1
|
Wang X, Stefanello ST, Shahin V, Qian Y. From Mechanoelectric Conversion to Tissue Regeneration: Translational Progress in Piezoelectric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417564. [PMID: 40434211 DOI: 10.1002/adma.202417564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 05/03/2025] [Indexed: 05/29/2025]
Abstract
Piezoelectric materials, capable of converting mechanical stimuli into electrical signals, have emerged as promising tools in regenerative medicine due to their potential to stimulate tissue repair. Despite a surge in research on piezoelectric biomaterials, systematic insights to direct their translational optimization remain limited. This review addresses the current landscape by bridging fundamental principles with clinical potential. The biomimetic basis of piezoelectricity, key molecular pathways involved in the synergy between mechanical and electrical stimulation for enhanced tissue regeneration, and critical considerations for material optimization, structural design, and biosafety is discussed. More importantly, the current status and translational quagmire of mechanisms and applications in recent years are explored. A mechanism-driven strategy is proposed for the therapeutic application of piezoelectric biomaterials for tissue repair and identify future directions for accelerated clinical applications.
Collapse
Affiliation(s)
- Xinyu Wang
- National Center for Orthopaedics, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Sílvio Terra Stefanello
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Yun Qian
- National Center for Orthopaedics, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| |
Collapse
|
2
|
Khan MSZ, Khan SU, Alrumaihi F, Alwanian WM, Alharbi HO, Alfifi SM, Makki LK, Sahli M, Al-Nafjan AA, Jackson M. Future of magnetic sensors applications in early prediction of cardiac health status. Curr Probl Cardiol 2025; 50:103022. [PMID: 40023205 DOI: 10.1016/j.cpcardiol.2025.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
The evolution of health monitoring technologies has highlighted the need for accurate and reliable sensors, particularly in the context of cardiac health. This review examines the potential of magnetic sensors as a superior alternative to optical sensors for the early prediction of cardiac health status. Optical sensors face significant challenges, especially for individuals with darker skin tones, where increased light absorption adversely affects measurement accuracy. Additionally, issues such as sensor-skin coupling and motion artifacts further compromise the performance of optical devices. In contrast, magnetic sensors offer a compelling solution by providing consistent readings irrespective of skin tone, thereby enhancing inclusivity in health monitoring. These sensors leverage magnetic fields, which do not rely on light penetration, allowing for improved coupling with the skin's surface and maintaining accuracy during motion. This paper discusses recent advancements in magnetic sensor technology and their implications for cardiac health applications, emphasizing the potential for increased accuracy and reliability in predicting cardiac outcomes. As healthcare shifts toward more personalized and precise monitoring solutions, magnetic sensors emerge as a promising frontier, addressing critical challenges in current health status prediction methods. By focusing on these innovative technologies, we aim to contribute to the ongoing discourse on enhancing cardiac health monitoring and fostering more equitable healthcare solutions.
Collapse
Affiliation(s)
- Muhammad Shah Zeb Khan
- School of Biological Science and Medical Engineering, South East University, Nanjing, PR China.
| | - Shahid Ullah Khan
- Department of Biomedical Sciences, Dubai Medical College for Girls, Dubai Medical University, Dubai 19099, United Arab Emirates.
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Somayah Mohammad Alfifi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Layal Khaled Makki
- Department of Radiation Therapy, Oncology Center, King Khalid University Hospital, Riyadh 12372, Saudi Arabia
| | - Majed Sahli
- Department of Medical Laboratory, Al Kharj Military Industries Corporation Hospital, Al-kharj, Saudi Arabia
| | | | - Matthew Jackson
- Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| |
Collapse
|
3
|
Wu Y, Tang CY, Wang S, Guo J, Jing Q, Liu J, Ke K, Wang Y, Yang W. Biomimetic Heteromodulus All-Fluoropolymer Piezoelectric Nanofiber Mats for Highly Sensitive Acoustic Detection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21808-21818. [PMID: 40134235 DOI: 10.1021/acsami.5c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Flexible piezoelectric pressure sensors have aroused a plethora of applications in wearable electronics, acoustic transducers, and energy harvesters thanks to many merits such as prompt response, good signal linearity, and ease of shaping. However, as all-polymer piezoelectric films have a low piezoelectric coefficient and severe stress dissipation, it is currently challenging to achieve a high piezoelectric output for the foregoing applications without introducing nanomaterials or piezoelectric ceramics. Here, we report a local stress engineering strategy to fabricate biomimetic all-fluoropolymer piezoelectric film pressure sensors with high-modulus poly(vinylidene fluoride) (PVDF) nanospheres embedded on low-modulus poly(vinylidene fluoride-trifluoride ethylene) (PVDF-TrFE) nanofibers for highly sensitive acoustic detection. High-modulus PVDF nanospheres create many local stress concentration sites on PVDF-TrFE nanofibers and increase the local deformation, leading to significantly improved force/pressure sensitivity. As such, by comparison with the force sensitivity of 60 mV/N for neat PVDF-TrFE, the heteromodulus fiber mats with 10 wt % PVDF nanospheres can achieve a force sensitivity of 145.1 mV/N over 0-25 N dynamic impact force (i.e., 0 ∼ 250 kPa pressure), together with an acoustic detection limit as low as 60 dB or 0.02 Pa.
Collapse
Affiliation(s)
- Yujie Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chun-Yan Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shan Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiaxing Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qi Jing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Junhong Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
4
|
Guan T, Li H, Liu J, Zhang W, Wang S, Ye W, Bian B, Yi X, Wu Y, Liu Y, Du J, Shang J, Li RW. Preparation of Ion Composite Photosensitive Resin and Its Application in 3D-Printing Highly Sensitive Pressure Sensor. SENSORS (BASEL, SWITZERLAND) 2025; 25:1348. [PMID: 40096106 PMCID: PMC11902503 DOI: 10.3390/s25051348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
Flexible pressure sensors play an extremely important role in the fields of intelligent medical treatment, humanoid robots, and so on. However, the low sensitivity and the small initial capacitance still limit its application and development. At present, the method of constructing the microstructure of the dielectric layer is commonly used to improve the sensitivity of the sensor, but there are some problems, such as the complex process and inaccurate control of the microstructure. In this work, an ion composite photosensitive resin based on polyurethane acrylate and ionic liquids (ILs) was prepared. The high compatibility of the photosensitive resin and ILs was achieved by adding a chitooligosaccharide (COS) chain extender. The microstructure of the dielectric layer was optimized by digital light processing (DLP) 3D-printing. Due to the introduction of ILs to construct an electric double layer (EDL), the flexible pressure sensor exhibits a high sensitivity of 32.62 kPa-1, which is 12.2 times higher than that without ILs. It also has a wide range of 100 kPa and a fast response time of 51 ms. It has a good pressure response under different pressures and can realize the demonstration application of human health.
Collapse
Grants
- U22A20248, U24A6001, 52127803, U24A20228, U22A2075, 62174165, 52301256, 52401257, 52201236, M-0152 National Natural Science Foundation of China
- 2024YFB3814100, 2023YFC3603500 National Key R&D Program of China
- 181GJHZ2024138GC International Partnership Program of Chinese Academy of Sciences
- 2018334 Chinese Academy of Sciences Youth Innovation Promotion Association
- CASSHB-QNPD-2023-022 Talent Plan of Shanghai Branch, Chinese Academy of Sciences
- 2022A-007-C Project of Zhejiang Province(2022R52004), Ningbo Technology Project
- 2022J288, 2023J049, 2023J345 Ningbo Natural Science Foundations
- 2023Z097, 2024Z148, 2024Z143, 2024Z199, 2024Z171 Ningbo Key Research and Development Program
- 2023S067 Ningbo Public Welfare Program
Collapse
Affiliation(s)
- Tong Guan
- School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China;
| | - Huayang Li
- Yongjiang Laboratory, Ningbo 315201, China;
| | - Jinyun Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wuxu Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siying Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wentao Ye
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoru Bian
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaohui Yi
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Juan Du
- School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China;
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
5
|
Chen X, Zhao S, Yuan A, Chen S, Liao Y, Lei Y, Fu X, Lei J, Jiang L. Enabling High Strength and Toughness Polyurethane through Disordered-Hydrogen Bonds for Printable, Recyclable, Ultra-Fast Responsive Capacitive Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405941. [PMID: 39401406 PMCID: PMC11615776 DOI: 10.1002/advs.202405941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Indexed: 12/06/2024]
Abstract
The rapid advancement of smart, flexible electronic devices has paralleled a surge in electronic waste (e-waste), exacerbating massive resource depletion and serious environmental pollution. Recyclable materials are extensively investigated to address these challenges. Herein, this study designs a unique polyurethane (SPPUs) with ultra-high strength up to 60 MPa and toughness of 360 MJ m-3. This synthetic SPPUs can be fully recycled at room temperature by using green solvents of ethanol. Accordingly, the resultant SPPU-Ni composites, created by mixing the ethanol-dissolved SPPUs solution with nickel (Ni) powder, effectively combine the flexibility and recyclability of SPPUs with the electrical conductivity of the nickel filler. Notably, this work develops the printable capacitive sensors (PCBS) through transcribing the paste of SPPUs-Ni slurry onto PET film and paper using screen-printing technology. The devised PCBS have fast response time ≈50 ms, high resolution, and multiple signal recognition capabilities. Remarkably, SPPUs and Ni powder can be fully recycled by only dissolving the waste PCBS in ethanol. This work offers a sustainable solution to the growing e-waste problem in recyclable flexible electronics.
