1
|
Han P, Hu F, Guo J, Xu L, Zhang J. Low serum CTRP3 is related to more severe distal symmetric polyneuropathy in type 2 diabetes patients. Hormones (Athens) 2025; 24:99-107. [PMID: 39155319 DOI: 10.1007/s42000-024-00592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Distal symmetric polyneuropathy (DSPN) is one of the most common chronic complications in patients with type 2 diabetes mellitus (T2DM). Our previous study found that serum C1q tumor necrosis factor-related protein 3 (CTRP3) levels were decreased in type 2 diabetic patients. Thus, this study was designed to reveal the relationship between low serum CTRP3 and the prevalence and severity of DSPN. METHODS A total of 178 cases of patients with T2DM were enrolled in the study. The subjects were divided into the DSPN group (n = 89) and the non-DSPN group (n = 89). Both anthropometric parameters and neurologic symptoms were recorded. Furthermore, neurologic signs, the neuropathy symptom score (NSS), and the neuropathy disability score (NDS) were assessed. Biochemical indexes, fasting insulin, and C peptide were measured. Serum CTRP3 concentrations were assayed using the ELISA method. RESULTS Serum CTRP3 levels decreased significantly in the DSPN group compared with the non-DSPN group (P < 0.05). CTRP3 was negatively associated with the number of positive signs, NSS score, and NDS score in patients with DSPN (all P < 0.05). Interestingly, the higher the NSS score or NDS score, the lower were the levels of serum CTRP3 (all P < 0.05). Moreover, patients with lower CTRP3 levels (< 7.58ng/ml) had a higher rate of neurologic signs (all P < 0.05). Binary logistic regression analysis showed that CTRP3 independently predicted the occurrence of DSPN (β = -0.316, P < 0.001). ROC curve analysis revealed that the best cut-off value of CTRP3 for the prediction of DSPN was 7.55ng/ml (sensitivity 78.7%, specificity 79.8%), the area under the curve (AUC) was 0.763 (95% CI 0.689-0.838, P < 0.001). CONCLUSION Low serum CTRP3 could be a predictor for the occurrence and progression of DSPN in Chinese patients with T2DM.
Collapse
Affiliation(s)
- Pingping Han
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese PLA, Wuhan, 430070, China
- College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei Province, China
| | - Fan Hu
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese PLA, Wuhan, 430070, China
| | - Jia Guo
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese PLA, Wuhan, 430070, China
- College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei Province, China
| | - Leirui Xu
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese PLA, Wuhan, 430070, China
- College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei Province, China
| | - Junxia Zhang
- Department of Endocrinology, Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, Hubei Province, P.R. China.
| |
Collapse
|
2
|
Al-Abboody RS, Heydari N, Saravani M, Nosaratzehi S, Akbari H, Jafari SM. Evaluation of the serum level of CTRP-3 and CTRP-6 in patients with Hashimoto's disease and correlation with thyroid hormones and lipid profile. J Basic Clin Physiol Pharmacol 2025; 36:61-67. [PMID: 39832920 DOI: 10.1515/jbcpp-2024-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVES Numerous studies show that the adipokines play a role in on the thyroid axis. The aim of this study was the evaluation of serum level of CTRP-3 and CTRP-6 as a member of the adipokines family in patients with Hashimoto's. METHODS The levels of CTRP-3 and CTRP-6 were evaluated with enzyme-linked immunosorbent assay in 70 subjects (35 newly diagnosed Hashimoto's thyroiditis and 35 healthy subjects). Their relationship with the thyroid hormone and some biochemical factors was analyzed. RESULTS The levels of CTRP3 and CTRP6 in patients with Hashimoto's disease were higher than those in the control group (p<0.05). There was a significant positive correlation between CTRP3 and TSH levels (r=0.286 and p=0.017). There was a significant relationship between CTRP3 and Fasting Blood Sugar (r=0.249 and p=0.038). There was a significant inverse negative correlation between CTRP6 levels and T3 (r=-0.269 and p=0.024), and T4 (r=-0.272 and p=0.023). Moreover, there was a significant positive correlation between CTRP6 serum levels and TSH serum levels (r=0.397 and p=0.001). There was a significant positive correlation between CTRP6 levels and Cholesterol (r=0.351 and p=0.003), and LDL (r=-0.244 and p=0.042). CONCLUSIONS Finally, our results demonstrated that serum levels of CTRP3 and CTRP6 are higher in patients with Hashimoto's compared to the control group and probably play a role in the pathogenesis of Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Rafal Sameer Al-Abboody
- Metabolic Disorders Research Center, 125691 Golestan University of Medical Sciences , Gorgan, Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine, 125691 Golestan University of Medical Sciences , Gorgan, Iran
| | - Nadia Heydari
- Metabolic Disorders Research Center, 125691 Golestan University of Medical Sciences , Gorgan, Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine, 125691 Golestan University of Medical Sciences , Gorgan, Iran
| | - Mohsen Saravani
- Genetics of Non-communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shahin Nosaratzehi
- Genetics of Non-communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamideh Akbari
- Clinical Research Development Unit, Sayad Shirazi Hospital, Golestan University of Medical Science, Gorgan, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, 125691 Golestan University of Medical Sciences , Gorgan, Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine, 125691 Golestan University of Medical Sciences , Gorgan, Iran
| |
Collapse
|
3
|
Ding R, Lu J, Huang X, Deng M, Wei H, Jiang G, Zhu H, Yuan H. The effect of immunotherapy PD-1 blockade on acute bone cancer pain: Insights from transcriptomic and microbiomic profiling. Int Immunopharmacol 2024; 142:113100. [PMID: 39244901 DOI: 10.1016/j.intimp.2024.113100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION The skeletal system ranks as the third most common site for cancer metastasis, often leading to pain with nociceptive and neuropathic features. Programmed cell death protein 1 (PD-1)-targeting therapeutic antibodies offer effective cancer treatment but can cause treatment-related acute pain. Understanding the mechanisms of this pain and identifying potential interventions is still a challenge. METHODS A murine model of bone cancer pain was established using Lewis lung carcinoma (LLC) cells, followed by intravenous administration of nivolumab, a human anti-PD-1 monoclonal antibody. Pain thresholds were measured, and micro-CT images of the skeletal system were obtained. High-throughput sequencing of the spinal cord/colon transcriptome during the acute phase of bone cancer pain and gut microbiota analysis at the end of the treatment were performed. Immunofluorescence staining and western blot experiments assessed spinal cord microglia activation and acute pain-associated molecules. RESULTS PD-1 inhibition with nivolumab protected against bone degradation initiated by LLC cell administration but consistently induced acute pain during nivolumab treatment. Spinal cord and colon transcriptomics revealed an immunopathological pattern during tumor progression and the acute pain phase, with notable changes in interleukin and S100 gene families. Gut microbiota analysis post-immunotherapy showed a decline in beneficial bacteria associated with short-chain fatty acid (SCFA) production. Activation of spinal cord microglia and enhanced glycolytic metabolism were confirmed as key factors in inducing acute pain following immunotherapy. CONCLUSIONS This study reveals that nivolumab induces acute pain by activating microglia and enhancing glycolytic metabolism in the treatment of bone cancer and uncovers connections between transcriptomic changes, gut microbiota, and acute pain following immune checkpoint blockade (ICB) treatment. It offers novel insights into the relationship between immune checkpoint blockade therapies and pain management.
Collapse
Affiliation(s)
- Ruifeng Ding
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Jinfang Lu
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xingshuai Huang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Mengqiu Deng
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Huawei Wei
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Guowei Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Hongwei Zhu
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
4
|
Rekler D, Ofek S, Kagan S, Friedlander G, Kalcheim C. Retinoic acid, an essential component of the roof plate organizer, promotes the spatiotemporal segregation of dorsal neural fates. Development 2024; 151:dev202973. [PMID: 39250350 PMCID: PMC11463963 DOI: 10.1242/dev.202973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024]
Abstract
Dorsal neural tube-derived retinoic acid promotes the end of neural crest production and transition into a definitive roof plate. Here, we analyze how this impacts the segregation of central and peripheral lineages, a process essential for tissue patterning and function. Localized in ovo inhibition in quail embryos of retinoic acid activity followed by single-cell transcriptomics unraveled a comprehensive list of differentially expressed genes relevant to these processes. Importantly, progenitors co-expressed neural crest, roof plate and dI1 interneuron markers, indicating a failure in proper lineage segregation. Furthermore, separation between roof plate and dI1 interneurons is mediated by Notch activity downstream of retinoic acid, highlighting their crucial role in establishing the roof plate-dI1 boundary. Within the peripheral branch, where absence of retinoic acid resulted in neural crest production and emigration extending into the roof plate stage, sensory progenitors failed to separate from melanocytes, leading to formation of a common glia-melanocyte cell with aberrant migratory patterns. In summary, the implementation of single-cell RNA sequencing facilitated the discovery and characterization of a molecular mechanism responsible for the segregation of dorsal neural fates during development.
Collapse
Affiliation(s)
- Dina Rekler
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Shai Ofek
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Sarah Kagan
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Gilgi Friedlander
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
5
|
Rossmeislová L, Krauzová E, Koc M, Wilhelm M, Šebo V, Varaliová Z, Šrámková V, Schouten M, Šedivý P, Tůma P, Kovář J, Langin D, Gojda J, Šiklová M. Obesity alters adipose tissue response to fasting and refeeding in women: A study on lipolytic and endocrine dynamics and acute insulin resistance. Heliyon 2024; 10:e37875. [PMID: 39328508 PMCID: PMC11425135 DOI: 10.1016/j.heliyon.2024.e37875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Fasting induces significant shifts in substrate utilization with signs of acute insulin resistance (IR), while obesity is associated with chronic IR. Nonetheless, both states substantially influence adipose tissue (AT) function. Therefore, in this interventional study (NCT04260542), we investigated if excessive adiposity in premenopausal women alters insulin sensitivity and AT metabolic and endocrine activity in response to a 60-h fast and a subsequent 48-h refeeding period. Using physiological methods, lipidomics, and AT explants, we showed that obesity partially modified AT endocrine activity and blunted the dynamics of AT insulin resistance in response to the fasting/refeeding challenge compared to that observed in lean women. AT adapted to its own excess by reducing lipolytic activity/free fatty acids (FFA) flux per mass. This adaptation persisted even after a 60-h fast, resulting in lower ketosis in women with obesity. This could be a protective mechanism that limits the lipotoxic effects of FFA; however, it may ultimately impede desirable weight loss induced by caloric restriction in women with obesity.
Collapse
Affiliation(s)
- Lenka Rossmeislová
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague and Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Eva Krauzová
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Internal Medicine, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Michal Koc
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marek Wilhelm
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Viktor Šebo
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Internal Medicine, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Zuzana Varaliová
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Šrámková
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague and Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Moniek Schouten
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Petr Šedivý
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kovář
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Dominique Langin
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague and Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, I2MC, University of Toulouse, Inserm, Toulouse III University - Paul Sabatier (UPS), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Institute Universitaire de France (IUF), Paris, France
| | - Jan Gojda
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague and Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- Department of Internal Medicine, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Michaela Šiklová
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague and Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
6
|
Wenderoth T, Feldotto M, Hernandez J, Schäffer J, Leisengang S, Pflieger FJ, Bredehöft J, Mayer K, Kang JX, Bier J, Grimminger F, Paßlack N, Rummel C. Effects of Omega-3 Polyunsaturated Fatty Acids on the Formation of Adipokines, Cytokines, and Oxylipins in Retroperitoneal Adipose Tissue of Mice. Int J Mol Sci 2024; 25:9904. [PMID: 39337391 PMCID: PMC11432517 DOI: 10.3390/ijms25189904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Oxylipins and specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated fatty acids (PUFAs) are mediators that coordinate an active process of inflammation resolution. While these mediators have potential as circulating biomarkers for several disease states with inflammatory components, the source of plasma oxylipins/SPMs remains a matter of debate but may involve white adipose tissue (WAT). Here, we aimed to investigate to what extent high or low omega (n)-3 PUFA enrichment affects the production of cytokines and adipokines (RT-PCR), as well as oxylipins/SPMs (liquid chromatography-tandem mass spectrometry) in the WAT of mice during lipopolysaccharide (LPS)-induced systemic inflammation (intraperitoneal injection, 2.5 mg/kg, 24 h). For this purpose, n-3 PUFA genetically enriched mice (FAT-1), which endogenously synthesize n-3 PUFAs, were compared to wild-type mice (WT) and combined with n-3 PUFA-sufficient or deficient diets. LPS-induced systemic inflammation resulted in the decreased expression of most adipokines and interleukin-6 in WAT, whereas the n-3-sufficient diet increased them compared to the deficient diet. The n-6 PUFA arachidonic acid was decreased in WAT of FAT-1 mice, while n-3 derived PUFAs (eicosapentaenoic acid, docosahexaenoic acid) and their metabolites (oxylipins/SPMs) were increased in WAT by genetic and nutritional n-3 enrichment. Several oxylipins/SPMs were increased by LPS treatment in WAT compared to PBS-treated controls in genetically n-3 enriched FAT-1 mice. Overall, we show that WAT may significantly contribute to circulating oxylipin production. Moreover, n-3-sufficient or n-3-deficient diets alter adipokine production. The precise interplay between cytokines, adipokines, and oxylipins remains to be further investigated.
