1
|
Leonhartsberger S, Carmona P, Seidl B, Mann KJ, Kozich M, Sulaeva I, Stanetty C, Mihovilovic MD. Polysaccharide-based green flocculants: A systematic and comparative study of their coagulation-flocculation efficiency. Carbohydr Polym 2025; 358:123527. [PMID: 40383586 DOI: 10.1016/j.carbpol.2025.123527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 05/20/2025]
Abstract
Driven by the quest for greener flocculants, this study explores how cationized polysaccharides can enhance coagulation-flocculation efficiency, filling a gap in systematic comparative analyses. We introduce here a flocculation score which provides a robust framework for flocculation evaluation and comparison. Starch, chitosan, inulin, guar gum, pullulan, and hydroxyethyl cellulose were tested, both unmodified and modified with quaternary ammonium compounds. Promising results in coagulation-flocculation were observed compared to synthetic flocculants like cationic polyacrylamide (cPAM) and Poly(Diallyldimethylammonium Chloride) (pDADMAC). Advanced techniques such as AsFlFFF-MALS, NMR, PCD, rheology, SEM, image analysis, and zeta potential were used to thoroughly characterize these polysaccharides and their flocculation efficiency. Results revealed notable flocculation enhancement in kaolin suspension (model system) and industrial starch sludge with cationized polysaccharides over their unmodified counterparts. Key influencing factors -molecular weight, charge density, and viscosity- and their trends were identified, with higher charge densities notably enhancing flocculation particularly in kaolin suspensions, and higher molecular weight enhancing flocculation in industrial sludge. Chitosan emerged as the top unmodified polysaccharide, while cationic pullulan and starch were found to lead among modified polysaccharides. This study highlights eco-friendly cationized polysaccharides, providing insights for optimizing water treatment and a comparative analysis of six polysaccharides' intrinsic parameters and flocculation efficiency.
Collapse
Affiliation(s)
| | - Pierre Carmona
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria.
| | - Bernhard Seidl
- AGRANA Research & Innovation Center GmbH, Tulln an der Donau, Austria
| | - Karl-Juergen Mann
- AGRANA Research & Innovation Center GmbH, Tulln an der Donau, Austria
| | - Martin Kozich
- AGRANA Research & Innovation Center GmbH, Tulln an der Donau, Austria
| | - Irina Sulaeva
- Core Facility Analysis of Lignocellulosics, BOKU University, Tulln an der Donau, Austria
| | | | | |
Collapse
|
2
|
Diment D, Musl O, Balakshin M, Rigo D. Guidelines for Evaluating the Antioxidant Activity of Lignin via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) Assay. CHEMSUSCHEM 2025; 18:e202402383. [PMID: 40105287 DOI: 10.1002/cssc.202402383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Indexed: 03/20/2025]
Abstract
The most widespread procedure to measure the antioxidant activity of lignin is via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. So far, different experimental procedures (i. e., different solvent, time, etc.) have been used to implement the DPPH methodology without estimating the effect of such modifications on the experimental procedure. To overcome this issue, the impact of the solvent, the time, and the type of substrate on the evaluation of the antioxidant activity (AoA) of lignin via the DPPH assay was investigated in this work. We found that multiple different parameters affect the evaluation of the AoA of lignin: i) the stability of the DPPH radical and the lignin solubility in a given solvent; ii) the importance of reaching steady state (the effect of time); iii) the background noise associated with lignin absorbance at λ=515 nm (used to monitor the DPPH radical scavenging); iv) lignin structure; v) providing a normalized radical scavenging index (nRSI); vi) comparing nRSI vs. inhibition percentage (IP) values. Overall, our investigation allowed us to provide guidelines on how to perform the DPPH assay for a more reliable evaluation of lignin AoA.
Collapse
Affiliation(s)
- Daryna Diment
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, 02150, Finland
| | - Oliver Musl
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430, Tulln, Austria
| | - Mikhail Balakshin
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, 02150, Finland
| | - Davide Rigo
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, 02150, Finland
| |
Collapse
|
3
|
Rojas M, Fonseca FG, Hornung U, Funke A, Dahmen N. Synthetic Lignin Oligomers: Analytical Techniques, Challenges, and Opportunities. CHEMSUSCHEM 2025; 18:e202402334. [PMID: 40029164 DOI: 10.1002/cssc.202402334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Lignin is the second most abundant renewable material after cellulose. However, its economic use is currently relegated to low-value energy production. This biomaterial holds great potential as a source of renewable biofuels, bio-based chemicals, advanced materials, and integrated biorefineries. Fractionation and depolymerization methods yield liquid repositories of promising aromatic monomers and lignin oligomers (LO) that retain many of the structural components found in the native material. However, analyzing this complex mixture is challenging due to the wide range of molecular sizes and heterogeneous chemical structure, which makes their structural elucidation a critical obstacle - unlocking the full potential of lignin hinges upon developing appropriate standards and analytical methods to address existing knowledge gaps. This review provides a comprehensive examination of current analytical techniques for elucidating the chemical structure of lignin oligomers, exploring synthesis methods, molecular structures, and their advantages and limitations. Built upon these findings, opportunities for synergy between synthetic oligomers and lignin utilization can be revealed, such as bioactive compound production and biorefinery integration. Moreover, we underscore the need for standardized analytical methods to facilitate the design of lignin oligomer standards and their diverse applications.
Collapse
Affiliation(s)
- Myriam Rojas
- Scale-up of processes with renewable carbon sources, Institute of Catalysis Research and Technology - Karlsruhe Institute of Technology (IKFT-KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Deutschland
| | - Frederico G Fonseca
- Scale-up of processes with renewable carbon sources, Institute of Catalysis Research and Technology - Karlsruhe Institute of Technology (IKFT-KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Deutschland
- Simulation and Virtual Design, Institute for Low-Carbon Industrial Processes - German Aerospace Agency (DLR), Walther-Pauer-Straße 5, 03046, Cottbus, Deutschland
| | - Ursel Hornung
- Scale-up of processes with renewable carbon sources, Institute of Catalysis Research and Technology - Karlsruhe Institute of Technology (IKFT-KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Deutschland
| | - Axel Funke
- Scale-up of processes with renewable carbon sources, Institute of Catalysis Research and Technology - Karlsruhe Institute of Technology (IKFT-KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Deutschland
| | - Nicolaus Dahmen
- Scale-up of processes with renewable carbon sources, Institute of Catalysis Research and Technology - Karlsruhe Institute of Technology (IKFT-KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Deutschland
| |
Collapse
|
4
|
He ZF, Li C, Fang TX, Zhu DY, Deng Q, Liu W, Qiu X. Tough and UV-resistant biodegradable polyurethane elastomers based on extracted lignin and treated wood flour. Int J Biol Macromol 2025; 307:142259. [PMID: 40120912 DOI: 10.1016/j.ijbiomac.2025.142259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Polyurethanes are widely utilized across various fields. In the pursuit of sustainable development, current research prioritizes the development of bio-based, environmentally friendly polyurethanes. Wood flour, a type of biomass waste, faces significant challenges in achieving high-value utilization. In this study, wood flour was pretreated with sodium hydroxide solution to generate extracted lignin (Elig) and alkali-treated wood flour (AWF), which were subsequently employed to fabricate biodegradable polyurethane elastomers. Elig was further modified with polycaprolactone (PCL) to enhance its reactivity and flexibility, serving as a biological macromolecule crosslinker in the synthesis of lignin-based polyurethane [PU(Plig)]. Tough polyurethane composite elastomers were then obtained by incorporating AWF into PU(Plig). The resulting PU composite elastomer, PU(Plig@AWF), containing strong interfacial interaction between Elig and AWF, exhibited high toughness (188.15 MJ/m3), excellent UV resistance (with stress and strain retention rates of 77.92 % and 77.07 %, respectively, after 96 h of ultraviolet aging), and outstanding biodegradability (with a mass loss of 19.06 % observed after 50 days of soil degradation testing). Additionally, leveraging the unique characteristics of lignin and wood flour (WF), the elastomer demonstrated remarkable light/thermal-electric conversion capabilities, effectively powering a fan. This study advances the development of biomass-based, multifunctional polyurethane elastomers with enhanced cost-efficiency.
Collapse
Affiliation(s)
- Zi Feng He
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Chang Li
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Tian Xing Fang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Dong Yu Zhu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China.
| | - Qianyun Deng
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Weifeng Liu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China..
| | - Xueqing Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Beaudoin D, Palus E, Huang Z, Raymond S, Gagné A, Langis-Barsetti S, Nolin G, Wang X. Thermal Polymerization of Softwood Kraft Lignin: Enhanced Adhesion of Lignin-Phenol-Formaldehyde Blends. ACS OMEGA 2025; 10:16797-16803. [PMID: 40321591 PMCID: PMC12044571 DOI: 10.1021/acsomega.5c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025]
Abstract
Thermal polymerization improved the adhesion properties of softwood kraft lignin, making polymerized softwood kraft lignin a viable and sustainable partial substitute for phenol-formaldehyde resins used in engineered wood panels. This was confirmed by the increased shear strengths observed after pressing hardwood veneers with either alkaline aqueous lignin solutions or their blends with commercial phenol-formaldehyde resins. Plywood panels bonded with blends of polymerized kraft lignin and phenol-formaldehyde resins exhibited higher wood failure values compared with those bonded with phenol-formaldehyde resins alone. Extensive polymerization was achieved solely via nonoxidative thermal treatments. The impact of temperature and time on average molar mass, dispersity, and intrinsic viscosity was investigated by size-exclusion chromatography, revealing that the average molar mass of kraft lignin can be increased by more than 40 times its original value. Other critical parameters affecting the polymerization process such as pH and water content were identified, and their influence quantified. Hydroxyl content measured by 31P NMR before and after polymerization suggests that the formation of ethers between phenols and benzylic hydroxyl groups is mainly responsible for the observed increase in molar mass.
Collapse
Affiliation(s)
- Daniel Beaudoin
- Bioproducts Innovation Centre
of Excellence, FPInnovations, 570 Saint-Jean Boulevard, Pointe-Claire, Québec H9R 3J9, Canada
| | - Ernest Palus
- Bioproducts Innovation Centre
of Excellence, FPInnovations, 570 Saint-Jean Boulevard, Pointe-Claire, Québec H9R 3J9, Canada
| | - Zeen Huang
- Bioproducts Innovation Centre
of Excellence, FPInnovations, 570 Saint-Jean Boulevard, Pointe-Claire, Québec H9R 3J9, Canada
| | - Stéphan Raymond
- Bioproducts Innovation Centre
of Excellence, FPInnovations, 570 Saint-Jean Boulevard, Pointe-Claire, Québec H9R 3J9, Canada
| | - Alain Gagné
- Bioproducts Innovation Centre
of Excellence, FPInnovations, 570 Saint-Jean Boulevard, Pointe-Claire, Québec H9R 3J9, Canada
| | - Sophie Langis-Barsetti
- Bioproducts Innovation Centre
of Excellence, FPInnovations, 570 Saint-Jean Boulevard, Pointe-Claire, Québec H9R 3J9, Canada
| | - Guillaume Nolin
- Bioproducts Innovation Centre
of Excellence, FPInnovations, 570 Saint-Jean Boulevard, Pointe-Claire, Québec H9R 3J9, Canada
| | - Xiaoyu Wang
- Bioproducts Innovation Centre
of Excellence, FPInnovations, 570 Saint-Jean Boulevard, Pointe-Claire, Québec H9R 3J9, Canada
| |
Collapse
|
6
|
Simonsen TI, Djajadi DT, Ponzecchi A, Crestini C, Gigli M, Sgarzi M, Thomsen ST. Lignin Molar Mass Estimation by Dispersion Analysis. Macromol Rapid Commun 2025; 46:e2400751. [PMID: 39838690 PMCID: PMC11925321 DOI: 10.1002/marc.202400751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/29/2024] [Indexed: 01/23/2025]
Abstract
Lignin's complex and heterogeneous molecular structure poses significant challenges for accurate molar mass determination, which is important for its utilization in industrial applications, such as biochemicals, nanoparticles, biobased binders, and biofuels. This study evaluates the potential of Taylor Dispersion Analysis (TDA) for measuring lignin size and compares it with size-exclusion chromatography (SEC) and diffusion-ordered spectroscopy (DOSY) NMR. Using dual Gaussian fitting, flow-induced dispersion analysis (FIDA), a TDA-based method, successfully determined the average hydrodynamic radii of multiple species in solvent-fractionated soda grass lignin samples, producing results consistent with DOSY. Molar mass calibration enabled comparisons between FIDA and SEC, revealing similar relative differences across lignin fractions. FIDA offers advantages such as rapid analysis and absence of stationary phase interactions, however its accuracy is limited by the variability of lignin fluorescence. Addressing these limitations will be critical for advancing FIDA as a method for lignin size estimation.
