisms and transfer results to humans.
Collapse
Affiliation(s)
- Janine Naß
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Christopher J. Kampf
- Department for Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
- Correspondence: ; Tel.: +49-6131-3925751
| |
Collapse
|
437
|
Gafur A, Sukamdani GY, Kristi N, Maruf A, Xu J, Chen X, Wang G, Ye Z. From bulk to nano-delivery of essential phytochemicals: recent progress and strategies for antibacterial resistance. J Mater Chem B 2021; 8:9825-9835. [PMID: 33000844 DOI: 10.1039/d0tb01671c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial biofilms caused by antibiotic resistance are a severe cause of infection threatening human health nowadays. The primary causes of this emerging threat are poor penetration of conventional antibiotics and the growing number of varied strains of resistant bacteria. Recently, bulk phytochemical oils have been widely explored for their potential as antibacterial agents. However, due to their poor solubility, low stability, and highly volatile properties, essential oils are not effective for in vitro and in vivo antibacterial applications and require further preparation. In this review, we discuss the recent progress and strategies to overcome the drawbacks of bulk phytochemical oils using nano-delivery, as well as the current challenges and future outlook of these nano-delivery systems against bacterial resistance.
Collapse
Affiliation(s)
- Alidha Gafur
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Gerry Yusuf Sukamdani
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Natalia Kristi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Ali Maruf
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Jing Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Xue Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
438
|
Patil P, Killedar S. Chitosan and glyceryl monooleate nanostructures containing gallic acid isolated from amla fruit: targeted delivery system. Heliyon 2021; 7:e06526. [PMID: 33851042 PMCID: PMC8024605 DOI: 10.1016/j.heliyon.2021.e06526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 03/11/2021] [Indexed: 12/03/2022] Open
Abstract
Gallic acid, active constituent of amla fruit its natural abundance with beneficial multi actions in body make them attractive for clinical applications. In present study, we focused on extracting, separating and characterizing gallic acid from amla and further formulated into chitosan nanoparticles, so bring it to increase its aqueous solubility and thereby bioactivity. Gallic acid nanoparticles were prepared by using poloxamer 407, chitosan and Glyceryl Monooleate (GMO) using probe sonicator and high pressure homogenization method. Prepared nanoparticles were characterized by particle size, zeta potential, DSC, XRD, SEM, entrapment efficiency, loading content, in-vitro release and stability study. They showed approximately 76.80% encapsulation of gallic acid with average size of 180.8 ± 0.21 nm, and zeta potential +24.2 mV. The cumulative in vitro drug release upto 24 hrs 77.16% was achieved suggesting that from all our findings, it can be concluded that work will facilitate extraction, design and fabrication of nanoparticles for protection and sustained release of gallic acid particularly to colonic region.
Collapse
Affiliation(s)
- Poournima Patil
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur Maharashtra, India
| | - Suresh Killedar
- Department of Pharmacognosy, Shree Sant Gajanan Maharaj College of Pharmacy, Gadhiglaj Mahagaon Maharashtra, India
| |
Collapse
|
439
|
Suleiman RB, Muhammad A, Umara IA, Ibrahima MA, Erukainure OL, Forcados GE, Katsayal SB. Kolaviron Ameliorates 7, 12-Dimethylbenzanthracene - Induced Mammary Damage in Female Wistar Rats. Anticancer Agents Med Chem 2021; 22:181-192. [PMID: 34225638 DOI: 10.2174/1871520621666210322101232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/27/2020] [Accepted: 01/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Kolaviron (KV) is a flavonoid rich portion obtained from Garcinia kola seeds with a number of reported pharmacological effects. However, its ameliorative effects on 7,12-Dimethylbenzanthracene (DMBA)-induced mammary damage has not been fully investigated, despite the reported use of the seeds in the treatment of inflammatory related disorders. OBJECTIVE To evaluate the ameliorative effects of KV on DMBA-induced mammary damage in female Wistar rats. METHODS Forty-nine (49) female Wistar rats were randomly assigned into seven groups