1
|
Gao C, Dai Y, Spezza PA, Boasiako P, Tang A, Rasquinha G, Zhong H, Shao B, Liu Y, Shi PA, Lobo CA, An X, Guo A, Mitchell WB, Manwani D, Yazdanbakhsh K, Mendelson A. Megakaryocytes transfer mitochondria to bone marrow mesenchymal stromal cells to lower platelet activation. J Clin Invest 2025; 135:e189801. [PMID: 40014405 PMCID: PMC11996913 DOI: 10.1172/jci189801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
Newly produced platelets acquire a low activation state, but whether the megakaryocyte plays a role in this outcome has not been fully uncovered. Mesenchymal stem cells (MSCs) were previously shown to promote platelet production and lower platelet activation. We found that healthy megakaryocytes transfer mitochondria to MSCs, which is mediated by connexin 43 (Cx43) gap junctions on MSCs and leads to platelets at a low energetic state with increased LYN activation, characteristic of resting platelets with increased LYN activation, characteristic of resting platelets. On the contrary, MSCs have a limited ability to transfer mitochondria to megakaryocytes. Sickle cell disease (SCD) is characterized by hemolytic anemia and results in heightened platelet activation, contributing to numerous disease complications. Platelets in SCD mice and human samples had a heightened energetic state with increased glycolysis. MSC exposure to heme in SCD led to decreased Cx43 expression and a reduced ability to uptake mitochondria from megakaryocytes. This prevented LYN activation in platelets and contributed to increased platelet activation at steady state. Altogether, our findings demonstrate an effect of hemolysis in the microenvironment leading to increased platelet activation in SCD. These findings have the potential to inspire new therapeutic targets to relieve thrombosis-related complications of SCD and other hemolytic conditions.
Collapse
Affiliation(s)
| | - Yitian Dai
- Laboratory of Stem Cell Biology and Engineering Research
| | - Paul A. Spezza
- Laboratory of Stem Cell Biology and Engineering Research
| | - Paul Boasiako
- Laboratory of Stem Cell Biology and Engineering Research
| | - Alice Tang
- Laboratory of Stem Cell Biology and Engineering Research
| | | | | | - Bojing Shao
- Laboratory of Vascular Inflammation and Thrombosis Research
| | | | | | - Cheryl A. Lobo
- Laboratory of Blood Borne Parasites, New York Blood Center, New York, New York, USA
| | | | - Anqi Guo
- Laboratory of Complement Biology
| | - William B. Mitchell
- Department of Pediatrics, Montefiore Health Center, Albert Einstein College of Medicine, Children’s Hospital at Montefiore, Bronx, New York, USA
| | - Deepa Manwani
- Department of Pediatrics, Montefiore Health Center, Albert Einstein College of Medicine, Children’s Hospital at Montefiore, Bronx, New York, USA
| | | | | |
Collapse
|
2
|
Zhou J, Du F, Zhang F, Zhang X, Wu Y, Zhang L, Liao P, Tu T, Peng J, Li T, Jiang Y. Protocol for investigating astrocytic mitochondria in neurons of adult mice using two-photon microscopy. STAR Protoc 2025; 6:103600. [PMID: 39864062 PMCID: PMC11969403 DOI: 10.1016/j.xpro.2025.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
Under pathological conditions, astrocytes can transfer mitochondria to neurons, where they exert neuroprotective effects. In this context, we present a protocol for capturing astrocytic mitochondria in neurons of adult mice using a two-photon microscope. We describe an approach for constructing a mouse model with combined labeling of astrocytic mitochondria and neurons. We then detail procedures for the preparation of a coverslip with a customized titanium ring and cranial window for two-photon microscopy scanning. For complete details on the use and execution of this protocol, please refer to Zhou et al. 1.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fengling Du
- Department of Neonatology, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fan Zhang
- Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xianhui Zhang
- Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuanyuan Wu
- Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lifang Zhang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianqi Tu
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China.
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Jiang
- Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
3
|
Gallerand A, Han J, Mintz RL, Chen J, Lee DD, Chan MM, Harmon TT, Lin X, Huckstep CG, Du S, Liu T, Kipnis J, Lavine KJ, Schilling JD, Morley SC, Zinselmeyer BH, Murphy KM, Randolph GJ. Tracing LYVE1 + peritoneal fluid macrophages unveils two paths to resident macrophage repopulation with differing reliance on monocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644175. [PMID: 40166277 PMCID: PMC11957119 DOI: 10.1101/2025.03.19.644175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Mouse resident peritoneal macrophages, called large cavity macrophages (LCM), arise from embryonic progenitors that proliferate as mature, CD73+Gata6+ tissue-specialized macrophages. After injury from irradiation or inflammation, monocytes are thought to replenish CD73+Gata6+ LCMs through a CD73-LYVE1+ LCM intermediate. Here, we show that CD73-LYVE1+ LCMs indeed yield Gata6+CD73+ LCMs through integrin-mediated interactions with mesothelial surfaces. CD73-LYVE1+ LCM repopulation of the peritoneum was reliant upon and quantitatively proportional to recruited monocytes. Unexpectedly, fate mapping indicated that only ~10% of Gata6-dependent LCMs that repopulated the peritoneum after injury depended on the LYVE1+ LCM stage. Further supporting nonoverlapping lifecycles of CD73-LYVE1+ and CD73+Gata6+ LCMs, in mice bearing a paucity of monocytes, Gata6+CD73+ LCMs rebounded after ablative irradiation substantially more efficiently than their presumed LYVE1+ or CD73- LCM upstream precursors. Thus, after inflammatory insult, two temporally parallel pathways, each generating distinct differentiation intermediates with varying dependencies on monocytes, contribute to the replenish hment of Gata6+ resident peritoneal macrophages.
Collapse
Affiliation(s)
- Alexandre Gallerand
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jichang Han
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel L. Mintz
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Biomedical Engineering Graduate Program, Washington University School of Medicine, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Jing Chen
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences Graduate Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel D. Lee
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mandy M. Chan
- Division of Biology and Biomedical Sciences Graduate Program, Washington University School of Medicine, St. Louis, MO, USA
- Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Tyler T. Harmon
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences Graduate Program, Washington University School of Medicine, St. Louis, MO, USA
- Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xue Lin
- Division of Infectious Disease, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher G. Huckstep
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siling Du
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences Graduate Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiantian Liu
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan Kipnis
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kory J. Lavine
- Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joel D. Schilling
- Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - S. Celeste Morley
- Division of Infectious Disease, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Bernd H. Zinselmeyer
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kenneth M. Murphy
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gwendalyn J. Randolph
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Hemel IMGM, Knoops K, López-Iglesias C, Gerards M. The Curse of the Red Pearl: A Fibroblast-Specific Pearl-Necklace Mitochondrial Phenotype Caused by Phototoxicity. Biomolecules 2025; 15:304. [PMID: 40001607 PMCID: PMC11853634 DOI: 10.3390/biom15020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
The dynamic nature of mitochondria makes live cell imaging an important tool in mitochondrial research. Although imaging using fluorescent probes is the golden standard in studying mitochondrial morphology, these probes might introduce aspecific features. In this study, live cell fluorescent imaging was applied to investigate a pearl-necklace-shaped mitochondrial phenotype that arises when mitochondrial fission is restricted. In this fibroblast-specific pearl-necklace phenotype, constricted and expanded mitochondrial regions alternate. Imaging studies revealed that the formation time of this pearl-necklace phenotype differs between laser scanning confocal, widefield and spinning disk confocal microscopy. We found that the phenotype formation correlates with the excitation of the fluorescent probe and is the result of phototoxicity. Interestingly, the phenotype only arises in cells stained with red mitochondrial dyes. Serial section electron tomography of the pearl-necklace mitochondria revealed that the mitochondrial membranes remained intact, while the cristae structure was altered. Furthermore, filaments and ER were present at the constricted sites. This study illustrates the importance of considering experimental conditions for live cell imaging to prevent imaging artifacts that can have a major impact on the obtained results.
Collapse
Affiliation(s)
- Irene M. G. M. Hemel
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6229 EN Maastricht, The Netherlands
| | - Kèvin Knoops
- Microscopy CORE Lab, Maastricht University, 6229 ER Maastricht, The Netherlands (C.L.-I.)
| | - Carmen López-Iglesias
- Microscopy CORE Lab, Maastricht University, 6229 ER Maastricht, The Netherlands (C.L.-I.)
| | - Mike Gerards
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6229 EN Maastricht, The Netherlands
| |
Collapse
|
5
|
Jimena B, Kazimierczyk D, Kazimierczyk S, Moya H, Shin E, Li L, Korgaonkar P, Porter C, Seed B, Cherayil BJ, Jain N. Prenatal maternal infection promotes maternal microchimeric cells to alter infection risk in male offspring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633596. [PMID: 39896468 PMCID: PMC11785123 DOI: 10.1101/2025.01.17.633596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Vertically transferred maternal cells or maternal microchimeric cells (MMCs) engraft the fetus and persist in offspring for long periods of time. How altered maternal immune states arising from infection affect MMCs and their function in offspring is poorly understood. Here, we show that pregnancy-associated transient maternal infection alters MMCs to differentially regulate immunity in offspring. In male offspring of dams previously infected with Yersinia pseudotuberculosis , MMCs confer a pro-inflammatory type 17 T effector phenotype that leads to enhanced protective immunity to an unrelated Salmonella infection. Thus, acquired maternal cells imprinted by microbial exposure during pregnancy exert an antigen agnostic and sex-differential effect on offspring immunity, and may potentially be targeted to deliver immune benefits to infants in the vulnerable early life period.
Collapse
|
6
|
Brestoff JR, Singh KK, Aquilano K, Becker LB, Berridge MV, Boilard E, Caicedo A, Crewe C, Enríquez JA, Gao J, Gustafsson ÅB, Hayakawa K, Khoury M, Lee YS, Lettieri-Barbato D, Luz-Crawford P, McBride HM, McCully JD, Nakai R, Neuzil J, Picard M, Rabchevsky AG, Rodriguez AM, Sengupta S, Sercel AJ, Suda T, Teitell MA, Thierry AR, Tian R, Walker M, Zheng M. Recommendations for mitochondria transfer and transplantation nomenclature and characterization. Nat Metab 2025; 7:53-67. [PMID: 39820558 DOI: 10.1038/s42255-024-01200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/05/2024] [Indexed: 01/19/2025]
Abstract
Intercellular mitochondria transfer is an evolutionarily conserved process in which one cell delivers some of their mitochondria to another cell in the absence of cell division. This process has diverse functions depending on the cell types involved and physiological or disease context. Although mitochondria transfer was first shown to provide metabolic support to acceptor cells, recent studies have revealed diverse functions of mitochondria transfer, including, but not limited to, the maintenance of mitochondria quality of the donor cell and the regulation of tissue homeostasis and remodelling. Many mitochondria-transfer mechanisms have been described using a variety of names, generating confusion about mitochondria transfer biology. Furthermore, several therapeutic approaches involving mitochondria-transfer biology have emerged, including mitochondria transplantation and cellular engineering using isolated mitochondria. In this Consensus Statement, we define relevant terminology and propose a nomenclature framework to describe mitochondria transfer and transplantation as a foundation for further development by the community as this dynamic field of research continues to evolve.
Collapse
Affiliation(s)
- Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Keshav K Singh
- Department of Genetics, I Heersink School of Medicine, University of Alabama at Birmhingham, Birmingham, AL, USA.