Collapse
Affiliation(s)
- Tor I. Simonsen
- Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenFrederiksberg CCopenhagen1958Denmark
| | - Demi T. Djajadi
- Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenFrederiksberg CCopenhagen1958Denmark
| | - Andrea Ponzecchi
- Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenFrederiksberg CCopenhagen1958Denmark
| | - Claudia Crestini
- Department of Molecular Sciences and NanosystemsCa' Foscari UniversityVenice30172Italy
| | - Matteo Gigli
- Department of Molecular Sciences and NanosystemsCa' Foscari UniversityVenice30172Italy
| | - Massimo Sgarzi
- Department of Molecular Sciences and NanosystemsCa' Foscari UniversityVenice30172Italy
| | - Sune T. Thomsen
- Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenFrederiksberg CCopenhagen1958Denmark
| |
Collapse
|
7
|
Riddell LA, de Peinder P, Lindner JPB, Meirer F, Bruijnincx PCA. A translatable IR-chemometrics model for the rapid prediction of structural and material properties of technical lignins. Nat Protoc 2025:10.1038/s41596-025-01139-7. [PMID: 40075188 DOI: 10.1038/s41596-025-01139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/03/2025] [Indexed: 03/14/2025]
Abstract
Technical lignins are an industrial byproduct of plant biomass processing, for example, paper production or biorefinery operations. They are highly functional and aromatic, making them potentially suitable for a diverse range of applications; however, their exact structural composition depends on the plant species and the industrial process involved. A major bottleneck to lignin valorization and to biorefining in general is the equipment and time investment required for the full characterization of each sample. An array of wet chemical, spectroscopic, chromatographic and thermal methods are typically required to effectively characterize a given lignin sample. To ease the analytical burden, measured lignin properties can be correlated with detailed spectroscopic data obtained from a rapid analytical technique, such as attenuated total reflectance (ATR) Fourier-transform infrared (IR) spectroscopy, which requires minimal sample preparation. With sufficient sensitivity of the spectroscopic data, partial least squares regression models can be calibrated and, thus, predict these properties for future samples for which only the ATR-IR spectra are recorded. So far, several structural and macromolecular properties of lignin have been correlated with ATR-IR spectral data and quantitatively predicted in such a manner, including molecular weight, hydroxyl group content ([OH]), interunit linkage abundance and glass transition temperature. The protocol to apply this powerful lignin characterization methodology is described herein. Here, we also present a simple calibration transfer step, which when implemented before partial least squares regression, addresses the problem of instrument dependency. With the calibrated model, it is possible to determine lignin properties from a single ATR-IR spectral measurement (in ~5 min per sample).
Collapse
Affiliation(s)
- Luke A Riddell
- Utrecht University, Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht, the Netherlands
| | - Peter de Peinder
- Utrecht University, Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht, the Netherlands
- VibSpec, Tiel, the Netherlands
| | | | - Florian Meirer
- Utrecht University, Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht, the Netherlands.
| | - Pieter C A Bruijnincx
- Utrecht University, Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Kačík F, Výbohová E, Jurczyková T, Eštoková A, Kmeťová E, Kačíková D. Impact of Thermal Treatment and Aging on Lignin Properties in Spruce Wood: Pathways to Value-Added Applications. Polymers (Basel) 2025; 17:238. [PMID: 39861310 PMCID: PMC11769140 DOI: 10.3390/polym17020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Thermal modification is an environmentally friendly process that does not utilize chemical agents to enhance the stability and durability of wood. The use of thermally modified wood results in a significantly extended lifespan compared with untreated wood, with minimal maintenance requirements, thereby reducing the carbon footprint. This study examines the impact of varying modification temperatures (160, 180, and 210 °C) on the lignin of spruce wood using the ThermoWood process and following the accelerated aging of thermally modified wood. Wet chemistry methods, including nitrobenzene oxidation (NBO), size exclusion chromatography (SEC), thermogravimetry (TG), differential thermogravimetry (DTG), and Fourier transform infrared spectroscopy (FTIR), were employed to investigate the alterations in lignin. At lower modification temperatures, the predominant reaction is the degradation of lignin, which results in a reduction in the molecular weight and an enhanced yield of NBO (vanillin and vanillic acid) products. At elevated temperatures, condensation and repolymerization reactions become the dominant processes, increasing these traits. The lignin content of aged wood is higher than that of thermally modified wood, which has a lower molecular weight and a lower decomposition temperature. The results demonstrate that lignin isolated from thermally modified wood at the end of its life cycle is a promising feedstock for carbon-based materials and the production of a variety of aromatic monomers, including phenols, aromatic aldehydes and acids, and benzene derivatives.
Collapse
Affiliation(s)
- František Kačík
- Department of Chemistry and Chemical Technology, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia;
| | - Eva Výbohová
- Department of Chemistry and Chemical Technology, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia;
| | - Tereza Jurczyková
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16000 Prague, Czech Republic;
| | - Adriana Eštoková
- Institute for Sustainable and Circular Construction, Faculty of Civil Engineering, Technical University of Košice, Vysokoškolská 4, 04200 Košice, Slovakia;
| | - Elena Kmeťová
- Department of Fire Protection, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia; (E.K.); (D.K.)
| | - Danica Kačíková
- Department of Fire Protection, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia; (E.K.); (D.K.)
| |
Collapse
|
9
|
Altarabeen R, Rusakov D, Manke E, Gibowsky L, Schroeter B, Liebner F, Smirnova I. Lignin Polyurethane Aerogels: Influence of Solvent on Textural Properties. Gels 2024; 10:827. [PMID: 39727586 DOI: 10.3390/gels10120827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
This study explores the innovative potential of native lignin as a sustainable biopolyol for synthesizing polyurethane aerogels with variable microstructures, significant specific surface areas, and high mechanical stability. Three types of lignin-Organosolv, Aquasolv, and Soda lignin-were evaluated based on structural characteristics, Klason lignin content, and particle size, with Organosolv lignin being identified as the optimal candidate. The microstructure of lignin polyurethane samples was adjustable by solvent choice: Gelation in DMSO and pyridine, with high affinity to lignin, resulted in dense materials with low specific surface areas, while the use of the low-affinity solvent e.g acetone led to aggregated, macroporous materials due to microphase separation. Microstructural control was achieved by use of DMSO/acetone and pyridine/acetone solvent mixtures, which balanced gelation and phase separation to produce fine, homogeneous, mesoporous materials. Specifically, a 75% DMSO/acetone mixture yielded mechanically stable lignin polyurethane aerogels with a low envelope density of 0.49 g cm-3 and a specific surface area of ~300 m2 g-1. This study demonstrates a versatile approach to tailoring lignin polyurethane aerogels with adjustable textural and mechanical properties by simple adjustment of the solvent composition, highlighting the critical role of solvent-lignin interactions during gelation and offering a pathway to sustainable, high-performance materials.
Collapse
Affiliation(s)
- Razan Altarabeen
- Institute for Thermal Separation Processes, Hamburg University of Technology, 21073 Hamburg, Germany
- United Nations University Hub on Engineering to Face Climate Change at the Hamburg University of Technology, United Nations University, Institute for Water, Environment and Health (UNU-INWEH), 21073 Hamburg, Germany
| | - Dmitri Rusakov
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna 3430, Austria
| | - Erik Manke
- Institute for Thermal Separation Processes, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Lara Gibowsky
- Institute for Thermal Separation Processes, Hamburg University of Technology, 21073 Hamburg, Germany
- United Nations University Hub on Engineering to Face Climate Change at the Hamburg University of Technology, United Nations University, Institute for Water, Environment and Health (UNU-INWEH), 21073 Hamburg, Germany
| | - Baldur Schroeter
- Institute for Thermal Separation Processes, Hamburg University of Technology, 21073 Hamburg, Germany
- United Nations University Hub on Engineering to Face Climate Change at the Hamburg University of Technology, United Nations University, Institute for Water, Environment and Health (UNU-INWEH), 21073 Hamburg, Germany
| | - Falk Liebner
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna 3430, Austria
| | - Irina Smirnova
- Institute for Thermal Separation Processes, Hamburg University of Technology, 21073 Hamburg, Germany
- United Nations University Hub on Engineering to Face Climate Change at the Hamburg University of Technology, United Nations University, Institute for Water, Environment and Health (UNU-INWEH), 21073 Hamburg, Germany
| |
Collapse
|
10
|
Välimets S, Schwaiger L, Bennett A, Maresch D, Ludwig R, Hann S, Linde D, Ruiz-Dueñas FJ, Peterbauer C. Dye-Decolorizing Peroxidases Maintain High Stability and Turnover on Kraft Lignin and Lignocellulose Substrates. ACS OMEGA 2024; 9:45025-45034. [PMID: 39554457 PMCID: PMC11561623 DOI: 10.1021/acsomega.4c05043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/24/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
Fungal enzyme systems for the degradation of plant cell wall lignin, consisting of, among others, laccases and lignin-active peroxidases, are well characterized. Additionally, fungi and bacteria contain dye-decolorizing peroxidases (DyP), which are also capable of oxidizing and modifying lignin constituents. Studying DyP activity on lignocellulose poses challenges due to the heterogeneity of the substrate and the lack of continuous kinetic methods. In this study, we report the kinetic parameters of bacterial DyP from Amycolatopsis 75iv2 and fungal DyP from Auricularia auricula-judae on insoluble plant materials and kraft lignin by monitoring the depletion of the cosubstrate of the peroxidases with a H2O2 sensor. In the reactions with spruce, both enzymes showed similar kinetics. On kraft lignin, the catalytic rate of bacterial DyP reached 30 ± 2 s-1, whereas fungal DyP was nearly 3 times more active (81 ± 7 s-1). Importantly, the real-time measurement of H2O2 allowed the assessment of continuous activity for both enzymes, revealing a previously unreported exceptionally high stability under turnover conditions. Bacterial DyP performed 24,000 turnovers of H2O2, whereas the fungal DyP achieved 94,000 H2O2 turnovers in 1 h with a remaining activity of 40 and 80%, respectively. Using mass spectrometry, the depletion of the cosubstrate H2O2 was shown to correlate with product formation, validating the amperometric method.
Collapse
Affiliation(s)
- Silja Välimets
- Department
of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 11, 1190 Vienna, Austria
- Doctoral
Programme BioToP – Biomolecular Technology of Proteins, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Lorenz Schwaiger
- Department
of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 11, 1190 Vienna, Austria
- Doctoral
Programme BioToP – Biomolecular Technology of Proteins, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Alexandra Bennett
- Department
of Chemistry, Institute of Analytical Chemistry, BOKU University, Muthgasse
18, 1190 Vienna, Austria
| | - Daniel Maresch
- Core
Facility Mass-spectrometry, BOKU University, Muthgasse 11, 1190 Vienna, Austria
| | - Roland Ludwig
- Department
of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 11, 1190 Vienna, Austria
- Doctoral
Programme BioToP – Biomolecular Technology of Proteins, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Stephan Hann
- Doctoral
Programme BioToP – Biomolecular Technology of Proteins, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- Department
of Chemistry, Institute of Analytical Chemistry, BOKU University, Muthgasse
18, 1190 Vienna, Austria
| | - Dolores Linde
- Centro
de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas
(CSIC), Ramiro de Maeztu
9, 28040 Madrid, Spain
| | - Francisco Javier Ruiz-Dueñas
- Centro
de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas
(CSIC), Ramiro de Maeztu
9, 28040 Madrid, Spain
| | - Clemens Peterbauer
- Department
of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 11, 1190 Vienna, Austria
- Doctoral
Programme BioToP – Biomolecular Technology of Proteins, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
11
|
Papp D, Carlström G, Nylander T, Sandahl M, Turner C. A Complementary Multitechnique Approach to Assess the Bias in Molecular Weight Determination of Lignin by Derivatization-Free Gel Permeation Chromatography. Anal Chem 2024; 96:10612-10619. [PMID: 38888104 PMCID: PMC11223100 DOI: 10.1021/acs.analchem.4c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
The growing interest in lignin valorization in the past decades calls for analytical techniques for lignin characterization, ranging from wet chemistry techniques to highly sophisticated chromatographic and spectroscopic methods. One of the key parameters to consider is the molecular weight profile of lignin, which is routinely determined by size-exclusion chromatography; however, this is by no means straightforward and is prone to being hampered by considerable errors. Our study expands the fundamental understanding of the bias-inducing mechanisms in gel permeation chromatography (GPC), the magnitude of error originating from using polystyrene standards for mass calibration, and an evaluation of the effects of the solvent and type of lignin on the observed bias. The developed partial least-squares (PLS) regression model for lignin-related monomers revealed that lignin is prone to association mainly via hydrogen bonding. This hypothesis was supported by functional group-based analysis of the bias as well as pulse field gradient (pfg) diffusion NMR spectroscopy of model compounds in THF-d8. Furthermore, although the lack of standards hindered drawing conclusions based on functionalities, direct infusion electrospray ionization mass spectrometry indicated that the relative bias decreases considerably for higher molecular weight species. The results from pfg-diffusion NMR spectroscopy on whole lignin samples were comparable when the same solvents were used in both experiments; in addition, the comparison between results obtained by pfg-diffusion NMR in different solvents gives some additional insights into the aggregation.