Collapse
Affiliation(s)
- Tatjana Wenderoth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Julia Schäffer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Stephan Leisengang
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
- Center for Mind Brain and Behavior (CMMB), Universities Giessen and Marburg, 34032 Marburg, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University, 35392 Giessen, Germany
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Janne Bredehöft
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany;
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical, Charlestown, MA 02129, USA;
| | - Jens Bier
- Cardio-Pulmonary Institute, Justus Liebig University, 35392 Giessen, Germany; (J.B.); (F.G.)
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Friedrich Grimminger
- Cardio-Pulmonary Institute, Justus Liebig University, 35392 Giessen, Germany; (J.B.); (F.G.)
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Nadine Paßlack
- Small Animal Clinic, Internal Medicine and Department of Veterinary Clinical Sciences, Justus Liebig University, 35392 Giessen, Germany;
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
- Center for Mind Brain and Behavior (CMMB), Universities Giessen and Marburg, 34032 Marburg, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
7
|
Melendez J, Sung YJ, Orr M, Yoo A, Schindler S, Cruchaga C, Bateman R. An interpretable machine learning-based cerebrospinal fluid proteomics clock for predicting age reveals novel insights into brain aging. Aging Cell 2024; 23:e14230. [PMID: 38923730 PMCID: PMC11488306 DOI: 10.1111/acel.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Machine learning can be used to create "biologic clocks" that predict age. However, organs, tissues, and biofluids may age at different rates from the organism as a whole. We sought to understand how cerebrospinal fluid (CSF) changes with age to inform the development of brain aging-related disease mechanisms and identify potential anti-aging therapeutic targets. Several epigenetic clocks exist based on plasma and neuronal tissues; however, plasma may not reflect brain aging specifically and tissue-based clocks require samples that are difficult to obtain from living participants. To address these problems, we developed a machine learning clock that uses CSF proteomics to predict the chronological age of individuals with a 0.79 Pearson correlation and mean estimated error (MAE) of 4.30 years in our validation cohort. Additionally, we analyzed proteins highly weighted by the algorithm to gain insights into changes in CSF and uncover novel insights into brain aging. We also demonstrate a novel method to create a minimal protein clock that uses just 109 protein features from the original clock to achieve a similar accuracy (0.75 correlation, MAE 5.41). Finally, we demonstrate that our clock identifies novel proteins that are highly predictive of age in interactions with other proteins, but do not directly correlate with chronological age themselves. In conclusion, we propose that our CSF protein aging clock can identify novel proteins that influence the rate of aging of the central nervous system (CNS), in a manner that would not be identifiable by examining their individual relationships with age.
Collapse
Affiliation(s)
- Justin Melendez
- Tracy Family SILQ CenterWashington University in St. LouisSt. LouisMissouriUSA
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Yun Ju Sung
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
- Department of BiostatisticsWashington University in St. LouisSt. LouisMissouriUSA
| | - Miranda Orr
- Department of Internal MedicineWake Forest School of Medicine Section of Gerontology and Geriatric Medicine Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
| | - Andrew Yoo
- Department of Developmental BiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Suzanne Schindler
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Carlos Cruchaga
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Randall Bateman
- Tracy Family SILQ CenterWashington University in St. LouisSt. LouisMissouriUSA
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
8
|
Zhang X, Zhang D, Zhao H, Qin J, Qi H, Zu F, Zhou Y, Zhang Y. gCTRP3 inhibits oophorectomy‑induced osteoporosis by activating the AMPK/SIRT1/Nrf2 signaling pathway in mice. Mol Med Rep 2024; 30:133. [PMID: 38818814 PMCID: PMC11157184 DOI: 10.3892/mmr.2024.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024] Open
Abstract
C1q/tumor necrosis factor‑related protein 3 (CTRP3) expression is markedly reduced in the serum of patients with osteoporosis. The present study aimed to investigate whether CTRP3 reduces bone loss in oophorectomy (OVX)‑induced mice via the AMP‑activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/nuclear factor E2‑related factor 2 (Nrf2) signaling pathway. Female C57BL/6J mice and MC3T3‑E1 cells were used to construct in vivo and in vitro models of osteoporosis, respectively. The left femurs of mice were examined using micro‑computed tomography scans and bone‑related quantitative morphological evaluation was performed. Pathological changes and the number of osteoclasts in the left femurs of mice were detected using hematoxylin and eosin, and tartrate‑resistant acid phosphatase (TRAP) staining. Runt‑related transcription factor‑2 (RUNX2) expression in the left femurs was detected using immunofluorescence analysis, and the serum levels of bone resorption markers (C‑telopeptide of type I collagen and TRAP) and bone formation markers [osteocalcin (OCN) and procollagen type 1 N‑terminal propeptide] were detected. In addition, osteoblast differentiation and calcium deposits were examined in MC3T3‑E1 cells using alkaline phosphatase (ALP) and Alizarin red staining, respectively. Moreover, RUNX2, ALP and OCN expression levels were detected using reverse transcription‑quantitative PCR, and the expression levels of proteins associated with the AMPK/SIRT1/Nrf2 signaling pathway were detected using western blot analysis. The results revealed that globular CTRP3 (gCTRP3) alleviated bone loss and promoted bone formation in OVX‑induced mice. gCTRP3 also facilitated the osteogenic differentiation of MC3T3‑E1 cells through the AMPK/SIRT1/Nrf2 signaling pathway. The addition of an AMPK inhibitor (Compound C), SIRT1 inhibitor (EX527) or Nrf2 inhibitor (ML385) reduced the osteogenic differentiation of MC3T3‑E1 cells via inhibition of gCTRP3. In conclusion, gCTRP3 inhibits OVX‑induced osteoporosis by activating the AMPK/SIRT1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Di Zhang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Huan Zhao
- Department of Obstetrics and Gynecology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jing Qin
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Hao Qi
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Feiyu Zu
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yaru Zhou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yingze Zhang
- National Health Commission Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
9
|
Wang J, Song X, Xia Z, Feng S, Zhang H, Xu C, Zhang H. Serum biomarkers for predicting microvascular complications of diabetes mellitus. Expert Rev Mol Diagn 2024; 24:703-713. [PMID: 39158206 DOI: 10.1080/14737159.2024.2391021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION Diabetic microvascular complications such as retinopathy, nephropathy, and neuropathy are primary causes of blindness, terminal renal failure, and neuropathic disorders in type 2 diabetes mellitus patients. Identifying reliable biomarkers promptly is pivotal for early detection and intervention in these severe complications. AREAS COVERED This review offers a thorough examination of the latest research concerning serum biomarkers for the prediction and assessment of diabetic microvascular complications. It encompasses biomarkers associated with glycation, oxidative stress, inflammation, endothelial dysfunction, basement membrane thickening, angiogenesis, and thrombosis. The review also highlights the potential of emerging biomarkers, such as microRNAs and long non-coding RNAs. EXPERT OPINION Serum biomarkers are emerging as valuable tools for the early assessment and therapeutic guidance of diabetic microvascular complications. The biomarkers identified not only reflect the underlying pathophysiology but also align with the extent of the disease. However, further validation across diverse populations and improvement of the practicality of these biomarkers in routine clinical practice are necessary. Pursuing these objectives is essential to advance early diagnosis, risk assessment, and individualized treatment regimens for those affected by diabetes.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital Chuandong Hospital & Dazhou First People's Hospital, Dazhou, China
| | - Xiaoyi Song
- School of medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziqiao Xia
- Laboratory medicine, Qianwei People's Hospital, Leshan, Sichuan, China
| | - Shu Feng
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hangfeng Zhang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengjie Xu
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Zhang
- Department of Ultrasound, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Chen Y, Wang S, Li J, Fu Y, Chen P, Liu X, Zhang J, Sun L, Zhang R, Li X, Liu L. The relationships between biological novel biomarkers Lp-PLA 2 and CTRP-3 and CVD in patients with type 2 diabetes mellitus. J Diabetes 2024; 16:e13574. [PMID: 38924255 PMCID: PMC11199973 DOI: 10.1111/1753-0407.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/20/2024] [Accepted: 05/04/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is recognized as a primary and severe comorbidity in patients with type 2 diabetes mellitus (T2DM) and is also identified as a leading cause of mortality within this population. Consequently, the identification of novel biomarkers for the risk stratification and progression of CVD in individuals with T2DM is of critical importance. METHODS This retrospective cohort study encompassed 979 patients diagnosed with T2DM, of whom 116 experienced CVD events during the follow-up period. Clinical assessments and comprehensive blood laboratory analyses were conducted. Age- and sex-adjusted Cox proportional hazard regression analysis was utilized to evaluate the association between lipoprotein-associated phospholipase A2 (Lp-PLA2), C1q/tumor necrosis factor-related protein 3 (CTRP-3), and the incidence of CVD in T2DM. The diagnostic performance of these biomarkers was assessed through receiver operating characteristic (ROC) curve analysis and the computation of the area under the curve (AUC). RESULTS Over a median follow-up of 84 months (interquartile range: 42 [32-54] months), both novel inflammatory markers, Lp-PLA2 and CTRP-3, and traditional lipid indices, such as low-density lipoprotein cholesterol and apolipoprotein B, exhibited aberrant expression in the CVD-afflicted subset of the T2DM cohort. Age- and sex-adjusted Cox regression analysis delineated that Lp-PLA2 (hazard ratio [HR] = 1.007 [95% confidence interval {CI}: 1.005-1.009], p < 0.001) and CTRP-3 (HR = 0.943 [95% CI: 0.935-0.954], p < 0.001) were independently associated with the manifestation of CVD in T2DM. ROC curve analysis indicated a substantial predictive capacity for Lp-PLA2 (AUC = 0.81 [95% CI: 0.77-0.85], p < 0.001) and CTRP-3 (AUC = 0.91 [95% CI: 0.89-0.93], p < 0.001) in forecasting CVD occurrence in T2DM. The combined biomarker approach yielded an AUC of 0.94 (95% CI: 0.93-0.96), p < 0.001, indicating enhanced diagnostic accuracy. CONCLUSIONS The findings suggest that the biomarkers Lp-PLA2 and CTRP-3 are dysregulated in patients with T2DM who develop CVD and that each biomarker is independently associated with the occurrence of CVD. The combined assessment of Lp-PLA2 and CTRP-3 may significantly augment the diagnostic precision for CVD in the T2DM demographic.
Collapse
Affiliation(s)
- Yanhong Chen
- Department of Clinical LaboratoryXuzhou Central HospitalXuzhouChina
| | - Shixin Wang
- Department of Clinical LaboratoryXuzhou Central HospitalXuzhouChina
| | - Jian Li
- Department of Clinical LaboratoryXuzhou Central HospitalXuzhouChina
| | - Yu Fu
- Central LaboratoryXuzhou Central HospitalXuzhouChina
| | - Pengsheng Chen
- Department of EndocrinologyXuzhou Central HospitalXuzhouChina
| | - Xuekui Liu
- Xuzhou Institute of Medical ScienceXuzhouChina
| | - Jiao Zhang
- Department of Clinical LaboratoryXuzhou Central HospitalXuzhouChina
| | - Li Sun
- Department of EndocrinologyXuzhou Central HospitalXuzhouChina
| | - Rui Zhang
- Department of Clinical LaboratoryXuzhou Central HospitalXuzhouChina
| | - Xiaoli Li
- Department of CardiologyXuzhou Central HospitalXuzhouChina
| | - Lingling Liu
- Department of CardiologyXuzhou Central HospitalXuzhouChina
| |
Collapse
|
11
|
Schmid A, Pankuweit S, Vlacil AK, Koch S, Berge B, Gajawada P, Richter M, Troidl K, Schieffer B, Schäffler A, Grote K. Decreased circulating CTRP3 levels in acute and chronic cardiovascular patients. J Mol Med (Berl) 2024; 102:667-677. [PMID: 38436713 PMCID: PMC11055757 DOI: 10.1007/s00109-024-02426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
C1q/TNF-related protein 3 (CTRP3) represents an adipokine with various metabolic and immune-regulatory functions. While circulating CTRP3 has been proposed as a potential biomarker for cardiovascular disease (CVD), current data on CTRP3 regarding coronary artery disease (CAD) remains partially contradictory. This study aimed to investigate CTRP3 levels in chronic and acute settings such as chronic coronary syndrome (CCS) and acute coronary syndrome (ACS). A total of 206 patients were classified into three groups: CCS (n = 64), ACS having a first acute event (ACS-1, n = 75), and ACS having a recurrent acute event (ACS-2, n = 67). The control group consisted of 49 healthy individuals. ELISA measurement in peripheral blood revealed decreased CTRP3 levels in all patient groups (p < 0.001) without significant differences between the groups. This effect was exclusively observed in male patients. Females generally exhibited significantly higher CTRP3 plasma levels than males. ROC curve analysis in male patients revealed a valuable predictive potency of plasma CTRP3 in order to identify CAD patients, with a proposed cut-off value of 51.25 ng/mL. The sensitivity and specificity of prediction by CTRP3 were congruent for the subgroups of CCS, ACS-1, and ACS-2 patients. Regulation of circulating CTRP3 levels in murine models of cardiovascular pathophysiology was found to be partly opposite to the clinical findings, with male mice exhibiting higher circulating CTRP3 levels than females. We conclude that circulating CTRP3 levels are decreased in both male CCS and ACS patients. Therefore, CTRP3 might be useful as a biomarker for CAD but not for distinguishing an acute from a chronic setting. KEY MESSAGES: CTRP3 levels were found to be decreased in both male CCS and ACS patients compared to healthy controls. Plasma CTRP3 has a valuable predictive potency in order to identify CAD patients among men and is therefore proposed as a biomarker for CAD but not for distinguishing between acute and chronic settings. Regulation of circulating CTRP3 levels in murine models of cardiovascular pathophysiology was found to be partly opposite to the clinical findings in men.
