1
|
Jian W, Chen Y, Feng X. 3D Conformal Curvy Electronics: Design, Fabrication, and Application. ACS NANO 2025; 19:15177-15188. [PMID: 40251732 DOI: 10.1021/acsnano.5c03179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Owing to their excellent conformability and functional advantages derived from spatially induced structures, 3D conformal curvy electronics have garnered attention for their emerging applications in biomedical healthcare, soft machines, curvy imagers, etc. In this perspective, the historical evolution of 3D conformal curvy electronics is summarized, with representative examples highlighted and developmental trends outlined. The design strategies of 3D conformal curvy electronics are discussed across materials, structures, interfaces, and conformability assessment. Subsequently, diverse fabrication technologies are reviewed, including direct fabrication, conformal transfer printing, and conformal shape reconfiguration. Afterward, the typical applications of 3D conformal curvy electronics are presented, classified by integration with biological tissues, machines, and function-engineered curvy surfaces. Finally, the existing challenges and potential research directions are provided for further exploration.
Collapse
Affiliation(s)
- Wei Jian
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Institute of Flexible Electronics Technology of THU, Zhejiang, Jiaxing 314000, China
| | - Ying Chen
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- Institute of Flexible Electronics Technology of THU, Zhejiang, Jiaxing 314000, China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Institute of Flexible Electronics Technology of THU, Zhejiang, Jiaxing 314000, China
| |
Collapse
|
2
|
Xu M, Song Z, Peng Q, Xu Q, Du Z, Ruan T, Yang B, Liu Q, Liu X, Hou X, Qin M, Liu J. Catheter-Integrated Fractal Microelectronics for Low-Voltage Ablation and Minimally Invasive Sensing. ACS Sens 2025; 10:2779-2789. [PMID: 40190250 DOI: 10.1021/acssensors.4c03477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Pulse field ablation (PFA) has become a popular technique for treating tens of millions of patients with atrial fibrillation, as it avoids many complications associated with traditional radiofrequency ablation. However, currently, limited studies have used millimeter-scale rigid electrodes modified from radiofrequency ablation to apply electrical pulses of thousands of volts without integrated sensing capabilities. Herein, we combine fractal microelectronics with biomedical catheters for low-voltage PFA, detection of electrode-tissue contact, and interventional electrocardiogram recording. The fractal configuration increases the ratio of the microelectrode insulating edge to area, which facilitates the transfer of current from the microelectrode to the tissue, increasing the ablation depth by 38.6% at 300 V (a 10-fold reduction compared to current technology). In vivo ablation experiments on living beagles successfully block electrical conduction, as demonstrated by voltage mapping and electrical pacing. More impressively, this study provides the first evidence that microelectrodes can selectively ablate cardiomyocytes without damaging nerves and blood vessels, greatly improving the safety of PFA. These results are essential for the clinical translation of PFA in the field of cardiac electrophysiology.
Collapse
Affiliation(s)
- Mengfei Xu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziliang Song
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Quan Peng
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingda Xu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyuan Du
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Ruan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingkun Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xumin Hou
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingquan Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Truong TA, Huang X, Barton M, Ashok A, Al Abed A, Almasri R, Shivdasanic MN, Reshamwala R, Ingles J, Thai MT, Nguyen CC, Zhao S, Zhang X, Gu Z, Vasanth A, Peng S, Nguyen TK, Do N, Nguyen NT, Zhao H, Phan HP. Flexible Electrode Arrays Based on a Wide Bandgap Semiconductors for Chronic Implantable Multiplexed Sensing and Heart Pacemakers. ACS NANO 2025; 19:1642-1659. [PMID: 39752298 DOI: 10.1021/acsnano.4c15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals. This study introduces a multielectrode array featuring a wide bandgap (WBG) material as electrodes, demonstrating its suitability for chronic implantable applications. Our devices exhibit excellent flexibility and longevity, taking advantage of the low bending stiffness and chemical inertness in WBG nanomembranes and multimodalities for physical health monitoring, including temperature, strain, and impedance sensing. Our top-down manufacturing process enables the formation of distributed electrode arrays that can be seamlessly integrated onto the curvilinear surfaces of skins. As proof of concept for chronic cardiac pacing applications, we demonstrate the effective pacing functionality of our devices on rabbit hearts through a set of ex vivo experiments. The engineering approach proposed in this study overcomes the drawbacks of prior WBG material fabrication techniques, resulting in an implantable system with high bendability, effective pacing, and high-performance sensing.
Collapse
Affiliation(s)
- Thanh An Truong
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xinghao Huang
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Matthew Barton
- School of Nursing & Midwifery, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Aditya Ashok
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Reem Almasri
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mohit N Shivdasanic
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ronak Reshamwala
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Joshua Ingles
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Mai Thanh Thai
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- College of Engineering and Computer Science and VinUni-Illinois Smart Health Center, Vin University, Hanoi 100000, Vietnam
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Sinuo Zhao
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xiuwen Zhang
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine (ACN), University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Arya Vasanth
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Nho Do
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Hangbo Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Guruge AG, Makki H, Troisi A. Structural properties of conductive polymer blends interfaced with water: computational insights from PEDOT:PSS. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:19245-19257. [PMID: 39465130 PMCID: PMC11497116 DOI: 10.1039/d4tc03066d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
In various bioelectronic applications, conductive polymers come into contact with biological tissues, where water is the major component. In this study, we investigated the interface between the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and water, focusing on how the morphology of the PEDOT:PSS is altered by water permeation. We constructed well-equilibrated PEDOT:PSS-water systems in both PEDOT- and PSS-rich phases. Our findings show that water permeates into the polymer through a complex network of water channels, which exhibit a similar pore size distribution in both PEDOT- and PSS-rich phases, leading to similar water intake in these phases. Compared to the dry state of the polymer, water permeation leads to the formation of smaller, less ordered, and distantly located lamella crystallites, potentially resulting in reduced conductivity. Therefore, we argue that these structural changes from the dry state of the polymer to the wet state may be the origin of the significant conductivity reduction observed experimentally in PEDOT:PSS in water or PEDOT:PSS hydrogels.
Collapse
Affiliation(s)
- Amali G Guruge
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Hesam Makki
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| |
Collapse
|
5
|
Li C, Bian Y, Zhao Z, Liu Y, Guo Y. Advances in Biointegrated Wearable and Implantable Optoelectronic Devices for Cardiac Healthcare. CYBORG AND BIONIC SYSTEMS 2024; 5:0172. [PMID: 39431246 PMCID: PMC11486891 DOI: 10.34133/cbsystems.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/22/2024] Open
Abstract
With the prevalence of cardiovascular disease, it is imperative that medical monitoring and treatment become more instantaneous and comfortable for patients. Recently, wearable and implantable optoelectronic devices can be seamlessly integrated into human body to enable physiological monitoring and treatment in an imperceptible and spatiotemporally unconstrained manner, opening countless possibilities for the intelligent healthcare paradigm. To achieve biointegrated cardiac healthcare, researchers have focused on novel strategies for the construction of flexible/stretchable optoelectronic devices and systems. Here, we overview the progress of biointegrated flexible and stretchable optoelectronics for wearable and implantable cardiac healthcare devices. Firstly, the device design is addressed, including the mechanical design, interface adhesion, and encapsulation strategies. Next, the practical applications of optoelectronic devices for cardiac physiological monitoring, cardiac optogenetics, and nongenetic stimulation are presented. Finally, an outlook on biointegrated flexible and stretchable optoelectronic devices and systems for intelligent cardiac healthcare is discussed.
Collapse
Affiliation(s)
- Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangshuang Bian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Gândara MIF, Efimov IR, Aras KK. Effect of Spatial Resolution on Accurate Detection and Localization of Arrhythmia Rotors in Human Right Ventricular Tachycardia. J Cardiovasc Dev Dis 2024; 11:322. [PMID: 39452292 PMCID: PMC11508746 DOI: 10.3390/jcdd11100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
The goal of this study was to identify the spatial resolution requirements for accurate rotor detection and localization in human right ventricular tachyarrhythmias. Poor spatial resolution is often cited as a reason for the inaccuracy of cardiac mapping catheters in detecting and localizing arrhythmia rotors. High-resolution (0.7 mm) arrhythmia data from optical recordings obtained from human donor hearts (n = 12) were uniformly downsampled to lower resolutions (1.4-7 mm) to approximate the spatial resolution (4 mm) of clinical mapping catheters. Rotors were tracked at various subresolutions and compared to the rotors in the original data by computing F1-scores to create accuracy profiles for both rotor detection and localization. Further comparisons were made according to arrhythmia type, donor sex, anatomical region, and mapped surface: endocardium or epicardium. For a spatial resolution of 4.2 mm, the accuracies of rotor detection and localization were 57% ± 4% and 61% ± 7%, respectively. Arrhythmia type affected the accuracy of rotor detection (monomorphic ventricular tachycardia, 58% ± 4%; ventricular fibrillation, 56% ± 8%) and localization (monomorphic ventricular tachycardia, 70% ± 4%; ventricular fibrillation, 54% ± 13%). However, donor sex, anatomical region (right ventricular outflow tract, mid, and apical), and mapped surface (epicardium and endocardium) did not significantly affect rotor detection or localization accuracy. To achieve rotor detection accuracy of 80%, a spatial resolution of 1.4 mm or better is needed. The accuracy profiles provided here serve as a guideline for future mapping device development.
