4901
|
Ikonen T, Palvimo JJ, Jänne OA. Interaction between the amino- and carboxyl-terminal regions of the rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators. J Biol Chem 1997; 272:29821-8. [PMID: 9368054 DOI: 10.1074/jbc.272.47.29821] [Citation(s) in RCA: 278] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Identical N-terminal deletions in the wild-type rat androgen receptor (rAR) and a constitutively active rAR (ARDelta641-902) devoid of the ligand-binding domain (LBD) resulted in dissimilar consequences in transcriptional activation: deletion of residues 149-295 abolished wild-type AR activity, but did not influence that of ARDelta641-902. The activity of the N-terminal transactivation domain is thus controlled by the hormone-occupied LBD, suggesting that the N- and C-terminal regions of rAR communicate. Consistent with this idea, a strong androgen-dependent interaction between the N-terminal region and LBD was demonstrated in a mammalian two-hybrid system using GAL4 and VP16 fusion proteins. This interaction can be direct or indirect. Several nuclear receptor coactivators (CBP, F-SRC-1, SRC-1, and RIP140) that interact with other steroid receptors were tested as potential mediators of the N- and C-terminal interaction of rAR using the mammalian two-hybrid system. CBP or F-SRC-1 not only enhanced AR-mediated transactivation, but also facilitated the androgen-dependent interaction between the N- and C-terminal domains, implying that part of the coactivator-dependent transcriptional activation occurs via this mechanism. In contrast, SRC-1, a coactivator for the progesterone receptor, inhibited both AR-mediated transactivation and interaction between the N and C termini. Recruitment of coregulators may involve AR domains other than the LBD, as F-SRC-1 and CBP enhanced, but SRC-1 repressed, the transcriptional activity of ARDelta641-902. Collectively, interplay between the N-terminal region and LBD of rAR results in the formation of a transactivation complex that includes coregulators and that is mandatory for optimal activation of androgen-induced promoters.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chromosome Mapping
- DNA-Binding Proteins
- Histone Acetyltransferases
- Humans
- Ligands
- Nuclear Receptor Coactivator 1
- Nuclear Receptor Coactivator 3
- Promoter Regions, Genetic
- Rats
- Receptors, Androgen/chemistry
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Glucocorticoid/metabolism
- Receptors, Progesterone/metabolism
- Recombinant Fusion Proteins/metabolism
- Saccharomyces cerevisiae Proteins
- Trans-Activators/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- T Ikonen
- Department of Physiology, Institute of Biomedicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | |
Collapse
|
4902
|
Ezura Y, Tournay O, Nifuji A, Noda M. Identification of a novel suppressive vitamin D response sequence in the 5'-flanking region of the murine Id1 gene. J Biol Chem 1997; 272:29865-72. [PMID: 9368060 DOI: 10.1074/jbc.272.47.29865] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vitamin D promotes differentiation of cells either by simply enhancing phenotypic gene expression and/or by suppressing expression of inhibitors of differentiation. Previously, we reported that expression of a gene encoding Id1, a negative type helix-loop-helix transcription factor, was transcriptionally suppressed by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) (1). To identify the sequence required for the negative regulation by 1, 25(OH)2D3, a 1.5-kilobase 5'-flanking region of murine Id1 gene was examined by transiently transfecting luciferase reporter constructs into ROS17/2.8 osteoblastic cells. The transcriptional activity of this construct was repressed by 10(-8) M 1,25(OH)2D3. Deletion analysis revealed that a 57-base pair (bp) upstream response sequence (URS) (-1146/-1090) was required for the suppression by 1,25(OH)2D3. This sequence conferred negative responsiveness to 1,25(OH)2D3 to a heterologous SV40 promoter. The 57-bp URS contained not only Egr-1 consensus sequence (2) but also four direct repeats of a heptamer sequence (C/A)CAGCCC. Electrophoresis mobility shift assay revealed that the 57-bp URS formed specific nuclear protein-DNA complexes, which were neither competed by previously known positive and negative vitamin D response elements nor supershifted by anti-vitamin D receptor antibody, suggesting the absence of vitamin D receptor in these complexes. These results indicate the involvement of the novel 57-bp sequence in the vitamin D suppression of Id1 gene transcription.
Collapse
Affiliation(s)
- Y Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101, Japan
| | | | | | | |
Collapse
|
4903
|
Monden T, Wondisford FE, Hollenberg AN. Isolation and characterization of a novel ligand-dependent thyroid hormone receptor-coactivating protein. J Biol Chem 1997; 272:29834-41. [PMID: 9368056 DOI: 10.1074/jbc.272.47.29834] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The thyroid hormone receptor (TR) regulates the expression of target genes upon binding to triiodothyronine (T3) response elements. In the presence of T3, the TR recruits coactivating proteins that both modulate and integrate the ligand response. We report here the cloning of a novel protein using the TR ligand-binding domain as bait in the yeast two-hybrid system. Analysis of a putative full-length clone demonstrates a cDNA sequence that encodes a protein of 920 amino acids with a size of 120 kDa (p120). Alignment with known sequences shows homology to a previously identified protein of unknown function, termed skeletal muscle abundant protein. Interaction studies demonstrate that p120 interacts with the TR AF-2 domain in the presence of ligand through a 111-amino acid region. Northern analysis demonstrates widespread expression in human tissues. Cotransfection assays in CV-1 cells demonstrate that p120 enhances TR-mediated transactivation on multiple T3 response elements in the presence of T3. In addition, CREB-binding protein synergizes with p120 to enhance this effect. When linked to the GAL4 DNA-binding domain, p120 is an activator of transcription alone. Thus, p120 satisfies a number of important criteria as a nuclear receptor coactivator.
Collapse
Affiliation(s)
- T Monden
- Thyroid Unit, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
4904
|
Saunders PT, Majdic G, Parte P, Millar MR, Fisher JS, Turner KJ, Sharpe RM. Fetal and perinatal influence of xenoestrogens on testis gene expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 424:99-110. [PMID: 9361775 DOI: 10.1007/978-1-4615-5913-9_19] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The incidence of reproductive abnormalities in the male has been reported to have increased during the past 50 years. It has been suggested that these changes may be attributable to the presence of chemicals with oestrogenic activity in our environment. The aim of the experiments described in this chapter was to investigate the effects of acute exposure to high levels of xenoestrogens either indirectly during fetal life, or directly during neonatal life, on gene expression in the testis and pituitary. Fetal treatment involved administration of diethylstilbestrol (DES), 4-octylphenol (OP) or vehicle (oil, control) to pregnant rats on days 11.5 and 15.5 post coitum; fetuses were recovered on day 17.5. There was no difference between fetuses from control and treated mothers in either the overall histology of the testes or numbers of Leydig cells as determined by immunohistochemistry with an antibody directed against 3 beta-HSD. However there was a consistent and striking reduction in the amount of P450 17-a hydroxylase C17, 20 lyase (P450c17) and steroidogenic factor 1 (SF-1) detected by immunocytochemistry in testes from treatment groups given the higher doses of OP and DES. Oestrogen receptors (ER alpha) were present in the fetal leydig cells of all animals. Neonatal treatment involved direct injection of oil (control), DES, OP or Bisphenol A (Bis A) on days 2, 4, 6, 8, 10 and 12; pituitaries and testes were recovered on day 18. Testis weights and seminiferous tubule diameters were significantly reduced in animals treated with DES. In these same animals immunocytochemical localisation revealed that the amounts of FSH beta subunit and inhibin alpha subunit were reduced in their pituitaries and testes respectively. OP did not appear to have an acute, measurable effect on testis gene expression but a reduction in testis weight was noted in adult animals given the same treatment regime. The effects observed are consistent with negative feedback by oestrogens on pituitary production of FSH resulting in retarded maturation of seminiferous tubules and reduced Sertoli cell numbers. These studies have demonstrated that administration of high levels of oestrogens can affect gene expression in the testis early in life. However, the relevance of these findings to observations in man await a) a greater understanding of the physiological role(s) of oestrogens in normal males, b) an evaluation of the sources, routes of exposure, concentrations in vivo and bioavailability of xenoestrogens.
Collapse
Affiliation(s)
- P T Saunders
- MRC Reproductive Biology Unit, Edinburgh, Scotland
| | | | | | | | | | | | | |
Collapse
|
4905
|
Harant H, Andrew PJ, Reddy GS, Foglar E, Lindley IJ. 1alpha,25-dihydroxyvitamin D3 and a variety of its natural metabolites transcriptionally repress nuclear-factor-kappaB-mediated interleukin-8 gene expression. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:63-71. [PMID: 9431991 DOI: 10.1111/j.1432-1033.1997.00063.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Regulation of interleukin-8 (IL-8) gene transcription occurs mainly through the sequences -94 to -71 of the 5'-flanking region of the IL-8 gene, involving the transcription factors nuclear factor for interleukin-6 (NF-IL-6) and nuclear factor kappaB (NF-kappaB). The human melanoma cell line A3 was derived from G-361 cells by stable transfection with an IL-8 promoter-luciferase construct containing these sequences. 1alpha,25-Dihydroxyvitamin D3 (calcitriol) repressed IL-8 promoter activity induced by tumor necrosis factor-alpha (TNF-alpha) by 50%, compared to 30% inhibition using dexamethasone, an effect consistent with its effect on TNF-alpha-induced IL-8 release and IL-8 mRNA levels. A variety of vitamin D metabolites caused the same repressive effect on IL-8 promoter activation as calcitriol. However, only those metabolites which were able to transactivate a classical vitamin D response element had the ability to repress IL-8 promoter activation, suggesting that this repression is mediated via vitamin D receptor (VDR). Furthermore, overexpression of VDR in the parental G-361 cell line enhanced the repressive effect of calcitriol on activation of the IL-8 promoter by either TNF-alpha stimulation or overexpression of the NF-kappaB subunit p65. Electrophoretic mobility shift assays using nuclear extracts from A3 cells showed that calcitriol decreased the abundance of nuclear factors bound to the NF-kappaB binding site of the IL-8 promoter and this reduced binding of NF-kappaB proteins presumably contributes to its inhibitory action.