Collapse
Affiliation(s)
- Daniel Papp
- Department
of Chemistry, Centre for Analysis and Synthesis, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Göran Carlström
- Department
of Chemistry, Centre for Analysis and Synthesis, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Tommy Nylander
- Department
of Chemistry, Physical Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Margareta Sandahl
- Department
of Chemistry, Centre for Analysis and Synthesis, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Charlotta Turner
- Department
of Chemistry, Centre for Analysis and Synthesis, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| |
Collapse
|
12
|
Riddell LA, de Peinder P, Polizzi V, Vanbroekhoven K, Meirer F, Bruijnincx PCA. Predicting Molecular Weight Characteristics of Reductively Depolymerized Lignins by ATR-FTIR and Chemometrics. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:8968-8977. [PMID: 38872958 PMCID: PMC11167637 DOI: 10.1021/acssuschemeng.4c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
Recent scientific advances in the valorization of lignin, through e.g., (partial-)catalytic depolymerization, require equally state-of-the-art approaches for the analysis of the obtained depolymerized lignins (DLs) or lignin bio-oils. The use of chemometrics in combination with infrared (IR) spectroscopy is one avenue to provide rapid access to pertinent lignin parameters, such as molecular weight (MW) characteristics, which typically require analysis via time-consuming size-exclusion methods, or diffusion-ordered NMR spectroscopy. Importantly, MW serves as a marker for the degree of depolymerization (or recondensation) that the lignin has undergone, and thus probing this parameter is essential for the optimization of depolymerization conditions to achieve DLs with desired properties. Here, we show that our ATR-IR-based chemometrics approach used previously for technical lignin analysis can be extended to analyze these more processed, lignin-derived samples as well. Remarkably, also at this lower end of the MW scale, the use of partial least-squares (PLS) regression models well-predicted the MW parameters for a sample set of 57 depolymerized lignins, with relative errors of 9.9-11.2%. Furthermore, principal component analysis (PCA) showed good correspondence with features in the regression vectors for each of the biomass classes (hardwood, herbaceous/grass, and softwood) obtained from PLS-discriminant analysis (PLS-DA). Overall, we show that the IR spectra of DLs are still amenable to chemometric analysis and specifically to rapid, predictive characterization of their MW, circumventing the time-consuming, tedious, and not generally accessible methods typically employed.
Collapse
Affiliation(s)
- Luke A. Riddell
- Faculty
of Science, Organic Chemistry & Catalysis, Institute for Sustainable
and Circular Chemistry, Utrecht University
institution, Utrecht 3584CG, The Netherlands
| | - Peter de Peinder
- Faculty
of Science, Inorganic Chemistry & Catalysis, Institute for Sustainable
and Circular Chemistry, Utrecht University, Utrecht 3584CG, The Netherlands
- VibSpec, Haaftenlaan 28, Tiel 4006
XL, The Netherlands
| | - Viviana Polizzi
- Sustainable
Polymer Technologies team, Materials & Chemistry unit, Flemish Institute for Technological Research (VITO), Mol 2400, Belgium
| | - Karolien Vanbroekhoven
- Sustainable
Polymer Technologies team, Materials & Chemistry unit, Flemish Institute for Technological Research (VITO), Mol 2400, Belgium
| | - Florian Meirer
- Faculty
of Science, Inorganic Chemistry & Catalysis, Institute for Sustainable
and Circular Chemistry, Utrecht University, Utrecht 3584CG, The Netherlands
| | - Pieter C. A. Bruijnincx
- Faculty
of Science, Organic Chemistry & Catalysis, Institute for Sustainable
and Circular Chemistry, Utrecht University
institution, Utrecht 3584CG, The Netherlands
| |
Collapse
|
13
|
Sumerskii I, Böhmdorfer S, Tsetsgee O, Sulaeva I, Khaliliyan H, Musl O, Dorninger K, Tischer A, Potthast K, Rosenau T, Brereton RG, Potthast A. Tapping the Full Potential of Infrared Spectroscopy for the Analysis of Technical Lignins. CHEMSUSCHEM 2024; 17:e202301840. [PMID: 38240610 DOI: 10.1002/cssc.202301840] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Indexed: 04/24/2024]
Abstract
We present an approach to overcome the challenges associated with the increasing demand of high-throughput characterization of technical lignins, a key resource in emerging bioeconomies. Our approach offers a resort from the lack of direct, simple, and low-cost analytical techniques for lignin characterization by employing multivariate calibration models based on infrared (IR) spectroscopy to predict structural properties of lignins (i. e., functionality, molar mass). By leveraging a comprehensive database of over 500 well-characterized technical lignin samples - a factor of 10 larger than previously used sets - our chemometric models achieved high levels of quality and statistical confidence for the determination of different functional group contents (RMSEPs of 4-16 %). However, the statistical moments of the molar mass distribution are still best determined by size-exclusion chromatography. Analyses of over 500 technical lignins offered also a great opportunity to provide information on the general variability in kraft lignins and lignosulfonates (from different origins). Overall, the effected savings in analysis time (>7 h), resources, and required sample mass combined with non-destructiveness of the measurement satisfy key demands for efficient high-throughput lignin analyses. Finally, we discuss the advantages, disadvantages, and limitations of our approach, along with critical insights into the associated chemical-analytical and spectroscopic challenges.
Collapse
Affiliation(s)
- Ivan Sumerskii
- Core Facility "Analysis of Lignocellulosics" (ALICE), BOKU University, Vienna, Konrad-Lorenz-Strasse 24, A-3430, Tulln, Austria
| | - Stefan Böhmdorfer
- Department of Chemistry, Institute of Chemistry of Renewable Resources, BOKU University, Vienna, Konrad-Lorenz-Strasse 24, A-3430, Tulln, Austria
| | - Otgontuul Tsetsgee
- Department of Chemistry, Institute of Chemistry of Renewable Resources, BOKU University, Vienna, Konrad-Lorenz-Strasse 24, A-3430, Tulln, Austria
| | - Irina Sulaeva
- Core Facility "Analysis of Lignocellulosics" (ALICE), BOKU University, Vienna, Konrad-Lorenz-Strasse 24, A-3430, Tulln, Austria
| | - Hajar Khaliliyan
- Department of Chemistry, Institute of Chemistry of Renewable Resources, BOKU University, Vienna, Konrad-Lorenz-Strasse 24, A-3430, Tulln, Austria
| | - Oliver Musl
- Department of Chemistry, Institute of Chemistry of Renewable Resources, BOKU University, Vienna, Konrad-Lorenz-Strasse 24, A-3430, Tulln, Austria
| | - Katharina Dorninger
- Department of Chemistry, Institute of Chemistry of Renewable Resources, BOKU University, Vienna, Konrad-Lorenz-Strasse 24, A-3430, Tulln, Austria
| | - Alexander Tischer
- Department of Soil Science, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
| | - Karin Potthast
- Department of Soil Science, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, BOKU University, Vienna, Konrad-Lorenz-Strasse 24, A-3430, Tulln, Austria
| | - Richard G Brereton
- School of Chemistry, University of Bristol, Cantocks Close, Bristol, BS8 1TS, U.K
| | - Antje Potthast
- Department of Chemistry, Institute of Chemistry of Renewable Resources, BOKU University, Vienna, Konrad-Lorenz-Strasse 24, A-3430, Tulln, Austria
| |
Collapse
|
14
|
Clobes ML, Kozliak EI, Kubátová A. Advancing Molecular Weight Determination of Lignin by Multi-Angle Light Scattering. Polymers (Basel) 2024; 16:477. [PMID: 38399853 PMCID: PMC10892000 DOI: 10.3390/polym16040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Due to the complexity and recalcitrance of lignin, its chemical characterization is a key factor preventing the valorization of this abundant material. Multi-angle light scattering (MALS) is becoming a sought-after technique for absolute molecular weight (MW) determination of polymers and proteins. Lignin is a suitable candidate for MW determination via MALS, yet further investigation is required to confirm its absolute MW values and molecular size. Studies aiming to break down lignin into a variety of renewable products will benefit greatly from a simple and reliable determination method like MALS. Recent pioneering studies, discussed in this review, addressed several key challenges in lignin's MW characterization. Nevertheless, some lignin-specific issues still need to be considered for in-depth characterization. This study explores how MALS instrumentation manages the complexities of determining lignin's MW, e.g., with simultaneous fractionation and fluorescence interference mitigation. Additionally, we rationalize the importance of a more detailed light scattering analysis for lignin characterization, including aspects like the second virial coefficient and radius of gyration.
Collapse
Affiliation(s)
| | - Evguenii I. Kozliak
- Department of Chemistry, University of North Dakota, 151 Cornell St., Stop 9024, Grand Forks, ND 58202, USA;
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, 151 Cornell St., Stop 9024, Grand Forks, ND 58202, USA;
| |
Collapse
|
15
|
Matson JB, Steele AQ, Mase JD, Schulz MD. Polymer Characterization by Size-Exclusion Chromatography with Multi-Angle Light Scattering (SEC-MALS): A Tutorial Review. Polym Chem 2024; 15:127-142. [PMID: 39070757 PMCID: PMC11281244 DOI: 10.1039/d3py01181j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
This tutorial review presents the theory and application of SEC-MALS with minimal equations and a focus on synthetic polymer characterization, serving as an entry point for polymer scientists who want to learn more about SEC-MALS. We discuss the principles of static light scattering, outline its capability to generate absolute weight-average molar mass values, and extend its application to SEC-MALS. Practical elements are emphasized, enabling researchers to appreciate how values forM n , M w , and Đ are determined in an SEC-MALS experiment and how experimental conditions and input values, such as the specific refractive index increment ( d n / d c ), influence the results. Several illustrative SEC-MALS experiments demonstrate the impact of separation quality onM n (as opposed toM w ), the appearance of contaminants in SEC chromatograms from sample preparation, the influence of concentration on data quality, and how polymer topology affects molecular weight characterization in SEC. Finally, we address practical considerations, common issues, and persistent misconceptions.
Collapse
Affiliation(s)
- John B Matson
- Virginia Tech, Department of Chemistry and Macromolecules Innovation Institute
| | - Anna Q Steele
- Virginia Tech, Department of Chemistry and Macromolecules Innovation Institute
| | - Jonathan D Mase
- Virginia Tech, Department of Chemistry and Macromolecules Innovation Institute
| | - Mirchael D Schulz
- Virginia Tech, Department of Chemistry and Macromolecules Innovation Institute
| |
Collapse
|
16
|
Beaudoin D, Palus E, Konduri MKR, Gagné A. Methylation of softwood and hardwood kraft lignins with chloromethane. RSC Adv 2024; 14:2293-2299. [PMID: 38213968 PMCID: PMC10777682 DOI: 10.1039/d3ra08404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
Methylation is a well-established means of enhancing the thermal stability, improving the compatibility in polymer blends, and lowering the glass-transition temperature of lignins. This process normally involves reagents that are costly, associated with poor atom economy and/or highly toxic. Herein, we report the methylation of softwood and hardwood kraft lignins using chloromethane in alkaline aqueous media. This reaction proceeds in high yields at 90-110 °C under moderate pressure (40 psi) while generating environmentally benign sodium chloride and water as by-products.