Collapse
Affiliation(s)
| | - Igor R. Efimov
- Department of Biomedical Engineering, Northwestern University, Chicago, IL 60208, USA;
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kedar K. Aras
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, USA
| |
Collapse
|
7
|
Mirzajani H, Kraft M. Soft Bioelectronics for Heart Monitoring. ACS Sens 2024; 9:4328-4363. [PMID: 39239948 DOI: 10.1021/acssensors.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Cardiovascular diseases (CVDs) are a predominant global health concern, accounting for over 17.9 million deaths in 2019, representing approximately 32% of all global fatalities. In North America and Europe, over a million adults undergo cardiac surgeries annually. Despite the benefits, such surgeries pose risks and require precise postsurgery monitoring. However, during the postdischarge period, where monitoring infrastructures are limited, continuous monitoring of vital signals is hindered. In this area, the introduction of implantable electronics is altering medical practices by enabling real-time and out-of-hospital monitoring of physiological signals and biological information postsurgery. The multimodal implantable bioelectronic platforms have the capability of continuous heart sensing and stimulation, in both postsurgery and out-of-hospital settings. Furthermore, with the emergence of machine learning algorithms into healthcare devices, next-generation implantables will benefit artificial intelligence (AI) and connectivity with skin-interfaced electronics to provide more precise and user-specific results. This Review outlines recent advancements in implantable bioelectronics and their utilization in cardiovascular health monitoring, highlighting their transformative deployment in sensing and stimulation to the heart toward reaching truly personalized healthcare platforms compatible with the Sustainable Development Goal 3.4 of the WHO 2030 observatory roadmap. This Review also discusses the challenges and future prospects of these devices.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450 Turkey
| | - Michael Kraft
- Department of Electrical Engineering (ESAT-MNS), KU Leuven, 3000 Leuven, Belgium
- Leuven Institute for Micro- and Nanoscale Integration (LIMNI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
8
|
Huang S, Huang X, Liu Z, Yao C, Liu J, He M, Xu X, Zhang T, Wang J, Jiang L, Chen HJ, Xie X. Advances in Multifunctional Electronic Catheters for Precise and Intelligent Diagnosis and Therapy in Minimally Invasive Surgery. ACS NANO 2024; 18:18129-18150. [PMID: 38954632 DOI: 10.1021/acsnano.4c03871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The advent of catheter-based minimally invasive surgical instruments has provided an effective means of diagnosing and treating human disease. However, conventional medical catheter devices are limited in functionalities, hindering their ability to gather tissue information or perform precise treatment during surgery. Recently, electronic catheters have integrated various sensing and therapeutic technologies through micro/nanoelectronics, expanding their capabilities. As micro/nanoelectronic devices become more miniaturized, flexible, and stable, electronic surgical catheters are evolving from simple tools to multiplexed sensing and theranostics for surgical applications. The review on multifunctional electronic surgical catheters is lacking and thus is not conducive to the reader's comprehensive understanding of the development trend in this field. This review covers the advances in multifunctional electronic catheters for precise and intelligent diagnosis and therapy in minimally invasive surgery. It starts with the summary of clinical minimally invasive surgical instruments, followed by the background of current clinical catheter devices for sensing and therapeutic applications. Next, intelligent electronic catheters with integrated electronic components are reviewed in terms of electronic catheters for diagnosis, therapy, and multifunctional applications. It highlights the present status and development potential of catheter-based minimally invasive surgical devices, while also illustrating several significant challenges that remain to be overcome.
Collapse
Affiliation(s)
- Shuang Huang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mengyi He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingyuan Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xi Xie
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
9
|
Li H, Tan P, Rao Y, Bhattacharya S, Wang Z, Kim S, Gangopadhyay S, Shi H, Jankovic M, Huh H, Li Z, Maharjan P, Wells J, Jeong H, Jia Y, Lu N. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem Rev 2024; 124:3220-3283. [PMID: 38465831 DOI: 10.1021/acs.chemrev.3c00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces. E-Tattoos, a unique type of wearable electronics, are defined by their ultrathin and skin-soft characteristics, which enable noninvasive and comfortable lamination on human skin surfaces without causing obstruction or even mechanical perception. This review article offers an exhaustive exploration of e-tattoos, accounting for their materials, structures, manufacturing processes, properties, functionalities, applications, and remaining challenges. We begin by summarizing the properties of human skin and their effects on signal transmission across the e-tattoo-skin interface. Following this is a discussion of the materials, structural designs, manufacturing, and skin attachment processes of e-tattoos. We classify e-tattoo functionalities into electrical, mechanical, optical, thermal, and chemical sensing, as well as wound healing and other treatments. After discussing energy harvesting and storage capabilities, we outline strategies for the system integration of wireless e-tattoos. In the end, we offer personal perspectives on the remaining challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Hongbian Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Philip Tan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yifan Rao
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarnab Bhattacharya
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sangjun Kim
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Susmita Gangopadhyay
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongyang Shi
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matija Jankovic
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heeyong Huh
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengjie Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pukar Maharjan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Wells
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
| | - Yaoyao Jia
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Wang Y, Xie Z, Huang H, Liang X. Pioneering healthcare with soft robotic devices: A review. SMART MEDICINE 2024; 3:e20230045. [PMID: 39188514 PMCID: PMC11235691 DOI: 10.1002/smmd.20230045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/25/2024] [Indexed: 08/28/2024]
Abstract
Recent advancements in soft robotics have been emerging as an exciting paradigm in engineering due to their inherent compliance, safe human interaction, and ease of adaptation with wearable electronics. Soft robotic devices have the potential to provide innovative solutions and expand the horizons of possibilities for biomedical applications by bringing robots closer to natural creatures. In this review, we survey several promising soft robot technologies, including flexible fluidic actuators, shape memory alloys, cable-driven mechanisms, magnetically driven mechanisms, and soft sensors. Selected applications of soft robotic devices as medical devices are discussed, such as surgical intervention, soft implants, rehabilitation and assistive devices, soft robotic exosuits, and prosthetics. We focus on how soft robotics can improve the effectiveness, safety and patient experience for each use case, and highlight current research and clinical challenges, such as biocompatibility, long-term stability, and durability. Finally, we discuss potential directions and approaches to address these challenges for soft robotic devices to move toward real clinical translations in the future.
Collapse
Affiliation(s)
- Yuzhe Wang
- Singapore Institute of Manufacturing TechnologyAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Zhen Xie
- Advanced Remanufacturing and Technology CentreAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Huishi Huang
- Advanced Remanufacturing and Technology CentreAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
| | - Xinquan Liang
- Singapore Institute of Manufacturing TechnologyAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
11
|
Yang JW, Song KI, Lee J, Park S, Huh H, Choi G, Shin HH, Cha HJ. A Customizable Proteinic Bioadhesive Patch with Water-Switchable Underwater Adhesiveness, Adjustable Biodegradability, and Modifiable Stretchability for Healing Diverse Internal Wounds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310338. [PMID: 38148316 DOI: 10.1002/adma.202310338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Customizable bioadhesives for individual organ requirements, including tissue type and motion, are essential, especially given the rise in implantable medical device applications demanding adequate underwater adhesion. While synthetic bioadhesives are widely used, their toxicity upon degradation shifts focus to biocompatible natural biomaterials. However, enhancing the adhesive strengths of these biomaterials presents ongoing challenges while accommodating the unique properties of specific organs. To address these issues, three types of customized underwater bioadhesive patches (CUBAPs) with strong, water-responsive adhesion and controllable biodegradability and stretchability based on bioengineered mussel adhesive proteins conjugated with acrylic acid and/or methacrylic acid are proposed. The CUBAP system, although initially nonadhesive, shows strong underwater adhesion upon hydration, adjustable biodegradation, and adequate physical properties by adjusting the ratio of poly(acrylic acid) and poly(methacrylic acid). Through ex vivo and in vivo evaluations using defective organs and the implantation of electronic devices, the suitability of using CUBAPs for effective wound healing in diverse internal organs is demonstrated. Thus, this innovative CUBAP system offers strong underwater adhesiveness with tailored biodegradation timing and physical properties, giving it great potential in various biomedical applications.
