1
|
Chille EE, Stephens TG, Nandi S, Jiang H, Gerdes MJ, Williamson OM, Neufeld A, Montoya-Maya P, Bhattacharya D. Coral Restoration in the Omics Era: Development of Point-of-Care Tools for Monitoring Disease, Reproduction, and Thermal Stress. Bioessays 2025:e70007. [PMID: 40285547 DOI: 10.1002/bies.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
Coral reef degradation has captured global attention from governments, conservationists, and researchers, who are making concerted efforts to develop sustainable solutions to support reef resilience in the face of environmental degradation. The goal is to empower local community efforts for effective marine resource management. However, one of the major barriers to coral conservation is the lack of timely and affordable population-level health data, which can delay effective management responses. Although progress has been made in understanding the molecular basis of coral health outcomes, more translational work is needed to develop cost-effective, point-of-care (POC) diagnostic tools for real-time monitoring. This review assesses the current state of translational omics-based research for coral health monitoring, focusing on highlighting key gaps and actionable next steps to guide the implementation of effective, field-ready tools for monitoring coral disease, reproduction, and thermal stress. These advancements can be used to advance urgent conservation needs and promote reef management by local communities.
Collapse
Affiliation(s)
- Erin E Chille
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Shrinivas Nandi
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Haoyu Jiang
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | | | | | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
2
|
Raymundo LJ, Andersen MD, Rouzé H. Coral restoration in a stressful environment: Disease, bleaching, and dysbiosis in Acropora aspera in Guam, Micronesia. iScience 2025; 28:112244. [PMID: 40241745 PMCID: PMC12002618 DOI: 10.1016/j.isci.2025.112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/15/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Despite advances in coral restoration science, challenges imposed by rapid environmental change impede progress. Here, we report mortality from disease and bleaching in an introduced nursery-reared population of the staghorn coral Acropora aspera, in Guam, Micronesia. We present disease progression, incidence, synergies between stressors, and response of the coral microbiome. Microbiome composition in nursery vs. outplanted corals indicated dysbiosis induced by the transition to poorer water quality. However, among outplants, there were no differences between diseased tissues, visually healthy tissues on the same infected colony and tissues from non-infected colonies, suggesting that outplanting into a stressful environment may have compromised coral immune response, increasing susceptibility to disease and bleaching. Our study highlights that outplanting is inherently physically stressful, thus underscoring the need for understanding the microbiome's role in the coral transplantation stress response. We suggest workflows to minimize stress and improve restoration in the face of environmental challenges.
Collapse
Affiliation(s)
- Laurie J. Raymundo
- University of Guam Marine Laboratory, Mangilao 96923, Guam
- James Cook University, Townsville, QLD 4810, Australia
| | | | - Héloïse Rouzé
- University of Guam Marine Laboratory, Mangilao 96923, Guam
| |
Collapse
|
3
|
Cabacungan GN, Waduwara Kankanamalage TN, Azam AF, Collins MR, Arratia AR, Gutting AN, Matz MV, Black KL. Cryptic coral community composition across environmental gradients. PLoS One 2025; 20:e0318653. [PMID: 39913472 PMCID: PMC11801642 DOI: 10.1371/journal.pone.0318653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Cryptic genetic variation is increasingly being identified in numerous coral species, with prior research indicating that different cryptic genetic lineages can exhibit varied responses to environmental changes. This suggests a potential link between cryptic coral lineages and local environmental conditions. In this study, we investigate how communities of cryptic coral lineages vary along environmental gradients. We began by identifying cryptic genetic lineages within six coral species sampled around St. Croix, USVI based on 2b-RAD sequencing data. We then analyzed associations between the distributions of cryptic lineages across the six coral species (i.e., "cryptic coral community composition") and ecoregions, or geographically distinct environmental conditions. Our findings show that depth is a more significant predictor of community composition than ecoregions and is the most influential factor among the 40 abiotic variables that characterize ecoregions. These results imply that cryptic coral communities are influenced by both depth and local environmental conditions, although the exact environmental factors driving these patterns remain unknown. Understanding community turnover across a seascape is important to consider when outplanting corals to restore a reef, as locally-adapted lineages may have differential fitness in different environmental conditions.
Collapse
Affiliation(s)
- Gia N. Cabacungan
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | | | - Amilah F. Azam
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Madeleine R. Collins
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Abigail R. Arratia
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Alexandra N. Gutting
- The Nature Conservancy, St. Croix, U.S. Virgin Islands, United States of America
| | - Mikhail V. Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Kristina L. Black
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
4
|
Black KL, Bay LK, Matz MV. A Genetic Variant of Delta-9 Desaturase Is Associated With Latitudinal Adaptation in a Coral from the Great Barrier Reef. Mol Ecol 2025; 34:e17634. [PMID: 39717908 DOI: 10.1111/mec.17634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/06/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Coral populations across the Great Barrier Reef (GBR) could rapidly adapt to the warming climate if they have standing genetic variation for thermal tolerance. Here, we describe a locus likely involved in latitudinal adaptation of Acropora millepora. This locus shows a steep latitudinal gradient of derived allele frequency increasing at higher latitudes, and harbours a cluster of eight tandemly repeated Δ9-desaturase genes adjacent to a region in the genome where a hard selective sweep likely occurred. In colonies reciprocally transplanted across 4.5° of latitude, the expression of Δ9-desaturase is upregulated at the high-latitude reef. Furthermore, corals from the low-latitude reef bearing the derived Δ9-desaturase allele express the gene more and grow faster than their peers when transplanted to the high-latitude reef. In other organisms ranging from bacteria to fish, Δ9-desaturase is upregulated under cold conditions to adjust membrane fluidity by introducing double bonds into fatty acid chains of membrane lipids. It is therefore plausible that the signal of latitudinal adaptation at the Δ9-desaturase locus is due to its involvement in adaptation to cooler temperatures at higher latitudes.
Collapse
Affiliation(s)
- Kristina L Black
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Line K Bay
- Reef Recovery, Adaptation, and Restoration, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Mikhail V Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
5
|
Chamberland VF, Bennett MJ, Doblado Speck T, Latijnhouwers KRW, Miller MW. Optimizing in vitro fertilization in four Caribbean coral species. PeerJ 2025; 13:e18918. [PMID: 39902327 PMCID: PMC11789651 DOI: 10.7717/peerj.18918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
Background Larval propagation and seeding of scleractinian corals for restoration is a rapidly expanding field, with demonstrated applications to assist the recovery of declining populations on reefs. The process typically involves collecting coral reproductive material, facilitating in vitro fertilization (IVF), and settling and outplanting the resulting coral offspring. Optimizing IVF can reduce gamete wastage and increase larval yields for propagation, therefore improving the efficiency of this intervention. Methods In this study we tested three IVF conditions in four Caribbean broadcast-spawning coral species (i.e., Diploria labyrinthiformis, Colpophyllia natans, Pseudodiploria strigosa, Orbicella faveolata) to determine sperm concentration, gamete age, and co-incubation time resulting in the highest fertilization success. For each species, we exposed eggs from a single dam to pooled sperm samples from three sires (1) at concentrations ranging from zero to 109 cell mL-1, (2) after letting gametes age for 2 to 6 h, and (3) for a period of 15 to 120 min. Results These experiments revealed a gamete longevity of at least 4 h and clear minimum sperm concentration thresholds (>105 to 106 cell mL-1) in all four species. Fertilization took place much faster than expected (≤15 min) in the three brain corals under study, whereas O. faveolata gametes required a co-incubation period of 60 to 120 min to achieve maximum IVF success. Discussion We present these results in the context of IVF data available for other hermaphroditic broadcast-spawning scleractinians. We then provide recommendations for coral breeding practitioners to maximize larval production from gamete collections, and finally, we discuss our findings' potential implications on fertilization dynamics during natural coral spawning events.
Collapse
Affiliation(s)
- Valérie F. Chamberland
- SECORE International, Miami, Florida, United States
- CARMABI Foundation, Willemstad, Curaçao
- Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam, Netherlands
| | | | | | - Kelly R. W. Latijnhouwers
- SECORE International, Miami, Florida, United States
- CARMABI Foundation, Willemstad, Curaçao
- Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
6
|
Ladd MC, Shantz AA, Harrell C, Hayes NK, Gilliam DS, Muller EM, O'Neil KL, Reckenbeil B, Craig Z, Lirman D. Acclimation and size influence predation, growth, and survival of sexually produced Diploria labyrinthiformis used in restoration. Sci Rep 2024; 14:26362. [PMID: 39487186 PMCID: PMC11530667 DOI: 10.1038/s41598-024-73727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/20/2024] [Indexed: 11/04/2024] Open
Abstract
Stony coral tissue loss disease (SCTLD) has swept through Florida reefs and caused mass mortality of numerous coral species. In the wake of these losses, efforts are underway to propagate coral species impacted by SCTLD and promote population recovery. However, numerous knowledge gaps must be addressed to effectively grow, outplant, and restore populations of the slower growing, massive species that were lost. Here, we used sexual recruits of Diploria labyrinthiformis spawned in captivity to understand how conditioning, coral size, and nutritional status at outplanting affect coral survivorship, growth, and susceptibility to predation. We found that ex situ conditioning with supplemental feeding increased coral growth rates, resulting in larger sized corals at the time of outplanting. In turn, these corals had higher growth rates in the field and a lower probability of being removed by predators than outplants that were conditioned in in situ nurseries. Additionally, we found that coral size was an important predictor of survivorship, suggesting that hastening the speed at which young corals grow and outplanting larger juveniles can improve restoration outcomes. Taken together, our results suggest that providing supplemental food to corals at ex situ facilities confers benefits that could help restore populations of massive coral species impacted by SCTLD.
Collapse
Affiliation(s)
- Mark C Ladd
- Population and Ecosystems Monitoring Division, NOAA Southeast Fisheries Science Center, Miami, FL, USA.
| | - Andrew A Shantz
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Florida State University, Tallahassee, FL, USA
| | - Cailin Harrell
- Department of Marine Biology and Ecology, Rosentiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| | - Nicole K Hayes
- Nova Southeastern University Halmos College of Arts and Sciences, Hollywood, FL, USA
| | - David S Gilliam
- Nova Southeastern University Halmos College of Arts and Sciences, Hollywood, FL, USA
| | | | - Keri L O'Neil
- Center for Conservation, The Florida Aquarium, Apollo Beach, FL, USA
| | - Brian Reckenbeil
- Center for Conservation, The Florida Aquarium, Apollo Beach, FL, USA
| | - Zachary Craig
- Mote Marine Laboratory, Summerland Key, FL, USA
- Division of Aquatic Resources, Kailua-Kona, HI, USA
| | - Diego Lirman
- Department of Marine Biology and Ecology, Rosentiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| |
Collapse
|
7
|
Wood GV, Griffin KJ, van der Mheen M, Breed MF, Edgeloe JM, Grimaldi C, Minne AJP, Popovic I, Filbee-Dexter K, van Oppen MJH, Wernberg T, Coleman MA. Reef Adapt: A tool to inform climate-smart marine restoration and management decisions. Commun Biol 2024; 7:1368. [PMID: 39478133 PMCID: PMC11526119 DOI: 10.1038/s42003-024-06970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
A critical component of ecosystem restoration projects involves using genetic data to select source material that will enhance success under current and future climates. However, the complexity and expense of applying genetic data is a barrier to its use outside of specialised scientific contexts. To help overcome this barrier, we developed Reef Adapt ( www.reefadapt.org ), an innovative, globally applicable and expandable web platform that incorporates genetic, biophysical and environmental prediction data into marine restoration and assisted gene flow planning. The Reef Adapt tool provides maps that identify areas with populations suited to user-specified restoration/recipient sites under current and future climate scenarios. We demonstrate its versatility and practicality with four case studies of ecologically and evolutionarily diverse taxa: the habitat-forming corals Pocillopora damicornis and Acropora kenti, and macroalgae Phyllospora comosa and Ecklonia radiata. Reef Adapt is a management-ready tool to aid restoration and conservation efforts amidst ongoing habitat degradation and climate change.