Collapse
Affiliation(s)
- Xingbao Chen
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Shiwei Zhao
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Anqian Yuan
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Silong Chen
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Yansheng Liao
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Yuan Lei
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Xiaowei Fu
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Jingxin Lei
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Liang Jiang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| |
Collapse
|
6
|
Hameed H, Elsayed M, Kaur J, Usman M, Tang C, Ghadban N, Kernec JL, Hussain A, Imran M, Abbasi QH. RF sensing enabled tracking of human facial expressions using machine learning algorithms. Sci Rep 2024; 14:27800. [PMID: 39537657 PMCID: PMC11561277 DOI: 10.1038/s41598-024-75909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Automatic analysis of facial expressions has emerged as a prominent research area in the past decade. Facial expressions serve as crucial indicators for understanding human behavior, enabling the identification and assessment of positive and negative emotions. Moreover, facial expressions provide insights into various aspects of mental activities, social connections, and physiological information. Currently, most facial expression detection systems rely on cameras and wearable devices. However, these methods have drawbacks, including privacy concerns, issues with poor lighting and line of sight blockage, difficulties in training with longer video sequences, computational complexities, and disruptions to daily routines. To address these challenges, this study proposes a novel and privacy-preserving human behavior recognition system that utilizes Frequency Modulated Continuous Wave (FMCW) radar combined with Machine Learning (ML) techniques for classifying facial expressions. Specifically, the study focuses on five common facial expressions: Happy, Sad, Fear, Surprise, and Neutral. The recorded data is obtained in the form of a Micro-Doppler signal, and state-of-the-art ML models such as Super Learner, Linear Discriminant Analysis, Random Forest, K-Nearest Neighbor, Long Short-Term Memory, and Logistic Regression are employed to extract relevant features. These extracted features from the radar data are then fed into ML models for classification. The results show a highly promising classification accuracy of 91%. The future applications of the proposed work will lead to advancements in technology, healthcare, security, and communication, thereby improving overall human well-being and societal functioning.
Collapse
Affiliation(s)
- Hira Hameed
- University of Glasgow, James Watt School of Engineering, G12 8QQ, Glasgow, UK
| | - Mostafa Elsayed
- University of Glasgow, James Watt School of Engineering, G12 8QQ, Glasgow, UK
| | - Jaspreet Kaur
- University of Glasgow, James Watt School of Engineering, G12 8QQ, Glasgow, UK
| | - Muhammad Usman
- School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Chong Tang
- University of Glasgow, James Watt School of Engineering, G12 8QQ, Glasgow, UK
| | - Nour Ghadban
- University of Glasgow, James Watt School of Engineering, G12 8QQ, Glasgow, UK
| | - Julien Le Kernec
- University of Glasgow, James Watt School of Engineering, G12 8QQ, Glasgow, UK
| | - Amir Hussain
- School of Computing, Edinburgh Napier University, Scotland, UK
| | - Muhammad Imran
- University of Glasgow, James Watt School of Engineering, G12 8QQ, Glasgow, UK
| | - Qammer H Abbasi
- University of Glasgow, James Watt School of Engineering, G12 8QQ, Glasgow, UK.
- Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, UAE.
| |
Collapse
|
7
|
Zou Y, Liu G, Wang H, Du K, Guo J, Shang Z, Guo R, Zhou F, Liu W. Ultra-Stretchable Composite Organohydrogels Polymerized Based on MXene@Tannic Acid-Ag Autocatalytic System for Highly Sensitive Wearable Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404435. [PMID: 39140644 DOI: 10.1002/smll.202404435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Conductive hydrogels have attracted widespread attention in the fields of biomedicine and health monitoring. However, their practical application is severely hindered by the lengthy and energy-intensive polymerization process and weak mechanical properties. Here, a rapid polymerization method of polyacrylic acid/gelatin double-network organohydrogel is designed by integrating tannic acid (TA) and Ag nanoparticles on conductive MXene nanosheets as catalyst in a binary solvent of water and glycerol, requiring no external energy input. The synergistic effect of TA and Ag NPs maintains the dynamic redox activity of phenol and quinone within the system, enhancing the efficiency of ammonium persulfate to generate radicals, leading to polymerization within 10 min. Also, ternary composite MXene@TA-Ag can act as conductive agents, enhanced fillers, adhesion promoters, and antibacterial agents of organohydrogels, granting them excellent multi-functionality. The organohydrogels exhibit excellent stretchability (1740%) and high tensile strength (184 kPa). The strain sensors based on the organohydrogels exhibit ultrahigh sensitivity (GF = 3.86), low detection limit (0.1%), and excellent stability (>1000 cycles, >7 days). These sensors can monitor the human limb movements, respiratory and vocal cord vibration, as well as various levels of arteries. Therefore, this organohydrogel holds potential for applications in fields such as human health monitoring and speech recognition.
Collapse
Affiliation(s)
- Yuxin Zou
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guoqiang Liu
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hanxin Wang
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kang Du
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jinglun Guo
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhenling Shang
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ruisheng Guo
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Feng Zhou
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Weimin Liu
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
8
|
Xia M, Shi Q. Topic Editorial on Flexible Electronics. MICROMACHINES 2024; 15:1350. [PMID: 39597162 PMCID: PMC11596822 DOI: 10.3390/mi15111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Fields such as the Internet of Things (IoT), smart healthcare, and intelligent manufacturing are at the forefront of technological advancement, involving the extensive deployment of numerous sophisticated electronic systems and devices [...].
Collapse
Affiliation(s)
| | - Qiongfeng Shi
- Interdisciplinary Research Center, School of Electronic Science and Engineering, Southeast University, Nanjing 211189, China;
| |
Collapse
|
9
|
Yue X, Wang X, Shao J, Wang H, Chen Y, Zhang K, Han X, Hong J. One-Dimensional Flexible Capacitive Sensor with Large Strain and High Stability for Human Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59412-59423. [PMID: 39435872 DOI: 10.1021/acsami.4c14974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Flexible capacitive sensors have attracted the attention of researchers owing to their simple structure, ease of realization, and wearability. Currently, flexible capacitive sensors mainly have three-dimensional and two-dimensional structures, which are subject to several limitations in their applications. A low-cost, high-efficiency, and continuously processable process was used to wrap nylon DTY (PA) filaments on the surface of silver-coated nylon (SCN) core yarns and impregnate them with waterborne polyurethane (WPU) to obtain SCN/PA/WPU composite yarns, which were then utilized in the design of SCN/PA/WPU for the preparation of one-dimensionally structured flexible capacitive sensors. The morphology and mechanical properties of the SCN core yarn, SCN/PA wrapped yarn, and SCN/PA/WPU composite yarn were characterized. The strain-sensing performance of the sensor was analyzed, and the sensor was used to monitor human physiological activities. The sensor exhibited excellent strain capacitance sensing performance with a strain range of up to 140%. With a gauge factor of 0.66 at 10% tensile strain, it can detect strains as low as 1% and has good repeatability, withstanding more than 3200 tensile-unload cycles at 80% strain. The one-dimensional structure sensor can be used to monitor the large-scale movements of joints and muscles in various parts of the human body and the physiological signals of tiny human movements, such as breathing, coughing, and facial expressions, which have potential applications in the fields of sports monitoring and smart wearable.
Collapse
Affiliation(s)
- Xinyan Yue
- School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
| | - Xiaohu Wang
- School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
- Zhejiang Jieda New Material Technology Co., LTD., Shaoxing, Zhejiang 312000, China
| | - Jianbo Shao
- School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
| | - Huabing Wang
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Yu Chen
- School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
| | - Kun Zhang
- School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
| | - Xiao Han
- School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
| | - Jianhan Hong
- School of Textile Science and Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
10
|
Le TA, Huynh TP. Hemicellulose-Based Sensors: When Sustainability Meets Complexity. ACS Sens 2024; 9:4975-5001. [PMID: 39344466 DOI: 10.1021/acssensors.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hemicelluloses (HCs) are promising sustainable biopolymers with a great natural abundance, excellent biocompatibility, and biodegradability. Yet, their potential sensing applications remain limited due to intrinsic challenges in their heterogeneous chemical composition, structure, and physicochemical properties. Herein, recent advances in the development of HC-based sensors for different chemical analytes and physical stimuli using different transduction mechanisms are reviewed and discussed. HCs can be utilized as carbonaceous precursors, reducing, capping, and stabilizing agents, binders, and active components for sensing applications. In addition, different strategies to develop and improve the sensing capacity of HC-based sensors are also highlighted.
Collapse
Affiliation(s)
- Trung-Anh Le
- Department of Chemistry, Faculty of Science, University of Helsinki, A.I. Virtasen aukio 1, 00560 Helsinki, Finland
| | - Tan-Phat Huynh
- Laboratory of Molecular Sciences and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
11
|
Zhang T, Wang Y, Feng X, Zuo Y, Yu H, Bao H, Jiang F, Jiang S. Flexible electronics for cardiovascular monitoring on complex physiological skins. iScience 2024; 27:110707. [PMID: 39262772 PMCID: PMC11387687 DOI: 10.1016/j.isci.2024.110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Cardiovascular diseases (CVDs) pose a significant global health threat, responsible for a considerable portion of worldwide mortality. Flexible electronics enable continuous, noninvasive, real-time, and portable monitoring, providing an ideal platform for personalized healthcare. Nevertheless, challenges persist in sustaining stable adherence across diverse and intricate skin environments, hindering further advancement toward clinical applications. Strategies such as structural design and chemical modification can significantly enhance the environmental adaptability and monitoring performance of flexible electronics. This review delineates processing techniques, including structural design and chemical modification, to mitigate signal interference from sebaceous skin, motion artifacts from the skin in motion, and infection risks from fragile skin, thereby enabling the accurate monitoring of key cardiovascular indicators in complex physiological environments. Moreover, it delves into the potential for the strategic development and improvement of flexible electronics to ensure their alignment with complex physiological environment requirements, facilitating their transition to clinical applications.
Collapse
Affiliation(s)
- Tianqi Zhang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Yunshen Wang
- Department of Pneumology, Tianjin Children's Hospital, Children's Hospital, Tianjin University, Tianjin 300204, China
| | - Xingdong Feng
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Yizhou Zuo
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Hannong Yu
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Hong Bao
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipments, Xidian University, Xi'an 710071, China
| | - Fan Jiang
- Geriatric Medical Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Shan Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipments, Xidian University, Xi'an 710071, China
| |
Collapse
|
12
|
Kumar A, Gupta V, Malik P, Ram S, Mandal D. Electrospun polarity-controlled molecular orientation for synergistic performance of an artifact-free piezoelectric anisotropic sensor. MATERIALS HORIZONS 2024; 11:4424-4437. [PMID: 38953680 DOI: 10.1039/d4mh00540f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Anisotropy in mechanical, optical and thermal sensors in a spatial direction has many applications in health care, robotics, aerospace, and tissue engineering. In particular, wearable and implantable sensors respond to stretching and bending strains that probe mechanical energy and track physiological signals. Hence, the development of anisotropic pressure sensors with true piezoelectric (PE) signals is of utmost importance to achieve efficient devices. Herein, a simple and efficient method is developed for high longitudinal and transverse responses, with an approach to isolating a true piezoelectric signal. The electrospun (ES) polarity of oriented dipoles inside flexible fibers gives rise to a high longitudinal/transverse PE response of both lateral and transverse strains. Nanofibers of poly(vinylidene-chlorotrifluoroethylene) copolymers contain poled dipoles, up to 86%, that promote an enhanced PE coefficient of 42 pm V-1 in the case of negative polarity-based electrospinning. It is 40% higher in composition than the commonly adopted positive polarity-biased electrospinning process. We demonstrated the advantage of such a high PE coefficient by the enhanced sensitivity of the longitudinal (VLs = 0.3 V kPa-1, ILs = 0.07 μA kPa-1) as well as transverse (VTs = 1.0 V kPa-1, ITs = 0.8 μA kPa-1) PE response. To counter the ambiguity of high transverse response as compared to longitudinal in electrospun fiber-based devices, a facile method is proposed to isolate the ferroelectret, triboelectric and piezoelectric signals in a fiber-based hybrid device with their independent charge generation mechanisms.
