1
|
Sukupova M, Knittelova K, Parsimehr E, Malinak D, Noskova D, Kurcova J, Marakova E, Kratochvil Z, Pekarik V, Psotka M, Korabecny J, Sivak L, Kulich P, Heger Z, Adam V, Kuca K. N-(5-(2-morpholino-4-oxo-3,4-dihydroquinazolin-8-yl)pyridin-2-yl)acylamides as novel multi-PI3K/DNA-PK/P-gp inhibitors for efficient chemosensitization and MDR alleviation. Eur J Med Chem 2025; 292:117641. [PMID: 40286451 DOI: 10.1016/j.ejmech.2025.117641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
PI3K signaling pathway is crucial for a plethora of cellular processes and is extensively linked with tumorigenesis and chemo-/radioresistance. Although a number of small molecule inhibitors have been synthesized to control PI3K-mediated signaling, only a limited clinical success has been reached. Thus, the search for novel promising candidates is still ongoing. Herein, we present a novel series of N-(5-(2-morpholino-4-oxo-3,4-dihydroquinazolin-8-yl)pyridin-2-yl)acylamides designed to simultaneously inhibit PI3K and DNA-PK activity. Compared to a commercial DNA-PK/PI3K inhibitor AZD7648, synthesized compounds generally exhibited markedly lower baseline cytotoxicity in all tested cell lines (MC38, B16F10, 4T1, CT26 and HEK-239). Through an array of biological experiments, we selected two most promising compounds, 2 and 6. While in cell-free conditions, 6 acted as a very efficient pan-PI3K and DNA-PK inhibitor, in physiological conditions, 2 performed better and acted as a potent chemosensitizer able to increase the amount of DNA double strand breaks induced by doxorubicin. This was plausibly due to its improved ability to accumulate in nuclei as evidenced by confocal analyses. Importantly, using P-gp overexpressing CT26 cells, we found that 2 is an efficient inhibitor of multidrug resistance (MDR) able to down-regulate expression of mRNA encoding MDR-driving proteins ABCB1A, ABCB1B and ABCC1. We also demonstrate that 2 can be simply loaded into lipid nanoparticles that retain its chemosensitizing properties. Taken together, the presented study provides a solid basis for a subsequent rational structure optimization towards new generation of multitarget inhibitors able to control crucial signaling pathways involved in tumorigenesis and drug resistance.
Collapse
Affiliation(s)
- Martina Sukupova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Karolina Knittelova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, CZ-500 03, Hradec Kralove, Czech Republic
| | - Elham Parsimehr
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Department of Genomics and Proteomics, Faculty of Science, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, CZ-500 03, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, CZ-500 05, Hradec Kralove, Czech Republic.
| | - Denisa Noskova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, CZ-500 03, Hradec Kralove, Czech Republic
| | - Jana Kurcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Ester Marakova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Zdenek Kratochvil
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Vladimir Pekarik
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Miroslav Psotka
- Biomedical Research Center, University Hospital Hradec Kralove, CZ-500 05, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, CZ-500 05, Hradec Kralove, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Pavel Kulich
- Veterinary Research Institute, CZ-621 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Center of Advanced Innovation Technologies, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, CZ-708 00, Ostrava, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Kamil Kuca
- Biomedical Research Center, University Hospital Hradec Kralove, CZ-500 05, Hradec Kralove, Czech Republic; Center of Advanced Innovation Technologies, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, CZ-708 00, Ostrava, Czech Republic; Centre for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, CZ-500 03, Hradec Kralove, Czech Republic.
| |
Collapse
|
2
|
Wang T, Shi X, Xu X, Zhang J, Ma Z, Meng C, Jiao D, Wang Y, Chen Y, He Z, Zhu Y, Liu HN, Zhang T, Jiang Q. Emerging prodrug and nano-drug delivery strategies for the detection and elimination of senescent tumor cells. Biomaterials 2025; 318:123129. [PMID: 39922127 DOI: 10.1016/j.biomaterials.2025.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Tumor cellular senescence, characterized by reversible cell cycle arrest following anti-cancer therapies, presents a complex paradigm in oncology. Given that senescent tumor cells may promote angiogenesis, tumorigenesis, and metastasis, selective killing senescent cells (SCs)-a strategy termed senotherapy-has emerged as a promising approach to improve cancer treatment. However, the clinical implementation of senotherapy faces significant hurdles, including lack of precise methods for SCs identification and the potential for adverse effects associated with highly cytotoxic senolytic agents. In this account, we elucidate recent advancement in developing novel approaches for the detection and selective elimination of SCs, encompassing prodrugs, nanoparticles, and other cutting-edge drug delivery systems such as PROTAC technology and CAR T cell therapy. Furthermore, we explore the paradoxical nature of SCs, which can induce growth arrest in adjacent neoplastic cells and recruit immunomodulatory cells that contribute to tumor suppression. Therefore, we utilize SCs membrane as vehicles to elicit antitumor immunity and potentially augment existing anti-cancer therapies. Finally, the opportunities and challenges are put forward to facilitate the development and clinical transformation of SCs detection, elimination or utilization.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiaolan Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaming Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhengdi Ma
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chen Meng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dian Jiao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yubo Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanfei Chen
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying Zhu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, 110002, China.
| | - He-Nan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Tianhong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
3
|
Jędrzejewski T, Sobocińska J, Maciejewski B, Slovakova M, Wrotek S. Enhanced Anti-Cancer Potential: Investigating the Combined Effects with Coriolus versicolor Extract and Phosphatidylinositol 3-Kinase Inhibitor (LY294002) In Vitro. Int J Mol Sci 2025; 26:1556. [PMID: 40004020 PMCID: PMC11855823 DOI: 10.3390/ijms26041556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Coriolus versicolor (CV), known in traditional Chinese medicine for over 2000 years, is currently used in China and Japan to reduce chemotherapy or radiotherapy side effects in cancer patients. Despite extensive research, its effects still need improvement. This study aimed to determine if combining CV extract with LY294002, an inhibitor of the phosphatidylinositol-3-kinase (PI3K) signalling pathway, enhances cancer cell treatment, potentially leading to a novel therapeutic approach. Three human cancer cell lines (MCF-7, HeLa, and A549) were treated with CV extract alone or combined with LY294002. Cell viability was assessed using MTT assays. Then, HeLa and MCF-7 cells most sensitive to the co-treatment were used to evaluate colony formation, apoptosis, cell cycle, cell migration and invasion, and phospho-PI3K expression. The results demonstrated that LY294002 enhanced the CV extract's anti-tumour effects by reducing cell viability and colony formation. The combined treatment with CV extract and LY294002 more effectively induced G0/G1 cell cycle arrest, promoted apoptosis, reduced cell invasion and migration, and inhibited phospho-PI3K expression compared to each agent alone. This study highlights the potent cytotoxic enhancement between CV extract and LY294002 on cancer cells, primarily by inhibiting phospho-PI3K expression. These findings suggest promising avenues for developing novel combination therapies targeting cancer.
Collapse
Affiliation(s)
- Tomasz Jędrzejewski
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1 Str., 87-100 Toruń, Poland; (J.S.); (B.M.); (S.W.)
| | - Justyna Sobocińska
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1 Str., 87-100 Toruń, Poland; (J.S.); (B.M.); (S.W.)
| | - Bartosz Maciejewski
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1 Str., 87-100 Toruń, Poland; (J.S.); (B.M.); (S.W.)
| | - Marcela Slovakova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573 Str., 532 10 Pardubice, Czech Republic;
| | - Sylwia Wrotek
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1 Str., 87-100 Toruń, Poland; (J.S.); (B.M.); (S.W.)
| |
Collapse
|
4
|
Srirangan P, Sabina EP. Protective effects of herbal compounds against cyclophosphamide-induced organ toxicity: a pathway-centered approach. Drug Chem Toxicol 2025:1-43. [PMID: 39847469 DOI: 10.1080/01480545.2025.2455442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Cyclophosphamide is a key component of numerous chemotherapeutic protocols, demonstrating broad-spectrum efficacy against various malignancies and non-cancerous conditions. This review examines CPM's metabolic pathways, therapeutic applications, and its resulting organ-specific toxicities. Despite its clinical benefits in treating nephrotic syndrome, encephalomyelitis, breast cancer, ovarian cancer, and other diseases, CPM is associated with significant adverse effects on the kidneys, liver, heart, lungs, and intestines. The discussion delves into the molecular mechanisms underlying these toxicities, highlighting dysregulation in key signaling pathways, including Nrf2, NF-κB, MAPK/ERK, and AKT. In addressing these challenges, recent studies have identified various herbal drugs and phytochemicals capable of mitigating CPM-induced toxicity. Notable compounds such as cinnamaldehyde, baicalin, quercetin, and curcumin have demonstrated protective effects. Integrating these herbal formulations with CPM therapy is proposed to enhance patient safety and treatment efficacy. This review underscores the influence of CPM on apoptosis and inflammation pathways, which lead to alterations in organ-specific biomarkers. Phytochemicals may exert protective effects by restoring disrupted signaling pathways and normalizing altered biomarkers. The compilation of phytochemicals presented in this review serves as a valuable resource for researchers exploring other herbal products with potential protective effects against CPM toxicity. A significant gap in the current literature is the lack of clinical trials evaluating phytochemicals that mitigate CPM toxicity in vivo. Rigorous clinical studies are necessary to establish the efficacy and safety of herbal formulations in cancer treatment. Such research will clarify the role of natural remedies in complementing conventional therapies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Prathap Srirangan
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India
| | - Evan Prince Sabina
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
5
|
K MS, Rathi E, Udupa KS, Prasada K S, Pai KSR, Kini SG. Design of PI3K-mTOR Dual Inhibitors for Ovarian Cancer: Are we on the Right Track? Curr Med Chem 2025; 32:1121-1143. [PMID: 38584538 DOI: 10.2174/0109298673293028240326051835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
Ovarian cancer is one of the most familiar kinds of gynecological cancer seen in women. Though it is not as familiar as breast cancer, the survival rate for ovarian cancer is very low when compared with breast cancer. Even after being one among the familiar types, to date, there are no proper treatments available for ovarian cancer. All the treatments that are present currently show a high rate of recurrence after the treatment. Therefore, treating this silent killer from the roots is the need of the hour. PI3K/AKT/m-TOR pathway is one of the pathways that get altered during ovarian cancer. Studies are already going on for the inhibition of PI3K and mTOR separately. Efforts have been made to inhibit either PI3K or mTOR separately earlier. However, due to its side effects and resistance to the treatments available, current studies are based on the inhibition of PI3K and mTOR together. Inhibition of PI3K and mTOR simultaneously reduces the chances of negative feedback, thus decreasing the toxicity. This review contains the evolution of PI3K and mTOR drugs that are approved by the FDA and are in the trials for different cancer types, including ovarian cancer. In this article, how a molecular targeted therapy can be made successful and free from toxicity for treating ovarian cancer is discussed. Therefore, this review paves the way for finding an effective scaffold rather than the clinical part. The scaffold thus selected can be further modified and synthesized in the future as dual PI3K/mTOR inhibitors specifically for OC.