Collapse
Affiliation(s)
- Daniel Beaudoin
- FPInnovations - Bioproducts Innovation Centre of Excellence 570 Saint-Jean Boulevard, Pointe-Claire Québec H9R 3J9 Canada
| | - Ernest Palus
- FPInnovations - Bioproducts Innovation Centre of Excellence 570 Saint-Jean Boulevard, Pointe-Claire Québec H9R 3J9 Canada
| | - Mohan K R Konduri
- FPInnovations - Bio-Economy Technology Centre 2001 Neebing Avenue Thunder Bay Ontario P7E 6S3 Canada
| | - Alain Gagné
- FPInnovations - Bioproducts Innovation Centre of Excellence 570 Saint-Jean Boulevard, Pointe-Claire Québec H9R 3J9 Canada
| |
Collapse
|
17
|
Diment D, Tkachenko O, Schlee P, Kohlhuber N, Potthast A, Budnyak TM, Rigo D, Balakshin M. Study toward a More Reliable Approach to Elucidate the Lignin Structure-Property-Performance Correlation. Biomacromolecules 2024; 25:200-212. [PMID: 38112036 PMCID: PMC10777350 DOI: 10.1021/acs.biomac.3c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
The correlation between lignin structure, its properties, and performance is crucial for lignin engineering in high-value products. Currently, a widespread approach is to compare lignins which differ by more than one parameter (i.e., Kraft vs organosolv vs lignosulfonates) in various applications by attributing the changes in their properties/performance specifically to a certain variable (i.e., phenolic -OH groups). Herein, we suggest a novel approach to overcome this issue by changing only one variable at a time while keeping all others constant before investigating the lignin properties/performance. Indulin AT (Ind-AT), a softwood Kraft lignin, was chosen as the model substrate for this study. Selective (analytical) lignin modifications were used to mask/convert specific functionalities, such as aliphatic (AliphOH) including benzylic -OH (BenzOH) and phenolic -OH (PhOH) groups, carboxyl groups (-COOH) and carbonyl groups (CO) via methylation, acetylation, and reduction. The selectivity and completeness of the reactions were verified by comprehensive NMR analysis (31P and 2D HSQC) of the modified preparations together with state-of-the-art molar mass (MM) characterization. Methylene blue (MB) adsorption, antioxidant activity, and glass transition temperature (Tg) were used to demonstrate and compare the properties/performance of the obtained modified lignins. We found that the contribution of different functionalities in the adsorption of MB follows the trend BenzOH > -COOH > AlipOH > PhOH. Noteworthy, benzylic -OH contributes ca. 3 and 2.3 times more than phenolic and aliphatic -OH, respectively. An 11% and 17% increase of Tg was observed with respect to the unmodified Indulin by methylating benzylic -OH groups and through reduction, respectively, while full acetylation/methylation of aliphatic and phenolic -OH groups resulted in lower Tg. nRSI experiments revealed that phenolic -OH play a crucial role in increasing the antioxidant activity of lignin, while both aliphatic -OH groups and -COOHs possess a detrimental effect, most likely due to H-bonding. Overall, for the first time, we provide here a reliable approach for the engineering of lignin-based products in high value applications by disclosing the role of specific lignin functionalities.
Collapse
Affiliation(s)
- Daryna Diment
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150, Espoo, Finland
| | - Oleg Tkachenko
- Division
of Nanotechnology and Functional Materials, Department of Materials
Science and Engineering, Uppsala University, 751 03, Uppsala, Sweden
| | - Philipp Schlee
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150, Espoo, Finland
| | - Nadine Kohlhuber
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences
(BOKU), 3430, Tulln, Austria
| | - Antje Potthast
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences
(BOKU), 3430, Tulln, Austria
| | - Tetyana M. Budnyak
- Division
of Nanotechnology and Functional Materials, Department of Materials
Science and Engineering, Uppsala University, 751 03, Uppsala, Sweden
| | - Davide Rigo
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150, Espoo, Finland
| | - Mikhail Balakshin
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150, Espoo, Finland
| |
Collapse
|
18
|
Kang L, Li Q, Jing Y, Ren F, Li E, Zeng X, Xu Y, Wang D, Wang Q, Sun G, Wei L, Diao Y. Auricularia auricula Anionic Polysaccharide Nanoparticles for Gastrointestinal Delivery of Pinus koraiensis Polyphenol Used in Bone Protection under Weightlessness. Molecules 2024; 29:245. [PMID: 38202827 PMCID: PMC10780251 DOI: 10.3390/molecules29010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Auricularia auricula polysaccharides used in Pinus koraiensis polyphenol encapsulation and delivery under weightlessness are rarely reported. In this study, an anionic polysaccharide fragment named AAP Iα with a molecular weight of 133.304 kDa was isolated and purified to construct a polyphenol encapsulation system. Nanoparticles named NPs-PP loaded with a rough surface for Pinus koraiensis polyphenol (PP) delivery were fabricated by AAP Iα and ε-poly-L-lysine (ε-PL). SEM and the DLS tracking method were used to observe continuous changes in AAP Iα, ε-PL and PP on the nanoparticles' rough surface assembly, as well as the dispersion and stability. Hydrophilic, monodisperse and highly negative charged nanoparticles can be formed at AAP Iα 0.8 mg/mL, ε-PL 20 μg/mL and PP 80 μg/mL. FT-IR was used to determine their electrostatic interactions. Release kinetic studies showed that nanoparticles had an ideal gastrointestinal delivery effect. NPs-PP loaded were assembled through electrostatic interactions between polyelectrolytes after hydrogen bonding formation in PP-AAP Iα and PP-ε-PL, respectively. Colon adhesion properties and PP delivery in vivo of nanoparticles showed that NPs-PP loaded had high adhesion efficiency to the colonic mucosa under simulated microgravity and could enhance PP bioavailability. These results suggest that AAP Iα can be used in PP encapsulation and delivery under microgravity in astronaut food additives.
Collapse
Affiliation(s)
- Li Kang
- College of Life Science, China West Normal University, Nanchong 637009, China (Y.J.); (F.R.)
| | - Qiao Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China (E.L.)
| | - Yonghui Jing
- College of Life Science, China West Normal University, Nanchong 637009, China (Y.J.); (F.R.)
| | - Feiyan Ren
- College of Life Science, China West Normal University, Nanchong 637009, China (Y.J.); (F.R.)
| | - Erzhuo Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China (E.L.)
| | - Xiangyin Zeng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China (E.L.)
| | - Yier Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China (E.L.)
| | - Dongwei Wang
- College of Life Science, China West Normal University, Nanchong 637009, China (Y.J.); (F.R.)
| | - Qiang Wang
- College of Life Science, China West Normal University, Nanchong 637009, China (Y.J.); (F.R.)
| | - Guicai Sun
- The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Lijun Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China (E.L.)
| | - Yan Diao
- College of Life Science, China West Normal University, Nanchong 637009, China (Y.J.); (F.R.)
- Collaboration Innovation Center for Tissue Repair Material Engineering Technology, China West Normal University, Nanchong 637002, China
| |
Collapse
|
19
|
Wang Z, Deuss PJ. The isolation of lignin with native-like structure. Biotechnol Adv 2023; 68:108230. [PMID: 37558187 DOI: 10.1016/j.biotechadv.2023.108230] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Searching for renewable alternatives for fossil carbon resources to produce chemicals, fuels and materials is essential for the development of a sustainable society. Lignin, a major component of lignocellulosic biomass, is an abundant renewable source of aromatics and is currently underutilized as it is often burned as an undesired side stream in the production of paper and bioethanol. This lignin harbors great potential as source of high value aromatic chemicals and materials. Biorefinery schemes focused on lignin are currently under development with aim of acquiring added value from lignin. However, the performance of these novel lignin-focused biorefineries is closely linked with the quality of extracted lignin in terms of the level of degradation and modification. Thus, the reactivity including the degradation pathways of the native lignin contained in the plant material needs to be understood in detail to potentially achieve higher value from lignin. Undegraded native-like lignin with an as close as possible structure to native lignin contained in the lignocellulosic plant material serves as a promising model lignin to support detailed studies on the structure and reactivity of native lignin, yielding key understanding for the development of lignin-focused biorefineries. The aim of this review is to highlight the different methods to attain "native-like" lignins that can be valuable for such studies. This is done by giving a basic introduction on what is known about the native lignin structure and the techniques and methods used to analyze it followed by an overview of the fractionation and isolation methods to isolate native-like lignin. Finally, a perspective on the isolation and use of native-like lignin is provided, showing the great potential that this type of lignin brings for understanding the effect of different biomass treatments on the native lignin structure.
Collapse
Affiliation(s)
- Zhiwen Wang
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| | - Peter J Deuss
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
20
|
Fink F, Stawski TM, Stockmann JM, Emmerling F, Falkenhagen J. Surface Modification of Kraft Lignin by Mechanochemical Processing with Sodium Percarbonate. Biomacromolecules 2023; 24:4274-4284. [PMID: 37561452 DOI: 10.1021/acs.biomac.3c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
In this article, we present a novel one-pot mechanochemical reaction for the surface activation of lignin. The process involves environmentally friendly oxidation with hydrogen peroxide, depolymerization of fractions with high molecular mass, and introduction of new carbonyl functions into the lignin backbone. Kraft lignin was ground with sodium percarbonate and sodium hydroxide in a ball mill at different time intervals. Analyses by infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), size exclusion chromatography (SEC), dynamic vapor sorption (DVS), and small-angle X-ray scattering (SAXS) showed significant improvements. After only 5 min of reaction, there was a 47% reduction in mass-average molecular weight and an increase in carboxyl functionalities. Chemical activation resulted in an approximately 2.8-fold increase in water adsorption. Principal component analysis (PCA) provided further insight into the correlations between IR spectra and SAXS parameters.
Collapse
Affiliation(s)
- Friedrich Fink
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
- Humboldt-Universität zu Berlin, Mathematische-Naturwissenschaftliche Fakultät, Unter den Linden 6, 10099 Berlin, Germany
| | - Tomasz M Stawski
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Jörg M Stockmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Franziska Emmerling
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
- Humboldt-Universität zu Berlin, Mathematische-Naturwissenschaftliche Fakultät, Unter den Linden 6, 10099 Berlin, Germany
| | - Jana Falkenhagen
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| |
Collapse
|
21
|
Wang L, Wang Q, Rosqvist E, Smått JH, Yong Q, Lassila L, Peltonen J, Rosenau T, Toivakka M, Willför S, Eklund P, Xu C, Wang X. Template-Directed Polymerization of Binary Acrylate Monomers on Surface-Activated Lignin Nanoparticles in Toughening of Bio-Latex Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207085. [PMID: 36919307 DOI: 10.1002/smll.202207085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Indexed: 06/15/2023]
Abstract
Fabricating bio-latex colloids with core-shell nanostructure is an effective method for obtaining films with enhanced mechanical characteristics. Nano-sized lignin is rising as a class of sustainable nanomaterials that can be incorporated into latex colloids. Fundamental knowledge of the correlation between surface chemistry of lignin nanoparticles (LNPs) and integration efficiency in latex colloids and from it thermally processed latex films are scarce. Here, an approach to integrate self-assembled nanospheres of allylated lignin as the surface-activated cores in a seeded free-radical emulsion copolymerization of butyl acrylate and methyl methacrylate is proposed. The interfacial-modulating function on allylated LNPs regulates the emulsion polymerization and it successfully produces a multi-energy dissipative latex film structure containing a lignin-dominated core (16% dry weight basis). At an optimized allyl-terminated surface functionality of 1.04 mmol g-1 , the LNPs-integrated latex film exhibits extremely high toughness value above 57.7 MJ m-3 . With multiple morphological and microstructural characterizations, the well-ordered packing of latex colloids under the nanoconfinement of LNPs in the latex films is revealed. It is concluded that the surface chemistry metrics of colloidal cores in terms of the abundance of polymerization-modulating anchors and their accessibility have a delicate control over the structural evolution of core-shell latex colloids.
Collapse
Affiliation(s)
- Luyao Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Qingbo Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Emil Rosqvist
- Physical Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Jan-Henrik Smått
- Physical Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Qiwen Yong
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Lippo Lassila
- Turku Clinical Biomaterials Centre, University of Turku, Itäinen Pitkäkatu 4b, Turku, FI-20520, Finland
| | - Jouko Peltonen
- Physical Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Thomas Rosenau
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU University), Konrad-Lorenz-Strasse 24, Tulln, AT-3430, Austria
| | - Martti Toivakka
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Stefan Willför
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Patrik Eklund
- Organic Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Xiaoju Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| |
Collapse
|
22
|
Wu C, Yang Y, Sun K, Luo D, Liu X, Xiao H, Bian H, Dai H. Lignin decolorization in organic solvents and their application in natural sunscreen. Int J Biol Macromol 2023; 237:124081. [PMID: 36934814 DOI: 10.1016/j.ijbiomac.2023.124081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/21/2023]
Abstract
In order to improve the utilization of industrial lignin as an effective component for ultraviolet (UV) shielding, organic solvent (methanol, ethanol, and acetone) fractionation was applied to improve its UV absorption performance and reduce its apparent color. Physicochemical properties of lignin and lignin-based sunscreens, such as molar mass fraction, functional group content, color change and UV shielding properties, were characterized in detail by GPC, UV spectroscopy, 31P NMR and HSQC-NMR spectroscopy. The results showed that the color and UV-shielding properties of the soluble fraction were significantly superior to those of the original and insoluble fractions. Different lignin fractions were acted as the only active substance in the pure cream and its UV-shielding properties were compared. Among them, the composite sunscreen by adding 5 wt% acetone fractionated lignin had highest sun protection factor (SPF) value of 6.6, approximately 4.5 times higher than those sunscreens mixed with pristine lignin. Overall, this work offers the potential of industrial lignin in value-added applications such as UV protection and cosmetics.