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Lance B Becker
- Department of Emergency Medicine, Northwell Health, Manhassett, NY, USA
- Department of Emergency Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Michael V Berridge
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Eric Boilard
- Département de Microbiologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Québec, Canada
| | - Andrés Caicedo
- Instituto de Investigaciones en Biomedicina and Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Clair Crewe
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de salud Carlos III (CIBERFES), Madrid, Spain
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Åsa B Gustafsson
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Harvard Medical School, Massachusetts General Hospital East 149-2401, Charlestown, MA, USA
| | - Maroun Khoury
- IMPACT Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago, Chile
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | | | - Patricia Luz-Crawford
- IMPACT Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago, Chile
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Heidi M McBride
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - James D McCully
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ritsuko Nakai
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Alexander G Rabchevsky
- Department of Physiology & the Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Anne-Marie Rodriguez
- UMR CNRS 8263, INSERM U1345, Development, Adaptation and Ageing, Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | | | - Alexander J Sercel
- MitoWorld, National Laboratory for Education Transformation, Oakland, CA, USA
| | - Toshio Suda
- Institute of Hematology, Blood Diseases Hospital, Chinese Academy of Sciences and Peking Union Medical College, Tianjin, China
| | - Michael A Teitell
- Department of Pathology and Laboratory Medicine, Department of Bioengineering, and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Alain R Thierry
- Institute of Research in Cancerology of Montpellier, INSERM U1194, University of Montpellier, ICM, Institut du Cancer de Montpellier, Montpellier, France
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, USA
| | - Melanie Walker
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School of the University of Western Australia, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
7
|
Khatoon R, Fick J, Elesinnla A, Waddell J, Kristian T. Sexual Dimorphism of Ethanol-Induced Mitochondrial Dynamics in Purkinje Cells. Int J Mol Sci 2024; 25:13714. [PMID: 39769476 PMCID: PMC11678447 DOI: 10.3390/ijms252413714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The cerebellum, a key target of ethanol's toxic effects, is associated with ataxia following alcohol consumption. However, the impact of ethanol on Purkinje cell (PC) mitochondria remains unclear. To investigate how ethanol administration affects mitochondrial dynamics in cerebellar Purkinje cells, we employed a transgenic mouse model expressing mitochondria-targeted yellow fluorescent protein in Purkinje cells (PC-mito-eYFP). Both male and female PC-mito-eYFP mice received an intraperitoneal injection of ethanol or vehicle. One hour after ethanol administration, the animals were perfusion fixed or their cerebellum tissue or isolated mitochondria were collected. Cerebellum sections were analyzed using confocal microscopy to assess changes in mitochondrial length distribution. In vivo superoxide levels were measured using dihydroethidium (DHE), and mitochondrial NAD levels were determined by high-performance liquid chromatography (HPLC). Our findings revealed a sex-dependent response to ethanol administration in mitochondrial size distribution. While male Purkinje cell mitochondria exhibited no significant changes in size, female mitochondria became more fragmented after one hour of ethanol administration. This coincided with elevated phosphorylation of the fission protein Drp1 and increased superoxide production, as measured by DHE fluorescence intensity. Similarly, mitochondrial NAD levels were significantly reduced in female mice, but no changes were observed in males. Our results demonstrate that ethanol induced mitochondrial fragmentation through increased free radical levels, due to reduced NAD and increased p-Drp1, in PC cells of the female cerebellum.
Collapse
Affiliation(s)
- Rehana Khatoon
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, 685 Baltimore St., Baltimore, MD 21201, USA; (R.K.); (A.E.)
| | - Jordan Fick
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA;
| | - Abosede Elesinnla
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, 685 Baltimore St., Baltimore, MD 21201, USA; (R.K.); (A.E.)
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA;
| | - Tibor Kristian
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, 685 Baltimore St., Baltimore, MD 21201, USA; (R.K.); (A.E.)
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA;
| |
Collapse
|
8
|
Kang SWS, Brown LA, Miller CB, Barrows KM, Golino JL, Cultraro CM, Feliciano D, Cornelius-Muwanuzi MB, Tran AD, Kruhlak M, Lobanov A, Cam M, Porat-Shliom N. Spatially resolved rewiring of mitochondria-lipid droplet interactions in hepatic lipid homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627730. [PMID: 39803529 PMCID: PMC11722523 DOI: 10.1101/2024.12.10.627730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Hepatic lipid accumulation, or Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), is a significant risk factor for liver cancer. Despite the rising incidence of MASLD, the underlying mechanisms of steatosis and lipotoxicity remain poorly understood. Interestingly, lipid accumulation also occurs during fasting, driven by the mobilization of adipose tissue-derived fatty acids into the liver. However, how hepatocytes adapt to increased lipid flux during nutrient deprivation and what occurs differently in MASLD is not known. To investigate the differences in lipid handling in response to nutrient deficiency and excess, we developed a novel single-cell tissue imaging (scPhenomics) technique coupled with spatial proteomics. Our investigation revealed extensive remodeling of lipid droplet (LD) and mitochondrial topology in response to dietary conditions. Notably, fasted mice exhibited extensive mitochondria-LD interactions, which were rarely observed in Western Diet (WD)-fed mice. Spatial proteomics showed an increase in PLIN5 expression, a known mediator of LD-mitochondria interaction, in response to fasting. To examine the functional role of mitochondria-LD interaction on lipid handling, we overexpressed PLIN5 variants. We found that the phosphorylation state of PLIN5 impacts its capacity to form mitochondria-LD contact sites. PLIN5 S155A promoted extensive organelle interactions, triglyceride (TG) synthesis, and LD expansion in mice fed a control diet. Conversely, PLIN5 S155E expressing cells had fewer LDs and contact sites and contained less TG. Wild-type (WT) PLIN5 overexpression in WD-fed mice reduced steatosis and improved redox state despite continued WD consumption. These findings highlight the importance of organelle interactions in lipid metabolism, revealing a critical mechanism by which hepatocytes maintain homeostasis during metabolic stress. Our study underscores the potential utility of targeting mitochondria-LD interactions for therapeutic intervention.
Collapse
Affiliation(s)
- Sun Woo Sophie Kang
- Cell Biology and Imaging Sections, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lauryn A Brown
- Cell Biology and Imaging Sections, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Colin B Miller
- Cell Biology and Imaging Sections, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine M Barrows
- Cell Biology and Imaging Sections, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jihye L Golino
- Cell Biology and Imaging Sections, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Constance M Cultraro
- Cell Biology and Imaging Sections, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Feliciano
- Cell Biology and Imaging Sections, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mercedes B. Cornelius-Muwanuzi
- Cell Biology and Imaging Sections, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0H3, United Kingdom
| | - Andy D Tran
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Kruhlak
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Natalie Porat-Shliom
- Cell Biology and Imaging Sections, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Corkish C, Aguiar CF, Finlay DK. Approaches to investigate tissue-resident innate lymphocytes metabolism at the single-cell level. Nat Commun 2024; 15:10424. [PMID: 39613733 PMCID: PMC11607443 DOI: 10.1038/s41467-024-54516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Tissue-resident innate immune cells have important functions in both homeostasis and pathological states. Despite advances in the field, analyzing the metabolism of tissue-resident innate lymphocytes is still challenging. The small number of tissue-resident innate lymphocytes such as ILC, NK, iNKT and γδ T cells poses additional obstacles in their metabolic studies. In this review, we summarize the current understanding of innate lymphocyte metabolism and discuss potential pitfalls associated with the current methodology relying predominantly on in vitro cultured cells or bulk-level comparison. Meanwhile, we also summarize and advocate for the development and adoption of single-cell metabolic assays to accurately profile the metabolism of tissue-resident immune cells directly ex vivo.
Collapse
Affiliation(s)
- Carrie Corkish
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Cristhiane Favero Aguiar
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
10
|
Zhang Z, Miao J, Wang H, Ali I, Nguyen D, Chen W, Wang Y. Accelerated mitochondrial dynamics promote spermatogonial differentiation. Stem Cell Reports 2024; 19:1548-1563. [PMID: 39393359 PMCID: PMC11589200 DOI: 10.1016/j.stemcr.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024] Open
Abstract
At different stages of spermatogenesis, germ cell mitochondria differ remarkably in morphology, architecture, and functions. However, it remains elusive how mitochondria change their features during spermatogonial differentiation, which in turn impacts spermatogonial stem cell fate decision. In this study, we observed that mitochondrial fusion and fission were both upregulated during spermatogonial differentiation. As a result, the mitochondrial morphology remained unaltered. Enhanced mitochondrial fusion and fission promoted spermatogonial differentiation, while the deficiency in DRP1-mediated fission led to a stage-specific blockage of spermatogenesis at differentiating spermatogonia. Our data further revealed that increased expression of pro-fusion factor MFN1 upregulated mitochondrial metabolism, whereas DRP1 specifically regulated mitochondrial permeability transition pore opening in differentiating spermatogonia. Taken together, our findings unveil how proper spermatogonial differentiation is precisely controlled by concurrently accelerated and properly balanced mitochondrial fusion and fission in a germ cell stage-specific manner, thereby providing critical insights about mitochondrial contribution to stem cell fate decision.
Collapse
Affiliation(s)
- Zhaoran Zhang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Junru Miao
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Hanben Wang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Izza Ali
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Duong Nguyen
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Wei Chen
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Yuan Wang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
11
|
Pietramale AN, Bame X, Doty ME, Hill RA. Mitochondria are absent from microglial processes performing surveillance, chemotaxis, and phagocytic engulfment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618505. [PMID: 39463986 PMCID: PMC11507814 DOI: 10.1101/2024.10.15.618505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Microglia continually surveil the brain allowing for rapid detection of tissue damage or infection. Microglial metabolism is linked to tissue homeostasis, yet how mitochondria are subcellularly partitioned in microglia and dynamically reorganize during surveillance, injury responses, and phagocytic engulfment in the intact brain are not known. Here, we performed intravital imaging of microglia mitochondria, revealing that microglial processes diverge, with some containing multiple mitochondria while others are completely void. Microglial processes that engage in minute-to-minute surveillance typically do not have mitochondria. Moreover, unlike process surveillance, mitochondrial motility does not change with animal anesthesia. Likewise, the processes that acutely chemoattract to a lesion site or initially engage with a neuron undergoing programmed cell death do not contain mitochondria. Rather, microglia mitochondria have a delayed arrival into the responding cell processes. Thus, there is subcellular heterogeneity of mitochondrial partitioning and asymmetry between mitochondrial localization and cell process motility or acute damage responses.
Collapse
Affiliation(s)
| | - Xhoela Bame
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| | - Megan E. Doty
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| | - Robert A. Hill
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| |
Collapse
|
12
|
Landoni JC, Kleele T, Winter J, Stepp W, Manley S. Mitochondrial Structure, Dynamics, and Physiology: Light Microscopy to Disentangle the Network. Annu Rev Cell Dev Biol 2024; 40:219-240. [PMID: 38976811 DOI: 10.1146/annurev-cellbio-111822-114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondria serve as energetic and signaling hubs of the cell: This function results from the complex interplay between their structure, function, dynamics, interactions, and molecular organization. The ability to observe and quantify these properties often represents the puzzle piece critical for deciphering the mechanisms behind mitochondrial function and dysfunction. Fluorescence microscopy addresses this critical need and has become increasingly powerful with the advent of superresolution methods and context-sensitive fluorescent probes. In this review, we delve into advanced light microscopy methods and analyses for studying mitochondrial ultrastructure, dynamics, and physiology, and highlight notable discoveries they enabled.
Collapse
Affiliation(s)
- Juan C Landoni
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Tatjana Kleele
- Institute of Biochemistry, Swiss Federal Institute of Technology Zürich (ETH), Zürich, Switzerland;
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Julius Winter
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Willi Stepp
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Suliana Manley
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| |
Collapse
|
13
|
Nakai R, Varnum S, Field RL, Shi H, Giwa R, Jia W, Krysa SJ, Cohen EF, Borcherding N, Saneto RP, Tsai RC, Suganuma M, Ohta H, Yokota T, Brestoff JR. Mitochondria transfer-based therapies reduce the morbidity and mortality of Leigh syndrome. Nat Metab 2024; 6:1886-1896. [PMID: 39223312 DOI: 10.1038/s42255-024-01125-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria transfer is a recently described phenomenon in which donor cells deliver mitochondria to acceptor cells1-3. One possible consequence of mitochondria transfer is energetic support of neighbouring cells; for example, exogenous healthy mitochondria can rescue cell-intrinsic defects in mitochondrial metabolism in cultured ρ0 cells or Ndufs4-/- peritoneal macrophages4-7. Exposing haematopoietic stem cells to purified mitochondria before autologous haematopoietic stem cell transplantation allowed for treatment of anaemia in patients with large-scale mitochondrial DNA mutations8,9, and mitochondria transplantation was shown to minimize ischaemic damage to the heart10-12, brain13-15 and limbs16. However, the therapeutic potential of using mitochondria transfer-based therapies to treat inherited mitochondrial diseases is unclear. Here we demonstrate improved morbidity and mortality of the Ndufs4-/- mouse model of Leigh syndrome (LS) in multiple treatment paradigms associated with mitochondria transfer. Transplantation of bone marrow from wild-type mice, which is associated with release of haematopoietic cell-derived extracellular mitochondria into circulation and transfer of mitochondria to host cells in multiple organs, ameliorates LS in mice. Furthermore, administering isolated mitochondria from wild-type mice extends lifespan, improves neurological function and increases energy expenditure of Ndufs4-/- mice, whereas mitochondria from Ndufs4-/- mice did not improve neurological function. Finally, we demonstrate that cross-species administration of human mitochondria to Ndufs4-/- mice also improves LS. These data suggest that mitochondria transfer-related approaches can be harnessed to treat mitochondrial diseases, such as LS.