Collapse
Affiliation(s)
- Georgina V Wood
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Kingsley J Griffin
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Mirjam van der Mheen
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jane M Edgeloe
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Camille Grimaldi
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | - Antoine J P Minne
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Iva Popovic
- School of the Environment, University of Queensland, St Lucia, QLD, 4067, Australia
- Australian Institute of Marine Science, Townsville MC, QLD, 4810, Australia
| | - Karen Filbee-Dexter
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Institute of Marine Research, Flødevigen Research Station, His, Arendal, NO-4817, Norway
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville MC, QLD, 4810, Australia
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Institute of Marine Research, Flødevigen Research Station, His, Arendal, NO-4817, Norway
| | - Melinda A Coleman
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- NSW Department of Primary Industries and Regional Development, Fisheries, Coffs Harbour, NSW, 2450, Australia
| |
Collapse
|
8
|
Miller MW, Mendoza Quiroz S, Lachs L, Banaszak AT, Chamberland VF, Guest JR, Gutting AN, Latijnhouwers KRW, Sellares-Blasco RI, Virdis F, Villalpando MF, Petersen D. Assisted sexual coral recruits show high thermal tolerance to the 2023 Caribbean mass bleaching event. PLoS One 2024; 19:e0309719. [PMID: 39292637 PMCID: PMC11410220 DOI: 10.1371/journal.pone.0309719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024] Open
Abstract
Assisted sexual coral propagation, resulting in greater genet diversity via genetic recombination, has been hypothesized to lead to more adaptable and, hence, resilient restored populations compared to more common clonal techniques. Coral restoration efforts have resulted in substantial populations of 'Assisted sexual Recruits' (i.e., juvenile corals derived from assisted sexual reproduction; AR) of multiple species outplanted to reefs or held in in situ nurseries across many locations in the Caribbean. These AR populations provided context to evaluate their relative resilience compared to co-occurring coral populations during the 2023 marine heat wave of unprecedented duration and intensity that affected the entire Caribbean. Populations of six species of AR, most ranging in age from 1-4 years, were surveyed across five regions during the mass bleaching season in 2023 (Aug-Dec), alongside co-occurring groups of corals to compare prevalence of bleaching and related mortality. Comparison groups included conspecific adult colonies as available, but also the extant co-occurring coral assemblages in which conspecifics were rare or lacking, as well as small, propagated coral fragments. Assisted sexual recruits had significantly lower prevalence of bleaching impacts (overall pooled ~ 10%) than conspecific coral populations typically comprised of larger colonies (~ 60-100% depending on species). In addition, small corals derived from fragmentation (rather than sexual propagation) in two regions showed bleaching susceptibility intermediate between AR and wild adults. Overall, AR exhibited high bleaching resistance under heat stress exposure up to and exceeding Degree Heating Weeks of 20°C-weeks. As coral reefs throughout the globe are subject to increasingly frequent and intense marine heatwaves, restoration activities that include sexual reproduction and seeding can make an important contribution to sustain coral populations.
Collapse
Affiliation(s)
| | - Sandra Mendoza Quiroz
- SECORE International, Miami, FL, United States of America
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Liam Lachs
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anastazia T Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Valérie F Chamberland
- SECORE International, Miami, FL, United States of America
- CARMABI Foundation, Willemstad, Curaçao
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - James R Guest
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Kelly R W Latijnhouwers
- SECORE International, Miami, FL, United States of America
- CARMABI Foundation, Willemstad, Curaçao
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Francesca Virdis
- Reef Renewal Foundation Bonaire (RRFB), Bonaire, Caribbean Netherlands
| | - Maria F Villalpando
- Fundación Dominicana de Estudios Marinos (FUNDEMAR), Bayahíbe, Dominican Republic
| | - Dirk Petersen
- SECORE International, Miami, FL, United States of America
| |
Collapse
|
9
|
Luo Y, Yu X, Huang L, Gan J, Lei X, Jiang L, Liu C, Sun Y, Cheng M, Zhang Y, Zhou G, Liu S, Lian J, Huang H. The role of heterotrophic plasticity in coral response to natural low-light environments. Ecol Evol 2024; 14:e70278. [PMID: 39318528 PMCID: PMC11420107 DOI: 10.1002/ece3.70278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Coastal darkening is emerging as a global threat to fringing reefs. While some reef-building corals exhibit resistance to low-light environments, the mechanisms behind this resistance, particularly the role of coral hosts, remain inadequately understood. Here, we investigated variations in underwater photosynthetically active radiation (PAR) and employed the Bayesian stable isotope mixing model (MixSIAR) to estimate the contributions of autotrophic (i.e., dissolved inorganic matter, DIM) and heterotrophic sources (i.e., particulate organic matter, POM, and dissolved organic matter, DOM) to the nutrition of the reef coral Galaxea fascicularis on the Luhuitou turbid reef in the northern South China Sea. Our findings revealed that the heterotrophic contribution to coral nutrition increased to 58.5% with decreasing PAR and that the heterotrophic contribution was significantly negatively correlated with δ13C difference between host and symbiont (δ13Ch-s). Moreover, we observed significant seasonal variations in the respective contributions of POM and DOM to coral nutrition, linked to the sources of these nutrients, demonstrating that G. fascicularis can selectively ingest POM and DOM based on their bioavailability to enhance its heterotrophic contribution. This heterotrophic plasticity improved the low-light resistance of G. fascicularis and contributed to its prominence within coral communities. However, with a low-light threshold of approximately 3.73% of the surface PAR for G. fascicularis, our results underscore the need for effective strategies to mitigate low-light conditions on nearshore turbid reefs. In summary, our study highlights the critical role of heterotrophic plasticity in coral responses to natural low-light environments, suggesting that some reef-building corals with such plasticity could become dominant or resilient species in the context of coastal darkening.
Collapse
Affiliation(s)
- Yong Luo
- CAS Key Laboratory of Tropical Marine bio‐Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine BiologySouth China Sea Institute of Oceanology (SCSIO), Chinese Academy of SciencesGuangzhouChina
- CAS‐HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan ProvinceSanya Institute of Ocean Eco‐Environmental Engineering, SCSIOSanyaChina
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina
| | - Xiaolei Yu
- CAS Key Laboratory of Tropical Marine bio‐Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine BiologySouth China Sea Institute of Oceanology (SCSIO), Chinese Academy of SciencesGuangzhouChina
- CAS‐HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan ProvinceSanya Institute of Ocean Eco‐Environmental Engineering, SCSIOSanyaChina
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lintao Huang
- CAS Key Laboratory of Tropical Marine bio‐Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine BiologySouth China Sea Institute of Oceanology (SCSIO), Chinese Academy of SciencesGuangzhouChina
- CAS‐HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan ProvinceSanya Institute of Ocean Eco‐Environmental Engineering, SCSIOSanyaChina
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jianfeng Gan
- South China Institute of Environmental SciencesMinistry of Ecology and Environment of the People's Republic of ChinaGuangzhouChina
| | - Xinming Lei
- CAS Key Laboratory of Tropical Marine bio‐Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine BiologySouth China Sea Institute of Oceanology (SCSIO), Chinese Academy of SciencesGuangzhouChina
- CAS‐HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan ProvinceSanya Institute of Ocean Eco‐Environmental Engineering, SCSIOSanyaChina
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Lei Jiang
- CAS Key Laboratory of Tropical Marine bio‐Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine BiologySouth China Sea Institute of Oceanology (SCSIO), Chinese Academy of SciencesGuangzhouChina
- CAS‐HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan ProvinceSanya Institute of Ocean Eco‐Environmental Engineering, SCSIOSanyaChina
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Chengyue Liu
- CAS Key Laboratory of Tropical Marine bio‐Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine BiologySouth China Sea Institute of Oceanology (SCSIO), Chinese Academy of SciencesGuangzhouChina
- CAS‐HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan ProvinceSanya Institute of Ocean Eco‐Environmental Engineering, SCSIOSanyaChina
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Youfang Sun
- CAS Key Laboratory of Tropical Marine bio‐Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine BiologySouth China Sea Institute of Oceanology (SCSIO), Chinese Academy of SciencesGuangzhouChina
- CAS‐HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan ProvinceSanya Institute of Ocean Eco‐Environmental Engineering, SCSIOSanyaChina
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Meng Cheng
- CAS Key Laboratory of Tropical Marine bio‐Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine BiologySouth China Sea Institute of Oceanology (SCSIO), Chinese Academy of SciencesGuangzhouChina
- CAS‐HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan ProvinceSanya Institute of Ocean Eco‐Environmental Engineering, SCSIOSanyaChina
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Yuyang Zhang
- CAS Key Laboratory of Tropical Marine bio‐Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine BiologySouth China Sea Institute of Oceanology (SCSIO), Chinese Academy of SciencesGuangzhouChina
- CAS‐HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan ProvinceSanya Institute of Ocean Eco‐Environmental Engineering, SCSIOSanyaChina
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Guowei Zhou
- CAS Key Laboratory of Tropical Marine bio‐Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine BiologySouth China Sea Institute of Oceanology (SCSIO), Chinese Academy of SciencesGuangzhouChina
- CAS‐HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan ProvinceSanya Institute of Ocean Eco‐Environmental Engineering, SCSIOSanyaChina
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Sheng Liu
- CAS Key Laboratory of Tropical Marine bio‐Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine BiologySouth China Sea Institute of Oceanology (SCSIO), Chinese Academy of SciencesGuangzhouChina
- CAS‐HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan ProvinceSanya Institute of Ocean Eco‐Environmental Engineering, SCSIOSanyaChina
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- Innovation Academy of South China Sea Ecology and Environmental EngineeringChinese Academy of SciencesGuangzhouChina
| | - Jiansheng Lian
- CAS Key Laboratory of Tropical Marine bio‐Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine BiologySouth China Sea Institute of Oceanology (SCSIO), Chinese Academy of SciencesGuangzhouChina
- CAS‐HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan ProvinceSanya Institute of Ocean Eco‐Environmental Engineering, SCSIOSanyaChina
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine bio‐Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine BiologySouth China Sea Institute of Oceanology (SCSIO), Chinese Academy of SciencesGuangzhouChina
- CAS‐HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan ProvinceSanya Institute of Ocean Eco‐Environmental Engineering, SCSIOSanyaChina
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- Innovation Academy of South China Sea Ecology and Environmental EngineeringChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
10
|
Zhang J, Schneller NM, Field MA, Chan CX, Miller DJ, Strugnell JM, Riginos C, Bay L, Cooke I. Chromosomal inversions harbour excess mutational load in the coral, Acropora kenti, on the Great Barrier Reef. Mol Ecol 2024; 33:e17468. [PMID: 39046252 DOI: 10.1111/mec.17468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
The future survival of coral reefs in the Anthropocene depends on the capacity of corals to adapt as oceans warm and extreme weather events become more frequent. Targeted interventions designed to assist evolutionary processes in corals require a comprehensive understanding of the distribution and structure of standing variation, however, efforts to map genomic variation in corals have so far focussed almost exclusively on SNPs, overlooking structural variants that have been shown to drive adaptive processes in other taxa. Here, we show that the reef-building coral, Acropora kenti, harbours at least five large, highly polymorphic structural variants, all of which exhibit signatures of strongly suppressed recombination in heterokaryotypes, a feature commonly associated with chromosomal inversions. Based on their high minor allele frequency, uniform distribution across habitats and elevated genetic load, we propose that these inversions in A. kenti are likely to be under balancing selection. An excess of SNPs with high impact on protein-coding genes within these loci elevates their importance both as potential targets for adaptive selection and as contributors to genetic decline if coral populations become fragmented or inbred in future.
Collapse
Affiliation(s)
- Jia Zhang
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nadja M Schneller
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Matt A Field
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Miller
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Jan M Strugnell
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Cynthia Riginos
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Line Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Ira Cooke
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
11
|
Denis V, Ferrier-Pagès C, Schubert N, Coppari M, Baker DM, Camp EF, Gori A, Grottoli AG, Houlbrèque F, Maier SR, Mancinelli G, Martinez S, Yalçın Özdilek Ş, Radice VZ, Ribes M, Richter C, Viladrich N, Rossi S. Heterotrophy in marine animal forests in an era of climate change. Biol Rev Camb Philos Soc 2024; 99:965-978. [PMID: 38284299 DOI: 10.1111/brv.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Marine animal forests (MAFs) are benthic ecosystems characterised by biogenic three-dimensional structures formed by suspension feeders such as corals, gorgonians, sponges and bivalves. They comprise highly diversified communities among the most productive in the world's oceans. However, MAFs are in decline due to global and local stressors that threaten the survival and growth of their foundational species and associated biodiversity. Innovative and scalable interventions are needed to address the degradation of MAFs and increase their resilience under global change. Surprisingly, few studies have considered trophic interactions and heterotrophic feeding of MAF suspension feeders as an integral component of MAF conservation. Yet, trophic interactions are important for nutrient cycling, energy flow within the food web, biodiversity, carbon sequestration, and MAF stability. This comprehensive review describes trophic interactions at all levels of ecological organisation in tropical, temperate, and cold-water MAFs. It examines the strengths and weaknesses of available tools for estimating the heterotrophic capacities of the foundational species in MAFs. It then discusses the threats that climate change poses to heterotrophic processes. Finally, it presents strategies for improving trophic interactions and heterotrophy, which can help to maintain the health and resilience of MAFs.