Collapse
Affiliation(s)
- Andreas Schmid
- Department of Internal Medicine III, Giessen University Hospital, Giessen, Germany.
| | - Sabine Pankuweit
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | | | - Sören Koch
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Benedikt Berge
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany
| | - Praveen Gajawada
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany
| | - Manfred Richter
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany
| | - Kerstin Troidl
- Department of Life Sciences and Engineering, TH Bingen, University of Applied Sciences, Bingen Am Rhein, Germany
- Department of Vascular and Endovascular Surgery, Cardiovascular Surgery Clinic, University Hospital Frankfurt and Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | | | - Andreas Schäffler
- Department of Internal Medicine III, Giessen University Hospital, Giessen, Germany
| | - Karsten Grote
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
12
|
Chen Q, Sun T, He Q, Yu J, Zhang X, Han L, Ren Y. Study of decreased serum levels of C1q/TNF-related protein 4 (CTRP4) in major depressive disorder. J Psychiatr Res 2024; 172:274-280. [PMID: 38417323 DOI: 10.1016/j.jpsychires.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND The adipokines secreted by adipocytes might play an important role through crossing the blood brain barrier to the brain, which could mediate the common physiological pathway between depression and obesity. CTRP4, a member of the CTRP family, is highly expressed in human adipose tissue and brain tissue. OBJECTIVE this study aimed to measure serum C1q/TNF-related protein 4 (CTRP4) levels in depressive patients to explore the association between CTRP4 levels and depression. METHODS depressive patients (n = 138), healthy controls (n = 100) were enrolled from September 2020 to December 2021. The level of serum CTRP4 was measured by enzymes linked to immunosorbent assay (ELISA). Other biochemical indicators were measured by Advia 2400 automatic biochemistry analyzer. Depressive symptoms of patients were assessed using the Hamilton Depression Scale-24 item (HAMD-24). RESULTS this study found that serum CTRP4 levels in the MDD group were lower than that of the health control (P < 0.001). Serum CTRP4 levels were negatively correlated with HAMD-24 scores (r = -0.368; P = 0.001). The serum CTRP4 levels were negatively correlated with Total Cholesterol (TC), Triglyceride (TG) and Low-Density Lipoprotein Cholesterol (LDL-C), but were positively associated with high density lipid-cholesterol (HDL-C) (r = -0.267, r = -0.255, r = -0.312 and r = 0.280; P = 0.017, P = 0.023, P = 0.005 and P = 0.012). The ROC curve of CTRP4 showed that the Area Under Curve (AUC) was 0.856, P < 0.001. CONCLUSION the serum CTRP4 levels in MDD patients were lower than that in health control, which might mediate the physiological progress of MDD patients.
Collapse
Affiliation(s)
- Qian Chen
- Department of Clinical Laboratory, Wuhan Pulmonary Hospital, Baofeng Road, Qiaokou District, Wuhan, 430030, China.
| | - Ting Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Zhangzhidong Road, Wuhan, 430000, China
| | - Qian He
- Department of Clinical Laboratory, Wuhan Pulmonary Hospital, Baofeng Road, Qiaokou District, Wuhan, 430030, China.
| | - Jian Yu
- Department of Clinical Laboratory, Wuhan Pulmonary Hospital, Baofeng Road, Qiaokou District, Wuhan, 430030, China.
| | - Xuechao Zhang
- Department of Clinical Laboratory, Wuhan Pulmonary Hospital, Baofeng Road, Qiaokou District, Wuhan, 430030, China.
| | - Lu Han
- Department of Clinical Laboratory, Wuhan Blood Center, Baofeng Road, Qiaokou District, Wuhan, 430030, China.
| | - Yi Ren
- Department of Clinical Laboratory, Wuhan Pulmonary Hospital, Baofeng Road, Qiaokou District, Wuhan, 430030, China.
| |
Collapse
|
13
|
Liu N, Gong Z, Li Y, Xu Y, Guo Y, Chen W, Sun X, Yin X, Liu W. CTRP3 inhibits myocardial fibrosis through the P2X7R-NLRP3 inflammasome pathway in SHR rats. J Hypertens 2024; 42:315-328. [PMID: 37850974 DOI: 10.1097/hjh.0000000000003591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
BACKGROUND AND PURPOSE Reducing hypertensive myocardial fibrosis is the fundamental approach to preventing hypertensive ventricular remodelling. C1q/TNF-related protein-3 (CTRP3) is closely associated with hypertension. However, the role and mechanism of CTRP3 in hypertensive myocardial fibrosis are unclear. In this study, we aimed to explore the effect of CTRP3 on hypertensive myocardial fibrosis and the potential mechanism. METHODS AND RESULTS WKY and SHR rats were employed, blood pressure, body weight, heart weight, H/BW were measured, and fibrotic-related proteins, CTRP3 and Collagen I were tested in myocardium at 12 and 20 weeks by immunohistochemical staining and Western blotting, respectively. The results showed that compared with the WKY, SBP, DBP, mean arterial pressure and heart rate (HR) were all significantly increased in SHR at 12 and 20 weeks, while heart weight and H/BW were only increased at 20 weeks. Meanwhile, CTRP3 decreased, while Collagen I increased significantly in the SHR rat myocardium at 20 weeks, which compared to the WKY. Moreover, the expression of α-SMA increased from 12 weeks, Collagen I/III and MMP2/9 increased and TIMP-2 decreased until 20 weeks. In order to explore the function and mechanism of CTRP3 in hypertensive fibrosis, Angiotensin II (Ang II) was used to induce hypertension in primary neonatal rat cardiac fibroblasts in vitro . CTRP3 significantly inhibited the Ang II induced activation of fibrotic proteins, purinergic 2X7 receptor (P2X7R)-NLRP3 inflammasome pathway. The P2X7R agonist BzATP significantly exacerbated Ang II-induced NLRP3 inflammasome activation, which was decreased by the P2X7R antagonists A43079, CTRP3 and MCC950. CONCLUSION CTRP3 expression was decreased in the myocardium of SHR rats, and exogenous CTRP3 inhibited Ang II-induced fibrosis in cardiac fibroblasts by regulating the P2X7R-NLRP3 inflammasome pathway, suggesting that CTRP3 is a potential drug for alleviating myocardial fibrosis in hypertensive conditions.
Collapse
Affiliation(s)
- Na Liu
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Zhaowei Gong
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University
| | - Yang Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Yang Xu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Yutong Guo
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Wenjia Chen
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Xue Sun
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Xinhua Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
- Department of Cardiology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Wenxiu Liu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| |
Collapse
|
14
|
Shao Q, Sun L. Clinical Significance of Serum CTRP3 Level in the Prediction of Cardiac and Intestinal Mucosal Barrier Dysfunction in Patients with Severe Acute Pancreatitis. Crit Rev Immunol 2024; 44:99-111. [PMID: 38618732 DOI: 10.1615/critrevimmunol.2024051292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
C1q/tumor necrosis factor-related protein 3 (CTRP3) has been demonstrated to play a protective role in mice with severe acute pancreatitis (SAP). However, its clinical significance in SAP remains unknown. This study was conducted to explore the clinical values of serum C1q/tumor necrosis factor-related protein 3 (CTRP3) level in the diagnosis of cardiac dysfunction (CD) and intestinal mucosal barrier dysfunction (IMBD) in SAP. Through RT-qPCR, we observed decreased CTRP3 level in the serum of SAP patients. Serum CTRP3 level was correlated with C-reactive protein, procalcitonin, creatine, modified computed tomography severity index score, and Acute Physiology and Chronic Health Evaluation II score. The receiver-operating characteristic curve revealed that CTRP3 serum level < 1.005 was conducive to SAP diagnosis with 72.55% sensitivity and 60.00% specificity, CTRP3 < 0.8400 was conducive to CD diagnosis with 80.49% sensitivity and specificity 65.57%, CTRP3 < 0.8900 was conducive to IMBD diagnosis with 94.87% sensitivity and 63.49% specificity, and CTRP3 < 0.6250 was conducive to the diagnosis of CD and IMBD co-existence with 65.22% sensitivity and 89.87% specificity. Generally, CTRP3 was downregulated in the serum of SAP patients and served as a candidate biomarker for the diagnosis of SAP and SAP-induced CD and IMBD.
Collapse
Affiliation(s)
- Qiang Shao
- Department of Emergency, Yantai Yuhuangding Hospital, Yaitai 264000, Shandong Province, China
| | | |
Collapse
|
15
|
Uçar İB, Sargin G, Tuzcu A, Çildağ S, Şentürk T. Correlation of serum subfatin, cthrc1, ctrp3, ctrp6 levels with disease indices in patients with axial spondyloarthritis. BMC Rheumatol 2023; 7:29. [PMID: 37705042 PMCID: PMC10500765 DOI: 10.1186/s41927-023-00356-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND The study aimed to investigate novel biomarkers from the C1q TNF superfamily and evaluate their role in autoimmune inflammatory rheumatic diseases with the goal of identifying an effective biomarker to measure clinical disease activity and assess treatment efficacy. METHODS Sixty-one Axial spondyloarthritis (AxSpa) patients and 30 healthy controls were enrolled in the study. The serum biomarkers subfatin, CTHRC1, CTRP3, CTRP6, IL-6, IL-17, and TNF-α and the disease indices BASDAI, BASFI, MASES, and ASDAS-ESR/CRP were evaluated and compared. The patients were then classified, and their serum biomarkers were assessed according to their ASDAS scores and their treatment regimens. RESULTS Among the studied biomarkers, none showed a significant difference between the patients and the healthy controls. Although the difference was not statistically significant, the median values of serum subfatin, CTHRC1, CTRP3, CTRP6, IL-6, IL-17, and TNF-α were all found to be lower in the AxSpa patients than in the healthy controls. Furthermore, once the patients were classified regarding their disease activity, no correlation between the study biomarkers and levels of clinical disease indices was observed. Finally, biological treatments were found to affect the serum concentration of these biomarkers regardless of the level of disease activity. CONCLUSION Novel adipokines and known modulators of inflammation, circulating subfatin, CTHRC1, CTRP3, CTRP6, IL-6, IL-17, and TNF-α levels may play a role in assessing treatment efficacy, especially in those treated with TNF-inhibitors. However, we failed to demonstrate a correlation between clinical disease activity and serum biomarker levels.
Collapse
Affiliation(s)
- İ.Merve B. Uçar
- Department of Internal Medicine, Usak Research and Training Hospital, Rheumatology, Usak, Turkey
| | - Gökhan Sargin
- Department of Internal Medicine, Aydin Adnan Menderes University, Rheumatology, Aydin, Turkey
| | - Ayça Tuzcu
- Faculty of Medicine, Department of Biochemistry, Aydin Adnan Menderes University, Aydin, Turkey
| | - Songül Çildağ
- Department of Internal Medicine, Aydin Adnan Menderes University, Rheumatology, Aydin, Turkey
| | - Taşkın Şentürk
- Department of Internal Medicine, Aydin Adnan Menderes University, Rheumatology, Aydin, Turkey
| |
Collapse
|
16
|
Lin H, Yi J. CTRP3 regulates NF-κB and TGFβ1/Smad3 pathways to alleviate airway inflammation and remodeling in asthmatic mice induced by OVA. Allergol Immunopathol (Madr) 2023; 51:31-39. [PMID: 37422777 DOI: 10.15586/aei.v51i4.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Asthma is a common illness with chronic airway inflammation. C1q/tumor necrosis factor (TNF)-related protein 3 (CTRP3) plays a vital role ininflammatory response, but its effect on asthma is imprecise. Herein, we analyzed the functions of CTRP3 in asthma. METHODS The BALB/c mice were randomized into four groups: control, ovalbumin (OVA), OVA+vector, and OVA+CTRP3. The asthmatic mice model was established by OVA stimulation. Overexpression of CTRP3 was implemented by the transfection of corresponding adeno-associated virus 6 (AAV6). The contents of CTRP3, E-cadherin, N-cadherin, smooth muscle alpha-actin (α-SMA), phosphorylated (p)-p65/p65, transforming growth factor-beta 1 (TGFβ1), and p-Smad3/Smad3 were determined by Western blot analysis. The quantity of total cells, eosinophils, neutrophils, and lymphocytes in bronchoalveolar lavage fluid (BALF) was assessed by using a hemocytometer. The contents of tumor necrosis factor-α and interleukin-1β in BALF were examined by enzyme-linked immunesorbent serologic assay. The lung function indicators and airway resistance (AWR) were measured. The bronchial and alveolar structures were evaluated by hematoxylin and eosin staining and sirius red staining. RESULTS The CTRP3 was downregulated in mice of OVA groups; however, AAV6-CTRP3 treatment markedly upregulated the expression of CTRP3. Upregulation of CTRP3 diminished asthmatic airway inflammation by decreasing the number of inflammatory cells and the contents of proinflammatory factors. CTRP3 markedly lessened AWR and improved lung function in OVA-stimulated mice. Histological analysis found that CTRP3 alleviated OVA-induced airway remodeling in mice. Moreover, CTRP3 modulated NF-κB and TGFβ1/Smad3 pathways in OVA-stimulated mice. CONCLUSION CTRP3 alleviated airway inflammation and remodeling in OVA-induced asthmatic mice via regulating NF-κB and TGFβ1/Smad3 pathways.