Collapse
Affiliation(s)
- Ritsuko Nakai
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Hematology, Osaka International Cancer Institute, Osaka, Japan
- Department of Hematology, Sakai City Medical Center, Sakai, Japan
| | - Stella Varnum
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachael L Field
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Henyun Shi
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Hematology, Osaka International Cancer Institute, Osaka, Japan
| | - Rocky Giwa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wentong Jia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha J Krysa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eva F Cohen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Russell P Saneto
- Neuroscience Institute, Center for Integrated Brain Research, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | | | | | | | - Takafumi Yokota
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan.
- Department of Hematology, Osaka International Cancer Institute, Osaka, Japan.
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
14
|
Morinaga H, Sugawara Y, Kitagawa Y, Chen J, Yasuda N, Ogata H, Yamaguchi Y, Kaneki M, Jeevendra Martyn JA, Yasuhara S. Mito-kaede photoactivation and chase experiment for mitophagy: optimizing flux measurement via fluid exchange system. Biotechniques 2024; 76:381-393. [PMID: 39258780 DOI: 10.1080/07366205.2024.2372955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/18/2024] [Indexed: 09/12/2024] Open
Abstract
Modulating autophagy and mitophagy, vital cellular quality control systems, offer therapeutic potential for critical illnesses. However, limited drug screening options hinder progress. We present a novel assay using the photoswitchable fluorescent reporter, mito-Kaede, to quantify mitophagy flux. Mito-Kaede's superior UV-induced photoconversion and brightness post-conversion make it ideal for prolonged mitochondrial dynamics tracking. Its specificity in responding to mitophagy, confirmed by parkin-knockout cells, adds value. When coupled with a custom fluid exchange system, enabling efficient medium changes, precise mitophagy observations become feasible. This mitophagy assay, alongside our methodological insights, can decipher mitophagy's role in pathology and supports drug screening efforts.
Collapse
Affiliation(s)
- Hiroyuki Morinaga
- Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, & Harvard Medical School
- Department of Trauma & Critical Care Medicine, Kyorin University,Faculty of Medicine
| | - Yoh Sugawara
- Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, & Harvard Medical School
- Department of Anesthesiology & Critical Care Medicine, Yokohama City University, Graduate School of Medicine
| | - Yoshinori Kitagawa
- Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, & Harvard Medical School
| | - Jingyuan Chen
- Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, & Harvard Medical School
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, 510080
| | | | - Hiroki Ogata
- Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, & Harvard Medical School
| | - Yoshihiro Yamaguchi
- Department of Trauma & Critical Care Medicine, Kyorin University,Faculty of Medicine
| | - Masao Kaneki
- Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, & Harvard Medical School
| | - Joseph A Jeevendra Martyn
- Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, & Harvard Medical School
| | - Shingo Yasuhara
- Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, & Harvard Medical School
| |
Collapse
|
15
|
Hofstadter WA, Cook KC, Tsopurashvili E, Gebauer R, Pražák V, Machala EA, Park JW, Grünewald K, Quemin ERJ, Cristea IM. Infection-induced peripheral mitochondria fission drives ER encapsulations and inter-mitochondria contacts that rescue bioenergetics. Nat Commun 2024; 15:7352. [PMID: 39187492 PMCID: PMC11347691 DOI: 10.1038/s41467-024-51680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
The dynamic regulation of mitochondria shape via fission and fusion is critical for cellular responses to stimuli. In homeostatic cells, two modes of mitochondrial fission, midzone and peripheral, provide a decision fork between either proliferation or clearance of mitochondria. However, the relationship between specific mitochondria shapes and functions remains unclear in many biological contexts. While commonly associated with decreased bioenergetics, fragmented mitochondria paradoxically exhibit elevated respiration in several disease states, including infection with the prevalent pathogen human cytomegalovirus (HCMV) and metastatic melanoma. Here, incorporating super-resolution microscopy with mass spectrometry and metabolic assays, we use HCMV infection to establish a molecular mechanism for maintaining respiration within a fragmented mitochondria population. We establish that HCMV induces fragmentation through peripheral mitochondrial fission coupled with suppression of mitochondria fusion. Unlike uninfected cells, the progeny of peripheral fission enter mitochondria-ER encapsulations (MENCs) where they are protected from degradation and bioenergetically stabilized during infection. MENCs also stabilize pro-viral inter-mitochondria contacts (IMCs), which electrochemically link mitochondria and promote respiration. Demonstrating a broader relevance, we show that the fragmented mitochondria within metastatic melanoma cells also form MENCs. Our findings establish a mechanism where mitochondria fragmentation can promote increased respiration, a feature relevant in the context of human diseases.
Collapse
Affiliation(s)
| | - Katelyn C Cook
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Robert Gebauer
- Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
| | - Vojtěch Pražák
- Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
| | - Emily A Machala
- Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
| | - Ji Woo Park
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Kay Grünewald
- Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
| | - Emmanuelle R J Quemin
- Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
- Department of Virology, Institute for Integrative Biology of the Cell, CNRS UMR9198, Gif-sur-Yvette, France
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
16
|
Bame X, Hill RA. Mitochondrial network reorganization and transient expansion during oligodendrocyte generation. Nat Commun 2024; 15:6979. [PMID: 39143079 PMCID: PMC11324877 DOI: 10.1038/s41467-024-51016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) give rise to myelinating oligodendrocytes of the brain. This process persists throughout life and is essential for recovery from neurodegeneration. To better understand the cellular checkpoints that occur during oligodendrogenesis, we determined the mitochondrial distribution and morphometrics across the oligodendrocyte lineage in mouse and human cerebral cortex. During oligodendrocyte generation, mitochondrial content expands concurrently with a change in subcellular partitioning towards the distal processes. These changes are followed by an abrupt loss of mitochondria in the oligodendrocyte processes and myelin, coinciding with sheath compaction. This reorganization and extensive expansion and depletion take 3 days. Oligodendrocyte mitochondria are stationary over days while OPC mitochondrial motility is modulated by animal arousal state within minutes. Aged OPCs also display decreased mitochondrial size, volume fraction, and motility. Thus, mitochondrial dynamics are linked to oligodendrocyte generation, dynamically modified by their local microenvironment, and altered in the aging brain.
Collapse
Affiliation(s)
- Xhoela Bame
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
17
|
Lee IW, Tazehkand AP, Sha ZY, Adhikari D, Carroll J. An aggregated mitochondrial distribution in preimplantation embryos disrupts nuclear morphology, function, and developmental potential. Proc Natl Acad Sci U S A 2024; 121:e2317316121. [PMID: 38917013 PMCID: PMC11228517 DOI: 10.1073/pnas.2317316121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
A dispersed cytoplasmic distribution of mitochondria is a hallmark of normal cellular organization. Here, we have utilized the expression of exogenous Trak2 in mouse oocytes and embryos to disrupt the dispersed distribution of mitochondria by driving them into a large cytoplasmic aggregate. Our findings reveal that aggregated mitochondria have minimal impact on asymmetric meiotic cell divisions of the oocyte. In contrast, aggregated mitochondria during the first mitotic division result in daughter cells with unequal sizes and increased micronuclei. Further, in two-cell embryos, microtubule-mediated centering properties of the mitochondrial aggregate prevent nuclear centration, distort nuclear shape, and inhibit DNA synthesis and the onset of embryonic transcription. These findings demonstrate the motor protein-mediated distribution of mitochondria throughout the cytoplasm is highly regulated and is an essential feature of cytoplasmic organization to ensure optimal cell function.
Collapse
Affiliation(s)
- In-Won Lee
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Abbas Pirpour Tazehkand
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Zi-Yi Sha
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - John Carroll
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
18
|
Daga P, Thurakkal B, Rawal S, Das T. Matrix stiffening promotes perinuclear clustering of mitochondria. Mol Biol Cell 2024; 35:ar91. [PMID: 38758658 PMCID: PMC11244172 DOI: 10.1091/mbc.e23-04-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Mechanical cues from the tissue microenvironment, such as the stiffness of the extracellular matrix, modulate cellular forms and functions. As numerous studies have shown, this modulation depends on the stiffness-dependent remodeling of cytoskeletal elements. In contrast, very little is known about how the intracellular organelles such as mitochondria respond to matrix stiffness and whether their form, function, and localization change accordingly. Here, we performed an extensive quantitative characterization of mitochondrial morphology, subcellular localization, dynamics, and membrane tension on soft and stiff matrices. This characterization revealed that while matrix stiffness affected all these aspects, matrix stiffening most distinctively led to an increased perinuclear clustering of mitochondria. Subsequently, we could identify the matrix stiffness-sensitive perinuclear localization of filamin as the key factor dictating this perinuclear clustering. The perinuclear and peripheral mitochondrial populations differed in their motility on soft matrix but surprisingly they did not show any difference on stiff matrix. Finally, perinuclear mitochondrial clustering appeared to be crucial for the nuclear localization of RUNX2 and hence for priming human mesenchymal stem cells towards osteogenesis on a stiff matrix. Taken together, we elucidate a dependence of mitochondrial localization on matrix stiffness, which possibly enables a cell to adapt to its microenvironment.
Collapse
Affiliation(s)
- Piyush Daga
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500 046, India
| | - Basil Thurakkal
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500 046, India
| | - Simran Rawal
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500 046, India
| | - Tamal Das
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500 046, India
| |
Collapse
|
19
|
Wang X, Menezes CJ, Jia Y, Xiao Y, Venigalla SSK, Cai F, Hsieh MH, Gu W, Du L, Sudderth J, Kim D, Shelton SD, Llamas CB, Lin YH, Zhu M, Merchant S, Bezwada D, Kelekar S, Zacharias LG, Mathews TP, Hoxhaj G, Wynn RM, Tambar UK, DeBerardinis RJ, Zhu H, Mishra P. Metabolic inflexibility promotes mitochondrial health during liver regeneration. Science 2024; 384:eadj4301. [PMID: 38870309 PMCID: PMC11232486 DOI: 10.1126/science.adj4301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/17/2024] [Indexed: 06/15/2024]
Abstract
Mitochondria are critical for proper organ function and mechanisms to promote mitochondrial health during regeneration would benefit tissue homeostasis. We report that during liver regeneration, proliferation is suppressed in electron transport chain (ETC)-dysfunctional hepatocytes due to an inability to generate acetyl-CoA from peripheral fatty acids through mitochondrial β-oxidation. Alternative modes for acetyl-CoA production from pyruvate or acetate are suppressed in the setting of ETC dysfunction. This metabolic inflexibility forces a dependence on ETC-functional mitochondria and restoring acetyl-CoA production from pyruvate is sufficient to allow ETC-dysfunctional hepatocytes to proliferate. We propose that metabolic inflexibility within hepatocytes can be advantageous by limiting the expansion of ETC-dysfunctional cells.