Collapse
Affiliation(s)
- Vianney Denis
- Institute of Oceanography, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei, 10617, Taiwan
| | | | - Nadine Schubert
- CCMAR-Center of Marine Sciences, University of Algarve, Campus Gambelas, Bld. 7, Faro, 8005-139, Portugal
| | - Martina Coppari
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche snc, Ancona, 60131, Italy
| | - David M Baker
- School of Biological Sciences & Swire Institute of Marine Science, The University of Hong Kong, Hong Kong
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Andrea Gori
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Andréa G Grottoli
- School of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, OH, 43210, USA
| | - Fanny Houlbrèque
- Entropie UMR 9220, Institut de Recherche pour le Développement, Nouméa, 98848, New Caledonia
| | - Sandra R Maier
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2 PO Box 570, Nuuk, 3900, Greenland
| | - Giorgio Mancinelli
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni s/n, Lecce, 73100, Italy
| | - Stephane Martinez
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, RI, 02882, USA
| | - Şükran Yalçın Özdilek
- Department of Biology, Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Veronica Z Radice
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, 23529, USA
| | - Marta Ribes
- Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, Barcelona, 08003, Spain
| | - Claudio Richter
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, Bremerhaven, 27568, Germany
- Department of Biology/Chemistry, University of Bremen, Leobener Str., NW 2, Bremen, 28359, Germany
| | - Nuria Viladrich
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Sergio Rossi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni s/n, Lecce, 73100, Italy
- Universidade Federal do Ceara, Instituto de Ciencias do Mar (Labomar), Av. da Abolicao 3207, Fortaleza, Brazil
| |
Collapse
|
12
|
Helgoe J, Davy SK, Weis VM, Rodriguez-Lanetty M. Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biol Rev Camb Philos Soc 2024; 99:715-752. [PMID: 38217089 DOI: 10.1111/brv.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
The intracellular coral-dinoflagellate symbiosis is the engine that underpins the success of coral reefs, one of the most diverse ecosystems on the planet. However, the breakdown of the symbiosis and the loss of the microalgal symbiont (i.e. coral bleaching) due to environmental changes are resulting in the rapid degradation of coral reefs globally. There is an urgent need to understand the cellular physiology of coral bleaching at the mechanistic level to help develop solutions to mitigate the coral reef crisis. Here, at an unprecedented scope, we present novel models that integrate putative mechanisms of coral bleaching within a common framework according to the triggers (initiators of bleaching, e.g. heat, cold, light stress, hypoxia, hyposalinity), cascades (cellular pathways, e.g. photoinhibition, unfolded protein response, nitric oxide), and endpoints (mechanisms of symbiont loss, e.g. apoptosis, necrosis, exocytosis/vomocytosis). The models are supported by direct evidence from cnidarian systems, and indirectly through comparative evolutionary analyses from non-cnidarian systems. With this approach, new putative mechanisms have been established within and between cascades initiated by different bleaching triggers. In particular, the models provide new insights into the poorly understood connections between bleaching cascades and endpoints and highlight the role of a new mechanism of symbiont loss, i.e. 'symbiolysosomal digestion', which is different from symbiophagy. This review also increases the approachability of bleaching physiology for specialists and non-specialists by mapping the vast landscape of bleaching mechanisms in an atlas of comprehensible and detailed mechanistic models. We then discuss major knowledge gaps and how future research may improve the understanding of the connections between the diverse cascade of cellular pathways and the mechanisms of symbiont loss (endpoints).
Collapse
Affiliation(s)
- Joshua Helgoe
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, 2701 SW Campus Way, 2403 Cordley Hall, Corvallis, OR, USA
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, USA
| |
Collapse
|
13
|
Grupstra CGB, Gómez-Corrales M, Fifer JE, Aichelman HE, Meyer-Kaiser KS, Prada C, Davies SW. Integrating cryptic diversity into coral evolution, symbiosis and conservation. Nat Ecol Evol 2024; 8:622-636. [PMID: 38351091 DOI: 10.1038/s41559-023-02319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/12/2023] [Indexed: 04/13/2024]
Abstract
Understanding how diversity evolves and is maintained is critical to predicting the future trajectories of ecosystems under climate change; however, our understanding of these processes is limited in marine systems. Corals, which engineer reef ecosystems, are critically threatened by climate change, and global efforts are underway to conserve and restore populations as attempts to mitigate ocean warming continue. Recently, sequencing efforts have uncovered widespread undescribed coral diversity, including 'cryptic lineages'-genetically distinct but morphologically similar coral taxa. Such cryptic lineages have been identified in at least 24 coral genera spanning the anthozoan phylogeny and across ocean basins. These cryptic lineages co-occur in many reef systems, but their distributions often differ among habitats. Research suggests that cryptic lineages are ecologically specialized and several examples demonstrate differences in thermal tolerance, highlighting the critical implications of this diversity for predicting coral responses to future warming. Here, we draw attention to recent discoveries, discuss how cryptic diversity affects the study of coral adaptation and acclimation to future environments, explore how it shapes symbiotic partnerships, and highlight challenges and opportunities for conservation and restoration efforts.
Collapse
Affiliation(s)
| | | | - James E Fifer
- Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
14
|
Selmoni O, Bay LK, Exposito-Alonso M, Cleves PA. Finding genes and pathways that underlie coral adaptation. Trends Genet 2024; 40:213-227. [PMID: 38320882 DOI: 10.1016/j.tig.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
Mass coral bleaching is one of the clearest threats of climate change to the persistence of marine biodiversity. Despite the negative impacts of bleaching on coral health and survival, some corals may be able to rapidly adapt to warming ocean temperatures. Thus, a significant focus in coral research is identifying the genes and pathways underlying coral heat adaptation. Here, we review state-of-the-art methods that may enable the discovery of heat-adaptive loci in corals and identify four main knowledge gaps. To fill these gaps, we describe an experimental approach combining seascape genomics with CRISPR/Cas9 gene editing to discover and validate heat-adaptive loci. Finally, we discuss how information on adaptive genotypes could be used in coral reef conservation and management strategies.
Collapse
Affiliation(s)
- Oliver Selmoni
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Line K Bay
- Reef Recovery, Adaptation, and Restoration, Australian Institute of Marine Science; Townsville, QLD 4810, Australia
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Phillip A Cleves
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
15
|
Edmunds PJ. Coral recruitment: patterns and processes determining the dynamics of coral populations. Biol Rev Camb Philos Soc 2023; 98:1862-1886. [PMID: 37340617 DOI: 10.1111/brv.12987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023]
Abstract
Coral recruitment describes the addition of new individuals to populations, and it is one of the most fundamental demographic processes contributing to population size. As many coral reefs around the world have experienced large declines in coral cover and abundance, there has been great interest in understanding the factors causing coral recruitment to vary and the conditions under which it can support community resilience. While progress in these areas is being facilitated by technological and scientific advances, one of the best tools to quantify recruitment remains the humble settlement tile, variants of which have been in use for over a century. Here I review the biology and ecology of coral recruits and the recruitment process, largely as resolved through the use of settlement tiles, by: (i) defining how the terms 'recruit' and 'recruitment' have been used, and explaining why loose terminology has impeded scientific advancement; (ii) describing how coral recruitment is measured and why settlement tiles have value for this purpose; (iii) summarizing previous efforts to review quantitative analyses of coral recruitment; (iv) describing advances from hypothesis-driven studies in determining how refuges, seawater flow, and grazers can modulate coral recruitment; (v) reviewing the biology of small corals (i.e. recruits) to understand better how they respond to environmental conditions; and (vi) updating a quantitative compilation of coral recruitment studies extending from 1974 to present, thus revealing long-term global declines in density of recruits, juxtaposed with apparent resilience to coral bleaching. Finally, I review future directions in the study of coral recruitment, and highlight the need to expand studies to deliver taxonomic resolution, and explain why time series of settlement tile deployments are likely to remain pivotal in quantifying coral recruitment.
Collapse
Affiliation(s)
- Peter J Edmunds
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA, 91330-8303, USA
| |
Collapse
|
16
|
Greene A, Moriarty T, Leggatt W, Ainsworth TD, Donahue MJ, Raymundo L. Spatial extent of dysbiosis in the branching coral Pocillopora damicornis during an acute disease outbreak. Sci Rep 2023; 13:16522. [PMID: 37783737 PMCID: PMC10545779 DOI: 10.1038/s41598-023-43490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
Globally, coral reefs face increasing disease prevalence and large-scale outbreak events. These outbreaks offer insights into microbial and functional patterns of coral disease, including early indicators of disease that may be present in visually-healthy tissues. Outbreak events also allow investigation of how reef-building corals, typically colonial organisms, respond to disease. We studied Pocillopora damicornis during an acute tissue loss disease outbreak on Guam to determine whether dysbiosis was present in visually-healthy tissues ahead of advancing disease lesions. These data reveal that coral fragments with visual evidence of disease are expectedly dysbiotic with high microbial and metabolomic variability. However, visually-healthy tissues from the same colonies lacked dysbiosis, suggesting disease containment near the affected area. These results challenge the idea of using broad dysbiosis as a pre-visual disease indicator and prompt reevaluation of disease assessment in colonial organisms such as reef-building corals.
Collapse
Affiliation(s)
- Austin Greene
- University of Hawai'i at Mānoa, Honolulu, USA.
- Hawai'i Institute of Marine Biology, Kāne'Ohe, HI, USA.
- Woods Hole Oceanographic Institution, Woods Hole, USA.
| | | | | | | | - Megan J Donahue
- University of Hawai'i at Mānoa, Honolulu, USA
- Hawai'i Institute of Marine Biology, Kāne'Ohe, HI, USA
| | | |
Collapse
|
17
|
Price JT, McLachlan RH, Jury CP, Toonen RJ, Wilkins MJ, Grottoli AG. Long-term coral microbial community acclimatization is associated with coral survival in a changing climate. PLoS One 2023; 18:e0291503. [PMID: 37738222 PMCID: PMC10516427 DOI: 10.1371/journal.pone.0291503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/30/2023] [Indexed: 09/24/2023] Open
Abstract
The plasticity of some coral-associated microbial communities under stressors like warming and ocean acidification suggests the microbiome has a role in the acclimatization of corals to future ocean conditions. Here, we evaluated the acclimatization potential of coral-associated microbial communities of four Hawaiian coral species (Porites compressa, Porites lobata, Montipora capitata, and Pocillopora acuta) over 22-month mesocosm experiment. The corals were exposed to one of four treatments: control, ocean acidification, ocean warming, or combined future ocean conditions. Over the 22-month study, 33-67% of corals died or experienced a loss of most live tissue coverage in the ocean warming and future ocean treatments while only 0-10% died in the ocean acidification and control. Among the survivors, coral-associated microbial communities responded to the chronic future ocean treatment in one of two ways: (1) microbial communities differed between the control and future ocean treatment, suggesting the potential capacity for acclimatization, or (2) microbial communities did not significantly differ between the control and future ocean treatment. The first strategy was observed in both Porites species and was associated with higher survivorship compared to M. capitata and P. acuta which exhibited the second strategy. Interestingly, the microbial community responses to chronic stressors were independent of coral physiology. These findings indicate acclimatization of microbial communities may confer resilience in some species of corals to chronic warming associated with climate change. However, M. capitata genets that survived the future ocean treatment hosted significantly different microbial communities from those that died, suggesting the microbial communities of the survivors conferred some resilience. Thus, even among coral species with inflexible microbial communities, some individuals may already be tolerant to future ocean conditions. These findings suggest that coral-associated microbial communities could play an important role in the persistence of some corals and underlie climate change-driven shifts in coral community composition.
Collapse
Affiliation(s)
- James T. Price
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Rowan H. McLachlan
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Christopher P. Jury
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United States of America
| | - Robert J. Toonen
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United States of America
| | - Michael J. Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Andréa G. Grottoli
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
18
|
Fiesinger A, Held C, Melzner F, Putchim L, Reusch TBH, Schmidt AL, Wall M. Population genetic differentiation of the ubiquitous brooding coral Pocillopora acuta along Phuket Island reefs in the Andaman Sea, Thailand. BMC Ecol Evol 2023; 23:42. [PMID: 37626296 PMCID: PMC10464487 DOI: 10.1186/s12862-023-02153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The widespread Indo-Pacific coral species Pocillopora acuta Lamarck, 1816 displays varying levels of asexual versus sexual reproduction, with strong repercussions on genetic diversity, connectivity and genetic structuring within and among populations. For many geographic regions, baseline information on genetic diversity is still lacking, particularly in the Andaman Sea. The region suffered a massive heat-induced bleaching event in 2010 with high coral cover loss of branching coral species such as P. acuta. A subsequent bleaching in 2016, however, revealed a mild bleaching response in pocilloporids compared to other coral taxa in the region, suggesting that rare, heat tolerant genotypes had been selected by the 2010 bleaching event. In order to test whether this potential 'evolutionary rescue' event has led to a low genetic diversity, we conducted a population genetic survey covering a total of nine different P. acuta populations (336 individuals) along a 50 km coastal stretch around Phuket Island, Thailand. We used six microsatellite markers to assess genotypic diversity and to determine the prevalent mode of reproduction (i.e. sexual or asexual recruitment). RESULTS In contrast to other Indian Ocean P. acuta populations, the majority of corals in this study adopted a sexual reproduction mode (75% across all populations). At the same time, substantial regional gene flow was observed around Phuket Island with strong genetic differentiation as indicated by three genetic clusters that were separated by only a few kilometers. Patterns of isolation by distance over 0.7 - 40 km suggest small-scale genetic barriers, such as changing currents throughout each monsoonal season, potentially contributing to locally restricted dispersal of P. acuta larvae. CONCLUSIONS The occurrence of distinct genetic clusters within short coastal stretches suggests that the 2010 bleaching event has not led to extreme genetic impoverishment. While more in-depth genomic analyses are necessary to investigate changes in genetic diversity following extreme bleaching events, our results will help guide conservation efforts to maintain genetic diversity of a coral species that likely will be dominant in future, warmer Andaman Sea reefs.
Collapse
Affiliation(s)
- Anna Fiesinger
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Research Unit Experimental Ecology - Benthic Ecology, Wischhofstraße 1-3, 24148, Kiel, Germany.
- Department of Biology, University of Konstanz, Universitätsstraße 10, Konstanz, 78464, Germany.
| | - Christoph Held
- Alfred-Wegener-Institut, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, 27570, Germany
| | - Frank Melzner
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Research Unit Experimental Ecology - Benthic Ecology, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Lalita Putchim
- Phuket Marine Biological Centre, Wichit, Phuket, Mueang Phukt District, 83000, Thailand
| | - Thorsten B H Reusch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Research Unit Marine Evolutionary Ecoloy, Wischhofstraße 1-3, Kiel, 24148, Germany
| | - Andrea L Schmidt
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Research Unit Experimental Ecology - Benthic Ecology, Wischhofstraße 1-3, 24148, Kiel, Germany
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai'i, Honolulu, HI, 96822, USA
| | - Marlene Wall
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Research Unit Experimental Ecology - Benthic Ecology, Wischhofstraße 1-3, 24148, Kiel, Germany.