Collapse
Affiliation(s)
- H Harant
- Novartis Research Institute, Vienna, Austria.
| | | | | | | | | |
Collapse
|
4906
|
Abstract
Chemoprevention is the use of pharmacologic or natural agents that inhibit the development of invasive cancer either by blocking the DNA damage that initiates carcinogenesis or by arresting or reversing the progression of premalignant cells in which such damage has already occurred. Recent advances in our understanding of the mechanisms of carcinogenesis have led to the synthesis of new drugs that can inhibit tumor development in experimental animals by selective action on specific molecular targets, such as the estrogen, androgen, and retinoid receptors or inducible cyclooxygenase. Several of these agents (including tamoxifen, 13-cis-retinoic acid, retinyl palmitate, and an acyclic retinoid) are clinically effective in preventing the development of cancer, particularly in patients who are at high risk for developing second primary tumors after surgical removal of the initial tumor.
Collapse
Affiliation(s)
- W K Hong
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 80, Houston, TX 77030, USA.
| | | |
Collapse
|
4907
|
Eggert M, Michel J, Schneider S, Bornfleth H, Baniahmad A, Fackelmayer FO, Schmidt S, Renkawitz R. The glucocorticoid receptor is associated with the RNA-binding nuclear matrix protein hnRNP U. J Biol Chem 1997; 272:28471-8. [PMID: 9353307 DOI: 10.1074/jbc.272.45.28471] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The glucocorticoid receptor (GR) is a ligand-dependent transcription factor that is able to modulate gene activity by binding to its response element, interacting with other transcription factors, and contacting several accessory proteins such as coactivators. Here we show that GRIP120, one of the factors we have identified to interact with the glucocorticoid receptor, is identical to the heterogeneous nuclear ribonucleoprotein U (hnRNP U), a nuclear matrix protein binding to RNA as well as to scaffold attachment regions. GR.hnRNP U complexes were identified by blotting and coimmunoprecipitation. The subnuclear distribution of GR and hnRNP U was characterized by indirect immunofluorescent labeling and confocal laser microscopy demonstrating a colocalization of both proteins. Using a nuclear transport-deficient deletion of hnRNP U, nuclear translocation was seen to be dependent on GR and dexamethasone. Transient transfections were used to identify possible interaction domains. Overexpressed hnRNP U interfered with glucocorticoid induction, and the COOH-terminal domains of both proteins were sufficient in mediating the transcriptional interference. A possible functional role for this GR binding-protein in addition to its binding to the nuclear matrix, to RNA, and to scaffold attachment regions is discussed.
Collapse
Affiliation(s)
- M Eggert
- Genetisches Institut der Justus-Liebig-Universität, Heinrich-Buff-Ring 58-62, D-35392, Germany
| | | | | | | | | | | | | | | |
Collapse
|
4908
|
Guo X, Harmon MA, Laudet V, Mangelsdorf DJ, Palmer MJ. Isolation of a functional ecdysteroid receptor homologue from the ixodid tick Amblyomma americanum (L.). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1997; 27:945-962. [PMID: 9501418 DOI: 10.1016/s0965-1748(97)00075-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ecdysteroids are assumed to be the major steroid hormones in arthropods. However, with the exception of insects and crustaceans, very little is known about ecdysteroid action in other arthropods. To determine if ecdysteriods play a functional role in the ixodid tick, Amblyomma americanum (L.), we isolated cDNAs encoding three presumed ecdysteroid receptor isoforms (AamEcRA1, AamEcRA2, and AamEcRA3) that have common DNA and ligand binding domains linked to distinct amino termini. The DNA and ligand binding domains share an average of 86 and 64% identity, respectively with DNA and ligand binding domains from insect EcR proteins. The amino termini are highly divergent and the AamEcRs lack the 'F' domain found in the insect EcRs. Analysis of AamEcR cDNAs show that processing of the AamEcR gene is complex, producing multiple transcripts with unique 5' and 3' termini as well as splicing variants with incomplete open reading frames. AamEcR mRNA profiles in whole animals and isolated tissues are consistent with complex regulation of AamEcR expression. We also examined the ability of AamEcRA1, when paired with an AamRXR, to activate transcription of an ecdysone response element containing reporter, and demonstrate that the AamEcR gene encodes a functional ecdysteroid receptor.
Collapse
Affiliation(s)
- X Guo
- Department of Entomology, Oklahoma State University Stillwater 74078, USA
| | | | | | | | | |
Collapse
|
4909
|
Klinge CM, Brolly CL, Bambara RA, Hilf R. hsp70 is not required for high affinity binding of purified calf uterine estrogen receptor to estrogen response element DNA in vitro. J Steroid Biochem Mol Biol 1997; 63:283-301. [PMID: 9459195 DOI: 10.1016/s0960-0760(97)00091-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bovine estrogen receptor (ER) was purified to near homogeneity by estrogen response element (ERE) affinity chromatography, and its ERE binding ability was measured in vitro. Highly purified ER bound EREs with reduced affinity compared to partially purified ER. Partially purified ER contained hsp70, but highly purified ER did not. We examined whether addition of purified recombinant human hsp70 or purified bovine hsp70 would restore the higher ERE binding affinity, stoichiometry, and ligand retention detected with partially purified receptor and how hsp70 affected the rate of ER-ERE association and dissociation. ER-ERE binding was not affected by antibodies to either constitutive or induced forms of hsp70, regardless of ER purity. Addition of purified hsp70, with or without ATP and Mg2+, did not affect the association or dissociation rates of highly purified liganded ER binding to ERE. hsp70 Did not alter the total amount of ER-ERE complex formed. Similarly, hsp70 did not affect the rate of [3H]estradiol (E2) or [3H]4-hydroxytamoxifen (4-OHT) ligand dissociation from ER in the presence or absence of EREs. These data contrast with a report showing that maximal ERE binding by highly purified recombinant human ER required hsp70. We conclude that ER, purified from a physiological source, i.e., calf uterus, does not require hsp70 for maximal ER-ERE binding in vitro. Additionally, once ER is activated and bound by ligand, the receptor assumes its proper tertiary structure, and hsp70 does not impact ER ligand binding domain conformation.
Collapse
Affiliation(s)
- C M Klinge
- Department of Biochemistry, The University of Louisville School of Medicine, KY 40292, USA.
| | | | | | | |
Collapse
|
4910
|
Kahlen JP, Carlberg C. Allosteric interaction of the 1alpha,25-dihydroxyvitamin D3 receptor and the retinoid X receptor on DNA. Nucleic Acids Res 1997; 25:4307-13. [PMID: 9336462 PMCID: PMC147055 DOI: 10.1093/nar/25.21.4307] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Genomic actions of the hormone 1alpha,25-dihydroxy-vitamin D3(VD) are mediated by the transcription factor VDR, which is a member of the nuclear receptor superfamily. VDR acts in most cases as a heterodimeric complex with the retinoid X receptor (RXR) from specific DNA sequences in the promoter of VD target genes called VD response elements (VDREs). This study describes a mutation (K45A) of the VDR DNA binding domain that enhances the affinity and ligand responsiveness of VDR-RXR heterodimers on some VDREs. In analogy to a homologous mutation in the glucocorticoid receptor (K461A), this lysine residue appears to function as an allosteric 'lock'. Interestingly, overexpression of RXR was found to reduce the responsiveness and sensitivity of wild type VDR to VD, but enhance the response of VDRK45A. Moreover, the transactivation domains of both VDR and RXR were shown to be essential for obtaining responsiveness of the heterodimers to VD and 9- cis retinoic acid (the RXR ligand). This indicates that RXR is an active rather than silent partner of the VDR on the VDREs tested. Taken together, transactivation by VDR-RXR heterodimers can be triggered individually by all components of the protein-DNA complex, but full potency appears to be reached through allosteric interaction.
Collapse
Affiliation(s)
- J P Kahlen
- Clinique de Dermatologie, Hôpital Cantonal Universitaire, CH-1211 Genève 14, Switzerland and Institut für Physiologische Chemie I, Heinrich-Heine-Universität Düsseldorf, D-40001 Düsseldorf, Germany
| | | |
Collapse
|
4911
|
Harmon MA, Scott TC, Li Y, Boehm MF, Phillips MA, Mangelsdorf DJ. Trypanosoma brucei: effects of methoprene and other isoprenoid compounds on procyclic and bloodstream forms in vitro and in mice. Exp Parasitol 1997; 87:229-36. [PMID: 9371088 DOI: 10.1006/expr.1997.4196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drug therapy for the treatment of African sleeping sickness is limited by toxicity and resistance and in the last 50 years only one new drug has been introduced for the treatment of the human disease. We report that the juvenile hormone analog, methoprene, and several structurally related isoprenoid compounds kill Trypanosoma brucei in culture. Of the other isoprenoids tested, juvenile hormone III and mammalian retinoid X receptor ligands were the most potent trypanocides. Both the procyclic forms and the bloodstream trypomastigotes are killed by these compounds with LD50 values of 5-30 microM. Of the two methoprene stereoisomers, the EE form was the most active, suggesting that a protein target may be involved in mediating effects of these analogues against the parasite. Methoprene was not, however, able to clear trypanosomes from the blood of infected mice. Methoprene acid, the immediate downstream metabolite of methoprene, is not an effective anti-trypanosomal agent, suggesting that in the mice methoprene is converted to an inactive compound. Since methoprene and its analogues have low and well characterized toxicity in mammals these studies stress the importance of further exploring these isoprenoids as lead compounds for the treatment of African sleeping sickness.
Collapse
Affiliation(s)
- M A Harmon
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9041, USA
| | | | | | | | | | | |
Collapse
|
4912
|
Shyamala G, Barcellos-Hoff MH, Toft D, Yang X. In situ localization of progesterone receptors in normal mouse mammary glands: absence of receptors in the connective and adipose stroma and a heterogeneous distribution in the epithelium. J Steroid Biochem Mol Biol 1997; 63:251-9. [PMID: 9459191 DOI: 10.1016/s0960-0760(97)00128-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In normal mammary glands of both rodents and humans, progesterone promotes the proliferation of epithelial cells and several lines of evidence suggest that this action of progesterone may be mediated by progesterone receptor (PR). It is well established that normal mammary development involves a complex interplay between the epithelial cells and the surrounding fatty stroma. Furthermore, during mammary development, there is a change in both the relative proportion of epithelial cells and the steady-state levels of PR. Therefore, towards understanding the precise role of PR in mammary development, we have generated a highly sensitive antibody against mouse PR and examined its pattern of localization. Immunoreactive PR was detected only in the epithelial cells of the ducts while both the adipose and fibrous stroma surrounding these ducts were receptor negative. Similarly, PR mRNA was also associated only with the ductal epithelial cells. Approximately only 45-50% of the ductal cells were receptor positive and this distribution remained unchanged whether or not the tissues had been exposed to estrogen, suggesting that they may represent a distinct subpopulation. The potential significance of these findings to mammary development is discussed.