Collapse
Affiliation(s)
- Xun Wang
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cameron J Menezes
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuemeng Jia
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Xiao
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Feng Cai
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meng-Hsiung Hsieh
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wen Gu
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liming Du
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jessica Sudderth
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dohun Kim
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Spencer D Shelton
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Claire B Llamas
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-Hsuan Lin
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Zhu
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Salma Merchant
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Divya Bezwada
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sherwin Kelekar
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G Zacharias
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gerta Hoxhaj
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - R Max Wynn
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Uttam K Tambar
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Mishra
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
20
|
Gonzales CR, Moca EN, Chandra PK, Busija DW, Rutkai I. Three-dimensional object geometry of mitochondria-associated signal: 3-D analysis pipeline for two-photon image stacks of cerebrovascular endothelial mitochondria. Am J Physiol Heart Circ Physiol 2024; 326:H1291-H1303. [PMID: 38517228 PMCID: PMC11630827 DOI: 10.1152/ajpheart.00101.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Increasing evidence indicates the role of mitochondrial and vascular dysfunction in aging and aging-associated pathologies; however, the exact mechanisms and chronological processes remain enigmatic. High-energy demand organs, such as the brain, depend on the health of their mitochondria and vasculature for the maintenance of normal functions, therefore representing vulnerable targets for aging. This methodology article describes an analysis pipeline for three-dimensional (3-D) mitochondria-associated signal geometry of two-photon image stacks of brain vasculature. The analysis methods allow the quantification of mitochondria-associated signals obtained in real time in their physiological environment. In addition, signal geometry results will allow the extrapolation of fission and fusion events under normal conditions, during aging, or in the presence of different pathological conditions, therefore contributing to our understanding of the role mitochondria play in a variety of aging-associated diseases with vascular etiology.NEW & NOTEWORTHY Analysis pipeline for 3-D mitochondria-associated signal geometry of two-photon image stacks of brain vasculature.
Collapse
Affiliation(s)
- Christopher R Gonzales
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Eric N Moca
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
21
|
Winstanley YE, Liu J, Adhikari D, Gonzalez MB, Russell DL, Carroll J, Robker RL. Dynamics of Mitochondrial DNA Copy Number and Membrane Potential in Mouse Pre-Implantation Embryos: Responses to Diverse Types of Oxidative Stress. Genes (Basel) 2024; 15:367. [PMID: 38540426 PMCID: PMC10970549 DOI: 10.3390/genes15030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024] Open
Abstract
Mitochondria undergo a myriad of changes during pre-implantation embryo development, including shifts in activity levels and mitochondrial DNA (mtDNA) replication. However, how these distinct aspects of mitochondrial function are linked and their responsiveness to diverse stressors is not well understood. Here, we show that mtDNA content increased between 8-cell embryos and the blastocyst stage, with similar copy numbers per cell in the inner cell mass (ICM) and trophectoderm (TE). In contrast, mitochondrial membrane potential (MMP) was higher in TE than ICM. Culture in ambient oxygen (20% O2) altered both aspects of mitochondrial function: the mtDNA copy number was upregulated in ICM, while MMP was diminished in TE. Embryos cultured in 20% O2 also exhibited delayed development kinetics, impaired implantation, and reduced mtDNA levels in E18 fetal liver. A model of oocyte mitochondrial stress using rotenone showed only a modest effect on on-time development and did not alter the mtDNA copy number in ICM; however, following embryo transfer, mtDNA was higher in the fetal heart. Lastly, endogenous mitochondrial dysfunction, induced by maternal age and obesity, altered the blastocyst mtDNA copy number, but not within the ICM. These results demonstrate that mitochondrial activity and mtDNA content exhibit cell-specific changes and are differentially responsive to diverse types of oxidative stress during pre-implantation embryogenesis.
Collapse
Affiliation(s)
- Yasmyn E. Winstanley
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
| | - Jun Liu
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Deepak Adhikari
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Macarena B. Gonzalez
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
| | - Darryl L. Russell
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
| | - John Carroll
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Rebecca L. Robker
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
22
|
Permyakova A, Hamad S, Hinden L, Baraghithy S, Kogot-Levin A, Yosef O, Shalev O, Tripathi MK, Amal H, Basu A, Arif M, Cinar R, Kunos G, Berger M, Leibowitz G, Tam J. Renal Mitochondrial ATP Transporter Ablation Ameliorates Obesity-Induced CKD. J Am Soc Nephrol 2024; 35:281-298. [PMID: 38200648 PMCID: PMC10914206 DOI: 10.1681/asn.0000000000000294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
SIGNIFICANCE STATEMENT This study sheds light on the central role of adenine nucleotide translocase 2 (ANT2) in the pathogenesis of obesity-induced CKD. Our data demonstrate that ANT2 depletion in renal proximal tubule cells (RPTCs) leads to a shift in their primary metabolic program from fatty acid oxidation to aerobic glycolysis, resulting in mitochondrial protection, cellular survival, and preservation of renal function. These findings provide new insights into the underlying mechanisms of obesity-induced CKD and have the potential to be translated toward the development of targeted therapeutic strategies for this debilitating condition. BACKGROUND The impairment in ATP production and transport in RPTCs has been linked to the pathogenesis of obesity-induced CKD. This condition is characterized by kidney dysfunction, inflammation, lipotoxicity, and fibrosis. In this study, we investigated the role of ANT2, which serves as the primary regulator of cellular ATP content in RPTCs, in the development of obesity-induced CKD. METHODS We generated RPTC-specific ANT2 knockout ( RPTC-ANT2-/- ) mice, which were then subjected to a 24-week high-fat diet-feeding regimen. We conducted comprehensive assessment of renal morphology, function, and metabolic alterations of these mice. In addition, we used large-scale transcriptomics, proteomics, and metabolomics analyses to gain insights into the role of ANT2 in regulating mitochondrial function, RPTC physiology, and overall renal health. RESULTS Our findings revealed that obese RPTC-ANT2-/- mice displayed preserved renal morphology and function, along with a notable absence of kidney lipotoxicity and fibrosis. The depletion of Ant2 in RPTCs led to a fundamental rewiring of their primary metabolic program. Specifically, these cells shifted from oxidizing fatty acids as their primary energy source to favoring aerobic glycolysis, a phenomenon mediated by the testis-selective Ant4. CONCLUSIONS We propose a significant role for RPTC-Ant2 in the development of obesity-induced CKD. The nullification of RPTC-Ant2 triggers a cascade of cellular mechanisms, including mitochondrial protection, enhanced RPTC survival, and ultimately the preservation of kidney function. These findings shed new light on the complex metabolic pathways contributing to CKD development and suggest potential therapeutic targets for this condition.
Collapse
Affiliation(s)
- Anna Permyakova
- Obesity and Metabolism Laboratory, Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharleen Hamad
- Obesity and Metabolism Laboratory, Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Saja Baraghithy
- Obesity and Metabolism Laboratory, Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviram Kogot-Levin
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Omri Yosef
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Israel-Canada Medical Research Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Shalev
- Metabolomics Center, Core Research Facility, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Manish Kumar Tripathi
- The Laboratory of Neuromics, Cell Signaling and Translational Medicine, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- The Laboratory of Neuromics, Cell Signaling and Translational Medicine, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abhishek Basu
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Muhammad Arif
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Michael Berger
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Israel-Canada Medical Research Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
23
|
Kang SWS, Cunningham RP, Miller CB, Brown LA, Cultraro CM, Harned A, Narayan K, Hernandez J, Jenkins LM, Lobanov A, Cam M, Porat-Shliom N. A spatial map of hepatic mitochondria uncovers functional heterogeneity shaped by nutrient-sensing signaling. Nat Commun 2024; 15:1799. [PMID: 38418824 PMCID: PMC10902380 DOI: 10.1038/s41467-024-45751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
In the liver, mitochondria are exposed to different concentrations of nutrients due to their spatial positioning across the periportal and pericentral axis. How the mitochondria sense and integrate these signals to respond and maintain homeostasis is not known. Here, we combine intravital microscopy, spatial proteomics, and functional assessment to investigate mitochondrial heterogeneity in the context of liver zonation. We find that periportal and pericentral mitochondria are morphologically and functionally distinct; beta-oxidation is elevated in periportal regions, while lipid synthesis is predominant in the pericentral mitochondria. In addition, comparative phosphoproteomics reveals spatially distinct patterns of mitochondrial composition and potential regulation via phosphorylation. Acute pharmacological modulation of nutrient sensing through AMPK and mTOR shifts mitochondrial phenotypes in the periportal and pericentral regions, linking nutrient gradients across the lobule and mitochondrial heterogeneity. This study highlights the role of protein phosphorylation in mitochondrial structure, function, and overall homeostasis in hepatic metabolic zonation. These findings have important implications for liver physiology and disease.
Collapse
Affiliation(s)
- Sun Woo Sophie Kang
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rory P Cunningham
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Colin B Miller
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lauryn A Brown
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Constance M Cultraro
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Adam Harned
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Programs, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Programs, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jonathan Hernandez
- Surgical Oncology Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR) National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource (CCBR) National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Natalie Porat-Shliom
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
24
|
Zhou H, Zhang W, Li H, Xu F, Yinwang E, Xue Y, Chen T, Wang S, Wang Z, Sun H, Wang F, Mou H, Yao M, Chai X, Zhang J, Diarra MD, Li B, Zhang C, Gao J, Ye Z. Osteocyte mitochondria inhibit tumor development via STING-dependent antitumor immunity. SCIENCE ADVANCES 2024; 10:eadi4298. [PMID: 38232158 DOI: 10.1126/sciadv.adi4298] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Bone is one of the most common sites of tumor metastases. During the last step of bone metastasis, cancer cells colonize and disrupt the bone matrix, which is maintained mainly by osteocytes, the most abundant cells in the bone microenvironment. However, the role of osteocytes in bone metastasis is still unclear. Here, we demonstrated that osteocytes transfer mitochondria to metastatic cancer cells and trigger the cGAS/STING-mediated antitumor response. Blocking the transfer of mitochondria by specifically knocking out mitochondrial Rho GTPase 1 (Rhot1) or mitochondrial mitofusin 2 (Mfn2) in osteocytes impaired tumor immunogenicity and consequently resulted in the progression of metastatic cancer toward the bone matrix. These findings reveal the protective role of osteocytes against cancer metastasis by transferring mitochondria to cancer cells and potentially offer a valuable therapeutic strategy for preventing bone metastasis.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Fan Xu
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hangxiang Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Minjun Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiahao Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Mohamed Diaty Diarra
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Binghao Li
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Changqing Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junjie Gao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Zhaoming Ye
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
25
|
Villa M, Sanin DE, Apostolova P, Corrado M, Kabat AM, Cristinzio C, Regina A, Carrizo GE, Rana N, Stanczak MA, Baixauli F, Grzes KM, Cupovic J, Solagna F, Hackl A, Globig AM, Hässler F, Puleston DJ, Kelly B, Cabezas-Wallscheid N, Hasselblatt P, Bengsch B, Zeiser R, Sagar, Buescher JM, Pearce EJ, Pearce EL. Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment. Nat Commun 2024; 15:451. [PMID: 38200005 PMCID: PMC10781727 DOI: 10.1038/s41467-024-44689-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8+ T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8+ T cell pool. CD8+ T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8+ T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E2 (PGE2), which drives mitochondrial depolarization in CD8+ T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE2 sensing promotes CD8+ T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE2-autophagy-glutathione axis defines the metabolic adaptation of CD8+ T cells to the intestinal microenvironment, to ultimately influence the T cell pool.
Collapse
Affiliation(s)
- Matteo Villa
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany.