- Alfred-Wegener-Institut, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, 27570, Germany.
| |
Collapse
|
19
|
Bay LK, Gilmour J, Muir B, Hardisty PE. Management approaches to conserve Australia's marine ecosystem under climate change. Science 2023; 381:631-636. [PMID: 37561873 DOI: 10.1126/science.adi3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023]
Abstract
Australia's coastal marine ecosystems have a deep cultural significance to Indigenous Australians, include multiple World Heritage sites, and support the nation's rapidly growing blue economy. Yet, increasing local pressures and global climate change are expected to undermine the biological, social, cultural, and economic value of these ecosystems within a human generation. Mitigating the causes of climate change is the most urgent action to secure their future; however, conventional and new management actions will play roles in preserving ecosystem function and value until that is achieved. This includes strategies codeveloped with Indigenous Australians that are guided by traditional ecological knowledge and a modeling and decision support framework. We provide examples of developments at one of Australia's most iconic ecosystems, the Great Barrier Reef, where recent, large block funding supports research, governance, and engagement to accelerate the development of tools for management under climate change.
Collapse
Affiliation(s)
- Line K Bay
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - James Gilmour
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Bob Muir
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Paul E Hardisty
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
20
|
Mendoza Quiroz S, Beltrán-Torres AU, Grosso-Becerra MV, Muñoz Villareal D, Tecalco Rentería R, Banaszak AT. Long-term survival, growth, and reproduction of Acropora palmata sexual recruits outplanted onto Mexican Caribbean reefs. PeerJ 2023; 11:e15813. [PMID: 37547720 PMCID: PMC10402697 DOI: 10.7717/peerj.15813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Acropora palmata is a foundational yet endangered Caribbean reef-building coral species. The lack of recovery after a disease outbreak and low recruitment has led to widespread use of fragmentation to restore populations. Another option is the production of sexual recruits (settlers) via assisted reproduction to improve the genetic diversity of depleted populations; however, the viability of this approach has not been tested over the long term. In 2011 and 2012, A. palmata larvae were cultured, settled, and the sexual recruits raised in an ex-situ nursery. Survival and growth were monitored over time. In 2014, these two F1 cohorts were moved to an in-situ nursery and after one year, a subset (29 colonies) was outplanted onto Cuevones Reef in the Mexican Caribbean. Growth and survival of these colonies were monitored periodically and compared to colonies that remained in the in-situ nursery. In 2019, samples were collected and analyzed for fertility and fecundity. 53% of the colonies were gravid and fecundity was 5.61 ± 1.91 oocytes and 3.04 ± 0.26 spermaries per polyp. A further 14 colonies from these two cohorts were outplanted in 2020 onto Picudas Reef and monitored during the subsequent spawning seasons. Two years after outplanting onto Picudas Reef, all colonies were alive and spawning of three of these colonies was recorded in 2022 in synchrony with the wild population. Gametes were collected from two colonies and crossed, with 15% fertilization success. Spermatozoa from wild colonies were then added and fertilization success increased to 95%. The resultant larvae followed normal development and symbiont uptake was visible within two weeks. The F2 generation was settled, maintained in an ex-situ nursery, and monitored for survival and growth. Both F1 and F2 generations followed a Type III survival curve with high initial mortality while in the ex-situ nursery and low later-stage mortality. The growth rates of these colonies increased three-fold after outplanting when compared to their growth rates in the ex-situ and in-situ nurseries. All colonies survived while in the in-situ nursery and for an additional nine years after outplanting onto Cuevones Reef. Overall, our results show that colonies produced by assisted breeding, once outplanted, may contribute to the genetic diversity and establishment of self-sustaining sexually-reproducing populations, which is an overarching goal of coral restoration programs.
Collapse
Affiliation(s)
- Sandra Mendoza Quiroz
- SECORE International, Miami, FL, United States of America
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| | | | - Maria Victoria Grosso-Becerra
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| | | | - Raúl Tecalco Rentería
- SECORE International, Miami, FL, United States of America
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| |
Collapse
|
21
|
Farva K, Sattar H, Ullah H, Raziq A, Mehmood MD, Tareen AK, Sultan IN, Zohra Q, Khan MW. Phenotypic Analysis, Molecular Characterization, and Antibiogram of Caries-Causing Bacteria Isolated from Dental Patients. Microorganisms 2023; 11:1952. [PMID: 37630520 PMCID: PMC10457851 DOI: 10.3390/microorganisms11081952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Dental caries is a biofilm-mediated, sugar-driven, multifactorial, dynamic disease that results in the phasic demineralization and remineralization of dental hard tissues. Despite scientific advances in cariology, dental caries remains a severe global concern. The aim of this study was to determine the optimization of microbial and molecular techniques for the detection of cariogenic pathogens in dental caries patients, the prevalence of cariogenic bacteria on the basis of socioeconomic, climatological, and hygienic factors, and in vitro evaluation of the antimicrobial activity of selected synthetic antibiotics and herbal extracts. In this study, oral samples were collected from 900 patients for bacterial strain screening on a biochemical and molecular basis. Plant extracts, such as ginger, garlic, neem, tulsi, amla, and aloe vera, were used to check the antimicrobial activity against the isolated strains. Synthetic antimicrobial agents, such as penicillin, amoxicillin, erythromycin, clindamycin, metronidazole, doxycycline, ceftazidime, levofloxacin, and ciprofloxacin, were also used to access the antimicrobial activity. Among 900 patients, 63% were males and 37% were females, patients aged between 36 and 58 (45.7%) years were prone to disease, and the most common symptom was toothache (61%). For oral diseases, 21% used herbs, 36% used antibiotics, and 48% were self-medicated, owing to sweets consumption (60.66%) and fizzy drinks and fast food (51.56%). Staphylococcus mutans (29.11%) and Streptococcus sobrinus (28.11%) were found as the most abundant strains. Seven bacterial strains were successfully screened and predicted to be closely related to genera S. sobrinus, S. mutans, Actinomyces naeslundii, Lactobacillus acidophilus, Eubacterium nodatum, Propionibacterium acidifaciens, and Treponema Pallidum. Among plant extracts, the maximum zone of inhibition was recorded by ginger (22.36 mm) and amla (20.01 mm), while among synthetic antibiotics, ciprofloxacin and levofloxacin were most effective against all microbes. This study concluded that phyto extracts of ginger and amla were considered suitable alternatives to synthetic antibiotics to treat dental diseases.
Collapse
Affiliation(s)
- Khushbu Farva
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Huma Sattar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Hayat Ullah
- Metabolic Engineering Lab, Department of Biological Engineering, Utah State University, Logan, UT 84322, USA
| | - Abdur Raziq
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Muhammad Danish Mehmood
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Afrasiab Khan Tareen
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Imrana Niaz Sultan
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Quratulaain Zohra
- Department of Biotechnology, Project of Sahara for Life Trust, The Sahara College Narowal, Punjab 51601, Pakistan
| | - Muhammad Waseem Khan
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan
| |
Collapse
|
22
|
Richards TJ, McGuigan K, Aguirre JD, Humanes A, Bozec YM, Mumby PJ, Riginos C. Moving beyond heritability in the search for coral adaptive potential. GLOBAL CHANGE BIOLOGY 2023; 29:3869-3882. [PMID: 37310164 DOI: 10.1111/gcb.16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 06/14/2023]
Abstract
Global environmental change is happening at unprecedented rates. Coral reefs are among the ecosystems most threatened by global change. For wild populations to persist, they must adapt. Knowledge shortfalls about corals' complex ecological and evolutionary dynamics, however, stymie predictions about potential adaptation to future conditions. Here, we review adaptation through the lens of quantitative genetics. We argue that coral adaptation studies can benefit greatly from "wild" quantitative genetic methods, where traits are studied in wild populations undergoing natural selection, genomic relationship matrices can replace breeding experiments, and analyses can be extended to examine genetic constraints among traits. In addition, individuals with advantageous genotypes for anticipated future conditions can be identified. Finally, genomic genotyping supports simultaneous consideration of how genetic diversity is arrayed across geographic and environmental distances, providing greater context for predictions of phenotypic evolution at a metapopulation scale.
Collapse
Affiliation(s)
- Thomas J Richards
- School of Biological Sciences, The University of Queensland, Queensland, St Lucia, Australia
| | - Katrina McGuigan
- School of Biological Sciences, The University of Queensland, Queensland, St Lucia, Australia
| | - J David Aguirre
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Adriana Humanes
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yves-Marie Bozec
- School of Biological Sciences, The University of Queensland, Queensland, St Lucia, Australia
| | - Peter J Mumby
- School of Biological Sciences, The University of Queensland, Queensland, St Lucia, Australia
| | - Cynthia Riginos
- School of Biological Sciences, The University of Queensland, Queensland, St Lucia, Australia
| |
Collapse
|
23
|
Toth LT, Storlazzi CD, Kuffner IB, Quataert E, Reyns J, McCall R, Stathakopoulos A, Hillis-Starr Z, Holloway NH, Ewen KA, Pollock CG, Code T, Aronson RB. The potential for coral reef restoration to mitigate coastal flooding as sea levels rise. Nat Commun 2023; 14:2313. [PMID: 37085476 PMCID: PMC10121583 DOI: 10.1038/s41467-023-37858-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/28/2023] [Indexed: 04/23/2023] Open
Abstract
The ability of reefs to protect coastlines from storm-driven flooding hinges on their capacity to keep pace with sea-level rise. Here, we show how and whether coral restoration could achieve the often-cited goal of reversing the impacts of coral-reef degradation to preserve this essential function. We combined coral-growth measurements and carbonate-budget assessments of reef-accretion potential at Buck Island Reef, U.S. Virgin Islands, with hydrodynamic modeling to quantify future coastal flooding under various coral-restoration, sea-level rise, and storm scenarios. Our results provide guidance on how restoration of Acropora palmata, if successful, could mitigate the most extreme impacts of coastal flooding by reversing projected trajectories of reef erosion and allowing reefs to keep pace with the ~0.5 m of sea-level rise expected by 2100 with moderate carbon-emissions reductions. This highlights the potential long-term benefits of pursuing coral-reef restoration alongside climate-change mitigation to support the persistence of essential coral-reef ecosystem services.
Collapse
Affiliation(s)
- Lauren T Toth
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA.
| | - Curt D Storlazzi
- U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, USA
| | - Ilsa B Kuffner
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA
| | | | - Johan Reyns
- Deltares, Delft, Netherlands
- IHE Delft Institute for Water Education, Delft, Netherlands
| | | | | | | | | | | | | | - Tessa Code
- National Park Service, Christiansted, VI, USA
| | - Richard B Aronson
- Florida Institute of Technology, Department of Ocean Engineering and Marine Sciences, Melbourne, FL, USA
| |
Collapse
|
24
|
Barfield S, Davies SW, Matz MV. Evidence of sweepstakes reproductive success in a broadcast-spawning coral and its implications for coral metapopulation persistence. Mol Ecol 2023; 32:696-702. [PMID: 36346182 DOI: 10.1111/mec.16774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Processes governing genetic diversity and adaptive potential in reef-building corals are of interest both for fundamental evolutionary biology and for reef conservation. Here, we investigated the possibility of "sweepstakes reproductive success" (SRS) in a broadcast spawning coral, Acropora hyacinthus, at Yap Island, Micronesia. SRS is an extreme yearly variation in the number of surviving offspring among parents. It is predicted to generate genetically differentiated, low-genetic-diversity recruit cohorts, containing close kin individuals. We have tested these predictions by comparing genetic composition of size classes (adults and juveniles) at several sites on the island of Yap. We did see the genome-wide dip in genetic diversity in juveniles compared to adults at two of the four sites; however, both adults and juveniles varied in genetic diversity across sites, and there was no detectable genetic structure among juveniles, which does not conform to the classical SRS scenario. Yet, we have identified a pair of juvenile siblings at the site where juveniles had the lowest genetic diversity compared to adults, an observation that is hard to explain without invoking SRS. While further support for SRS is needed to fully settle the issue, we show that incorporating SRS into the Indo-West Pacific coral metapopulation adaptation model had surprisingly little effect on mean rates of coral cover decline during warming. Still, SRS notably increases year-to-year variation in coral cover throughout the simulation.