Collapse
Affiliation(s)
- Chen Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yumeng Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Kaiqi Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Dan Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xiuyu Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
23
|
Godina D, Makars R, Paze A, Rizhikovs J. Analytical Method Cluster Development for Comprehensive Characterisation of Suberinic Acids Derived from Birch Outer Bark. Molecules 2023; 28:molecules28052227. [PMID: 36903473 PMCID: PMC10005158 DOI: 10.3390/molecules28052227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Suberin is a complex polyester biopolymer, and it is practically impossible to estimate the real content of suberin in suberised plant tissues. This indicates the importance of the development of instrumental analytical methods for the comprehensive characterisation of suberin derived from plant biomass for the successful integration of suberinic products into biorefinery production chains. In this study, we optimised two GC-MS methods-one with direct sylilation, and the second with additional depolymerisation, using GPC methods with RI detector and polystyrene calibration and with a three-angle light scattering detector and an eighteen-angle light scattering detector. We also performed MALDI-Tof analysis for non-degraded suberin structure determination. We characterised suberinic acid (SA) samples obtained from birch outer bark after alkaline depolymerisation. The samples were particularly rich in diols, fatty acids and their esters, hydroxyacids and their corresponding esters, diacids and their corresponding esters, as well as extracts (mainly betulin and lupeol) and carbohydrates. To remove phenolic-type admixtures, treatment with ferric chloride (FeCl3) was used. The SA treatment with FeCl3 allows the possibility to obtain a sample that has a lower content of phenolic-type compounds and a lower molecular weight than an untreated sample. It was possible to identify the main free monomeric units of SA samples by GC-MS system using direct silylation. By performing an additional depolymerisation step before silylation, it was possible to characterise the complete potential monomeric unit composition in the suberin sample. For the molar mass distribution determination, it is important to perform GPC analysis. Even though chromatographic results can be obtained using a three- laser MALS detector, they are not fully correct because of the fluorescence of the SA samples. Therefore an 18-angle MALS detector with filters was more suitable for SA analysis. MALDI-Tof analysis is a great tool for the polymeric compound structural identification, which cannot be done using GC-MS. Using the MALDI data, we discovered that the main monomeric units that makes up the SA macromolecular structure are octadecanedioic acid and 2-(1,3-dihydroxyprop-2-oxy)decanedioic acid. This corresponds with GC-MS results, showing that after depolymerisation hydroxyacids and diacids were the dominant type of compounds found in the sample.
Collapse
Affiliation(s)
- Daniela Godina
- Biorefinery Laboratory, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Correspondence:
| | - Raimonds Makars
- Biorefinery Laboratory, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- PolyLabs SIA, Mukusalas iela 46, LV-1004 Riga, Latvia
| | - Aigars Paze
- Biorefinery Laboratory, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
| | - Janis Rizhikovs
- Biorefinery Laboratory, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
| |
Collapse
|
24
|
Abik F, Palasingh C, Bhattarai M, Leivers S, Ström A, Westereng B, Mikkonen KS, Nypelö T. Potential of Wood Hemicelluloses and Their Derivates as Food Ingredients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2667-2683. [PMID: 36724217 PMCID: PMC9936590 DOI: 10.1021/acs.jafc.2c06449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
A holistic utilization of all lignocellulosic wood biomass, instead of the current approach of using only the cellulose fraction, is crucial for the efficient, ecological, and economical use of the forest resources. Use of wood constituents in the food and feed sector is a potential way of promoting the global economy. However, industrially established food products utilizing such components are still scarce, with the exception of cellulose derivatives. Hemicelluloses that include xylans and mannans are major constituents of wood. The wood hemicelluloses are structurally similar to hemicelluloses from crops, which are included in our diet, for example, as a part of dietary fibers. Hence, structurally similar wood hemicelluloses have the potential for similar uses. We review the current status and future potential of wood hemicelluloses as food ingredients. We include an inventory of the extraction routes of wood hemicelluloses, their physicochemical properties, and some of their gastrointestinal characteristics, and we also consider the regulatory route that research findings need to follow to be approved for food solutions, as well as the current status of the wood hemicellulose applications on that route.
Collapse
Affiliation(s)
- Felix Abik
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
| | - Chonnipa Palasingh
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Mamata Bhattarai
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Espoo 00076, Finland
| | - Shaun Leivers
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Anna Ström
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Bjørge Westereng
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Kirsi S. Mikkonen
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
- Helsinki
Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Tiina Nypelö
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
- Wallenberg
Wood Science Center, Chalmers University
of Technology, Gothenburg 41296, Sweden
- Department
of Bioproducts and Biosystems, Aalto University, Espoo 00760, Finland
| |
Collapse
|
25
|
Advanced Fractionation of Kraft Lignin by Aqueous Hydrotropic Solutions. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020687. [PMID: 36677747 PMCID: PMC9867506 DOI: 10.3390/molecules28020687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Lignin is an underutilized high-potential biopolymer that has been extensively studied over the past few decades. However, lignin still has drawbacks when compared with well-known petroleum-based equivalents, and the production of tailored lignin fractions is highly in demand. In this work, a new method for the fractionation of Lignoboost Kraft Lignin (LKL) is proposed by using two different hydrotropes: sodium xylenesulfonate (SXS) and sodium cumenesulfonate (SCS). The different fractions are obtained by sequentially decreasing the hydrotropic concentration with the addition of water. Four and three different fractions were retrieved from the use of SXS and SCS, respectively. The LKL and respective fractions were analysed, and compared by GPC, FTIR-ATR, 1H-NMR, 13C-NMR, 31P NMR, 2D HSQC and SEM. The fractions showed different molecular weights, polydispersity, and amount of functional groups. Our water-based lignin fractionation platform can potentially be combined with different lignin extraction and processing technologies, with the advantage of hydrotrope recycling.
Collapse
|
26
|
Wurzer GK, Bacher M, Musl O, Kohlhuber N, Sulaeva I, Kelz T, Fackler K, Bischof RH, Hettegger H, Potthast A, Rosenau T. From liquid to solid-state, solvent-free oxidative ammonolysis of lignins – an easy, alternative approach to generate “N-lignins” †. RSC Adv 2023; 13:9479-9490. [PMID: 36968046 PMCID: PMC10034478 DOI: 10.1039/d3ra00691c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/12/2023] [Indexed: 03/25/2023] Open
Abstract
A new chemical modification protocol to generate N-lignins is presented, based on Indulin AT and Mg2+-lignosulfonate. The already known ammonoxidation reaction in liquid phase was used as a starting point and stepwise optimised towards a full solid-state approach. The “classical” liquid ammonoxidation products, the transition products from the optimization trials, as well as the “solid-state” products were comprehensively analysed and compared to the literature. The N-lignins obtained with the conventional ammonoxidation protocol showed the same properties as reported. Their molar mass distributions and the hydroxy group contents, hitherto not accessible due to solubility problems, were measured according to a recently reported protocol. N-Indulin showed an N-content up to 11 wt% and N-lignosulfonate up to 16 wt%. The transition experiments from liquid to solid-state gave insights into the influence of chemical components and reaction conditions. The use of a single chemical, the urea-hydrogen peroxide complex (UHP, “carbamide peroxide”), was sufficient to generate N-lignins with satisfying N-content. This chemical acts both as an N-source and as the oxidant. Following the optimization, a series of solid-state ammonoxidation tests were carried out. High N-contents of 10% in the case of Indulin and 11% in the case of lignosulfonate were obtained. By varying the ratio of UHP to lignin, the N-content can be controlled. Structural analysis showed that the N is organically bound to the lignin, similar to the “classical” ammonoxidation products obtained under homogeneous conditions. Overall, a new ammonoxidation protocol was developed which does not require an external gas supply nor liquids or dissolved reactants. This opens the possibility for carrying out the lignin modification in closed continuous reactor systems, such as extruders. The new, facile solid-state protocol will hopefully help N-lignins to find more consideration as a fertilizing material and in soil-improving materials. An alternative ammonoxidation protocol was developed. With this new approach in “solid-state” mode, one single solid reagent is sufficient to equip lignin with different N-functionalities.![]()
Collapse
Affiliation(s)
- Gerhild K. Wurzer
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
| | - Markus Bacher
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
| | - Oliver Musl
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
- Department of Chemical and Biological Engineering, Biobased Colloids and Materials, UBC University of British Columbia, Vancouver2385 East MallVancouverCanada
| | - Nadine Kohlhuber
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
| | - Irina Sulaeva
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
- Core Facility Analysis of Lignocellulosics (ALICE), University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Straße 24A-3430 TullnAustria
| | - Theres Kelz
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
| | - Karin Fackler
- Lenzing AG, Research & DevelopmentA-4860 LenzingAustria
| | | | - Hubert Hettegger
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
| | - Antje Potthast
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
- Johan Gadolin Process Chemistry Centre, Åbo Akademi UniversityPorthansgatan 3FI-20500 ÅboFinland
| |
Collapse
|
27
|
Pittman ZA, McCarthy ME, Birtwistle MR, Kitchens CL. Method for Improved Fluorescence Corrections for Molar Mass Characterization by Multiangle Light Scattering. Biomacromolecules 2022; 23:3743-3751. [PMID: 35926160 PMCID: PMC9843603 DOI: 10.1021/acs.biomac.2c00600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Multiangle light scattering (MALS) was used to determine the absolute molar mass of fluorescent macromolecules. It is standard protocol to install bandwidth filters before MALS detectors to suppress detection of fluorescent emissions. Fluorescence can introduce tremendous error in light scattering measurements and is a formidable challenge in accurately characterizing fluorescent macromolecules and particles. However, we show that for some systems, bandwidth filters alone are insufficient for blocking fluorescence in molar mass determinations. For these systems, we have devised a correction procedure to calculate the amount of fluorescence interference in the filtered signal. By determining the intensity of fluorescent emission not blocked by the bandwidth filters, we can correct the filtered signal accordingly and accurately determine the true molar mass. The transmission rates are calculated before MALS experimentation using emission data from standard fluorimetry techniques, allowing for the characterization of unknown samples. To validate the correction procedure, we synthesized fluorescent dye-conjugated proteins using an IR800CW (LI-COR) fluorophore and Bovine Serum Albumin protein. We successfully eliminated fluorescence interference in MALS measurements using this approach. This correction procedure has potential application toward more accurate molar mass characterizations of macromolecules with intrinsic fluorescence, such as lignins, fluorescent proteins, fluorescence-tagged proteins, and optically active nanoparticles.
Collapse
Affiliation(s)
- Zachariah A Pittman
- Clemson University, Chemical and Biomolecular Engineering, Earle Hall, 206 South Palmetto Blvd, Clemson, South Carolina 29631, United States
| | - Madeline E McCarthy
- Clemson University, Chemical and Biomolecular Engineering, Earle Hall, 206 South Palmetto Blvd, Clemson, South Carolina 29631, United States
| | - Marc R Birtwistle
- Clemson University, Chemical and Biomolecular Engineering, Earle Hall, 206 South Palmetto Blvd, Clemson, South Carolina 29631, United States
| | - Christopher L Kitchens
- Clemson University, Chemical and Biomolecular Engineering, Earle Hall, 206 South Palmetto Blvd, Clemson, South Carolina 29631, United States
| |
Collapse
|
28
|
Vieira FR, Magina S, Evtuguin DV, Barros-Timmons A. Lignin as a Renewable Building Block for Sustainable Polyurethanes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6182. [PMID: 36079563 PMCID: PMC9457695 DOI: 10.3390/ma15176182] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Currently, the pulp and paper industry generates around 50-70 million tons of lignin annually, which is mainly burned for energy recovery. Lignin, being a natural aromatic polymer rich in functional hydroxyl groups, has been drawing the interest of academia and industry for its valorization, especially for the development of polymeric materials. Among the different types of polymers that can be derived from lignin, polyurethanes (PUs) are amid the most important ones, especially due to their wide range of applications. This review encompasses available technologies to isolate lignin from pulping processes, the main approaches to convert solid lignin into a liquid polyol to produce bio-based polyurethanes, the challenges involving its characterization, and the current technology assessment. Despite the fact that PUs derived from bio-based polyols, such as lignin, are important in contributing to the circular economy, the use of isocyanate is a major environmental hot spot. Therefore, the main strategies that have been used to replace isocyanates to produce non-isocyanate polyurethanes (NIPUs) derived from lignin are also discussed.
Collapse
|
29
|
Musl O, Galler S, Wurzer G, Bacher M, Sulaeva I, Sumerskii I, Mahler AK, Rosenau T, Potthast A. High-Resolution Profiling of the Functional Heterogeneity of Technical Lignins. Biomacromolecules 2022; 23:1413-1422. [PMID: 35212532 PMCID: PMC8924861 DOI: 10.1021/acs.biomac.1c01630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/08/2022] [Indexed: 11/29/2022]
Abstract
In technical lignins, functionality is strongly related to molar mass. Hence, any technical lignin exhibits concurrent functionality-type distribution (FTD) along its molar mass distribution (MMD). This study combined preparative size-exclusion chromatography with offline characterizations to acquire highly resolved profiles of the functional heterogeneity of technical lignins, which represent crucial information for their material use. The shape of these profiles showed considerable dissimilarity between different technical lignins and followed sigmoid trends. Determining the dispersity in functionality (ĐF) of lignins via their FTD revealed a rather homogeneous distribution of their functionalities (ĐF of 1.00-1.21). The high resolution of the acquired profiles of functional heterogeneity facilitated the development of a robust calculation method for the estimation of functional group contents of lignin fractions based simply on their MMD, an invaluable tool to simulate the effects of intended purification processes. Moreover, a more thorough evaluation of separations based on functionality becomes accessible.