Collapse
Affiliation(s)
- Hai Lin
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinrong Yi
- Department of Anesthesiology, Ganzhou Women and Children's Health Care Hospital, Ganzhou, Jiangxi, China;
| |
Collapse
|
17
|
Peña Palomino PA, Black KC, Ressl S. Pleiotropy of C1QL proteins across physiological systems and their emerging role in synapse homeostasis. Biochem Soc Trans 2023:233015. [PMID: 37140354 DOI: 10.1042/bst20220439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
The C1q/TNF superfamily of proteins engages in a pleiotropy of physiological functions associated with various diseases. C1QL proteins demonstrate important protective and regulatory roles in the endocrine, immune, cardiovascular, and nervous systems in both human and rodent studies. Studies in the central nervous system (CNS), adipose, and muscle tissue reveal several C1QL protein and receptor pathways altering multiple cellular responses, including cell fusion, morphology, and adhesion. This review examines C1QL proteins across these systems, summarizing functional and disease associations and highlighting cellular responses based on in vitro and in vivo data, receptor interaction partners, and C1QL-associated protein signaling pathways. We highlight the functions of C1QL proteins in organizing CNS synapses, regulating synapse homeostasis, maintaining excitatory synapses, and mediating signaling and trans-synaptic connections. Yet, while these associations are known, present studies provide insufficient insight into the underlying molecular mechanism of their pleiotropy, including specific protein interactions and functional pathways. Thus, we suggest several areas for more in-depth and interdisciplinary hypothesis testing.
Collapse
Affiliation(s)
- Perla A Peña Palomino
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 208047, U.S.A
| | - Kylie C Black
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 208047, U.S.A
| | - Susanne Ressl
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 208047, U.S.A
| |
Collapse
|
18
|
Barbieri D, Goicoechea M, Verde E, García-Prieto A, Verdalles Ú, Pérez de José A, Delgado A, Sánchez-Niño MD, Ortiz A. Obesity, chronic kidney disease progression and the role of the adipokine C1q/TNF related protein-3. Nefrologia 2023; 43:328-334. [PMID: 36517365 DOI: 10.1016/j.nefroe.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/07/2022] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION AND AIMS Obesity is a risk factor for incident chronic kidney disease (CKD). C1q/TNF related protein 3 (CTRP3) is an adipokine with multiple effects and may modulate the association between obesity and vascular diseases. The aim of the study is to explore potential links between obesity, CTRP3 levels and CKD progression. METHODS Patients with stage 3 and 4 CKD without previous cardiovascular events were enrolled and divided into groups according to body mass index (BMI) and sex. Demographic, clinical, analytical data and CTRP3 levels were collected at baseline. During follow-up, renal events (defined as dialysis initiation, serum creatinine doubling or a 50% decrease in estimated glomerular filtration rate were registered). RESULTS 81 patients were enrolled. 27 were obese and 54 non-obese. Baseline CTRP3 was similar between both groups (90.1±23.8 vs 84.5±6.2; p=0.28). Of the sum, 54 were men and 27 women, with higher CTRP3 in women (81.4±24.7 vs 106±24.7;p<0.01). During a mean follow-up of 68 months, 15 patients had a renal event. Patients in the higher CTRP3 tertile had less events but without statistical significance (p=0.07). Obese patients in the higher CTRP3 tertile significantly had less renal events (p=0.049). By multiple regression analysis CTRP3 levels could not predict renal events (HR 0.98; CI95% 0.96-1.06). CONCLUSIONS CTRP3 levels are higher in woman than men in patients with CKD, with similar levels between obese and non obese. Higher CTRP3 levels at baseline were associated with better renal outcomes in obese patients.
Collapse
Affiliation(s)
- Diego Barbieri
- Nephrology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | - Marian Goicoechea
- Nephrology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Eduardo Verde
- Nephrology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ana García-Prieto
- Nephrology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Úrsula Verdalles
- Nephrology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ana Pérez de José
- Nephrology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Andrés Delgado
- Nephrology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Alberto Ortiz
- Nephrology Department, ISS-Fundación Jimenez Díaz, Univerisdad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Zhang H, Zhang-Sun ZY, Xue CX, Li XY, Ren J, Jiang YT, Liu T, Yao HR, Zhang J, Gou TT, Tian Y, Lei WR, Yang Y. CTRP family in diseases associated with inflammation and metabolism: molecular mechanisms and clinical implication. Acta Pharmacol Sin 2023; 44:710-725. [PMID: 36207402 PMCID: PMC10042840 DOI: 10.1038/s41401-022-00991-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/27/2022] [Indexed: 11/08/2022]
Abstract
C1q/tumor necrosis factor (TNF) related proteins (CTRPs) is a newly discovered adipokine family with conservative structure and ubiquitous distribution and is secreted by adipose tissues. Recently, CTRPs have attracted increasing attention due to the its wide-ranging effects upon inflammation and metabolism. To-date, 15 members of CTRPs (CTRP1-15) with the characteristic C1q domain have been characterized. Earlier in-depth phenotypic analyses of mouse models of CTRPs deficiency have also unveiled ample function of CTRPs in inflammation and metabolism. This review focuses on the rise of CTRPs, with a special emphasis on the latest discoveries with regards to the effects of the CTRP family on inflammation and metabolism as well as related diseases. We first introduced the structure of characteristic domain and polymerization of CTRPs to reveal its pleiotropic biological functions. Next, intimate association of CTRP family with inflammation and metabolism, as well as the involvement of CTRPs as nodes in complex molecular networks, were elaborated. With expanding membership of CTRP family, the information presented here provides new perspectives for therapeutic strategies to improve inflammatory and metabolic abnormalities.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Zi-Yin Zhang-Sun
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Cheng-Xu Xue
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xi-Yang Li
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yu-Ting Jiang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Tong Liu
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Hai-Rong Yao
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Juan Zhang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Tian-Tian Gou
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Wang-Rui Lei
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
20
|
Zhang W, Chen Y, Pei H. C1q and central nervous system disorders. Front Immunol 2023; 14:1145649. [PMID: 37033981 PMCID: PMC10076750 DOI: 10.3389/fimmu.2023.1145649] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
C1q is a crucial component of the complement system, which is activated through the classical pathway to perform non-specific immune functions, serving as the first line of defense against pathogens. C1q can also bind to specific receptors to carry out immune and other functions, playing a vital role in maintaining immune homeostasis and normal physiological functions. In the developing central nervous system (CNS), C1q functions in synapse formation and pruning, serving as a key player in the development and homeostasis of neuronal networks in the CNS. C1q has a close relationship with microglia and astrocytes, and under their influence, C1q may contribute to the development of CNS disorders. Furthermore, C1q can also have independent effects on neurological disorders, producing either beneficial or detrimental outcomes. Most of the evidence for these functions comes from animal models, with some also from human specimen studies. C1q is now emerging as a promising target for the treatment of a variety of diseases, and clinical trials are already underway for CNS disorders. This article highlights the role of C1q in CNS diseases, offering new directions for the diagnosis and treatment of these conditions.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of General Practice, Xingyang Sishui Central Health Center, Zhengzhou, China
| | - Yuan Chen
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Pei
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
El Husseini K, Poté N, Jaillet M, Mordant P, Mal H, Frija-Masson J, Borie R, Cazes A, Crestani B, Mailleux A. [Adipocytes, adipokines and metabolic alterations in pulmonary fibrosis]. Rev Mal Respir 2023; 40:225-229. [PMID: 36740493 DOI: 10.1016/j.rmr.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal respiratory disease characterized by severe remodeling of the lung parenchyma, with an accumulation of activated myofibroblasts and extracellular matrix, along with aberrant cellular differentiation. Within the subpleural fibrous zones, ectopic adipocyte deposits often appear. In addition, alterations in lipid homeostasis have been associated with IPF pathophysiology. In this mini-review, we will discuss the potential involvement of the adipocyte secretome and its paracrine or endocrine-based contribution to the pathophysiology of IPF, via protein or lipid mediators in particular.
Collapse
Affiliation(s)
- K El Husseini
- Service de pneumologie A, Hôpital Bichat, AP-HP ; Inserm Unit 1152, Université de Paris, Paris, France; Inserm Unité 1152 - PHERE, Université de Paris, Paris, France.
| | - N Poté
- Service d'anatomopathologie, Hôpital Bichat, AP-HP ; Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| | - M Jaillet
- Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| | - P Mordant
- Service de chirurgie vasculaire et thoracique, Hôpital Bichat, AP-HP, Paris, France
| | - H Mal
- Service de pneumologie B, Hôpital Bichat, AP-HP ; Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| | - J Frija-Masson
- Service de physiologie-explorations fonctionnelles respiratoires, Hôpital Bichat, AP-HP, Paris, France
| | - R Borie
- Service de pneumologie A, Hôpital Bichat, AP-HP ; Inserm Unit 1152, Université de Paris, Paris, France
| | - A Cazes
- Service d'anatomopathologie, Hôpital Bichat, AP-HP ; Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| | - B Crestani
- Service de pneumologie A, Hôpital Bichat, AP-HP ; Inserm Unit 1152, Université de Paris, Paris, France; Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| | - A Mailleux
- Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| |
Collapse
|
22
|
He L, Zhu C, Dou H, Yu X, Jia J, Shu M. Keloid Core Factor CTRP3 Overexpression Significantly Controlled TGF- β1-Induced Propagation and Migration in Keloid Fibroblasts. DISEASE MARKERS 2023; 2023:9638322. [PMID: 37091895 PMCID: PMC10115533 DOI: 10.1155/2023/9638322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 04/25/2023]
Abstract
Purpose Keloid is a type of benign fibrous proliferative tumor characterized by excessive scarring. C1q/TNF-related protein 3 (CTRP3) has been proven to possess antifibrotic effect. Here, we explored the role of CTRP3 in keloid. In the current research, we examined the influence of CTRP3 on keloid fibroblasts (KFs) and investigated the potential molecular mechanism. Methods KF tissue specimens and adjacent normal fibroblast (NF) tissues were collected cultured from 10 keloid participants. For the TGF-β1 stimulation group, KFs were processed with human recombinant TGF-β1. Cell transfection of pcDNA3.1-CTRP3 or pcDNA3.1 was performed. The siRNA of CTRP3 (si-CTRP3) or negative control siRNA (si-scramble) was transfected into KFs. Results CTRP3 was downregulated in keloid tissues and KFs. CTRP3 overexpression significantly controlled TGF-β1-induced propagation and migration in KFs. Col I, α-SMA, and fibronectin mRNA and protein levels were enhanced by TGF-β1 stimulation, whereas they were inhibited by CTRP3 overexpression. In contrast, CTRP3 knockdown exhibited the opposite effect. In addition, CTRP3 attenuated TGF-β receptors TRI and TRII in TGF-β1-induced KFs. Furthermore, CTRP3 prevented TGF-β1-stimulated nuclear translocation of smad2 and smad3 and suppressed the expression levels of p-smad2 and p-smad3 in KFs. Conclusion CTRP3 exerted an antifibrotic role through inhibiting proliferation, migration, and ECM accumulation of KFs via regulating TGF-β1/Smad signal path.
Collapse
Affiliation(s)
- Lin He
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chan Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Huicong Dou
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xueyuan Yu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jing Jia
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Maoguo Shu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
23
|
Yu H, Zhang Z, Li G, Feng Y, Xian L, Bakhsh F, Xu D, Xu C, Vong T, Wu B, Selaru FM, Wan F, Donowitz M, Wong GW. Adipokine C1q/Tumor Necrosis Factor- Related Protein 3 (CTRP3) Attenuates Intestinal Inflammation Via Sirtuin 1/NF-κB Signaling. Cell Mol Gastroenterol Hepatol 2022; 15:1000-1015. [PMID: 36592863 PMCID: PMC10040965 DOI: 10.1016/j.jcmgh.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS The adipokine CTRP3 has anti-inflammatory effects in several nonintestinal disorders. Although serum CTRP3 is reduced in patients with inflammatory bowel disease (IBD), its function in IBD has not been established. Here, we elucidate the function of CTRP3 in intestinal inflammation. METHODS CTRP3 knockout (KO) and overexpressing transgenic (Tg) mice, along with their corresponding wild-type littermates, were treated with dextran sulfate sodium for 6-10 days. Colitis phenotypes and histologic data were analyzed. CTRP3-mediated signaling was examined in murine and human intestinal mucosa and mouse intestinal organoids derived from CTRP3 KO and Tg mice. RESULTS CTRP3 KO mice developed more severe colitis, whereas CTRP3 Tg mice developed less severe colitis than wild-type littermates. The deletion of CTRP3 correlated with decreased levels of Sirtuin-1 (SIRT1), a histone deacetylase, and increased levels of phosphorylated/acetylated NF-κB subunit p65 and proinflammatory cytokines tumor necrosis factor-α and interleukin-6. Results from CTRP3 Tg mice were inverse to those from CTRP3 KO mice. The addition of SIRT1 activator resveratrol to KO intestinal organoids and SIRT1 inhibitor Ex-527 to Tg intestinal organoids suggest that SIRT1 is a downstream effector of CTRP3-related inflammatory changes. In patients with IBD, a similar CTRP3/SIRT1/NF-κB relationship was observed. CONCLUSIONS CTRP3 expression levels correlate negatively with intestinal inflammation in acute mouse colitis models and patients with IBD. CTRP3 may attenuate intestinal inflammation via SIRT1/NF-κB signaling. The manipulation of CTRP3 signaling, including through the use of SIRT1 activators, may offer translational potential in the treatment of IBD.