Collapse
Affiliation(s)
- Sarah Barfield
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Mikhail V Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
25
|
Matias AMA, Popovic I, Thia JA, Cooke IR, Torda G, Lukoschek V, Bay LK, Kim SW, Riginos C. Cryptic diversity and spatial genetic variation in the coral Acropora tenuis and its endosymbionts across the Great Barrier Reef. Evol Appl 2023; 16:293-310. [PMID: 36793689 PMCID: PMC9923489 DOI: 10.1111/eva.13435] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 11/26/2022] Open
Abstract
Genomic studies are uncovering extensive cryptic diversity within reef-building corals, suggesting that evolutionarily and ecologically relevant diversity is highly underestimated in the very organisms that structure coral reefs. Furthermore, endosymbiotic algae within coral host species can confer adaptive responses to environmental stress and may represent additional axes of coral genetic variation that are not constrained by taxonomic divergence of the cnidarian host. Here, we examine genetic variation in a common and widespread, reef-building coral, Acropora tenuis, and its associated endosymbiotic algae along the entire expanse of the Great Barrier Reef (GBR). We use SNPs derived from genome-wide sequencing to characterize the cnidarian coral host and organelles from zooxanthellate endosymbionts (genus Cladocopium). We discover three distinct and sympatric genetic clusters of coral hosts, whose distributions appear associated with latitude and inshore-offshore reef position. Demographic modelling suggests that the divergence history of the three distinct host taxa ranges from 0.5 to 1.5 million years ago, preceding the GBR's formation, and has been characterized by low-to-moderate ongoing inter-taxon gene flow, consistent with occasional hybridization and introgression typifying coral evolution. Despite this differentiation in the cnidarian host, A. tenuis taxa share a common symbiont pool, dominated by the genus Cladocopium (Clade C). Cladocopium plastid diversity is not strongly associated with host identity but varies with reef location relative to shore: inshore colonies contain lower symbiont diversity on average but have greater differences between colonies as compared with symbiont communities from offshore colonies. Spatial genetic patterns of symbiont communities could reflect local selective pressures maintaining coral holobiont differentiation across an inshore-offshore environmental gradient. The strong influence of environment (but not host identity) on symbiont community composition supports the notion that symbiont community composition responds to habitat and may assist in the adaptation of corals to future environmental change.
Collapse
Affiliation(s)
- Ambrocio Melvin A. Matias
- Institute of BiologyUniversity of the Philippines DilimanQuezon CityPhilippines
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Iva Popovic
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Joshua A. Thia
- Bio21 Institute, School of BioSciencesThe University of MelbourneParkevilleVictoriaAustralia
| | - Ira R. Cooke
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Gergely Torda
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Vimoksalehi Lukoschek
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Gold Coast University HospitalQLD HealthSouthportQueenslandAustralia
| | - Line K. Bay
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Sun W. Kim
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Cynthia Riginos
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
26
|
Alvarado-Cerón V, Muñiz-Castillo AI, León-Pech MG, Prada C, Arias-González JE. A decade of population genetics studies of scleractinian corals: A systematic review. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105781. [PMID: 36371949 DOI: 10.1016/j.marenvres.2022.105781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Coral reefs are the most diverse marine ecosystems. However, coral cover has decreased worldwide due to natural disturbances, climate change, and local anthropogenic drivers. In recent decades, various genetic methods and molecular markers have been developed to assess genetic diversity, structure, and connectivity in different coral species to determine the vulnerability of their populations. This review aims to identify population genetic studies of scleractinian corals in the last decade (2010-2020), and the techniques and molecular markers used. Bibliometric analysis was conducted to identify journals and authors working in this field. We then calculated the number of genetic studies by species and ecoregion based on data obtained from 178 studies found in Scopus and Web of Science. Coral Reefs and Molecular Ecology were the main journals published population genetics studies, and microsatellites are the most widely used molecular markers. The Caribbean, Australian Barrier Reef, and South Kuroshio in Japan are among the ecoregions with the most population genetics data. In contrast, we found limited information about the Coral Triangle, a region with the highest biodiversity and key to coral reef conservation. Notably, only 117 (out of 1500 described) scleractinian coral species have genetic studies. This review emphasizes which coral species have been studied and highlights remaining gaps and locations where such data is critical for coral conservation.
Collapse
Affiliation(s)
- Viridiana Alvarado-Cerón
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - Aarón Israel Muñiz-Castillo
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - María Geovana León-Pech
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Carlos Prada
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Jesús Ernesto Arias-González
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
27
|
Hoban S, Bruford MW, da Silva JM, Funk WC, Frankham R, Gill MJ, Grueber CE, Heuertz M, Hunter ME, Kershaw F, Lacy RC, Lees C, Lopes-Fernandes M, MacDonald AJ, Mastretta-Yanes A, McGowan PJK, Meek MH, Mergeay J, Millette KL, Mittan-Moreau CS, Navarro LM, O'Brien D, Ogden R, Segelbacher G, Paz-Vinas I, Vernesi C, Laikre L. Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework. CONSERV GENET 2023; 24:181-191. [PMID: 36683963 PMCID: PMC9841145 DOI: 10.1007/s10592-022-01492-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 01/18/2023]
Abstract
Genetic diversity among and within populations of all species is necessary for people and nature to survive and thrive in a changing world. Over the past three years, commitments for conserving genetic diversity have become more ambitious and specific under the Convention on Biological Diversity's (CBD) draft post-2020 global biodiversity framework (GBF). This Perspective article comments on how goals and targets of the GBF have evolved, the improvements that are still needed, lessons learned from this process, and connections between goals and targets and the actions and reporting that will be needed to maintain, protect, manage and monitor genetic diversity. It is possible and necessary that the GBF strives to maintain genetic diversity within and among populations of all species, to restore genetic connectivity, and to develop national genetic conservation strategies, and to report on these using proposed, feasible indicators.
Collapse
Affiliation(s)
- Sean Hoban
- The Morton Arboretum, Center for Tree Science, Lisle, USA.,The University of Chicago, Chicago, USA
| | | | - Jessica M da Silva
- South African National Biodiversity Institute, Pretoria, South Africa.,Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa
| | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, USA
| | - Richard Frankham
- School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Michael J Gill
- NatureServe, Biodiversity Indicators Program, Arlington, USA
| | - Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | | | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, USA
| | - Francine Kershaw
- Oceans Division, Natural Resources Defense Council, NewYork, USA
| | - Robert C Lacy
- Chicago Zoological Society, Species Conservation Toolkit Initiative, Brookfield, USA
| | - Caroline Lees
- Conservation Planning Specialist Group, IUCN SSC, Auckland, New Zealand
| | | | - Anna J MacDonald
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Australia
| | - Alicia Mastretta-Yanes
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Mexico City, Mexico.,Consejo Nacional de Ciencia Y Tecnología (CONACYT), Mexico City, Mexico
| | - Philip J K McGowan
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Mariah H Meek
- Department of Integrative Biology; Ecology, Evolution, and Behavior Program, Michigan State University, AgBio Research, Lansing, USA
| | - Joachim Mergeay
- Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Katie L Millette
- Group on Earth Observations Biodiversity Observation Network (GEO BON), McGill University, Montreal, Canada
| | - Cinnamon S Mittan-Moreau
- Kellogg Biological Station; Ecology and Evolutionary Biology, Michigan State University, Lansing, USA
| | | | | | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, EH25 9RG, Midlothian, United Kingdom
| | | | - Ivan Paz-Vinas
- Department of Biology, Colorado State University, Fort Collins, USA
| | | | - Linda Laikre
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
28
|
Rivera HE, Cohen AL, Thompson JR, Baums IB, Fox MD, Meyer-Kaiser KS. Palau's warmest reefs harbor thermally tolerant corals that thrive across different habitats. Commun Biol 2022; 5:1394. [PMID: 36543929 PMCID: PMC9772186 DOI: 10.1038/s42003-022-04315-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Ocean warming is killing corals, but heat-tolerant populations exist; if protected, they could replenish affected reefs naturally or through restoration. Palau's Rock Islands experience consistently higher temperatures and extreme heatwaves, yet their diverse coral communities bleach less than those on Palau's cooler outer reefs. Here, we combined genetic analyses, bleaching histories and growth rates of Porites cf. lobata colonies to identify thermally tolerant genotypes, map their distribution, and investigate potential growth trade-offs. We identified four genetic lineages of P. cf. lobata. On Palau's outer reefs, a thermally sensitive lineage dominates. The Rock Islands harbor two lineages with enhanced thermal tolerance; one of which shows no consistent growth trade-off and also occurs on several outer reefs. This suggests that the Rock Islands provide naturally tolerant larvae to neighboring areas. Finding and protecting such sources of thermally-tolerant corals is key to reef survival under 21st century climate change.
Collapse
Affiliation(s)
- Hanny E. Rivera
- grid.116068.80000 0001 2341 2786MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge and Woods Hole, MA USA ,grid.56466.370000 0004 0504 7510Woods Hole Oceanographic Institution, Woods Hole, MA USA ,grid.116068.80000 0001 2341 2786Massachusetts Institute of Technology, Cambridge, MA USA
| | - Anne L. Cohen
- grid.56466.370000 0004 0504 7510Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Janelle R. Thompson
- grid.116068.80000 0001 2341 2786Massachusetts Institute of Technology, Cambridge, MA USA ,grid.59025.3b0000 0001 2224 0361Asian School of the Environment, Nanyang Technological University, Singapore (NTU), Singapore ,grid.484638.50000 0004 7703 9448Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore, Singapore
| | - Iliana B. Baums
- grid.29857.310000 0001 2097 4281Pennsylvania State University, State College, PA USA
| | - Michael D. Fox
- grid.56466.370000 0004 0504 7510Woods Hole Oceanographic Institution, Woods Hole, MA USA ,grid.45672.320000 0001 1926 5090Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | |
Collapse
|
29
|
McLeod IM, Hein MY, Babcock R, Bay L, Bourne DG, Cook N, Doropoulos C, Gibbs M, Harrison P, Lockie S, van Oppen MJH, Mattocks N, Page CA, Randall CJ, Smith A, Smith HA, Suggett DJ, Taylor B, Vella KJ, Wachenfeld D, Boström-Einarsson L. Coral restoration and adaptation in Australia: The first five years. PLoS One 2022; 17:e0273325. [PMID: 36449458 PMCID: PMC9710771 DOI: 10.1371/journal.pone.0273325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
While coral reefs in Australia have historically been a showcase of conventional management informed by research, recent declines in coral cover have triggered efforts to innovate and integrate intervention and restoration actions into management frameworks. Here we outline the multi-faceted intervention approaches that have developed in Australia since 2017, from newly implemented in-water programs, research to enhance coral resilience and investigations into socio-economic perspectives on restoration goals. We describe in-water projects using coral gardening, substrate stabilisation, coral repositioning, macro-algae removal, and larval-based restoration techniques. Three areas of research focus are also presented to illustrate the breadth of Australian research on coral restoration, (1) the transdisciplinary Reef Restoration and Adaptation Program (RRAP), one of the world's largest research and development programs focused on coral reefs, (2) interventions to enhance coral performance under climate change, and (3) research into socio-cultural perspectives. Together, these projects and the recent research focus reflect an increasing urgency for action to confront the coral reef crisis, develop new and additional tools to manage coral reefs, and the consequent increase in funding opportunities and management appetite for implementation. The rapid progress in trialling and deploying coral restoration in Australia builds on decades of overseas experience, and advances in research and development are showing positive signs that coral restoration can be a valuable tool to improve resilience at local scales (i.e., high early survival rates across a variety of methods and coral species, strong community engagement with local stakeholders). RRAP is focused on creating interventions to help coral reefs at multiple scales, from micro scales (i.e., interventions targeting small areas within a specific reef site) to large scales (i.e., interventions targeting core ecosystem function and social-economic values at multiple select sites across the Great Barrier Reef) to resist, adapt to and recover from the impacts of climate change. None of these interventions aim to single-handedly restore the entirety of the Great Barrier Reef, nor do they negate the importance of urgent climate change mitigation action.
Collapse
Affiliation(s)
- Ian M. McLeod
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Margaux Y. Hein
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- MER Research and Consulting, The Office, Monaco, Monaco
- * E-mail:
| | - Russ Babcock
- CSIRO Oceans & Atmosphere, St Lucia, Queensland, Australia
| | - Line Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David G. Bourne
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Nathan Cook
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- Reef Ecologic, Townsville, Queensland, Australia
| | | | - Mark Gibbs
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Peter Harrison
- Marine Ecology Research Centre, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Stewart Lockie
- The Cairns Institute, James Cook University, Cairns, Queensland, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Neil Mattocks
- Great Barrier Reef Marine Park Authority, Townsville, Queensland, Australia
| | - Cathie A. Page
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Carly J. Randall
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Adam Smith
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- Reef Ecologic, Townsville, Queensland, Australia
| | - Hillary A. Smith
- College of Science and Engineering, James Cook University, Townsville, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Randwick, New South Wales, Australia
| | - David J. Suggett
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Bruce Taylor
- Land & Water, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, Queensland, Australia
| | - Karen J. Vella
- School of Architecture and Built Environment, Queensland University of Technology, Brisbane, Australia
| | - David Wachenfeld
- Great Barrier Reef Marine Park Authority, Townsville, Queensland, Australia
| | - Lisa Boström-Einarsson
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, United Kingdom
| |
Collapse
|
30
|
Brown AL, Anastasiou DE, Schul M, MacVittie S, Spiers LJ, Meyer JL, Manfrino C, Frazer TK. Mixtures of genotypes increase disease resistance in a coral nursery. Sci Rep 2022; 12:19286. [PMID: 36369337 PMCID: PMC9652365 DOI: 10.1038/s41598-022-23457-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Marine infectious diseases are a leading cause of population declines globally due, in large part, to challenges in diagnosis and limited treatment options. Mitigating disease spread is particularly important for species targeted for conservation. In some systems, strategic arrangement of organisms in space can constrain disease outbreaks, however, this approach has not been used in marine restoration. Reef building corals have been particularly devastated by disease and continue to experience catastrophic population declines. We show that mixtures of genotypes (i.e., diversity) increased disease resistance in the critically endangered Acropora cervicornis, a species that is frequently targeted for restoration of degraded reefs in the broader Caribbean region. This finding suggests a more generalized relationship between diversity and disease and offers a viable strategy for mitigating the spread of infectious diseases in corals that likely applies to other foundation species targeted for restoration.