Collapse
Affiliation(s)
- Mangala Shenoy K
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Karthik S Udupa
- Department of Medical Oncology, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shama Prasada K
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Suvarna Ganesh Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| |
Collapse
|
6
|
Aslam R, Richards CE, Fay J, Hudson L, Workman J, Lee CL, Murphy A, O’Neill B, Toomey S, Hennessy BT. Synergistic Effects of the Combination of Alpelisib (PI3K Inhibitor) and Ribociclib (CDK4/6 Inhibitor) in Preclinical Colorectal Cancer Models. Int J Mol Sci 2024; 25:13264. [PMID: 39769028 PMCID: PMC11676898 DOI: 10.3390/ijms252413264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The CDK4/6 inhibitor Ribociclib has shown limited efficacy as a monotherapy in colorectal cancer (CRC). However, combining Ribociclib with targeted therapies could present a viable strategy for treating CRC. This study evaluated the combination of Ribociclib and the PI3K inhibitor Alpelisib across four distinct cell lines representing different mutational statuses (PIK3CA/KRAS wild-type, KRAS-mutated, PIK3CA-mutated, and PIK3CA/KRAS-mutated). We analyzed the drugs' impact on key proteins involved in the PI3K pathway, cell cycle regulation, and apoptosis. The combination of Alpelisib and Ribociclib demonstrated a synergistic anti-proliferative effect across all cell lines, leading to a simultaneous decrease in pRB, pAKT, and p-S6 levels, and a more comprehensive suppression of the PI3K/AKT/mTOR pathway. Additionally, there was an upregulation of the apoptotic marker, p-BCL2, in cells treated with the combination compared to controls. In vivo studies using Caco-2, LS1034, and SNUC4 xenografts revealed a significant reduction in tumour growth with the combination therapy compared to single-agent treatments. These findings suggest that combining Alpelisib and Ribociclib could be a promising therapeutic approach for CRC, warranting further clinical exploration.
Collapse
Affiliation(s)
- Razia Aslam
- Medical Oncology Group, Department of Medicine, RCSI University of Medicine and Health Sciences, D09 YD60 Dublin, Ireland; (R.A.); (C.E.R.)
- Beaumont RCSI Cancer Centre, D09 YD60 Dublin, Ireland
- Department of Medical Oncology, St James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Cathy E. Richards
- Medical Oncology Group, Department of Medicine, RCSI University of Medicine and Health Sciences, D09 YD60 Dublin, Ireland; (R.A.); (C.E.R.)
- Beaumont RCSI Cancer Centre, D09 YD60 Dublin, Ireland
| | - Joanna Fay
- RCSI Biobank, RCSI University of Medicine and Health Sciences, D09 YD60 Dublin, Ireland
- Department of Pathology, RCSI University of Medicine and Health Science, D09 YD60 Dublin, Ireland
| | - Lance Hudson
- Department of Surgery, RCSI University of Medicine and Health Science, D09 YD60 Dublin, Ireland;
| | - Julie Workman
- Medical Oncology Group, Department of Medicine, RCSI University of Medicine and Health Sciences, D09 YD60 Dublin, Ireland; (R.A.); (C.E.R.)
| | - Cha Len Lee
- Medical Oncology Group, Department of Medicine, RCSI University of Medicine and Health Sciences, D09 YD60 Dublin, Ireland; (R.A.); (C.E.R.)
| | - Adrian Murphy
- Beaumont RCSI Cancer Centre, D09 YD60 Dublin, Ireland
- Department of Medical Oncology, Beaumont Hospital, D09 YD60 Dublin, Ireland
| | - Brian O’Neill
- Department of Radiation Oncology, St. Luke’s Radiation Oncology Centre, Beaumont Hospital, D09 YD60 Dublin, Ireland
| | - Sinead Toomey
- Medical Oncology Group, Department of Medicine, RCSI University of Medicine and Health Sciences, D09 YD60 Dublin, Ireland; (R.A.); (C.E.R.)
- Beaumont RCSI Cancer Centre, D09 YD60 Dublin, Ireland
| | - Bryan T. Hennessy
- Medical Oncology Group, Department of Medicine, RCSI University of Medicine and Health Sciences, D09 YD60 Dublin, Ireland; (R.A.); (C.E.R.)
- Beaumont RCSI Cancer Centre, D09 YD60 Dublin, Ireland
- Department of Medical Oncology, Beaumont Hospital, D09 YD60 Dublin, Ireland
| |
Collapse
|
7
|
Peng S, Li H, Cui W, Xiong T, Hu J, Qi H, Lin S, Wu D, Ji M, Xu H. Design, synthesis and biological evaluation of a novel PSMA-PI3K small molecule drug conjugate. RSC Med Chem 2024:d4md00246f. [PMID: 39246749 PMCID: PMC11378010 DOI: 10.1039/d4md00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024] Open
Abstract
Small molecule drug conjugates are an emerging targeted therapy for cancer treatment. Building upon the overexpressed prostate-specific membrane antigen (PSMA) in prostate cancer, we herein report the design and synthesis of a novel PSMA-PI3K small molecule drug conjugate 1. Conjugate 1 demonstrates potent inhibition against PI3K with an IC50 value of 0.40 nM and simultaneously targets PSMA, giving rise to selective growth inhibition activity for PSMA-positive cancer cells. Conjugate 1 also potently inhibits the phosphorylation of PI3K main downstream effectors and arrests the cell cycle in the G0/G1 phase in PSMA-positive 22Rv1 prostate cancer cells. Further in vivo evaluation shows that conjugate 1 has favorable efficacy and tolerability in a 22Rv1 xenograft model, demonstrating its potential application in targeted cancer therapy.
Collapse
Affiliation(s)
- Shouguo Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Haixia Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences Beijing 100053 China
| | - Weilu Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences Beijing 100053 China
| | - Tianning Xiong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Jiaqi Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Haixiang Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Deyu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| |
Collapse
|
8
|
Zhang J, Qiu J, Wu L, Shen L, Gu Q, Tan W. Recurrent Hypoglycemia in a 67-Year-Old Woman with CD5- Positive Diffuse Large B-Cell Lymphoma. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2024; 17:11795476241271540. [PMID: 39148706 PMCID: PMC11325302 DOI: 10.1177/11795476241271540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/26/2024] [Indexed: 08/17/2024]
Abstract
Hypoglycemia is a rare complication of diffuse large B-cell lymphoma. We are presenting a case of 67-year-old woman presented to her primary care physician with fatigue and hyperhidrosis. Laboratory evaluation revealed a glucose level of 1.9 mmol/L. Computed tomographic scan of the abdomen and subsequent positron emission tomographic scan revealed extensive lymphadenopathy. The patient was then diagnosed with CD5-positive-diffuse large B-cell lymphoma and developed recurrent hypoglycemia despite continuous infusion of glucose. Following immunochemotherapy, hypoglycemia was resolved. Several explanations have been postulated but the exact pathophysiology is not well understood. Further investigation is warranted to more clearly define the pathophysiology of persistent hypoglycemia in patients with diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, P. R. China
| | - Jieyuzhen Qiu
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, P. R. China
| | - Lipan Wu
- Department of Hematology, Huadong Hospital Affiliated to Fudan University, Shanghai, P. R. China
| | - Lin Shen
- Department of Hematology, Huadong Hospital Affiliated to Fudan University, Shanghai, P. R. China
| | - Qin Gu
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, P. R. China
| | - Wen Tan
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, P. R. China
| |
Collapse
|
9
|
Kashani B, Zandi Z, Pourbagheri-Sigaroodi A, Yousefi AM, Ghaffari SH, Bashash D. The PI3K signaling pathway; from normal lymphopoiesis to lymphoid malignancies. Expert Rev Anticancer Ther 2024; 24:493-512. [PMID: 38690706 DOI: 10.1080/14737140.2024.2350629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION As a vital mechanism of survival, lymphopoiesis requires the collaboration of different signaling molecules to orchestrate each step of cell development and maturation. The PI3K pathway is considerably involved in the maturation of lymphatic cells and therefore, its dysregulation can immensely affect human well-being and cause some of the most prevalent malignancies. As a result, studies that investigate this pathway could pave the way for a better understanding of the lymphopoiesis mechanisms, the undesired changes that lead to cancer progression, and how to design drugs to solve this issue. AREAS COVERED The present review addresses the aforementioned aspects of the PI3K pathway and helps pave the way for future therapeutic approaches. In order to access the articles, databases such as Medicine Medline/PubMed, Scopus, Google Scholar, and Science Direct were utilized. The search formula was established by identifying main keywords including PI3K/Akt/mTOR pathway, Lymphopoiesis, Lymphoid malignancies, and inhibitors. EXPERT OPINION The PI3K pathway is crucial for lymphocyte development and differentiation, making it a potential target for therapeutic intervention in lymphoid cancers. Studies are focused on developing PI3K inhibitors to impede the progression of hematologic malignancies, highlighting the pathway's significance in lymphoma and lymphoid leukemia.
Collapse
Affiliation(s)
- Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Liu Y, Wang Y, Zhang J, Peng Q, Wang X, Xiao X, Shi K. Nanotherapeutics targeting autophagy regulation for improved cancer therapy. Acta Pharm Sin B 2024; 14:2447-2474. [PMID: 38828133 PMCID: PMC11143539 DOI: 10.1016/j.apsb.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 06/05/2024] Open
Abstract
The clinical efficacy of current cancer therapies falls short, and there is a pressing demand to integrate new targets with conventional therapies. Autophagy, a highly conserved self-degradation process, has received considerable attention as an emerging therapeutic target for cancer. With the rapid development of nanomedicine, nanomaterials have been widely utilized in cancer therapy due to their unrivaled delivery performance. Hence, considering the potential benefits of integrating autophagy and nanotechnology in cancer therapy, we outline the latest advances in autophagy-based nanotherapeutics. Based on a brief background related to autophagy and nanotherapeutics and their impact on tumor progression, the feasibility of autophagy-based nanotherapeutics for cancer treatment is demonstrated. Further, emerging nanotherapeutics developed to modulate autophagy are reviewed from the perspective of cell signaling pathways, including modulation of the mammalian target of rapamycin (mTOR) pathway, autophagy-related (ATG) and its complex expression, reactive oxygen species (ROS) and mitophagy, interference with autophagosome-lysosome fusion, and inhibition of hypoxia-mediated autophagy. In addition, combination therapies in which nano-autophagy modulation is combined with chemotherapy, phototherapy, and immunotherapy are also described. Finally, the prospects and challenges of autophagy-based nanotherapeutics for efficient cancer treatment are envisioned.