of seven rats each. DMBA was administered orally to rats in five of the groups as a single dose of 80 mg/kg body wt while the remaining two groups received the vehicle. The rats were palpated weekly for 3 months to monitor tumor formation. After 3 months of DMBA administration, 1 ml of blood was collected to assay for estrogen receptor- α (ER-α) level. Thereafter, the vehicle (dimethyl sulfoxide) was daily administered to the negative control and positive control groups for the 14 days duration of the experiment while three groups were each given a daily oral dose of 50, 100 and 200 mg/kg body wt of KV for the duration of the experiment. The last DMBA-induced group received 10 mg/kg body wt of the standard drug tamoxifen twice in a week and the remaining DMBA-free group received 200 mg/kg body wt KV. Subsequently, the animals were humanly sacrificed and ER-α, sialic acids, sialidase, sialyltransferase levels were assay for in blood and mammary tissues followed by histopathological examinations. RESULTS Significantly higher levels of estrogen receptor-α (ER-α), formation of lobular neoplastic cells, epithelial hyperplasia, lymphocyte infiltration and increased sialylation were detected in DMBA-induced rats. Treatment with KV at 50, 100 and 200 mg/kg body weight resulted in a significant (p<0.05) decrease in ER-α level, significantly (p<0.05) lower free serum sialic acid (21.1%), total sialic acid level of the mammary tissue (21.57%), sialyltransferase activity (30.83%) as well as mRNA level of the sialyltransferase gene (ST3Gal1) were observed after KV interventions. CONCLUSION The findings suggest that KV could be further explored in targeting DMBA-induced mammary damage implicated in mammary carcinogenesis.
Collapse
Affiliation(s)
- Rabiatu B Suleiman
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Ismaila A Umara
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Mohammed A Ibrahima
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein 9300. South Africa
| | - Gilead E Forcados
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Sanusi B Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
440
|
Arshad M, Chaudhary AR, Mumtaz MW, Raza SA, Ahmad M, Mukhtar H, Bashir R. Polyphenol fingerprinting and hypoglycemic attributes of optimized Cycas circinalis leaf extracts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1530-1537. [PMID: 32869314 DOI: 10.1002/jsfa.10771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cycas circinalis leaves are used to treat diabetes mellitus in local medicinal systems without any scientifically proved information on their medicinal potential and phytochemicals. In this study, the total phenolic contents, total flavonoid contents, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and inhibitory effects on α-glucosidase and α-amylase were determined for optimized hydroethanolic leaf extracts. Secondary metabolites were identified using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS/MS). In vivo studies on diabetic albino mice were also carried out to evaluate the impact of the most active extract on their blood glucose levels. RESULTS The 60% ethanolic extract showed the highest extract yield (209.70 ± 0.20 g kg-1 ) and total phenolic (154.24 ± 3.28 mg gallic acid equivalent) and flavonoid (78.52 ± 1.65 mg rutin equivalent per gram dried extract) contents and exhibited the maximum DPPH scavenging activity (IC50 = 59.68 ± 2.82 μg mL-1 ). The IC50 values for inhibition of α-glucosidase (58.42 ± 2.22 μg mL-1 ) and α-amylase (74.11 ± 1.70 μg mL-1 ) were also significant for the 60% ethanolic extract. The untargeted UHPLC-QTOF-MS/MS-based metabolite profiling confirmed the presence of iridoid glucoside, gibberellin A4, O-β-d-glucosyl-4-hydroxy-cinnamate, 3-methoxy-2-phyenyl-4H-furo[2,3-h]chromen-4-one, kaempferol, withaferin A, amentoflavone, quercitin-3-O-(6″-malonyl glucoside), ellagic acid, and gallic acid. Plant extract at a dose of 500 mg kg-1 body weight reduced the blood glucose level by a considerable extent and also improved the lipid profile of diabetic mice after a 28-day trial. CONCLUSION The findings revealed the medicinal potential of C. circinalis leaves to treat diabetes mellitus and provided the nutraceutical leads for functional food development. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Arshad
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Ayoub R Chaudhary
- Department of Chemistry, Government College University, Lahore, Pakistan
| | | | - Syed A Raza