Collapse
Affiliation(s)
- G Shyamala
- Life Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
4913
|
Bhattacharyya N, Dey A, Minucci S, Zimmer A, John S, Hager G, Ozato K. Retinoid-induced chromatin structure alterations in the retinoic acid receptor beta2 promoter. Mol Cell Biol 1997; 17:6481-90. [PMID: 9343411 PMCID: PMC232501 DOI: 10.1128/mcb.17.11.6481] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcription of the retinoic acid receptor beta2 (RARbeta2) gene is induced by retinoic acid (RA) in mouse P19 embryonal carcinoma (EC) cells. Here we studied RA-induced chromatin structure alterations in the endogenous RARbeta2 promoter and in an integrated, multicopy RARbeta2 promoter in EC cells. RA markedly increased restriction site accessibility within the promoter, including a site near the RA responsive element (RARE) to which the nuclear receptor retinoid X receptor (RXR)-RAR heterodimer binds. These changes coincided with RA-induced alterations in the DNase I hypersensitivity pattern in and around the promoter. These changes became undetectable upon removal of RA, which coincided with the extinction of transcription. Analyses with receptor-selective ligands and an antagonist showed that increase in restriction site accessibility correlates with transcriptional activation, which parallels the RA-induced in vivo footprint of the promoter. Despite these changes, the micrococcal nuclease digestion profile of this promoter was not altered by RA. These results indicate that concurrent with the binding of the RXR-RAR heterodimer to the RARE, the local chromatin structure undergoes dynamic, reversible changes in and around the promoter without globally affecting the nucleosomal organization.
Collapse
Affiliation(s)
- N Bhattacharyya
- Laboratory of Molecular Growth and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
4914
|
Bauer UM, Schneider-Hirsch S, Reinhardt S, Pauly T, Maus A, Wang F, Heiermann R, Rentrop M, Maelicke A. Neuronal cell nuclear factor--a nuclear receptor possibly involved in the control of neurogenesis and neuronal differentiation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:826-37. [PMID: 9395333 DOI: 10.1111/j.1432-1033.1997.t01-1-00826.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have cloned from a cDNA library of neuronal derivatives of retinoic-acid-induced embryonic carcinoma cells a nuclear receptor that may be involved in the control of late neurogenesis and early neuronal differentiation. The receptor which is practically identical in sequence with germ cell nuclear factor, has been designated neuronal cell nuclear factor (NCNF). NCNF is exclusively expressed in the neuronal derivatives of PCC7-Mz1 cells, with the expression beginning within hours of exposure to retinoic acid. In the developing mouse brain, NCNF is expressed in the marginal zones of the neuroepithelium which are known to contain young postmitotic neurons. NCNF binds to the DR0 sequence thereby silencing transcription. Because NCNF does not recognize hormone response elements of other nuclear receptors tested and does not heterodimerize with these, it probably binds exclusively as a homodimer. NCNF may induce neuronal differentiation by repressing the activity of genes that permit cell fates other than the neuronal one.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Southern
- Brain/cytology
- Brain/embryology
- Brain/metabolism
- Cell Differentiation
- Cloning, Molecular
- DNA/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Gene Expression Regulation, Developmental
- In Situ Hybridization
- Ligands
- Mice
- Neurons/cytology
- Neurons/physiology
- Nuclear Receptor Subfamily 6, Group A, Member 1
- Oligodeoxyribonucleotides/chemistry
- Oligodeoxyribonucleotides/genetics
- Oligodeoxyribonucleotides/metabolism
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- U M Bauer
- Laboratory of Molecular Neurobiology, Institute of Physiological Chemistry and Pathobiochemistry, Johannes Gutenberg-University Medical School, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
4915
|
Jiang G, Lee U, Sladek FM. Proposed mechanism for the stabilization of nuclear receptor DNA binding via protein dimerization. Mol Cell Biol 1997; 17:6546-54. [PMID: 9343418 PMCID: PMC232508 DOI: 10.1128/mcb.17.11.6546] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatocyte nuclear factor 4 (HNF-4) defines a new subgroup of nuclear receptors that exist in solution and bind DNA exclusively as homodimers. We recently showed that the putative ligand binding domain (LBD) of HNF-4 is responsible for dimerization in solution and prevents heterodimerization with other receptors. In this report, the role of the LBD in DNA binding by HNF-4 is further investigated by using electrophoretic mobility shift analysis. A comparison of constructs containing either the DNA binding domain (DBD) alone or the DBD plus the LBD of HNF-4 showed that dimerization via the DBD was sufficient to provide nearly the full DNA binding affinity of the full-length HNF-4. In contrast, dimerization via the DBD was not sufficient to produce a stable protein-DNA complex, whereas dimerization via the LBD increased the half-life of the complex by at least 100-fold. Circular permutation analysis showed that full-length HNF-4 bent DNA by approximately 80 degrees while the DBD bent DNA by only 24 degrees. Nonetheless, analysis of other constructs indicated that the increase in stability afforded by the LBD could be explained only partially by an increased ability to bend DNA. Coimmunoprecipitation studies, on the other hand, showed that dimerization via the LBD produced a protein-protein complex that was much more stable than the corresponding protein-DNA complex. These results led us to propose a model in which dimerization via the LBD stabilizes the receptor on DNA by converting an energetically favorable two-step dissociation event into an energetically unfavorable single-step event. Implications of this one-step model for other nuclear receptors are discussed.
Collapse
Affiliation(s)
- G Jiang
- Environmental Toxicology Graduate Program, University of California, Riverside 92521, USA
| | | | | |
Collapse
|
4916
|
Piedrafita FJ, Pfahl M. Retinoid-induced apoptosis and Sp1 cleavage occur independently of transcription and require caspase activation. Mol Cell Biol 1997; 17:6348-58. [PMID: 9343396 PMCID: PMC232486 DOI: 10.1128/mcb.17.11.6348] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vitamin A and its derivatives, the retinoids, are essential regulators of many important biological functions, including cell growth and differentiation, development, homeostasis, and carcinogenesis. Natural retinoids such as all-trans retinoic acid can induce cell differentiation and inhibit growth of certain cancer cells. We recently identified a novel class of synthetic retinoids with strong anti-cancer cell activities in vitro and in vivo which can induce apoptosis in several cancer cell lines. Using an electrophoretic mobility shift assay, we analyzed the DNA binding activity of several transcription factors in T cells treated with apoptotic retinoids. We found that the DNA binding activity of the general transcription factor Sp1 is lost in retinoid-treated T cells undergoing apoptosis. A truncated Sp1 protein is detected by immunoblot analysis, and cytosolic protein extracts prepared from apoptotic cells contain a protease activity which specifically cleaves purified Sp1 in vitro. This proteolysis of Sp1 can be inhibited by N-ethylmaleimide and iodoacetamide, indicating that a cysteine protease mediates cleavage of Sp1. Furthermore, inhibition of Sp1 cleavage by ZVAD-fmk and ZDEVD-fmk suggests that caspases are directly involved in this event. In fact, caspases 2 and 3 are activated in T cells after treatment with apoptotic retinoids. The peptide inhibitors also blocked retinoid-induced apoptosis, as well as processing of caspases and proteolysis of Sp1 and poly(ADP-ribose) polymerase in intact cells. Degradation of Sp1 occurs early during apoptosis and is therefore likely to have profound effects on the basal transcription status of the cell. Interestingly, retinoid-induced apoptosis does not require de novo mRNA and protein synthesis, suggesting that a novel mechanism of retinoid signaling is involved, triggering cell death in a transcriptional activation-independent, caspase-dependent manner.
Collapse
Affiliation(s)
- F J Piedrafita
- Sidney Kimmel Cancer Center, San Diego, California 92121, USA
| | | |
Collapse
|
4917
|
Andersson ML, Vennström B. Chicken thyroid hormone receptor alpha requires the N-terminal amino acids for exclusive nuclear localization. FEBS Lett 1997; 416:291-6. [PMID: 9373172 DOI: 10.1016/s0014-5793(97)01223-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The subcellular localization of natural and engineered forms of the chicken thyroid hormone receptor (cTR alpha) is dependent on amino acids encoded in the N-terminal region. The full length receptor protein, cTR alpha-p46, was found to localize exclusively to the nucleus, whereas the N-terminally shorter variant, cTR alpha-p40, localizes to both the nucleus and the cytoplasm. The exclusive nuclear localization of cTR alpha-p46 is dependent on the presence of the first 11 N-terminal amino acids, but independent of the phosphorylation of the serine at position 12. Our data identify a novel role for an N-terminal domain of the full length thyroid hormone receptor.
Collapse
Affiliation(s)
- M L Andersson
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
4918
|
Ferrari N, Vidali G, Pfeffer U. Use of quantitative polymerase chain reaction to study retinoid receptor expression. Methods Enzymol 1997; 282:48-64. [PMID: 9330276 DOI: 10.1016/s0076-6879(97)82095-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- N Ferrari
- Laboratory of Molecular Biology, National Cancer Institute, Genoa, Italy
| | | | | |
Collapse
|
4919
|
Lee YJ, Chung E, Lee KY, Lee YH, Huh B, Lee SK. Ginsenoside-Rg1, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor. Mol Cell Endocrinol 1997; 133:135-40. [PMID: 9406859 DOI: 10.1016/s0303-7207(97)00160-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have examined the possibility that a component of Panax ginseng, ginsenoside-Rg1 (G-Rg1), acts by binding to the glucocorticoid receptor (GR). G-Rg1 competed for [3H]dexamethasone (Dex) binding to GR with a specific affinity of 1-10 microM and activated a glucocorticoid responsive element-containing luciferase reporter gene. The dose-dependence patterns of G-Rg1 and Dex for these two effects were nearly identical, although two to three orders of magnitude higher concentration of G-Rg1 than that of Dex was required for the same magnitude of response. At the cellular level, the growth of FT02B cells was suppressed by G-Rg1 as well as by Dex, each of whose effects were abolished by RU486. These results demonstrate that G-Rg1 is a functional ligand of GR.
