1
|
Ueffing M, Langeheine M, Gniesmer S, Rode K, Staggenborg S, Wirth G, Rohn K, Koch R, Blume I, Pfarrer C, Wrede C, Brehm R. The impact of Connexin 43 deficiency on the cell shape and cytoskeleton of murine Sertoli cells: A house with ramshackle walls? PLoS One 2025; 20:e0321292. [PMID: 40273151 PMCID: PMC12021162 DOI: 10.1371/journal.pone.0321292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/03/2025] [Indexed: 04/26/2025] Open
Abstract
Genetically induced loss of the gap-junction protein Connexin 43 (Cx43) in murine Sertoli cells leads to an arrest of spermatogenesis at the level of spermatogonia, highly vacuolated tubules, and intratubular cell clusters. Transmission electron microscopy as well as 3D-reconstruction of Sertoli cells based on serial block-face scanning electron microscopy imaging revealed severe cell shape changes in Cx43 deficient Sertoli cells. Since the cytoskeleton is important for the transport of germ cells within the seminiferous epithelium and for keeping the cell shape, the study at hand aimed to reveal correlations of Cx43 loss and changes of cytoskeletal components and their spatial organization in the seminiferous epithelium. Immunohistochemistry, immunofluorescence, conventional transmission electron microcopy and immunogold labeling indicated alterations in microtubule and actin filament distribution patterns in Cx43 deficient Sertoli cells compared to wildtype mice. Firstly, microtubules seemed to be misoriented in mutant Sertoli cells. Secondly, the actin filament based basal ectoplasmic specializations were increased in spatial extension, but the apical ectoplasmic specialization was missing. Lastly, Sertoli cells of both genotypes immunostained positive for vimentin, the prevalent intermediate filament of Sertoli cells, but not for keratins, markers for Sertoli cell immaturity or dedifferentiation. In conclusion, Cx43 deficiency in Sertoli cells correlates not only with severe cell shape alterations but also with changes in microtubule and actin filament distribution patterns, while intermediate filament expression seems to be only negligibly influenced.
Collapse
Affiliation(s)
- Mareike Ueffing
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Marion Langeheine
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sarah Gniesmer
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Kristina Rode
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sarah Staggenborg
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Gudrun Wirth
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Kerstin Rohn
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Rüdiger Koch
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ines Blume
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christiane Pfarrer
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christoph Wrede
- Research Core Unit Electron Microscopy, Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Ralph Brehm
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
2
|
Saito T, Espe M, Mommens M, Bock C, Fernandes JM, Skjærven KH. Altered spawning seasons of Atlantic salmon broodstock transcriptionally and epigenetically influence cell cycle and lipid-mediated regulations in their offspring. PLoS One 2025; 20:e0317770. [PMID: 39992963 PMCID: PMC11849821 DOI: 10.1371/journal.pone.0317770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/03/2025] [Indexed: 02/26/2025] Open
Abstract
Manipulating spawning seasons of Atlantic salmon (Salmo salar) is a common practice to facilitate year-round harvesting in salmon aquaculture. This process involves adjusting water temperature and light regime to control female broodstock maturation. However, recent studies have indicated that altered spawning seasons can significantly affect the nutritional status and growth performance of the offspring. Therefore, gaining a deeper understanding of the biological regulations influenced by these alterations is crucial to enhance the growth performance of fish over multiple generations. In this study, we investigated omics data from four different spawning seasons achieved through recirculating aquaculture systems (RAS) and sea-pen-based approaches. In addition to the normal spawning season in November (sea-pen), three altered seasons were designated: off-season (five-month advance, RAS), early season (two-month advance, sea-pen), and late season (two-month delay, sea-pen). We conducted comprehensive gene expression and DNA methylation analysis on liver samples collected from the start-feeding larvae of the next generation. Our results revealed distinct gene expression and DNA methylation patterns associated with the altered spawning seasons. Specifically, offspring from RAS-based off-season exhibited altered lipid-mediated regulation, while those from sea-pen-based early and late seasons showed changes in cellular processes, particularly in cell cycle regulation when compared to the normal season. The consequences of our findings are significant for growth and health, potentially providing information for developing valuable tools for assessing growth potential and optimizing production strategies in aquaculture.