Collapse
Affiliation(s)
- Yunmeng Liu
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yaxin Wang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Jincheng Zhang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Qikai Peng
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Xingdong Wang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Xiyue Xiao
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Kai Shi
- College of Pharmacy, Nankai University, Tianjin 300350, China
| |
Collapse
|
11
|
Zhang Y, Deng J, Tian H, Qi H, Xiong T, Lin S, Dong Y, Luo L, Wu D, Zhang K, Ji M, Du T, Sheng L, Chen X, Xu H. Design, Synthesis, and Bioevaluation of Novel Reversibly Photoswitchable PI3K Inhibitors Based on Phenylazopyridine Derivatives toward Light-Controlled Cancer Treatment. J Med Chem 2024; 67:3504-3519. [PMID: 38377311 DOI: 10.1021/acs.jmedchem.3c01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Photopharmacology is an emerging approach for achieving light-controlled drug activity. Herein, we design and synthesize a novel series of photoswitchable PI3K inhibitors by replacing a sulfonamide moiety with an azo group in a 4-methylquinazoline-based scaffold. Through structure-activity relationship studies, compound 6g is identified to be effectively switched between its trans- and cis-configuration under irradiation with proper wavelengths. Molecular docking studies show the cis-isomer of 6g is favorable to bind to the PI3K target, supporting compound 6g in the PSS365 (cis-isomer enriched) was more potent than that in the PSSdark (trans-isomer dominated) in PI3K enzymatic assay, cell antiproliferative assay, Western blotting analysis on PI3K downstream effectors, cell cycle analysis, colony formation assay, and wound-healing assay. Relative to the cis-isomer, the trans-isomer is more metabolically stable and shows good pharmacokinetic properties in mice. Moreover, compound 6g inhibits tumor growth in nude mice and a zebrafish HGC-27 xenograft model.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jialing Deng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Haixiang Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Tianning Xiong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Lijun Luo
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Deyu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Kehui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Tingting Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
12
|
Leiphrakpam PD, Are C. PI3K/Akt/mTOR Signaling Pathway as a Target for Colorectal Cancer Treatment. Int J Mol Sci 2024; 25:3178. [PMID: 38542151 PMCID: PMC10970097 DOI: 10.3390/ijms25063178] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 11/11/2024] Open
Abstract
In the last decade, pathway-specific targeted therapy has revolutionized colorectal cancer (CRC) treatment strategies. This type of therapy targets a tumor-vulnerable spot formed primarily due to an alteration in an oncogene and/or a tumor suppressor gene. However, tumor heterogeneity in CRC frequently results in treatment resistance, underscoring the need to understand the molecular mechanisms involved in CRC for the development of novel targeted therapies. The phosphatidylinositol 3-kinase/protein kinase B/mammalian target of the rapamycin (PI3K/Akt/mTOR) signaling pathway axis is a major pathway altered in CRC. The aberrant activation of this pathway is associated with CRC initiation, progression, and metastasis and is critical for the development of drug resistance in CRC. Several drugs target PI3K/Akt/mTOR in clinical trials, alone or in combination, for the treatment of CRC. This review aims to provide an overview of the role of the PI3K/Akt/mTOR signaling pathway axis in driving CRC, existing PI3K/Akt/mTOR-targeted agents against CRC, their limitations, and future trends.
Collapse
Affiliation(s)
- Premila D. Leiphrakpam
- Graduate Medical Education, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Surgical Oncology, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chandrakanth Are
- Graduate Medical Education, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Surgical Oncology, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Chen L, Hou P, Zou YL, Wang Y, Zhou LL, Hu L, Hu Y, Zhang QY, Huang LP, Lin L. B7-H1 agonists suppress the PI3K/AKT/mtor pathway by degrading p110γ and independently induce cell death. Cancer Lett 2024; 584:216615. [PMID: 38199586 DOI: 10.1016/j.canlet.2024.216615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
The biological role of B7-H1 intrinsic signal is reportedly diverse and controversial, its signal pathway remains unclear. Although B7-H1 blocking antibodies were found to have agonist capacity, their binding features and agonist mechanisms need further investigation. Here, by constructing cell strains with full-length or truncated B7-H1, we found that B7-H1 functioned as a receptor to transmit cell death signal from PD-1 protein or anti-B7-H1s through its cytoplasmic domain. Specific binding to the IgV-like domain of B7-H1 was required for the downstream signal. Upon agonists interaction, B7-H1 regulated the degradation of phosphoinositide 3-kinases (PI3Ks) subunit p110γ, subsequently inhibited the PI3K/AKT/mTOR pathway, and significantly increased autophagy. Moreover, B7-H1 agonists also suppressed ubiquitylation in B7-H1+cells by reducing ubiquitin-activating enzyme (E1), eventually leading to cell death. Finally, we validated the receptor role of B7-H1 in multiple tumor cells and demonstrated that B7-H1 agonists could suppress tumor progression independent of T cells in vivo. Our findings revealed that B7-H1 agonists functions as a PI3K inhibitor and may offer new strategies for PI3K targeting therapy.
Collapse
Affiliation(s)
- Ling Chen
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, 350102, China.
| | - Ping Hou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, 350102, China
| | - Yu-Lian Zou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, 350102, China
| | - Yang Wang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, 350102, China
| | - Lin-Lin Zhou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, 350102, China
| | - Li Hu
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, 350102, China
| | - Yan Hu
- Public Technology Service Center, Fujian Medical University, Fuzhou, Fujian, 350102, China
| | - Qiu-Yu Zhang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, 350102, China; Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350102, China
| | - Li-Ping Huang
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Lin Lin
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China
| |
Collapse
|
14
|
Liu Y, Sun Q, Wei X. Strategies and techniques for preclinical therapeutic targeting of PI3K in oncology: where do we stand in 2024? Expert Opin Ther Targets 2024; 28:221-232. [PMID: 38646899 DOI: 10.1080/14728222.2024.2342522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION The PI3K/AKT/mTOR signaling pathway is an important signaling pathway in eukaryotic cells that is activated in a variety of cancers and is also associated with treatment resistance. This signaling pathway is an important target for anticancer therapy and holds great promise for research. At the same time PI3K inhibitors have a general problem that they have unavoidable toxic side effects. AREAS COVERED This review provides an explanation of the role of PI3K in the development and progression of cancer, including several important mutations, and a table listing the cancers caused by these mutations. We discuss the current landscape of PI3K inhibitors in preclinical and clinical trials, address the mechanisms of resistance to PI3K inhibition along with their associated toxic effects, and highlight significant advancements in preclinical research of this field. Furthermore, based on our study and comprehension of PI3K, we provide a recapitulation of the key lessons learned from the research process and propose potential measures for improvement that could prove valuable. EXPERT OPINION The PI3K pathway is a biological pathway of great potential value. However, the reduction of its toxic side effects and combination therapies need to be further investigated.
Collapse
Affiliation(s)
- Yanyan Liu
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| | - Qiu Sun
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| |
Collapse
|
15
|
Gu DY, Zhang MM, Li J, Zhou YB, Sheng R. Development of PI3Kγ selective inhibitors: the strategies and application. Acta Pharmacol Sin 2024; 45:238-247. [PMID: 37803138 PMCID: PMC10789806 DOI: 10.1038/s41401-023-01166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/04/2023] [Indexed: 10/08/2023]
Abstract
The γ isoform of Class I PI3Ks (PI3Kγ) is primarily found in leukocytes and is essential for the function of myeloid cells, as it regulates the migration, differentiation, and activation of myeloid-lineage immune cells. Thus, PI3Kγ has been identified as a promising drug target for the treatment of inflammation, autoimmune disease, and immuno-oncology. Due to the high incidence of serious adverse events (AEs) associated with PI3K inhibitors, in the development of PI3Kγ inhibitors, isoform selectivity was deemed crucial. In this review, an overview of the development of PI3Kγ selective inhibitors in the past years is provided. The isoform selectivity of related drugs was achieved by different strategies, including inducing a specificity pocket by a propeller-shape structure, targeting steric differences in the solvent channel, and modulating the conformation of the Asp-Phe-Gly DFG motif, which have been demonstrated feasible by several successful cases. The insights in this manuscript may provide a potential direction for rational drug design and accelerate the discovery of PI3Kγ selective inhibitors.
Collapse
Affiliation(s)
- Dong-Yan Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng-Meng Zhang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu-Bo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rong Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Choquet H, Jiang C, Yin J, Kim Y, Hoffmann TJ, Jorgenson E, Asgari MM. Multi-ancestry genome-wide meta-analysis identifies novel basal cell carcinoma loci and shared genetic effects with squamous cell carcinoma. Commun Biol 2024; 7:33. [PMID: 38182794 PMCID: PMC10770328 DOI: 10.1038/s42003-023-05753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
Basal cell carcinoma (BCC) is one of the most common malignancies worldwide, yet its genetic determinants are incompletely defined. We perform a European ancestry genome-wide association (GWA) meta-analysis and a Hispanic/Latino ancestry GWA meta-analysis and meta-analyze both in a multi-ancestry GWAS meta-analysis of BCC, totaling 50,531 BCC cases and 762,234 controls from four cohorts (GERA, Mass-General Brigham Biobank, UK Biobank, and 23andMe research cohort). Here we identify 122 BCC-associated loci, of which 36 were novel, and subsequently fine-mapped these associations. We also identify an association of the well-known pigment gene SLC45A2 as well as associations at RCC2 and CLPTM1L with BCC in Hispanic/Latinos. We examine these BCC loci for association with cutaneous squamous cell carcinoma (cSCC) in 16,407 SCC cases and 762,486 controls of European ancestry, and 33 SNPs show evidence of association. Our study findings provide important insights into the genetic basis of BCC and cSCC susceptibility.
Collapse
Affiliation(s)
- Hélène Choquet
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA.
| | - Chen Jiang
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| | - Jie Yin
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| | - Yuhree Kim
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Thomas J Hoffmann
- Institute for Human Genetics, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | | | - Maryam M Asgari
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| |
Collapse
|
17
|
Shen S, Chen Y, Carpio A, Chang C, Iyengar NM. Incidence, risk factors, and management of alpelisib-associated hyperglycemia in metastatic breast cancer. Cancer 2023; 129:3854-3861. [PMID: 37743730 PMCID: PMC10863751 DOI: 10.1002/cncr.34928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE The combination of fulvestrant with alpelisib, a PI3K inhibitor, improves progression-free survival in metastatic hormone receptor-positive, PIK3CA-mutant breast cancer. This study describes the incidence, risk factors, and treatment of alpelisib-associated hyperglycemia. METHODS Patients with metastatic breast cancer who received alpelisib from 2013 to 2021 at Memorial Sloan Kettering Cancer Center were included in this retrospective study. Alpelisib prescription dates and patient/tumor characteristics were abstracted from medical records. Risk factors associated with hyperglycemia and alpelisib dose reduction/discontinuation were evaluated using Pearson's χ2 tests. RESULTS Among 247 patients, baseline median body mass index was 25.4 kg/m2 and median hemoglobin A1c (HbA1c) was 5.5%. A total of 152 patients (61.5%) developed any-grade hyperglycemia and 72 patients (29.2%) developed grade 3-4 hyperglycemia; median time to onset was 16 days. A total of 100 patients (40.5%) received alpelisib on a clinical trial; rates of hyperglycemia were significantly higher in patients treated as standard care versus on a clinical trial (any-grade hyperglycemia 80.3% vs. 34.0%, grade 3-4 hyperglycemia 40.2% vs. 13.0%, p < .001). Baseline HbA1c was significantly associated with development of hyperglycemia (p < .001) and alpelisib dose reduction/discontinuation (p = .015). Among those who developed hyperglycemia, 101 (40.9%) received treatment, most commonly with metformin. A total of 49 patients (19.8%) were referred to an endocrinologist, which was associated with SGLT2 inhibitor prescription (p = .007). CONCLUSIONS Rates of hyperglycemia among patients treated with alpelisib as standard care were significantly higher than patients treated on clinical trials. Elevated baseline HbA1c is associated with alpelisib-induced hyperglycemia and requiring dose modification. Optimization of glycemic status before alpelisib initiation should become routine practice.