Collapse
Affiliation(s)
- Y J Lee
- College of Pharmacy, Seoul National University, South Korea
| | | | | | | | | | | |
Collapse
|
4920
|
Sladek R, Beatty B, Squire J, Copeland NG, Gilbert DJ, Jenkins NA, Giguère V. Chromosomal mapping of the human and murine orphan receptors ERRalpha (ESRRA) and ERRbeta (ESRRB) and identification of a novel human ERRalpha-related pseudogene. Genomics 1997; 45:320-6. [PMID: 9344655 DOI: 10.1006/geno.1997.4939] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The estrogen-related receptors ERRalpha and ERRbeta (formerly ERR1 and ERR2) form a subgroup of the steroid/thyroid/retinoid receptor family. ERRalpha and ERRbeta are homologous to the estrogen receptor and bind similar DNA targets; however, they are unable to activate gene transcription in response to estrogens. We have used interspecific backcross analysis to map the murine Estrra locus to chromosome 19 and Estrrb to mouse chromosome 12. Using fluorescence in situ hybridization, we have mapped the human ESRRA gene to chromosome 11q12-q13 and the human ESRRB gene to chromosome 14q24.3. In addition, we report the isolation of a processed human ERRalpha pseudogene mapping to chromosome 13q12.1. To our knowledge, this represents the first report of a pseudogene associated with a member of the nuclear receptor superfamily.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromosome Mapping
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 14/genetics
- Crosses, Genetic
- DNA/genetics
- Female
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muridae
- Pseudogenes
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Estrogen/genetics
- Restriction Mapping
- Sequence Homology, Nucleic Acid
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
- R Sladek
- Royal Victoria Hospital, Department of Biochemistry, McGill University, 687 Pine Avenue West, Montr-eal, Quebec, H3A 1A1, Canada
| | | | | | | | | | | | | |
Collapse
|
4921
|
Delaunay F, Khan A, Cintra A, Davani B, Ling ZC, Andersson A, Ostenson CG, Gustafsson J, Efendic S, Okret S. Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. J Clin Invest 1997; 100:2094-8. [PMID: 9329975 PMCID: PMC508401 DOI: 10.1172/jci119743] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abnormalities contributing to the pathogenesis of non-insulin-dependent diabetes mellitus include impaired beta cell function, peripheral insulin resistance, and increased hepatic glucose production. Glucocorticoids are diabetogenic hormones because they decrease glucose uptake and increase hepatic glucose production. In addition, they may directly inhibit insulin release. To evaluate that possible role of glucocorticoids in beta cell function independent of their other effects, transgenic mice with an increased glucocorticoid sensitivity restricted to their beta cells were generated by overexpressing the glucocorticoid receptor (GR) under the control of the insulin promoter. Intravenous glucose tolerance tests showed that the GR transgenic mice had normal fasting and postabsorptive blood glucose levels but exhibited a reduced glucose tolerance compared with their control littermates. Measurement of plasma insulin levels 5 min after intravenous glucose load demonstrated a dramatic decrease in acute insulin response in the GR transgenic mice. These results show that glucocorticoids directly inhibit insulin release in vivo and identify the pancreatic beta cell as an important target for the diabetogenic action of glucocorticoids.
Collapse
Affiliation(s)
- F Delaunay
- Department of Medical Nutrition, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4922
|
Nayeri S, Carlberg C. Functional conformations of the nuclear 1alpha,25-dihydroxyvitamin D3 receptor. Biochem J 1997; 327 ( Pt 2):561-8. [PMID: 9359430 PMCID: PMC1218830 DOI: 10.1042/bj3270561] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nuclear hormone 1alpha,25-dihydroxyvitamin D3 (VD) has important cell regulatory functions. Various synthetic VD analogues are under investigation to identify candidates with an improved therapeutic profile against hyperproliferative diseases. VD directly activates the transcription factor VD receptor (VDR), which in turn stimulates the expression of a cascade of primary and secondary VD-responsive genes. The activation of the VDR through binding of its natural and synthetic ligands is linked to a conformational change presenting the interface with co-activator proteins, referred to as the (trans)activation function 2 (AF-2) domain. Multiple conformations of the VDR might be the key to understanding a selective action of VD analogues. The method of limited protease digestion was used here to characterize up to three different functional VDR conformations stabilized individually by VD and its analogues. The relative potency of VDR ligands can be quantified in the interaction with these VDR conformations by determination of a functional dissociation constant, where a two-concentration-point comparison has already provided important information. In this way seven amino acid residues in the AF-2 domain have been analysed as potential ligand contact points. Interestingly, residues Phe-422 and Val-418 seem to interact with all tested VDR ligands, whereas VD analogues such as the anti-psoriatic drug MC903 displayed additional contact points within the AF-2 domain. Taken together, limited protease digestion is a powerful method for studying functional VDR conformations and seems to be very appropriate for screening VD analogues.
Collapse
Affiliation(s)
- S Nayeri
- Clinique de Dermatologie, Hôpital Cantonal Universitaire, CH-1211 Genève 14, Switzerland
| | | |
Collapse
|
4923
|
Zhu Y, Qi C, Jain S, Rao MS, Reddy JK. Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J Biol Chem 1997; 272:25500-6. [PMID: 9325263 DOI: 10.1074/jbc.272.41.25500] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In an attempt to identify cofactors that could possibly influence the transcriptional activity of peroxisome proliferator-activated receptors (PPARs), we used a yeast two-hybrid system with Gal4-PPARgamma as bait to screen a mouse liver cDNA library and have identified steroid receptor coactivator-1 (SRC-1) as a PPAR transcriptional coactivator. We now report the isolation of a cDNA encoding a 165-kDa PPARgamma-binding protein, designated PBP which also serves as a coactivator. PBP also binds to PPARalpha, RARalpha, RXR, and TRbeta1, and this binding is increased in the presence of specific ligands. Deletion of the last 12 amino acids from the carboxyl terminus of PPARgamma results in the abolition of interaction between PBP and PPARgamma. PBP modestly increased the transcriptional activity of PPARgamma, and a truncated form of PBP (amino acids 487-735) acted as a dominant-negative repressor, suggesting that PBP is a genuine coactivator for PPAR. In addition, PBP contains two LXXLL signature motifs considered necessary and sufficient for the binding of several coactivators to nuclear receptors. In situ hybridization and Northern analysis showed that PBP is expressed in many tissues of adult mice, including the germinal epithelium of testis, where it appeared most abundant, and during ontogeny, suggesting a possible role for this cofactor in cellular proliferation and differentiation.
Collapse
Affiliation(s)
- Y Zhu
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
4924
|
Pace P, Taylor J, Suntharalingam S, Coombes RC, Ali S. Human estrogen receptor beta binds DNA in a manner similar to and dimerizes with estrogen receptor alpha. J Biol Chem 1997; 272:25832-8. [PMID: 9325313 DOI: 10.1074/jbc.272.41.25832] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cloning of a novel estrogen receptor beta (denoted ERbeta) has recently been described (Kuiper, G. G. J. M., Enmark, E., Pelto-Huikko, M., Nilsson, S., and Gustafsson, J-A. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 5925-5930 and Mosselman, S., Polman, J. , and Dijkema, R. (1996) FEBS Lett. 392, 49-53). ERbeta is highly homologous to the "classical" estrogen receptor alpha (here referred to as ERalpha), has been shown to bind estrogens with an affinity similar to that of ERalpha, and activates expression of reporter genes containing estrogen response elements in an estrogen-dependent manner. Here we describe functional studies comparing the DNA binding abilities of human ERalpha and beta in gel shift assays. We show that DNA binding by ERalpha and beta are similarly affected by elevated temperature in the absence of ligand or in the presence of 17beta-estradiol and the partial estrogen agonist 4-hydroxy-tamoxifen. In the absence of ligand, DNA binding by ERalpha and beta is rapidly lost at 37 degrees C, while in the presence of 17beta-estradiol and 4-hydroxy-tamoxifen, the loss in DNA binding at elevated temperature is much more gradual. We show that the loss in DNA binding is not due to degradation of the receptor proteins. However, while the complete antagonist ICI 182, 780 does not "protect" human ERalpha (hERalpha) from loss of DNA binding at elevated temperature in vitro, it does appear to protect human ERbeta (hERbeta), suggestive of differences in the way ICI 182, 780 acts on hERalpha and beta. We further report that ERalpha and beta can dimerize with each other, the DNA binding domain of hERalpha being sufficient for dimerization with hERbeta. Cell and promoter-specific transcription activation by ERalpha has been shown to be dependent on the differential action of the N- and C-terminal transcription activation functions AF-1 and AF-2, respectively. The existence of a second estrogen receptor gene and the dimerization of ERalpha and beta add greater levels of complexity to transcription activation in response to estrogens.
Collapse
Affiliation(s)
- P Pace
- Department of Medical Oncology, Imperial College of Medicine, Charing Cross Campus, St. Dunstan's Road, London W6 8RF, United Kingdom
| | | | | | | | | |
Collapse
|
4925
|
Guadaño-Ferraz A, Escámez MJ, Morte B, Vargiu P, Bernal J. Transcriptional induction of RC3/neurogranin by thyroid hormone: differential neuronal sensitivity is not correlated with thyroid hormone receptor distribution in the brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 49:37-44. [PMID: 9387861 DOI: 10.1016/s0169-328x(97)00119-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RC3/neurogranin is a calmodulin-binding protein kinase C substrate, located in dendritic spines of forebrain neurons. It has been implicated in post-synaptic signal transduction events involving Ca2+ and calmodulin leading to many forms of synaptic plasticity. RC3 gene expression is under developmental and physiological regulation. The main physiological regulator appears to be thyroid gland activity. Hypothyroidism decreased RC3 mRNA concentration in the brain of post-natal day 22 rats. The affected areas included layer 6 of cerebral cortex, layers 2-3 of retrosplenial cortex, dentate gyrus and the caudate whereas others were not affected by hypothyroidism, such as upper layers of cerebral cortex, the pyramidal layer of the hippocampus and the amygdala. A single administration of triiodothyronine (T3) induced a significant transcriptional increase of RC3 mRNA in hypothyroid rats, 24 h after administration. Differential sensitivity to thyroid hormone was not related to differential expression of T3 receptor isoforms or the T3 receptor inhibitory variant alpha2. Therefore, it is likely that cell sensitivity to thyroid hormone in the brain depends on T3 receptor-associated factors.