Collapse
Affiliation(s)
- Huimin Yu
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Zixin Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gangping Li
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yan Feng
- Department of Pathology and Laboratory Medicine, Pennsylvania Hospital, Penn Medicine, Philadelphia, Pennsylvania
| | - Lingling Xian
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fatemeh Bakhsh
- Department of Biophysics and Biophysics and Biochemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dongqing Xu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tyrus Vong
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bin Wu
- Department of Biophysics and Biophysics and Biochemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Florin M Selaru
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Mark Donowitz
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
Lv C, Zhang Q, Zhao L, Yang J, Zou Z, Zhao Y, Li C, Sun X, Lin X, Jin M. African swine fever virus infection activates inflammatory responses through downregulation of the anti-inflammatory molecule C1QTNF3. Front Immunol 2022; 13:1002616. [PMID: 36311798 PMCID: PMC9598424 DOI: 10.3389/fimmu.2022.1002616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is the most dangerous pig disease, and causes enormous economic losses in the global pig industry. However, the mechanisms of ASF virus (ASFV) infection remains largely unclear. Hence, this study investigated the host response mechanisms to ASFV infection. We analyzed the differentially expressed proteins (DEPs) between serum samples from ASFV-infected and uninfected pigs using quantitative proteomics. Setting the p-value < 0.05 and |log2 (fold change)| > 1.5, we identified 173 DEPs, comprising 57 upregulated and 116 downregulated proteins, which belonged to various biological processes and pathways based on the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. The enriched pathways include immune responses, metabolism, and inflammation signaling pathways. Western blot analysis validated the DEPs identified using quantitative proteomics. Furthermore, our proteomics data showed that C1QTNF3 regulated the inflammatory signaling pathway. C1QTNF3 knockdown led to the upregulation of pro-inflammatory factors IL-1β, IL-8, and IL-6, thus inhibiting ASFV replication. These results indicated that C1QTNF3 was critical for ASFV infection. In conclusion, this study revealed the molecular mechanisms underlying the host-ASFV interaction, which may contribute to the development of novel antiviral strategies against ASFV infection in the future.
Collapse
Affiliation(s)
- Changjie Lv
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- New-onset department, Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
- Department of pig disease prevention and control, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qiang Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Li Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jingyu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhong Zou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- New-onset department, Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Ya Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of pig disease prevention and control, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chengfei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of pig disease prevention and control, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaomei Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of pig disease prevention and control, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xian Lin
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Xian Lin, ; Meilin Jin,
| | - Meilin Jin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- New-onset department, Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
- Department of pig disease prevention and control, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Xian Lin, ; Meilin Jin,
| |
Collapse
|
25
|
Hu B, Qian X, Qian P, Xu G, Jin X, Chen D, Xu L, Tang J, Wu W, Li W, Zhang J. Advances in the functions of CTRP6 in the development and progression of the malignancy. Front Genet 2022; 13:985077. [PMID: 36313428 PMCID: PMC9596804 DOI: 10.3389/fgene.2022.985077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
CTRP6, a member of the C1q/TNF-related protein (CTRP) family, has gained increasing scientific interest because of its regulatory role in tumor progression. Previous studies have shown that CTRP6 is closely involved in regulating various pathophysiological processes, including glucose and lipid metabolism, cell proliferation, apoptosis, and inflammation. To date, CTRP6 has been identified as related to eight different malignancies, including lung cancer, oral cancer, gastric cancer, colon cancer, liver cancer, bladder cancer, renal cancer, and ovarian cancer. CTRP6 is reported to be associated with tumor progression by activating a series of related signal networks. This review article mainly discusses the biochemistry and pleiotropic pathophysiological functions of CTRP6 as a new molecular mediator in carcinogenesis, hoping that the information summarized herein could make a modest contribution to the development of novel cancer treatments in the future.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Xiaolan Qian
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Ping Qian
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
| | - Xin Jin
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
| | - Deqing Chen
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
| | - Long Xu
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
| | - Jie Tang
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Wenjing Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Wanlu Li
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
- *Correspondence: Wanlu Li, ; Jin Zhang,
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
- *Correspondence: Wanlu Li, ; Jin Zhang,
| |
Collapse
|
26
|
Fadaei R, Goodarzi G, Yarahmadi S, Allahyari P, Fallah S, Moradi N. Circulating Levels of C1q/TNF-Related Protein 3 (CTRP3) and CTRP9 in Gestational Diabetes and Their Association with Insulin Resistance and Inflammatory Cytokines. Lab Med 2022; 54:262-269. [PMID: 36219707 DOI: 10.1093/labmed/lmac096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Abstract
Objective
Gestational diabetes mellitus (GDM) is closely related to obesity, adipose tissue, and adipokines. Adiponectin-homologous adipokines with anti-inflammatory properties, including C1q/TNF-related protein 3 (CTRP3) and CTRP9, regulate glucose and lipid metabolism, which was measured in pregnant women with GDM with the aim to assess their circulating levels and their relation with inflammatory cytokines and other biochemical data.
Methods
Serum levels of CTRP3, CTRP9, adiponectin, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were measured in 43 subjects with GDM and 42 healthy controls by enzyme-linked immunosorbent assay.
Results
Serum levels of adiponectin and CTRP3 were lower in GDM subjects than in controls, whereas CTRP9, TNF-α, and IL-6 showed higher concentrations in subjects with GDM than in controls. In the subjects with GDM, there was a significant association of CTRP3 with homeostasis model assessment of insulin resistance (HOMA-IR), body mass index, and triglycerides, whereas CTRP9 is associated with TNF-α and HOMA-IR.
Conclusion
The differences in the assessed levels of CTRP3 and CTRP9 suggest a possible relation with the pathogenesis of GDM, in particular insulin resistance, which showed significant association with both adipokines.
Collapse
Affiliation(s)
- Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Golnoosh Goodarzi
- Department of Nutrition, Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Sahar Yarahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences , Tehran , Iran
| | - Pooneh Allahyari
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Central Tehran Branch , Tehran , Iran
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences , Tehran , Iran
| | - Nariman Moradi
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences , Sanandaj , Iran
| |
Collapse
|
27
|
Karapetyan L, Gooding W, Li A, Yang X, Knight A, Abushukair HM, Vargas De Stefano D, Sander C, Karunamurthy A, Panelli M, Storkus WJ, Tarhini AA, Kirkwood JM. Sentinel Lymph Node Gene Expression Signature Predicts Recurrence-Free Survival in Cutaneous Melanoma. Cancers (Basel) 2022; 14:4973. [PMID: 36291758 PMCID: PMC9599365 DOI: 10.3390/cancers14204973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
We sought to develop a sentinel lymph node gene expression signature score predictive of disease recurrence in patients with cutaneous melanoma. Gene expression profiling was performed on SLN biopsies using U133A 2.0 Affymetrix gene chips. The top 25 genes associated with recurrence-free survival (RFS) were selected and a penalized regression function was used to select 12 genes with a non-zero coefficient. A proportional hazards regression model was used to evaluate the association between clinical covariates, gene signature score, and RFS. Among the 45 patients evaluated, 23 (51%) had a positive SLN. Twenty-one (46.7%) patients developed disease recurrence. For the top 25 differentially expressed genes (DEG), 12 non-zero penalized coefficients were estimated (CLGN, C1QTNF3, ADORA3, ARHGAP8, DCTN1, ASPSCR1, CHRFAM7A, ZNF223, PDE6G, CXCL3, HEXIM1, HLA-DRB). This 12-gene signature score was significantly associated with RFS (p < 0.0001) and produced a bootstrap C index of 0.888. In univariate analysis, Breslow thickness, presence of primary tumor ulceration, SLN positivity were each significantly associated with RFS. After simultaneously adjusting for these prognostic factors in relation to the gene signature, the 12-gene score remained a significant independent predictor for RFS (p < 0.0001). This SLN 12-gene signature risk score is associated with melanoma recurrence regardless of SLN status and may be used as a prognostic factor for RFS.
Collapse
Affiliation(s)
- Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - William Gooding
- Hillman Cancer Center, Biostatistics Facility, Pittsburgh, PA 15213, USA
| | - Aofei Li
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Xi Yang
- Department of Medicine, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew Knight
- Department of Medicine, Division of General Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hassan M. Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Danielle Vargas De Stefano
- Department of Pathology, Division of Pediatric Pathology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Cindy Sander
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Arivarasan Karunamurthy
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Departments of Dermatology and Pathology, Divisions of Dermatopathology and Molecular Genetic Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | - Walter J. Storkus
- Departments of Dermatology, Immunology, Pathology and Bioengineering, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Ahmad A. Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M. Kirkwood
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medicine, Division of Hematology/Oncology; University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
28
|
Exenatide increases CTRP3 gene expression in adipose cells by inhibiting adipogenesis and induces apoptosis. Toxicol In Vitro 2022; 85:105479. [PMID: 36152787 DOI: 10.1016/j.tiv.2022.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Considering the rapidly increasing prevalence of obesity worldwide, the number of weight control drugs is very few. Incretin-based therapies are currently being developed to achieve weight control, and Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RA) are used in incretin-based therapies. This study aimed to investigate the cytotoxicity of exenatide, a GLP-1A, on 3T3-L1 adipocytes and the effect of exenatide on the expression of adipogenesis-related genes, insulin and glucose levels, and apoptosis. Cytotoxic activity of exenatide on 3T3-L1 adipocytes was determined by MTT method. Gene expression levels were determined by qPCR. Apoptosis studies were performed on the Muse Cell Analyzer. C1q/TNF-related protein-3 (CTRP3) expression levels were found to be higher in exenatide treated adipocyte cells than in control cells (p < 0.001). Adipocyte cells treated with exenatide were found to have lower PPAR-γ gene expression levels when compared to control adipocyte cells (p < 0.001). Intracellular insulin (p < 0.001) and glucose levels were higher in 3T3-L1 adipocytes treated with exenatide compared to control adipocyte cells. Total apoptosis increased approximately 1.5 times as a result of exenatide administration. The increase in CTRP3 gene expression, which is thought to be a new biomarker for obesity, and the decrease in PPAR-γ gene expression indicate that exenatide is a promising new pharmacotherapeutic agent in the treatment of obesity by regulating the expression of genes related to adipogenesis and lipogenesis and inducing apoptosis.
Collapse
|
29
|
Mohamed MK, Atef AA, Moemen LA, Abdel Azeem AA, Mohalhal IA, Taha AM. Association study of HIF-1α rs11549465 and VEGF rs3025039 genetic variants with diabetic retinopathy in Egyptian patients: crosslinks with angiogenic, inflammatory, and anti-inflammatory markers. J Genet Eng Biotechnol 2022; 20:122. [PMID: 35969320 PMCID: PMC9378806 DOI: 10.1186/s43141-022-00401-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022]
Abstract
Background Genetic factors are implicated in the progression of DR—a global cause of blindness. Hence, the current work investigated the association of HIF-1α rs11549465 and VEGF rs3025039 genetic variants with the different stages of retinopathy among T2DM Egyptian patients. The crosslinks of these variants were explored with angiogenesis (VEGF), inflammation (AGEP and VCAM-1), and anti-inflammation (CTRP3) markers. Two hundred eighty-eight subjects were recruited in this study: 72 served as controls and 216 were having T2DM and were divided into diabetics without retinopathy (DWR), diabetics with non-proliferative retinopathy (NPDR), and diabetics with proliferative retinopathy (PDR). The genetic variants were analyzed using PCR-RFLP and their associations with NPDR and PDR were statistically tested. The circulating levels of AGEP, VCAM-1, HIF-1α, VEGF, and CTRP3 were assayed followed by analyzing their associations statistically with the studied variants. Results Only HIF-1α rs11549465 genetic variant (recessive model) was significantly associated with the development of NPDR among T2DM patients (p < 0.025) with a significant correlation with the circulating HIF-1α level (p < 0.0001). However, this variant was not associated with PDR progression. Neither HIF-1α rs11549465 nor VEGF rs3025039 genetic variants were associated with the PDR progression. The circulating AGEP, VCAM-1, HIF-1α, and VEGF were significantly elevated (p < 0.0001) while the CTRP3 was significantly decreased (p < 0.0001) in NPDR and PDR groups. The HIF-1α rs11549465 CT and/or TT genotype carriers were significantly associated with AGEP and VCAM-1 levels in the NPDR group, while it showed a significant association with the CTRP3 level in the PDR group. The VEGF rs3025039 TT genotype carriers showed only a significant association with the CTRP3 level in the PDR group. Conclusion The significant association of HIF-1α rs11549465 other than VEGF rs3025039 with the initiation of NPDR in T2DM Egyptian patients might protect them from progression to the proliferative stage via elevating circulating HIF-1α. However, this protective role was not enough to prevent the development of NPDR because of enhancing angiogenesis and inflammation together with suppressing anti-inflammation. The non-significant association of HIF-1α rs11549465 with PDR among T2DM patients could not make this variant a risk factor for PDR progression.