Collapse
Affiliation(s)
- Ajay Kumar
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Varun Gupta
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Pinki Malik
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Shanker Ram
- Materials Science Centre, Indian Institute of Technology, Kharagpur, 721 302 WB, India.
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
13
|
Yan M, Wu Z, Li Z, Li Z, Wang J, Hu Z. Self-powered biosensing sutures for real-time wound monitoring. Biosens Bioelectron 2024; 259:116365. [PMID: 38759309 DOI: 10.1016/j.bios.2024.116365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Effective wound management has the potential to reduce both the duration and cost of wound healing. However, traditional methods often rely on direct observation or complex and expensive biological testing to monitor and evaluate the invasive damage caused by wound healing, which can be time-consuming. Biosensors offer the advantage of precise and real-time monitoring, but existing devices are not suitable for integration with sensitive wound tissue due to their external dimensions. Here, we have designed a self-powered biosensing suture (SPBS) based on biofuel cells to accurately monitor glucose concentration at the wound site and promote wound healing. The anode of the SPBS consists of carbon nanotubes-modified carbon fibers, tetrathiafulvalene (TTF), and glucose oxidase (GOx), while the cathode is composed of Ag2O and carbon nanotubes modified nanotubes modified carbon fibers. It was observed that SPBS exhibited excellent physical and chemical stability in vitro. Regardless of different bending degrees or pH values, the maximum power density of SPBS remained above 92%, which is conducive to long-term dynamic evaluation. Furthermore, the voltage generated by SPBS reflects blood glucose concentration, and measurements at wound sites are consistent with those obtained using a commercially available blood glucose meter. SPBS achieves the healing effect of traditional medical sutures after complete healing within 14 days. It offers valuable insights for intelligent devices dedicated to real-time wound monitoring.
Collapse
Affiliation(s)
- Miaomiao Yan
- College of Textiles and Clothing, XinJiang University, Urumqi, 830046, Xinjiang, China; Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhongdong Wu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zihan Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Zhihui Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Junping Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
14
|
Wu B, Wu T, Huang Z, Ji S. Advancing Flexible Sensors through On-Demand Regulation of Supramolecular Nanostructures. ACS NANO 2024; 18:22664-22674. [PMID: 39152049 DOI: 10.1021/acsnano.4c08310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The evolution of flexible sensors heavily relies on advances in soft-material design and sensing mechanisms. Supramolecular chemistry offers a powerful toolbox for manipulating nanoscale and molecular structures within soft materials, thus fostering recent advancements in flexible sensors and electronics. Supramolecular interactions have been utilized to nanoengineer functional sensing materials or construct chemical sensors with lower cost and broader targets. In this perspective, we will highlight the use of supramolecular interactions to regulate and optimize nanostructures within functional soft materials and illustrate their importance in expanding the nanocavities of bioreceptors for chemical sensing. Overall, a bridge between tissue-mimicking flexible sensors and cell-mimetic supramolecular chemistry has been built, which will further advance human healthcare innovation.
Collapse
Affiliation(s)
- Bohang Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), College of Nano Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P.R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Tong Wu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Zehuan Huang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Shaobo Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), College of Nano Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
15
|
Wang Z, Li B, Liu B, Lee JW, Bai Q, Yang W, Wang J, Yang J, Zhang X, Sun H, Yang X, Kim BJ, Guo X. Facilely Modified Nickel-Based Hole Transporting Layers for Organic Solar Cells with 19.12% Efficiency and Enhanced Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400915. [PMID: 38597683 DOI: 10.1002/smll.202400915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Hole transporting layers (HTLs), strategically positioned between electrode and light absorber, play a pivotal role in shaping charge extraction and transport in organic solar cells (OSCs). However, the commonly used poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, with its hygroscopic and acidic nature, undermines the operational durability of OSC devices. Herein, an environmentally friendly approach is developed utilizing nickel acetate tetrahydrate (NiAc·4H2O) and [2-(9H-carbazol-9-yl)ethyl] phosphonic acid (2PACz) as the NiAc·4H2O/2PACz HTL, aiming at overcoming the limitations posed by the conventional PEDOT:PSS one. Encouragingly, a remarkable power conversion efficiency (PCE) of 19.12% is obtained for the OSCs employing NiAc·4H2O/2PACz as the HTL, surpassing that of devices with the PEDOT:PSS HTL (17.59%), which is ranked among the highest ones of OSCs. This improvement is attributed to the appropriate work function, enhanced hole mobility, facilitated exciton dissociation efficiency, and lower recombination loss of NiAc·4H2O/2PACz-based devices. Furthermore, the NiAc·4H2O/2PACz-based OSCs exhibit superior operational stability compared to their PEDOT:PSS-based counterparts. Of significant note, the NiAc·4H2O/2PACz HTL demonstrates a broad generality, boosting the PCE of the PM6:PY-IT and PM6:Y6-based OSCs from 16.47% and 16.79% (with PEDOT:PSS-based analogs as HTLs) to 17.36% and 17.57%, respectively. These findings underscore the substantial potential of the NiAc·4H2O/2PACz HTL in advancing OSCs, offering improved performance and stability, thereby opening avenue for highly efficient and reliable solar energy harvesting technologies.
Collapse
Affiliation(s)
- Zhengfei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Bolin Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Qingqing Bai
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Wanli Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jie Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiage Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Huiliang Sun
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Xi Yang
- 506, Building C1, Grand Tech Park, Huangpu, Guangzhou, Guangdong, 510700, China
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
16
|
Liu R, Liu Y, Fu S, Cheng Y, Jin K, Ma J, Wan Y, Tian Y. Humidity Adaptive Antifreeze Hydrogel Sensor for Intelligent Control and Human-Computer Interaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308092. [PMID: 38168530 DOI: 10.1002/smll.202308092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Conductive hydrogels have emerged as ideal candidate materials for strain sensors due to their signal transduction capability and tissue-like flexibility, resembling human tissues. However, due to the presence of water molecules, hydrogels can experience dehydration and low-temperature freezing, which greatly limits the application scope as sensors. In this study, an ionic co-hybrid hydrogel called PBLL is proposed, which utilizes the amphoteric ion betaine hydrochloride (BH) in conjunction with hydrated lithium chloride (LiCl) thereby achieving the function of humidity adaptive. PBLL hydrogel retains water at low humidity (<50%) and absorbs water from air at high humidity (>50%) over the 17 days of testing. Remarkably, the PBLL hydrogel also exhibits strong anti-freezing properties (-80 °C), high conductivity (8.18 S m-1 at room temperature, 1.9 S m-1 at -80 °C), high gauge factor (GF approaching 5.1). Additionally, PBLL hydrogels exhibit strong inhibitory effects against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), as well as biocompatibility. By synergistically integrating PBLL hydrogel with wireless transmission and Internet of Things (IoT) technologies, this study has accomplished real-time human-computer interaction systems for sports training and rehabilitation evaluation. PBLL hydrogel exhibits significant potential in the fields of medical rehabilitation, artificial intelligence (AI), and the Internet of Things (IoT).
Collapse
Affiliation(s)
- Ruonan Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Yiying Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528300, China
| | - Simian Fu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Yugui Cheng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Kaiming Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Jingtong Ma
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Yucen Wan
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110169, China
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528300, China
| |
Collapse
|
17
|
Trache D, Tarchoun AF, Abdelaziz A, Bessa W, Thakur S, Hussin MH, Brosse N, Thakur VK. A comprehensive review on processing, characteristics, and applications of cellulose nanofibrils/graphene hybrid-based nanocomposites: Toward a synergy between two-star nanomaterials. Int J Biol Macromol 2024; 268:131633. [PMID: 38641279 DOI: 10.1016/j.ijbiomac.2024.131633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Nanostructured materials are fascinating since they are promising for intensely enhancing materials' performance, and they can offer multifunctional features. Creating such high-performance nanocomposites via effective and mild approaches is an inevitable requirement for sustainable materials engineering. Nanocomposites, which combine two-star nanomaterials, namely, cellulose nanofibrils (CNFs) and graphene derivatives (GNMs), have recently revealed interesting physicochemical properties and excellent performance. Despite numerous studies on the production and application of such systems, there is still a lack of concise information on their practical uses. In this review, recent progress in the production, modification, properties, and emerging uses of CNFs/GNMs hybrid-based nanocomposites in various fields such as flexible energy harvesting and storage, sensors, adsorbents, packaging, and thermal management, among others, are comprehensively examined and described based on recent investigations. Nevertheless, numerous challenges and gaps need to be addressed to successfully introduce such nanomaterials in large-scale industrial applications. This review will certainly help readers understand the design approaches and potential applications of CNFs/GNMs hybrid-based nanocomposites for which new research directions in this emerging topic are discussed.