Collapse
|
4926
|
|
4927
|
Abstract
The knowledge accumulated about the biochemistry of the synapsis in the last decades completely changes the notion of brain processing founded exclusively over an electrical mechanism, toward that supported by a complex chemical message exchange occurring both locally, at the synaptic site, as well as at other localities, depending on the solubility of the involved chemical substances in the extracellular compartment. These biochemical transactions support a rich symbolic processing of the information both encoded by the genes and provided by actual data collected from the surrounding environment, by means of either special molecular or cellular receptor systems. In this processing, molecules play the role of symbols and chemical affinity shared by them specifies the syntax for symbol manipulation in order to process and to produce chemical messages. In this context, neurons are conceived as message-exchanging agents. Chemical strings are produced and stored at defined places, and ionic currents are used to speed up message delivery. Synaptic transactions can no longer be assumed to correspond to a simple process of propagating numbers powered by a factor measuring the presynaptic capacity to influence the postsynaptic electrical activity, but they must be modeled by more powerful formal tools supporting both numerical and symbolic calculations. It is proposed here that formal language theory is the adequate mathematical tool to handle such symbolic processing. The purpose of the present review is therefore: (a) to discuss the relevant and recent literature about trophic factors, signal transduction mechanisms, neuromodulators and neurotransmitters in order (b) to point out the common features of these correlated processes; and (c) to show how they may be organized into a formal model supported by the theory of fuzzy formal languages (d) to model the brain as a distributed intelligent problem solver.
Collapse
Affiliation(s)
- A F Rocha
- RANI-Research on Artificial and Natural Intelligence, UNICAMP Brazil, Jundiaí, Brazil.
| |
Collapse
|
4928
|
Scott RE, Wu-Peng XS, Yen PM, Chin WW, Pfaff DW. Interactions of estrogen- and thyroid hormone receptors on a progesterone receptor estrogen response element (ERE) sequence: a comparison with the vitellogenin A2 consensus ERE. Mol Endocrinol 1997; 11:1581-92. [PMID: 9328341 DOI: 10.1210/mend.11.11.0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The identification of hormone response elements in the promoter regions of hormonally regulated genes has revealed a striking similarity between the half-site of the estrogen-response element (ERE) and a consensus sequence constituting the thyroid hormone-response element. Because of the potential for thyroid hormone (T3) to affect estrogen (E)- and progesterone-dependent female reproductive behavior via EREs, we have begun to investigate the activity of an ERE identified in the progesterone receptor (PR) proximal promoter and its interactions with the estrogen receptor (ER) and thyroid hormone receptors (TR). In addition, we have compared ER and TR interactions on the PR ERE construct with that of the vitellogenin A2 (vit A2) consensus ERE. Electrophoretic mobility shift assays demonstrated that TR binds to the PR ERE as well as to the consensus ERE sequence in vitro. Further, these two EREs were differentially regulated by T3 in the presence of TR. T3 in the presence of TR alpha increased transcription from a PR ERE construct approximately 5-fold and had no inhibitory effect on E induction. Similarly, T3 also activated a beta-galactosidase reporter construct containing PR promoter sequences spanning -1400 to +700. In addition, the TR isoforms beta1 and beta2 also stimulated transcription from the PR ERE construct by 5- to 6-fold. A TR alpha mutant lacking the ability to bind AGGTCA sequences in vitro failed to activate transcription from the PR ERE construct, demonstrating dependence on DNA binding. In contrast to its actions on the PR ERE construct, TR alpha did not activate transcription from the vit A2 consensus ERE but rather attenuated E-mediated transcriptional activation. Attenuation from the vit A2 consensus ERE is not necessarily dependent on DNA binding as the TR alpha DNA binding mutant was still able to inhibit E-dependent transactivation. In contrast to TR alpha, the isoforms TRbeta1 and TRbeta2 failed to inhibit E-induced activation from the vit A2 consensus ERE. These results demonstrate that the PR ERE construct differs from the vit A2 consensus ERE in its ability to respond to TRs and that divergent pathways exist for activation and inhibition by TR. Since ERs, PRs, and TRs are all present in hypothalamic neurons, these findings may be significant for endocrine integration, which is important for reproductive behavior.
Collapse
Affiliation(s)
- R E Scott
- Neurobiology and Behavior, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
4929
|
Oulad-Abdelghani M, Chazaud C, Bouillet P, Sapin V, Chambon P, Dollé P. Meis2, a novel mouse Pbx-related homeobox gene induced by retinoic acid during differentiation of P19 embryonal carcinoma cells. Dev Dyn 1997; 210:173-83. [PMID: 9337137 DOI: 10.1002/(sici)1097-0177(199710)210:2<173::aid-aja9>3.0.co;2-d] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report the cDNA cloning, partial genomic organization, and expression pattern of Stra10, a novel retinoic acid-inducible gene in P19 embryonal carcinoma cells. Four murine cDNA isoforms have been isolated, which are likely to result from alternative splicing. The predicted protein sequences exhibit approximately 85% identity with the Pbx-related Meis1 homeobox gene products, which are involved in myeloid leukemia in BXH-2 mice, and one of the Stra10 isoforms corresponds to the recently published Meis2 sequence (Nakamura et al. [1996] Oncogene 13:2235-2242). The Meis2 homeodomain is identical to that of Meis1, and is most closely related to those of the Pbx/TGIF homeobox gene products. By in situ hybridization analysis, we show that the Meis2 gene displays spatially restricted expression patterns in the developing nervous system, limbs, face, and in various viscera. In adult mice, Meis2 is mainly expressed in the brain and female genital tract, with a different distribution of the alternative splice forms in these organs.
Collapse
Affiliation(s)
- M Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, Illkirch, C.U. de Strasbourg
| | | | | | | | | | | |
Collapse
|
4930
|
Katz D, Niederberger C, Slaughter GR, Cooney AJ. Characterization of germ cell-specific expression of the orphan nuclear receptor, germ cell nuclear factor. Endocrinology 1997; 138:4364-72. [PMID: 9322952 DOI: 10.1210/endo.138.10.5444] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nuclear receptors, such as those for androgens, estrogens, and progesterones, control many reproductive processes. Proteins with structures similar to these receptors, but for which ligands have not yet been identified, have been termed orphan nuclear receptors. One of these orphans, germ cell nuclear factor (GCNF), has been shown to be germ cell specific in the adult and, therefore, may also participate in the regulation of reproductive functions. In this paper, we examine more closely the expression patterns of GCNF in germ cells to begin to define spatio-temporal domains of its activity. In situ hybridization showed that GCNF messenger RNA (mRNA) is lacking in the testis of hypogonadal mutant mice, which lack developed spermatids, but is present in the wild-type testis. Thus, GCNF is, indeed, germ cell specific in the adult male. Quantitation of the specific in situ hybridization signal in wild-type testis reveals that GCNF mRNA is most abundant in stage VII round spermatids. Similarly, Northern analysis and specific in situ hybridization show that GCNF expression first occurs in testis of 20-day-old mice, when round spermatids first emerge. Therefore, in the male, GCNF expression occurs postmeiotically and may participate in the morphological changes of the maturing spermatids. In contrast, female expression of GCNF is shown in growing oocytes that have not completed the first meiotic division. Thus, GCNF in the female is expressed before the completion of meiosis. Finally, the nature of the two different mRNAs that hybridize to the GCNF complementary DNA was studied. Although both messages contain the DNA binding domain, only the larger message is recognized by a probe from the extreme 3' untranslated region. In situ hybridization with these differential probes demonstrates that both messages are present in growing oocytes. In addition, the coding region and portions of the 3' untranslated region of the GCNF complementary DNA are conserved in the rat.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- DNA Primers/analysis
- DNA Primers/chemistry
- DNA Primers/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Female
- Gene Expression Regulation/physiology
- In Situ Hybridization
- Male
- Meiosis
- Mice
- Mice, Inbred ICR
- Mice, Mutant Strains
- Molecular Sequence Data
- Nuclear Receptor Subfamily 6, Group A, Member 1
- Oocytes/cytology
- Oocytes/metabolism
- Oogenesis/physiology
- Ovary/chemistry
- Ovary/cytology
- RNA, Messenger/analysis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Rats
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/genetics
- Spermatids/cytology
- Spermatids/metabolism
- Spermatogenesis/physiology
- Testis/chemistry
- Testis/cytology
Collapse
Affiliation(s)
- D Katz
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
4931
|
Saez E, No D, West A, Evans RM. Inducible gene expression in mammalian cells and transgenic mice. Curr Opin Biotechnol 1997; 8:608-16. [PMID: 9353233 DOI: 10.1016/s0958-1669(97)80037-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Advances in biomedicine have accentuated the need to develop methods to deliberately modulate gene activity. In addition to improved versions of the system based on components of the tetracycline resistance operon, several strategies have recently emerged to control gene function at the transcriptional level. Particularly promising are approaches based on non-mammalian steroid hormones, and on small molecules that bind immunophilins.
Collapse
Affiliation(s)
- E Saez
- Howard Hughes Medical Institute, Gene Expression Lab, Salk Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
4932
|
Philips A, Lesage S, Gingras R, Maira MH, Gauthier Y, Hugo P, Drouin J. Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells. Mol Cell Biol 1997; 17:5946-51. [PMID: 9315652 PMCID: PMC232442 DOI: 10.1128/mcb.17.10.5946] [Citation(s) in RCA: 273] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Within the nuclear receptor family, Nur77 (also known as NGFI-B) distinguishes itself by its ability to bind a target sequence (the NBRE) as a monomer and by its role in T-cell receptor (TCR)-induced apoptosis in T cells. We now report on a novel mechanism of Nur77 action that is mediated by homodimers. These dimers bind a Nur77 response element (NurRE), which has been identified as a target of CRH-induced Nur77 in the pro-opiomelanocortin (POMC) gene promoter. Both halves of the palindromic NurRE are required for responsiveness to physiological signals, like CRH in pituitary-derived AtT-20 cells. Similarly, in T-cell hybridomas, TCR activation induced NurRE but not NBRE reporters. The in vivo signaling function of Nur77 thus appears to be mediated by dimers acting on a palindromic response element of unusual spacing between its half-sites. This mechanism may represent the biologically relevant paradigm of action for this subfamily of orphan nuclear receptors.