Collapse
Affiliation(s)
| | - Azza A Atef
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Leqaa A Moemen
- Biochemistry Unit, Research Institute of Ophthalmology, Giza, Egypt
| | | | - Islam A Mohalhal
- Surgical Retina, Research Institute of Ophthalmology, Giza, Egypt
| | - Alshaimaa M Taha
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
30
|
Du C, Zhu Y, Yang Y, Mu L, Yan X, Wu M, Zhou C, Wu H, Zhang W, Wu Y, Zhang G, Hu Y, Ren Y, Shi Y. C1q/tumour necrosis factor-related protein-3 alleviates high-glucose-induced lipid accumulation and necroinflammation in renal tubular cells by activating the adenosine monophosphate-activated protein kinase pathway. Int J Biochem Cell Biol 2022; 149:106247. [PMID: 35753650 DOI: 10.1016/j.biocel.2022.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Lipid accumulation and progressive necroinflammation play pivotal roles in the development of diabetic nephropathy. C1q tumour necrosis factor-related protein-3 (CTRP3) is an adipokine with pleiotropic functions in cell proliferation, glucose and lipid metabolism, and inflammation. However, the mechanism and involvement of CTRP3 in lipid metabolism and the necroinflammation of renal tubular cells remain unclear. Here, we report that CTRP3 expression decreased in a time- and concentration-dependent manner in high glucose-stimulated HK-2 cells. We noted that the overexpression of CTRP3 or recombinant CTRP3 (rCTRP3) treatment prevented high glucose-induced lipid accumulation by inhibiting the expression of sterol regulatory element-binding protein-1 and increasing the expression of peroxisome proliferator-activated receptor-α and ATP-binding cassette A1. Moreover, the nucleotide-binding oligomerisation domain-like receptor protein 3-mediated inflammatory response and mixed lineage kinase domain-like protein-dependent necroinflammation were inhibited by CTRP3 overexpression or rCTRP3 treatment in HK-2 cells cultured in high glucose. Furthermore, lipotoxicity-induced by palmitic acid was found to be involved in necroinflammation in HK-2 cells, and CTRP3 displayed the same protective effect. CTRP3 also activated the adenosine monophosphate-activated protein kinase (AMPK) pathway, whereas adenine 9-β-D-arabinofuranoside, an AMPK inhibitor, replicated the protective effects of CTRP3. Besides, using kidney biopsies from patients with diabetes, we found that decreased CTRP3 expression was accompanied by increased lipid deposition, as well as the structural and functional injury of renal tubular cells. Our findings demonstrate that CTRP3 affects lipid metabolism and necroinflammation in renal tubular cells via the AMPK signalling pathway. Thus, CTRP3 may be a potential therapeutic target in diabetic renal injury.
Collapse
Affiliation(s)
- Chunyang Du
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China; Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan Zhu
- Laboratorical center for Electron Microscopy, Hebei Medical University, Shijiazhuang, China
| | - Yan Yang
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Lin Mu
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Xue Yan
- Department of Pediatrics, the 2nd Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming Wu
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Chenming Zhou
- Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China; Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wei Zhang
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Yanhui Wu
- Clinical Medicine, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Guoyu Zhang
- Clinical Medicine, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yue Hu
- Clinical Medicine, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yunzhuo Ren
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China; Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China; Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
31
|
Micallef P, Vujičić M, Wu Y, Peris E, Wang Y, Chanclón B, Ståhlberg A, Cardell SL, Wernstedt Asterholm I. C1QTNF3 is Upregulated During Subcutaneous Adipose Tissue Remodeling and Stimulates Macrophage Chemotaxis and M1-Like Polarization. Front Immunol 2022; 13:914956. [PMID: 35720277 PMCID: PMC9202579 DOI: 10.3389/fimmu.2022.914956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 01/08/2023] Open
Abstract
The adipose tissue undergoes substantial tissue remodeling during weight gain-induced expansion as well as in response to the mechanical and immunological stresses from a growing tumor. We identified the C1q/TNF-related protein family member C1qtnf3 as one of the most upregulated genes that encode secreted proteins in tumor-associated inguinal adipose tissue - especially in high fat diet-induced obese mice that displayed 3-fold larger tumors than their lean controls. Interestingly, inguinal adipose tissue C1qtnf3 was co-regulated with several macrophage markers and chemokines and was primarily expressed in fibroblasts while only low levels were detected in adipocytes and macrophages. Administration of C1QTNF3 neutralizing antibodies inhibited macrophage accumulation in tumor-associated inguinal adipose tissue while tumor growth was unaffected. In line with this finding, C1QTNF3 exerted chemotactic actions on both M1- and M2-polarized macrophages in vitro. Moreover, C1QTNF3 treatment of M2-type macrophages stimulated the ERK and Akt pathway associated with increased M1-like polarization as judged by increased expression of M1-macrophage markers, increased production of nitric oxide, reduced oxygen consumption and increased glycolysis. Based on these results, we propose that macrophages are recruited to adipose tissue sites with increased C1QTNF3 production. However, the impact of the immunomodulatory effects of C1QTNF3 in adipose tissue remodeling warrants future investigations.
Collapse
Affiliation(s)
- Peter Micallef
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Milica Vujičić
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Yanling Wu
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Eduard Peris
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Ying Wang
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Belén Chanclón
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
32
|
Xue K, Shao S, Fang H, Ma L, Li C, Lu Z, Wang G. Adipocyte-Derived CTRP3 Exhibits Anti-Inflammatory Effects via LAMP1-STAT3 Axis in Psoriasis. J Invest Dermatol 2022; 142:1349-1359.e8. [PMID: 34687744 DOI: 10.1016/j.jid.2021.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022]
Abstract
Psoriasis is a systemic disease that is associated with metabolic disorders, which may contribute to abnormal adipokine levels. However, the underlying mechanism is largely unknown. Here, we investigated the role of the adipokine CTRP3 in the pathogenesis of psoriasis and comorbidities. The circulating CTRP3 level in patients with psoriasis was significantly lower than that in healthy controls and negatively correlated with metabolic risk factors. Rescuing CTRP3 levels with the GLP-1 receptor agonist exendin-4 in diet-induced obese mice could alleviate its more severe psoriatic symptoms in an imiquimod-induced mouse model. Topical application of CTRP3 also exerted a protective effect on imiquimod-induced normal diet mice. Moreover, CTRP3 could directly inhibit the inflammatory responses of psoriatic keratinocytes by blocking phosphorylation of signal transducer and activator of transcription 3 via LAMP1 in vitro. We identified the critical psoriatic cytokines, including IL-17A and TNF-α, that impaired adipocyte differentiation and sufficient CTRP3 secretion. In sum, our study reveals that adipocyte dysfunction and low level of CTRP3 caused by IL-17A exacerbates psoriasis progression and related metabolic syndrome, implying a mechanism underlying the vicious cycle between psoriasis and metabolic disorders. Pharmacological agents that improve CTRP3 level in obese patients with psoriasis may be considered as a potential strategy for psoriasis treatment.
Collapse
Affiliation(s)
- Ke Xue
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lirong Ma
- College of Life Sciences, Northwest University, Xi'an, China
| | - Caixia Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
33
|
Barbieri D, Goicoechea M, Verde E, García-Prieto A, Verdalles Ú, Pérez de José A, Delgado A, Sánchez-Niño MD, Ortiz A. Obesity, chronic kidney disease progression and the role of the adipokine C1q/TNF related protein-3. Nefrologia 2022. [DOI: 10.1016/j.nefro.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
34
|
Thomas KL, Root CL, Peterson JM. Transgenic overexpression of CTRP3 does not prevent alcohol induced hepatic steatosis in female mice. PLoS One 2022; 17:e0258557. [PMID: 34995284 PMCID: PMC8740976 DOI: 10.1371/journal.pone.0258557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Alcoholic liver disease (ALD) is one of the leading causes of morbidity and mortality from hepatic complications. C1q/TNF-related protein 3 (CTRP3) is an adiponectin paralog and, in male mice, increased levels of circulating CTRP3 prevents ALD. Therefore, the purpose of this study was to replicate the observed hepatoprotective effect of elevated circulating CTRP3 levels in female mice. Twelve-week-old female wildtype and CTRP3 overexpressing transgenic mice were fed the Lieber-DeCarli alcohol-containing liquid diet (5% vol/vol) for 6 weeks. Unlike the previous study with male mice, CTRP3 overexpression provided no attenuation to alcohol-induced hepatic lipid accumulation, cytokine production, or overall mortality. In conclusion, there appears to be a clear sex-specific effect of CTRP3 in response to alcohol consumption that needs to be explored further.
Collapse
Affiliation(s)
- Kristy L. Thomas
- Department of Health Sciences, East Tennessee State University, Johnson City, TN, United States of America
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Callie L. Root
- Department of Health Sciences, East Tennessee State University, Johnson City, TN, United States of America
| | - Jonathan M. Peterson
- Department of Health Sciences, East Tennessee State University, Johnson City, TN, United States of America
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| |
Collapse
|
35
|
Yan Z, Cao X, Wang C, Liu S, Li Y, Lu G, Yan W, Guo R, Zhao D, Cao J, Xu Y. C1q/tumor necrosis factor-related protein-3 improves microvascular endothelial function in diabetes through the AMPK/eNOS/NO· signaling pathway. Biochem Pharmacol 2022; 195:114745. [PMID: 34454930 DOI: 10.1016/j.bcp.2021.114745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023]
Abstract
The repair of vascular endothelial cell dysfunction is an encouraging approach for the treatment of vascular complications associated with diabetes. It has been demonstrated that members of C1q/tumor necrosis factor-related protein (CTRP) family may improve endothelial function. Nevertheless, the protective properties of CTRPs in diabetic microvascular complications continue to be mostly unknown. Here, we demonstrate that the C1q-like globular domain of CTRP3, CTRP5, and CTRP9 (gCTRP3, 5, 9) exerted a vasorelaxant effect on the microvasculature, of which gCTRP3 was the most powerful one. In a murine model of type 2 diabetes mellitus, serum gCTRP3 level and endothelial function decreased markedly compared with controls. Two weeks of gCTRP3 treatment (0.5 μg/g/d) enhanced endothelium-dependent relaxation in microvessels, increased nitric oxide (NO·) production, and reduced retinal vascular leakage. In addition, Western blotting in human retinal microvascular endothelial cells indicated that gCTRP3 triggered AMP-activated protein kinase-α (AMPKα), hence increasing the endothelial NO synthase (eNOS) level and NO· production. In addition, incubation with gCTRP3 in vitro ameliorated the endothelial dysfunction induced by high glucose in the branch of the mesenteric artery. Blockade of either eNOS or AMPKα completely abolished the effects of gCTRP3 described above. Taken together, we demonstrate for the first time that gCTRP3 improves impaired vasodilatation of microvasculature in diabetes by ameliorating endothelial cell function through the AMPK/eNOS/NO· signaling pathway. This finding may suggest an effective intervention against diabetes-associated microvascular complications.
Collapse
Affiliation(s)
- Zheyi Yan
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, China
| | - Xiaoming Cao
- Department of Orthopedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Chunfang Wang
- Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanjie Li
- Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gan Lu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States; Laboratory of Emergency Medicine, Department of Emergency Medicine, Sichuan University West China Hospital, Chengdu, China
| | - Wenjun Yan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States; Department of Cardiology, Xijing Hospital, Xian, China
| | - Rui Guo
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States; Morphology Laboratory, Shanxi Medical University, Taiyuan, China
| | - Dajun Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States; Department of Cardiac Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
36
|
Sanaei R, Kularathna P, Taghavi N, Hooper J, Pagel C, Mackie E. Protease-activated receptor-2 promotes osteogenesis in skeletal mesenchymal stem cells at the expense of adipogenesis: Involvement of interleukin-6. Bone Rep 2021; 15:101113. [PMID: 34430676 PMCID: PMC8365448 DOI: 10.1016/j.bonr.2021.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 10/27/2022] Open
Abstract
Bone marrow mesenchymal stem cells (MSCs) give rise to osteoblasts and adipocytes, with an inverse relationship between the two. The MSCs from protease-activated receptor-2 knockout (PAR2 KO) mice have a reduced capacity to generate osteoblasts. Here we describe the observation that PAR2 KO osteoblastic cultures generate more adipocytes than wildtype (WT) cultures. Osteoblasts from PAR2 KO mice expressed lower levels of osteoblastic genes (Runx2, Col1a1 and Bglap), and higher levels of the adipocytic gene Pparg than WT osteoblasts. Bone marrow stromal cells from PAR2 KO mice generated fewer osteoblastic colonies (assessed by staining for alkaline phosphatase activity and mineral deposition) and more adipocytic (Oil Red-O positive) colonies than cultures from WT mice. Similarly, cultures of the bone marrow stromal cell line (Kusa 4b10) in which PAR2 was knocked down (F2rl1 KD), were less osteoblastic and more adipocytic than vector control cells. Putative regulators of PAR2-mediated osteogenesis and suppression of adipogenesis were identified in an RNA-sequencing (RNA-seq) investigation; these include C1qtnf3, Gpr35, Grem1, Snorc and Tcea3, which were more highly expressed, and Cnr1, Enpep, Hmgn5, Il6 and Ramp3 which were expressed at lower levels, in control than in F2rl1 KD cells. Interleukin-6 (IL-6) levels were higher in medium harvested from F2rl1 KD cells than from control cells, and a neutralising anti-IL-6 antibody reduced the number of adipocytes in F2rl1 KD cultures to that of control cultures. Thus, PAR2 appears to be a mediator of the reciprocal relationship between osteogenesis and adipogenesis, with IL-6 having a regulatory role in these PAR2-mediated effects.