Collapse
Affiliation(s)
- Oliver Musl
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Samira Galler
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Gerhild Wurzer
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Markus Bacher
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Irina Sulaeva
- Core
Facility “Analysis of Lignocellulose” ALICE, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Ivan Sumerskii
- Core
Facility “Analysis of Lignocellulose” ALICE, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Arnulf Kai Mahler
- Sappi
Europe, Sappi Papier Holding GmbH, Bruckner Straße 21, A-8101 Gratkorn, Austria
| | - Thomas Rosenau
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Antje Potthast
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| |
Collapse
|
30
|
Velours C, Zhou J, Zecchin P, He N, Salameh M, Golinelli-Cohen MP, Golinelli-Pimpaneau B. Determination of the Absolute Molar Mass of [Fe-S]-Containing Proteins Using Size Exclusion Chromatography-Multi-Angle Light Scattering (SEC-MALS). Biomolecules 2022; 12:biom12020270. [PMID: 35204772 PMCID: PMC8961635 DOI: 10.3390/biom12020270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Size Exclusion Chromatography coupled with Multi-Angle Light Scattering (SEC-MALS) is a technique that determines the absolute molar mass (molecular weight) of macromolecules in solution, such as proteins or polymers, by detecting their light scattering intensity. Because SEC-MALS does not rely on the assumption of the globular state of the analyte and the calibration of standards, the molar mass can be obtained for proteins of any shape, as well as for intrinsically disordered proteins and aggregates. Yet, corrections need to be made for samples that absorb light at the wavelength of the MALS laser, such as iron–sulfur [Fe-S] cluster-containing proteins. We analyze several examples of [2Fe-2S] and [4Fe-4S] cluster-containing proteins, for which various corrections were applied to determine the absolute molar mass of both the apo- and holo-forms. Importantly, the determination of the absolute molar mass of the [2Fe-2S]-containing holo-NEET proteins allowed us to ascertain a change in the oligomerization state upon cluster binding and, thus, to highlight one essential function of the cluster.
Collapse
Affiliation(s)
- Christophe Velours
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed, 33076 Bordeaux, France
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Correspondence: (C.V.); (B.G.-P.)
| | - Jingjing Zhou
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris, France; (J.Z.); (P.Z.); (N.H.)
| | - Paolo Zecchin
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris, France; (J.Z.); (P.Z.); (N.H.)
| | - Nisha He
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris, France; (J.Z.); (P.Z.); (N.H.)
| | - Myriam Salameh
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, UPR2301, 91198 Gif-sur-Yvette, France; (M.S.); (M.-P.G.-C.)
| | - Marie-Pierre Golinelli-Cohen
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, UPR2301, 91198 Gif-sur-Yvette, France; (M.S.); (M.-P.G.-C.)
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris, France; (J.Z.); (P.Z.); (N.H.)
- Correspondence: (C.V.); (B.G.-P.)
| |
Collapse
|
31
|
Ji L, Liu LY, Cho M, Karaaslan MA, Renneckar S. Revisiting the Molar Mass and Conformation of Derivatized Fractionated Softwood Kraft Lignin. Biomacromolecules 2021; 23:708-719. [PMID: 34968020 DOI: 10.1021/acs.biomac.1c01101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The limited utilization of reliable tools and standards for determination of the softwood kraft lignin molar mass and the corresponding molecular conformation hampers elucidation of the structure-property relationships of lignin. At issue, conventional size exclusion chromatography (SEC) is unable to robustly measure the molar mass because of a lack of calibration standards with a similar structure to lignin. In the present work, the determination of the absolute molar mass of acetylated technical lignin was revisited utilizing SEC combined with multi-angle light scattering with a band pass filter to suppress the fluorescence. Fractionated lignin isolated using sequential techniques of solvent and membrane methods was used to enhance the clarity of light-scattering profiles by narrowing the molar mass distribution of lignin fractions. Further information on the molecular conformation of derivatized samples was studied utilizing a differential viscometer, and chemical structures were identified by NMR spectroscopy analysis. Through the help of fractionation, intrinsic viscosity values were determined for the different fractions as a function of molecular weight cut-off membranes. The derivatized acetone-soluble lignin was found to possess a lower molecular weight and an extremely compact structure relative to the derivatized acetone-insoluble fraction based on a significantly lower "α" value in the Mark-Houwink-Sakurada plot (0.15 acetone-soluble vs 0.33 acetone-insoluble). The differences in geometry were supported by the linkage analysis from NMR showing the acetone-soluble part containing fewer native linkages. In both of these examples, kraft lignin behaved like a solid sphere, limiting the ability to provide entanglements between molecular chains. From this standpoint, macroscopic properties of lignin are justified with this knowledge of a dense and extremely compact structure.
Collapse
Affiliation(s)
- Lun Ji
- Advanced Renewable Materials Lab, Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Li-Yang Liu
- Advanced Renewable Materials Lab, Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mijung Cho
- Advanced Renewable Materials Lab, Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Muzaffer A Karaaslan
- Advanced Renewable Materials Lab, Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Scott Renneckar
- Advanced Renewable Materials Lab, Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
32
|
Burger R, Rumpf J, Do XT, Monakhova YB, Diehl BWK, Rehahn M, Schulze M. Is NMR Combined with Multivariate Regression Applicable for the Molecular Weight Determination of Randomly Cross-Linked Polymers Such as Lignin? ACS OMEGA 2021; 6:29516-29524. [PMID: 34778623 PMCID: PMC8581975 DOI: 10.1021/acsomega.1c03574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/27/2021] [Indexed: 05/25/2023]
Abstract
The molecular weight properties of lignins are one of the key elements that need to be analyzed for a successful industrial application of these promising biopolymers. In this study, the use of 1H NMR as well as diffusion-ordered spectroscopy (DOSY NMR), combined with multivariate regression methods, was investigated for the determination of the molecular weight (M w and M n) and the polydispersity of organosolv lignins (n = 53, Miscanthus x giganteus, Paulownia tomentosa, and Silphium perfoliatum). The suitability of the models was demonstrated by cross validation (CV) as well as by an independent validation set of samples from different biomass origins (beech wood and wheat straw). CV errors of ca. 7-9 and 14-16% were achieved for all parameters with the models from the 1H NMR spectra and the DOSY NMR data, respectively. The prediction errors for the validation samples were in a similar range for the partial least squares model from the 1H NMR data and for a multiple linear regression using the DOSY NMR data. The results indicate the usefulness of NMR measurements combined with multivariate regression methods as a potential alternative to more time-consuming methods such as gel permeation chromatography.
Collapse
Affiliation(s)
- René Burger
- Department
of Natural Sciences, Bonn-Rhein-Sieg University
of Applied Sciences, von-Liebig-Straße 20, Rheinbach D-53359, Germany
| | - Jessica Rumpf
- Department
of Natural Sciences, Bonn-Rhein-Sieg University
of Applied Sciences, von-Liebig-Straße 20, Rheinbach D-53359, Germany
| | - Xuan Tung Do
- Department
of Natural Sciences, Bonn-Rhein-Sieg University
of Applied Sciences, von-Liebig-Straße 20, Rheinbach D-53359, Germany
| | - Yulia B. Monakhova
- Department
of Chemistry and Biotechnology, FH Aachen
University of Applied Sciences, Heinrich-Mußmann-Straße 1, Jülich 52428, Germany
- Institute
of Chemistry, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia
| | | | - Matthias Rehahn
- Department
of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt D-64287, Germany
| | - Margit Schulze
- Department
of Natural Sciences, Bonn-Rhein-Sieg University
of Applied Sciences, von-Liebig-Straße 20, Rheinbach D-53359, Germany
| |
Collapse
|
33
|
Sarosi O, Sulaeva I, Fitz E, Sumerskii I, Bacher M, Potthast A. Lignin Resists High-Intensity Electron Beam Irradiation. Biomacromolecules 2021; 22:4365-4372. [PMID: 34506709 PMCID: PMC8512668 DOI: 10.1021/acs.biomac.1c00926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electron beam irradiation (EBI) of native lignin has received little attention. Thus, its potential use in lignin-based biorefineries is not fully understood. EBI was applied to selected lignin samples and the structural and chemical changes were analyzed, revealing the suitability, limitations, and potential purpose of EBI in wood biorefineries. Isolated milled wood, kraft, and sulfite lignin from beech and eucalyptus were subjected to up to 200 kGy of irradiation. The analysis included gel permeation chromatography for molar masses, heteronuclear single quantum coherence (HSQC)- and 31P NMR and headspace gas chromatography-mass spectrometry for functional groups, and thermogravimetric analysis for thermal stability. Most samples resisted irradiation. Subtle changes occurred in the molecular weight distribution and thermal stability of milled wood lignin. EBI was found to be a suitable pretreatment method for woody biomass if the avoidance of lignin condensation and chemical modification is a high priority.
Collapse
Affiliation(s)
- Oliver Sarosi
- Kompetenzzentrum Holz GmbH, Altenbergerstraße 69, A-4040 Linz, Austria
| | - Irina Sulaeva
- Kompetenzzentrum Holz GmbH, Altenbergerstraße 69, A-4040 Linz, Austria
| | - Elisabeth Fitz
- Kompetenzzentrum Holz GmbH, Altenbergerstraße 69, A-4040 Linz, Austria
| | - Ivan Sumerskii
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
| | - Markus Bacher
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
| | - Antje Potthast
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
| |
Collapse
|
34
|
Csarman F, Gusenbauer C, Wohlschlager L, van Erven G, Kabel MA, Konnerth J, Potthast A, Ludwig R. Non-productive binding of cellobiohydrolase i investigated by surface plasmon resonance spectroscopy. CELLULOSE (LONDON, ENGLAND) 2021; 28:9525-9545. [PMID: 34720466 PMCID: PMC8550311 DOI: 10.1007/s10570-021-04002-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/10/2021] [Indexed: 05/23/2023]
Abstract
UNLABELLED Future biorefineries are facing the challenge to separate and depolymerize biopolymers into their building blocks for the production of biofuels and basic molecules as chemical stock. Fungi have evolved lignocellulolytic enzymes to perform this task specifically and efficiently, but a detailed understanding of their heterogeneous reactions is a prerequisite for the optimization of large-scale enzymatic biomass degradation. Here, we investigate the binding of cellulolytic enzymes onto biopolymers by surface plasmon resonance (SPR) spectroscopy for the fast and precise characterization of enzyme adsorption processes. Using different sensor architectures, SPR probes modified with regenerated cellulose as well as with lignin films were prepared by spin-coating techniques. The modified SPR probes were analyzed by atomic force microscopy and static contact angle measurements to determine physical and surface molecular properties. SPR spectroscopy was used to study the activity and affinity of Trichoderma reesei cellobiohydrolase I (CBHI) glycoforms on the modified SPR probes. N-glycan removal led to no significant change in activity or cellulose binding, while a slightly higher tendency for non-productive binding to SPR probes modified with different lignin fractions was observed. The results suggest that the main role of the N-glycosylation in CBHI is not to prevent non-productive binding to lignin, but probably to increase its stability against proteolytic degradation. The work also demonstrates the suitability of SPR-based techniques for the characterization of the binding of lignocellulolytic enzymes to biomass-derived polymers. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10570-021-04002-6.
Collapse
Affiliation(s)
- Florian Csarman
- Department of Food Science and Technology, Biocatalysis and Biosensing Laboratory, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Claudia Gusenbauer
- Department of Materials Sciences and Process Engineering, Institute of Wood Technology and Renewable Materials, BOKU - University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Lena Wohlschlager
- Department of Food Science and Technology, Biocatalysis and Biosensing Laboratory, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Johannes Konnerth
- Department of Materials Sciences and Process Engineering, Institute of Wood Technology and Renewable Materials, BOKU - University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Antje Potthast
- Department of Chemistry, Division of Chemistry of Renewable Resources, BOKU - University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Roland Ludwig
- Department of Food Science and Technology, Biocatalysis and Biosensing Laboratory, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
35
|
Gaugler EC, Radke W, Vogt AP, Smith DA. Molar mass determination of lignins and characterization of their polymeric structures by multi-detector gel permeation chromatography. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00283-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractMolar masses, Mark-Houwink-Sakurada (MHS) exponents, and refractive index increments (dn/dc) for three lignins were determined without derivatization by multi-detector gel permeation chromatography (GPC) in dimethylformamide (DMF) with 0.05 M lithium bromide (LiBr). The lack of effectiveness of fluorescence filters on molar mass determination by GPC-multi-angle laser light scattering (MALS) was confirmed for softwood kraft lignin (Indulin AT) and revealed for mixed hardwood organosolv lignin (Alcell) as well as soda straw/grass lignin (Protobind 1000). GPC with viscometry detection confirmed that these lignins were present as compact molecules. The MHS exponent α for Indulin AT and Alcell was in the order of 0.1. Additionally, the intrinsic viscosity of Protobind 1000 for a given molar mass was much lower than that of either Alcell or Indulin AT. This is the first report of dn/dc values for these three lignins in DMF with 0.05 M LiBr.