Collapse
MESH Headings
- Animals
- Colforsin/pharmacology
- Corticotropin-Releasing Hormone/pharmacology
- Cyclic AMP/physiology
- DNA/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dimerization
- Gene Expression Regulation/physiology
- Hybridomas
- Mice
- Mutation
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Pituitary Gland, Anterior/cytology
- Pituitary Gland, Anterior/physiology
- Pro-Opiomelanocortin/genetics
- Promoter Regions, Genetic/genetics
- Receptors, Antigen, T-Cell/physiology
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid
- Signal Transduction/physiology
- T-Lymphocytes/cytology
- T-Lymphocytes/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A Philips
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
4933
|
Radoja N, Diaz DV, Minars TJ, Freedberg IM, Blumenberg M, Tomic-Canic M. Specific organization of the negative response elements for retinoic acid and thyroid hormone receptors in keratin gene family. J Invest Dermatol 1997; 109:566-72. [PMID: 9326392 DOI: 10.1111/1523-1747.ep12337483] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Retinoic acid and thyroid hormone are important regulators of epidermal growth, differentiation, and homeostasis. Retinoic acid is extensively used in the treatment of many epidermal disorders ranging from wrinkles to skin cancers. Retinoic acid and thyroid hormone directly control the transcription of differentiation-specific genes including keratins. Their effect is mediated through nuclear receptors RAR and T3R. We have previously identified the response element in the K14 gene, K14RARE/TRE, to which these receptors bind, and found that it consists of a cluster of five half-sites with variable spacing and orientation. To determine whether this specific structure is found in other keratin genes, we have mapped and analyzed the RARE/TRE elements in three additional epidermal keratin genes: K5, K6, and K17. We used three different approaches to identify these elements: co-transfection of promoter deletion constructs, gel-shift assays, and site-specific mutagenesis. We localized the RARE/TRE elements relatively close to the TATA box in all three promoters. All three RARE/TRE elements have a similar structural organization: they consist of clusters of 3-6 half-sites with variable spacing and orientation. This means that the clustered structure of the RARE/TREs is a common characteristic for keratin genes. RARE and TRE in the K5 promoter are adjacent to each other whereas in the K17 promoter they overlap. All three keratin REs bind specifically both RAR and T3R in gel-shift assays. Interestingly, addition of ligand to the receptor changes the binding pattern ofthe T3R from homodimer to monomer, reflecting the change in regulation from induction to inhibition.
Collapse
Affiliation(s)
- N Radoja
- The Ronald O. Perelman Department of Dermatology, New York University Medical Center, NY, U.S.A
| | | | | | | | | | | |
Collapse
|
4934
|
Lin BC, Hong SH, Krig S, Yoh SM, Privalsky ML. A conformational switch in nuclear hormone receptors is involved in coupling hormone binding to corepressor release. Mol Cell Biol 1997; 17:6131-8. [PMID: 9315673 PMCID: PMC232463 DOI: 10.1128/mcb.17.10.6131] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nuclear hormone receptors are ligand-regulated transcription factors that modulate gene expression in response to small, hydrophobic hormones, such as retinoic acid and thyroid hormone. The thyroid hormone and retinoic acid receptors typically repress transcription in the absence of hormone and activate it in the presence of hormone. Transcriptional repression is mediated, in part, through the ability of these receptors to physically associate with ancillary polypeptides called corepressors. We wished to understand the mechanism by which corepressors are recruited to unliganded nuclear hormone receptors and are released on the binding of hormone. We report here that an alpha-helical domain located at the thyroid hormone receptor C terminus appears to undergo a hormone-induced conformational change required for release of corepressor and that amino acid substitutions that abrogate this conformational change can impair or prevent corepressor release. In contrast, retinoid X receptors appear neither to undergo an equivalent conformational alteration in their C termini nor to release corepressor in response to cognate hormone, consistent with the distinct transcriptional regulatory properties displayed by this class of receptors.
Collapse
Affiliation(s)
- B C Lin
- Division of Biological Sciences, University of California at Davis, 95616, USA
| | | | | | | | | |
Collapse
|
4935
|
Kleinjan DA, Dekker S, Vaessen MJ, Grosveld F. Regulation of the CRABP-I gene during mouse embryogenesis. Mech Dev 1997; 67:157-69. [PMID: 9392513 DOI: 10.1016/s0925-4773(97)00116-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cellular retinoic acid binding protein type I (CRABP-I) shows a highly specific expression pattern during mouse embryonic development. The tissues that express CRABP-I, i.e. the central nervous system (CNS), neural crest, branchial arches, limb bud and frontonasal mass, coincide with those that are most sensitive to unphysiological retinoic acid (RA) concentrations. We have investigated the transcriptional elements that are responsible for the spatiotemporal regulation of CRABP-I expression in the mouse embryo. We show here that a 16 kb fragment harbours all the elements needed for the correct spatiotemporal expression pattern. Upon further dissection of this fragment we have found that expression in the CNS is driven by elements in the upstream region of the gene, while expression in mesenchymal and neural crest tissue is regulated via element(s) located downstream of exon II of the gene. Two distinct fragments in the upstream region are required for expression in the CNS, as neither of these fragments alone is able to drive correct expression of a reporter gene in transgenic mice. DNAseI footprinting analysis of the two upstream fragments revealed the presence of a number of protected elements. One of these regulatory elements has the hallmarks of an RA response element, suggesting that CRABP-I expression in neural tissue can be directly modulated by RA via the RARs/RXRs.
Collapse
Affiliation(s)
- D A Kleinjan
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
4936
|
Forman BM, Ruan B, Chen J, Schroepfer GJ, Evans RM. The orphan nuclear receptor LXRalpha is positively and negatively regulated by distinct products of mevalonate metabolism. Proc Natl Acad Sci U S A 1997; 94:10588-93. [PMID: 9380679 PMCID: PMC23411 DOI: 10.1073/pnas.94.20.10588] [Citation(s) in RCA: 216] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
LXRalpha is an orphan member of the nuclear hormone receptor superfamily that displays constitutive transcriptional activity. We reasoned that this activity may result from the production of an endogenous activator that is a component of intermediary metabolism. The use of metabolic inhibitors revealed that mevalonic acid biosynthesis is required for LXRalpha activity. Mevalonic acid is a common metabolite used by virtually all eukaryotic cells. It serves as a precursor to a large number of important molecules including farnesyl pyrophosphate, geranylgeranyl pyrophosphate, cholesterol, and oxysterols. Inhibition of LXRalpha could be reversed by addition of mevalonic acid and certain oxysterols but not by other products of mevalonic acid metabolism. Surprisingly, the constitutive activity of LXRalpha was inhibited by geranylgeraniol, a metabolite of mevalonic acid. These findings suggest that LXRalpha may represent a central component of a signaling pathway that is both positively and negatively regulated by multiple products of mevalonate metabolism.
Collapse
Affiliation(s)
- B M Forman
- The Salk Institute for Biological Studies, Gene Expression Lab, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
4937
|
Choi HS, Chung M, Tzameli I, Simha D, Lee YK, Seol W, Moore DD. Differential transactivation by two isoforms of the orphan nuclear hormone receptor CAR. J Biol Chem 1997; 272:23565-71. [PMID: 9295294 DOI: 10.1074/jbc.272.38.23565] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have identified a new murine orphan member of the nuclear hormone receptor superfamily, termed mCAR, that is closely related to the previously described human orphan MB67, referred to here as hCAR. Like hCAR, mCAR expression is highest in liver. In addition to the most abundant mCAR1 isoform, the mCAR gene expresses a truncated mCAR2 variant that is missing the C-terminal portion of the ligand binding/dimerization domain. The mCAR gene has 8 introns, and this mCAR2 variant is generated by a splicing event that skips the 8th exon. mCAR1, like hCAR, binds as a heterodimer with the retinoid X receptor to the retinoic acid response element from the promoter of the retinoic acid receptor beta2 isoform. Consistent with its lack of a critical heterodimerization interface, the mCAR2 variant does not bind this site. Both mCAR1 and hCAR are apparently constitutive transcriptional activators. This activity is dependent on the presence of the conserved C-terminal AF-2 transcriptional activation motif. As expected from its inability to bind DNA, the mCAR2 variant neither transactivates by itself nor inhibits transactivation by hCAR or mCAR1.
Collapse
Affiliation(s)
- H S Choi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
4938
|
Boehm N, Chateau D, Rochette-Egly C. Retinoid receptors in rat vaginal and uterine epithelia: changes with ovarian steroids. Mol Cell Endocrinol 1997; 132:101-8. [PMID: 9324051 DOI: 10.1016/s0303-7207(97)00126-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In rats, vaginal epithelium shows cyclic changes with an alternating pattern of keratinization under estrogen control and mucification under progesterone control. Since retinoids suppress keratinizing differentiation, in this paper we studied the expression of the major retinoid receptors normally present in keratinizing squamous epithelia: RAR alpha, RAR gamma and RXR alpha. In cyclic rats and steroid-treated ovariectomized rats, RXR alpha and RAR gamma were detected in basal and suprabasal cells while RAR alpha was mainly localized in suprabasal cells. No changes in RAR gamma expression were observed in correlation with ovarian steroids. During diestrus and in ovariectomized rats, the superficial cuboid cells expressed the three receptors. In the uterine epithelium, RAR alpha, RAR gamma and RXR alpha expression was induced by estrogens. Retinoic acid treatment did not modify retinoid receptor expression in vaginal and uterine epithelia. These data suggest specific roles for the different receptors in the complex process of vaginal epithelium proliferation and differentiation under estrogens and retinoic acid control.