Collapse
Affiliation(s)
- Jang Woo Yang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang, 37673, Republic of Korea
| | - Kang-Il Song
- Division of Smart Healthcare, Pukyong National University, 45 Yongso-ro, Busan, 48513, Republic of Korea
| | - Jaeyun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang, 37673, Republic of Korea
| | - Sungho Park
- Institute of Medical Devices, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon, 24341, Republic of Korea
| | - Hyungkyu Huh
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Daegu, 41061, Republic of Korea
| | - Geunho Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang, 37673, Republic of Korea
| | - Hwa Hui Shin
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Daegu, 41061, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang, 37673, Republic of Korea
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang, 37673, Republic of Korea
| |
Collapse
|
12
|
Hu H, Zhang C, Ding Y, Chen F, Huang Q, Zheng Z. A Review of Structure Engineering of Strain-Tolerant Architectures for Stretchable Electronics. SMALL METHODS 2023; 7:e2300671. [PMID: 37661591 DOI: 10.1002/smtd.202300671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Stretchable electronics possess significant advantages over their conventional rigid counterparts and boost game-changing applications such as bioelectronics, flexible displays, wearable health monitors, etc. It is, nevertheless, a formidable task to impart stretchability to brittle electronic materials such as silicon. This review provides a concise but critical discussion of the prevailing structural engineering strategies for achieving strain-tolerant electronic devices. Not only the more commonly discussed lateral designs of structures such as island-bridge, wavy structures, fractals, and kirigami, but also the less discussed vertical architectures such as strain isolation and elastoplastic principle are reviewed. Future opportunities are envisaged at the end of the paper.
Collapse
Affiliation(s)
- Hong Hu
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Chi Zhang
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yichun Ding
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Fan Chen
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
13
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
14
|
Wang Y, Zhou Z, Li R, Wang J, Sha B, Li S, Su Y. A Hierarchical Theory for the Tensile Stiffness of Non-Buckling Fractal-Inspired Interconnects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2542. [PMID: 37764571 PMCID: PMC10536892 DOI: 10.3390/nano13182542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
The design of non-buckling interconnects with thick sections has gained important applications in stretchable inorganic electronics due to their simultaneous achievement of high stretchability, low resistance, and low heat generation. However, at the same time, such a design sharply increased the tensile stiffness, which is detrimental to the conformal fit and skin comfort. Introducing the fractal design into the non-buckling interconnects is a promising approach to greatly reduce the tensile stiffness while maintaining other excellent performances. Here, a hierarchical theory is proposed for the tensile stiffness of the non-buckling fractal-inspired interconnects with an arbitrary shape at each order, which is verified by the finite element analysis. The results show that the tensile stiffness of the non-buckling fractal-inspired interconnects decreases with the increase in either the height/span ratio or the number of fractal orders but is not highly correlated with the ratio of the two adjacent dimensions. When the ratio of the two adjacent dimensions and height/span ratio are fixed, the tensile stiffness of the serpentine fractal-inspired interconnect is smaller than that of sinusoidal and zigzag fractal-inspired interconnects. These findings are of great significance for the design of non-buckling fractal-inspired interconnects of stretchable inorganic electronics.
Collapse
Affiliation(s)
- Yongkang Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zanxin Zhou
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Li
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Jianru Wang
- Xi’an Aerospace Propulsion Technology Institute, Xi’an 710025, China
| | - Baolin Sha
- The 41st Institute of the Fourth Academy of CASC, Xi’an 710025, China
| | - Shuang Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yewang Su
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
15
|
Sang M, Kim K, Shin J, Yu KJ. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202980. [PMID: 36031395 PMCID: PMC9596833 DOI: 10.1002/advs.202202980] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Indexed: 05/11/2023]
Abstract
Recently, bioelectronic devices extensively researched and developed through the convergence of flexible biocompatible materials and electronics design that enables more precise diagnostics and therapeutics in human health care and opens up the potential to expand into various fields, such as clinical medicine and biomedical research. To establish an accurate and stable bidirectional bio-interface, protection against the external environment and high mechanical deformation is essential for wearable bioelectronic devices. In the case of implantable bioelectronics, special encapsulation materials and optimized mechanical designs and configurations that provide electronic stability and functionality are required for accommodating various organ properties, lifespans, and functions in the biofluid environment. Here, this study introduces recent developments of ultra-thin encapsulations with novel materials that can preserve or even improve the electrical performance of wearable and implantable bio-integrated electronics by supporting safety and stability for protection from destruction and contamination as well as optimizing the use of bioelectronic systems in physiological environments. In addition, a summary of the materials, methods, and characteristics of the most widely used encapsulation technologies is introduced, thereby providing a strategic selection of appropriate choices of recently developed flexible bioelectronics.
Collapse
Affiliation(s)
- Mingyu Sang
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Kyubeen Kim
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Jongwoon Shin
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Ki Jun Yu
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
- YU‐KIST InstituteYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| |
Collapse
|
16
|
Xu D, Xiong S, Meng F, Wang B, Li R. An Analytic Model of Transient Heat Conduction for Bi-Layered Flexible Electronic Heaters by Symplectic Superposition. MICROMACHINES 2022; 13:1627. [PMID: 36295980 PMCID: PMC9611051 DOI: 10.3390/mi13101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In a flexible electronic heater (FEH), periodic metal wires are often encapsulated into the soft elastic substrate as heat sources. It is of great significance to develop analytic models on transient heat conduction of such an FEH in order to provide a rapid analysis and preliminary designs based on a rapid parameter analysis. In this study, an analytic model of transient heat conduction for bi-layered FEHs is proposed, which is solved by a novel symplectic superposition method (SSM). In the Laplace transform domain, the Hamiltonian system-based governing equation for transient heat conduction is introduced, and the mathematical techniques incorporating the separation of variables and symplectic eigen expansion are manipulated to yield the temperature solutions of two subproblems, which is followed by superposition for the temperature solution of the general problem. The Laplace inversion gives the eventual temperature solution in the time domain. Comprehensive time-dependent temperatures by the SSM are presented in tables and figures for benchmark use, which agree well with their counterparts by the finite element method. A parameter analysis on the influence of the thermal conductivity ratio is also studied. The exceptional merit of the SSM is on a direct rigorous derivation without any assumption/predetermination of solution forms, and thus, the method may be extended to more heat conduction problems of FEHs with more complex structures.
Collapse
Affiliation(s)
- Dian Xu
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Sijun Xiong
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Fanxing Meng
- Department of Strength, AVIC Shenyang Aircraft Design and Research Institute, Shenyang 110035, China
| | - Bo Wang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Rui Li
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
17
|
Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev 2022; 51:3380-3435. [PMID: 35352069 DOI: 10.1039/d1cs00858g] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of flexible piezoelectric nanogenerators has experienced rapid progress in the past decade and is serving as the technological foundation of future state-of-the-art personalized healthcare. Due to their highly efficient mechanical-to-electrical energy conversion, easy implementation, and self-powering nature, these devices permit a plethora of innovative healthcare applications in the space of active sensing, electrical stimulation therapy, as well as passive human biomechanical energy harvesting to third party power on-body devices. This article gives a comprehensive review of the piezoelectric nanogenerators for personalized healthcare. After a brief introduction to the fundamental physical science of the piezoelectric effect, material engineering strategies, device structural designs, and human-body centered energy harvesting, sensing, and therapeutics applications are also systematically discussed. In addition, the challenges and opportunities of utilizing piezoelectric nanogenerators for self-powered bioelectronics and personalized healthcare are outlined in detail.
Collapse
Affiliation(s)
- Weili Deng
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA. .,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Weiqing Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
18
|
Tang X, He Y, Liu J. Soft bioelectronics for cardiac interfaces. BIOPHYSICS REVIEWS 2022; 3:011301. [PMID: 38505226 PMCID: PMC10903430 DOI: 10.1063/5.0069516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/10/2021] [Indexed: 03/21/2024]
Abstract
Bioelectronics for interrogation and intervention of cardiac systems is important for the study of cardiac health and disease. Interfacing cardiac systems by using conventional rigid bioelectronics is limited by the structural and mechanical disparities between rigid electronics and soft tissues as well as their limited performance. Recently, advances in soft electronics have led to the development of high-performance soft bioelectronics, which is flexible and stretchable, capable of interfacing with cardiac systems in ways not possible with conventional rigid bioelectronics. In this review, we first review the latest developments in building flexible and stretchable bioelectronics for the epicardial interface with the heart. Next, we introduce how stretchable bioelectronics can be integrated with cardiac catheters for a minimally invasive in vivo heart interface. Then, we highlight the recent progress in the design of soft bioelectronics as a new class of biomaterials for integration with different in vitro cardiac models. In particular, we highlight how these devices unlock opportunities to interrogate the cardiac activities in the cardiac patch and cardiac organoid models. Finally, we discuss future directions and opportunities using soft bioelectronics for the study of cardiac systems.