Collapse
Affiliation(s)
- Sherry Shen
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yuan Chen
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrea Carpio
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Neil M. Iyengar
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical Center, New York, NY
| |
Collapse
|
18
|
Zhou Y, Yin Y, Huang X, Hu Y, He Q. Protective effect of borneol on the cutaneous toxicity of gilteritinib. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:544-557. [PMID: 37899395 PMCID: PMC10630053 DOI: 10.3724/zdxbyxb-2023-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/23/2023] [Indexed: 10/31/2023]
Abstract
OBJECTIVES To investigate the effect of borneol on cutaneous toxicity of gilteritinib and to explore possible compounds that can intervene with the cutaneous toxicity. METHODS C57BL/6J male mice were given gilteritinib by continuous gavage for 28 d and the damage to keratinocytes in the skin tissues was observed with hematoxylin and eosin (HE) staining, TUNEL assay and immunohistochemistry. Human keratinocytes HaCaT were treated with gilteritinib, and cell death and morphological changes were examined by SRB staining and microscopy; apoptosis of HaCaT cells was examined by Western blotting, flow cytometry with propidium iodide/AnnexinⅤ double staining and immunofluorescence; the accumulation of cellular reactive oxygen species (ROS) was examined by flow cytometry with DCFH-DA. Compounds that can effectively intervene the cutaneous toxicity of gilteritinib were screened from a natural compound library using SRB method, and the intervention effect of borneol on gilteritinib cutaneous toxicity was further investigated in HaCaT cells and C57BL/6J male mice. RESULTS In vivo studies showed pathological changes in the skin with apoptosis of keratinocytes in the stratum spinosum and stratum granulosum in the modeling group. Invitro studies showed apoptosis of HaCaT cells, significant up-regulation of cleaved poly (ADP-ribose) polymerase (c-PARP) and gamma-H2A histone family member X (γ-H2AX) levels, and increased accumulation of ROS in gilteritinib-modeled skin keratinocytes compared with controls. Screening of the natural compound library revealed that borneol showed excellent intervention effects on the death of HaCaT cells. In vitro, cell apoptosis was significantly reduced in the borneol+gilteritinib group compared to the gilteritinib control group. The levels of c-PARP, γ-H2AX and ROS in cells were significantly decreased. In vivo, borneol alleviated gilteritinib-induced skin pathological changes and skin cell apoptosis in mice. CONCLUSIONS Gilteritinib induces keratinocytes apoptosis by causing intracellular ROS accumulation, resulting in cutaneous toxicity. Borneol can ameliorate the cutaneous toxicity of gilteritinib by reducing the accumulation of ROS and apoptosis of keratinocytes in the skin tissue.
Collapse
Affiliation(s)
- Yourong Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yiming Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangliang Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhuai Hu
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China.
| | - Qiaojun He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Zhang Y, Ma Z, Wang Y, Feng X, An Z. Phosphatidylinositol 3 kinase inhibitor-related pneumonitis: a systematic review and meta-analysis. Expert Rev Clin Pharmacol 2023; 16:855-863. [PMID: 37489925 DOI: 10.1080/17512433.2023.2238602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Serious phosphatidylinositol 3 kinase (PI3K) inhibitor-related pneumonitis has raised clinical concerns, and integrated data for this condition are lacking. METHODS Randomized controlled trials (RCTs) comparing PI3K inhibitor therapy with control treatments from electronic databases and registrations were searched from inception to 1 April 20231 April 2023seven1 April 2023. The outcomes of our study were the incidence and risk of all-grade and grade ≥ 3 PI3K inhibitor-associated pneumonitis compared with controls. RESULTS The meta-analysis included 13 studies comprising 3916 patients. The incidence of all-grade and grade ≥ 3 pneumonitis was 3.7% (82/2210) and 3.0% (35/1162) in patients treated with PI3K inhibitors. PI3K inhibitors significantly increased the risk of all-grade and grade ≥ 3 pneumonitis compared with controls (RR 5.63, 95% CI [2.97, 10.65], P < 0.00001; RR 6.85, 95% CI [2.45, 19.11], P = 0.0002, respectively) with no significant heterogeneity across studies. In terms of different PI3K inhibitors, copanlisib and idelalisib significantly increased the risk of pneumonitis compared to controls (RR 4.99, 95% CI [1.19, 21.01], P = 0.03; RR 5.53, 95% CI [2.35, 13.01], P < 0.0001, respectively). CONCLUSION PI3K inhibitors significantly increased the risk of pneumonitis compared with controls, and most cases are severe or even life-threatening. PROSPERO REGISTRATION NUMBER CRD42022318878.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Zhuo Ma
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yushu Wang
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xin Feng
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Zhuoling An
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
21
|
Lobo V, Rocha A, Castro TG, Carvalho MA. Synthesis of Novel 2,9-Disubstituted-6-morpholino Purine Derivatives Assisted by Virtual Screening and Modelling of Class I PI3K Isoforms. Polymers (Basel) 2023; 15:polym15071703. [PMID: 37050317 PMCID: PMC10096987 DOI: 10.3390/polym15071703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The phosphatidylinositol-3 kinase (PI3K) pathway is one of the most frequently activated pathogenic signalling cascades in a wide variety of cancers. In the last 15 years, there has been an increase in the search for selective inhibitors of the four class I isoforms of PI3K, as they demonstrate better specificity and reduced toxicity in comparison to existing inhibitors. A ligand-based and target-based rational drug design strategy was employed to build a virtual library of 105 new compounds. Through this strategy, the four isoforms were compared regarding their activity pocket availability, amino acid sequences, and prone interactions. Additionally, a known active scaffold was used as a molecular base to design new derivatives. The virtual screening of the resultant library toward the four isoforms points to the obtention of 19 selective inhibitors for the PI3Kα and PI3Kγ targets. Three selective ligands, one for α-isoform and two for γ-isoform, present a ∆ (∆Gbinding) equal or greater than 1.5 Kcal/mol and were identified as the most promising candidates. A principal component analysis was used to establish correlations between the affinity data and some of the physicochemical and structural properties of the ligands. The binding modes and interactions established by the selective ligands in the active centre of the α and γ isoforms of PI3K were also investigated. After modelling studies, a synthetic approach to generate selective ligands was developed and applied in synthesising a set of derivatives that were obtained in good to excellent yield.
Collapse
|
22
|
Zhang M, Liu Y, Jang H, Nussinov R. Strategy toward Kinase-Selective Drug Discovery. J Chem Theory Comput 2023; 19:1615-1628. [PMID: 36815703 PMCID: PMC10018734 DOI: 10.1021/acs.jctc.2c01171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Kinase drug selectivity is the ground challenge in cancer research. Due to the structurally similar kinase drug pockets, off-target inhibitor toxicity has been a major cause for clinical trial failures. The pockets are similar but not identical. Here, we describe a transformation invariant protocol to identify distinct geometric features in the drug pocket that can distinguish one kinase from all others. We integrate available experimental structures with the artificial intelligence-based structural kinome, performing a kinome-wide structural bioinformatic analysis to establish the structural principles of kinase drug selectivity. We generate the structural landscape from the experimental kinase-ligand complexes and propose a binary network that encapsulates the information. The results show that all kinases contain binary units that are shared by less than seven other kinases in the kinome. 331 kinases contain unique binary units that may distinguish them from all others. The structural features encoded by these binary units in the network represent the inhibitor-accessible geometric space that may capture the kinome-wide selectivity. Our proposed binary network with the unsupervised clustering can serve as a general structural bioinformatic protocol for extracting the distinguishing structural features for any protein from their families. We apply the binary network to epidermal growth factor receptor tyrosine kinase inhibitor selectivity by targeting the gate area and the AKT1 serine/threonine kinase selectivity by binding to the αC-helix region and the allosteric pocket. Finally, we develop the cross-platform software, KDS (Kinase Drug Selectivity), for customized visualization and analysis of the binary networks in the human kinome (https://github.com/CBIIT/KDS).
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
23
|
Yu M, Chen J, Xu Z, Yang B, He Q, Luo P, Yan H, Yang X. Development and safety of PI3K inhibitors in cancer. Arch Toxicol 2023; 97:635-650. [PMID: 36773078 PMCID: PMC9968701 DOI: 10.1007/s00204-023-03440-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K) signalling pathway regulates cell survival, proliferation, migration, metabolism and other vital cellular life processes. In addition, activation of the PI3K signalling pathway is important for cancer development. As a result, a variety of PI3K inhibitors have been clinically developed to treat malignancies. Although several PI3K inhibitors have received approval from the Food and Drug Administration (FDA) for significant antitumour activity, frequent and severe adverse effects have greatly limited their clinical application. These toxicities are mostly on-target and immune-mediated; nevertheless, the underlying mechanisms are still unclear. Current management usually involves intervention through symptomatic treatment, with discontinuation if toxicity persists. Therefore, it is necessary to comprehensively understand these adverse events and ensure the clinical safety application of PI3K inhibitors by establishing the most effective management guidelines, appropriate intermittent dosing regimens and new combination administration. Here, the focus is on the development of PI3K inhibitors in cancer therapy, with particular emphasis on isoform-specific PI3K inhibitors. The most common adverse effects of PI3K inhibitors are also covered, as well as potential mechanisms and management approaches.
Collapse
Affiliation(s)
- Miaomiao Yu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Jiajia Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
24
|
Alves CL, Ditzel HJ. Drugging the PI3K/AKT/mTOR Pathway in ER+ Breast Cancer. Int J Mol Sci 2023; 24:4522. [PMID: 36901954 PMCID: PMC10003259 DOI: 10.3390/ijms24054522] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The frequent activation of the PI3K/AKT/mTOR pathway and its crucial role in estrogen receptor-positive (ER+) breast cancer tumorigenesis and drug resistance has made it a highly attractive therapeutic target in this breast cancer subtype. Consequently, the number of new inhibitors in clinical development targeting this pathway has drastically increased. Among these, the PIK3CA isoform-specific inhibitor alpelisib and the pan-AKT inhibitor capivasertib were recently approved in combination with the estrogen receptor degrader fulvestrant for the treatment of ER+ advanced breast cancer after progression on an aromatase inhibitor. Nevertheless, the clinical development of multiple inhibitors of the PI3K/AKT/mTOR pathway, in parallel with the incorporation of CDK4/6 inhibitors into the standard of care treatment in ER+ advanced breast cancer, has led to a multitude of available therapeutic agents and many possible combined strategies which complicate personalizing treatment. Here, we review the role of the PI3K/AKT/mTOR pathway in ER+ advanced breast cancer, highlighting the genomic contexts in which the various inhibitors of this pathway may have superior activity. We also discuss selected trials with agents targeting the PI3K/AKT/mTOR and related pathways as well as the rationale supporting the clinical development of triple combination therapy targeting ER, CDK4/6 and PI3K/AKT/mTOR in ER+ advanced breast cancer.
Collapse
Affiliation(s)
- Carla L. Alves
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Henrik J. Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, 5000 Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
25
|
Fernandez CA. Pharmacological strategies for mitigating anti-TNF biologic immunogenicity in rheumatoid arthritis patients. Curr Opin Pharmacol 2023; 68:102320. [PMID: 36580770 PMCID: PMC10540078 DOI: 10.1016/j.coph.2022.102320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 12/28/2022]
Abstract
Tumor necrosis factor alpha (TNFα) inhibitors are a mainstay of treatment for rheumatoid arthritis (RA) patients after failed responses to conventional disease-modifying antirheumatic drugs (DMARDs). Despite the clinical efficacy of TNFα inhibitors (TNFi), many RA patients experience TNFi treatment failure due to the development of anti-drug antibodies (ADAs) that can neutralize drug levels and lead to RA disease relapse. Methotrexate (MTX) therapy with concomitant TNFα inhibitors decreases the risk of TNFi immunogenicity, but additional and/or alternative strategies are needed to reduce MTX-associated toxicities and to further increase its potency for preventing TNFα inhibitor immunogenicity. In this review, we highlight the limitations of MTX for mitigating TNFα inhibitor immunogenicity, and we discuss potential alternative pharmacological targets for decreasing the risk of immunogenicity during TNFα inhibitor therapy based on the key kinases, second messengers, and shared signaling mechanisms of lymphocyte receptor signaling.