Collapse
Affiliation(s)
- Djalal Trache
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria.
| | - Ahmed Fouzi Tarchoun
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria.
| | - Amir Abdelaziz
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Wissam Bessa
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, Bld. des Aiguillettes, F-54500 Vandœuvre-lès-Nancy, France
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, Edinburgh EH9 3JG, UK
| |
Collapse
|
18
|
Zhou Y, Wang X, Lin X, Wang Z, Huang Z, Guo L, Xie H, Xu X, Dong F. Strong and tough poly(vinyl alcohol)/xanthan gum-based ionic conducting hydrogel enabled through the synergistic effect of ion cross-linking and salting out. Int J Biol Macromol 2024; 263:130511. [PMID: 38423443 DOI: 10.1016/j.ijbiomac.2024.130511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The mechanical properties of ionic conductive hydrogels (ICHs) are generally inadequate, leading to their susceptibility to breakage under external forces and consequently resulting in the failure of flexible electronic devices. In this work, a simple and convenient strategy was proposed based on the synergistic effect of ion cross-linking and salting out, in which the hydrogels consisting of polyvinyl alcohol (PVA) and xanthan gum (XG) were immersed in zinc sulfate (ZnSO4) solution to obtain ICHs with exceptional mechanical properties. The salt-out effects between PVA chains and SO42- ions along with the cross-linked network of XG chains and Zn2+ ions contribute to the desirable mechanical properties of ICHs. Notably, the mechanical properties of ICHs can be adjusted by changing the concentration of ZnSO4 solution. Consequently, the optimum fracture stress and the fracture energy can reach 3.38 MPa and 12.13 KJ m-2, respectively. Moreover, the ICHs demonstrated a favorable sensitivity (up to 2.05) when utilized as a strain sensor, exhibiting an accurate detection of human body movements across various amplitudes.
Collapse
Affiliation(s)
- Yiyang Zhou
- College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210037, Jiangsu Province, China; Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210037, Jiangsu Province, China
| | - Xiangyu Lin
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China
| | - Zhuomin Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China
| | - Zhen Huang
- College of Chemical Engineering, Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing 210037, Jiangsu Province, China
| | - Lizhen Guo
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China
| | - Hui Xie
- College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210037, Jiangsu Province, China.
| | - Xu Xu
- College of Chemical Engineering, Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing 210037, Jiangsu Province, China.
| | - Fuhao Dong
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
19
|
Li N, Jabegu T, He R, Yun S, Ghosh S, Maraba D, Olunloyo O, Ma H, Okmi A, Xiao K, Wang G, Dong P, Lei S. Covalently-Bonded Laminar Assembly of Van der Waals Semiconductors with Polymers: Toward High-Performance Flexible Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310175. [PMID: 38402424 DOI: 10.1002/smll.202310175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Indexed: 02/26/2024]
Abstract
Van der Waals semiconductors (vdWS) offer superior mechanical and electrical properties and are promising for flexible microelectronics when combined with polymer substrates. However, the self-passivated vdWS surfaces and their weak adhesion to polymers tend to cause interfacial sliding and wrinkling, and thus, are still challenging the reliability of vdWS-based flexible devices. Here, an effective covalent vdWS-polymer lamination method with high stretch tolerance and excellent electronic performance is reported. Using molybdenum disulfide (MoS2 )and polydimethylsiloxane (PDMS) as a case study, gold-chalcogen bonding and mercapto silane bridges are leveraged. The resulting composite structures exhibit more uniform and stronger interfacial adhesion. This enhanced coupling also enables the observation of a theoretically predicted tension-induced band structure transition in MoS2 . Moreover, no obvious degradation in the devices' structural and electrical properties is identified after numerous mechanical cycle tests. This high-quality lamination enhances the reliability of vdWS-based flexible microelectronics, accelerating their practical applications in biomedical research and consumer electronics.
Collapse
Affiliation(s)
- Ningxin Li
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA
| | - Tara Jabegu
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA
| | - Rui He
- Department of Mechanical Engineering, George Mason University, Fairfax, VA, 22030, USA
| | - Seokjoon Yun
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sujoy Ghosh
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Diren Maraba
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA
| | - Olugbenga Olunloyo
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Hedi Ma
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Aisha Okmi
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA
| | - Kai Xiao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gangli Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Pei Dong
- Department of Mechanical Engineering, George Mason University, Fairfax, VA, 22030, USA
| | - Sidong Lei
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
20
|
Hou Y, Gao M, Gao J, Zhao L, Teo EHT, Wang D, Qi HJ, Zhou K. 3D Printed Conformal Strain and Humidity Sensors for Human Motion Prediction and Health Monitoring via Machine Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304132. [PMID: 37939292 PMCID: PMC10754119 DOI: 10.1002/advs.202304132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Wearable sensors have garnered considerable attention due to their flexibility and lightweight characteristics in the realm of healthcare applications. However, developing robust wearable sensors with facile fabrication and good conformity remains a challenge. In this study, a conductive graphene nanoplate-carbon nanotube (GC) ink is synthesized for multi jet fusion (MJF) printing. The layer-by-layer fabrication process of MJF not only improves the mechanical and flame-retardant properties of the printed GC sensor but also bolsters its robustness and sensitivity. The direction of sensor bending significantly impacts the relative resistance changes, allowing for precise investigations of joint motions in the human body, such as those of the fingers, wrists, elbows, necks, and knees. Furthermore, the data of resistance changes collected by the GC sensor are utilized to train a support vector machine with a 95.83% accuracy rate for predicting human motions. Due to its stable humidity sensitivity, the sensor also demonstrates excellent performance in monitoring human breath and predicting breath modes (normal, fast, and deep breath), thereby expanding its potential applications in healthcare. This work opens up new avenues for using MJF-printed wearable sensors for a variety of healthcare applications.
Collapse
Affiliation(s)
- Yanbei Hou
- HP‐NTU Digital Manufacturing Corporate LabSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Ming Gao
- HP‐NTU Digital Manufacturing Corporate LabSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Jingwen Gao
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Lihua Zhao
- HP‐NTU Digital Manufacturing Corporate LabSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- 3D LabHP LabsHP Inc.Palo AltoCA94304USA
| | - Edwin Hang Tong Teo
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Dong Wang
- School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - H. Jerry Qi
- The George Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Kun Zhou
- HP‐NTU Digital Manufacturing Corporate LabSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| |
Collapse
|
21
|
Heng W, Weihua L, Bachagha K. Review on design strategies and applications of flexible cellulose‑carbon nanotube functional composites. Carbohydr Polym 2023; 321:121306. [PMID: 37739536 DOI: 10.1016/j.carbpol.2023.121306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023]
Abstract
Combining the excellent biocompatibility and mechanical flexibility of cellulose with the outstanding electrical, mechanical, optical and stability properties of carbon nanotubes (CNTs), cellulose-CNT composites have been extensively studied and applied to many flexible functional materials. In this review, we present advances in structural design strategies and various applications of cellulose-CNT composites. Firstly, the structural characteristics and corresponding treatments of cellulose and CNTs are analyzed, as are the potential interactions between the two to facilitate the formation of cellulose-CNT composites. Then, the design strategies and processing techniques of cellulose-CNT composites are discussed from the perspectives of cellulose fibers at the macroscopic scale (natural cotton, hemp, and other fibers; recycled cellulose fibers); nanocellulose at the micron scale (nanofibers, nanocrystals, etc.); and macromolecular chains at the molecular scale (cellulose solutions). Further, the applications of cellulose-CNT composites in various fields, such as flexible energy harvesting and storage devices, strain and humidity sensors, electrothermal devices, magnetic shielding, and photothermal conversion, are introduced. This review will help readers understand the design strategies of cellulose-CNT composites and develop potential high-performance applications.
Collapse
Affiliation(s)
- Wei Heng
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Li Weihua
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, Shandong, PR China.
| | - Kareem Bachagha
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
22
|
Lin R, Lei M, Ding S, Cheng Q, Ma Z, Wang L, Tang Z, Zhou B, Zhou Y. Applications of flexible electronics related to cardiocerebral vascular system. Mater Today Bio 2023; 23:100787. [PMID: 37766895 PMCID: PMC10519834 DOI: 10.1016/j.mtbio.2023.100787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Ensuring accessible and high-quality healthcare worldwide requires field-deployable and affordable clinical diagnostic tools with high performance. In recent years, flexible electronics with wearable and implantable capabilities have garnered significant attention from researchers, which functioned as vital clinical diagnostic-assisted tools by real-time signal transmission from interested targets in vivo. As the most crucial and complex system of human body, cardiocerebral vascular system together with heart-brain network attracts researchers inputting profuse and indefatigable efforts on proper flexible electronics design and materials selection, trying to overcome the impassable gulf between vivid organisms and rigid inorganic units. This article reviews recent breakthroughs in flexible electronics specifically applied to cardiocerebral vascular system and heart-brain network. Relevant sensor types and working principles, electronics materials selection and treatment methods are expounded. Applications of flexible electronics related to these interested organs and systems are specially highlighted. Through precedent great working studies, we conclude their merits and point out some limitations in this emerging field, thus will help to pave the way for revolutionary flexible electronics and diagnosis assisted tools development.
Collapse
Affiliation(s)
- Runxing Lin
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Lei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Liping Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| |
Collapse
|
23
|
Gu Y, Xu Z, Fan F, Wei L, Wu T, Li Q. Highly Breathable, Stretchable, and Tailorable TPU Foam for Flexible Gas Sensors. ACS Sens 2023; 8:3772-3780. [PMID: 37842874 DOI: 10.1021/acssensors.3c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Continuous real-time monitoring of air quality is of great significance in the realms of environmental monitoring, personal safety, and healthcare. Recently, flexible gas sensors have gained great popularity for their potential to be integrated into various smart wearable electronics and display devices. However, the development of gas sensors with superior sensitivity, breathability, and stretchability remains a challenge. Here, a new high porosity thermoplastic polyurethane (HP-TPU) foam was reported for gas sensors, which exhibited large three-dimensional network structures and excellent mechanical properties. The HP-TPU foam was achieved by using a simple steam-induced method, which was suitable for mass production. The unique structure endowed this foam with 77.5% porosity, 260% strain ability, and 0.45 MPa Young's modulus, which improved 35, 31, and 80%, respectively, compared to previously reported traditional TPU foam (T-TPU) prepared by the drying method. In addition, the foam presented high gas permeability (312 g/m-2, 24 h) and excellent stability, and it remained undamaged even after 2000 cycles at 70% strain. The sensing material was coated on a PET flexible interdigital electrode and sandwiched between two HP-TPU foam layers for a gas sensitivity test. Due to the easy diffusion of gas between the pores and contact with the sensing materials, the HP-TPU foam exhibited a significant reduction of 85% in average response time and 46% in average recovery time, compared to the T-TPU foam. A wearable sensing device, comprising sensing, data processing, and wireless transmission modules, was successfully developed to enable outdoor testing and achieved a detection range at the ppb level. Finally, the cytotoxicity test results confirmed that this flexible gas sensor did not harm human health. These results proved that this HP-TPU foam was an ideal matrix for the flexible gas sensor, exhibiting great application potential in the fields of seamless human-machine integration.