Collapse
|
36
|
Kačíková D, Kubovský I, Gaff M, Kačík F. Changes of Meranti, Padauk, and Merbau Wood Lignin during the ThermoWood Process. Polymers (Basel) 2021; 13:993. [PMID: 33804876 PMCID: PMC8037302 DOI: 10.3390/polym13070993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Thermal modification is an environmentally friendly process in which technological properties of wood are modified using thermal energy without adding chemicals, the result of which is a value-added product. Wood samples of three tropical wood species (meranti, padauk, and merbau) were thermally treated according to the ThermoWood process at various temperatures (160, 180, 210 °C) and changes in isolated lignin were evaluated by nitrobenzene oxidation (NBO), Fourier-transform infrared spectroscopy (FTIR), and size exclusion chromatography (SEC). New data on the lignins of the investigated wood species were obtained, e.g., syringyl to guaiacyl ratio values (S/G) were 1.21, 1.70, and 3.09, and molecular weights were approx. 8600, 4300, and 8300 g·mol-1 for meranti, padauk, and merbau, respectively. Higher temperatures cause a decrease of methoxyls and an increase in C=O groups. Simultaneous degradation and condensation reactions in lignin occur during thermal treatment, the latter prevailing at higher temperatures.
Collapse
Affiliation(s)
- Danica Kačíková
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, T.G. Masaryka 24, 960 01 Zvolen, Slovakia; (D.K.); (F.K.)
| | - Ivan Kubovský
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, T.G. Masaryka 24, 960 01 Zvolen, Slovakia; (D.K.); (F.K.)
| | - Milan Gaff
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 00 Praha 6-Suchdol, Czech Republic;
| | - František Kačík
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, T.G. Masaryka 24, 960 01 Zvolen, Slovakia; (D.K.); (F.K.)
| |
Collapse
|
37
|
Liu LY, Bessler K, Chen S, Cho M, Hua Q, Renneckar S. Data on making uniform lignin building blocks via in-situ real-time monitoring of hydroxyethyl modification. Data Brief 2020; 33:106512. [PMID: 33304946 PMCID: PMC7718129 DOI: 10.1016/j.dib.2020.106512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/17/2022] Open
Abstract
In this work, a lab-designed apparatus was developed to collect and record the CO2 amount during the hydroxyethyl modification of lignin. We presented the CO2 volume amount and the production rate under different reaction conditions (80 - 120 °C and 2 - 6 hrs). Nuclear magnetic resonance spectroscopy was performed to analyze the chemical structure of the hydroxyethyl lignin corresponding with different amounts of CO2 that evolved during the reaction. The aliphatic hydroxyl, aromatic hydroxyl, and carboxylic acid groups were analyzed and tabulated. The acetylated hydroxyethyl lignin samples were characterized by 13C NMR to obtain the aliphatic hydroxyl (primary and secondary), phenol (ortho substituted and ortho-free), hydroxyethyl, methoxy, and aromatic hydrogen groups semi-quantitatively. Fourier-transform infrared (FTIR) spectroscopy was adopted to analyze the surface functional groups including alkyl aryl ether bond, carboxylic acid groups, and aromatic hydroxyl groups. Gel permeation chromatography combined with a multi-angle light scattering detector and differential refractive index detector were used to obtain the molar mass of lignin before and after the modification.
Collapse
Affiliation(s)
- Li-Yang Liu
- Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada
| | - Kim Bessler
- Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada
| | - Siwei Chen
- Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada
| | - Mijung Cho
- Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada
| | - Qi Hua
- Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada
| | - Scott Renneckar
- Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Zhao H, Li CF, Liu LY, Palma B, Hu ZY, Renneckar S, Larter S, Li Y, Kibria MG, Hu J, Su BL. n-p Heterojunction of TiO 2-NiO core-shell structure for efficient hydrogen generation and lignin photoreforming. J Colloid Interface Sci 2020; 585:694-704. [PMID: 33371948 DOI: 10.1016/j.jcis.2020.10.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen evolution from biomass photoreforming has been widely recognized as a promising strategy for relieving the pressure from energy crisis and environmental pollution, as it could generate sustainable H2 and value-added bioproducts simultaneously. Combining p-type semiconductors with n-type semiconductors to form n-p heterojunction is an effective strategy to improve the photocatalytic quantum efficiency by enhancing the separation of photogenerated electrons and holes, which could greatly facilitate the realization of such biomass photorefinery concept. However, the incompact contact between the n-type and p-type semiconductors often induces the aggregation of photogenerated electrons and holes. In this work, we design and synthesize an ultrafine n-p heterojunction TiO2-NiO core-shell structure to overcome the incompact contact in the n-p interface. When the n-p heterojunction photocatalysts are evaluated for photocatalytic water splitting and biomass lignin photoreforming respectively, the as-fabricated TiO2-NiO nanocomposite with 3.25% NiO demonstrates the highest hydrogen generation of 23.5 mmol h-1 g-1 from water splitting and H2 (0.45 mmol h-1 g-1) and CH4 (0.03 mmol h-1 g-1) cogeneration with reasonable amount of fatty acids (palmitic acid and stearic acid) production from lignin photoreforming. The excellent photocatalytic activity is ascribed to the synergistic effects of high crystallinity of TiO2 ultrafine nanoparticles, core-shell structure and n-p heterojunction with NiO nanoclusters. This present work demonstrates a simple and efficient method to fabricate ultrafine n-p heterojunction core-shell structure for noble-metal free catalyst for both water splitting and biomass photoreforming.
Collapse
Affiliation(s)
- Heng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Chao-Fan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Li-Yang Liu
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Bruna Palma
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Zhi-Yi Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Scott Renneckar
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stephen Larter
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China.
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium.
| |
Collapse
|
39
|
Knol WC, Pirok BWJ, Peters RAH. Detection challenges in quantitative polymer analysis by liquid chromatography. J Sep Sci 2020; 44:63-87. [PMID: 32935906 PMCID: PMC7821191 DOI: 10.1002/jssc.202000768] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Accurate quantification of polymer distributions is one of the main challenges in polymer analysis by liquid chromatography. The response of contemporary detectors is typically influenced by compositional features such as molecular weight, chain composition, end groups, and branching. This renders the accurate quantification of complex polymers of which there are no standards available, extremely challenging. Moreover, any (programmed) change in mobile-phase composition may further limit the applicability of detection techniques. Current methods often rely on refractive index detection, which is not accurate when dealing with complex samples as the refractive-index increment is often unknown. We review current and emerging detection methods in liquid chromatography with the aim of identifying detectors, which can be applied to the quantitative analysis of complex polymers.
Collapse
Affiliation(s)
- Wouter C Knol
- Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, Amsterdam, The Netherlands
| | - Bob W J Pirok
- Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, Amsterdam, The Netherlands
| | - Ron A H Peters
- Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, Amsterdam, The Netherlands.,DSM Resins & Functional Materials, Analytical Technology Centre, Waalwijk, The Netherlands
| |
Collapse
|
40
|
Lahive CW, Kamer PCJ, Lancefield CS, Deuss PJ. An Introduction to Model Compounds of Lignin Linking Motifs; Synthesis and Selection Considerations for Reactivity Studies. CHEMSUSCHEM 2020; 13:4238-4265. [PMID: 32510817 PMCID: PMC7540175 DOI: 10.1002/cssc.202000989] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 05/31/2023]
Abstract
The development of fundamentally new valorization strategies for lignin plays a vital role in unlocking the true potential of lignocellulosic biomass as sustainable and economically compatible renewable carbon feedstock. In particular, new catalytic modification and depolymerization strategies are required. Progress in this field, past and future, relies for a large part on the application of synthetic model compounds that reduce the complexity of working with the lignin biopolymer. This aids the development of catalytic methodologies and in-depth mechanistic studies and guides structural characterization studies in the lignin field. However, due to the volume of literature and the piecemeal publication of methodology, the choice of suitable lignin model compounds is far from straight forward, especially for those outside the field and lacking a background in organic synthesis. For example, in catalytic depolymerization studies, a balance between synthetic effort and fidelity compared to the actual lignin of interest needs to be found. In this Review, we provide a broad overview of the model compounds available to study the chemistry of the main native linking motifs typically found in lignins from woody biomass, the synthetic routes and effort required to access them, and discuss to what extent these represent actual lignin structures. This overview can aid researchers in their selection of the most suitable lignin model systems for the development of emerging lignin modification and depolymerization technologies, maximizing their chances of successfully developing novel lignin valorization strategies.
Collapse
Affiliation(s)
- Ciaran W. Lahive
- Department of Chemical Engineering (ENTEG)University of GroningenNijenborgh 49747 AGGroningenNetherlands
- School of Chemistry and Biomedical Science Research ComplexUniversity of St. Andrews and EaStCHEMNorth HaughSt. AndrewsFifeKY16 9STUnited Kingdom
| | - Paul C. J. Kamer
- School of Chemistry and Biomedical Science Research ComplexUniversity of St. Andrews and EaStCHEMNorth HaughSt. AndrewsFifeKY16 9STUnited Kingdom
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Christopher S. Lancefield
- School of Chemistry and Biomedical Science Research ComplexUniversity of St. Andrews and EaStCHEMNorth HaughSt. AndrewsFifeKY16 9STUnited Kingdom
| | - Peter J. Deuss
- Department of Chemical Engineering (ENTEG)University of GroningenNijenborgh 49747 AGGroningenNetherlands
| |
Collapse
|
41
|
Musl O, Sulaeva I, Bacher M, Mahler AK, Rosenau T, Potthast A. Hydrophobic Interaction Chromatography in 2 D Liquid Chromatography Characterization of Lignosulfonates. CHEMSUSCHEM 2020; 13:4595-4604. [PMID: 32441817 PMCID: PMC7540692 DOI: 10.1002/cssc.202000849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 05/18/2023]
Abstract
Lignosulfonates are bulk-scale byproducts of industrial sulfite pulping. Their amphiphilic character plays a central role in their successful application in large-scale materials production. As an inherent feature of the chemical structure, this amphiphilic character poses a major analytical challenge. In this study, the amphiphilic behavior of an industrial lignosulfonate was investigated by hydrophobic interaction chromatography (HIC). This technique exploits hydrophobic regions present on the surface of lignosulfonates. Extensive characterization of the obtained fractions from preparative HIC, in terms of elemental composition, functional-group content, chemical structure, and molecular weight distribution, revealed a detailed picture of the chemical composition distribution. The charge-to-size ratio, that is, differences in the degree of sulfonation, was the dominant factor governing separation in HIC. A combination of HIC with size exclusion chromatography showed good orthogonality of separation and demonstrated the power of this 2 D liquid chromatography approach for an in-depth characterization, in general, and amphiphilicity, in particular.
Collapse
Affiliation(s)
- Oliver Musl
- Institute of Chemistry of Renewable ResourcesDepartment of ChemistryUniversity of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 243430TullnAustria
| | - Irina Sulaeva
- Institute of Chemistry of Renewable ResourcesDepartment of ChemistryUniversity of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 243430TullnAustria
| | - Markus Bacher
- Institute of Chemistry of Renewable ResourcesDepartment of ChemistryUniversity of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 243430TullnAustria
| | - A. Kai Mahler
- Sappi EuropeSappi Papier Holding GmbHBruckner Strasse 218101GratkornAustria
| | - Thomas Rosenau
- Institute of Chemistry of Renewable ResourcesDepartment of ChemistryUniversity of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 243430TullnAustria
| | - Antje Potthast
- Institute of Chemistry of Renewable ResourcesDepartment of ChemistryUniversity of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 243430TullnAustria
| |
Collapse
|
42
|
Bartolomei E, Le Brech Y, Dufour A, Carre V, Aubriet F, Terrell E, Garcia-Perez M, Arnoux P. Lignin Depolymerization: A Comparison of Methods to Analyze Monomers and Oligomers. CHEMSUSCHEM 2020; 13:4633-4648. [PMID: 32515876 DOI: 10.1002/cssc.202001126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Catalytic liquefaction of lignin is an attractive process to produce fuels and chemicals, but it forms a wide range of liquid products from monomers to oligomers. Oligomers represent an important fraction of the products and their analysis is complex. Therefore, rapid characterization methods are needed to screen liquefaction conditions based on the distribution in monomers and oligomers. For this purpose, UV spectroscopy is proposed as a fast and simple method to assess the composition of lignin-derived liquids. UV absorption and fluorescence were studied on various model compounds and liquefaction products. Liquefaction of Soda lignin was conducted in an autoclave, in ethanol and with Pt/C catalyst (H2 , 250 °C, 110 bar). Liquids were sampled at isothermal conditions every 30 min for 4 h. UV fluorescence spectroscopy is related to GC-MS, gel-permeation chromatography (GPC), MALDI-TOF MS, and NMR characterizations. A depolymerization index is proposed from UV spectroscopy to rapidly assess the relative distribution of monomers and oligomers.