Collapse
Affiliation(s)
- Anya L. Brown
- grid.15276.370000 0004 1936 8091School of Natural Resources and Environment, University of Florida, Gainesville, FL 32611 USA ,grid.27860.3b0000 0004 1936 9684Present Address: Department of Evolution and Ecology & Bodega Marine Lab, University of California, Davis, Bodega Bay, CA 94923 USA
| | - Dagny-Elise Anastasiou
- Central Caribbean Marine Institute, N Coast Road E, Box 37, Little Cayman, KY3-2501 Cayman Islands
| | - Monica Schul
- grid.15276.370000 0004 1936 8091Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Sophia MacVittie
- Central Caribbean Marine Institute, N Coast Road E, Box 37, Little Cayman, KY3-2501 Cayman Islands ,grid.266096.d0000 0001 0049 1282Department of Molecular Cell Biology, University of California, Merced, Merced, CA USA
| | - Lindsay J. Spiers
- grid.15276.370000 0004 1936 8091Department of Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL 32611 USA ,grid.427218.a0000 0001 0556 4516Florida Fish & Wildlife Conservation Commission, Fish & Wildlife Research Institute, Marathon, FL USA
| | - Julie L. Meyer
- grid.15276.370000 0004 1936 8091Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Carrie Manfrino
- Central Caribbean Marine Institute, N Coast Road E, Box 37, Little Cayman, KY3-2501 Cayman Islands
| | - Thomas K. Frazer
- grid.170693.a0000 0001 2353 285XCollege of Marine Science, University of South Florida, St. Petersburg, FL 33701 USA
| |
Collapse
|
31
|
Vega Thurber R, Schmeltzer ER, Grottoli AG, van Woesik R, Toonen RJ, Warner M, Dobson KL, McLachlan RH, Barott K, Barshis DJ, Baumann J, Chapron L, Combosch DJ, Correa AMS, DeCarlo TM, Hagedorn M, Hédouin L, Hoadley K, Felis T, Ferrier-Pagès C, Kenkel C, Kuffner IB, Matthews J, Medina M, Meyer C, Oster C, Price J, Putnam HM, Sawall Y. Unified methods in collecting, preserving, and archiving coral bleaching and restoration specimens to increase sample utility and interdisciplinary collaboration. PeerJ 2022; 10:e14176. [PMID: 36345483 PMCID: PMC9636870 DOI: 10.7717/peerj.14176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
Coral reefs are declining worldwide primarily because of bleaching and subsequent mortality resulting from thermal stress. Currently, extensive efforts to engage in more holistic research and restoration endeavors have considerably expanded the techniques applied to examine coral samples. Despite such advances, coral bleaching and restoration studies are often conducted within a specific disciplinary focus, where specimens are collected, preserved, and archived in ways that are not always conducive to further downstream analyses by specialists in other disciplines. This approach may prevent the full utilization of unexpended specimens, leading to siloed research, duplicative efforts, unnecessary loss of additional corals to research endeavors, and overall increased costs. A recent US National Science Foundation-sponsored workshop set out to consolidate our collective knowledge across the disciplines of Omics, Physiology, and Microscopy and Imaging regarding the methods used for coral sample collection, preservation, and archiving. Here, we highlight knowledge gaps and propose some simple steps for collecting, preserving, and archiving coral-bleaching specimens that can increase the impact of individual coral bleaching and restoration studies, as well as foster additional analyses and future discoveries through collaboration. Rapid freezing of samples in liquid nitrogen or placing at -80 °C to -20 °C is optimal for most Omics and Physiology studies with a few exceptions; however, freezing samples removes the potential for many Microscopy and Imaging-based analyses due to the alteration of tissue integrity during freezing. For Microscopy and Imaging, samples are best stored in aldehydes. The use of sterile gloves and receptacles during collection supports the downstream analysis of host-associated bacterial and viral communities which are particularly germane to disease and restoration efforts. Across all disciplines, the use of aseptic techniques during collection, preservation, and archiving maximizes the research potential of coral specimens and allows for the greatest number of possible downstream analyses.
Collapse
Affiliation(s)
- Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Emily R. Schmeltzer
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Andréa G. Grottoli
- School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, Fl, United States
| | - Robert J. Toonen
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kāne’ohe, HI, United States
| | - Mark Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Kerri L. Dobson
- School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | - Rowan H. McLachlan
- Department of Microbiology, Oregon State University, Corvallis, OR, United States,School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | - Katie Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J. Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Justin Baumann
- Biology Department, Bowdoin College, Brunswick, ME, United States
| | - Leila Chapron
- School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | | | | | - Thomas M. DeCarlo
- College of Natural and Computational Sciences, Hawai’i Pacific University, Honolulu, HI, United States
| | - Mary Hagedorn
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kāne’ohe, HI, United States,Conservation Biology Institute, Smithsonian, Kāne’ohe, HI, United States
| | - Laetitia Hédouin
- Centre de Recherches Insulaires et Observatoire de l’Environnement, Chargée de Recherches CNRS, Papetō’ai, Moorea, French Polynesia
| | - Kenneth Hoadley
- Department of Biological Sciences, University of Alabama – Tuscaloosa, Tuscaloosa, AL, United States
| | - Thomas Felis
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | | | - Carly Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | | | - Jennifer Matthews
- Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Christopher Meyer
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian, Washington DC, United States
| | - Corinna Oster
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - James Price
- School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Yvonne Sawall
- Bermuda Institute of Ocean Sciences, St. George’s, St. George’s, Bermuda
| |
Collapse
|
32
|
Experimental evolution reveals complex responses to environmental change. Proc Natl Acad Sci U S A 2022; 119:e2214263119. [PMID: 36223412 PMCID: PMC9618135 DOI: 10.1073/pnas.2214263119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Caruso C, Rocha de Souza M, Ruiz‐Jones L, Conetta D, Hancock J, Hobbs C, Hobbs C, Kahkejian V, Kitchen R, Marin C, Monismith S, Madin J, Gates R, Drury C. Genetic patterns in Montipora capitata across an environmental mosaic in Kāne'ohe Bay, O'ahu, Hawai'i. Mol Ecol 2022; 31:5201-5213. [PMID: 35962751 PMCID: PMC9825948 DOI: 10.1111/mec.16655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 01/11/2023]
Abstract
Spatial genetic structure (SGS) is important to a population's ability to adapt to environmental change. For species that reproduce both sexually and asexually, the relative contribution of each reproductive mode has important ecological and evolutionary implications because asexual reproduction can have a strong effect on SGS. Reef-building corals reproduce sexually, but many species also propagate asexually under certain conditions. To understand SGS and the relative importance of reproductive mode across environmental gradients, we evaluated genetic relatedness in almost 600 colonies of Montipora capitata across 30 environmentally characterized sites in Kāne'ohe Bay, O'ahu, Hawaii, using low-depth restriction digest-associated sequencing. Clonal colonies were relatively rare overall but influenced SGS. Clones were located significantly closer to one another spatially than average colonies and were more frequent on sites where wave energy was relatively high, suggesting a strong role of mechanical breakage in their formation. Excluding clones, we found no evidence of isolation by distance within sites or across the bay. Several environmental characteristics were significant predictors of the underlying genetic variation (including degree heating weeks, time spent above 30°C, depth, sedimentation rate and wave height); however, they only explained 5% of this genetic variation. Our results show that asexual fragmentation contributes to the ecology of branching corals at local scales and that genetic diversity is maintained despite strong environmental gradients in a highly impacted ecosystem, suggesting potential for broad adaptation or acclimatization in this population.
Collapse
Affiliation(s)
- Carlo Caruso
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | | | | | | | - Joshua Hancock
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | | | | | - Valerie Kahkejian
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Rebecca Kitchen
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Christian Marin
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | | | - Joshua Madin
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Ruth Gates
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Crawford Drury
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| |
Collapse
|
34
|
DeFilippo LB, McManus LC, Schindler DE, Pinsky ML, Colton MA, Fox HE, Tekwa EW, Palumbi SR, Essington TE, Webster MM. Assessing the potential for demographic restoration and assisted evolution to build climate resilience in coral reefs. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2650. [PMID: 35538738 PMCID: PMC9788104 DOI: 10.1002/eap.2650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Interest is growing in developing conservation strategies to restore and maintain coral reef ecosystems in the face of mounting anthropogenic stressors, particularly climate warming and associated mass bleaching events. One such approach is to propagate coral colonies ex situ and transplant them to degraded reef areas to augment habitat for reef-dependent fauna, prevent colonization from spatial competitors, and enhance coral reproductive output. In addition to such "demographic restoration" efforts, manipulating the thermal tolerance of outplanted colonies through assisted relocation, selective breeding, or genetic engineering is being considered for enhancing rates of evolutionary adaptation to warming. Although research into such "assisted evolution" strategies has been growing, their expected performance remains unclear. We evaluated the potential outcomes of demographic restoration and assisted evolution in climate change scenarios using an eco-evolutionary simulation model. We found that supplementing reefs with pre-existing genotypes (demographic restoration) offers little climate resilience benefits unless input levels are large and maintained for centuries. Supplementation with thermally resistant colonies was successful at improving coral cover at lower input levels, but only if maintained for at least a century. Overall, we found that, although demographic restoration and assisted evolution have the potential to improve long-term coral cover, both approaches had a limited impact in preventing severe declines under climate change scenarios. Conversely, with sufficient natural genetic variance and time, corals could readily adapt to warming temperatures, suggesting that restoration approaches focused on building genetic variance may outperform those based solely on introducing heat-tolerant genotypes.
Collapse
Affiliation(s)
- Lukas B. DeFilippo
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
- Present address:
Resource Assessment and Conservation Engineering DivisionNOAA Alaska Fisheries Science CenterSeattleWashingtonUSA
| | - Lisa C. McManus
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
- Hawaiʻi Institute of Marine BiologyUniversity of Hawaiʻi at ManoaKaneʻoheHawaiiUSA
| | - Daniel E. Schindler
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| | | | | | - E. W. Tekwa
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Stephen R. Palumbi
- Department of Biology, Hopkins Marine StationStanford UniversityPacific GroveCaliforniaUSA
| | - Timothy E. Essington
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Michael M. Webster
- Department of Environmental StudiesNew York UniversityNew YorkNew YorkUSA
| |
Collapse
|
35
|
Shaver EC, McLeod E, Hein MY, Palumbi SR, Quigley K, Vardi T, Mumby PJ, Smith D, Montoya‐Maya P, Muller EM, Banaszak AT, McLeod IM, Wachenfeld D. A roadmap to integrating resilience into the practice of coral reef restoration. GLOBAL CHANGE BIOLOGY 2022; 28:4751-4764. [PMID: 35451154 PMCID: PMC9545251 DOI: 10.1111/gcb.16212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 05/26/2023]
Abstract
Recent warm temperatures driven by climate change have caused mass coral bleaching and mortality across the world, prompting managers, policymakers, and conservation practitioners to embrace restoration as a strategy to sustain coral reefs. Despite a proliferation of new coral reef restoration efforts globally and increasing scientific recognition and research on interventions aimed at supporting reef resilience to climate impacts, few restoration programs are currently incorporating climate change and resilience in project design. As climate change will continue to degrade coral reefs for decades to come, guidance is needed to support managers and restoration practitioners to conduct restoration that promotes resilience through enhanced coral reef recovery, resistance, and adaptation. Here, we address this critical implementation gap by providing recommendations that integrate resilience principles into restoration design and practice, including for project planning and design, coral selection, site selection, and broader ecosystem context. We also discuss future opportunities to improve restoration methods to support enhanced outcomes for coral reefs in response to climate change. As coral reefs are one of the most vulnerable ecosystems to climate change, interventions that enhance reef resilience will help to ensure restoration efforts have a greater chance of success in a warming world. They are also more likely to provide essential contributions to global targets to protect natural biodiversity and the human communities that rely on reefs.
Collapse
Affiliation(s)
| | | | - Margaux Y. Hein
- Marine Ecosystem Restoration Research and ConsultingMonacoMonaco
| | | | - Kate Quigley
- Minderoo FoundationPerthWestern AustraliaAustralia
| | - Tali Vardi
- ECS for NOAA Fisheries Office of Science & TechnologySilver SpringMarylandUSA
| | - Peter J. Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, University of QueenslandSt LuciaQueenslandAustralia
| | - David Smith
- Coral Reef Research UnitSchool of Life SciencesEssexUK
- Mars IncorporatedLondonUK
| | | | | | | | - Ian M. McLeod
- TropWATER, The Centre for Tropical Water and Aquatic Ecosystem Research, James Cook UniversityTownsvilleQueenslandAustralia
| | - David Wachenfeld
- Great Barrier Reef Marine Park AuthorityTownsvilleQueenslandAustralia
| |
Collapse
|
36
|
Quigley KM, Hein M, Suggett DJ. Translating the 10 golden rules of reforestation for coral reef restoration. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13890. [PMID: 35075743 PMCID: PMC9543798 DOI: 10.1111/cobi.13890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 05/26/2023]
Abstract
Efforts are accelerating to protect and restore ecosystems globally. With trillions of dollars in ecosystem services at stake, no clear framework exists for developing or prioritizing approaches to restore coral reefs even as efforts and investment opportunities to do so grow worldwide. Restoration may buy time for climate change mitigation, but it lacks rigorous guidance to meet objectives of scalability and effectiveness. Lessons from restoration of terrestrial ecosystems can and should be rapidly adopted for coral reef restoration. We propose how the 10 golden rules of effective forest restoration can be translated to accelerate efforts to restore coral reefs based on established principles of resilience, management, and local stewardship. We summarize steps to undertake reef restoration as a management strategy in the context of the diverse ecosystem service values that coral reefs provide. Outlining a clear blueprint is timely as more stakeholders seek to undertake restoration as the UN Decade on Ecosystem Restoration begins.