Collapse
Affiliation(s)
- Yuefeng Gu
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Zhoukang Xu
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Feifan Fan
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Lisi Wei
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Tiancheng Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Qiuhong Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
24
|
Zhang T, Liu N, Xu J, Liu Z, Zhou Y, Yang Y, Li S, Huang Y, Jiang S. Flexible electronics for cardiovascular healthcare monitoring. Innovation (N Y) 2023; 4:100485. [PMID: 37609559 PMCID: PMC10440597 DOI: 10.1016/j.xinn.2023.100485] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the most urgent threats to humans worldwide, which are responsible for almost one-third of global mortality. Over the last decade, research on flexible electronics for monitoring and treatment of CVDs has attracted tremendous attention. In contrast to conventional medical instruments in hospitals that are usually bulky, hard to move, monofunctional, and time-consuming, flexible electronics are capable of continuous, noninvasive, real-time, and portable monitoring. Notable progress has been made in this emerging field, and thus a number of significant achievements and concomitant research prospects deserve attention for practical implementation. Here, we comprehensively review the latest progress of flexible electronics for CVDs, focusing on new functions provided by flexible electronics. First, the characteristics of CVDs and flexible electronics and the foundation of their combination are briefly reviewed. Then, four representative applications of flexible electronics for CVDs are elaborated: blood pressure (BP) monitoring, electrocardiogram (ECG) monitoring, echocardiogram monitoring, and direct epicardium monitoring. Their operational principles, progress, merits and demerits, and future efforts are discussed. Finally, the remaining challenges and opportunities for flexible electronics for cardiovascular healthcare are outlined.
Collapse
Affiliation(s)
- Tianqi Zhang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Ning Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zeye Liu
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Yunlei Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Yicheng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Shoujun Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100037, China
| | - Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100037, China
| | - Shan Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| |
Collapse
|
25
|
Wang X, Zhao Z, Zhang M, Liang Y, Liu Y. Polyurethanes Modified by Ionic Liquids and Their Applications. Int J Mol Sci 2023; 24:11627. [PMID: 37511385 PMCID: PMC10380480 DOI: 10.3390/ijms241411627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Polyurethane (PU) refers to the polymer containing carbamate groups in its molecular structure, generally obtained by the reaction of isocyanate and alcohol. Because of its flexible formulation, diverse product forms, and excellent performance, it has been widely used in mechanical engineering, electronic equipment, biomedical applications, etc. Through physical or chemical methods, ionic groups are introduced into PU, which gives PU electrical conductivity, flame-retardant, and antistatic properties, thus expanding the application fields of PU, especially in flexible devices such as sensors, actuators, and functional membranes for batteries and gas absorption. In this review, we firstly introduced the characteristics of PU in chemical and microphase structures and their related physical and chemical performance. To improve the performance of PU, ionic liquids (ILs) were applied in the processing or synthesis of PU, resulting in a new type of PU called ionic PU. In the following part of this review, we mainly summarized the fabrication methods of IL-modified PUs via physical blending and the chemical copolymerization method. Then, we summarized the research progress of the applications for IL-modified PUs in different fields, including sensors, actuators, transistors, antistatic films, etc. Finally, we discussed the future development trends and challenges faced by IL-modified PUs.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhenjie Zhao
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Meiyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yongri Liang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yingdan Liu
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
26
|
Naik GR, Breen PP, Jayarathna T, Tong BK, Eckert DJ, Gargiulo GD. Morphic Sensors for Respiratory Parameters Estimation: Validation against Overnight Polysomnography. BIOSENSORS 2023; 13:703. [PMID: 37504102 PMCID: PMC10377422 DOI: 10.3390/bios13070703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Effective monitoring of respiratory disturbances during sleep requires a sensor capable of accurately capturing chest movements or airflow displacement. Gold-standard monitoring of sleep and breathing through polysomnography achieves this task through dedicated chest/abdomen bands, thermistors, and nasal flow sensors, and more detailed physiology, evaluations via a nasal mask, pneumotachograph, and airway pressure sensors. However, these measurement approaches can be invasive and time-consuming to perform and analyze. This work compares the performance of a non-invasive wearable stretchable morphic sensor, which does not require direct skin contact, embedded in a t-shirt worn by 32 volunteer participants (26 males, 6 females) with sleep-disordered breathing who performed a detailed, overnight in-laboratory sleep study. Direct comparison of computed respiratory parameters from morphic sensors versus traditional polysomnography had approximately 95% (95 ± 0.7) accuracy. These findings confirm that novel wearable morphic sensors provide a viable alternative to non-invasively and simultaneously capture respiratory rate and chest and abdominal motions.
Collapse
Affiliation(s)
- Ganesh R Naik
- Adelaide Institute for Sleep Health (Flinders Health and Medical Research Institute: Sleep Health), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Paul P Breen
- The MARCS Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Titus Jayarathna
- The MARCS Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Benjamin K Tong
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Sleep Research Group, Charles Perkins Centre, School of Medicine, University of Sydney, Camperdown, NSW 2006, Australia
| | - Danny J Eckert
- Adelaide Institute for Sleep Health (Flinders Health and Medical Research Institute: Sleep Health), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Gaetano D Gargiulo
- The MARCS Institute, Western Sydney University, Westmead, NSW 2145, Australia
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
27
|
Chopade SS, Gupta HP, Dutta T. Survey on Sensors and Smart Devices for IoT Enabled Intelligent Healthcare System. WIRELESS PERSONAL COMMUNICATIONS 2023; 131:1-39. [PMID: 37360143 PMCID: PMC10258751 DOI: 10.1007/s11277-023-10528-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/21/2023] [Indexed: 06/28/2023]
Abstract
The Internet of Things (IoT) in the healthcare system is rapidly changing from the conventional hospital and concentrated specialist behavior to a distributed, patient-centric approach. With the advancement of new techniques, a patient needs sophisticated healthcare requirements. IoT-enabled intelligent health monitoring system with sensors and devices is a patient analysis technique to monitor the patient 24 h a day. IoT is swapping the architecture and has improved the application of different complex systems. Healthcare devices are one of the most remarkable applications of the IoT. Many patient monitoring techniques are available in the IoT platform. This review presents an IoT-enabled intelligent health monitoring system by analyzing the papers reported between 2016 and 2023. This survey also discusses the concept of big data in IoT networks and the IoT computing technology known as edge computing. This review concentrated on sensors and smart devices used in intelligent IoT based health monitoring systems with merits and demerits. This survey gives a brief study based on sensors and smart devices used in IoT smart healthcare systems.
Collapse
Affiliation(s)
- Swati Sandeep Chopade
- Computer Science and Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005 India
| | - Hari Prabhat Gupta
- Computer Science and Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005 India
| | - Tanima Dutta
- Computer Science and Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
28
|
Hou N, Wang H, Zhang A, Li L, Li X, Zhang W. Flexible coaxial composite fiber based on carbon nanotube and thermochromic particles for multifunctional sensor and wearable electronics. LAB ON A CHIP 2023; 23:2294-2303. [PMID: 37073455 DOI: 10.1039/d3lc00164d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fibrous sensors are of interest in the fields of human activity, health monitoring and human-computer interactions due to their ability to measure human activity signals such as temperature and pressure. Although many different structures and conductive materials exist for fibrous sensors, the design and fabrication of fibrous multifunctional sensors still pose significant challenges. Here, we have designed a fibrous multifunctional sensor based on a wet-spinning three-layer coaxial fiber that exhibits a GF value of up to 45.05 in the 10-80% strain range and a sensitivity of 5.926 kPa-1 in the 0.2-2.0 kPa pressure range, while the presence of thermochromic microcapsules allows the fibrous sensor to exhibit different colors at different temperatures: blue at 18 °C, purple at 40 °C and green at 60 °C. The multifunctional fibrous sensor can monitor human joint activity and environmental temperature changes in real time, and is easier to integrate into wearable fabrics due to its fiber shape, offering new possibilities for wearable health monitoring.
Collapse
Affiliation(s)
- Ningle Hou
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
- National & Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| | - Hui Wang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Aijia Zhang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Ling Li
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Xiaoting Li
- National & Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| | - Wenming Zhang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| |
Collapse
|
29
|
Ansari HR, Kordrostami Z, Mirzaei A. In-vehicle wireless driver breath alcohol detection system using a microheater integrated gas sensor based on Sn-doped CuO nanostructures. Sci Rep 2023; 13:7136. [PMID: 37130889 PMCID: PMC10154331 DOI: 10.1038/s41598-023-34313-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/27/2023] [Indexed: 05/04/2023] Open
Abstract
In this paper, we have developed an in-vehicle wireless driver breath alcohol detection (IDBAD) system based on Sn-doped CuO nanostructures. When the proposed system detects the ethanol trace in the driver`s exhaled breath, it can alarm and then prevents the car to be started and also sends the location of the car to the mobile phone. The sensor used in this system is a two-sided micro-heater integrated resistive ethanol gas sensor fabricated based on Sn-doped CuO nanostructures. Pristine and Sn-doped CuO nanostructures were synthesized as the sensing materials. The micro-heater is calibrated to provide the desired temperature by applying voltage. The results showed that by Sn-doping in CuO nanostructures, the sensor performance can be significantly improved. The proposed gas sensor has a fast response, good repeatability along with good selectivity that makes it suitable for being used in practical applications such as the proposed system.
Collapse
Affiliation(s)
- Hamid Reza Ansari
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
- Research Center for Design and Fabrication of Advanced Electronic Devices, Shiraz University of Technology, Shiraz, Iran
| | - Zoheir Kordrostami
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran.