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria.
| | - David E Sanin
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Petya Apostolova
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine I (Hematology and Oncology), University Medical Center Freiburg, 79106, Freiburg, Germany
| | - Mauro Corrado
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Agnieszka M Kabat
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carmine Cristinzio
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Annamaria Regina
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Department of Life Sciences, University of Trieste, 34128, Trieste, Italy
| | - Gustavo E Carrizo
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Nisha Rana
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Michal A Stanczak
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Francesc Baixauli
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Katarzyna M Grzes
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Jovana Cupovic
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Francesca Solagna
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Alexandra Hackl
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Anna-Maria Globig
- Department of Medicine II, University Medical Center Freiburg, 79106, Freiburg, Germany
| | - Fabian Hässler
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Daniel J Puleston
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Beth Kelly
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | | | - Peter Hasselblatt
- Department of Medicine II, University Medical Center Freiburg, 79106, Freiburg, Germany
| | - Bertram Bengsch
- Department of Medicine II, University Medical Center Freiburg, 79106, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I (Hematology and Oncology), University Medical Center Freiburg, 79106, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Sagar
- Department of Medicine II, University Medical Center Freiburg, 79106, Freiburg, Germany
| | - Joerg M Buescher
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Edward J Pearce
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- CIBSS Centre for Integrative Biological Signalling Studies, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Erika L Pearce
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany.
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- CIBSS Centre for Integrative Biological Signalling Studies, Freiburg, Germany.
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
26
|
Sundaram VK, Schütza V, Schröter NH, Backhaus A, Bilsing A, Joneck L, Seelbach A, Mutschler C, Gomez-Sanchez JA, Schäffner E, Sánchez EE, Akkermann D, Paul C, Schwagarus N, Müller S, Odle A, Childs G, Ewers D, Kungl T, Sitte M, Salinas G, Sereda MW, Nave KA, Schwab MH, Ost M, Arthur-Farraj P, Stassart RM, Fledrich R. Adipo-glial signaling mediates metabolic adaptation in peripheral nerve regeneration. Cell Metab 2023; 35:2136-2152.e9. [PMID: 37989315 PMCID: PMC10722468 DOI: 10.1016/j.cmet.2023.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/21/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
The peripheral nervous system harbors a remarkable potential to regenerate after acute nerve trauma. Full functional recovery, however, is rare and critically depends on peripheral nerve Schwann cells that orchestrate breakdown and resynthesis of myelin and, at the same time, support axonal regrowth. How Schwann cells meet the high metabolic demand required for nerve repair remains poorly understood. We here report that nerve injury induces adipocyte to glial signaling and identify the adipokine leptin as an upstream regulator of glial metabolic adaptation in regeneration. Signal integration by leptin receptors in Schwann cells ensures efficient peripheral nerve repair by adjusting injury-specific catabolic processes in regenerating nerves, including myelin autophagy and mitochondrial respiration. Our findings propose a model according to which acute nerve injury triggers a therapeutically targetable intercellular crosstalk that modulates glial metabolism to provide sufficient energy for successful nerve repair.
Collapse
Affiliation(s)
- Venkat Krishnan Sundaram
- Institute of Anatomy, Leipzig University, Leipzig, Germany; Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Vlad Schütza
- Institute of Anatomy, Leipzig University, Leipzig, Germany; Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | | | - Aline Backhaus
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Annika Bilsing
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Lisa Joneck
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Anna Seelbach
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Clara Mutschler
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Jose A Gomez-Sanchez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
| | - Erik Schäffner
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | | | - Dagmar Akkermann
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Christina Paul
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Nancy Schwagarus
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Silvana Müller
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Angela Odle
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
| | - Gwen Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Markham, AR, USA
| | - David Ewers
- Max Planck Institute of Experimental Medicine, Göttingen, Germany; Klinik für Neurologie, Universitätsmedizin Göttingen (UMG), Göttingen, Germany
| | - Theresa Kungl
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Maren Sitte
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Michael W Sereda
- Max Planck Institute of Experimental Medicine, Göttingen, Germany; Klinik für Neurologie, Universitätsmedizin Göttingen (UMG), Göttingen, Germany
| | - Klaus-Armin Nave
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Markus H Schwab
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Mario Ost
- Institute of Anatomy, Leipzig University, Leipzig, Germany; Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Ruth M Stassart
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany.
| | | |
Collapse
|
27
|
Bame X, Hill RA. Mitochondrial network reorganization and transient expansion during oligodendrocyte generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570104. [PMID: 38106204 PMCID: PMC10723275 DOI: 10.1101/2023.12.05.570104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) give rise to myelinating oligodendrocytes of the central nervous system. This process persists throughout life and is essential for recovery from neurodegeneration. To better understand the cellular checkpoints that occur during oligodendrogenesis, we determined the mitochondrial distribution and morphometrics across the oligodendrocyte lineage in mouse and human cerebral cortex. During oligodendrocyte generation, mitochondrial content expanded concurrently with a change in subcellular partitioning towards the distal processes. These changes were followed by an abrupt loss of mitochondria in the oligodendrocyte processes and myelin, coinciding with sheath compaction. This reorganization and extensive expansion and depletion took 3 days. Oligodendrocyte mitochondria were stationary over days while OPC mitochondrial motility was modulated by animal arousal state within minutes. Aged OPCs also displayed decreased mitochondrial size, content, and motility. Thus, mitochondrial dynamics are linked to oligodendrocyte generation, dynamically modified by their local microenvironment, and altered in the aging brain.
Collapse
Affiliation(s)
- Xhoela Bame
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
28
|
McFleder RL, Makhotkina A, Groh J, Keber U, Imdahl F, Peña Mosca J, Peteranderl A, Wu J, Tabuchi S, Hoffmann J, Karl AK, Pagenstecher A, Vogel J, Beilhack A, Koprich JB, Brotchie JM, Saliba AE, Volkmann J, Ip CW. Brain-to-gut trafficking of alpha-synuclein by CD11c + cells in a mouse model of Parkinson's disease. Nat Commun 2023; 14:7529. [PMID: 37981650 PMCID: PMC10658151 DOI: 10.1038/s41467-023-43224-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023] Open
Abstract
Inflammation in the brain and gut is a critical component of several neurological diseases, such as Parkinson's disease (PD). One trigger of the immune system in PD is aggregation of the pre-synaptic protein, α-synuclein (αSyn). Understanding the mechanism of propagation of αSyn aggregates is essential to developing disease-modifying therapeutics. Using a brain-first mouse model of PD, we demonstrate αSyn trafficking from the brain to the ileum of male mice. Immunohistochemistry revealed that the ileal αSyn aggregations are contained within CD11c+ cells. Using single-cell RNA sequencing, we demonstrate that ileal CD11c+ cells are microglia-like and the same subtype of cells is activated in the brain and ileum of PD mice. Moreover, by utilizing mice expressing the photo-convertible protein, Dendra2, we show that CD11c+ cells traffic from the brain to the ileum. Together these data provide a mechanism of αSyn trafficking between the brain and gut.
Collapse
Affiliation(s)
- Rhonda L McFleder
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | | | - Janos Groh
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Ursula Keber
- Department of Neuropathology, Philipps University of Marburg, Marburg, Germany
| | - Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Josefina Peña Mosca
- Department of Internal Medicine II, Center for Experimental Molecular Medicine (ZEMM), Würzburg University Hospital, Würzburg, Germany
| | - Alina Peteranderl
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Jingjing Wu
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Sawako Tabuchi
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Jan Hoffmann
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Ann-Kathrin Karl
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Axel Pagenstecher
- Department of Neuropathology, Philipps University of Marburg, Marburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, Center for Experimental Molecular Medicine (ZEMM), Würzburg University Hospital, Würzburg, Germany
| | - James B Koprich
- Atuka Inc., Toronto, ON, Canada
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Jonathan M Brotchie
- Atuka Inc., Toronto, ON, Canada
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
- Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
29
|
Hernandez-Resendiz S, Prakash A, Loo SJ, Semenzato M, Chinda K, Crespo-Avilan GE, Dam LC, Lu S, Scorrano L, Hausenloy DJ. Targeting mitochondrial shape: at the heart of cardioprotection. Basic Res Cardiol 2023; 118:49. [PMID: 37955687 PMCID: PMC10643419 DOI: 10.1007/s00395-023-01019-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
There remains an unmet need to identify novel therapeutic strategies capable of protecting the myocardium against the detrimental effects of acute ischemia-reperfusion injury (IRI), to reduce myocardial infarct (MI) size and prevent the onset of heart failure (HF) following acute myocardial infarction (AMI). In this regard, perturbations in mitochondrial morphology with an imbalance in mitochondrial fusion and fission can disrupt mitochondrial metabolism, calcium homeostasis, and reactive oxygen species production, factors which are all known to be critical determinants of cardiomyocyte death following acute myocardial IRI. As such, therapeutic approaches directed at preserving the morphology and functionality of mitochondria may provide an important strategy for cardioprotection. In this article, we provide an overview of the alterations in mitochondrial morphology which occur in response to acute myocardial IRI, and highlight the emerging therapeutic strategies for targeting mitochondrial shape to preserve mitochondrial function which have the future therapeutic potential to improve health outcomes in patients presenting with AMI.
Collapse
Affiliation(s)
- Sauri Hernandez-Resendiz
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Aishwarya Prakash
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Sze Jie Loo
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | | | - Kroekkiat Chinda
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Gustavo E Crespo-Avilan
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Linh Chi Dam
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Shengjie Lu
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Derek J Hausenloy
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore.
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.
- National University Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore.
- University College London, The Hatter Cardiovascular Institute, London, UK.
| |
Collapse
|
30
|
Wu H, Zhao X, Hochrein SM, Eckstein M, Gubert GF, Knöpper K, Mansilla AM, Öner A, Doucet-Ladevèze R, Schmitz W, Ghesquière B, Theurich S, Dudek J, Gasteiger G, Zernecke A, Kobold S, Kastenmüller W, Vaeth M. Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming. Nat Commun 2023; 14:6858. [PMID: 37891230 PMCID: PMC10611730 DOI: 10.1038/s41467-023-42634-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
T cell exhaustion is a hallmark of cancer and persistent infections, marked by inhibitory receptor upregulation, diminished cytokine secretion, and impaired cytolytic activity. Terminally exhausted T cells are steadily replenished by a precursor population (Tpex), but the metabolic principles governing Tpex maintenance and the regulatory circuits that control their exhaustion remain incompletely understood. Using a combination of gene-deficient mice, single-cell transcriptomics, and metabolomic analyses, we show that mitochondrial insufficiency is a cell-intrinsic trigger that initiates the functional exhaustion of T cells. At the molecular level, we find that mitochondrial dysfunction causes redox stress, which inhibits the proteasomal degradation of hypoxia-inducible factor 1α (HIF-1α) and promotes the transcriptional and metabolic reprogramming of Tpex cells into terminally exhausted T cells. Our findings also bear clinical significance, as metabolic engineering of chimeric antigen receptor (CAR) T cells is a promising strategy to enhance the stemness and functionality of Tpex cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Wu
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Xiufeng Zhao
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Sophia M Hochrein
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Miriam Eckstein
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Gabriela F Gubert
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Konrad Knöpper
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Ana Maria Mansilla
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Arman Öner
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig Maximilians University (LMU) Munich, University Hospital, Munich, Germany
| | - Remi Doucet-Ladevèze
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Bart Ghesquière
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium and Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Sebastian Theurich
- Ludwig Maximilians University (LMU) Munich, University Hospital, Department of Medicine III, Munich, Germany and LMU Gene Center, Cancer and Immunometabolism Research Group, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Hospital, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig Maximilians University (LMU) Munich, University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany.
| |
Collapse
|
31
|
Kang SWS, Cunningham RP, Miller CB, Brown LA, Cultraro CM, Harned A, Narayan K, Hernandez J, Jenkins LM, Lobanov A, Cam M, Porat-Shliom N. A spatial map of hepatic mitochondria uncovers functional heterogeneity shaped by nutrient-sensing signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536717. [PMID: 37333328 PMCID: PMC10274915 DOI: 10.1101/2023.04.13.536717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
In the liver, mitochondria are exposed to different concentrations of nutrients due to their spatial positioning across the periportal (PP) and pericentral (PC) axis. How these mitochondria sense and integrate these signals to respond and maintain homeostasis is not known. Here, we combined intravital microscopy, spatial proteomics, and functional assessment to investigate mitochondrial heterogeneity in the context of liver zonation. We found that PP and PC mitochondria are morphologically and functionally distinct; beta-oxidation was elevated in PP regions, while lipid synthesis was predominant in the PC mitochondria. In addition, comparative phosphoproteomics revealed spatially distinct patterns of mitochondrial composition and potential regulation via phosphorylation. Acute pharmacological modulation of nutrient sensing through AMPK and mTOR shifted mitochondrial phenotypes in the PP and PC regions, linking nutrient gradients across the lobule and mitochondrial heterogeneity. This study highlights the role of protein phosphorylation in mitochondrial structure, function, and overall homeostasis in hepatic metabolic zonation. These findings have important implications for liver physiology and disease.