Collapse
Affiliation(s)
- Christian A Fernandez
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
26
|
Wang Z, Zhou H, Xu J, Wang J, Niu T. Safety and efficacy of dual PI3K-δ, γ inhibitor, duvelisib in patients with relapsed or refractory lymphoid neoplasms: A systematic review and meta-analysis of prospective clinical trials. Front Immunol 2023; 13:1070660. [PMID: 36685572 PMCID: PMC9845779 DOI: 10.3389/fimmu.2022.1070660] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Background Duvelisib is the first FDA-approved oral dual inhibitor of phosphatidylinositol-3-kinase PI3K-delta (PI3K-δ) and PI3K-gamma (PI3K-γ). Although many clinical studies support the efficacy of duvelisib, the safety of duvelisib remains with great attention. This systematic review and meta-analysis aimed to evaluate the safety and efficacy of duvelisib in treating different relapsed or refractory (RR) lymphoid neoplasm types. Methods We searched prospective clinical trials from PUBMED, EMBASE, Cochrane Library, and ClinicalTrials.gov. For efficacy analysis, Overall response rate (ORR), complete response rate (CR), partial response rate (PR), rate of stable disease (SDR), rate of progressive disease (PDR), median progression-free survival (mPFS), 12-/24-month PFS, and 12-month overall survival (OS) were assessed. For safety analysis, the incidences of any grade and grade ≥3 adverse events (AEs), serious AEs, and treatment-related discontinuation and death were evaluated. Subgroup analysis based on the disease type was performed. Results We included 11 studies and 683 patients, including 305 chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), 187 B-cell indolent non-Hodgkin lymphoma (iNHL), 39 B-cell aggressive non-Hodgkin lymphoma (aNHL), and 152 T-cell non-Hodgkin lymphoma (T-NHL) patients. The pooled ORR in CLL/SLL, iNHL, aNHL and T-NHL was 70%, 70%, 28% and 47%, respectively. Additionally, the pooled ORR in CLL/SLL patients with or without TP53 mutation/17p-deletion (62% vs. 74%, p=0.45) and in follicular lymphoma (FL) or other iNHL (69% vs. 57%, p=0.38) had no significant differences. Mantle cell lymphoma (MCL) patients had higher pooled ORR than other aNHL (68% vs. 17%, p=0.04). Angioimmunoblastic TCL (AITL) patients had higher pooled ORR than other PTCL patients (67% vs. 42%, p=0.01). The pooled incidence of any grade, grade ≥3, serious AEs, treatment-related discontinuation and death was 99%, 79%, 63%, 33% and 3%, respectively. The most frequent any-grade AEs were diarrhea (47%), ALT/AST increase (39%), and neutropenia (38%). The most frequent grade ≥3 AEs were neutropenia (25%), ALT/AST increased (16%), diarrhea (12%), and anemia (12%). Conclusion Generally, duvelisib could offer favorable efficacy in patients with RR CLL/SLL, iNHL, MCL, and AITL. Risk and severity in duvelisib treatment may be mitigated through proper identification and management.
Collapse
|
27
|
Chen J, Yuan S, Zhou J, Huang X, Wu W, Cao Y, Liu H, Hu Q, Li X, Guan X, Yin S, Jiang J, Zhou Y, Zhou J. Danshen injection induces autophagy in podocytes to alleviate nephrotic syndrome via the PI3K/AKT/mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154477. [PMID: 36215790 DOI: 10.1016/j.phymed.2022.154477] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Danshen injection (DSI) is an agent extracted from the Salvia miltiorrhiza Bunge, a natural drug commonly used to alleviate kidney diseases. However, the material basis and therapeutic effects of DSI on nephrotic syndrome (NS) remain unclear. PURPOSE To investigate the material basis of DSI and the therapeutic effects and underlying mechanisms of NS. METHODS NS models were established using adriamycin-induced BALB/c mice and lipopolysaccharide-induced mouse podocytes (MPC-5). Following DSI and prednisone administration, kidney coefficients, 24 h urine protein, blood urea nitrogen, and serum creatinine levels were tested. Histomorphology was observed by periodic acid-Schiff staining and hematoxylin and eosin staining of the kidney sections. The glomerular basement membrane and autophagosomes of the kidneys were observed using transmission electron microscopy. Nephrin and desmin levels in the glomeruli were tested using immunohistochemistry. The viability of MPC-5 cells was tested using cell counting kit-8 after chloroquine and rapamycin administration in combination with DSI. The in vivo and in vitro protein levels of phosphatidylinositol 3-kinase (PI3K), AKT, phosphorylated AKT (Ser473), mammalian target of rapamycin (mTOR), microtubule-associated protein light chain 3 (LC3), beclin1, cleaved caspase-3, and caspase-3 were detected using western blotting. RESULTS Our results showed that DSI contained nine main components: caffeic acid, danshensu, lithospermic acid, rosmarinic acid, salvianolic acid A, salvianolic acid B, salvianolic acid C, salvianolic acid D, and 3, 4-Dihydroxybenzaldehyde. In in vivo studies, the NS mice showed renal function and pathological impairment. Podocytes were damaged, with decreased levels of autophagy and apoptosis, accompanied by inhibition of the PI3K/AKT/mTOR signaling. DSI administration resulted in improved renal function and pathology in NS mice, with the activation of autophagy and PI3K/AKT/mTOR signaling in the kidneys. Additionally, podocytes were less damaged and intracellular autophagosomes were markedly increased. In vitro studies have shown that DSI activated MPC-5 autophagy and reduced apoptosis via the PI3K/AKT/mTOR pathway. CONCLUSION Collectively, this study demonstrated that DSI activated podocyte autophagy and reduced apoptosis via the PI3K/AKT/mTOR signaling, ultimately attenuating NS. Our study clarified the main components of DSI and elucidated its therapeutic effects and potential mechanisms for NS, providing new targets and agents for the clinical treatment of NS.
Collapse
Affiliation(s)
- Junqi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Shengliang Yuan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Jie Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xiuye Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Wenjia Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yiwen Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Hong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Qinghong Hu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xiaojie Li
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xueping Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Simin Yin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Jiaying Jiang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yuan Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China.
| | - Jiuyao Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China.
| |
Collapse
|
28
|
Wang J, Zhou H, Mu M, Zhao A, Cai Z, Li L, Wang M, Niu T. Efficacy and safety of copanlisib in relapsed/refractory B-cell non-Hodgkin lymphoma: A meta-analysis of prospective clinical trials. Front Immunol 2022; 13:1034253. [PMID: 36439091 PMCID: PMC9691663 DOI: 10.3389/fimmu.2022.1034253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/27/2022] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Copanlisib is an intravenously administered pan-class I PI3K inhibitor that has been demonstrated to have appreciable effects in the treatment of patients with lymphoma. The purpose of this meta-analysis was to evaluate the efficacy and safety of copanlisib for treating patients with relapsed/refractory (R/R) B-cell non-Hodgkin lymphoma (B-NHL). METHODS PubMed, Web of Science, EMBASE, and the Cochrane Central Register of Controlled Trials were searched for relevant studies published prior to July 2022. The efficacy evaluation included complete response rate (CR), partial response rate (PR), rate of stable disease (SDR), overall response rate (ORR), disease control rate (DCR), rate of progressive disease (PDR), median progression-free survival (PFS), and median overall survival (OS). Any grade adverse events (AEs) and grade ≥3 AEs were synthesized to assess its safety. RESULTS Eight studies with a total of 652 patients with R/R B-NHL were identified. The pooled CR, PR, ORR, SDR, DCR, and PDR from all 8 articles were 13%, 40%, 57%, 19%, 86%, and 9%, respectively. The CR and ORR of combination therapy with rituximab were higher than those with copanlisib monotherapy for R/R B-NHL (34% vs. 6%, p<0.01; 89% vs. 42%, p<0.01). For patients with R/R indolent B-NHL, CR and ORR were lower with copanlisib monotherapy than with combination therapy with rituximab (7% vs. 34%, p<0.01; 58% vs. 92%, p<0.01). In R/R B-NHL patients receiving copanlisib monotherapy and combination therapy with rituximab, the risk of any grade AEs was 99% and 96%, respectively, and the risk of grade ≥3 AEs was 84% and 91%, respectively. The common any grade AEs included hyperglycemia (66.75%), hypertension (48.57%), diarrhea (35.06%), nausea (34.98%) and fatigue (30.33%). The common grade ≥3 AEs included hyperglycemia (45.14%), hypertension (35.07%), and neutropenia (14.75%). The comparison of AEs between the copanlisib monotherapy and the combination therapy with rituximab showed that hyperglycemia of any grade (p<0.0001), hypertension of any grade (p=0.0368), fatigue of any grade (p<0.0001), grade ≥3 hypertension (p<0.0001) and grade ≥3 hyperglycemia (p=0.0074) were significantly different between the two groups. CONCLUSION Our meta-analysis demonstrated that the efficacy of both copanlisib monotherapy and combination therapy with rituximab in patients with R/R B-NHL was satisfactory, while treatment-related AEs were tolerable. Compared with copanlisib monotherapy, combination therapy with rituximab showed superior efficacy for treating R/R B-NHL, and its safety was manageable. SYSTEMATIC REVIEW REGISTRATION https://inplasy.com/inplasy-2022-10-0008/, identifier INPLASY2022100008.
Collapse
Affiliation(s)
- Jinjin Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingchun Mu
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaolun Cai
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linfeng Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengyao Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
PIK3CAMutations in Breast Cancer Subtypes Other Than HR-Positive/HER2-Negative. J Pers Med 2022; 12:jpm12111793. [PMID: 36579519 PMCID: PMC9694420 DOI: 10.3390/jpm12111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway plays a key role in cancer, influencing growth, proliferation, and survival of tumor cells. PIK3CA mutations are generally oncogenic and responsible for uncontrolled cellular growth. PI3K inhibitors (PI3Ki) can inhibit the PI3K/AKT/mTOR pathway, although burdened by not easily manageable toxicity. Among PI3Ki, alpelisib, a selective p110α inhibitor, is approved for the treatment of hormone receptor (HR)+/HER2- PIK3CA mutant metastatic breast cancer (BC) that has progressed to a first line endocrine therapy. PIK3CA mutations are also present in triple negative BC (TNBC) and HER2+ BC, although the role of PI3K inhibition is not well established in these subtypes. In this review, we go through the PI3K/AKT/mTOR pathway, describing most common mutations found in PI3K genes and how they can be detected. We describe the available biological and clinical evidence of PIK3CA mutations in breast cancers other than HR+/HER2-, summarizing clinical trials investigating PI3Ki in these subtypes.
Collapse
|
30
|
Wang Y, Ma Z, An Z, Zhang Y, Feng X, Yu X. Risk of cutaneous adverse events in cancer patients treated with phosphatidylinositol-3-kinase inhibitors: A systematic review and meta-analysis of randomized controlled trials. Cancer Med 2022; 12:2227-2237. [PMID: 35986570 PMCID: PMC9939201 DOI: 10.1002/cam4.5153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cutaneous adverse effects (AEs) are common following the phosphoinositide-3-kinase (PI3K) inhibitors treatment. We aim to estimate the incidence and risk of PI3K inhibitor-related cutaneous AEs. METHODS The protocol was submitted to the PROSPERO registry. We searched ClinicalTrials.gov and international databases up to July 29, 2022. Meta-analysis was conducted by using risk ratios (RRs) with 95% confidence intervals (CIs). RESULTS Fourteen randomized controlled trials (RCTs) comprising 3877 patients were analyzed in this study. Compared with control arms, PI3K inhibitors showed a significant increase in the risk of all-grade rash, high-grade rash, and serious rash events (RR 2.29, 95% CI 1.58-3.31, p < 0.00001; RR 9.34, 95% CI 4.21-20.69, p < 0.00001; RR 5.11, 95% CI 2.11-12.36, p = 0.0003). The overall incidences of all-grade rash and high-grade rash were 26.2% (592/2257) and 4.4% (66/1487). Subgroup analyses of all-grade rash according to cancer types and PI3K inhibitor assignations identified the significant associations. PI3K inhibitors also significantly increased the risk of pruritus and dry skin (RR 1.63, 95% CI 1.14-2.33, p = 0.007; RR 3.34, 95% CI 2.30-4.85, p < 0.00001), with incidences of 13.4% (284/2115) and 9.8% (141/1436) in the treatment group. CONCLUSION There is a significantly increased risk of some cutaneous AEs in patients using PI3K inhibitors. Advance intervention is recommended in case of severe and life-threatening events. Further research is required to investigate the risk factors and pathogenesis.