Collapse
Affiliation(s)
- Xin Tang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, USA
| | - Yichun He
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, USA
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, USA
| |
Collapse
|
19
|
Esfahani AM, Minnick G, Rosenbohm J, Zhai H, Jin X, Tajvidi Safa B, Brooks J, Yang R. Microfabricated platforms to investigate cell mechanical properties. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2021.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106787. [PMID: 34751987 PMCID: PMC8917047 DOI: 10.1002/adma.202106787] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Indexed: 05/09/2023]
Abstract
Designing bioelectronic devices that seamlessly integrate with the human body is a technological pursuit of great importance. Bioelectronic medical devices that reliably and chronically interface with the body can advance neuroscience, health monitoring, diagnostics, and therapeutics. Recent major efforts focus on investigating strategies to fabricate flexible, stretchable, and soft electronic devices, and advances in materials chemistry have emerged as fundamental to the creation of the next generation of bioelectronics. This review summarizes contemporary advances and forthcoming technical challenges related to three principal components of bioelectronic devices: i) substrates and structural materials, ii) barrier and encapsulation materials, and iii) conductive materials. Through notable illustrations from the literature, integration and device fabrication strategies and associated challenges for each material class are highlighted.
Collapse
Affiliation(s)
| | - Jiwoo Song
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Chenchen Mou
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
21
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
22
|
Tommasini G, Dufil G, Fardella F, Strakosas X, Fergola E, Abrahamsson T, Bliman D, Olsson R, Berggren M, Tino A, Stavrinidou E, Tortiglione C. Seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers. Bioact Mater 2021; 10:107-116. [PMID: 34901533 PMCID: PMC8637319 DOI: 10.1016/j.bioactmat.2021.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Leveraging the biocatalytic machinery of living organisms for fabricating functional bioelectronic interfaces, in vivo, defines a new class of micro-biohybrids enabling the seamless integration of technology with living biological systems. Previously, we have demonstrated the in vivo polymerization of conjugated oligomers forming conductors within the structures of plants. Here, we expand this concept by reporting that Hydra, an invertebrate animal, polymerizes the conjugated oligomer ETE-S both within cells that expresses peroxidase activity and within the adhesive material that is secreted to promote underwater surface adhesion. The resulting conjugated polymer forms electronically conducting and electrochemically active μm-sized domains, which are inter-connected resulting in percolative conduction pathways extending beyond 100 μm, that are fully integrated within the Hydra tissue and the secreted mucus. Furthermore, the introduction and in vivo polymerization of ETE-S can be used as a biochemical marker to follow the dynamics of Hydra budding (reproduction) and regeneration. This work paves the way for well-defined self-organized electronics in animal tissue to modulate biological functions and in vivo biofabrication of hybrid functional materials and devices.
Collapse
Affiliation(s)
- Giuseppina Tommasini
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Gwennaël Dufil
- Laboratory of Organic Electronics, Department of Science and Technology, Linkoping University, SE-60174, Norrkoping, Sweden
| | - Federica Fardella
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Xenofon Strakosas
- Laboratory of Organic Electronics, Department of Science and Technology, Linkoping University, SE-60174, Norrkoping, Sweden
| | - Eugenio Fergola
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Tobias Abrahamsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linkoping University, SE-60174, Norrkoping, Sweden
| | - David Bliman
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Roger Olsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden.,Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linkoping University, SE-60174, Norrkoping, Sweden
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linkoping University, SE-60174, Norrkoping, Sweden
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| |
Collapse
|
23
|
Cho YH, Park YG, Kim S, Park JU. 3D Electrodes for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005805. [PMID: 34013548 DOI: 10.1002/adma.202005805] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/04/2020] [Indexed: 05/08/2023]
Abstract
In recent studies related to bioelectronics, significant efforts have been made to form 3D electrodes to increase the effective surface area or to optimize the transfer of signals at tissue-electrode interfaces. Although bioelectronic devices with 2D and flat electrode structures have been used extensively for monitoring biological signals, these 2D planar electrodes have made it difficult to form biocompatible and uniform interfaces with nonplanar and soft biological systems (at the cellular or tissue levels). Especially, recent biomedical applications have been expanding rapidly toward 3D organoids and the deep tissues of living animals, and 3D bioelectrodes are getting significant attention because they can reach the deep regions of various 3D tissues. An overview of recent studies on 3D bioelectronic devices, such as the use of electrical stimulations and the recording of neural signals from biological subjects, is presented. Subsequently, the recent developments in materials and fabrication processing to 3D micro- and nanostructures are introduced, followed by broad applications of these 3D bioelectronic devices at various in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Yo Han Cho
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Geun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
24
|
Wang M, Zhang J, Wang Y, Lu Y. Material and structural design of microsupercapacitors. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05057-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Nyns ECA, Jin T, Fontes MS, van den Heuvel T, Portero V, Ramsey C, Bart CI, Zeppenfeld K, Schalij MJ, van Brakel TJ, Ramkisoensing AA, Qi Zhang G, Poelma RH, Ördög B, de Vries AAF, Pijnappels DA. Optical ventricular cardioversion by local optogenetic targeting and LED implantation in a cardiomyopathic rat model. Cardiovasc Res 2021; 118:2293-2303. [PMID: 34528100 PMCID: PMC9328286 DOI: 10.1093/cvr/cvab294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/09/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS Ventricular tachyarrhythmias (VTs) are common in the pathologically remodelled heart. These arrhythmias can be lethal, necessitating acute treatment like electrical cardioversion to restore normal rhythm. Recently, it has been proposed that cardioversion may also be realized via optically controlled generation of bioelectricity by the arrhythmic heart itself through optogenetics and therefore without the need of traumatizing high-voltage shocks. However, crucial mechanistic and translational aspects of this strategy have remained largely unaddressed. Therefore, we investigated optogenetic termination of VTs 1) in the pathologically remodelled heart using a 2) implantable multi-LED device for 3) in vivo closed-chest, local illumination. METHODS AND RESULTS In order to mimic a clinically relevant sequence of events, transverse aortic constriction (TAC) was applied to adult male Wistar rats before optogenetic modification. This modification took place three weeks later by intravenous delivery of adeno-associated virus vectors encoding red-activatable channelrhodopsin (ReaChR) or Citrine for control experiments. At 8 to 10 weeks after TAC, VTs were induced ex vivo and in vivo, followed by programmed local illumination of the ventricular apex by a custom-made implanted multi-LED device. This resulted in effective and repetitive VT termination in the remodelled adult rat heart after optogenetic modification, leading to sustained restoration of sinus rhythm in the intact animal. Mechanistically, studies on the single cell and tissue level revealed collectively that, despite the cardiac remodelling, there were no significant differences in bioelectricity generation and subsequent transmembrane voltage responses between diseased and control animals, thereby providing insight into the observed robustness of optogenetic VT termination. CONCLUSION Our results show that implant-based optical cardioversion of VTs is feasible in the pathologically remodelled heart in vivo after local optogenetic targeting because of preserved optical control over bioelectricity generation. These findings add novel mechanistic and translational insight into optical ventricular cardioversion.
Collapse
Affiliation(s)
- Emile C A Nyns
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Tianyi Jin
- Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - Magda S Fontes
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Titus van den Heuvel
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Vincent Portero
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Catilin Ramsey
- Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - Cindy I Bart
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Katja Zeppenfeld
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Martin J Schalij
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | - Arti A Ramkisoensing
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Guo Qi Zhang
- Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - René H Poelma
- Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - Balazs Ördög
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| |
Collapse
|
26
|
Zhu M, Wang H, Li S, Liang X, Zhang M, Dai X, Zhang Y. Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording. Adv Healthc Mater 2021; 10:e2100646. [PMID: 34050635 DOI: 10.1002/adhm.202100646] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/10/2021] [Indexed: 12/19/2022]
Abstract
A variety of electrophysiological signals (electrocardiography, electromyography, electroencephalography, etc.) are generated during the physiological activities of human bodies, which can be collected by electrodes and thus provide critical insights into health status or facilitate fundamental scientific research. The long-term stable and high-quality recording of electrophysiological signals is the premise for their further applications, leading to demands for flexible electrodes with similar mechanical modulus and minimized irritation to human bodies. This review summarizes the latest advances in flexible electrodes for the acquisition of various electrophysiological signals. First, the concept of electrophysiological signals and the characteristics of different subcategory signals are introduced. Second, the invasive and noninvasive methods are reviewed for electrophysiological signal recording with a highlight on the design of flexible electrodes, followed by a discussion on their material selection. Subsequently, the applications of the electrophysiological signal acquisition in pathological diagnosis and restoration of body functions are discussed, showing the advantages of flexible electrodes. Finally, the main challenges and opportunities in this field are discussed. It is believed that the further exploration of materials for flexible electrodes and the combination of multidisciplinary technologies will boost the applications of flexible electrodes for medical diagnosis and human-machine interface.