Collapse
Affiliation(s)
- Kate M. Quigley
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- Division of Research & InnovationJames Cook UniversityTownsvilleQueenslandAustralia
| | - Margaux Hein
- Division of Research & InnovationJames Cook UniversityTownsvilleQueenslandAustralia
- MER Research and ConsultingMonaco
| | - David J. Suggett
- Faculty of Science, Climate Change ClusterUniversity of Technology SydneyUltimoNew South WalesAustralia
| |
Collapse
|
37
|
Henry JA, Szereday S, Lynn CK, Suggett DJ, Camp EF, Patterson JT. Using relative return‐on‐effort (
RRE
) scoring to evaluate a novel coral nursery in Malaysia. Restor Ecol 2022. [DOI: 10.1111/rec.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Joseph A. Henry
- Program in Fisheries and Aquatic Sciences School of Forest, Fisheries, and Geomatics Sciences University of Florida/IFAS 7922 NW 71st Street Gainesville FL 32653 USA
| | | | - Chew Kok Lynn
- Coralku Solutions, Kuala Lumpur, 60000, Wilayah Kuala Lumpur Malaysia
- Institute of Ocean and Earth Sciences C308, Institute for Advanced Studies Building, Universiti Malaya 50603 Kuala Lumpur Malaysia
| | - David J. Suggett
- University of Technology Sydney, Climate Change Cluster, Faculty of Science Ultimo NSW 2007 Australia
| | - Emma F. Camp
- University of Technology Sydney, Climate Change Cluster, Faculty of Science Ultimo NSW 2007 Australia
| | - Joshua T. Patterson
- Program in Fisheries and Aquatic Sciences School of Forest, Fisheries, and Geomatics Sciences University of Florida/IFAS 7922 NW 71st Street Gainesville FL 32653 USA
- The Florida Aquarium, Center for Conservation, 529 Estuary Shore Ln. Apollo Beach FL 33572‐2205 USA
| |
Collapse
|
38
|
Parkinson JE, Tang SL, Denis V. Editorial: Variance matters: Individual differences and their consequences for natural selection within and among coral holobionts. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.977844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Brathwaite A, Clua E, Roach R, Pascal N. Coral reef restoration for coastal protection: Crafting technical and financial solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114718. [PMID: 35192980 DOI: 10.1016/j.jenvman.2022.114718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Coastal erosion, aggravated by coral reef mortality is a major issue for Small Island Developing States. Traditionally gray infrastructure, financed by public budgets has been used to combat beach loss. We examined if three Nature-based Solutions (NbS): (i) coral restoration (green) (ii) restoration + limestone (hybrid) and (iii) restoration + 3D printed concrete (hybrid) could deliver positive outcomes for coastal protection and further incentivize cost sharing for reef conservation, with private beneficiaries. We modelled the impact of restoration on wave attenuation at two reefs off Barbados and simulated up-front and maintenance costs over a 25-year period. All solutions provide additionality when compared to gray infrastructure, especially in mitigating against Sea Level Rise. Restoration was the least costly with the highest risk of failure. The hybrid solutions, were less risky than the green as they provided immediate wave attenuation, alongside complementary services such as increased attractiveness due to the presence of reef fish. Their costs were however between +80% and +450% higher than gray solutions. While this might initially deter the use of NbS, blended finance and in some cases, Payments for Ecosystem Services, could provide options for governments and private beneficiaries to share costs, with ultimately greater benefits for themselves and coral reefs.
Collapse
Affiliation(s)
- Angelique Brathwaite
- Blue Finance ECRE (Economics for Coral Reef Ecosystems), Foster Hall, Barbados; CRIOBE - USR 3278: PSL Université Paris: EPHE-CNRS-UPVD: Bâtiment R et T, Université de Perpignan, 58 Avenue Paul Alduy, 66860, Perpignan CEDEX, France.
| | - Eric Clua
- CRIOBE - USR 3278: PSL Université Paris: EPHE-CNRS-UPVD: Bâtiment R et T, Université de Perpignan, 58 Avenue Paul Alduy, 66860, Perpignan CEDEX, France; Centre de Recherche Insulaire et Observatoire de l'Environnement (CRIOBE), Moorea, French Polynesia.
| | - Ramon Roach
- Coastal Zone Management Unit, Ministry of Maritime Affairs and the Blue Economy, Warrens Tower II, St. Michael, Barbados.
| | - Nicolas Pascal
- Blue Finance ECRE (Economics for Coral Reef Ecosystems), Foster Hall, Barbados; CRIOBE - USR 3278: PSL Université Paris: EPHE-CNRS-UPVD: Bâtiment R et T, Université de Perpignan, 58 Avenue Paul Alduy, 66860, Perpignan CEDEX, France.
| |
Collapse
|
40
|
Henley EM, Bouwmeester J, Jury CP, Toonen RJ, Quinn M, Lager CV, Hagedorn M. Growth and survival among Hawaiian corals outplanted from tanks to an ocean nursery are driven by individual genotype and species differences rather than preconditioning to thermal stress. PeerJ 2022; 10:e13112. [PMID: 35345587 PMCID: PMC8957268 DOI: 10.7717/peerj.13112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
The drastic decline in coral coverage has stimulated an interest in reef restoration, and various iterations of coral nurseries have been used to augment restoration strategies. Here we examine the growth of two species of Hawaiian Montipora that were maintained in mesocosms under either ambient or warmed annual bleaching conditions for two consecutive years prior to outplanting to determine whether preconditioning aided coral restoration efforts. Using coral trees to create a nearby ocean nursery, we examined whether: (1) previous ex situ mesocosm growth would mirror in situ coral tree nursery growth; and (2) thermal ex situ stress-hardening would predict future success during natural warming events in situ for corals moved from tanks to trees. For Montipora capitata, we found that variation in growth was explained primarily by genotype; growth rates in the mesocosms were similar to those in situ, irrespective of preconditioning. Variation in M. flabellata growth, however, was explained by both genotype and culture method such that an individual M. flabellata colony that grew well in the tanks did not necessarily perform as well on the coral trees. For both species, previous exposure to elevated temperatures in the mesocosms provided no benefit to either growth or survival during a warming event in the coral tree nursery compared to those grown in ambient temperatures. Overall, M. capitata performed better in the tree nursery with higher net growth, lower mortality, and was subject to less predation than M. flabellata. Our results show little benefit of the additional cost and time of stress-hardening these corals prior to outplanting because it is unlikely to aid resilience to future warming events. These results also suggest that selecting corals for restoration based on long-term genotype growth performance may be more effective for optimal outcomes but should be weighed against other factors, such as coral morphology, in situ nursery method, location, and other characteristics.
Collapse
Affiliation(s)
- E. Michael Henley
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, Virginia, United States,Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Jessica Bouwmeester
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, Virginia, United States,Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Christopher P. Jury
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Robert J. Toonen
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Mariko Quinn
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, Virginia, United States,Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Claire V.A. Lager
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, Virginia, United States,Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Mary Hagedorn
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, Virginia, United States,Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| |
Collapse
|
41
|
Weeriyanun P, Collins RB, Macadam A, Kiff H, Randle JL, Quigley KM. Predicting selection-response gradients of heat tolerance in a widespread reef-building coral. J Exp Biol 2022; 225:274382. [PMID: 35258617 DOI: 10.1242/jeb.243344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Ocean temperatures continue to rise owing to climate change, but it is unclear whether heat tolerance of marine organisms will keep pace with warming. Understanding how tolerance scales from individuals to species and quantifying adaptive potentials is essential to forecasting responses to warming. We reproductively crossed corals from a globally distributed species (Acropora tenuis) on the Great Barrier Reef (Australia) from three thermally distinct reefs to create 85 offspring lineages. Individuals were experimentally exposed to temperatures (27.5, 31 and 35.5°C) in adult and two critical early life stages (larval and settlement) to assess acquired heat tolerance via outcrossing of offspring phenotypes by comparing five physiological responses (photosynthetic yields, bleaching, necrosis, settlement and survival). Adaptive potentials and physiological reaction norms were calculated across three stages to integrate heat tolerance at different biological scales. Selective breeding improved larval survival to heat by 1.5-2.5× but did not result in substantial enhancement of settlement, although population crosses were significantly different. Under heat stress, adults were less variable compared with larval responses in warmer reefs than in the cooler reef. Adults and offspring also differed in their mean population responses, likely underpinned by heat stress imposing strong divergent selection on adults. These results have implications for downstream selection during reproduction, evidenced by variability in a conserved heat tolerance response across offspring lineages. These results inform our ability to forecast the impacts of climate change on wild populations of corals and will aid in developing novel conservation tools such as the assisted evolution of at-risk species.
Collapse
Affiliation(s)
- Ponchanok Weeriyanun
- Australian Institute of Marine Science, Townsville 4810, Australia.,Ghent University, Sint-Pietersnieuwstraat 33, 9000 Gent, Belgium
| | - Rachael B Collins
- Australian Institute of Marine Science, Townsville 4810, Australia.,University of Plymouth, Plymouth PL4 8AA, UK
| | - Alex Macadam
- Australian Institute of Marine Science, Townsville 4810, Australia
| | - Hugo Kiff
- Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Janna L Randle
- Australian Institute of Marine Science, Townsville 4810, Australia
| | - Kate M Quigley
- Australian Institute of Marine Science, Townsville 4810, Australia
| |
Collapse
|
42
|
Miller MW, Latijnhouwers KRW, Bickel A, Mendoza‐Quiroz S, Schick M, Burton K, Banaszak AT. Settlement yields in large‐scale in situ culture of Caribbean coral larvae for restoration. Restor Ecol 2022. [DOI: 10.1111/rec.13512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Kelly R. W. Latijnhouwers
- SECORE International, 4673 Northwest Pkwy. Hilliard OH 43026 U.S.A
- CARMABI Foundation. P.O. Box 2090 Willemstad Curaçao
| | - Aric Bickel
- SECORE International, 4673 Northwest Pkwy. Hilliard OH 43026 U.S.A
| | - Sandra Mendoza‐Quiroz
- SECORE International, 4673 Northwest Pkwy. Hilliard OH 43026 U.S.A
- Unidad Académica de Sistemas Arrecifales Universidad Nacional Autónoma de México, Prol. Av. Niños Héroes S/N, Puerto Morelos, Quintana Roo, C.P. 77580, Mexico
| | - Mark Schick
- John G. Shedd Aquarium, 1200 S. Lake Shore Drive Chicago, IL 60605, U.S.A
| | - Keoki Burton
- John G. Shedd Aquarium, 1200 S. Lake Shore Drive Chicago, IL 60605, U.S.A
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales Universidad Nacional Autónoma de México, Prol. Av. Niños Héroes S/N, Puerto Morelos, Quintana Roo, C.P. 77580, Mexico
| |
Collapse
|
43
|
Contingency planning for coral reefs in the Anthropocene; The potential of reef safe havens. Emerg Top Life Sci 2022; 6:107-124. [PMID: 35225326 DOI: 10.1042/etls20210232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/07/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
Reducing the global reliance on fossil fuels is essential to ensure the long-term survival of coral reefs, but until this happens, alternative tools are required to safeguard their future. One emerging tool is to locate areas where corals are surviving well despite the changing climate. Such locations include refuges, refugia, hotspots of resilience, bright spots, contemporary near-pristine reefs, and hope spots that are collectively named reef 'safe havens' in this mini-review. Safe havens have intrinsic value for reefs through services such as environmental buffering, maintaining near-pristine reef conditions, or housing corals naturally adapted to future environmental conditions. Spatial and temporal variance in physicochemical conditions and exposure to stress however preclude certainty over the ubiquitous long-term capacity of reef safe havens to maintain protective service provision. To effectively integrate reef safe havens into proactive reef management and contingency planning for climate change scenarios, thus requires an understanding of their differences, potential values, and predispositions to stress. To this purpose, I provide a high-level review on the defining characteristics of different coral reef safe havens, how they are being utilised in proactive reef management and what risk and susceptibilities they inherently have. The mini-review concludes with an outline of the potential for reef safe haven habitats to support contingency planning of coral reefs under an uncertain future from intensifying climate change.