Collapse
Affiliation(s)
- N Boehm
- Institut d'Histologie, Faculté de Médecine, Strasbourg, France
| | | | | |
Collapse
|
4939
|
Chen Y, Derguini F, Buck J. Vitamin A in serum is a survival factor for fibroblasts. Proc Natl Acad Sci U S A 1997; 94:10205-8. [PMID: 9294188 PMCID: PMC23340 DOI: 10.1073/pnas.94.19.10205] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/1997] [Indexed: 02/05/2023] Open
Abstract
Murine 3T3 cells arrest in a quiescent, nondividing state when transferred into medium containing little or no serum. Within the first day after transfer, fibroblasts can be activated to proliferate by platelet-derived growth factor (PDGF) alone; cells starved longer than 1 day, however, are activated only by serum. We demonstrate that endogenous vitamin A (retinol) or retinol supplied by serum prevents cell death and that retinol, in combination with PDGF, can fully replace serum in activating cells starved longer than 1 day. The physiological retinol derivative 14-hydroxy-4, 14-retro-retinol, but not retinoic acid, can replace retinol in rescuing or activating 3T3 cells. Anhydroretinol, another physiological retinol metabolite that acts as a competitive antagonist of retinol, blocks cell activation by serum, indicating that retinol is a necessary component of serum. It previously has been proposed that activation of 3T3 cells requires two factors in serum, an activation factor shown to be PDGF and an unidentified survival factor. We report that retinol is the survival factor in serum.
Collapse
Affiliation(s)
- Y Chen
- Department of Pharmacology, Cornell University Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
4940
|
Danielsson C, Mathiasen IS, James SY, Nayeri S, Bretting C, Hansen CM, Colston KW, Carlberg C. Sensitive induction of apoptosis in breast cancer cells by a novel 1,25-dihydroxyvitamin D3 analogue shows relation to promoter selectivity. J Cell Biochem 1997; 66:552-62. [PMID: 9282333 DOI: 10.1002/(sici)1097-4644(19970915)66:4<552::aid-jcb14>3.0.co;2-d] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The biologically active form of vitamin D3, the nuclear hormone 1 alpha,25-dihydroxyvitamin D3 (VD), is an important regulator of cellular growth, differentiation, and death. The hormone mediates its action through the activation of the transcription factor VDR, which is a member of the superfamily of nuclear receptors. In most cases the ligand-activated VDR is found in complex with the retinoid X receptor (RXR) and stimulates gene transcription mainly from VD response elements (VDREs) that are formed by two hexameric core binding motifs and are arranged either as a direct repeat spaced by three nucleotides (DR3) or as an inverted palindrome spaced by nine nucleotides (1P9). The two VD analogues CB1093 and EB1089 are both very potent inhibitors of the proliferation of MCF-7 cultured breast cancer cells displaying approximately 100-fold lower IC50 values (0.1 nM) than the natural hormone. In addition, CB1093 is even more potent in vivo than EB1089 in producing regression of experimental mammary tumors. Moreover, both VD analogues induce apoptosis in MCF-7 cells, but CB1093 is effective at concentrations approximately 10-fold lower than EB1089. In accordance, the reduction of Bcl-2 protein expression showed CB1093 to be more potent than EB1089. This suggests that the antiproliferative effect of CB1093 may be related mainly to its apoptosis inducing effect, whereas EB1089 may preferentially have effects on growth arrest. EB1089 is known to result in a selectivity for the activation of IP9-type VDREs, whereas CB1093 shows a preference for the activation of DR3-type VDREs. This promoter selectivity suggests that the effects of VD and its analogues on growth arrest and the induction of apoptosis may be mediated by different primary VD responding genes. In conclusion, CB1093 was found to be a potent inhibitor of rat mammary tumor growth in vivo. CB1093 also displayed a high potency in vitro in the induction of apoptosis, a process that may be linked to a promoter selectivity for DR3-type VDREs.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Apoptosis/physiology
- Breast Neoplasms/pathology
- Calcitriol/administration & dosage
- Calcitriol/analogs & derivatives
- Calcitriol/chemistry
- Calcitriol/pharmacology
- Calcium/metabolism
- Cell Division/drug effects
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- Proto-Oncogene Proteins c-bcl-2/analysis
- Proto-Oncogene Proteins c-bcl-2/drug effects
- Rats
- Rats, Inbred Lew
- Rats, Inbred Strains
- Rats, Wistar
- Receptors, Calcitriol/physiology
- Transcription, Genetic/genetics
- Transcription, Genetic/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- C Danielsson
- Clinique de Dermatologie, Hôpital Cantonal Universitaire, Genève, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
4941
|
Abstract
FTZ-F1 is a member of the orphan nuclear receptors, which belongs to the steroid hormone receptor superfamily, and plays a role in the blastoderm and nervous system development in Drosophila. Recently, several FTZ-F1 family genes have been cloned in several species. SF-1/Ad4BPs have been identified as master regulators controlling steroidogenic P-450 genes in mammals and are considered to be the mammalian homologues of FTZ-F1. Moreover, SF-1/Ad4BP plays a critical role in the sexual differentiation of gonads in mammals. In vertebrates, except for mammals, the functional homologue of SF-1/Ad4BP has not been identified before. Herein, we cloned two chicken cDNAs (OR2.0 and OR2.1), which encode putative FTZ-F1 family receptors, by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). OR2.1 consists of 3255 bp, is expressed in the adrenal glands and gonads, and is considered to be the chicken counterpart of mammalian SF-1/Ad4BP. However, OR2.0 consists of 2945 bp, is expressed in the livers and the adrenal glands, and is considered to be the chicken counterpart of mouse LRH-1, which is a member of the FTZ-F1 family in mammals.
Collapse
Affiliation(s)
- T Kudo
- Central Research Institute, Itoham Foods Inc., Ibaraki, Japan
| | | |
Collapse
|
4942
|
Vu-Dac N, Gervois P, Grötzinger T, De Vos P, Schoonjans K, Fruchart JC, Auwerx J, Mariani J, Tedgui A, Staels B. Transcriptional regulation of apolipoprotein A-I gene expression by the nuclear receptor RORalpha. J Biol Chem 1997; 272:22401-4. [PMID: 9278389 DOI: 10.1074/jbc.272.36.22401] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Since elevated concentrations of plasma high density lipoprotein (HDL) and its major apolipoprotein (apo), apoA-I, confer protection against atherosclerosis, considerable research efforts have focussed on the identification of factors regulating apoA-I gene expression in an attempt to increase its production. Nuclear receptors are interesting candidates because they are transcription factors whose activity is ligand-dependent. In the present study we identified the orphan receptor RORalpha1 as an activator of apoA-I gene transcription. In apoA-I-expressing intestinal Caco-2 cells, overexpression of the RORalpha1, but not the RORalpha2 or RORalpha3 isoforms, increased rat apoA-I gene transcription. Deletion and site-directed mutagenesis experiments identified a functional ROR-responsive element (RORE) in the rat and mouse apoA-I gene promoters, which overlaps with the TATA box. Gel shift experiments indicated that this RORE binds the RORalpha1 isoform, but not the RORalpha2 or RORalpha3 isoforms. Furthermore, compared with wild type mice, apoA-I mRNA levels were significantly lower in small intestines of staggerer mice homozygous for a deletion in the RORalpha gene. In addition, reverse transcriptase-polymerase chain reaction analysis revealed the expression of RORalpha in small intestinal epithelium and in Caco-2 cells. These data indicate a novel, physiological role for RORalpha1 in the regulation of genes involved in lipid and lipoprotein metabolism and possibly in the development of metabolic diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- N Vu-Dac
- Département d'Athérosclérose, U.325 INSERM, Institut Pasteur de Lille and Université de Lille II, 1 Rue Calmette, 59019 Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4943
|
Paech K, Webb P, Kuiper GG, Nilsson S, Gustafsson J, Kushner PJ, Scanlan TS. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science 1997; 277:1508-10. [PMID: 9278514 DOI: 10.1126/science.277.5331.1508] [Citation(s) in RCA: 1586] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The transactivation properties of the two estrogen receptors, ERalpha and ERbeta, were examined with different ligands in the context of an estrogen response element and an AP1 element. ERalpha and ERbeta were shown to signal in opposite ways when complexed with the natural hormone estradiol from an AP1 site: with ERalpha, 17beta-estradiol activated transcription, whereas with ERbeta, 17beta-estradiol inhibited transcription. Moreover, the antiestrogens tamoxifen, raloxifene, and Imperial Chemical Industries 164384 were potent transcriptional activators with ERbeta at an AP1 site. Thus, the two ERs signal in different ways depending on ligand and response element. This suggests that ERalpha and ERbeta may play different roles in gene regulation.
Collapse
Affiliation(s)
- K Paech
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0446, USA
| | | | | | | | | | | | | |
Collapse
|
4944
|
Kirkwood KL, Homick K, Dragon MB, Bradford PG. Cloning and characterization of the type I inositol 1,4,5-trisphosphate receptor gene promoter. Regulation by 17beta-estradiol in osteoblasts. J Biol Chem 1997; 272:22425-31. [PMID: 9278393 PMCID: PMC2754576 DOI: 10.1074/jbc.272.36.22425] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The inositol 1,4,5-trisphosphate (InsP3) receptor is essential for signal Ca2+ release from intracellular stores and for capacitative Ca2+ entry. We have isolated the promoter and proximal DNA segments of the human type I InsP3 receptor gene. Transcription initiation in human G-292 osteosarcoma and HL-60 promyelocytic leukemia cells was shown to occur predominantly from an adenine residue located 39 base pairs downstream of a consensus TATA box element. Upstream DNA including the TATA box promoted directional transcription of a chloramphenicol acetyltransferase reporter gene when transfected into G-292 cells. A negative regulatory element in the distal promoter and a positive element in the proximal region were identified by deletion mapping and transcription assays. The proximal region enhanced transcription in response to 12-O-tetradecanoylphorbol-13-acetate or serum, but conferred transcriptional repression in response to 1,25-dihydroxyvitamin D3 or 17beta-estradiol. The repressive effect of 17beta-estradiol was mediated by the nuclear estrogen receptor, as estrogen-dependent transcriptional repression was inhibited by the antiestrogen tamoxifen and the estrogen receptor antagonist ICI 182,780. This is the first study of the type I InsP3 receptor gene promoter, and the results suggest a mechanism by which chronic estrogen treatment of osteoblasts affects type I InsP3 receptor gene expression, signal transduction, and secretion.