Collapse
Affiliation(s)
- Mengjia Zhu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Mingchao Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiaochuan Dai
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
27
|
Rich SI, Jiang Z, Fukuda K, Someya T. Well-rounded devices: the fabrication of electronics on curved surfaces - a review. MATERIALS HORIZONS 2021; 8:1926-1958. [PMID: 34846471 DOI: 10.1039/d1mh00143d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the arrival of the internet of things and the rise of wearable computing, electronics are playing an increasingly important role in our everyday lives. Until recently, however, the rigid angular nature of traditional electronics has prevented them from being integrated into many of the organic, curved shapes that interface with our bodies (such as ergonomic equipment or medical devices) or the natural world (such as aerodynamic or optical components). In the past few years, many groups working in advanced manufacturing and soft robotics have endeavored to develop strategies for fabricating electronics on these curved surfaces. This is their story. In this work, we describe the motivations, challenges, methodologies, and applications of curved electronics, and provide a outlook for this promising field.
Collapse
Affiliation(s)
- Steven I Rich
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
28
|
Kim B, Soepriatna AH, Park W, Moon H, Cox A, Zhao J, Gupta NS, Park CH, Kim K, Jeon Y, Jang H, Kim DR, Lee H, Lee KS, Goergen CJ, Lee CH. Rapid custom prototyping of soft poroelastic biosensor for simultaneous epicardial recording and imaging. Nat Commun 2021; 12:3710. [PMID: 34140475 PMCID: PMC8211747 DOI: 10.1038/s41467-021-23959-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
The growing need for the implementation of stretchable biosensors in the body has driven rapid prototyping schemes through the direct ink writing of multidimensional functional architectures. Recent approaches employ biocompatible inks that are dispensable through an automated nozzle injection system. However, their application in medical practices remains challenged in reliable recording due to their viscoelastic nature that yields mechanical and electrical hysteresis under periodic large strains. Herein, we report sponge-like poroelastic silicone composites adaptable for high-precision direct writing of custom-designed stretchable biosensors, which are soft and insensitive to strains. Their unique structural properties yield a robust coupling to living tissues, enabling high-fidelity recording of spatiotemporal electrophysiological activity and real-time ultrasound imaging for visual feedback. In vivo evaluations of custom-fit biosensors in a murine acute myocardial infarction model demonstrate a potential clinical utility in the simultaneous intraoperative recording and imaging on the epicardium, which may guide definitive surgical treatments.
Collapse
Affiliation(s)
- Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Woohyun Park
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Haesoo Moon
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue College of Veterinary Medicine, West Lafayette, IN, USA
| | - Jianchao Zhao
- Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Nevin S Gupta
- Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Chi Hoon Park
- Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Energy Engineering, Gyeongnam National University of Science and Technology, Jinju-Si, Republic of Korea
| | - Kyunghun Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yale Jeon
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hanmin Jang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Kwan-Soo Lee
- Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Chi Hwan Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- Department of Materials Engineering, Purdue University, West Lafayette, IN, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
29
|
Nazri MA, Lim LM, Samsudin Z, Ali MYT, Mansor I, Suhaimi MI, Meskon SR, Nordin AN. Screen-Printed Nickel-Zinc Batteries: A Review of Additive Manufacturing and Evaluation Methods. 3D PRINTING AND ADDITIVE MANUFACTURING 2021; 8:176-192. [PMID: 36654659 PMCID: PMC9828605 DOI: 10.1089/3dp.2020.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The advent of personalized wearable devices has boosted the demand for portable, compact power sources. Compared with lithographic techniques, printed devices have lower fabrication costs, while still maintaining high throughput and precision. These factors make thick film printing or additive manufacturing ideal for the fabrication of low-cost batteries suitable for personalized devices. This article provides comprehensive guidelines for thick-film battery fabrication and characterization, with the focus on printed nickel-zinc (Ni-Zn) batteries. Ni-Zn batteries are a more environmental-friendly option compared with lithium-ion batteries (LIBs) as they are fully recyclable. In this work, important battery fundamentals have been described, especially terms of electrochemistry, basic design approaches, and the printing technology. Different design approaches, such as lateral, concentric, and stacked, are also discussed. Printed batteries can be configured as series or parallel constructions, depending on the power requirements of the application. The fabrication flow of printed battery electrodes for the laboratory-scale prototyping process starts from chemical preparation, mixing, printing, drying, pressing, stacking to finally sealing and testing. Of particular importance is the process of electrolyte injection and pouch sealing for the printed batteries to reduce leakage. This entire process flow is also compared with industrial fabrication flow for LIBs. Criteria for material and equipment selection are also addressed in this article to ensure appropriate electrode consistency and good performance. Two main testing methods cyclic voltammetry for the electrodes and charge-discharge for the battery are also explained in detail to serve as systematic guide for users to validate the functionality of their electrodes. This review article concludes with commercial applications of printed electrodes in the field of health and personalized wearable devices. This work indicates that printed Ni-Zn and other zinc alkaline batteries have a promising future. The success of these devices also opens up different areas of research, such as ink rheology, composition, and formulation of ink using sustainable sources.
Collapse
Affiliation(s)
- Muhamad Aiman Nazri
- Kulliyyah of Electrical and Computer Engineering, International Islamic University Malaysia, Selangor, Malaysia
| | - Lai Ming Lim
- Manufacturing Technology and Innovation, Jabil Circuit Sdn Bhd, Penang, Malaysia
| | - Zambri Samsudin
- Manufacturing Technology and Innovation, Jabil Circuit Sdn Bhd, Penang, Malaysia
| | - Mohd Yusof Tura Ali
- Manufacturing Technology and Innovation, Jabil Circuit Sdn Bhd, Penang, Malaysia
| | - Idris Mansor
- Manufacturing Technology and Innovation, Jabil Circuit Sdn Bhd, Penang, Malaysia
| | | | - Shahrul Razi Meskon
- Kulliyyah of Electrical and Computer Engineering, International Islamic University Malaysia, Selangor, Malaysia
| | - Anis Nurashikin Nordin
- Kulliyyah of Electrical and Computer Engineering, International Islamic University Malaysia, Selangor, Malaysia
| |
Collapse
|
30
|
Li H, Wang Z, Qu Z, Liang Z, Chen Y, Ma Y, Feng X. Flexible Hybrid Electronics for Monitoring Hypoxia. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:559-567. [PMID: 34101597 DOI: 10.1109/tbcas.2021.3087636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hypoxia refers to insufficient oxygen amounts at the tissue level unable to maintain adequate homeostasis. Severe hypoxia may occur in the absence of subjective breathlessness due to respiratory failure. Precise monitoring of low blood oxygen saturation is crucially desired, catering to the clinical requirements. However, current pulse oximeters cannot function well in monitoring peripheral oxygen saturation limited by the weak peripheral blood circulation at a low oxygen level. In this work, we propose a flexible hybrid electronic (FHE) with a compact structure and high sensitivity for conveniently monitoring hypoxia. This FHE is composed of 10-µm thickness semiconductors with different materials, functionalities, and sizes. Its performance is demonstrated by monitoring arterial blood oxygen saturation (SaO2) at the body's different arteries. The absolute error is less than 2% within a SaO2 ranging from 99% to 63%. The efficient techniques presented in this work may bring light to the next-generation flexible hybrid electronics and provide potential widespread use in research and clinical applications, especially for emergency treatment.
Collapse
|
31
|
Long Y, Li J, Yang F, Wang J, Wang X. Wearable and Implantable Electroceuticals for Therapeutic Electrostimulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004023. [PMID: 33898184 PMCID: PMC8061371 DOI: 10.1002/advs.202004023] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Indexed: 05/21/2023]
Abstract
Wearable and implantable electroceuticals (WIEs) for therapeutic electrostimulation (ES) have become indispensable medical devices in modern healthcare. In addition to functionality, device miniaturization, conformability, biocompatibility, and/or biodegradability are the main engineering targets for the development and clinical translation of WIEs. Recent innovations are mainly focused on wearable/implantable power sources, advanced conformable electrodes, and efficient ES on targeted organs and tissues. Herein, nanogenerators as a hotspot wearable/implantable energy-harvesting technique suitable for powering WIEs are reviewed. Then, electrodes for comfortable attachment and efficient delivery of electrical signals to targeted tissue/organ are introduced and compared. A few promising application directions of ES are discussed, including heart stimulation, nerve modulation, skin regeneration, muscle activation, and assistance to other therapeutic modalities.