Collapse
Affiliation(s)
- Sun Woo Sophie Kang
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Rory P. Cunningham
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Colin B. Miller
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lauryn A. Brown
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Constance M. Cultraro
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Adam Harned
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jonathan Hernandez
- Surgical Oncology Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR) National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource (CCBR) National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Natalie Porat-Shliom
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
32
|
Maes ME, Colombo G, Schoot Uiterkamp FE, Sternberg F, Venturino A, Pohl EE, Siegert S. Mitochondrial network adaptations of microglia reveal sex-specific stress response after injury and UCP2 knockout. iScience 2023; 26:107780. [PMID: 37731609 PMCID: PMC10507162 DOI: 10.1016/j.isci.2023.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Abstract
Mitochondrial networks remodel their connectivity, content, and subcellular localization to support optimized energy production in conditions of increased environmental or cellular stress. Microglia rely on mitochondria to respond to these stressors, however our knowledge about mitochondrial networks and their adaptations in microglia in vivo is limited. Here, we generate a mouse model that selectively labels mitochondria in microglia. We identify that mitochondrial networks are more fragmented with increased content and perinuclear localization in vitro vs. in vivo. Mitochondrial networks adapt similarly in microglia closest to the injury site after optic nerve crush. Preventing microglial UCP2 increase after injury by selective knockout induces cellular stress. This results in mitochondrial hyperfusion in male microglia, a phenotype absent in females due to circulating estrogens. Our results establish the foundation for mitochondrial network analysis of microglia in vivo, emphasizing the importance of mitochondrial-based sex effects of microglia in other pathologies.
Collapse
Affiliation(s)
- Margaret E. Maes
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Gloria Colombo
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | | | - Felix Sternberg
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Alessandro Venturino
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Elena E. Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Sandra Siegert
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
33
|
Zhang H, Yu X, Ye J, Li H, Hu J, Tan Y, Fang Y, Akbay E, Yu F, Weng C, Sankaran VG, Bachoo RM, Maher E, Minna J, Zhang A, Li B. Systematic investigation of mitochondrial transfer between cancer cells and T cells at single-cell resolution. Cancer Cell 2023; 41:1788-1802.e10. [PMID: 37816332 PMCID: PMC10568073 DOI: 10.1016/j.ccell.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/27/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023]
Abstract
Mitochondria (MT) participate in most metabolic activities of mammalian cells. A near-unidirectional mitochondrial transfer from T cells to cancer cells was recently observed to "metabolically empower" cancer cells while "depleting immune cells," providing new insights into tumor-T cell interaction and immune evasion. Here, we leverage single-cell RNA-seq technology and introduce MERCI, a statistical deconvolution method for tracing and quantifying mitochondrial trafficking between cancer and T cells. Through rigorous benchmarking and validation, MERCI accurately predicts the recipient cells and their relative mitochondrial compositions. Application of MERCI to human cancer samples identifies a reproducible MT transfer phenotype, with its signature genes involved in cytoskeleton remodeling, energy production, and TNF-α signaling pathways. Moreover, MT transfer is associated with increased cell cycle activity and poor clinical outcome across different cancer types. In summary, MERCI enables systematic investigation of an understudied aspect of tumor-T cell interactions that may lead to the development of therapeutic opportunities.
Collapse
Affiliation(s)
- Hongyi Zhang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xuexin Yu
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huiyu Li
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jing Hu
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuhao Tan
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yan Fang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Esra Akbay
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fulong Yu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Chen Weng
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Vijay G Sankaran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Robert M Bachoo
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth Maher
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anli Zhang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Tian X, Pan M, Zhou M, Tang Q, Chen M, Hong W, Zhao F, Liu K. Mitochondria Transplantation from Stem Cells for Mitigating Sarcopenia. Aging Dis 2023; 14:1700-1713. [PMID: 37196123 PMCID: PMC10529753 DOI: 10.14336/ad.2023.0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/10/2023] [Indexed: 05/19/2023] Open
Abstract
Sarcopenia is defined as the age-related loss of muscle mass and function that can lead to prolonged hospital stays and decreased independence. It is a significant health and financial burden for individuals, families, and society as a whole. The accumulation of damaged mitochondria in skeletal muscle contributes to the degeneration of muscles with age. Currently, the treatment of sarcopenia is limited to improving nutrition and physical activity. Studying effective methods to alleviate and treat sarcopenia to improve the quality of life and lifespan of older people is a growing area of interest in geriatric medicine. Therapies targeting mitochondria and restoring mitochondrial function are promising treatment strategies. This article provides an overview of stem cell transplantation for sarcopenia, including the mitochondrial delivery pathway and the protective role of stem cells. It also highlights recent advances in preclinical and clinical research on sarcopenia and presents a new treatment method involving stem cell-derived mitochondrial transplantation, outlining its advantages and challenges.
Collapse
Affiliation(s)
- Xiulin Tian
- Department of Nursing, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Mengxiong Pan
- Department of Neurology, First People’s Hospital of Huzhou, Huzhou, Zhejiang, China.
| | - Mengting Zhou
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Qiaomin Tang
- Department of Nursing, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Miao Chen
- Department of Neurology, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, China.
| | - Wenwu Hong
- Department of Neurology, Tiantai People’s Hospital of Zhejiang Province, Tiantai, Taizhou, Zhejiang, China.
| | - Fangling Zhao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Kaiming Liu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Kurmi K, Liang D, van de Ven R, Georgiev P, Gassaway BM, Han S, Notarangelo G, Harris IS, Yao CH, Park JS, Hu SH, Peng J, Drijvers JM, Boswell S, Sokolov A, Dougan SK, Sorger PK, Gygi SP, Sharpe AH, Haigis MC. Metabolic modulation of mitochondrial mass during CD4 + T cell activation. Cell Chem Biol 2023; 30:1064-1075.e8. [PMID: 37716347 PMCID: PMC10604707 DOI: 10.1016/j.chembiol.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023]
Abstract
Mitochondrial biogenesis initiates within hours of T cell receptor (TCR) engagement and is critical for T cell activation, function, and survival; yet, how metabolic programs support mitochondrial biogenesis during TCR signaling is not fully understood. Here, we performed a multiplexed metabolic chemical screen in CD4+ T lymphocytes to identify modulators of metabolism that impact mitochondrial mass during early T cell activation. Treatment of T cells with pyrvinium pamoate early during their activation blocks an increase in mitochondrial mass and results in reduced proliferation, skewed CD4+ T cell differentiation, and reduced cytokine production. Furthermore, administration of pyrvinium pamoate at the time of induction of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis in mice, prevented the onset of clinical disease. Thus, modulation of mitochondrial biogenesis may provide a therapeutic strategy for modulating T cell immune responses.
Collapse
Affiliation(s)
- Kiran Kurmi
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Dan Liang
- Department of Immunology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Robert van de Ven
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Peter Georgiev
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Brandon Mark Gassaway
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - SeongJun Han
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Giulia Notarangelo
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Isaac S Harris
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Cong-Hui Yao
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Joon Seok Park
- Department of Immunology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Song-Hua Hu
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Jingyu Peng
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Jefte M Drijvers
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Boswell
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie K Dougan
- Department of Immunology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Liang W, Sagar S, Ravindran R, Najor RH, Quiles JM, Chi L, Diao RY, Woodall BP, Leon LJ, Zumaya E, Duran J, Cauvi DM, De Maio A, Adler ED, Gustafsson ÅB. Mitochondria are secreted in extracellular vesicles when lysosomal function is impaired. Nat Commun 2023; 14:5031. [PMID: 37596294 PMCID: PMC10439183 DOI: 10.1038/s41467-023-40680-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Mitochondrial quality control is critical for cardiac homeostasis as these organelles are responsible for generating most of the energy needed to sustain contraction. Dysfunctional mitochondria are normally degraded via intracellular degradation pathways that converge on the lysosome. Here, we identified an alternative mechanism to eliminate mitochondria when lysosomal function is compromised. We show that lysosomal inhibition leads to increased secretion of mitochondria in large extracellular vesicles (EVs). The EVs are produced in multivesicular bodies, and their release is independent of autophagy. Deletion of the small GTPase Rab7 in cells or adult mouse heart leads to increased secretion of EVs containing ubiquitinated cargos, including intact mitochondria. The secreted EVs are captured by macrophages without activating inflammation. Hearts from aged mice or Danon disease patients have increased levels of secreted EVs containing mitochondria indicating activation of vesicular release during cardiac pathophysiology. Overall, these findings establish that mitochondria are eliminated in large EVs through the endosomal pathway when lysosomal degradation is inhibited.
Collapse
Affiliation(s)
- Wenjing Liang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Shakti Sagar
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rishith Ravindran
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rita H Najor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Justin M Quiles
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Liguo Chi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rachel Y Diao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Benjamin P Woodall
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Leonardo J Leon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Erika Zumaya
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jason Duran
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - David M Cauvi
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Antonio De Maio
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Eric D Adler
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
37
|
Atkinson KC, Osunde M, Tiwari-Woodruff SK. The complexities of investigating mitochondria dynamics in multiple sclerosis and mouse models of MS. Front Neurosci 2023; 17:1144896. [PMID: 37559701 PMCID: PMC10409489 DOI: 10.3389/fnins.2023.1144896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating, degenerating disorder of the central nervous system (CNS) that is accompanied by mitochondria energy production failure. A loss of myelin paired with a deficit in energy production can contribute to further neurodegeneration and disability in patients in MS. Mitochondria are essential organelles that produce adenosine triphosphate (ATP) via oxidative phosphorylation in all cells in the CNS, including neurons, oligodendrocytes, astrocytes, and immune cells. In the context of demyelinating diseases, mitochondria have been shown to alter their morphology and undergo an initial increase in metabolic demand. This is followed by mitochondrial respiratory chain deficiency and abnormalities in mitochondrial transport that contribute to progressive neurodegeneration and irreversible disability. The current methodologies to study mitochondria are limiting and are capable of providing only a partial snapshot of the true mitochondria activity at a particular timepoint during disease. Mitochondrial functional studies are mostly performed in cell culture or whole brain tissue, which prevents understanding of mitochondrial pathology in distinct cell types in vivo. A true understanding of cell-specific mitochondrial pathophysiology of MS in mouse models is required. Cell-specific mitochondria morphology, mitochondria motility, and ATP production studies in animal models of MS will help us understand the role of mitochondria in the normal and diseased CNS. In this review, we present currently used methods to investigate mitochondria function in MS mouse models and discuss the current advantages and caveats with using each technique. In addition, we present recently developed mitochondria transgenic mouse lines expressing Cre under the control of CNS specific promoters to relate mitochondria to disease in vivo.