- Research Center for Design and Fabrication of Advanced Electronic Devices, Shiraz University of Technology, Shiraz, Iran.
| | - Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| |
Collapse
|
30
|
Oh IH, Park E, Chang ST, Lim S. Foldable RF Energy Harvesting System Based on Vertically Layered Metal Electrodes within a Single Sheet of Paper. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300197. [PMID: 36906919 DOI: 10.1002/adma.202300197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/24/2023] [Indexed: 05/19/2023]
Abstract
Radio frequency energy harvesting (RFEH) systems have emerged as a critical component for powering devices and replacing traditional batteries, with paper being one of the most promising substrates for use in flexible RFEH systems. However, previous paper-based electronics with optimized porosity, surface roughness, and hygroscopicity still face limitations in terms of the development of integrated foldable RFEH systems within a single sheet of paper. In the present study, a novel wax-printing control and water-based solution process are used to realize an integrated foldable RFEH system within a single sheet of paper. The proposed paper-based device includes vertically layered foldable metal electrodes, a via-hole, and stable conductive patterns with a sheet resistance of less than 1 Ω sq-1 . The proposed RFEH system exhibits an RF/DC conversion efficiency of 60% and an operating voltage of 2.1 V in 100 s at a distance of 50 mm and a transmitted power of 50 mW. The integrated RFEH system also demonstrates stable foldability, with RFEH performance maintained up to a folding angle of 150°. The single-sheet paper-based RFEH system thus has the potential for use in practical applications associated with the remote powering of wearable and Internet-of-Things devices and in paper electronics.
Collapse
Affiliation(s)
- In Hyeok Oh
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Eiyong Park
- School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Suk Tai Chang
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Sungjoon Lim
- School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
31
|
Korotcenkov G. Paper-Based Humidity Sensors as Promising Flexible Devices: State of the Art: Part 1. General Consideration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061110. [PMID: 36986004 PMCID: PMC10059663 DOI: 10.3390/nano13061110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/14/2023]
Abstract
In the first part of the review article "General considerations" we give information about conventional flexible platforms and consider the advantages and disadvantages of paper when used in humidity sensors, both as a substrate and as a humidity-sensitive material. This consideration shows that paper, especially nanopaper, is a very promising material for the development of low-cost flexible humidity sensors suitable for a wide range of applications. Various humidity-sensitive materials suitable for use in paper-based sensors are analyzed and the humidity-sensitive characteristics of paper and other humidity-sensitive materials are compared. Various configurations of humidity sensors that can be developed on the basis of paper are considered, and a description of the mechanisms of their operation is given. Next, we discuss the manufacturing features of paper-based humidity sensors. The main attention is paid to the consideration of such problems as patterning and electrode formation. It is shown that printing technologies are the most suitable for mass production of paper-based flexible humidity sensors. At the same time, these technologies are effective both in the formation of a humidity-sensitive layer and in the manufacture of electrodes.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova
| |
Collapse
|
32
|
Zhang S, Xiao Y, Chen H, Zhang Y, Liu H, Qu C, Shao H, Xu Y. Flexible Triboelectric Tactile Sensor Based on a Robust MXene/Leather Film for Human-Machine Interaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13802-13812. [PMID: 36880559 DOI: 10.1021/acsami.3c00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the rapid development of Internet of Things (IoT) technology in recent years, self-actuated sensor systems without an external power supply such as flexible triboelectric nanogenerator (TENG)-based strain sensors have received wide attention due to their simple structure and self-powered active sensing properties. However, to satisfy the practical applications of human wearable biointegration, flexible TENGs impose higher requirements for establishing a balance between material flexibility and good electrical properties. In this work, the strength of the MXene/substrate interface was greatly improved by utilizing leather with a unique surface structure as the substrate material, resulting in a mechanically strong and electrically conductive MXene film. Due to the natural fiber structure of the leather surface, the surface of the MXene film with a rough structure was obtained, which improved the electrical output performance of the TENG. The electrode output voltage of MXene film on leather based on single-electrode TENG can reach 199.56 V and the maximum output power density can reach 0.469 mW/cm2. Combined with laser-assisted technology, the efficient array preparation of MXene and graphene was achieved and applied to various human-machine interface (HMI) applications.
Collapse
Affiliation(s)
- Shaochun Zhang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Xiao
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huamin Chen
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China
| | - Yuanlong Zhang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanyun Liu
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changming Qu
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanxiao Shao
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Xu
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| |
Collapse
|
33
|
Ismail SNA, Nayan NA, Mohammad Haniff MAS, Jaafar R, May Z. Wearable Two-Dimensional Nanomaterial-Based Flexible Sensors for Blood Pressure Monitoring: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:852. [PMID: 36903730 PMCID: PMC10005058 DOI: 10.3390/nano13050852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Flexible sensors have been extensively employed in wearable technologies for physiological monitoring given the technological advancement in recent years. Conventional sensors made of silicon or glass substrates may be limited by their rigid structures, bulkiness, and incapability for continuous monitoring of vital signs, such as blood pressure (BP). Two-dimensional (2D) nanomaterials have received considerable attention in the fabrication of flexible sensors due to their large surface-area-to-volume ratio, high electrical conductivity, cost effectiveness, flexibility, and light weight. This review discusses the transduction mechanisms, namely, piezoelectric, capacitive, piezoresistive, and triboelectric, of flexible sensors. Several 2D nanomaterials used as sensing elements for flexible BP sensors are reviewed in terms of their mechanisms, materials, and sensing performance. Previous works on wearable BP sensors are presented, including epidermal patches, electronic tattoos, and commercialized BP patches. Finally, the challenges and future outlook of this emerging technology are addressed for non-invasive and continuous BP monitoring.
Collapse
Affiliation(s)
- Siti Nor Ashikin Ismail
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia
| | - Nazrul Anuar Nayan
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia
- Institute Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia
| | | | - Rosmina Jaafar
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia
| | - Zazilah May
- Electrical and Electronic Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
34
|
Kausar A. Self-healing aeronautical nanocomposites. POLYMERIC NANOCOMPOSITES WITH CARBONACEOUS NANOFILLERS FOR AEROSPACE APPLICATIONS 2023:263-296. [DOI: 10.1016/b978-0-323-99657-0.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
35
|
Zhang Y, Liu H, Wang P, Yu Y, Zhou M, Xu B, Cui L, Wang Q. Stretchable, transparent, self-adhesive, anti-freezing and ionic conductive nanocomposite hydrogels for flexible strain sensors. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Ji S, Wu X, Jiang Y, Wang T, Liu Z, Cao C, Ji B, Chi L, Li D, Chen X. Self-Reporting Joule Heating Modulated Stiffness of Polymeric Nanocomposites for Shape Reconfiguration. ACS NANO 2022; 16:16833-16842. [PMID: 36194555 DOI: 10.1021/acsnano.2c06682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Shape reconfigurable devices, e.g., foldable phones, have emerged with the development of flexible electronics. But their rigid frames limit the feasible shapes for the devices. To achieve freely changeable shapes yet keep the rigidity of devices for user-friendly operations, stiffness-tunable materials are desired, especially under electrical control. However, current such systems are multilayer with at least a heater layer and a structural layer, leading to complex fabrication, high cost, and loss of reprocessability. Herein, we fabricate covalent adaptable networks-carbon nanotubes (CAN-CNT) composites to realize Joule heating controlled stiffness. The nanocomposites function as stiffness-tunable matrices, electric heaters, and softening sensors all by themselves. The self-reporting of softening is used to regulate the power control, and the sensing mechanism is investigated by simulating the CNT-polymer chain interactions at the nanoscale during the softening process. The nanocomposites not only have adjustable mechanical and thermodynamic properties but also are easy to fabricate at low cost and exhibit reprocessability and recyclability benefiting from the dynamic exchange reactions of CANs. Shape and stiffness control of flexible display systems are demonstrated with the nanocomposites as framing material, where freely reconfigurable shapes are realized to achieve convenient operation, wearing, or storage, fully exploiting their flexible potential.
Collapse
Affiliation(s)
- Shaobo Ji
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798Singapore
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123China
| | - Xuwei Wu
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027China
| | - Ying Jiang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798Singapore
| | - Ting Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798Singapore
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023China
| | - Zhihua Liu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798Singapore
- Agency for Science Technology and Research, Institute of Materials Research and Engineering (IMRE), Singapore, 138634, Singapore
| | - Can Cao
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798Singapore
| | - Baohua Ji
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027China
- Oujiang Lab, Wenzhou Institute, Chinese Academy of Sciences, Wenzhou, 325001China
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123China
| | - Dechang Li
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798Singapore
- Agency for Science Technology and Research, Institute of Materials Research and Engineering (IMRE), Singapore, 138634, Singapore
| |
Collapse
|
37
|
Yang C, Wang H, Yang J, Yao H, He T, Bai J, Guang T, Cheng H, Yan J, Qu L. A Machine-Learning-Enhanced Simultaneous and Multimodal Sensor Based on Moist-Electric Powered Graphene Oxide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205249. [PMID: 36007144 DOI: 10.1002/adma.202205249] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Simultaneous multimodal monitoring can greatly perceive intricately multiple stimuli, which is important for the understanding and development of a future human-machine fusion world. However, the integrated multisensor networks with cumbersome structure, huge power consumption, and complex preparation process have heavily restricted practical applications. Herein, a graphene oxide single-component multimodal sensor (GO-MS) is developed, which enables simultaneous monitoring of multiple environmental stimuli by a single unit with unique moist-electric self-power supply. This GO-MS can generate a sustainable moist-electric potential by spontaneously adsorbing water molecules in air, which has a characteristic response behavior when exposed to different stimuli. As a result, the simultaneous monitoring and decoupling of the changes of temperature, humidity, pressure, and light intensity are achieved by this single GO-MS with machine-learning (ML) assistance. Of practical importance, a moist-electric-powered human-machine interaction wristband based on GO-MS is constructed to monitor pulse signals, body temperature, and sweating in a multidimensional manner, as well as gestures and sign language commanding communication. This ML-empowered moist-electric GO-MS provides a new platform for the development of self-powered single-component multimodal sensors, showing great potential for applications in the fields of health detection, artificial electronic skin, and the Internet-of-Things.