Collapse
MESH Headings
- Base Sequence
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Cloning, Molecular
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogen Antagonists/pharmacology
- Fulvestrant
- Gene Expression Regulation/drug effects
- Humans
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Molecular Sequence Data
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- Promoter Regions, Genetic
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Tamoxifen/pharmacology
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Keith L. Kirkwood
- Department of Oral Biology, School of Dental Medicine, State University of New York, Buffalo, New York 14214-3000
- Center for the Molecular Mechanisms of Disease and Aging, State University of New York, Buffalo, New York 14214-3000
| | - Kristen Homick
- Howard Hughes Medical Institute Undergraduate Biological Sciences Education Program, State University of New York, Buffalo, New York 14214-3000
| | - Marc B. Dragon
- Howard Hughes Medical Institute Undergraduate Biological Sciences Education Program, State University of New York, Buffalo, New York 14214-3000
| | - Peter G. Bradford
- Center for the Molecular Mechanisms of Disease and Aging, State University of New York, Buffalo, New York 14214-3000
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214-3000
- To whom correspondence should be addressed: Dept. of Pharmacology and Toxicology, State University of New York, Buffalo, NY 14214-3000. Fax: 716-829-2801; E-mail:
| |
Collapse
|
4945
|
Campbell MJ, Reddy GS, Koeffler HP. Vitamin D3 analogs and their 24-Oxo metabolites equally inhibit clonal proliferation of a variety of cancer cells but have differing molecular effects. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(19970901)66:3<413::aid-jcb13>3.0.co;2-f] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4946
|
Lazennec G, Kern L, Valotaire Y, Salbert G. The nuclear orphan receptors COUP-TF and ARP-1 positively regulate the trout estrogen receptor gene through enhancing autoregulation. Mol Cell Biol 1997; 17:5053-66. [PMID: 9271383 PMCID: PMC232356 DOI: 10.1128/mcb.17.9.5053] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The rainbow trout estrogen receptor (rtER) is a positively autoregulated gene in liver cells. In a previous report, we showed that upregulation is mediated by an estrogen response element (ERE) located in the proximal promoter of the gene and that a half binding site for nuclear receptors (5'-TGACCT-3') located 15 bp upstream of the ERE is involved in the magnitude of the estrogen response. We now report that the human orphan receptor COUP-TF and a COUP-TF-like protein from trout liver are able to bind to the consensus half-site. When cotransfected with the rtER gene proximal promoter, COUP-TF had no regulatory functions on its own. Interestingly, COUP-TF enhanced rtER transactivation properties in the presence of estradiol in a dose-dependent manner when cotransfected with the rtER gene promoter. Unliganded retinoid receptor heterodimers had the same helper function as COUP-TF in the presence of estradiol but were switched to repressors when the ligand all-trans-retinoic acid was added. Mutation of the consensus half-site only slightly reduced COUP-TF helper function, suggesting that it actually results from a complex mechanism that probably involves both DNA binding of COUP-TF to the promoter and protein-protein interaction with another transcription factor bound to the promoter. Nevertheless, a DNA-binding-defective mutant of COUP-TF was also defective in ER helper function. Competition footprinting analysis suggested that COUP-TF actually establishes contacts with the consensus upstream half-site and the downstream ERE half-site that would form a DR-24-like response element. Interaction of COUP-TF with the DR-24 element was confirmed in footprinting assays by using nuclear extracts from Saccharomyces cerevisiae expressing COUP-TF. Finally, interaction of COUP-TF with mutants of the rtER gene promoter showed that COUP-TF recognizes the ERE when the upstream half-site is mutated. These data show that COUP-TF may activate transcription through interaction with other nuclear receptors. This cross-talk between liganded nuclear receptors and orphan receptors is likely to modulate the spectrum of action of a particular ligand-receptor complex and may participate in the cell-type specificity of the ligand effect.
Collapse
Affiliation(s)
- G Lazennec
- UPRES-A CNRS 6026, Equipe Associée d'Endocrinologie Moléculaire des Poissons, INRA, Université de Rennes I, France
| | | | | | | |
Collapse
|
4947
|
Affiliation(s)
- G Eichele
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
4948
|
Achatz G, Hölzl B, Speckmayer R, Hauser C, Sandhofer F, Paulweber B. Functional domains of the human orphan receptor ARP-1/COUP-TFII involved in active repression and transrepression. Mol Cell Biol 1997; 17:4914-32. [PMID: 9271371 PMCID: PMC232344 DOI: 10.1128/mcb.17.9.4914] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The orphan receptor ARP-1/COUP-TFII, a member of the chicken ovalbumin upstream promoter transcription factor (COUP-TF) subfamily of nuclear receptors, strongly represses transcriptional activity of numerous genes, including several apolipoprotein-encoding genes. Recently it has been demonstrated that the mechanism by which COUP-TFs reduce transcriptional activity involves active repression and transrepression. To map the domains of ARP-1/COUP-TFII required for repressor activity, a detailed deletion analysis of the protein was performed. Chimeric proteins in which various segments of the ARP-1/COUP-TFII carboxy terminus were fused to the GAL4 DNA binding domain were used to characterize its active repression domain. The smallest segment confering active repressor activity to a heterologous DNA binding domain was found to comprise residues 210 to 414. This domain encompasses the region of ARP-1/COUP-TFII corresponding to helices 3 to 12 in the recently published crystal structure of other members of the nuclear receptor superfamily. It includes the AF-2 AD core domain formed by helix 12 but not the hinge region, which is essential for interaction with a corepressor in the case of the thyroid hormone and retinoic acid receptor. Attachment of the nuclear localization signal from the simian virus 40 large T antigen (Flu tag) to the amino terminus of ARP-1/COUP-TFII abolished its ability to bind to DNA without affecting its repressor activity. By using a series of Flu-tagged mutants, the domains required for transrepressor activity of the protein were mapped. They include the DNA binding domain and the segment spanning residues 193 to 399. Transcriptional activity induced by liver-enriched transactivators such as hepatocyte nuclear factor 3 (HNF-3), C/EBP, or HNF-4 was repressed by ARP-1/COUP-TFII independent of the presence of its cognate binding site, while basal transcription or transcriptional activity induced by ATF or Sp1 was not perturbed by the protein. In conclusion, our results demonstrate that the domains of ARP-1/COUP-TFII required for active repression and transrepression do not coincide. Moreover, they strongly suggest that transrepression is the predominant mechanism underlying repressor activity of ARP-1/COUP-TFII. This mechanism most likely involves interaction of the protein with one or several transcriptional coactivator proteins which are employed by various liver-enriched transactivators but not by ubiquitous factors such as Sp1 or ATF.
Collapse
Affiliation(s)
- G Achatz
- First Department of Internal Medicine, General Hospital of Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
4949
|
Boronat S, Richard-Foy H, Piña B. Specific deactivation of the mouse mammary tumor virus long terminal repeat promoter upon continuous hormone treatment. J Biol Chem 1997; 272:21803-10. [PMID: 9268310 DOI: 10.1074/jbc.272.35.21803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have studied the transcriptional behavior of the mouse mammary tumor virus long repeat (MMTV-LTR) promoter during a prolonged exposure to glucocorticoids. When integrated into XC-derived cells, MMTV-LTR expression reached its maximum during the first day of dexamethasone treatment, but longer exposure to the hormone resulted in the deactivation of the promoter. In contrast, glucocorticoid-responsive resident genes or MMTV-based transiently transfected plasmids maintained or even increased their mRNA levels during the same period of hormone treatment. An integrated chimeric construct containing the hormone-responsive elements from MMTV-LTR but in different sequence context became also deactivated after a prolonged hormone treatment but with a deactivation kinetics significantly slower than constructs containing the entire, chromatin-positioning MMTV-LTR sequence. The decrease on MMTV-LTR-driven transcription was concomitant with a parallel closure of the MMTV-LTR chromatin and with a decrease in glucocorticoid receptor (GR) concentration in the cell. We concluded that the chromatin-organized MMTV-LTR promoter is particularly sensitive to any decrease on GR levels. We propose that chromatin structure may contribute decisively to the differential expression of MMTV-LTR by two mechanisms: limiting MMTV-LTR accessibility to activating transcription factors and accelerating its shutting down upon a decrease on GR levels.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- Chromatin/metabolism
- Cricetinae
- Deoxyribonuclease I/metabolism
- Genes, Reporter
- Glucocorticoids/pharmacology
- Kinetics
- Mammary Tumor Virus, Mouse/drug effects
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/metabolism
- Receptors, Glucocorticoid/metabolism
- Repetitive Sequences, Nucleic Acid/drug effects
- Repetitive Sequences, Nucleic Acid/genetics
- Transfection
Collapse
Affiliation(s)
- S Boronat
- Departament de Biologia Molecular i Cel.lular, Centre d'Investigació i Desenvolupament, Consejo Superior de Investigaciones Científicas, C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | | | | |
Collapse
|
4950
|
Meyer T, Starr DB, Carlstedt-Duke J. The rat glucocorticoid receptor mutant K461A differentiates between two different mechanisms of transrepression. J Biol Chem 1997; 272:21090-5. [PMID: 9261112 DOI: 10.1074/jbc.272.34.21090] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The glucocorticoid receptor (GR) can both activate and repress transcription of target genes by interaction with specific genomic response elements, glucocorticoid response elements (GREs). Activation of transcription is usually the result of the direct interaction between GR and the GRE, whereas GR-mediated transcription repression is either the result of the indirect action of GR, mediated by a response element as a result of protein.protein interaction or by an occlusion mechanism in which GR displaces a general or regulatory transcription factor. A specific mutation of rat GR, K461A, has previously been described to transform the indirect protein.protein interaction-dependent transrepressive effect of GR into an activating function (Starr, D. B., Matsui, W., Thomas, J. R., and Yamamoto, K. R. (1996) Genes Dev. 10, 1271-1283). In HOS D4 and COS7 cells, this mutation was shown to transform the transrepressive effect of wild-type GR, acting on reporter constructs containing the composite GRE from the proliferin gene (plfG) or the negative tethering GRE from the collagenase A promoter (colA), into an activating function. In contrast, the K461A mutation had no effect on the transrepressive effect of GR on the human osteocalcin gene in which repression apparently occurs through the binding of GR to a negative GRE that overlaps the TATA box. The transrepressive function, typically 40% of the basal level in the absence of hormone, required only the isolated DNA-binding domain of wild type or mutant GR and was independent of the nature of transactivation domain. Thus, mutation of rat GR at position 461 differentiates between transrepressive functions of GR dependent on GR.DNA interaction (repression by occlusion) and GR.protein interaction (active repression).
Collapse
Affiliation(s)
- T Meyer
- Department of Medical Nutrition, Novum, Karolinska Institutet, Huddinge Hospital, S-141 86 Huddinge, Sweden
| | | | | |
Collapse
|