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Maqsood Ahmad
- Department of Environmental Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Rashida Bashir
- Department of Chemistry, University of Education, Lahore, Pakistan
| |
Collapse
|
441
|
Kaczorová D, Karalija E, Dahija S, Bešta-Gajević R, Parić A, Ćavar Zeljković S. Influence of Extraction Solvent on the Phenolic Profile and Bioactivity of Two Achillea Species. Molecules 2021; 26:molecules26061601. [PMID: 33805815 PMCID: PMC7999971 DOI: 10.3390/molecules26061601] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022] Open
Abstract
The phenolic composition, as well as the antioxidant and antimicrobial activities of two poorly investigated Achillea species, Achillea lingulata Waldst. and the endemic Achillea abrotanoides Vis., were studied. To obtain a more detailed phytochemical profile, four solvents with different polarities were used for the preparation of the plant extracts whose phenolic composition was analyzed using UHPLC-MS/MS (ultra-high performance liquid chromatography-tandem mass spectrometry). The results indicate that both of the investigated Achillea species are very rich in both phenolic acids and flavonoids, but that their profiles differ significantly. Chloroform extracts from both species had the highest yields and were the most chemically versatile. The majority of the examined extracts showed antimicrobial activity, while ethanolic extracts from both species were potent against all tested microorganisms. Furthermore, the antioxidant activity of the extracts was evaluated. It was found that the ethanolic extracts possessed the strongest antioxidant activities, although these extracts did not contain the highest amounts of detected phenolic compounds. In addition, several representatives of phenolic compounds were also assayed for these biological activities. Results suggest that ethanol is a sufficient solvent for the isolation of biologically active compounds from both Achillea species. Moreover, it was shown that the flavonoids naringenin and morin are mainly responsible for these antimicrobial activities, while caffeic, salicylic, chlorogenic, p-coumaric, p-hydroxybenzoic, and rosmarinic acid are responsible for the antioxidant activities of the Achillea extracts.
Collapse
Affiliation(s)
- Dominika Kaczorová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic;
- Centre of Region Haná for Biotechnological and Agricultural Research, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Erna Karalija
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.); (A.P.)
| | - Sabina Dahija
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.); (A.P.)
| | - Renata Bešta-Gajević
- Laboratory for Microbiology, Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina;
| | - Adisa Parić
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.); (A.P.)
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic;
- Centre of Region Haná for Biotechnological and Agricultural Research, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Correspondence: or or
| |
Collapse
|
442
|
Abd Aziz NA, Hasham R, Sarmidi MR, Suhaimi SH, Idris MKH. A review on extraction techniques and therapeutic value of polar bioactives from Asian medicinal herbs: Case study on Orthosiphon aristatus, Eurycoma longifolia and Andrographis paniculata. Saudi Pharm J 2021; 29:143-165. [PMID: 33679177 PMCID: PMC7910186 DOI: 10.1016/j.jsps.2020.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Medicinal plants have gained much interest in the prevention and treatment of common human disease such as cold and fever, hypertension and postpartum. Bioactive compounds from medicinal plants were synthesised using effective extraction methods which have important roles in the pharmaceutical product development. Orthosiphon aristatus (OA), Eurycoma longifolia (EL) and Andrographis paniculata (AP) are among popular medicinal herbs in Southeast Asia. The major compounds for these medicinal plants are polar bioactive compounds (rosmarinic acid, eurycomanone and andrographolide) which have multiple benefits to human health. The bioactive compounds are used as a drug to function against a variety of diseases with the support of scientific evidence. This paper was intended to prepare a complete review about the extraction techniques (e.g. OA, EL and AP) of these medicinal plants based on existing studies and scientific works. Suitable solvents and techniques to obtain their major bioactive compounds and their therapeutic potentials were discussed.