Collapse
Affiliation(s)
- Ce Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Haiyan Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiawei Yang
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Houze Yao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Tiancheng He
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiaxin Bai
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Tianlei Guang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jianfeng Yan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
38
|
Mishra S, Mohanty S, Ramadoss A. Functionality of Flexible Pressure Sensors in Cardiovascular Health Monitoring: A Review. ACS Sens 2022; 7:2495-2520. [PMID: 36036627 DOI: 10.1021/acssensors.2c00942] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
As the highest percentage of global mortality is caused by several cardiovascular diseases (CVD), maintenance and monitoring of a healthy cardiovascular condition have become the primary concern of each and every individual. Simultaneously, recent progress and advances in wearable pressure sensor technology have provided many pathways to monitor and detect underlying cardiovascular illness in terms of irregularities in heart rate, blood pressure, and blood oxygen saturation. These pressure sensors can be comfortably attached onto human skin or can be implanted on the surface of vascular grafts for uninterrupted monitoring of arterial blood pressure. While the traditional monitoring systems are time-consuming, expensive, and not user-friendly, flexible sensor technology has emerged as a promising and dynamic practice to collect important health information at a comparatively low cost in a reliable and user-friendly way. This Review explores the importance and necessity of cardiovascular health monitoring while emphasizing the role of flexible pressure sensors in monitoring patients' health conditions to avoid adverse effects. A comprehensive discussion on the current research progress along with the real-time impact and accessibility of pressure sensors developed for cardiovascular health monitoring applications has been provided.
Collapse
Affiliation(s)
- Suvrajyoti Mishra
- School for Advanced Research in Petrochemicals: Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bhubaneswar-751024, India
| | - Smita Mohanty
- School for Advanced Research in Petrochemicals: Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bhubaneswar-751024, India
| | - Ananthakumar Ramadoss
- School for Advanced Research in Petrochemicals: Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bhubaneswar-751024, India
| |
Collapse
|
39
|
Yu Y, Feng Y, Liu F, Wang H, Yu H, Dai K, Zheng G, Feng W. Carbon Dots-Based Ultrastretchable and Conductive Hydrogels for High-Performance Tactile Sensors and Self-Powered Electronic Skin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022:e2204365. [PMID: 36135725 DOI: 10.1002/smll.202204365] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Smart tactile sensing materials have excellent development prospects, including wearable health-monitoring equipment and energy collection. Hydrogels have received extensive attention in tactile sensing owing to their transparency and high elasticity. In this study, highly crosslinked hydrogels are fabricated by chemically crosslinking polyacrylamide with lithium magnesium silicate and decorated with carbon quantum dots. Magnesium lithium silicate provides abundant covalent bonds and improves the mechanical properties of the hydrogels. The luminescent properties endowed by the carbon dots further broaden the application of hydrogels for realizing flexible electronics. The hydrogel-based strain sensor exhibits excellent sensitivity (gauge factor 2.6), a broad strain response range (0-2000%), good cyclicity, and durability (1250). Strain sensors can be used to detect human motions. More importantly, the hydrogel can also be used as a flexible self-supporting triboelectric electrode for effectively detecting pressure in the range of 1-25 N and delivering a short-circuit current (ISC ) of 2.6 µA, open-circuit voltage (VOC ) of 115 V, and short-circuit transfer charge (QSC ) of 29 nC. The results reveal new possibilities for human-computer interactions and electronic robot skins.
Collapse
Affiliation(s)
- Yunfei Yu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yiyu Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, P. R. China
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Feng Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Hui Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Huitao Yu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Kun Dai
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, P. R. China
| | - Guoqiang Zheng
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, P. R. China
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, P. R. China
| |
Collapse
|
40
|
Li S, Zhang Y, Liang X, Wang H, Lu H, Zhu M, Wang H, Zhang M, Qiu X, Song Y, Zhang Y. Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nat Commun 2022; 13:5416. [PMID: 36109531 PMCID: PMC9477177 DOI: 10.1038/s41467-022-33133-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/02/2022] [Indexed: 01/17/2023] Open
Abstract
Numerous studies have shown flexible electronics play important roles in health management. The way of power supply is always an essential factor of devices and self-powered ones are very attractive because of the fabrication easiness, usage comfort and aesthetics of the system. In this work, based on the metal-air redox reaction, which is usually used in designing metal-air batteries, we design a self-powered chemoelectric humidity sensor where a silk fibroin (SF) and LiBr gel matrix containing parallel aligned graphene oxide (GO) flakes serve as the electrolyte. The abundant hydrophilic groups in GO/SF and the hygroscopicity of LiBr lead to tight dependence of the output current on the humidity, enabling the sensor high sensitivity (0.09 μA/s/1%), fast response (1.05 s) and quick recovery (0.80 s). As proofs of concept, we design an all-in-one respiratory monitoring-diagnosing-treatment system and a non-contact human-machine interface, demonstrating the applications of the chemoelectric humidity sensor in health management.
Collapse
Affiliation(s)
- Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haomin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mengjia Zhu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingchao Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xinping Qiu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yafeng Song
- Institute of Sport and Health Science, Beijing Sport University, Beijing, 100084, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
41
|
Laser-assisted surface activation for fabrication of flexible non-enzymatic Cu-based sensors. Mikrochim Acta 2022; 189:259. [PMID: 35704127 DOI: 10.1007/s00604-022-05347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
A rapid and effective technique has been develped for the fabrication of sensor-active copper-based materials on the surface of such flexible polymers as terephthalate, polyethylene naphthalate, and polyimide using the method of laser surface modification. For this purpose, we optimized the polymer surface activation parameters using laser sources with a picosecond pulse duration for subsequent selective metallization within the activated region. Furthermore, the fabricated copper structures were modified with gold nanostructures and by electrochemical passivation to produce copper-gold and oxide-containing copper species, respectively. As a result, in comparison with pure copper electrodes, these composite materials exhibit much better electrocatalytic performance concerning the non-enzymatic identification of biologically important disease markers such as glucose, hydrogen peroxide, and dopamine.
Collapse
|
42
|
Anwer AH, Khan N, Ansari MZ, Baek SS, Yi H, Kim S, Noh SM, Jeong C. Recent Advances in Touch Sensors for Flexible Wearable Devices. SENSORS 2022; 22:s22124460. [PMID: 35746242 PMCID: PMC9229189 DOI: 10.3390/s22124460] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023]
Abstract
Many modern user interfaces are based on touch, and such sensors are widely used in displays, Internet of Things (IoT) projects, and robotics. From lamps to touchscreens of smartphones, these user interfaces can be found in an array of applications. However, traditional touch sensors are bulky, complicated, inflexible, and difficult-to-wear devices made of stiff materials. The touch screen is gaining further importance with the trend of current IoT technology flexibly and comfortably used on the skin or clothing to affect different aspects of human life. This review presents an updated overview of the recent advances in this area. Exciting advances in various aspects of touch sensing are discussed, with particular focus on materials, manufacturing, enhancements, and applications of flexible wearable sensors. This review further elaborates on the theoretical principles of various types of touch sensors, including resistive, piezoelectric, and capacitive sensors. The traditional and novel hybrid materials and manufacturing technologies of flexible sensors are considered. This review highlights the multidisciplinary applications of flexible touch sensors, such as e-textiles, e-skins, e-control, and e-healthcare. Finally, the obstacles and prospects for future research that are critical to the broader development and adoption of the technology are surveyed.
Collapse
Affiliation(s)
- Abdul Hakeem Anwer
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
- Industrial Chemistry Research Laboratory, Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh 202 002, India;
| | - Nishat Khan
- Industrial Chemistry Research Laboratory, Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh 202 002, India;
| | - Mohd Zahid Ansari
- School of Materials Science and Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Sang-Soo Baek
- Department of Environmental Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Hoon Yi
- Mechanical Technology Group, Global Manufacturing Center, Samsung Electro-Mechanics Co., 150 Maeyeong-ro, Yeongtong-gu, Suwon 16674, Korea;
| | - Soeun Kim
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
| | - Seung Man Noh
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
- Correspondence: (S.M.N.); (C.J.); Tel.: +82-52-241-6070 (S.M.N.); +82-52-810-2442 (C.J.)
| | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
- Correspondence: (S.M.N.); (C.J.); Tel.: +82-52-241-6070 (S.M.N.); +82-52-810-2442 (C.J.)
| |
Collapse
|
43
|
Zhang X, Ke L, Zhang X, Xu F, Hu Y, Lin H, Zhu J. Breathable and Wearable Strain Sensors Based on Synergistic Conductive Carbon Nanotubes/Cotton Fabrics for Multi-directional Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25753-25762. [PMID: 35621731 DOI: 10.1021/acsami.2c04790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible strain-sensitive sensors have been receiving intensive attention in many aspects ranging from human motion capture to health-related signal monitoring. However, the fabric strain sensor with multi-directional sensing capability, besides having a wide strain range and high response sensitivity, is still very challenging and deserves further exploration. Here, we have prepared a wearable cotton fabric strain sensor uniformly decorated with single-walled carbon nanotubes through a facile solution process. The unique hierarchical architecture of the cotton fabric woven from twisted yarns combined with the conductive carbon nanotube network endows the fabric strain sensors with attractive performance, including low detection limit, large workable strain range, fascinating stability and durability, excellent direction-dependent strain response, and good air permeability. The strain sensor without polymer encapsulation can not only monitor subtle and large multi-directional motions but also fit well to the human body with satisfactory comfort, demonstrating its potential application in wearable electronics and intelligent clothing.
Collapse
Affiliation(s)
- Xiaopei Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Longwei Ke
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaomin Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Feng Xu
- Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yunfeng Hu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Huijuan Lin
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jixin Zhu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
44
|
Li M, Wang Y, Fan X, Huang H, Wan Y, Li Y, Fang J, Gao J, Yang Y, Liu J. A Conductive Bamboo Fabric with Controllable Resistance for Tailoring Wearable Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26958-26969. [PMID: 35658395 DOI: 10.1021/acsami.2c04192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Force-sensitive textile sensors are becoming a research hotspot as a part of wearable devices. The core research topic is the method to obtain the sensing property, which decides the sensitivity and service performance of the sensors. Here, we introduce a new sensing mechanism based on a statistical change of contact resistance that exhibits an exponential decay upon strain or pressure, where a novel conductive bamboo fabric is prepared and the dependence of electric conductivity on the fabric structure is discovered. The fabric surface resistivity (ρs) is anisotropic with respect to the measuring directions and the warp, weft, and linear densities. The surface resistance (Rs) decreases rapidly under pulling force, especially in diagonal directions, making it available in designing strain sensors. The volume resistivity (ρv) decreases with increasing weft and linear densities, too. The vertical resistance (Rv) decays exponentially under pressure, and the rule is retained even if the fabric is coated with a polymer, leading to diverse possible pressure sensors with a good service performance (e.g., waterproof). Finally, the conductive fabric could be facilely tailored to various wearable sensors with a fast response time, e.g., sensing finger sleeves and sensing insole, which could be used to operate the manipulator's fingers or to monitor human walking gestures, respectively.