Collapse
Affiliation(s)
- Yin Long
- Department of Material Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Jun Li
- Department of Material Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Fan Yang
- Department of Material Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Jingyu Wang
- Department of Material Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Xudong Wang
- Department of Material Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| |
Collapse
|
32
|
Goto H, Komae H, Sekine H, Homma J, Lee S, Yokota T, Matsuura K, Someya T, Ono M, Shimizu T. Continuous measurement of surface electrical potentials from transplanted cardiomyocyte tissue derived from human-induced pluripotent stem cells under physiological conditions in vivo. Heart Vessels 2021; 36:899-909. [PMID: 33683408 DOI: 10.1007/s00380-021-01824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
Recording the electrical potentials of bioengineered cardiac tissue after transplantation would help to monitor the maturation of the tissue and detect adverse events such as arrhythmia. However, a few studies have reported the measurement of myocardial tissue potentials in vivo under physiological conditions. In this study, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSCM) sheets were stacked and ectopically transplanted into the subcutaneous tissue of rats for culture in vivo. Three months after transplantation, a flexible nanomesh sensor was implanted onto the hiPSCM tissue to record its surface electrical potentials under physiological conditions, i.e., without the need for anesthetic agents that might adversely affect cardiomyocyte function. The nanomesh sensor was able to record electrical potentials in non-sedated, ambulating animals for up to 48 h. When compared with recordings made with conventional needle electrodes in anesthetized animals, the waveforms obtained with the nanomesh sensor showed less dispersion of waveform interval and waveform duration. However, waveform amplitude tended to show greater dispersion for the nanomesh sensor than for the needle electrodes, possibly due to motion artifacts produced by movements of the animal or local tissue changes in response to surgical implantation of the sensor. The implantable nanomesh sensor utilized in this study potentially could be used for long-term monitoring of bioengineered myocardial tissue in vivo under physiological conditions.
Collapse
Affiliation(s)
- Hiroshi Goto
- Department of Cardiac Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hyoe Komae
- Department of Cardiac Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan. .,Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Hidekazu Sekine
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Jun Homma
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Sunghoon Lee
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Minoru Ono
- Department of Cardiac Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
33
|
Li H, Liu H, Sun M, Huang Y, Xu L. 3D Interfacing between Soft Electronic Tools and Complex Biological Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004425. [PMID: 33283351 DOI: 10.1002/adma.202004425] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/08/2020] [Indexed: 06/12/2023]
Abstract
Recent developments in soft functional materials have created opportunities for building bioelectronic devices with tissue-like mechanical properties. Their integration with the human body could enable advanced sensing and stimulation for medical diagnosis and therapies. However, most of the available soft electronics are constructed as planar sheets, which are difficult to interface with the target organs and tissues that have complex 3D structures. Here, the recent approaches are highlighted to building 3D interfaces between soft electronic tools and complex biological organs and tissues. Examples involve mesh devices for conformal contact, imaging-guided fabrication of organ-specific electronics, miniaturized probes for neurointerfaces, instrumented scaffold for tissue engineering, and many other soft 3D systems. They represent diverse routes for reconciling the interfacial mismatches between electronic tools and biological tissues. The remaining challenges include device scaling to approach the complexity of target organs, biological data acquisition and processing, 3D manufacturing techniques, etc., providing a range of opportunities for scientific research and technological innovation.
Collapse
Affiliation(s)
- Hegeng Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongzhen Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mingze Sun
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - YongAn Huang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
34
|
Lee JH, Kim H, Hwang JY, Chung J, Jang TM, Seo DG, Gao Y, Lee J, Park H, Lee S, Moon HC, Cheng H, Lee SH, Hwang SW. 3D Printed, Customizable, and Multifunctional Smart Electronic Eyeglasses for Wearable Healthcare Systems and Human-Machine Interfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21424-21432. [PMID: 32319751 DOI: 10.1021/acsami.0c03110] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Personal accessories such as glasses and watches that we usually carry in our daily life can yield useful information from the human body, yet most of them are limited to exercise-related parameters or simple heart rates. Since these restricted characteristics might arise from interfaces between the body and items as one of the main reasons, an interface design considering such a factor can provide us with biologically meaningful data. Here, we describe three-dimensional-printed, personalized, multifunctional electronic eyeglasses (E-glasses), not only to monitor various biological phenomena but also to propose a strategy to coordinate the recorded data for active commands and game operations for human-machine interaction (HMI) applications. Soft, highly conductive composite electrodes embedded in the E-glasses enable us to achieve reliable, continuous recordings of physiological activities. UV-responsive, color-tunable lenses using an electrochromic ionic gel offer the functionality of both eyeglass and sunglass modes, and accelerometers provide the capability of tracking precise human postures and behaviors. Detailed studies of electrophysiological signals including electroencephalogram and electrooculogram demonstrate the feasibility of smart electronic glasses for practical use as a platform for future HMI systems.
Collapse
Affiliation(s)
- Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hanseop Kim
- SK Hynix Inc., Gyeongchung-daero, Bubal-eub, Icheon-si, Gyeonggi-do 17336, Republic of Korea
| | - Ji-Young Hwang
- Korea Institute of Carbon Convergence Technology, 110-11, Ballyong-ro, Deokjin-gu, Jeonju 54853, Republic of Korea
| | - Jinmook Chung
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong Gyu Seo
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Yuyan Gao
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Junhyun Lee
- Department of Computer Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Haedong Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hong Chul Moon
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sang-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
35
|
Arab Hassani F, Jin H, Yokota T, Someya T, Thakor NV. Soft sensors for a sensing-actuation system with high bladder voiding efficiency. SCIENCE ADVANCES 2020; 6:eaba0412. [PMID: 32494686 PMCID: PMC7195140 DOI: 10.1126/sciadv.aba0412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/10/2020] [Indexed: 05/08/2023]
Abstract
Sensing-actuation systems can assist a bladder with lost sensation and weak muscle control. Here, we advance the relevant technology by integrating a soft and thin capacitive sensor with a shape memory alloy-based actuator to achieve a high-performance closed-loop configuration. In our design, sensors capable of continuous bladder volume detection and actuators with strong emptying force have been used. This integration has previously hindered performance due to large bladder volume changes. Our solution integrates sensing-actuation elements that are bladder compatible but do not interfere with one another, achieving real-time bladder management. The system attains a highly desirable voiding target of 71 to 100% of a rat's bladder with a volume sensitivity of 0.7 μF/liter. Our system represents an efficient voiding solution that avoids overfilling and represents a technological solution to bladder impairment treatment, serving as a model for similar soft sensor-actuator integration with other organs.
Collapse
Affiliation(s)
- F. Arab Hassani
- Department of Biomedical Engineering, National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - H. Jin
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - T. Yokota
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - T. Someya
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
- Department of Electrical and Computer Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, #05-45, Singapore 117583, Singapore
- Thin-Film Device Laboratory, RIKEN, Saitama 351-0198, Japan
| | - N. V. Thakor
- Department of Biomedical Engineering, National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- Department of Electrical and Computer Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, #05-45, Singapore 117583, Singapore
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
36
|
Lee YK, Xi Z, Lee YJ, Kim YH, Hao Y, Choi H, Lee MG, Joo YC, Kim C, Lien JM, Choi IS. Computational wrapping: A universal method to wrap 3D-curved surfaces with nonstretchable materials for conformal devices. SCIENCE ADVANCES 2020; 6:eaax6212. [PMID: 32300643 PMCID: PMC7148111 DOI: 10.1126/sciadv.aax6212] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/14/2020] [Indexed: 05/19/2023]
Abstract
This study starts from the counterintuitive question of how we can render conventional stiff, nonstretchable, and even brittle materials sufficiently conformable to fully wrap curved surfaces, such as spheres, without failure. Here, we extend the geometrical design method of computational origami to wrapping. Our computational wrapping approach provides a robust and reliable method for fabricating conformal devices for arbitrary curved surfaces with a computationally designed nonpolyhedral developable net. This computer-aided design transforms two-dimensional (2D)-based materials, such as Si wafers and steel sheets, into various targeted conformal structures that can fully wrap desired 3D structures without fracture or severe plastic deformation. We further demonstrate that our computational wrapping approach enables a design platform that can transform conventional nonstretchable 2D-based devices, such as electroluminescent lighting and flexible batteries, into conformal 3D curved devices.