Collapse
Affiliation(s)
- Nur Amanina Abd Aziz
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.,School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Rosnani Hasham
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.,School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Mohamad Roji Sarmidi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.,Phyto Biznet Sdn Bhd, UTM-MTDC Technology Centre, Technovation Park, Universiti Teknologi Malaysia, 81300 Johor Bahru, Johor, Malaysia
| | - Siti Hasyimah Suhaimi
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.,School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Mohamad Khairul Hafiz Idris
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.,School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| |
Collapse
|
443
|
Mkala EM, Mutungi MM, Mutinda ES, Oulo MA, Wanga VO, Mwachala G, Hu GW. Understanding the Ethnobotany, Chemistry, Pharmacology, and Distribution of Genus Hydnora (Aristolochiaceae). PLANTS (BASEL, SWITZERLAND) 2021; 10:494. [PMID: 33807757 PMCID: PMC8001087 DOI: 10.3390/plants10030494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The genus Hydnora (Hydnoraceae) is one of the basal angiosperms in the order Piperales, found in the semi-arid regions of Africa, and the Southern Arabian Peninsula. Plants in this genus play essential roles in communities around the world as revealed by various studies. Currently, there are eight species of the genus Hydnora; seven in Africa and one in the Arabian Peninsula. Notably, Hydnora abyssinica A.Br. and Hydnora africana Thunb. are widely distributed compared to other species. They are widely used for their medicinal and nutritional values. The information on ethnobotany, chemistry, pharmacology, and distribution of genus Hydnora was gathered using phytochemical and ethnobotanical books, electronic sources, and published articles. Preliminary phytochemical screening shows that flavonoids, phenolics, proanthocyanidins, and tannins are the main compounds in H. abyssinica and H. africana. Furthermore, 11 compounds have been isolated from H. abyssinica. The biological activities of H. abyssinica and H. africana have been reported. They include antibacterial, antiproliferative, antioxidant, antidiarrhea, and antifungal potentials. Despite the Hydnora species being practiced in ancient folkloric medicine, their traditional uses and pharmacological value are poorly documented. Based on the available information on ethnobotany, phytochemistry, pharmacology, and distribution, we aim to provide research gaps and challenges for a better understanding of this genus. This may be resourceful in the development of effective phytomedicines, and aid in conservation. The available studies on this genus on some aspects such as phytochemistry, pharmacological activities, and distribution are under-reported hence the need for further research.
Collapse
Affiliation(s)
- Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (E.M.M.); (M.M.M.); (E.S.M.); (M.A.O.); (V.O.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- East African Herbarium, National Museums of Kenya, P.O. Box 451660-0100 Nairobi, Kenya;
| | - Moses Mutuse Mutungi
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (E.M.M.); (M.M.M.); (E.S.M.); (M.A.O.); (V.O.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (E.M.M.); (M.M.M.); (E.S.M.); (M.A.O.); (V.O.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Millicent Akinyi Oulo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (E.M.M.); (M.M.M.); (E.S.M.); (M.A.O.); (V.O.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Vincent Okelo Wanga
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (E.M.M.); (M.M.M.); (E.S.M.); (M.A.O.); (V.O.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Geoffrey Mwachala
- East African Herbarium, National Museums of Kenya, P.O. Box 451660-0100 Nairobi, Kenya;
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (E.M.M.); (M.M.M.); (E.S.M.); (M.A.O.); (V.O.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
444
|
Obakiro SB, Kiprop A, Kigondu E, K'Owino I, Odero MP, Manyim S, Omara T, Namukobe J, Owor RO, Gavamukulya Y, Bunalema L. Traditional Medicinal Uses, Phytoconstituents, Bioactivities, and Toxicities of Erythrina abyssinica Lam. ex DC. (Fabaceae): A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5513484. [PMID: 33763144 PMCID: PMC7952165 DOI: 10.1155/2021/5513484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Many studies have been undertaken on the medicinal values of Erythrina abyssinica Lam. ex DC. (Fabaceae). The details, however, are highly fragmented in different journals, libraries, and other publication media. This study was therefore conducted to provide a comprehensive report on its ethnobotany, ethnomedicinal uses, phytochemicals, and the available pharmacological evidence supporting its efficacy and safety in traditional medicine. METHOD We collected data using a PROSPERO registered