Collapse
|
44
|
Horizon scan of rapidly advancing coral restoration approaches for 21st century reef management. Emerg Top Life Sci 2022; 6:125-136. [PMID: 35119476 PMCID: PMC9023016 DOI: 10.1042/etls20210240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Coral reef restoration activity is accelerating worldwide in efforts to offset the rate of reef health declines. Many advances have already been made in restoration practices centred on coral biology (coral restoration), and particularly those that look to employ the high adaptive state and capacity of corals in order to ensure that efforts rebuilding coral biomass also equip reefs with enhanced resilience to future stress. We horizon scan the state-of-play for the many coral restoration innovations already underway across the complex life cycle for corals that spans both asexual and sexual reproduction — assisted evolution (manipulations targeted to the coral host and host-associated microbes), biobanking, as well as scalable coral propagation and planting — and how these innovations are in different stages of maturity to support new 21st century reef management frameworks. Realising the potential for coral restoration tools as management aids undoubtedly rests on validating different approaches as their application continues to scale. Whilst the ecosystem service responses to increased scaling still largely remain to be seen, coral restoration has already delivered immense new understanding of coral and coral-associated microbial biology that has long lagged behind advances in other reef sciences.
Collapse
|
45
|
Baker LJ, Reich HG, Kitchen SA, Grace Klinges J, Koch HR, Baums IB, Muller EM, Thurber RV. The coral symbiont Candidatus Aquarickettsia is variably abundant in threatened Caribbean acroporids and transmitted horizontally. THE ISME JOURNAL 2022; 16:400-411. [PMID: 34363004 PMCID: PMC8776821 DOI: 10.1038/s41396-021-01077-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The symbiont "Candidatus Aquarickettsia rohweri" infects a diversity of aquatic hosts. In the threatened Caribbean coral, Acropora cervicornis, Aquarickettsia proliferates in response to increased nutrient exposure, resulting in suppressed growth and increased disease susceptibility and mortality of coral. This study evaluated the extent, as well as the ecology and evolution of Aquarickettsia infecting threatened corals, Ac. cervicornis, and Ac. palmata and their hybrid ("Ac. prolifera"). Aquarickettsia was found in all acroporids, with coral host and geographic location impacting the infection magnitude. Phylogenomic and genome-wide single-nucleotide variant analysis of Aquarickettsia found phylogenetic clustering by geographic region, not by coral taxon. Analysis of Aquarickettsia fixation indices suggests multiple sequential infections of the same coral colony are unlikely. Furthermore, relative to other Rickettsiales species, Aquarickettsia is undergoing positive selection, with Florida populations experiencing greater positive selection relative to other Caribbean locations. This may be due in part to Aquarickettsia proliferating in response to greater nutrient stress in Florida, as indicated by greater in situ replication rates in these corals. Aquarickettsia was not found to significantly codiversify with either the coral animal or the coral's algal symbiont (Symbiodinium "fitti"). Quantitative PCR analysis showed that gametes, larvae, recruits, and juveniles from susceptible, captive-reared coral genets were not infected with Aquarickettsia. Thus, horizontal transmission of Aquarickettsia via coral mucocytes or an unidentified host is more likely. The prevalence of Aquarickettsia in Ac. cervicornis and its high abundance in the Florida coral population suggests that coral disease mitigation efforts focus on preventing early infection via horizontal transmission.
Collapse
Affiliation(s)
- Lydia J Baker
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.
| | - Hannah G Reich
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sheila A Kitchen
- Division of Biology and Biological Engineering, California Institute of Science and Technology, Pasadena, CA, USA
| | - J Grace Klinges
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Hanna R Koch
- Coral Restoration Program, Mote Marine Laboratory, Summerland Key, FL, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Erinn M Muller
- Coral Restoration Program, Mote Marine Laboratory, Summerland Key, FL, USA
| | | |
Collapse
|
46
|
The Effects of Depth-Related Environmental Factors on Traits in Acropora cervicornis Raised in Nurseries. WATER 2022. [DOI: 10.3390/w14020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Populations of Acropora cervicornis, one of the most important reef-building corals in the Caribbean, have been declining due to human activities and global climate change. This has prompted the development of strategies such as coral farms, aimed at improving the long-term viability of this coral across its geographical range. This study focuses on comprehending how seawater temperature (ST), and light levels (LL) affect the survival and growth of A. cervicornis fragments collected from three reefs in Culebra, Puerto Rico. These individuals were fragmented into three pieces of the similar sizes and placed in farms at 5, 8, and 12 m depth. The fragments, ST and LL were monitored for 11 months. Results show that fragments from shallow farms exhibit significantly higher mortalities when compared to the other two depths. Yet, growth at shallow farms was nearly 24% higher than at the other two depths. Corals grew fastest during winter, when temperature and LL were lowest, regardless of the water depth. Fragment mortality and growth origin were also influenced by reef origin. We conclude that under the current conditions, shallow farms may offer a slight advantage over deep ones provided the higher growth rate at shallow farms and the high fragment survival at all depths.
Collapse
|
47
|
Chen Z, Grossfurthner L, Loxterman JL, Masingale J, Richardson BA, Seaborn T, Smith B, Waits LP, Narum SR. Applying genomics in assisted migration under climate change: Framework, empirical applications, and case studies. Evol Appl 2022; 15:3-21. [PMID: 35126645 PMCID: PMC8792483 DOI: 10.1111/eva.13335] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/01/2022] Open
Abstract
The rate of global climate change is projected to outpace the ability of many natural populations and species to adapt. Assisted migration (AM), which is defined as the managed movement of climate-adapted individuals within or outside the species ranges, is a conservation option to improve species' adaptive capacity and facilitate persistence. Although conservation biologists have long been using genetic tools to increase or maintain diversity of natural populations, genomic techniques could add extra benefit in AM that include selectively neutral and adaptive regions of the genome. In this review, we first propose a framework along with detailed procedures to aid collaboration among scientists, agencies, and local and regional managers during the decision-making process of genomics-guided AM. We then summarize the genomic approaches for applying AM, followed by a literature search of existing incorporation of genomics in AM across taxa. Our literature search initially identified 729 publications, but after filtering returned only 50 empirical studies that were either directly applied or considered genomics in AM related to climate change across taxa of plants, terrestrial animals, and aquatic animals; 42 studies were in plants. This demonstrated limited application of genomic methods in AM in organisms other than plants, so we provide further case studies as two examples to demonstrate the negative impact of climate change on non-model species and how genomics could be applied in AM. With the rapidly developing sequencing technology and accumulating genomic data, we expect to see more successful applications of genomics in AM, and more broadly, in the conservation of biodiversity.
Collapse
Affiliation(s)
- Zhongqi Chen
- Aquaculture Research InstituteUniversity of IdahoHagermanIdahoUSA
| | - Lukas Grossfurthner
- Bioinformatics and Computational Biology Graduate ProgramUniversity of IdahoHagermanIdahoUSA
| | - Janet L. Loxterman
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | | | | | - Travis Seaborn
- Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Brandy Smith
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | - Lisette P. Waits
- Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| |
Collapse
|
48
|
Turnham KE, Wham DC, Sampayo E, LaJeunesse TC. Mutualistic microalgae co-diversify with reef corals that acquire symbionts during egg development. THE ISME JOURNAL 2021; 15:3271-3285. [PMID: 34012104 PMCID: PMC8528872 DOI: 10.1038/s41396-021-01007-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
The application of molecular genetics has reinvigorated and improved how species are defined and investigated scientifically, especially for morphologically cryptic micro-organisms. Here we show how species recognition improves understanding of the ecology and evolution of mutualisms between reef-building corals and their mutualistic dinoflagellates (i.e. Symbiodiniaceae). A combination of genetic, ecological, and morphological evidence defines two sibling species of Cladocopium (formerly Symbiodinium Clade C), specific only to host corals in the common genus Pocillopora, which transmit their obligate symbionts during oogenesis. Cladocopium latusorum sp. nov. is symbiotic with P. grandis/meandrina while the smaller-celled C. pacificum sp. nov. associates with P. verrucosa. Both symbiont species form mutualisms with Pocillopora that brood their young. Populations of each species, like their hosts, are genetically well connected across the tropical and subtropical Pacific Ocean, indicating a capacity for long-range dispersal. A molecular clock approximates their speciation during the late Pliocene or early Pleistocene as Earth underwent cycles of precipitous cooling and warming; and corresponds to when their hosts were also diversifying. The long temporal and spatial maintenance of high host fidelity, as well as genetic connectivity across thousands of kilometers, indicates that distinct ecological attributes and close evolutionary histories will restrain the adaptive responses of corals and their specialized symbionts to rapid climate warming.
Collapse
Affiliation(s)
| | - Drew C Wham
- Penn State University, University Park, PA, USA
| | | | - Todd C LaJeunesse
- Penn State University, University Park, PA, USA.
- Penn State Institutes of Energy and the Environment, University Park, PA, USA.
| |
Collapse
|
49
|
Cunning R, Parker KE, Johnson-Sapp K, Karp RF, Wen AD, Williamson OM, Bartels E, D'Alessandro M, Gilliam DS, Hanson G, Levy J, Lirman D, Maxwell K, Million WC, Moulding AL, Moura A, Muller EM, Nedimyer K, Reckenbeil B, van Hooidonk R, Dahlgren C, Kenkel C, Parkinson JE, Baker AC. Census of heat tolerance among Florida's threatened staghorn corals finds resilient individuals throughout existing nursery populations. Proc Biol Sci 2021; 288:20211613. [PMID: 34666521 DOI: 10.1098/rspb.2021.1613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The rapid loss of reef-building corals owing to ocean warming is driving the development of interventions such as coral propagation and restoration, selective breeding and assisted gene flow. Many of these interventions target naturally heat-tolerant individuals to boost climate resilience, but the challenges of quickly and reliably quantifying heat tolerance and identifying thermotolerant individuals have hampered implementation. Here, we used coral bleaching automated stress systems to perform rapid, standardized heat tolerance assays on 229 colonies of Acropora cervicornis across six coral nurseries spanning Florida's Coral Reef, USA. Analysis of heat stress dose-response curves for each colony revealed a broad range in thermal tolerance among individuals (approx. 2.5°C range in Fv/Fm ED50), with highly reproducible rankings across independent tests (r = 0.76). Most phenotypic variation occurred within nurseries rather than between them, pointing to a potentially dominant role of fixed genetic effects in setting thermal tolerance and widespread distribution of tolerant individuals throughout the population. The identification of tolerant individuals provides immediately actionable information to optimize nursery and restoration programmes for Florida's threatened staghorn corals. This work further provides a blueprint for future efforts to identify and source thermally tolerant corals for conservation interventions worldwide.
Collapse
Affiliation(s)
- Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, USA
| | - Katherine E Parker
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, USA
| | - Kelsey Johnson-Sapp
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Richard F Karp
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Alexandra D Wen
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Olivia M Williamson
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Erich Bartels
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL, USA
| | | | - David S Gilliam
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, USA
| | - Grace Hanson
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, USA
| | - Jessica Levy
- Coral Restoration Foundation, Key Largo, FL, USA
| | - Diego Lirman
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Kerry Maxwell
- Florida Fish and Wildlife Conservation, Marathon, FL, USA
| | - Wyatt C Million
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alison L Moulding
- Protected Resources Division, NOAA Fisheries Southeast Regional Office, St Petersburg, FL, USA
| | - Amelia Moura
- Coral Restoration Foundation, Key Largo, FL, USA
| | - Erinn M Muller
- Coral Health and Disease Program, Mote Marine Laboratory, Sarasota, FL, USA
| | | | | | - Ruben van Hooidonk
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.,Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USA
| | | | - Carly Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John E Parkinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Andrew C Baker
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| |
Collapse
|
50
|
Assisted gene flow using cryopreserved sperm in critically endangered coral. Proc Natl Acad Sci U S A 2021; 118:2110559118. [PMID: 34493583 PMCID: PMC8463791 DOI: 10.1073/pnas.2110559118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/06/2021] [Indexed: 12/30/2022] Open
Abstract
Global change threatens the genetic diversity of economically important and foundational ecosystem-building species such as corals. We tested whether cryopreserved coral sperm could be used to transfer genetic diversity among genetically isolated populations of the critically endangered Caribbean elkhorn coral, Acropora palmata. Here we report successful assisted gene flow (AGF) in corals using cryopreserved sperm, yielding the largest living wildlife population ever created from cryopreserved cells. Furthermore, we produced direct evidence that genetically distinct populations of Caribbean coral can interbreed. Thus, we demonstrated that sperm cryopreservation can enable efficient, large-scale AGF in corals. This form of assisted genetic migration can enhance genetic diversity and help critically endangered species adapt to local environments in the face of rapid global change. Assisted gene flow (AGF) is a conservation intervention to accelerate species adaptation to climate change by importing genetic diversity into at-risk populations. Corals exemplify both the need for AGF and its technical challenges; corals have declined in abundance, suffered pervasive reproductive failures, and struggled to adapt to climate change, yet mature corals cannot be easily moved for breeding, and coral gametes lose viability within hours. Here, we report the successful demonstration of AGF in corals using cryopreserved sperm that was frozen for 2 to 10 y. We fertilized Acropora palmata eggs from the western Caribbean (Curaçao) with cryopreserved sperm from genetically distinct populations in the eastern and central Caribbean (Florida and Puerto Rico, respectively). We then confirmed interpopulation parentage in the Curaçao–Florida offspring using 19,696 single-nucleotide polymorphism markers. Thus, we provide evidence of reproductive compatibility of a Caribbean coral across a recognized barrier to gene flow. The 6-mo survival of AGF offspring was 42%, the highest ever achieved in this species, yielding the largest wildlife population ever raised from cryopreserved material. By breeding a critically endangered coral across its range without moving adults, we show that AGF using cryopreservation is a viable conservation tool to increase genetic diversity in threatened marine populations.
Collapse
|