Collapse
Affiliation(s)
- Erika Bartolomei
- LRGP, CNRS, Université de Lorraine, 1 rue Grandville, 54000, Nancy, France
| | - Yann Le Brech
- LRGP, CNRS, Université de Lorraine, 1 rue Grandville, 54000, Nancy, France
| | - Anthony Dufour
- LRGP, CNRS, Université de Lorraine, 1 rue Grandville, 54000, Nancy, France
| | - Vincent Carre
- LCP-A2MC, Université de Lorraine, 1 Boulevard Arago, 57078, Metz, France
| | - Frederic Aubriet
- LCP-A2MC, Université de Lorraine, 1 Boulevard Arago, 57078, Metz, France
| | - Evan Terrell
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Manuel Garcia-Perez
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Philippe Arnoux
- LRGP, CNRS, Université de Lorraine, 1 rue Grandville, 54000, Nancy, France
| |
Collapse
|
43
|
Vostrejs P, Adamcová D, Vaverková MD, Enev V, Kalina M, Machovsky M, Šourková M, Marova I, Kovalcik A. Active biodegradable packaging films modified with grape seeds lignin. RSC Adv 2020; 10:29202-29213. [PMID: 35521111 PMCID: PMC9055960 DOI: 10.1039/d0ra04074f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/21/2020] [Indexed: 11/21/2022] Open
Abstract
Biodegradable packaging materials represent one possible solution for how to reduce the negative environmental impact of plastics. The main idea of this work was to investigate the possibility of utilizing grape seed lignin for the modification of polyhydroxyalkanoates with the use of its antioxidant capacity in packaging films. For this purpose, polymeric films based on the blend of high crystalline poly(3-hydroxybutyrate) (PHB) and amorphous polyhydroxyalkanoate (PHA) were prepared. PHB/PHA films displayed Young modulus of 240 MPa, tensile strength at a maximum of 6.6 MPa and elongation at break of 95.2%. The physical properties of PHB/PHA films were modified by the addition of 1-10 wt% of grape seeds lignin (GS-L). GS-L lignin showed a high antioxidant capacity: 238 milligrams of Trolox equivalents were equal to one gram of grape seeds lignin. The incorporation of grape seeds lignin into PHB/PHA films positively influenced their gas barrier properties, antioxidant activity and biodegradability. The values of oxygen and carbon dioxide transition rate of PHB/PHA with 1 wt% of GS-L were 7.3 and 36.3 cm3 m-2 24 h 0.1 MPa, respectively. The inhibition percentage of the ABTS radical determined in PHB/PHA/GS-L was in the range of 29.2% to 100% depending on the lignin concentration. The biodegradability test carried out under controlled composting environment for 90 days showed that the PHB/PHA film with 50 w/w% of amorphous PHA reached the degradability degree of 68.8% being about 26.6% higher decomposition than in the case of neat high crystalline PHB film. The degradability degree of PHA films in compost within the tested period reflected the modification of the semi-crystalline character and varied with the incorporated lignin. From the toxicological point of view, the composts obtained after biodegradation of PHA films proved the non-toxicity of PHB/PHA/GS-L materials and its degradation products showed a positive effect on white mustard (Sinapis alba L.) seeds germination.
Collapse
Affiliation(s)
- Pavel Vostrejs
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology Purkynova 118 612 00 Brno Czech Republic
| | - Dana Adamcová
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno Zemědělská 1 613 00 Brno Czech Republic
| | - Magdalena Daria Vaverková
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno Zemědělská 1 613 00 Brno Czech Republic
- Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW Nowoursynowska 159m 02 776 Warsaw Poland
| | - Vojtech Enev
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology Purkynova 118 612 00 Brno Czech Republic
| | - Michal Kalina
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology Purkynova 118 612 00 Brno Czech Republic
| | - Michal Machovsky
- Centre of Polymer Systems, Tomas Bata University in Zlín Třída Tomáše Bati 5678 760 01 Zlin Czech Republic
| | - Markéta Šourková
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno Zemědělská 1 613 00 Brno Czech Republic
| | - Ivana Marova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology Purkynova 118 612 00 Brno Czech Republic
| | - Adriana Kovalcik
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology Purkynova 118 612 00 Brno Czech Republic
| |
Collapse
|
44
|
Bertella S, Luterbacher JS. Lignin Functionalization for the Production of Novel Materials. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.03.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Terrell E, Dellon LD, Dufour A, Bartolomei E, Broadbelt LJ, Garcia-Perez M. A Review on Lignin Liquefaction: Advanced Characterization of Structure and Microkinetic Modeling. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05744] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Evan Terrell
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Lauren D. Dellon
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Anthony Dufour
- LRGP, CNRS, Universite de Lorraine, ENSIC, 54000 Nancy, France
| | | | - Linda J. Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Manuel Garcia-Perez
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
46
|
Lahtinen MH, Valoppi F, Juntti V, Heikkinen S, Kilpeläinen PO, Maina NH, Mikkonen KS. Lignin-Rich PHWE Hemicellulose Extracts Responsible for Extended Emulsion Stabilization. Front Chem 2019; 7:871. [PMID: 31921786 PMCID: PMC6927942 DOI: 10.3389/fchem.2019.00871] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
Wood hemicelluloses have an excellent capacity to form and stabilize oil-in-water emulsions. Galactoglucomannans (GGM) from spruce and glucuronoxylans (GX) from birch provide multifunctional protection against physical breakdown and lipid oxidation in emulsions. Phenolic residues, coextracted with hemicelluloses using the pressurized hot water (PHWE) process, seem to further enhance emulsion stability. According to hypothesis, phenolic residues associated with hemicelluloses deliver and anchor hemicelluloses at the emulsion interface. This study is the first to characterize the structure of the phenolic residues in both GGM- and GX-rich wood extracts and their role in the stabilization of emulsions. PHWE GGM and GX were fractionated by centrifugation to obtain concentrated phenolic residues as one fraction (GGM-phe and GX-phe) and partially purified hemicelluloses as the other fraction (GGM-pur and GX-pur). To evaluate the role of each fraction in terms of physical and oxidative stabilization, rapeseed oil-in-water emulsions were prepared using GGM, GX, GGM-pur, and GX-pur as stabilizers. Changes in droplet-size distribution and peroxide values were measured during a 3-month accelerated storage test. The results for fresh emulsions indicated that the phenolic-rich fractions in hemicelluloses take part in the formation of emulsions. Furthermore, results from the accelerated storage test indicated that phenolic structures improve the long-term physical stability of emulsions. According to measured peroxide values, all hemicelluloses examined inhibited lipid oxidation in emulsions, GX being the most effective. This indicates that phenolic residues associated with hemicelluloses act as antioxidants in emulsions. According to chemical characterization using complementary methods, the phenolic fractions, GGM-phe and GX-phe, were composed mainly of lignin. Furthermore, the total carbohydrate content of the phenolic fractions was clearly lower compared to the starting hemicelluloses GGM and GX, and the purified fractions GGM-pur and GX-pur. Apparently, the phenolic structures were enriched in the GGM-phe and GX-phe fractions, which was confirmed by NMR spectroscopy as well as by other characterization methods. The frequency of the main bonding pattern in lignins, the β-O-4 structure, was clearly very high, suggesting that extracted lignin remains in native form. Furthermore, the lignin carbohydrate complex of γ-ester type was found, which could explain the excellent stabilizing properties of PHWE hemicelluloses in emulsions.
Collapse
Affiliation(s)
- Maarit H Lahtinen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Fabio Valoppi
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.,Faculty of Agriculture and Forestry, Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| | - Venla Juntti
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Sami Heikkinen
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | | | - Ndegwa H Maina
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.,Faculty of Agriculture and Forestry, Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
47
|
van Erven G, Wang J, Sun P, de Waard P, van der Putten J, Frissen GE, Gosselink RJA, Zinovyev G, Potthast A, van Berkel WJH, Kabel MA. Structural Motifs of Wheat Straw Lignin Differ in Susceptibility to Degradation by the White-Rot Fungus Ceriporiopsis subvermispora. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2019; 7:20032-20042. [PMID: 31867146 PMCID: PMC6921689 DOI: 10.1021/acssuschemeng.9b05780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Indexed: 05/11/2023]
Abstract
The white-rot fungus Ceriporiopsis subvermispora delignifies plant biomass extensively and selectively and, therefore, has great biotechnological potential. We previously demonstrated that after 7 weeks of fungal growth on wheat straw 70% w/w of lignin was removed and established the underlying degradation mechanisms via selectively extracted diagnostic substructures. In this work, we fractionated the residual (more intact) lignin and comprehensively characterized the obtained isolates to determine the susceptibility of wheat straw lignin's structural motifs to fungal degradation. Using 13C IS pyrolysis gas chromatography-mass spectrometry (py-GC-MS), heteronuclear single quantum coherence (HSQC) and 31P NMR spectroscopy, and size-exclusion chromatography (SEC) analyses, it was shown that β-O-4' ethers and the more condensed phenylcoumarans and resinols were equally susceptible to fungal breakdown. Interestingly, for β-O-4' ether substructures, marked cleavage preferences could be observed: β-O-4'-syringyl substructures were degraded more frequently than their β-O-4'-guaiacyl and β-O-4'-tricin analogues. Furthermore, diastereochemistry (threo > erythro) and γ-acylation (γ-OH > γ-acyl) influenced cleavage susceptibility. These results indicate that electron density of the 4'-O-coupled ring and local steric hindrance are important determinants of oxidative β-O-4' ether degradation. Our findings provide novel insight into the delignification mechanisms of C. subvermispora and contribute to improving the valorization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Gijs van Erven
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Jianli Wang
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Peicheng Sun
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Pieter de Waard
- MAGNEFY
(MAGNEtic Resonance Research FacilitY), Wageningen University & Research, Stippeneng 4, 6708
WE Wageningen, The Netherlands
| | - Jacinta van der Putten
- Wageningen
Food and Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Guus E. Frissen
- Wageningen
Food and Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Richard J. A. Gosselink
- Wageningen
Food and Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Grigory Zinovyev
- Department
of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Antje Potthast
- Department
of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Willem J. H. van Berkel
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Mirjam A. Kabel
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
48
|
Montgomery JRD, Bazley P, Lebl T, Westwood NJ. Using Fractionation and Diffusion Ordered Spectroscopy to Study Lignin Molecular Weight. ChemistryOpen 2019; 8:601-605. [PMID: 31110931 PMCID: PMC6511914 DOI: 10.1002/open.201900129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 11/24/2022] Open
Abstract
Recent reports demonstrate that applications of the biopolymer lignin can be helped by the use of a fraction of the lignin which has an optimal molecular weight range. Unfortunately, the current methods used to determine lignin's molecular weight are inconsistent or not widely accessible. Here, an approach that relies on 2D DOSY NMR analysis is described that provides a measure of lignin's molecular weight. Consistent results were obtained using this well-established NMR technique across a range of lignins.
Collapse
Affiliation(s)
- James R. D. Montgomery
- School of Chemistry and Biomedical Sciences Research ComplexUniversity of St Andrews and EaStCHEMSt Andrews, FifeKY16 9STUK
| | - Priory Bazley
- School of Chemistry and Biomedical Sciences Research ComplexUniversity of St Andrews and EaStCHEMSt Andrews, FifeKY16 9STUK
| | - Tomas Lebl
- School of Chemistry and Biomedical Sciences Research ComplexUniversity of St Andrews and EaStCHEMSt Andrews, FifeKY16 9STUK
| | - Nicholas J. Westwood
- School of Chemistry and Biomedical Sciences Research ComplexUniversity of St Andrews and EaStCHEMSt Andrews, FifeKY16 9STUK
| |
Collapse
|
49
|
Lancefield CS, Constant S, de Peinder P, Bruijnincx PCA. Linkage Abundance and Molecular Weight Characteristics of Technical Lignins by Attenuated Total Reflection-FTIR Spectroscopy Combined with Multivariate Analysis. CHEMSUSCHEM 2019; 12:1139-1146. [PMID: 30641616 PMCID: PMC6563701 DOI: 10.1002/cssc.201802809] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Indexed: 05/02/2023]
Abstract
Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)-FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel-permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR-FTIR spectroscopy. PLS models correlating the ATR-FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination (R2 Cal.>0.85) for molecular weight (Mn , Mw ) and inter-unit abundances (β-O-4, β-5 and β-β), with low relative errors (6.2-14 %) as estimated from cross-validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8-13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process.
Collapse
Affiliation(s)
- Christopher S. Lancefield
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584CGUtrechtThe Netherlands
| | - Sandra Constant
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584CGUtrechtThe Netherlands
| | | | - Pieter C. A. Bruijnincx
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584CGUtrechtThe Netherlands
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584CGUtrechtThe Netherlands
| |
Collapse
|