systematic review protocol on the ethnobotany, phytochemistry, and ethnopharmacology of Erythrina abyssinica from 132 reports that were retrieved from electronic databases. Documented local names, morphology, growth habit and habitat, ethnomedicinal and nonmedicinal uses, diseases treated, parts used, method of preparation and administration, extraction and chemical identity of isolated compounds, and efficacy and toxicity of extracts and isolated compounds were captured. Numerical data were summarized into means, percentages, and frequencies and presented as graphs and tables. RESULTS Erythrina abyssinica is harvested by traditional herbal medicine practitioners in East, Central, and South African communities to prepare herbal remedies for various human and livestock ailments. These include bacterial and fungal infections, tuberculosis, malaria, HIV/AIDS, diarrhea, cancer, meningitis, inflammatory diseases, urinary tract infections, wounds, diabetes mellitus, and skin and soft tissue injuries. Different extracts and phytochemicals from parts of E. abyssinica have been scientifically proven to possess anti-inflammatory, antibacterial, antioxidant, antiplasmodial, antiproliferative, antifungal, antimycobacterial, antidiarrheal, anti-HIV 1, antidiabetic, and antiobesity activities. This versatile pharmacological activity is due to the abundant flavonoids, alkaloids, and terpenoids present in its different parts. CONCLUSION Erythrina abyssinica is an important ethnomedicinal plant in Africa harboring useful pharmacologically active phytochemicals against various diseases with significant efficacies and minimal toxicity to mammalian cells. Therefore, this plant should be conserved and its potential to provide novel molecules against diseases be explored further. Clinical trials that evaluate the efficacy and safety of extracts and isolated compounds from E. abyssinica are recommended.
Collapse
Affiliation(s)
- Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Ambrose Kiprop
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Elizabeth Kigondu
- Centre of Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Isaac K'Owino
- Department of Pure and Applied Chemistry, Faculty of Science, Masinde-Muliro University, P.O. Box 190-50100, Kakamega, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Mark Peter Odero
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Scolastica Manyim
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Timothy Omara
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Department of Quality Control and Quality Assurance, Product Development Directory, AgroWays Uganda Limited, Plot 34-60, Kyabazinga Way, P.O. Box 1924, Jinja, Uganda
| | - Jane Namukobe
- Department of Chemistry, School of Physical Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Richard Oriko Owor
- Department of Chemistry, Faculty of Science Education, Busitema University, P.O. Box 236, Tororo, Uganda
| | - Yahaya Gavamukulya
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Lydia Bunalema
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Makerere University College of Health Sciences, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
445
|
Bustamam MSA, Pantami HA, Azizan A, Shaari K, Min CC, Abas F, Nagao N, Maulidiani M, Banerjee S, Sulaiman F, Ismail IS. Complementary Analytical Platforms of NMR Spectroscopy and LCMS Analysis in the Metabolite Profiling of Isochrysis galbana. Mar Drugs 2021; 19:md19030139. [PMID: 33801258 PMCID: PMC7998644 DOI: 10.3390/md19030139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022] Open
Abstract
This study was designed to profile the metabolites of Isochrysis galbana, an indigenous and less explored microalgae species. 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Liquid Chromatography-Mass Spectrometry (LCMS) were used to establish the metabolite profiles of five different extracts of this microalga, which are hexane (Hex), ethyl acetate (EtOAc), absolute ethanol (EtOH), EtOH:water 1:1 (AqE), and 100% water (Aq). Partial least square discriminant analysis (PLS–DA) of the generated profiles revealed that EtOAc and Aq extracts contain a diverse range of metabolites as compared to the other extracts with a total of twenty-one metabolites, comprising carotenoids, polyunsaturated fatty acids, and amino acids, that were putatively identified from the NMR spectra. Meanwhile, thirty-two metabolites were successfully annotated from the LCMS/MS data, ten of which (palmitic acid, oleic acid, α-linolenic acid, arachidic acid, cholesterol, DHA, DPA, fucoxanthin, astaxanthin, and pheophytin) were similar to those present in the NMR profile. Another eleven glycerophospholipids were discovered using MS/MS-based molecular network (MN) platform. The results of this study, besides providing a better understanding of I.galbana’s chemical make-up, will be of importance in exploring this species potential as a feed ingredient in the aquaculture industry.