Collapse
Affiliation(s)
- Menghao Li
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, No. 2 Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Yuxin Wang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, No. 2 Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Xiujuan Fan
- College of Information Engineering, Beijing Institute of Fashion Technology, No. 2 Yinghua Road, Chaoyang District, Beijing 100029, China
- College of Arts and Sciences, Beijing Institute of Fashion Technology, No. 2 Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Haibin Huang
- College of Information Engineering, Beijing Institute of Fashion Technology, No. 2 Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Yuan Wan
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, No. 2 Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Ying Li
- College of Fashion Accessory Art and Engineering, Beijing Institute of Fashion Technology, No. 2 Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Junqi Fang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, No. 2 Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Jingxin Gao
- College of Arts and Sciences, Beijing Institute of Fashion Technology, No. 2 Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Yafei Yang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, No. 2 Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Jiguang Liu
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, No. 2 Yinghua Road, Chaoyang District, Beijing 100029, China
| |
Collapse
|
45
|
Abstract
This paper provides an overview of recent developments in the field of volatile organic compound (VOC) sensors, which are finding uses in healthcare, safety, environmental monitoring, food and agriculture, oil industry, and other fields. It starts by briefly explaining the basics of VOC sensing and reviewing the currently available and quickly progressing VOC sensing approaches. It then discusses the main trends in materials' design with special attention to nanostructuring and nanohybridization. Emerging sensing materials and strategies are highlighted and their involvement in the different types of sensing technologies is discussed, including optical, electrical, and gravimetric sensors. The review also provides detailed discussions about the main limitations of the field and offers potential solutions. The status of the field and suggestions of promising directions for future development are summarized.
Collapse
Affiliation(s)
- Muhammad Khatib
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
46
|
Wibowo AF, Han JW, Kim JH, Prameswati A, Entifar SAN, Park J, Lee J, Kim S, Lim DC, Moon MW, Kim MS, Kim YH. Highly stretchable and robust transparent conductive polymer composites for multifunctional healthcare monitoring. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:332-340. [PMID: 35645612 PMCID: PMC9132465 DOI: 10.1080/14686996.2022.2070864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/21/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Soft, stretchable, conductive thin films have propelled to the forefront of applications in stretchable sensors for on-skin health monitoring. Stretchable conductive films require high conformability, stretchability, and mechanical/chemical stability when integrated into the skin. Here, we present a highly stretchable, conductive, and transparent natural rubber/silver nanowire (AgNW)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) composite film. Overcoating the PEDOT:PSS layer results in outstanding mechanical robustness and chemical stability by suppressing the mechanical and chemical degradation of the nanowire networks. Moreover, the introduction of the organic surface modifier enhances the bonding strength between the natural rubber substrate and AgNW at the interface. The highly conformable composite films are integrated into multifunctional on-skin sensors for monitoring various human motions and biological signals with low-power consumption. We believe that the highly stretchable, robust, and conformable natural rubber/AgNW/PEDOT:PSS composite film can offer new opportunities for next-generation wearable sensors for body motion and physiological monitoring.
Collapse
Affiliation(s)
- Anky Fitrian Wibowo
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Republic of Korea
| | - Joo Won Han
- Industry-University Cooperation Foundation, Pukyong National University, Busan, Republic of Korea
| | - Jung Ha Kim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Republic of Korea
| | - Ajeng Prameswati
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Republic of Korea
| | | | - Jihyun Park
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Republic of Korea
| | - Jonghee Lee
- Department of Creative Convergence Engineering, Hanbat National University, Daejon, Republic of Korea
| | - Soyeon Kim
- Surface Technology Division, Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea
| | - Dong Chan Lim
- Surface Technology Division, Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea
| | - Myoung-Woon Moon
- Department of Materials and Life Science Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Min-Seok Kim
- Department of Materials and Life Science Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yong Hyun Kim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
47
|
Xing C, Xu X, Song L, Wang X, Li B, Guo K. β-Cyclodextrin-Based Poly (Vinyl Alcohol) Fibers for Sustained Release of Fragrances. Polymers (Basel) 2022; 14:polym14102002. [PMID: 35631884 PMCID: PMC9142904 DOI: 10.3390/polym14102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Poly (vinyl alcohol)/β-cyclodextrin (PVA/CD) composite fibers are prepared by wet spinning followed by hot stretching. XRD results show that β-CDs are in an amorphous state in fiber, and β-CD can help maintain the fibrous crystal that exists in the composite fiber. The DSC results show that the total crystalline ratio of the composite fibers decreased with the increase of β-CD. The as-prepared composite fibers were further crosslinked with glutaraldehyde (GA) to improve their usability. The crosslinked structure, together with amorphous β-CD, contributes to the loading and sustained release of fragrance molecules that were studied. The fragrance retention ratio of PVA/CD/GA is 55.63% and 48.25% for cis-jasmone and citronella, even after 25 days. The inclusion complexes of β-CD and fragrance molecules are confirmed by 2D-FTIR, which is responsible for the sustained release of fragrance. This study may contribute to the mass production of wearable long-term scented fabrics.
Collapse
Affiliation(s)
- Chengyuan Xing
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xia Xu
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Lei Song
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Xiaoling Wang
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Bangjing Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Kun Guo
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
48
|
Gao Q, Tran T, Liao X, Rosenfeldt S, Gao C, Hou H, Retsch M, Agarwal S, Greiner A. Ultralight Heat-Insulating, Electrically Conductive Carbon Fibrous Sponges for Wearable Mechanosensing Devices with Advanced Warming Function. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19918-19927. [PMID: 35452237 DOI: 10.1021/acsami.2c04136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultralight highly porous sponges are attractive for electronic devices due to superelasticity, outstanding resilience, and thermal insulation. However, fabricating an ultralight conductive sponge with low thermal conductivity, mechanical flexibility, and piezoresistivity, as well as adjustable heating behavior, is still a challenge. Here, an ultralight carbon nanofibrous sponge fabricated by pyrolyzing a graphene oxide coated polyimide sponge is reported. The resulting carbon sponge demonstrates a high electrical conductivity of 0.03-4.72 S m-1 and a low thermal conductivity of 0.027-0.038 W m-1 K-1 (20 °C, in ambient air), as well as a low density to ∼6 mg cm-3. Additionally, the sponge exhibits mechanical flexibility, stability, excellent piezoresistivity, and an adjustable heating behavior. Hence, it could be utilized as a sensing device, including thermal management, making them promising for use in smart sportswear, human-machine interfaces, and wearable healthcare devices.
Collapse
Affiliation(s)
- Qiang Gao
- Macromolecular Chemistry II and Bavarian Polymer Institute, Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Thomas Tran
- Bavarian Center for Battery Technology (BayBatt), Bavarian Polymer Institute, and Bayreuth Center for Colloids and Interfaces, Department of Chemistry, Physical Chemistry I, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Xiaojian Liao
- Macromolecular Chemistry II and Bavarian Polymer Institute, Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Sabine Rosenfeldt
- Bavarian Center for Battery Technology (BayBatt), Bavarian Polymer Institute, and Bayreuth Center for Colloids and Interfaces, Department of Chemistry, Physical Chemistry I, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Institute of Applied Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Haoqing Hou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Markus Retsch
- Bavarian Center for Battery Technology (BayBatt), Bavarian Polymer Institute, and Bayreuth Center for Colloids and Interfaces, Department of Chemistry, Physical Chemistry I, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Seema Agarwal
- Macromolecular Chemistry II and Bavarian Polymer Institute, Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Andreas Greiner
- Macromolecular Chemistry II and Bavarian Polymer Institute, Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
49
|
Li X, Liu J, Guo Q, Zhang X, Tian M. Polymerizable Deep Eutectic Solvent-Based Skin-Like Elastomers with Dynamic Schemochrome and Self-Healing Ability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201012. [PMID: 35403800 DOI: 10.1002/smll.202201012] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Animal skin is a huge source of inspiration when it comes to multifunctional sensing materials. Bioinspired sensors integrated with the intriguing performance of skin-like steady wide-range strain detection, real-time dynamic visual cues, and self-healing ability hold great promise for next-generation electronic skin materials. Here, inspired by the skins of a chameleon, cellulose nanocrystals (CNCs) liquid crystal skeleton is embedded into polymerizable deep eutectic solvent (PDES) via in situ polymerization to develop a skin-like elastomer. Benefiting from the elastic ionic conductive PDES matrix and dynamic interfacial hydrogen bonding, this strategy has broken through the limitations that CNCs-based cholesteric structure is fragile and its helical pitch is non-adjustable, endowing the resulting elastomer with strain-induced wide-range (0-500%) dynamic structural colors and excellent self-healing ability (78.9-90.7%). Furthermore, the resulting materials exhibit high stretch-ability (1163.7%), strain-sensing and self-adhesive abilities, which make them well-suitable for developing widely applicable and highly reliable flexible sensors. The proposed approach of constructing biomimetic skin-like materials with wide-range dynamic schemochrome is expected to extend new possibilities in diverse applications including anti-counterfeit labels, soft foldable displays, and wearable optical devices.
Collapse
Affiliation(s)
- Xinkai Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Quanquan Guo
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
50
|
Recent Advances in Electronic Skins with Multiple-Stimuli-Responsive and Self-Healing Abilities. MATERIALS 2022; 15:ma15051661. [PMID: 35268894 PMCID: PMC8911295 DOI: 10.3390/ma15051661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023]
Abstract
Wearable electronic skin (e-skin) has provided a revolutionized way to intelligently sense environmental stimuli, which shows prospective applications in health monitoring, artificial intelligence and prosthetics fields. Drawn inspiration from biological skins, developing e-skin with multiple stimuli perception and self-healing abilities not only enrich their bionic multifunctionality, but also greatly improve their sensory performance and functional stability. In this review, we highlight recent important developments in the material structure design strategy to imitate the fascinating functionalities of biological skins, including molecular synthesis, physical structure design, and special biomimicry engineering. Moreover, their specific structure-property relationships, multifunctional application, and existing challenges are also critically analyzed with representative examples. Furthermore, a summary and perspective on future directions and challenges of biomimetic electronic skins regarding function construction will be briefly discussed. We believe that this review will provide valuable guidance for readers to fabricate superior e-skin materials or devices with skin-like multifunctionalities and disparate characteristics.
Collapse
|