Collapse
Affiliation(s)
- Yushu Wang
- Department of PharmacyBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina,Department of PharmacyBeijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care HospitalBeijingChina
| | - Zhuo Ma
- Department of PharmacyBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Zhuoling An
- Department of PharmacyBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Yi Zhang
- Department of PharmacyBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina,Department of PharmacyBeijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care HospitalBeijingChina
| | - Xin Feng
- Department of PharmacyBeijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care HospitalBeijingChina
| | - Xiaojia Yu
- Department of PharmacyBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
31
|
Adverse events in lymphoma patients treated with phosphoinositide 3 kinase Inhibitor in clinical trials: a meta-analysis. Ann Hematol 2022; 101:1741-1753. [PMID: 35688904 DOI: 10.1007/s00277-022-04876-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/23/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Malignant lymphomas are one of the most common cancers worldwide and with high biologic heterogeneity, while the phosphoinositide 3 kinase (PI3K)/mTOR pathway is crucial in maintaining cell growth and survival both in physiological and in pathological conditions (i.e., lymphoma). PI3K inhibitors have been proven to be effective in several subtypes of lymphomas. However, the high incidence of treatment-related adverse events as well as the special safety profile in PI3K inhibitors draws great attention. Thus, this meta-analysis was conducted to compare adverse events in PI3K inhibitors to conventional regimens in lymphoma patients. METHODS Articles were retrieved from PubMed, Cochrane, and Embase to identify randomized controlled trials and phase III clinical trials that used PI3K inhibitors comparing with non-PI3K inhibitors in lymphoma patients. To achieve the appropriate results, we calculated the risk ratio and 95% confidence intervals. RESULTS Four trials with 1399 patients that met our criteria were included. The PI3K inhibitors group significantly increased the risk of all-grade adverse events (AEs) (RR 0.95, 95% CI: 0.92-0.98) and high-grade AEs (RR 0.63, 95% CI: 0.57-0.70), compared with the non-PI3K inhibitors group. Besides, the incidence of neutropenia (RR 0.81, 95% CI: 0.74-0.90), pneumonia (RR 0.62, 95% CI: 0.46-0.83), and diarrhea (RR 0.40, 95% CI: 0.32-0.49) were significantly high in the PI3Ki group, while the incidence of anemia (RR 0.78, 95% CI: 0.50-1.20) and thrombocytopenia (RR 0.85, 95% CI: 0.51-1.42) had no statistic significant. CONCLUSION PI3K inhibitors increased the risk of certain AEs in lymphoma patients.
Collapse
|
32
|
Gadkar K, Friedrich C, Hurez V, Ruiz M, Dickmann L, Kumar Jolly M, Schutt L, Jin J, Ware JA, Ramanujan S. Quantitative systems pharmacology model-based investigation of adverse gastrointestinal events associated with prolonged treatment with PI3-kinase inhibitors. CPT Pharmacometrics Syst Pharmacol 2022; 11:616-627. [PMID: 34850607 PMCID: PMC9124351 DOI: 10.1002/psp4.12749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/06/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Several PI3K inhibitors are in clinical development for the treatment of various forms of cancers, including pan-PI3K inhibitors targeting all four PI3K isoforms (α, β, γ, and δ), and isoform-selective inhibitors. Diarrhea and immune-mediated colitis are among the adverse events observed with PI3K inhibition which limits the maximal tolerated dose. A quantitative systems pharmacology model was developed to investigate PI3K-inhibitor-induced colitis. The effects of individual PI3K isoforms on relevant cellular pathways were incorporated into a mechanistic representation of mucosal inflammation. A virtual clinical population captures the observed clinical variability in the onset timing and rates of diarrhea and colitis for seven clinically tested PI3K inhibitors. Model-based analysis suggests that colitis development is governed by both the inhibition of PI3Kδ, which drives T cell differentiation and proliferation, and PI3Kα, which regulates epithelial barrier integrity. Specifically, when PI3Kα is inhibited below a given threshold, epithelial barrier dysfunction precipitates an exaggerated T effector response due to PI3Kδ-inhibition, leading to risk of diarrhea and colitis. This synergy explains why the lowest diarrhea and colitis rates are seen with the weakest PI3Kδ inhibition (alpelisib), and higher rates are seen with strong PI3Kδ inhibition if PI3Kα is even mildly inhibited (e.g., idelalisib), whereas strong PI3Kδ inhibition in the absence of PI3Kα inhibition does not result in high colitis rates (umbralisib). Thus, the model-based analysis suggests that PI3Kα and δ inhibition play unique but synergistic roles in driving colitis. Finally, we explore if and how dose-regimen might influence colitis rates for molecules that inhibit both PI3Kα and PI3Kδ.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jin Jin
- GenentechSouth San FranciscoCaliforniaUSA
| | | | | |
Collapse
|
33
|
Wu D, Liu X, Mu J, Yang J, Wu F, Zhou H. Therapeutic Approaches Targeting Proteins in Tumor-Associated Macrophages and Their Applications in Cancers. Biomolecules 2022; 12:biom12030392. [PMID: 35327584 PMCID: PMC8945446 DOI: 10.3390/biom12030392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) promote tumor proliferation, invasion, angiogenesis, stemness, therapeutic resistance, and immune tolerance in a protein-dependent manner. Therefore, the traditional target paradigms are often insufficient to exterminate tumor cells. These pro-tumoral functions are mediated by the subsets of macrophages that exhibit canonical protein markers, while simultaneously having unique transcriptional features, which makes the proteins expressed on TAMs promising targets during anti-tumor therapy. Herein, TAM-associated protein-dependent target strategies were developed with the aim of either reducing the numbers of TAMs or inhibiting the pro-tumoral functions of TAMs. Furthermore, the recent advances in TAMs associated with tumor metabolism and immunity were extensively exploited to repolarize these TAMs to become anti-tumor elements and reverse the immunosuppressive tumor microenvironment. In this review, we systematically summarize these current studies to fully illustrate the TAM-associated protein targets and their inhibitors, and we highlight the potential clinical applications of targeting the crosstalk among TAMs, tumor cells, and immune cells in anti-tumor therapy.
Collapse
Affiliation(s)
- Deyang Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Xiaowei Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
- Correspondence: (F.W.); (H.Z.)
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
- Correspondence: (F.W.); (H.Z.)
| |
Collapse
|
34
|
Wang Y, Liu T, Li X, Sheng H, Ma X, Hao L. Ferroptosis-Inducing Nanomedicine for Cancer Therapy. Front Pharmacol 2021; 12:735965. [PMID: 34987385 PMCID: PMC8722674 DOI: 10.3389/fphar.2021.735965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Ferroptosis, a new iron- and reactive oxygen species-dependent form of regulated cell death, has attracted much attention in the therapy of various types of tumors. With the development of nanomaterials, more and more evidence shows the potential of ferroptosis combined with nanomaterials for cancer therapy. Recently, there has been much effort to develop ferroptosis-inducing nanomedicine, specially combined with the conventional or emerging therapy. Therefore, it is necessary to outline the previous work on ferroptosis-inducing nanomedicine and clarify directions for improvement and application to cancer therapy in the future. In this review, we will comprehensively focus on the strategies of cancer therapy based on ferroptosis-inducing nanomedicine currently, elaborate on the design ideas of synthesis, analyze the advantages and limitations, and finally look forward to the future perspective on the emerging field.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Tianfu Liu
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
- China Medical University-The Queen’s University of Belfast Joint College, China Medical University, Shenyang, China
| | - Xiang Li
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
- First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Hui Sheng
- Physical College, Liaoning University, Shenyang, China
| | - Xiaowen Ma
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
- Second Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| |
Collapse
|
35
|
Jin Y, Chen X, Gao Z, Shen X, Fu H, Pan Z, Yan H, Yang B, He Q, Xu Z, Luo P. Bisdemethoxycurcumin alleviates vandetanib-induced cutaneous toxicity in vivo and in vitro through autophagy activation. Biomed Pharmacother 2021; 144:112297. [PMID: 34649218 DOI: 10.1016/j.biopha.2021.112297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022] Open
Abstract
High incidence of cutaneous toxicity ranging from 29.2% to 71.2% has been reported during clinical use of vandetanib, which is a multi-target kinase inhibitor indicated for the treatment of unresectable medullary thyroid carcinoma. The cutaneous toxicity of vandetanib has limited its clinical benefits, but the underlying mechanisms and protective strategies are not well studied. Hence, we firstly established an in vivo model by continuously administrating vandetanib at 55 mg/kg/day to C57BL/6 for 21 days and verified that vandetanib could induce skin rash in vivo, which was consistent with the clinical study. We further cultured HaCaT and NHEK cells, the immortalized or primary human keratinocyte line, and investigated vandetanib (0-10 μM, 0-24 h)-caused alteration in cellular survival and death processes. The western blot showed that the expression level of apoptotic-related protein, c-PARP, c-Caspase 3 and Bax were increased, while the anti-apoptotic protein Bcl2 and MCL1 level were decreased. Meanwhile, vandetanib downregulated mitochondrial membrane potential which in turn caused the release of Cytochrome C, excessive production of reactive oxygen species and DNA damage. Furthermore, we found that 5 μM bisdemethoxycurcumin partially rescued vandetanib-induced mitochondria pathway-dependent keratinocyte apoptosis via activation of autophagy in vivo and in vitro, thereby ameliorated cutaneous toxicity. Conclusively, our study revealed the mechanisms of vandetanib-induced apoptosis in keratinocytes during the occurrence of cutaneous toxicity, and suggested bisdemethoxycurcumin as a potential protective drug. This work provided a potentially promising therapeutic strategy for the treatment of vandetanib-induced cutaneous toxicity.
Collapse
Affiliation(s)
- Ying Jin
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Xueqin Chen
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, PR China
| | - Zizheng Gao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Xiaofei Shen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Huangxi Fu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Zezheng Pan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, Zhejiang, PR China; Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, PR China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
36
|
Maines E, Franceschi R, Martinelli D, Soli F, Lepri FR, Piccoli G, Soffiati M. Hypoglycemia due to PI3K/AKT/mTOR signaling pathway defects: two novel cases and review of the literature. Hormones (Athens) 2021; 20:623-640. [PMID: 33876391 DOI: 10.1007/s42000-021-00287-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/25/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The PI3K/AKT/mTOR signaling pathway is important for the regulation of multiple biological processes, including cellular growth and glucose metabolism. Defects of the PI3K/AKT/mTOR signaling pathway are not usually considered among the genetic causes of recurrent hypoglycemia in childhood. However, accumulating evidence links hypoglycemia with defects of this pathway. CASE REPORTS AND REVIEW We describe here two cases of macrocephaly and hypoglycemia bearing genetic defects in genes involved in the PI3K/AKT/mTOR pathway. The first patient was diagnosed with a PTEN hamartoma tumour syndrome (PTHS) due to the de novo germline missense mutation c.[492 + 1G > A] of the PTEN gene. The second patient presented the autosomal dominant mental retardation-35 (MDR35) due to the heterozygous missense mutation c.592G > A in the PPP2R5D gene. A review of the literature on hypoglycemia and PI3K/AKT/mTOR signaling pathway defects, with a special focus on the metabolic characterization of hypoglycemia, is included. CONCLUSIONS PI3K/AKT/mTOR pathway defects should be included in the differential diagnosis of patients with hypoglycemia and macrocephaly. Clinical suspicion and molecular confirmation are important, not just for an accurate genetic counselling but also for defining the follow-up management, including cancer surveillance. The biochemical profile of hypoglycemia varies among patients. While most patients are characterized by low plasmatic insulin levels, hyperinsulinemia has also been observed. Large patient cohorts are needed to gain a comprehensive profile of the biochemical patterns of hypoglycemia in such defects and eventually guide targeted therapeutic interventions.