Collapse
Affiliation(s)
- Yu-Ki Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Zhonghua Xi
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA
| | - Young-Joo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun-Hyeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yue Hao
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA
| | - Hongjin Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Myoung-Gyu Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Chang Joo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Changsoon Kim
- Graduate School of Convergence Science and Technology, and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Jyh-Ming Lien
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA
- Corresponding author. (J.-M.L.); (I.-S.C.)
| | - In-Suk Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding author. (J.-M.L.); (I.-S.C.)
| |
Collapse
|
37
|
Xue Z, Song H, Rogers JA, Zhang Y, Huang Y. Mechanically-Guided Structural Designs in Stretchable Inorganic Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902254. [PMID: 31348578 DOI: 10.1002/adma.201902254] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Over the past decade, the area of stretchable inorganic electronics has evolved very rapidly, in part because the results have opened up a series of unprecedented applications with broad interest and potential for impact, especially in bio-integrated systems. Low modulus mechanics and the ability to accommodate extreme mechanical deformations, especially high levels of stretching, represent key defining characteristics. Most existing studies exploit structural material designs to achieve these properties, through the integration of hard inorganic electronic components configured into strategic 2D/3D geometries onto patterned soft substrates. The diverse structural geometries developed for stretchable inorganic electronics are summarized, covering the designs of functional devices and soft substrates, with a focus on fundamental principles, design approaches, and system demonstrations. Strategies that allow spatial integration of 3D stretchable device layouts are also highlighted. Finally, perspectives on the remaining challenges and open opportunities are provided.
Collapse
Affiliation(s)
- Zhaoguo Xue
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Honglie Song
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - John A Rogers
- Departments of Materials Science and Engineering, Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering Electrical Engineering and Computer Science, Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yonggang Huang
- Departments of Mechanical Engineering, Civil and Environmental Engineering, and Materials Science and Engineering, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
38
|
Ma Y, Zhang Y, Cai S, Han Z, Liu X, Wang F, Cao Y, Wang Z, Li H, Chen Y, Feng X. Flexible Hybrid Electronics for Digital Healthcare. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902062. [PMID: 31243834 DOI: 10.1002/adma.201902062] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/28/2019] [Indexed: 05/25/2023]
Abstract
Recent advances in material innovation and structural design provide routes to flexible hybrid electronics that can combine the high-performance electrical properties of conventional wafer-based electronics with the ability to be stretched, bent, and twisted to arbitrary shapes, revolutionizing the transformation of traditional healthcare to digital healthcare. Here, material innovation and structural design for the preparation of flexible hybrid electronics are reviewed, a brief chronology of these advances is given, and biomedical applications in bioelectrical monitoring and stimulation, optical monitoring and treatment, acoustic imitation and monitoring, bionic touch, and body-fluid testing are described. In conclusion, some remarks on the challenges for future research of flexible hybrid electronics are presented.
Collapse
Affiliation(s)
- Yinji Ma
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yingchao Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Shisheng Cai
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Zhiyuan Han
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xin Liu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Fengle Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yu Cao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Zhouheng Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Hangfei Li
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yihao Chen
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xue Feng
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
39
|
Ji B, Ge C, Guo Z, Wang L, Wang M, Xie Z, Xu Y, Li H, Yang B, Wang X, Li C, Liu J. Flexible and stretchable opto-electric neural interface for low-noise electrocorticogram recordings and neuromodulation in vivo. Biosens Bioelectron 2020; 153:112009. [DOI: 10.1016/j.bios.2020.112009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
|
40
|
A self-doping conductive polymer hydrogel that can restore electrical impulse propagation at myocardial infarct to prevent cardiac arrhythmia and preserve ventricular function. Biomaterials 2020; 231:119672. [DOI: 10.1016/j.biomaterials.2019.119672] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 01/14/2023]
|
41
|
Liu H, Geng J, Zhu Q, Zhang L, Wang F, Chen T, Sun L. Flexible Ultrasonic Transducer Array with Bulk PZT for Adjuvant Treatment of Bone Injury. SENSORS 2019; 20:s20010086. [PMID: 31877831 PMCID: PMC6983210 DOI: 10.3390/s20010086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022]
Abstract
Flexible electronic devices are developing rapidly, especially in medical applications. This paper reports an arrayed flexible piezoelectric micromachined ultrasonic transducer (FPMUT) with a sandwich structure for adjuvant treatment of bone injury. To make the device conformable and stretchable for attaching to the skin surface, the flexible substrate of polydimethylsiloxane (PDMS) was combined with the flexible metal line interconnection between the bulk lead zirconate titanate (PZT) arrays. Simulations and experiments were carried out to verify the resonant frequency and tensile property of the reported FPMUT device. The device had a resonant frequency of 321.15 KHz and a maximum sound pressure level (SPL) of 180.19 dB at the distance of 5 cm in water. In addition, detailed experiments were carried out to test its acoustic performance with different pork tissues, and the results indicated good ultrasound penetration. These findings confirm that the FPMUT shows unique advantages for adjuvant treatment of bone injury.
Collapse
|
42
|
Qu J, Garabedian N, Burris DL, Martin DC. Durability of Poly(3,4-ethylenedioxythiophene) (PEDOT) films on metallic substrates for bioelectronics and the dominant role of relative shear strength. J Mech Behav Biomed Mater 2019; 100:103376. [DOI: 10.1016/j.jmbbm.2019.103376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 01/07/2023]
|
43
|
Wang Z, Liu T, Jiang L, Asif M, Qiu X, Yu Y, Xiao F, Liu H. Assembling Metal-Organic Frameworks into the Fractal Scale for Sweat Sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32310-32319. [PMID: 31411849 DOI: 10.1021/acsami.9b11726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many natural organizations with some special functional properties possess fractal tissues which display nearly the same at every scale. The benefit of mimicking fractal structure in synthetic functional materials warrants further exploration. To tackle this challenge, we assemble metal-organic frameworks (MOFs) into fractal structures by using a bottom-up approach inspired from evaporation-driven crystallization. Such hierarchically branched MOFs exhibit some unexpected performances in electrochemistry, and can be a versatile biosensor for sweat analysis. Our work provides an interesting and efficient example for fabricating fractal MOFs as well as uncovering their new properties. This fractal-guided strategy can be extended to synthesize and explore new characteristics of other materials, holding potential in various applications including sensors, catalysis, and energy storage.
Collapse
Affiliation(s)
- Zhengyun Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Ting Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Lipei Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Muhammad Asif
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Xiaoyu Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Yang Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| |
Collapse
|
44
|
Yi N, Cui H, Zhang LG, Cheng H. Integration of biological systems with electronic-mechanical assemblies. Acta Biomater 2019; 95:91-111. [PMID: 31004844 PMCID: PMC6710161 DOI: 10.1016/j.actbio.2019.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Biological systems continuously interact with the surrounding environment because they are dynamically evolving. The interaction is achieved through mechanical, electrical, chemical, biological, thermal, optical, or a synergistic combination of these cues. To provide a fundamental understanding of the interaction, recent efforts that integrate biological systems with the electronic-mechanical assemblies create unique opportunities for simultaneous monitoring and eliciting the responses to the biological system. Recent innovations in materials, fabrication processes, and device integration approaches have created the enablers to yield bio-integrated devices to interface with the biological system, ranging from cells and tissues to organs and living individual. In this short review, we will provide a brief overview of the recent development on the integration of the biological systems with electronic-mechanical assemblies across multiple scales, with applications ranging from healthcare monitoring to therapeutic options such as drug delivery and rehabilitation therapies. STATEMENT OF SIGNIFICANCE: An overview of the recent progress on the integration of the biological system with both electronic and mechanical assemblies is discussed. The integration creates the unique opportunity to simultaneously monitor and elicit the responses to the biological system, which provides a fundamental understanding of the interaction between the biological system and the electronic-mechanical assemblies. Recent innovations in materials, fabrication processes, and device integration approaches have created the enablers to yield bio-integrated devices to interface with the biological system, ranging from cells and tissues to organs and living individual.
Collapse
Affiliation(s)
- Ning Yi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Departments of Electrical and Computer Engineering, Biomedical Engineering, and Medicine, The George Washington University, Washington DC 20052, USA
| | - Huanyu Cheng
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
45
|
Liu Y, Yang T, Zhang Y, Qu G, Wei S, Liu Z, Kong T. Ultrastretchable and Wireless Bioelectronics Based on All-Hydrogel Microfluidics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902783. [PMID: 31418928 DOI: 10.1002/adma.201902783] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Hydrogel bioelectronics that can interface biological tissues and flexible electronics is at the core of the growing field of healthcare monitoring, smart drug systems, and wearable and implantable devices. Here, a simple strategy is demonstrated to prototype all-hydrogel bioelectronics with embedded arbitrary conductive networks using tough hydrogels and liquid metal. Due to their excellent stretchability, the resultant all-hydrogel bioelectronics exhibits stable electrochemical properties at large tensile stretch and various modes of deformation. The potential of fabricated all-hydrogel bioelectronics is demonstrated as wearable strain sensors, cardiac patches, and near-field communication (NFC) devices for monitoring various physiological conditions wirelessly. The presented simple platform paves the way of implantable hydrogel electronics for Internet-of-Things and tissue-machine interfacing applications.