Collapse
Affiliation(s)
- Muhammad Safwan Ahamad Bustamam
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Hamza Ahmed Pantami
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Awanis Azizan
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Khozirah Shaari
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Chong Chou Min
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (C.C.M.); (N.N.)
| | - Faridah Abas
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Norio Nagao
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (C.C.M.); (N.N.)
| | - Maulidiani Maulidiani
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Sanjoy Banerjee
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Fadzil Sulaiman
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Intan Safinar Ismail
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: ; Tel.: +60-3-9769-7492
| |
Collapse
|
446
|
Antioxidant, Anti-Inflammatory, and Cytotoxic Properties and Chemical Compositions of Filipendula palmata (Pall.) Maxim. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6659620. [PMID: 33643423 PMCID: PMC7902150 DOI: 10.1155/2021/6659620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 01/05/2023]
Abstract
Filipendula palmata (Pall.) Maxim. remains unexplored and underutilized resources with a high potential to improve human health. In this study, a new ursane-type triterpenoid, namely, 2α, 3β-dihydroxyurs-12-en-28-aldehyde (compound 10), and other 23 known compounds were isolated. 5 triterpenoids (compounds 6, 8, and 10-12), 11 flavonoids (compounds 13-15 and 17-24), 6 phenolic compounds (compounds 1, 2, 4, 5, 9, and 16), 2 sterols (compounds 3 and 7) were isolated from the aqueous solution extract of the aerial parts of F. palmata. The structures of all compounds were elucidated by the use of extensive spectroscopic methods such as infrared spectroscopy (IR), high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), 1H-NMR, and 13C-NMR. The solvent extractions of ethyl acetate fraction were evaluated for antioxidant activities using DPPH (2, 2-diphenyl-1-picrylhydrazyl) and ABTS+ (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) methods. The anti-inflammatory effects of the compounds were evaluated in lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages. The extract cytotoxicity on the cancer cell lines MCF-7, HeLa, 4T1, and A549 was determined by MTT assay. As a result, compounds 10, 11, and 12 exhibited better antioxidant activity compared to the other compounds. Compounds 8-24 had different inhibitory effects on the release of NO, TNF-α, and IL-6 in LPS-stimulated RAW 264.7 cells. The new compound has shown a significant inhibiting effect on cancer cells, and the cell inhibition rate increased in a dose-dependent manner. Further research to elucidate the chemical compositions and pharmacological effects of F. palmata is of major importance towards the development and foundation of clinical application of the species.
Collapse
|
447
|
Extraction of bioactive compounds from Psidium guajava leaves and its utilization in preparation of jellies. AMB Express 2021; 11:36. [PMID: 33646462 PMCID: PMC7921237 DOI: 10.1186/s13568-021-01194-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
Psidium guajava L. (guava) is predominantly grown throughout the world and known for its medicinal properties in treating various diseases and disorders. The present work focuses on aqueous extraction of bioactive compounds from the guava leaf and its utilization in the formulation of jelly to improve the public health. The guava leaf extract has been used in the preparation of jelly with pectin (1.5 g), sugar (28 g) and lemon juice (2 mL). The prepared guava leaf extract jelly (GJ) and the control jelly (CJ, without extract) were subjected to proximate, nutritional and textural analyses besides determination of antioxidant and antimicrobial activities. GJ was found to contain carbohydrate (45.78 g/100 g), protein (3.0 g/100 g), vitamin C (6.15 mg/100 g), vitamin B3 (2.90 mg/100 g) and energy (120.6 kcal). Further, the texture analysis of CJ and GJ indicated that both the jellies showed similar properties emphasizing that the addition of guava leaf extract does not bring any change in the texture properties of jelly. GJ exhibited antimicrobial activity against various bacteria ranging from 11.4 to 13.6 mm. Similarly, GJ showed antioxidant activity of 42.38% against DPPH radical and 33.45% against hydroxyl radical. Mass spectroscopic analysis of aqueous extract confirmed the presence of esculin, quercetin, gallocatechin, 3-sinapoylquinic acid, gallic acid, citric acid and ellagic acid which are responsible for antioxidant and antimicrobial properties.![]()
Collapse
|
448
|
Priyadi M, Haryoto H, Anggraeni AD, Khong HY. Phytochemical and Cytotoxic Test of Durio kutejensis Root Bark on MCF-7 Cells. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i1.1443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Durio kutejensis has known potential as herbal medicine in Kalimantan. Many things can be explored from D. kutejensis related pharmacological activity in every part of the plant included root bark. This study investigated the phytochemical content with a qualitative test and tested cytotoxic activities of D. kutejensis root bark on MCF-7 cell lines. Cytotoxic activity tested on MCF-7 cells with MTT assay method. The result showed that D. kutejensis root bark contains flavonoid, tannin, terpenoid, phenol, and saponin. IC50 value for ethanol extracts of root bark, n-hexane fractions, ethyl acetate fractions, and doxorubicin on MCF-7 cells are 761.29; 280.5; 207.08; and 0.25 μg/mL, respectively. In conclusion, D. kutejensis root bark has some secondary metabolites but no cytotoxic activity on MCF-7 cells. Further research on other compounds to be investigated and test to other pharmacological activity.