Collapse
Affiliation(s)
- Evelina Maines
- Division of Pediatrics, S. Chiara General Hospital, Largo Medaglie d'oro, 9, 38122, Trento, Italy.
| | - Roberto Franceschi
- Division of Pediatrics, S. Chiara General Hospital, Largo Medaglie d'oro, 9, 38122, Trento, Italy
| | - Diego Martinelli
- Division of Metabolism and Research Unit of Metabolic Biochemistry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fiorenza Soli
- Division of Medical Genetics, S. Chiara General Hospital, Trento, Italy
| | | | - Giovanni Piccoli
- CIBIO - Centre for Integrative Biology, Università Degli Studi Di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| | - Massimo Soffiati
- Division of Pediatrics, S. Chiara General Hospital, Largo Medaglie d'oro, 9, 38122, Trento, Italy
| |
Collapse
|
37
|
Cháirez-Ramírez MH, de la Cruz-López KG, García-Carrancá A. Polyphenols as Antitumor Agents Targeting Key Players in Cancer-Driving Signaling Pathways. Front Pharmacol 2021; 12:710304. [PMID: 34744708 PMCID: PMC8565650 DOI: 10.3389/fphar.2021.710304] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Polyphenols constitute an important group of natural products that are traditionally associated with a wide range of bioactivities. These are usually found in low concentrations in natural products and are now available in nutraceuticals or dietary supplements. A group of polyphenols that include apigenin, quercetin, curcumin, resveratrol, EGCG, and kaempferol have been shown to regulate signaling pathways that are central for cancer development, progression, and metastasis. Here, we describe novel mechanistic insights on the effect of this group of polyphenols on key elements of the signaling pathways impacting cancer. We describe the protein modifications induced by these polyphenols and their effect on the central elements of several signaling pathways including PI3K, Akt, mTOR, RAS, and MAPK and particularly those affecting the tumor suppressor p53 protein. Modifications of p53 induced by these polyphenols regulate p53 gene expression and protein levels and posttranslational modifications such as phosphorylation, acetylation, and ubiquitination that influence stability, subcellular location, activation of new transcriptional targets, and the role of p53 in response to DNA damage, apoptosis control, cell- cycle regulation, senescence, and cell fate. Thus, deep understanding of the effects that polyphenols have on these key players in cancer-driving signaling pathways will certainly lead to better designed targeted therapies, with less toxicity for cancer treatment. The scope of this review centers on the regulation of key elements of cancer signaling pathways by the most studied polyphenols and highlights the importance of a profound understanding of these regulations in order to improve cancer treatment and control with natural products.
Collapse
Affiliation(s)
- Manuel Humberto Cháirez-Ramírez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Karen Griselda de la Cruz-López
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
38
|
Chandrasekaran S, Funk CR, Kleber T, Paulos CM, Shanmugam M, Waller EK. Strategies to Overcome Failures in T-Cell Immunotherapies by Targeting PI3K-δ and -γ. Front Immunol 2021; 12:718621. [PMID: 34512641 PMCID: PMC8427697 DOI: 10.3389/fimmu.2021.718621] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
PI3K-δ and PI3K-γ are critical regulators of T-cell differentiation, senescence, and metabolism. PI3K-δ and PI3K-γ signaling can contribute to T-cell inhibition via intrinsic mechanisms and regulation of suppressor cell populations, including regulatory T-cells and myeloid derived suppressor cells in the tumor. We examine an exciting new role for using selective inhibitors of the PI3K δ- and γ-isoforms as modulators of T-cell phenotype and function in immunotherapy. Herein we review the current literature on the implications of PI3K-δ and -γ inhibition in T-cell biology, discuss existing challenges in adoptive T-cell therapies and checkpoint blockade inhibitors, and highlight ongoing efforts and future directions to incorporate PI3K-δ and PI3K-γ as synergistic T-cell modulators in immunotherapy.
Collapse
Affiliation(s)
- Sanjay Chandrasekaran
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Christopher Ronald Funk
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Troy Kleber
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Chrystal M. Paulos
- Department of Surgery/Microbiology & Immunology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| |
Collapse
|
39
|
Chen X, Zhabyeyev P, Azad AK, Vanhaesebroeck B, Grueter CE, Murray AG, Kassiri Z, Oudit GY. Pharmacological and cell-specific genetic PI3Kα inhibition worsens cardiac remodeling after myocardial infarction. J Mol Cell Cardiol 2021; 157:17-30. [PMID: 33887328 DOI: 10.1016/j.yjmcc.2021.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND PI3Kα (Phosphoinositide 3-kinase α) regulates multiple downstream signaling pathways controlling cell survival, growth, and proliferation and is an attractive therapeutic target in cancer and obesity. The clinically-approved PI3Kα inhibitor, BYL719, is in further clinical trials for cancer and overgrowth syndrome. However, the potential impact of PI3Kα inhibition on the heart and following myocardial infarction (MI) is unclear. We aim to determine whether PI3Kα inhibition affects cardiac physiology and post-MI remodeling and to elucidate the underlying molecular mechanisms. METHODS AND RESULTS Wildtype (WT) 12-wk old male mice receiving BYL719 (daily, p.o.) for 10 days showed reduction in left ventricular longitudinal strain with normal ejection fraction, weight loss, mild cardiac atrophy, body composition alteration, and prolonged QTC interval. RNASeq analysis showed gene expression changes in multiple pathways including extracellular matrix remodeling and signaling complexes. After MI, both p110α and phospho-Akt protein levels were increased in human and mouse hearts. Pharmacological PI3Kα inhibition aggravated cardiac dysfunction and resulted in adverse post-MI remodeling, with increased apoptosis, elevated inflammation, suppressed hypertrophy, decreased coronary blood vessel density, and inhibited Akt/GSK3β/eNOS signaling. Selective genetic ablation of PI3Kα in endothelial cells was associated with worsened post-MI cardiac function and reduced coronary blood vessel density. In vitro, BYL719 suppressed Akt/eNOS activation, cell viability, proliferation, and angiogenic sprouting in coronary and human umbilical vein endothelial cells. Cardiomyocyte-specific genetic PI3Kα ablation resulted in mild cardiac systolic dysfunction at baseline. After MI, cardiac function markedly deteriorated with increased mortality concordant with greater apoptosis and reduced hypertrophy. In isolated adult mouse cardiomyocytes, BYL719 decreased hypoxia-associated activation of Akt/GSK3β signaling and cell survival. CONCLUSIONS PI3Kα is required for cell survival (endothelial cells and cardiomyocytes) hypertrophic response, and angiogenesis to maintain cardiac function after MI. Therefore, PI3Kα inhibition that is used as anti-cancer treatment, can be cardiotoxic, especially after MI.
Collapse
Affiliation(s)
- Xueyi Chen
- Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Pavel Zhabyeyev
- Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Abul K Azad
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | - Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - Allan G Murray
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada.
| |
Collapse
|
40
|
Abstract
Approximately 70% of invasive breast cancers have some degree of dependence on the estrogen hormone for cell proliferation and growth. These tumors have estrogen and/or progesterone receptors (ER/PR+), generally referred to as hormone receptor positive (HR+) tumors, as indicated by the presence of positive staining and varying intensity levels of estrogen and/or progesterone receptors on immunohistochemistry. Therapies that inhibit ER signaling pathways, such as aromatase inhibitors (letrozole, anastrozole, exemestane), selective ER modulators (tamoxifen), and ER down-regulators (fulvestrant), are the mainstays of treatment for hormone-receptor-positive breast cancers. However, de novo or acquired resistance to ER targeted therapies is present in many tumors, leading to disease progression. The PI3K/AKT/mTOR pathway is implicated in sustaining endocrine resistance and has become the target of many new drugs for ER+ breast cancer. This article reviews the function of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway and the various classes of PI3K pathway inhibitors that have been developed to disrupt this pathway signaling for the treatment of hormone-receptor-positive breast cancer.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Breast Neoplasms/diagnosis
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors
- Class I Phosphatidylinositol 3-Kinases/genetics
- Class I Phosphatidylinositol 3-Kinases/metabolism
- DNA Mutational Analysis
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Humans
- Mutation
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Staging
- Phosphoinositide-3 Kinase Inhibitors/metabolism
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/antagonists & inhibitors
- Receptors, Progesterone/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Sara E Nunnery
- Breast Cancer Program, Division of Hematology/Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 PRB, Nashville, TN, 37232-6307, USA
| | - Ingrid A Mayer
- Breast Cancer Program, Division of Hematology/Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 PRB, Nashville, TN, 37232-6307, USA.
| |
Collapse
|
41
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
42
|
Zafar H, Raza F, Ma S, Wei Y, Zhang J, Shen Q. Recent progress on nanomedicine-induced ferroptosis for cancer therapy. Biomater Sci 2021; 9:5092-5115. [PMID: 34160488 DOI: 10.1039/d1bm00721a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current treatment strategies for cancer therapy have posed many problems in achieving high efficacy. Therefore, an urgent step is needed to develop innovative therapies that can win beyond satisfactory results against tumor. Ferroptosis that is a kind of non-apoptotic based programmed cell death has played a crucial role in eradicating tumors by reactive oxygen species and iron-dependent pathways. Research shows a remarkable potential of ferroptosis in eliminating aggressive malignancies resistant to traditional therapies. The combination of nanomedicine and ferroptosis has revealed a close relationship for the treatment of various cancer types with high efficacy. This review introduces the basics of nanomedicine-based ferroptosis first to emphasize the feasibility and properties of ferroptosis in cancer therapy. Then, the current research on the applications of nanomedicine for the ferroptosis-based anticancer therapy is highlighted. Finally, conclusions and future research directions in perspective of various challenges in developing nanomedicine-based ferroptosis into clinical therapeutics are discussed.
Collapse
Affiliation(s)
- Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China.
| | | | | | | | | | | |
Collapse
|
43
|
Rogers BB. B-Cell Malignancies: The Use of Small Molecule Agents for Treatment and Management. Clin J Oncol Nurs 2021; 24:199-204. [PMID: 32196006 DOI: 10.1188/20.cjon.199-204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hematologic B-cell malignancies, which have varying behavior patterns, disease processes, and treatment responses, include non-Hodgkin lymphoma, leukemias, and myeloma. Although monoclonal antibodies and other agents have led to dramatic advances in the treatment of B-cell malignancies, the development of small molecules have enhanced the ability to treat and manage these malignancies and their adverse events (AEs). Oncology nurses need to be educated on the unique side effects for each class of these agents so that they can administer interventions to prevent and manage AEs in patients.