Collapse
Affiliation(s)
- Yaming Liu
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Tiyun Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Yuyan Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Gang Qu
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Shanshan Wei
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
46
|
Yin Y, Li M, Yuan W, Chen X, Li Y. A widely adaptable analytical method for thermal analysis of flexible electronics with complex heat source structures. Proc Math Phys Eng Sci 2019; 475:20190402. [PMID: 31534432 DOI: 10.1098/rspa.2019.0402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022] Open
Abstract
Flexible electronics, as a relatively new category of device, exhibit prodigious potential in many applications, especially in bio-integrated fields. It is critical to understand that thermal management of certain kinds of exothermic flexible electronics is a crucial issue, whether to avoid or to take advantage of the excessive temperature. A widely adaptable analytical method, validated by finite-element analysis and experiments, is conducted to investigate the thermal properties of exothermic flexible electronics with a heat source in complex shape or complex array layout. The main theoretical strategy to obtain the thermal field is through an integral along the complex curve source region. The results predicted by the analytical model enable accurate control of temperature and heat flow in the flexible electronics, which may help in the design and fabrication of flexible electronic devices in the future.
Collapse
Affiliation(s)
- Yafei Yin
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, People's Republic of China
| | - Min Li
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, People's Republic of China
| | - Wei Yuan
- Printable Electronics Research Centre, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Xiaolian Chen
- Printable Electronics Research Centre, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Yuhang Li
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, People's Republic of China.,Ningbo Institute of Technology, Beihang University (BUAA), Ningbo 315832, People's Republic of China.,State Key Laboratory of Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
47
|
Kim H, Kim MK, Jang H, Kim B, Kim DR, Lee CH. Sensor-Instrumented Scaffold Integrated with Microporous Spongelike Ultrabuoy for Long-Term 3D Mapping of Cellular Behaviors and Functions. ACS NANO 2019; 13:7898-7904. [PMID: 31244034 DOI: 10.1021/acsnano.9b02291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Real-time monitoring of cellular behaviors and functions with sensor-instrumented scaffolds can provide a profound impact on fundamental studies of the underlying biophysics and disease modeling. Although quantitative measurement of predictive data for in vivo tests and physiologically relevant information in these contexts is important, the long-term reliable monitoring of cellular functions in three-dimensional (3D) environments is limited by the required set under wet cell culture conditions that are unfavorable to electronic instrument settings. Here, we introduce an ultrabuoyant 3D instrumented scaffold that can remain afloat on the surface of culture medium and thereby provides favorable environments for the entire electronic components in the air while the cells reside and grow underneath. This setting enables high-fidelity recording of electrical cell-substrate impedance and electrophysiological signals for a long period of time (weeks). Comprehensive in vitro studies reveal the utility of this platform as an effective tool for drug screening and tissue development.
Collapse
Affiliation(s)
- Hyungjun Kim
- Weldon School of Biomedical Engineering , Purdue University , 206 South Martin Jischke Drive , West Lafayette , Indiana 47907 , United States
| | - Min Ku Kim
- Weldon School of Biomedical Engineering , Purdue University , 206 South Martin Jischke Drive , West Lafayette , Indiana 47907 , United States
| | - Hanmin Jang
- School of Mechanical Engineering , Hanyang University , 222 Wangsimni-ro , Seongdong-gu, Seoul 04763 , Republic of Korea
| | - Bongjoong Kim
- School of Mechanical Engineering , Purdue University , 610 Purdue Mall , West Lafayette , Indiana 47907 , United States
| | - Dong Rip Kim
- School of Mechanical Engineering , Hanyang University , 222 Wangsimni-ro , Seongdong-gu, Seoul 04763 , Republic of Korea
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering , Purdue University , 206 South Martin Jischke Drive , West Lafayette , Indiana 47907 , United States
- School of Mechanical Engineering , Purdue University , 610 Purdue Mall , West Lafayette , Indiana 47907 , United States
- Department of Speech, Language, and Hearing Sciences , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
48
|
Dorovskikh SI, Vikulova ES, Kal'nyi DB, Shubin YV, Asanov IP, Maximovskiy EA, Gutakovskii AK, Morozova NB, Basova TV. Bimetallic Pt,Ir-containing coatings formed by MOCVD for medical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:69. [PMID: 31165268 DOI: 10.1007/s10856-019-6275-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Biocompatible PtxIr(1-x) layers combining high mechanical strength of the iridium component and outstanding corrosion resistance of the platinum component providing reversible charge transfer reactions in the living tissue are one of the important materials required for implantable medical electrodes. The modern trend to complicate the shape and reduce the electrode dimensions includes the challenge to develop precise methods to obtain such bimetallic coatings with enhanced surface area and advanced electrochemical characteristics. Herein, PtxIr(1-x) coatings were firstly obtained on cathode and anode pole tips of endocardial electrodes for pacemakers using chemical vapor deposition technique. To deposit PtxIr(1-x) coatings with a wide range of metal ratios (x = 0.5-0.9) the combination of acetylacetonate-based volatile precursors with compatible thermal characteristics was used for the first time. The expected metal ratio in the coatings was regulated by a partial pressure of the precursor vapors in the reaction zone and was in the good agreement with its real value measured by various methods, including energy-dispersive and wavelength dispersive spectroscopy, X-ray photoelectron spectroscopy. According to the X-ray powder diffraction analysis, PtxIr(1-x) coatings consisted of fcc-PtxIr(1-x) solid solution phases. The microscopy data confirmed the formation of PtxIr1-x coatings with the enhanced surface areas. The effect of electrochemical activation on the surface composition and morphology of the samples was studied. The electrochemical characteristics of samples were estimated from cyclic voltammetry and electrochemical impedance spectroscopy data. The charge storage capacity (CSC) values of activated samples were in the range of 19-108 mCcm-2 (phosphate buffer saline solution, 100 mV/s).
Collapse
Affiliation(s)
- Svetlana I Dorovskikh
- Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev av. 3., 630090, Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk, Russia.
| | - Evgeniia S Vikulova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev av. 3., 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk, Russia
| | - Danila B Kal'nyi
- Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev av. 3., 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk, Russia
| | - Yury V Shubin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev av. 3., 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk, Russia
| | - Igor P Asanov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev av. 3., 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk, Russia
| | - Evgeniy A Maximovskiy
- Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev av. 3., 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk, Russia
| | - Anton K Gutakovskii
- Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk, Russia
- Rzhanov Institute of Semiconductor Physics SB RAS, Lavrentiev av. 13, 630090, Novosibirsk, Russia
| | - Natalya B Morozova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev av. 3., 630090, Novosibirsk, Russia
| | - Tamara V Basova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev av. 3., 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk, Russia
| |
Collapse
|
49
|
Zhang H, Cao Y, Chee MOL, Dong P, Ye M, Shen J. Recent advances in micro-supercapacitors. NANOSCALE 2019; 11:5807-5821. [PMID: 30869718 DOI: 10.1039/c9nr01090d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Micro-supercapacitors (MSCs) possessing the remarkable features of high electrochemical performance and relatively small volume are promising candidates for energy storage in micro-devices. Tremendous effort has been devoted in recent years to design and to fabricate MSCs with different active electrode materials, including carbon-based materials, conducting polymers, and graphene/metal oxide composites. Moreover, various methods have been developed to prepare MSCs, such as photolithography, laser direct writing, printing methods. This review presents a summary of the recent developments in MSC technology, including electrode materials, fabrication methods, and patterning. Finally, future developments, perspectives, and challenges in the MSC industry are also discussed.
Collapse
Affiliation(s)
- Hongxi Zhang
- Institute of special materials and technology, Fudan University, Shanghai 200433, China.
| | | | | | | | | | | |
Collapse
|
50
|
Choi S, Han SI, Kim D, Hyeon T, Kim DH. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem Soc Rev 2019; 48:1566-1595. [PMID: 30519703 DOI: 10.1039/c8cs00706c] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Highly conductive and intrinsically stretchable electrodes are vital components of soft electronics such as stretchable transistors and circuits, sensors and actuators, light-emitting diode arrays, and energy harvesting devices. Many kinds of conducting nanomaterials with outstanding electrical and mechanical properties have been integrated with elastomers to produce stretchable conductive nanocomposites. Understanding the characteristics of these nanocomposites and assessing the feasibility of their fabrication are therefore critical for the development of high-performance stretchable conductors and electronic devices. We herein summarise the recent advances in stretchable conductors based on the percolation networks of nanoscale conductive fillers in elastomeric media. After discussing the material-, dimension-, and size-dependent properties of conductive fillers and their implications, we highlight various techniques that are used to reduce the contact resistance between the conductive filler materials. Furthermore, we categorize elastomer matrices with different stretchabilities and mechanical properties based on their polymeric chain structures. Then, we discuss the fabrication techniques of stretchable conductive nanocomposites toward their use in soft electronics. Finally, we provide representative examples of stretchable device applications and conclude the review with a brief outlook for future research.
Collapse
Affiliation(s)
- Suji Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | | | | | | | | |
Collapse
|