Collapse
|
449
|
Musdalipah M, Tee SA, Karmilah K, Sahidin S, Fristiohady A, Yodha AWM. Total Phenolic and Flavonoid Content, Antioxidant, and Toxicity Test with BSLT of Meistera chinensis Fruit Fraction from Southeast Sulawesi. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i1.1686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Meistera chinensis is one of the new generations of the Zingiberaceae family. Zingiberaceae have a large number of species and still need research to reveal their chemical content. Meistera chinensis, a local plant that is widespread in Konawe Regency, Southeast Sulawesi. Empirically, M. chinensis is used as a flavor enhancer in food, aches, and increases body immunity. There are no reports of chemical content or its biological activity. In this study, the fruit was tested for phytochemicals, antioxidants using the ABTS test, total phenolic, total flavonoid content, and toxicity test with BSLT. Meistera chinensis was extracted with ethanol and fractionated by ethyl acetate solvent use vacuum liquid chromatography. Phytochemical screening was carried out qualitatively by using the calorimetric method. The fraction toxicity was monitored by a lethal test for brine shrimp (BSLT). These fractions for the ABTS method obtained fractions 1-8 (F1-F8) and ascorbic acid were used as controls. The results showed radical scavenging activities fraction of M. chinensis fruit was a very strong activity with IC50 of 42.7±3.53 mg/L (F8). The total phenolic and flavonoid contents were 30.72±1.07 mgGAE/g and 8.02±0.48 mgQE/g, respectively. The phytochemical evaluation contains terpenoids, saponins, phenolics, steroids, alkaloids, and flavonoids. The BSLT toxicity test was found to be very toxic with IC50 of 5.20±0.72 mg/L. These findings indicate that the fruit of M. chinensis acts as an antioxidant and toxicity agent.
Collapse
|
450
|
Plant Allelochemicals as Sources of Insecticides. INSECTS 2021; 12:insects12030189. [PMID: 33668349 PMCID: PMC7996276 DOI: 10.3390/insects12030189] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
In this review, we describe the role of plant-derived biochemicals that are toxic to insect pests. Biotic stress in plants caused by insect pests is one of the most significant problems, leading to yield losses. Synthetic pesticides still play a significant role in crop protection. However, the environmental side effects and health issues caused by the overuse or inappropriate application of synthetic pesticides forced authorities to ban some problematic ones. Consequently, there is a strong necessity for novel and alternative insect pest control methods. An interesting source of ecological pesticides are biocidal compounds, naturally occurring in plants as allelochemicals (secondary metabolites), helping plants to resist, tolerate or compensate the stress caused by insect pests. The abovementioned bioactive natural products are the first line of defense in plants against insect herbivores. The large group of secondary plant metabolites, including alkaloids, saponins, phenols and terpenes, are the most promising compounds in the management of insect pests. Secondary metabolites offer sustainable pest control, therefore we can conclude that certain plant species provide numerous promising possibilities for discovering novel and ecologically friendly methods for the control of numerous insect pests.
Collapse
|