Collapse
Affiliation(s)
| | | | - Seema K. Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
38
|
Schaller T, Ringen J, Fischer B, Bieler T, Perius K, Knopp T, Kommoss KS, Korn T, Heikenwälder M, Oelze M, Daiber A, Münzel T, Kramer D, Wenzel P, Wild J, Karbach S, Waisman A. Reactive oxygen species produced by myeloid cells in psoriasis as a potential biofactor contributing to the development of vascular inflammation. Biofactors 2023; 49:861-874. [PMID: 37139784 DOI: 10.1002/biof.1949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/04/2023] [Indexed: 05/05/2023]
Abstract
Psoriasis is an immune-mediated inflammatory skin disease driven by interleukin-17A (IL-17A) and associated with cardiovascular dysfunction. We used a severe psoriasis mouse model of keratinocyte IL-17A overexpression (K14-IL-17Aind/+ , IL-17Aind/+ control mice) to investigate the activity of neutrophils and a potential cellular interconnection between skin and vasculature. Levels of dermal reactive oxygen species (ROS) and their release by neutrophils were measured by lucigenin-/luminol-based assays, respectively. Quantitative RT-PCR determined neutrophilic activity and inflammation-related markers in skin and aorta. To track skin-derived immune cells, we used PhAM-K14-IL-17Aind/+ mice allowing us to mark all cells in the skin by photoconversion of a fluorescent protein to analyze their migration into spleen, aorta, and lymph nodes by flow cytometry. Compared to controls, K14-IL-17Aind/+ mice exhibited elevated ROS levels in the skin and a higher neutrophilic oxidative burst accompanied by the upregulation of several activation markers. In line with these results psoriatic mice displayed elevated expression of genes involved in neutrophil migration (e.g., Cxcl2 and S100a9) in skin and aorta. However, no direct immune cell migration from the psoriatic skin into the aortic vessel wall was observed. Neutrophils of psoriatic mice showed an activated phenotype, but no direct cellular migration from the skin to the vasculature was observed. This suggests that highly active vasculature-invading neutrophils must originate directly from the bone marrow. Hence, the skin-vasculature crosstalk in psoriasis is most likely based on the systemic effects of the autoimmune skin disease, emphasizing the importance of a systemic therapeutic approach for psoriasis patients.
Collapse
Affiliation(s)
- Theresa Schaller
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julia Ringen
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Berenice Fischer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tabea Bieler
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany
| | - Katharina Perius
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tanja Knopp
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Hematology and Central Hematology Laboratory, Inselspital University Hospital Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Katharina S Kommoss
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- The M3 Research Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Matthias Oelze
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Johannes Wild
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne Karbach
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
39
|
de Mello NP, Fecher C, Pastor AM, Perocchi F, Misgeld T. Ex vivo immunocapture and functional characterization of cell-type-specific mitochondria using MitoTag mice. Nat Protoc 2023:10.1038/s41596-023-00831-w. [PMID: 37328604 DOI: 10.1038/s41596-023-00831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Mitochondria are key bioenergetic organelles involved in many biosynthetic and signaling pathways. However, their differential contribution to specific functions of cells within complex tissues is difficult to dissect with current methods. The present protocol addresses this need by enabling the ex vivo immunocapture of cell-type-specific mitochondria directly from their tissue context through a MitoTag reporter mouse. While other available methods were developed for bulk mitochondria isolation or more abundant cell-type-specific mitochondria, this protocol was optimized for the selective isolation of functional mitochondria from medium-to-low-abundant cell types in a heterogeneous tissue, such as the central nervous system. The protocol has three major parts: First, mitochondria of a cell type of interest are tagged via an outer mitochondrial membrane eGFP by crossing MitoTag mice to a cell-type-specific Cre-driver line or by delivery of viral vectors for Cre expression. Second, homogenates are prepared from relevant tissues by nitrogen cavitation, from which tagged organelles are immunocaptured using magnetic microbeads. Third, immunocaptured mitochondria are used for downstream assays, e.g., to probe respiratory capacity or calcium handling, revealing cell-type-specific mitochondrial diversity in molecular composition and function. The MitoTag approach enables the identification of marker proteins to label cell-type-specific organelle populations in situ, elucidates cell-type-enriched mitochondrial metabolic and signaling pathways, and reveals functional mitochondrial diversity between adjacent cell types in complex tissues, such as the brain. Apart from establishing the mouse colony (6-8 weeks without import), the immunocapture protocol takes 2 h and functional assays require 1-2 h.
Collapse
Affiliation(s)
- Natalia Prudente de Mello
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians Universität München, Munich, Germany
| | - Caroline Fecher
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians Universität München, Munich, Germany
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Adrian Marti Pastor
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Fabiana Perocchi
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Munich, Germany.
- Munich Cluster for Systems Neurology, Munich, Germany.
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.
- Munich Cluster for Systems Neurology, Munich, Germany.
- German Center for Neurodegenerative Diseases, Munich, Germany.
| |
Collapse
|
40
|
Brestoff JR. Full spectrum flow cytometry in the clinical laboratory. Int J Lab Hematol 2023; 45 Suppl 2:44-49. [PMID: 37211417 PMCID: PMC10330381 DOI: 10.1111/ijlh.14098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
Contemporary full spectrum or "spectral" flow cytometry is a recently developed technology that allows for high-dimensional flow cytometric analyses of cells and particles in suspension. This single-cell technology has gained popularity in research settings because it can conservatively detect 35 or more antigens simultaneously in a single-tube assay format. Recently, spectral flow cytometry has obtained regulatory approval for use as an in vitro diagnostic device in China and Europe, enabling use of this technology in some clinical flow cytometry laboratories. The purpose of this review is to describe the basic principles of conventional and spectral flow cytometry, contrasting these two technologies. To illustrate the analytic power of spectral flow cytometry, we provide an example of spectral flow cytometry data analyses and the use of a machine learning algorithm to harvest the vast amount of information contained within large spectral flow cytometry datasets. Finally, we discuss the advantages of spectral flow cytometry adoption in clinical laboratories and preliminary studies comparing the performance of this technology relative to conventional flow cytometers that are currently used in clinical laboratory environments.
Collapse
Affiliation(s)
- Jonathan R. Brestoff
- Division of Laboratory and Genomic Medicine, Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
41
|
Kawano H, Kawano Y, Yu C, LaMere MW, McArthur MJ, Becker MW, Ballinger SW, Gojo S, Eliseev RA, Calvi LM. Mitochondrial Transfer to Host Cells from Ex Vivo Expanded Donor Hematopoietic Stem Cells. Cells 2023; 12:1473. [PMID: 37296594 PMCID: PMC10252267 DOI: 10.3390/cells12111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Mitochondrial dysfunction is observed in various conditions, from metabolic syndromes to mitochondrial diseases. Moreover, mitochondrial DNA (mtDNA) transfer is an emerging mechanism that enables the restoration of mitochondrial function in damaged cells. Hence, developing a technology that facilitates the transfer of mtDNA can be a promising strategy for the treatment of these conditions. Here, we utilized an ex vivo culture of mouse hematopoietic stem cells (HSCs) and succeeded in expanding the HSCs efficiently. Upon transplantation, sufficient donor HSC engraftment was attained in-host. To assess the mitochondrial transfer via donor HSCs, we used mitochondrial-nuclear exchange (MNX) mice with nuclei from C57BL/6J and mitochondria from the C3H/HeN strain. Cells from MNX mice have C57BL/6J immunophenotype and C3H/HeN mtDNA, which is known to confer a higher stress resistance to mitochondria. Ex vivo expanded MNX HSCs were transplanted into irradiated C57BL/6J mice and the analyses were performed at six weeks post transplantation. We observed high engraftment of the donor cells in the bone marrow. We also found that HSCs from the MNX mice could transfer mtDNA to the host cells. This work highlights the utility of ex vivo expanded HSC to achieve the mitochondrial transfer from donor to host in the transplant setting.
Collapse
Affiliation(s)
- Hiroki Kawano
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Yuko Kawano
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Chen Yu
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Mark W. LaMere
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Matthew J. McArthur
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Michael W. Becker
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Scott W. Ballinger
- Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Satoshi Gojo
- Department of Regenerative Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan
| | - Roman A. Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Laura M. Calvi
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
42
|
Villa M, Sanin DE, Apostolova P, Corrado M, Kabat AM, Cristinzio C, Regina A, Carrizo GE, Rana N, Stanczak MA, Baixauli F, Grzes KM, Cupovic J, Solagna F, Hackl A, Globig AM, Hässler F, Puleston DJ, Kelly B, Cabezas-Wallscheid N, Hasselblatt P, Bengsch B, Zeiser R, Sagar, Buescher JM, Pearce EJ, Pearce EL. Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532431. [PMID: 36993703 PMCID: PMC10054978 DOI: 10.1101/2023.03.13.532431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Immune cells must adapt to different environments during the course of an immune response. We studied the adaptation of CD8 + T cells to the intestinal microenvironment and how this process shapes their residency in the gut. CD8 + T cells progressively remodel their transcriptome and surface phenotype as they acquire gut residency, and downregulate expression of mitochondrial genes. Human and mouse gut-resident CD8 + T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We found that the intestinal microenvironment is rich in prostaglandin E 2 (PGE 2 ), which drives mitochondrial depolarization in CD8 + T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE 2 sensing promotes CD8 + T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell population. Thus, a PGE 2 -autophagy-glutathione axis defines the metabolic adaptation of CD8 + T cells to the intestinal microenvironment, to ultimately influence the T cell pool.
Collapse
|
43
|
Schönberger K, Mitterer M, Glaser K, Stecher M, Hobitz S, Schain-Zota D, Schuldes K, Lämmermann T, Rambold AS, Cabezas-Wallscheid N, Buescher JM. LC-MS-Based Targeted Metabolomics for FACS-Purified Rare Cells. Anal Chem 2023; 95:4325-4334. [PMID: 36812587 PMCID: PMC9996616 DOI: 10.1021/acs.analchem.2c04396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Metabolism plays a fundamental role in regulating cellular functions and fate decisions. Liquid chromatography-mass spectrometry (LC-MS)-based targeted metabolomic approaches provide high-resolution insights into the metabolic state of a cell. However, the typical sample size is in the order of 105-107 cells and thus not compatible with rare cell populations, especially in the case of a prior flow cytometry-based purification step. Here, we present a comprehensively optimized protocol for targeted metabolomics on rare cell types, such as hematopoietic stem cells and mast cells. Only 5000 cells per sample are required to detect up to 80 metabolites above background. The use of regular-flow liquid chromatography allows for robust data acquisition, and the omission of drying or chemical derivatization avoids potential sources of error. Cell-type-specific differences are preserved while the addition of internal standards, generation of relevant background control samples, and targeted metabolite with quantifiers and qualifiers ensure high data quality. This protocol could help numerous studies to gain thorough insights into cellular metabolic profiles and simultaneously reduce the number of laboratory animals and the time-consuming and costly experiments associated with rare cell-type purification.
Collapse
Affiliation(s)
- Katharina Schönberger
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79085 Freiburg, Germany
| | - Michael Mitterer
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Katharina Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79085 Freiburg, Germany
| | - Manuel Stecher
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79085 Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-MCB), 79108 Freiburg, Germany
| | - Sebastian Hobitz
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Dominik Schain-Zota
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Konrad Schuldes
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | | | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| |
Collapse
|
44
|
Zheng T, Liversage AR, Tehrani KF, Call JA, Kner PA, Mortensen LJ. Imaging mitochondria through bone in live mice using two-photon fluorescence microscopy with adaptive optics. FRONTIERS IN NEUROIMAGING 2023; 2:959601. [PMID: 37554651 PMCID: PMC10406258 DOI: 10.3389/fnimg.2023.959601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/09/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Mitochondria are extremely important organelles in the regulation of bone marrow and brain activity. However, live imaging of these subcellular features with high resolution in scattering tissues like brain or bone has proven challenging. METHODS In this study, we developed a two-photon fluorescence microscope with adaptive optics (TPFM-AO) for high-resolution imaging, which uses a home-built Shack-Hartmann wavefront sensor (SHWFS) to correct system aberrations and a sensorless approach for correcting low order tissue aberrations. RESULTS Using AO increases the fluorescence intensity of the point spread function (PSF) and achieves fast imaging of subcellular organelles with 400 nm resolution through 85 μm of highly scattering tissue. We achieved ~1.55×, ~3.58×, and ~1.77× intensity increases using AO, and a reduction of the PSF width by ~0.83×, ~0.74×, and ~0.9× at the depths of 0, 50 μm and 85 μm in living mouse bone marrow respectively, allowing us to characterize mitochondrial health and the survival of functioning cells with a field of view of 67.5× 67.5 μm. We also investigate the role of initial signal and background levels in sample correction quality by varying the laser power and camera exposure time and develop an intensity-based criteria for sample correction. DISCUSSION This study demonstrates a promising tool for imaging of mitochondria and other organelles in optically distorting biological environments, which could facilitate the study of a variety of diseases connected to mitochondrial morphology and activity in a range of biological tissues.