Collapse
|
44
|
Martorana F, Motta G, Pavone G, Motta L, Stella S, Vitale SR, Manzella L, Vigneri P. AKT Inhibitors: New Weapons in the Fight Against Breast Cancer? Front Pharmacol 2021; 12:662232. [PMID: 33995085 PMCID: PMC8118639 DOI: 10.3389/fphar.2021.662232] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/01/2021] [Indexed: 01/07/2023] Open
Abstract
The serine/threonine kinase AKT is a key component of the PI3K/AKT/mTOR signaling pathway as it exerts a pivotal role in cell growth, proliferation, survival, and metabolism. Deregulation of this pathway is a common event in breast cancer including hormone receptor-positive (HR+) disease, HER2-amplified, and triple negative tumors. Hence, targeting AKT represents an attractive treatment option for many breast cancer subtypes, especially those resistant to conventional treatments. Several AKT inhibitors have been recently developed and two ATP-competitive compounds, capivasertib and ipatasertib, have been extensively tested in phase I and II clinical trials either alone, with chemotherapy, or with hormonal agents. Additionally, phase III trials of capivasertib and ipatasertib are already under way in HR+ and triple-negative breast cancer. While the identification of predictive biomarkers of response and resistance to AKT inhibition represents an unmet need, new combination strategies are under investigation aiming to boost the therapeutic efficacy of these drugs. As such, trials combining capivasertib and ipatasertib with CDK4/6 inhibitors, immune checkpoint inhibitors, and PARP inhibitors are currently ongoing. This review summarizes the available evidence on AKT inhibition in breast cancer, reporting both efficacy and toxicity data from clinical trials along with the available translational correlates and then focusing on the potential use of these drugs in new combination strategies.
Collapse
Affiliation(s)
- Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
| | - Gianmarco Motta
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
- Medical Oncology, A. O. U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
| | - Giuliana Pavone
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
- Medical Oncology, A. O. U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
| | - Lucia Motta
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
- Medical Oncology, A. O. U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
- Medical Oncology, A. O. U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
| |
Collapse
|
45
|
Sheng Z, Yu J, Deng K, Andrade-Barazarte H, Zemmar A, Li S, Li N, Yan Z, Chen Z, Sun Y, Hernesniemi J, Bu X. Characterizing the Genomic Landscape of Brain Glioma With Circulating Tumor DNA From Tumor In Situ Fluid. Front Oncol 2021; 11:584988. [PMID: 33868989 PMCID: PMC8045748 DOI: 10.3389/fonc.2021.584988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor in situ fluid (TISF) refers to the fluid at the local surgical cavity. We evaluated the feasibility of TISF-derived circulating tumor DNA (ctDNA) characterizing the genomic landscape for glioma. This retrospective study included TISF and tumor samples from 10 patients with glioma, we extracted cell-free DNA (cfDNA) from the TISF and then performed deep sequencing on that. And we compared genomic alterations between TISF and tumor tissue. Results showed that the concentration of cfDNA fragments from the patients for TISF ranged from 7.2 to 1,397 ng/ml. At least one tumor-specific mutation was identified in all 10 patients (100%). Further analysis of TISF ctDNA revealed a broad spectrum of genetic mutations, which have been reported to have clinical relevance. The analysis of concordance between TISF and tumor tissue reflected the spatiotemporal heterogeneity of glioma. Collectively, TISF ctDNA was a powerfully potential source for characterizing the genomic landscape of glioma, which provided new possibilities for precision medicine in patients with glioma.
Collapse
Affiliation(s)
- Zhiyuan Sheng
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jinliang Yu
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Kaiyuan Deng
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hugo Andrade-Barazarte
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ajmal Zemmar
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Sijia Li
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nianxuan Li
- School of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhaoyue Yan
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhongcan Chen
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yong Sun
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Juha Hernesniemi
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xingyao Bu
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
46
|
Fusco N, Malapelle U, Fassan M, Marchiò C, Buglioni S, Zupo S, Criscitiello C, Vigneri P, Dei Tos AP, Maiorano E, Viale G. PIK3CA Mutations as a Molecular Target for Hormone Receptor-Positive, HER2-Negative Metastatic Breast Cancer. Front Oncol 2021; 11:644737. [PMID: 33842357 PMCID: PMC8027489 DOI: 10.3389/fonc.2021.644737] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the significant achievements in the diagnosis and treatment of metastatic breast cancer (MBC), this condition remains substantially an incurable disease. In recent years, several clinical studies have aimed to identify novel molecular targets, therapeutic strategies, and predictive biomarkers to improve the outcome of women with MBC. Overall, ~40% of hormone receptor (HR)+/HER2- MBC cases harbor alterations affecting the (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway. This pathway is a major target in oncogenesis, as it regulates growth, proliferation, cell survival, and angiogenesis. Lately, the pharmacologic targeting of PIK3CA in HR+/HER2- MBC has shown significant benefits after the occurrence of endocrine therapy resistance. The orally available α-selective PIK3CA inhibitor, alpelisib, has been approved in this setting. To perform an optimal patients' selection for this drug, it is crucial to adopt a tailored methodology. Clinically relevant PIK3CA alterations may be detected in several biospecimens (e.g. tissue samples and liquid biopsy) using different techniques (e.g. real-time PCR and next-generation sequencing). In this study, we provide an overview of the role of PIK3CA in breast cancer and of the characterization of its mutational status for appropriate clinical management.
Collapse
Affiliation(s)
- Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Matteo Fassan
- Department of Pathology, Padua University Hospital, Padua, Italy
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Caterina Marchiò
- Division of Pathology, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simonetta Buglioni
- Division of Pathology and Cytopathology, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Simonetta Zupo
- Department of Pathology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paolo Vigneri
- Experimental Oncology and Hematology Center, A.O.U. Policlinico “G. Rodolico - S. Marco”, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Angelo Paolo Dei Tos
- Department of Pathology, Padua University Hospital, Padua, Italy
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Eugenio Maiorano
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Viale
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
47
|
Cardiovascular toxicity of PI3Kα inhibitors. Clin Sci (Lond) 2021; 134:2595-2622. [PMID: 33063821 DOI: 10.1042/cs20200302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
The phosphoinositide 3-kinases (PI3Ks) are a family of intracellular lipid kinases that phosphorylate the 3'-hydroxyl group of inositol membrane lipids, resulting in the production of phosphatidylinositol 3,4,5-trisphosphate from phosphatidylinositol 4,5-bisphosphate. This results in downstream effects, including cell growth, proliferation, and migration. The heart expresses three PI3K class I enzyme isoforms (α, β, and γ), and these enzymes play a role in cardiac cellular survival, myocardial hypertrophy, myocardial contractility, excitation, and mechanotransduction. The PI3K pathway is associated with various disease processes but is particularly important to human cancers since many gain-of-function mutations in this pathway occur in various cancers. Despite the development, testing, and regulatory approval of PI3K inhibitors in recent years, there are still significant challenges when creating and utilizing these drugs, including concerns of adverse effects on the heart. There is a growing body of evidence from preclinical studies revealing that PI3Ks play a crucial cardioprotective role, and thus inhibition of this pathway could lead to cardiac dysfunction, electrical remodeling, vascular damage, and ultimately, cardiovascular disease. This review will focus on PI3Kα, including the mechanisms underlying the adverse cardiovascular effects resulting from PI3Kα inhibition and the potential clinical implications of treating patients with these drugs, such as increased arrhythmia burden, biventricular cardiac dysfunction, and impaired recovery from cardiotoxicity. Recommendations for future directions for preclinical and clinical work are made, highlighting the possible role of PI3Kα inhibition in the progression of cancer-related cachexia and female sex and pre-existing comorbidities as independent risk factors for cardiac abnormalities after cancer treatment.
Collapse
|
48
|
PIK3CA Mutation Assessment in HR+/HER2− Metastatic Breast Cancer: Overview for Oncology Clinical Practice. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of the PI3K–AKT–mTOR pathway occurs in several human cancers, including hormone receptor (HR)-positive breast cancer (BC) where is associated with resistance to endocrine therapy and disease progression. In BC, the most common PI3K–AKT–mTOR pathway alteration is represented by PIK3CA oncogenic mutations. These mutations can occur throughout several domains of the p110α catalytic subunit, but the majority are found in the helical and kinase domains (exon 9 and 20) that represent the “hotspots”. Considering the central role of the PI3K–AKT–mTOR pathway in HR-positive BC, several inhibitors (both pan-PI3K and isoform-specific) have been developed and tested in clinical trials. Recently, the PI3Kα-selective inhibitor alpelisib was the first PI3K inhibitor approved for clinical use in HR-positive metastatic BC based on the results of the phase III SOLAR-1 trial. Several methods to assess PIK3CA mutational status in tumor samples have been developed and validated, including real-time polymerase chain reaction (PCR), digital droplet PCR (ddPCR), BEAMing assays, Sanger sequencing, and next-generation sequencing (NGS) panels. Several new challenges will be expected once alpelisib is widely available in a clinical setting, including the harmonization of testing procedures for the detection of PI3K–AKT–mTOR pathway alterations. Herein, we provide an overview on PI3K–AKT–mTOR pathway alterations in HR-positive BC, discuss their role in determining prognosis and resistance to endocrine therapy and highlight practical considerations about diagnostic methods for the detection of PI3K–AKT–mTOR pathway activation status.
Collapse
|
49
|
Moya-Martínez C, Torre-Castro J, Fariña-Sabarís MC, Santiago Sánchez-Mateos D, Eraña-Tomás I, Jo-Velasco M, Requena L. Cutaneous eruption with reactive endothelial atypia due to emerging targeted cancer therapies: Report of two cases with clinico-pathologic correlation. J Cutan Pathol 2021; 48:789-794. [PMID: 33576042 DOI: 10.1111/cup.13981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Targeted anticancer therapy is being used with greater frequency and dermatologic toxicities are among the most frequent adverse events of these drugs. However, histopathological features of these adverse events are not yet well characterized. We present two cases of clinically different cutaneous toxicities on two patients with hematologic neoplasia. They were treated with different drugs and in both cases medications shared inhibition of PI3K as mechanism of action. The skin biopsy specimen showed endothelial cell atypia with large nuclei and mitotic figures. To the best of our knowledge, no other cases with these striking histopathologic findings have been reported with PI3K inhibitors or other anticancer targeted therapy.
Collapse
Affiliation(s)
| | - Juan Torre-Castro
- Department of Dermatology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | | | | | - Itziar Eraña-Tomás
- Department of Pathology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Margarita Jo-Velasco
- Department of Pathology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Luis Requena
- Department of Dermatology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
50
|
Wang J, Osada T, Morse MA, Calzone F, Yan H, Thai D, Lyerly HK. Targeting the glucagon receptor signaling pathway as a novel strategy to counteract PI3K inhibitor induced hyperglycemia while sustaining tumor PI3K inhibition. Leuk Lymphoma 2021; 62:1761-1764. [PMID: 33576297 DOI: 10.1080/10428194.2021.1881504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jie Wang
- Department of Medicine, Duke Cancer Institute, Durham, NC, USA
| | - Takuya Osada
- Department of Surgery, Duke Cancer Institute, Durham, NC, USA
| | - Michael A Morse
- Department of Medicine, Duke Cancer Institute, Durham, NC, USA
| | | | - Hai Yan
- REMD Biotherapeutics, Camarillo, CA, USA
| | - Dung Thai
- REMD Biotherapeutics, Camarillo, CA, USA
| | - H Kim Lyerly
- Department of Surgery, Duke Cancer Institute, Durham, NC, USA
| |
Collapse
|