Collapse
Affiliation(s)
- R. Sanaei
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - P.K. Kularathna
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - N. Taghavi
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - J.D. Hooper
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - C.N. Pagel
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - E.J. Mackie
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
37
|
Schreiter JS, Kurow LO, Langer S, Steinert M, Massier L. Effects of non-vascularized adipose tissue transplantation on its genetic profile. Adipocyte 2021; 10:131-141. [PMID: 33648423 PMCID: PMC7928050 DOI: 10.1080/21623945.2021.1889815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Subcutaneous adipose tissue (SAT) is recognized as a highly active metabolic and inflammatory tissue. Interestingly, adipose tissue transplantation is widely performed in plastic surgery via lipofilling, yet little is known about the gene alteration of adipocytes after transplantation. We performed an RNA-expression analysis of fat transplants before and after fat transplantation.In C57BL/6 N mice SAT was autologously transplanted. Samples of SAT were analysed before transplantation, 7, and 15 days after transplantation and gene expression profiles were measured.Analysis revealed that lipid metabolism-related genes were downregulated while inflammatory and extracellular matrix related genes were up-regulated 7 and 15 days after transplantation. When comparing gene expression profile 7 days after transplantation to 15 days after transplantation developmental pathways showed most changes.
Collapse
Affiliation(s)
| | - L. O Kurow
- Department of Orthopedics, Traumatology and Plastic Surgery
| | - S Langer
- Department of Orthopedics, Traumatology and Plastic Surgery
| | - M Steinert
- Department of Thoracic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - L Massier
- University Hospital Leipzig, Leipzig, Germany, Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
38
|
Maeda T. Alterations of hepatic gluconeogenesis and amino acid metabolism in CTRP3-deficient mice. Mol Biol Rep 2021; 49:1617-1622. [PMID: 34811637 DOI: 10.1007/s11033-021-06969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Adipose tissue secretes various adipocytokines that play important roles in lipid and glucose metabolism. C1q and tumor necrosis factor-related protein 3 (CTRP3) is a paralog of adiponectin, which has been extensively studied. Previously, we showed that epididymal white adipose tissue size is decreased in high fat diet-fed Ctrp3 knockout (KO) mice. Here, I examined metabolic roles of CTRP3 in non-obese mice under starvation conditions. METHODS AND RESULTS Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were increased in 20-h-fasted standard chow-fed Ctrp3 KO mice compared with wild-type (WT) controls. RT-qPCR analysis revealed that ALT1, AST2, and glucose-6-phosphatase mRNA expressions were increased in the liver of Ctrp3 KO mice after a 20-h fast. Upon intraperitoneal alanine administration, Ctrp3 KO mice showed a modest but significant increase in the conversion of alanine to glucose. To characterize hepatic metabolism in fasted Ctrp3 KO mice, I further analyzed metabolomic profiles in the liver. Unexpectedly, metabolome analysis of the liver of 20-h-fasted Ctrp3 KO mice revealed that the relative concentrations of 10 of the 20 amino acids were lower than in WT controls. The relative concentrations of ornithine and argininosuccinate, which are urea cycle intermediates, were also decreased in the Ctrp3 KO liver. CONCLUSIONS Taken together, my results indicate that CTRP3 has novel roles in regulating both gluconeogenesis and amino acid metabolism in the liver during starvation.
Collapse
Affiliation(s)
- Takashi Maeda
- Department of Anatomy and Cell Biology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
39
|
Cho Y, Kim HS, Kang D, Kim H, Lee N, Yun J, Kim YJ, Lee KM, Kim JH, Kim HR, Hwang YI, Jo CH, Kim JH. CTRP3 exacerbates tendinopathy by dysregulating tendon stem cell differentiation and altering extracellular matrix composition. SCIENCE ADVANCES 2021; 7:eabg6069. [PMID: 34797714 PMCID: PMC8604415 DOI: 10.1126/sciadv.abg6069] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 10/01/2021] [Indexed: 05/31/2023]
Abstract
Tendinopathy, the most common disorder affecting tendons, is characterized by chronic disorganization of the tendon matrix, which leads to tendon tear and rupture. The goal was to identify a rational molecular target whose blockade can serve as a potential therapeutic intervention for tendinopathy. We identified C1q/TNF-related protein-3 (CTRP3) as a markedly up-regulated cytokine in human and rodent tendinopathy. Overexpression of CTRP3 enhanced the progression of tendinopathy by accumulating cartilaginous proteoglycans and degenerating collagenous fibers in the mouse tendon, whereas CTRP3 knockdown suppressed the tendinopathy pathogenesis. Functional blockade of CTRP3 using a neutralizing antibody ameliorated overuse-induced tendinopathy of the Achilles and rotator cuff tendons. Mechanistically, CTRP3 elicited a transcriptomic pattern that stimulates abnormal differentiation of tendon stem/progenitor cells and ectopic chondrification as an effect linked to activation of Akt signaling. Collectively, we reveal an essential role for CTRP3 in tendinopathy and propose a potential therapeutic strategy for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Yongsik Cho
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Hyeon-Seop Kim
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Donghyun Kang
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Hyeonkyeong Kim
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Narae Lee
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Jihye Yun
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
- School of Medicine, CHA University, 13496 Seongnam, South Korea
| | - Yi-Jun Kim
- Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, 07985 Seoul, South Korea
| | - Kyoung Min Lee
- Foot and Ankle Division, Department of Orthopedic Surgery, Seoul National University Bundang Hospital, 13620 Seongnam, South Korea
| | - Jin-Hee Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 03080 Seoul, South Korea
| | - Hang-Rae Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 03080 Seoul, South Korea
| | - Young-il Hwang
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 03080 Seoul, South Korea
| | - Chris Hyunchul Jo
- Department of Orthopedic Surgery, Seoul Metropolitan Government–Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, 07061 Seoul, South Korea
| | - Jin-Hong Kim
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, 08826 Seoul, South Korea
| |
Collapse
|
40
|
Tang X, Cao Y, Arora G, Hwang J, Sajid A, Brown CL, Mehta S, Marín-López A, Chuang YM, Wu MJ, Ma H, Pal U, Narasimhan S, Fikrig E. The Lyme disease agent co-opts adiponectin receptor-mediated signaling in its arthropod vector. eLife 2021; 10:e72568. [PMID: 34783654 PMCID: PMC8639152 DOI: 10.7554/elife.72568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Adiponectin-mediated pathways contribute to mammalian homeostasis; however, little is known about adiponectin and adiponectin receptor signaling in arthropods. In this study, we demonstrate that Ixodes scapularis ticks have an adiponectin receptor-like protein (ISARL) but lack adiponectin, suggesting activation by alternative pathways. ISARL expression is significantly upregulated in the tick gut after Borrelia burgdorferi infection, suggesting that ISARL signaling may be co-opted by the Lyme disease agent. Consistent with this, RNA interference (RNAi)-mediated silencing of ISARL significantly reduced the B. burgdorferi burden in the tick. RNA-seq-based transcriptomics and RNAi assays demonstrate that ISARL-mediated phospholipid metabolism by phosphatidylserine synthase I is associated with B. burgdorferi survival. Furthermore, the tick complement C1q-like protein 3 interacts with ISARL, and B. burgdorferi facilitates this process. This study identifies a new tick metabolic pathway that is connected to the life cycle of the Lyme disease spirochete.
Collapse
Affiliation(s)
- Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Yongguo Cao
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
- Department of Clinical Veterinary Medicine, and Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchunChina
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Jesse Hwang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Courtney L Brown
- Yale Combined Program in the Biological and Biomedical Sciences, Yale UniversityNew HavenUnited States
| | - Sameet Mehta
- Yale Center for Genome Analysis, Yale UniversityNew HavenUnited States
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Ming-Jie Wu
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Hongwei Ma
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical UniversityShaanxiChina
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College ParkCollege ParkUnited States
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| |
Collapse
|
41
|
Gao YJ, Chen F, Zhang LJ. C1q-like 1 is frequently up-regulated in lung adenocarcinoma and contributes to the proliferation and invasion of tumor cells. J Chemother 2021; 33:476-485. [PMID: 33825671 DOI: 10.1080/1120009x.2021.1906035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
This study aims to investigate the effects of C1q-like 1 (C1QL1) on the growth and migration of lung adenocarcinoma (LUAD) cells and the underlying mechanism. The expression of C1QL1 in LUAD tissues and its prognostic value were analyzed using the data from The Cancer Genome Atlas (TCGA) database. To investigate the function of C1QL1, loss-of-function and gain-of-function assays were conducted in Calu-3 cells and LTEP-a-2 cells, respectively. Cell growth was evaluated by CCK-8 and colony formation assays. Transwell assays were performed to assess cell invasive and migratory abilities. qRT-PCR and Western blotting were performed to detect RNA and protein expression, respectively. Firstly, we found that C1QL1 was highly expressed and predicted poor outcomes in LUAD patients from TCGA database. Moreover, the mRNA and protein expression levels of C1QL1 were higher in LUAD cells than that in normal lung cells. Results of functional experiments illustrated that depletion of C1QL1 restrained the growth, invasion and migration of Calu-3 cells, meanwhile over-expression of C1QL1 presented the opposite results in LTEP-a-2 cells. Furthermore, we discovered that down-regulation of C1QL1 elevated the protein level of E-cadherin and reduced the protein levels of N-cadherin, Vimentin and Snail in Calu-3 cells, whereas over-expression of C1QL1 led to the opposite outcomes in LTEP-a-2 cells. Our data indicated that C1QL1 functioned as a crucial driver in LUAD cell growth and motility, which might be achieved by modulating epithelial-mesenchymal transition (EMT). These consequences are of important relevance for the design of therapeutic strategies for LUAD.
Collapse
Affiliation(s)
- Yu-Jun Gao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong, China
| | - Feng Chen
- Department of Thoracic Surgery Ward, Shandong First Medical University Affiliated Tumor Hospital (Shandong Cancer Hospital and Institute, Shandong Tumor Hospital), Jinan, Shandong, China
| | - Lian-Jun Zhang
- Jinan Evidence Medicine Technology Development Center, Jinan, Shandong, China
| |
Collapse
|
42
|
Buaban S, Lengnudum K, Boonkum W, Phakdeedindan P. Genome-wide association study on milk production and somatic cell score for Thai dairy cattle using weighted single-step approach with random regression test-day model. J Dairy Sci 2021; 105:468-494. [PMID: 34756438 DOI: 10.3168/jds.2020-19826] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 08/24/2021] [Indexed: 12/26/2022]
Abstract
Genome-wide association studies are a powerful tool to identify genomic regions and variants associated with phenotypes. However, only limited mutual confirmation from different studies is available. The objectives of this study were to identify genomic regions as well as genes and pathways associated with the first-lactation milk, fat, protein, and total solid yields; fat, protein, and total solid percentage; and somatic cell score (SCS) in a Thai dairy cattle population. Effects of SNPs were estimated by a weighted single-step GWAS, which back-solved the genomic breeding values predicted using single-step genomic BLUP (ssGBLUP) fitting a single-trait random regression test-day model. Genomic regions that explained at least 0.5% of the total genetic variance were selected for further analyses of candidate genes. Despite the small number of genotyped animals, genomic predictions led to an improvement in the accuracy over the traditional BLUP. Genomic predictions using weighted ssGBLUP were slightly better than the ssGBLUP. The genomic regions associated with milk production traits contained 210 candidate genes on 19 chromosomes [Bos taurus autosome (BTA) 1 to 7, 9, 11 to 16, 20 to 21, 26 to 27 and 29], whereas 21 candidate genes on 3 chromosomes (BTA 11, 16, and 21) were associated with SCS. Many genomic regions explained a small fraction of the genetic variance, indicating polygenic inheritance of the studied traits. Several candidate genes coincided with previous reports for milk production traits in Holstein cattle, especially a large region of genes on BTA14. We identified 141 and 5 novel genes related to milk production and SCS, respectively. These novel genes were also found to be functionally related to heat tolerance (e.g., SLC45A2, IRAG1, and LOC101902172), longevity (e.g., SYT10 and LOC101903327), and fertility (e.g., PAG1). These findings may be attributed to indirect selection in our population. Identified biological networks including intracellular cell transportation and protein catabolism implicate milk production, whereas the immunological pathways such as lymphocyte activation are closely related to SCS. Further studies are required to validate our findings before exploiting them in genomic selection.
Collapse
Affiliation(s)
- S Buaban
- Bureau of Animal Husbandry and Genetic Improvement, Department of Livestock Development, Pathum Thani 12000, Thailand
| | - K Lengnudum
- Bureau of Biotechnology in Livestock Production, Department of Livestock Development, Pathum Thani 12000, Thailand
| | - W Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - P Phakdeedindan
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
43
|
Zhang J, Xu J, Lin X, Tang F, Tan L. CTRP3 ameliorates fructose-induced metabolic associated fatty liver disease via inhibition of xanthine oxidase-associated oxidative stress. Tissue Cell 2021; 72:101595. [PMID: 34303283 DOI: 10.1016/j.tice.2021.101595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The incidence of metabolic associated fatty liver disease (MAFLD) induced by high fructose consumption is dramatically increasing in the world while lacking specifically therapeutic drugs. The present study aimed to investigate the effect of complement C1q/tumor necrosis factor-related protein-3 (CTRP3) on fructose-induced MAFLD and its potential mechanisms. METHOD The animal models with MAFLD were built with Sprague-Dawley (SD) rats drinking 10 % fructose solution for 12 weeks. Then, specific hepatic CTRP3 overexpression was conducted by a single caudal-vein injection of CTRP3-expressing adenoviruses. Rats were sacrificed two weeks later. RESULTS Drinking 10 % fructose solution for 12 weeks successfully built the rats models with MAFLD. Fructose feeding markedly decreased hepatic CTRP3 expression in rats. However, CTRP3 overexpression in liver alleviated hyperuricemia, dyslipidemia, liver function injury, intrahepatic triglyceride (TG) accumulation and histological changes of hepatic steatosis in rats fed with fructose. CTRP3 overexpression also inhibited hepatic XO activity in liver and improved subsequent oxidative stress, accompanied with downregulation of gene expression of sterol-regulatory element binding protein 1c (SERBP-1c) and fatty acid synthase (FAS). CONCLUSION CTRP3 attenuates MAFLD induced by fructose, which maybe partially attribute to rescued oxidative stress related with xanthine oxidase overactivity.