Collapse
Affiliation(s)
- Tianyi Zheng
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA, United States
| | - Adrian R. Liversage
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, United States
| | - Kayvan F. Tehrani
- Biophotonics Imaging Laboratory, The University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jarrod A. Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States
| | - Peter A. Kner
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA, United States
| | - Luke J. Mortensen
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, United States
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA, United States
| |
Collapse
|
45
|
Liang W, Diao RY, Quiles JM, Najor RH, Chi L, Woodall BP, Leon LJ, Duran J, Cauvi DM, De Maio A, Adler ED, Gustafsson ÃSB. The Small GTPase Rab7 Regulates Release of Mitochondria in Extracellular Vesicles in Response to Lysosomal Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528148. [PMID: 36824711 PMCID: PMC9949095 DOI: 10.1101/2023.02.11.528148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Mitochondrial quality control is critical for cardiac homeostasis as these organelles are responsible for generating most of the energy needed to sustain contraction. Dysfunctional mitochondria are normally degraded via intracellular degradation pathways that converge on the lysosome. Here, we identified an alternative mechanism to eliminate mitochondria when lysosomal function is compromised. We show that lysosomal inhibition leads to increased secretion of mitochondria in large extracellular vesicles (EVs). The EVs are produced in multivesicular bodies, and their release is independent of autophagy. Deletion of the small GTPase Rab7 in cells or adult mouse heart leads to increased secretion of EVs containing ubiquitinated cargos, including intact mitochondria. The secreted EVs are captured by macrophages without activating inflammation. Hearts from aged mice or Danon disease patients have increased levels of secreted EVs containing mitochondria indicating activation of vesicular release during cardiac pathophysiology. Overall, these findings establish that mitochondria are eliminated in large EVs through the endosomal pathway when lysosomal degradation is inhibited.
Collapse
|
46
|
Li SJ, Liu H, Wu FF, Feng DY, Zhang S, Zheng J, Wang L, Tian F, Yang YL, Wang YY. Meshed neuronal mitochondrial networks empowered by AI-powered classifiers and immersive VR reconstruction. Front Neurosci 2023; 17:1059965. [PMID: 36816131 PMCID: PMC9932543 DOI: 10.3389/fnins.2023.1059965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial networks are defined as a continuous matrix lumen, but the morphological feature of neuronal mitochondrial networks is not clear due to the lack of suitable analysis techniques. The aim of the present study is to develop a framework to capture and analyze the neuronal mitochondrial networks by using 4-step process composed of 2D and 3D observation, primary and secondary virtual reality (VR) analysis, with the help of artificial intelligence (AI)-powered Aivia segmentation an classifiers. In order to fulfill this purpose, we first generated the PCs-Mito-GFP mice, in which green fluorescence protein (GFP) could be expressed on the outer mitochondrial membrane specifically on the cerebellar Purkinje cells (PCs), thus all mitochondria in the giant neuronal soma, complex dendritic arborization trees and long projection axons of Purkinje cells could be easily detected under a laser scanning confocal microscope. The 4-step process resolved the complicated neuronal mitochondrial networks into discrete neuronal mitochondrial meshes. Second, we measured the two parameters of the neuronal mitochondrial meshes, and the results showed that the surface area (μm2) of mitochondrial meshes was the biggest in dendritic trees (45.30 ± 53.21), the smallest in granular-like axons (3.99 ± 1.82), and moderate in soma (27.81 ± 22.22) and silk-like axons (17.50 ± 15.19). These values showed statistically different among different subcellular locations. The volume (μm3) of mitochondrial meshes was the biggest in dendritic trees (9.97 ± 12.34), the smallest in granular-like axons (0.43 ± 0.25), and moderate in soma (6.26 ± 6.46) and silk-like axons (3.52 ± 4.29). These values showed significantly different among different subcellular locations. Finally, we found both the surface area and the volume of mitochondrial meshes in dendritic trees and soma within the Purkinje cells in PCs-Mito-GFP mice after receiving the training with the simulating long-term pilot flight concentrating increased significantly. The precise reconstruction of neuronal mitochondrial networks is extremely laborious, the present 4-step workflow powered by artificial intelligence and virtual reality reconstruction could successfully address these challenges.
Collapse
Affiliation(s)
- Shu-Jiao Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Hui Liu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China,Department of Human Anatomy, Histology and Embryology, Medical School of Yan’an University, Yan’an, China
| | - Fei-Fei Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Da-Yun Feng
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Shuai Zhang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Jie Zheng
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China,Department of Human Anatomy, Histology and Embryology, Medical School of Yan’an University, Yan’an, China
| | - Lu Wang
- Department of Human Anatomy, Histology and Embryology, Medical School of Yan’an University, Yan’an, China,Lu Wang,
| | - Fei Tian
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China,Fei Tian,
| | - Yan-Ling Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China,Yan-Ling Yang,
| | - Ya-Yun Wang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China,State Key Laboratory of Military Stomatology, School of Stomatology, Air Force Medical University (Fourth Military Medical University), Xi’an, China,*Correspondence: Ya-Yun Wang, ,
| |
Collapse
|
47
|
Tissue-specific metabolic profile drives iNKT cell function during obesity and liver injury. Cell Rep 2023; 42:112035. [PMID: 36848232 DOI: 10.1016/j.celrep.2023.112035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 10/21/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a distinct population of lymphocytes characterized by their reactivity to glycolipids presented by CD1d. iNKT cells are found throughout the body, and little is known about their tissue-specific metabolic regulation. Here, we show that splenic and hepatic iNKT cells are metabolically comparable and rely on glycolytic metabolism to support their activation. Deletion of the pyruvate kinase M2 (Pkm2) gene in splenic and hepatic iNKT cells impairs their response to specific stimulation and their ability to mitigate acute liver injury. In contrast, adipose tissue (AT) iNKT cells exhibit a distinctive immunometabolic profile, with AMP-activated protein kinase (AMPK) being necessary for their function. AMPK deficiency impairs AT-iNKT physiology, blocking their capacity to maintain AT homeostasis and their ability to regulate AT inflammation during obesity. Our work deepens our understanding on the tissue-specific immunometabolic regulation of iNKT cells, which directly impacts the course of liver injury and obesity-induced inflammation.
Collapse
|
48
|
Zhang K, Wang Y, Chen S, Mao J, Jin Y, Ye H, Zhang Y, Liu X, Gong C, Cheng X, Huang X, Hoeft A, Chen Q, Li X, Fang X. TREM2 hi resident macrophages protect the septic heart by maintaining cardiomyocyte homeostasis. Nat Metab 2023; 5:129-146. [PMID: 36635449 PMCID: PMC9886554 DOI: 10.1038/s42255-022-00715-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/22/2022] [Indexed: 01/14/2023]
Abstract
Sepsis-induced cardiomyopathy (SICM) is common in septic patients with a high mortality and is characterized by an abnormal immune response. Owing to cellular heterogeneity, understanding the roles of immune cell subsets in SICM has been challenging. Here we identify a unique subpopulation of cardiac-resident macrophages termed CD163+RETNLA+ (Mac1), which undergoes self-renewal during sepsis and can be targeted to prevent SICM. By combining single-cell RNA sequencing with fate mapping in a mouse model of sepsis, we demonstrate that the Mac1 subpopulation has distinct transcriptomic signatures enriched in endocytosis and displays high expression of TREM2 (TREM2hi). TREM2hi Mac1 cells actively scavenge cardiomyocyte-ejected dysfunctional mitochondria. Trem2 deficiency in macrophages impairs the self-renewal capability of the Mac1 subpopulation and consequently results in defective elimination of damaged mitochondria, excessive inflammatory response in cardiac tissue, exacerbated cardiac dysfunction and decreased survival. Notably, intrapericardial administration of TREM2hi Mac1 cells prevents SICM. Our findings suggest that the modulation of TREM2hi Mac1 cells could serve as a therapeutic strategy for SICM.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Wang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiyu Chen
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Mao
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Jin
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Ye
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiwang Liu
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenchen Gong
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejun Cheng
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Andreas Hoeft
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Bonn, Bonn, Germany
| | - Qixing Chen
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
49
|
Chojnacki AK, Navaneetha Krishnan S, Jijon H, Shutt TE, Colarusso P, McKay DM. Tissue imaging reveals disruption of epithelial mitochondrial networks and loss of mitochondria-associated cytochrome-C in inflamed human and murine colon. Mitochondrion 2023; 68:44-59. [PMID: 36356719 DOI: 10.1016/j.mito.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/20/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
Mitochondrial dysfunction as defined by transcriptomic and proteomic analysis of biopsies or ultra-structure in transmission electron microscopy occurs in inflammatory bowel disease (IBD); however, mitochondrial dynamics in IBD have received minimal attention, with most investigations relying on cell-based in vitro models. We build on these studies by adapting the epithelial cell immunofluorescence workflow to imaging mitochondrial networks in normal and inflamed colonic tissue (i.e., murine di-nitrobenzene sulphonic acid (DNBS)-induced colitis, human ulcerative colitis). Using antibodies directed to TOMM20 (translocase of outer mitochondrial membrane 20) and cytochrome-C, we have translated the cell-based protocol for high-fidelity imaging to examine epithelial mitochondria networks in intact intestine. In epithelia of non-inflamed small or large intestinal tissue, the mitochondrial networks were dense and compact. This pattern was more pronounced in the basal region of the cell compared to that between the nucleus and apical surface facing the gut lumen. In comparison, mitochondrial networks in inflamed tissue displayed substantial loss of TOMM20+ staining. The remaining networks were less dense and fragmented, and contained isolated spherical mitochondrial fragments. The degree of mitochondrial network fragmentation mirrored the severity of inflammation, as assessed by blinded semi-quantitative scoring. As an indication of poor cell 'health' or viability, cytosolic cytochrome-C was observed in enterocytes with highly fragmented mitochondria. Thus, high-resolution and detailed visualization of mitochondrial networks in tissue is a feasible and valuable approach to assess disease, suited to characterizing mitochondrial abnormalities in tissue. We speculate that drugs that maintain a functional remodelling mitochondrial network and limit excess fragmentation could be a valuable addition to current therapies for IBD.
Collapse
Affiliation(s)
- Andrew K Chojnacki
- Live Cell Imaging Laboratory, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Saranya Navaneetha Krishnan
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Humberto Jijon
- Division of Gastroenterology, Gastrointestinal Research Group, Department of Medicine, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pina Colarusso
- Live Cell Imaging Laboratory, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Derek M McKay
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
50
|
Yang C, Yokomori R, Chua LH, Tan SH, Tan DQ, Miharada K, Sanda T, Suda T. Mitochondria transfer mediates stress erythropoiesis by altering the bioenergetic profiles of early erythroblasts through CD47. J Exp Med 2022; 219:213473. [PMID: 36112140 PMCID: PMC9485707 DOI: 10.1084/jem.20220685] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 11/04/2022] Open
Abstract
Intercellular mitochondria transfer is a biological phenomenon implicated in diverse biological processes. However, the physiological role of this phenomenon remains understudied between erythroblasts and their erythroblastic island (EBI) macrophage niche. To gain further insights into the mitochondria transfer functions, we infused EBI macrophages in vivo into mice subjected to different modes of anemic stresses. Interestingly, we observed the occurrence of mitochondria transfer events from the infused EBI macrophages to early stages of erythroblasts coupled with enhanced erythroid recovery. Single-cell RNA-sequencing analysis on erythroblasts receiving exogenous mitochondria revealed a subset of highly proliferative and metabolically active erythroid populations marked by high expression of CD47. Furthermore, CD47 or Sirpα blockade leads to a decline in both the occurrence of mitochondria transfer events and their mediated erythroid recovery. Hence, these data indicate a significant role of mitochondria transfer in the enhancement of erythroid recovery from stress through the alteration of the bioenergetic profiles via CD47-Sirpα interaction in the early stages of erythroblasts.
Collapse
Affiliation(s)
- Chong Yang
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rui Yokomori
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lee Hui Chua
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Darren Qiancheng Tan
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kenichi Miharada
- International Research Centre for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Toshio Suda
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,International Research Centre for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|