Collapse
Affiliation(s)
- Junxia Zhang
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China; School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China.
| | - Jinxiu Xu
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China; School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Xue Lin
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China
| | - Feng Tang
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China; School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Lupin Tan
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China
| |
Collapse
|
44
|
CTRP3 promotes TNF-α-induced apoptosis and barrier dysfunction in salivary epithelial cells. Cell Signal 2021; 85:110042. [PMID: 33991612 DOI: 10.1016/j.cellsig.2021.110042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/17/2021] [Accepted: 05/11/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND C1q/tumour necrosis factor-related protein 3 (CTRP3) plays important roles in metabolism and inflammatory responses in various cells and tissues. However, the expression and function of CTRP3 in salivary glands have not been explored. METHODS The expression and distribution of CTRP3 were detected by western blot, polymerase chain reaction, immunohistochemical and immunofluorescence staining. The effects of CTRP3 on tumour necrosis factor (TNF)-α-induced apoptosis and barrier dysfunction were detected by flow cytometry, western blot, co-immunoprecipitation, and measurement of transepithelial resistance and paracellular tracer flux. RESULTS CTRP3 was distributed in both acinar and ductal cells of human submandibular gland (SMG) and was primarily located in the ducts of rat and mouse SMGs. TNF-α increased the apoptotic rate, elevated expression of cleaved caspase 3 and cytochrome C, and reduced B cell lymphoma-2 (Bcl-2) levels in cultured human SMG tissue and SMG-C6 cells, and CTRP3 further enhanced TNF-α-induced apoptosis response. Additionally, CTRP3 aggravated TNF-α-increased paracellular permeability. Mechanistically, CTRP3 promoted TNF-α-enhanced TNF type I receptor (TNFR1) expression, inhibited the expression of cellular Fas-associated death domain (FADD)-like interleukin-1β converting enzyme inhibitory protein (c-FLIP), and increased the recruitment of FADD with receptor-interacting protein kinase 1 and caspase 8. Moreover, CTRP3 was significantly increased in the labial gland of Sjögren's syndrome patients and in the serum and SMG of nonobese diabetic mice. CONCLUSIONS These findings suggest that the salivary glands are a novel source of CTRP3 synthesis and secretion. CTRP3 might promote TNF-α-induced cell apoptosis through the TNFR1-mediated complex II pathway.
Collapse
|
45
|
The Role of Collagen Triple Helix Repeat-Containing 1 Protein (CTHRC1) in Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms22052426. [PMID: 33670905 PMCID: PMC7957534 DOI: 10.3390/ijms22052426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease causing inflammation of joints, cartilage destruction and bone erosion. Biomarkers and new drug targets are actively sought and progressed to improve available options for patient treatment. The Collagen Triple Helix Repeat Containing 1 protein (CTHRC1) may have an important role as a biomarker for rheumatoid arthritis, as CTHRC1 protein concentration is significantly elevated in the peripheral blood of rheumatoid arthritis patients compared to osteoarthritis (OA) patients and healthy individuals. CTHRC1 is a secreted glycoprotein that promotes cell migration and has been implicated in arterial tissue-repair processes. Furthermore, high CTHRC1 expression is observed in many types of cancer and is associated with cancer metastasis to the bone and poor patient prognosis. However, the function of CTHRC1 in RA is still largely undefined. The aim of this review is to summarize recent findings on the role of CTHRC1 as a potential biomarker and pathogenic driver of RA progression. We will discuss emerging evidence linking CTHRC1 to the pathogenic behavior of fibroblast-like synoviocytes and to cartilage and bone erosion through modulation of the balance between bone resorption and repair.
Collapse
|
46
|
Pales Espinosa E, Allam B. High spatial resolution mapping of the mucosal proteome of the gills of Crassostrea virginica: implication in particle processing. J Exp Biol 2021; 224:jeb.233361. [PMID: 33431594 DOI: 10.1242/jeb.233361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/06/2021] [Indexed: 11/20/2022]
Abstract
In the oyster Crassostrea virginica, the organization of the gill allows bidirectional particle transport where a dorsal gill tract directs particles meant to be ingested while a ventral tract collects particles intended to be rejected as pseudofeces. Previous studies showed that the transport of particles in both tracts is mediated by mucus. Consequently, we hypothesized that the nature and/or the quantity of mucosal proteins present in each tract is likely to be different. Using endoscopy-aided micro-sampling of mucus from each tract followed by multidimensional protein identification technologies, and in situ hybridization, a high spatial resolution mapping of the oyster gill proteome was generated. Results showed the presence in gill mucus of a wide range of molecules involved in non-self recognition and interactions with microbes. Mucus composition was different between the two tracts, with mucus from the ventral tract shown to be rich in mucin-like proteins, providing an explanation of its high viscosity, while mucus from the dorsal tract was found to be enriched in mannose-binding proteins, known to be involved in food particle binding and selection. Overall, this study generated high-resolution proteomes for C. virginica gill mucus and demonstrated that the contrasting functions of the two pathways present on oyster gills are associated with significant differences in their protein makeup.
Collapse
Affiliation(s)
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| |
Collapse
|
47
|
Ding H, Wang Z, Song W. CTRP3 protects hippocampal neurons from oxygen-glucose deprivation-induced injury through the AMPK/Nrf2/ARE pathway. Hum Exp Toxicol 2021; 40:1153-1162. [PMID: 33501881 DOI: 10.1177/0960327121989412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE C1q/TNF-related protein 3 (CTRP3), a member of CTRP family, has been found to have neuroprotective effect. In the current study, we investigated the protective role of CTRP3 in hippocampal neurons exposed to oxygen-glucose deprivation/reperfusion (OGD/R). MATERIALS AND METHODS The mRNA and protein levels of CTRP3 in OGD/R-stimulated hippocampal neurons were measured using qRT-PCR and western blot analysis, respectively. CCK-8 assay was performed to assess cell viability. ROS production was measured using the fluorescence probe 2',7'-dichlorofluorescein diacetate (H2DCFDA). The activities of SOD and GPx were determined using ELISA. Cell apoptosis was assessed. Luciferase reporter assay was carried out to assess the activation of ARE). The levels of p-AMPK and Nrf2 were measured using western blot. RESULTS Our results showed that the expression of CTRP3 was significantly downregulated in hippocampal neuronal cells exposed to OGD/R. Overexpression of CTRP3 improved cell viability of OGD/R-induced hippocampal neurons. In addition, overexpression of CTRP3 attenuated the OGD/R-caused oxidative stress with decreased ROS production and increased activities of SOD and GPx. Moreover, CTRP3 caused a significant increase in bcl-2 expression and decreases in bax expression and caspase-3 activity. Furthermore, CTRP3 overexpression significantly upregulated the levels of p-AMPK and Nrf2, as well induced the activation of ARE in OGD-R-induced hippocampal neurons. CTRP3 upregulated the mRNA expression levels of HO-1, NQO-1 and GPx-3. Additionally, treatment with the inhibitor of AMPK partially reversed the neuroprotective effect of CTRP3 in OGD/R-exposed neurons. CONCLUSION CTRP3 exerted protective effect on OGD/R-induced cerebral injury, which was regulated by AMPK/Nrf2/ARE pathway.
Collapse
Affiliation(s)
- H Ding
- Department of Anesthesiology, 159431Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Z Wang
- Department of Anesthesiology, 159431Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - W Song
- Department of Anesthesiology, 159431Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
48
|
Alamian A, Marrs JA, Clark WA, Thomas KL, Peterson JM. CTRP3 and serum triglycerides in children aged 7-10 years. PLoS One 2020; 15:e0241813. [PMID: 33270666 PMCID: PMC7714231 DOI: 10.1371/journal.pone.0241813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION The prevalence of obesity-related disorders has been steadily increasing over the past couple of decades. Diseases that were once only detected in adults are now prevalent in children, such as hyperlipidemia. The adipose tissue-derived hormonal factor C1q TNF Related Protein 3 (CTRP3) has been linked to triglyceride regulation especially in animal models. However, the relationship between circulating CTRP3 levels and obesity-related disorders in human subjects is controversial. CTRP3 can circulate in different oligomeric complexes: trimeric (<100 kDa), middle molecular weight (100-300 kDa), and high molecular weight (HMW) oligomeric complexes (>300 kDa). Previous work has identified that it is not the total amount of CTRP3 present in the serum, but the specific circulating oligomeric complexes that appear to be indicative of the relationship between CTRP3 and serum lipids levels. However, this work has not been examined in children. Therefore, the purpose of this study was to compare the levels of different oligomeric complexes of CTRP3 and circulating lipid levels among young children (aged 7-10 years). METHODS Morphometric data and serum samples were collected and analyzed from a cross-sectional population of 62 children of self-identified Hispanic origin from a community health center, between 2015 and 2016. Serum analysis included adiponectin, insulin, leptin, ghrelin, glucagon, C-reactive peptide, triglyceride, cholesterol, IL-6, TNF, and CTRP3. Correlation analyses were conducted to explore the relationships between CTRP3 and other biomarkers. RESULTS Total CTRP3 concentrations were significantly positively correlated with total cholesterol and HDL cholesterol. Whereas, HMW CTRP3 was not significantly associated with any variable measured. Conversely, the middle molecular weight (MMW) CTRP3 was negatively correlated with triglycerides levels, and very low-density lipoprotein (VLDL), insulin, and body mass index (BMI). The negative correlations between MMW CTRP3 and triglycerides and VLDLs were particularly strong (r2 = -0.826 and -0.827, respectively). CONCLUSION Overall, these data indicate that the circulating oligomeric state of CTRP3 and not just total CTRP3 level is important for understanding the association between CTRP3 and metabolic diseases. Further, this work indicates that MMW CTRP3 plays an important role in triglyceride and VLDL regulation which requires further study.
Collapse
Affiliation(s)
- Arsham Alamian
- School of Nursing and Health Studies, University of Miami, Coral Gables, Florida, United States of America
| | - Jo-Ann Marrs
- College of Nursing, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - W. Andrew Clark
- College of Clinical and Rehabilitative Health Sciences, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Kristy L. Thomas
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Jonathan M. Peterson
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee, United States of America
| |
Collapse
|
49
|
Moradi N, Najafi M, Sharma T, Fallah S, Koushki M, Peterson JM, Meyre D, Fadaei R. Circulating levels of CTRP3 in patients with type 2 diabetes mellitus compared to controls: A systematic review and meta-analysis. Diabetes Res Clin Pract 2020; 169:108453. [PMID: 32949652 DOI: 10.1016/j.diabres.2020.108453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
Growing evidence suggests that adipokines may be therapeutic targets for cardiometabolic diseases such as type 2 diabetes mellitus (T2DM). C1q TNF Related Protein 3 (CTRP3) is a newly discovered adipokine which shares properties with adiponectin. The literature about the association between circulating levels of CTRP3 and T2DM has been conflicting. The present study reassessed the data on circulating CTRP3 levels in T2DM patients compared to controls through a systematic review and meta-analysis. A literature search was performed in Medline, Embase, Scopus, and Web of science to identify studies that measured circulating CTRP3 levels in T2DM patients and controls. The search identified 124 studies of which 59 were screened for title and abstract and 13 were subsequently screened at the full text stage and 12 studies included into the meta-analysis. Subgroup analyses, depending on the presence of T2DM complications, matching for BMI, age, and cut off value of fasting blood sugar and HOMA-IR, were performed. The results show that circulating CTRP3 levels are negatively associated with T2DM status (SMD: -0.837; 95% CI: (-1.656 to -0.017); p = 0.045). No publication bias was identified using the Begg's rank correlation and Egger's linear regression tests (P = 1 and P = 0.44, respectively). Meta-regression demonstrated significant association between CRTP3 levels with BMI (slope: 0.11; 95% CI: 0.04-0.19; p = 0.001) and sex (slope: -0.07; 95% CI: -0.12 to -0.01; p = 0.008). The present systematic review and meta-analysis evidences a negative association between circulating level of CTRP3 and T2DM status. BMI and sex may modify this association.
Collapse
Affiliation(s)
- Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Najafi
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tanmay Sharma
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Jonathan M Peterson
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States; Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, United States
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
50
|
CTRP3 Activates the AMPK/SIRT1-PGC-1α Pathway to Protect Mitochondrial Biogenesis and Functions in Cerebral Ischemic Stroke. Neurochem Res 2020; 45:3045-3058. [DOI: 10.1007/s11064-020-03152-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
|