Collapse
Affiliation(s)
| | - Marit Espe
- Institute of Marine Research, Bergen, Norway
| | | | - Christoph Bock
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | |
Collapse
|
3
|
Tihy M, Lin-Marq N, Berney T, Spahr L, Rubbia-Brandt L, Elkrief L. Impact of Keratins 8 and 18 Genetic Variants on the Severity of Alcoholic Liver Disease. J Transl Med 2024; 104:102133. [PMID: 39278623 DOI: 10.1016/j.labinv.2024.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024] Open
Abstract
Alcohol-related liver disease (ALD) affects ∼30% of heavy drinkers and is characterized by liver steatosis, fibrosis, and steatohepatitis. The aggregation of keratins 8 (KRT8) and 18 (KRT18) plays a key role in the formation of Mallory-Denk bodies, a hallmark of ALD. Circulating levels of KRT18 fragments are elevated during ALD, and several KRT8/18 genetic variants have been linked to an increased risk of liver disease. In this study, we explored the relationship between the histologic features of ALD and genetic variants of KRT8/18 in 106 severe patients with ALD from the Hôpitaux Universitaires de Genève. We found a significant over-representation of several KRT8 (rs2070910, rs137898974, rs1065306) and KRT18 (rs17120866, rs1492241) variants located in the noncoding regions of these genes. Increased circulating level of keratins 18 fragments were associated with rs17120866 and alcoholic hepatitis. The combination of several KRT18 variants appeared associated with a poorer prognosis. These results highlight the possible role of KRT18 variants in ALD.
Collapse
Affiliation(s)
- Matthieu Tihy
- Clinical Pathology Division, University Hospitals, Geneva, Switzerland; Clinical Pathology Division, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Nathalie Lin-Marq
- Clinical Pathology Division, University Hospitals, Geneva, Switzerland
| | - Thierry Berney
- Gastroenterology Division, University Hospitals, Geneva, Switzerland
| | - Laurent Spahr
- Gastroenterology Division, University Hospitals, Geneva, Switzerland
| | | | - Laure Elkrief
- Gastroenterology Division, University Hospitals, Geneva, Switzerland; Gastroenterology Division, Tours University Hospital, France
| |
Collapse
|
4
|
Coelho-Rato LS, Parvanian S, Andrs Salajkova S, Medalia O, Eriksson JE. Intermediate filaments at a glance. J Cell Sci 2024; 137:jcs261386. [PMID: 39206824 DOI: 10.1242/jcs.261386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Intermediate filaments (IFs) comprise a large family of versatile cytoskeletal proteins, divided into six subtypes with tissue-specific expression patterns. IFs have a wide repertoire of cellular functions, including providing structural support to cells, as well as active roles in mechanical support and signaling pathways. Consequently, defects in IFs are associated with more than 100 diseases. In this Cell Science at a Glance article, we discuss the established classes of IFs and their general features, their functions beyond structural support, and recent advances in the field. We also highlight their involvement in disease and potential use as clinical markers of pathological conditions. Finally, we provide our view on current knowledge gaps and the future directions of the IF field.
Collapse
Affiliation(s)
- Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Sarka Andrs Salajkova
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
- Euro-Bioimaging ERIC, 20520 Turku, Finland
| |
Collapse
|
5
|
Baghestani S, Haldin C, Kosijer P, Alam CM, Toivola DM. β-Cell keratin 8 maintains islet mechanical integrity, mitochondrial ultrastructure, and β-cell glucose transporter 2 plasma membrane targeting. Am J Physiol Cell Physiol 2024; 327:C462-C476. [PMID: 38912736 DOI: 10.1152/ajpcell.00123.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Islet β-cell dysfunction is an underlying factor for type I diabetes (T1D) development. Insulin sensing and secretion are tightly regulated in β-cells at multiple subcellular levels. The epithelial intermediate filament (IF) protein keratin (K) 8 is the main β-cell keratin, constituting the filament network with K18. To identify the cell-autonomous functions of K8 in β-cells, mice with targeted deletion of β-cell K8 (K8flox/flox; Ins-Cre) were analyzed for islet morphology, ultrastructure, and integrity, as well as blood glucose regulation and streptozotocin (STZ)-induced diabetes development. Glucose transporter 2 (GLUT2) localization was studied in β-cells in vivo and in MIN6 cells with intact or disrupted K8/K18 filaments. Loss of β-cell K8 leads to a major reduction in K18. Islets without β-cell K8 are more fragile, and these β-cells display disjointed plasma membrane organization with less membranous E-cadherin and smaller mitochondria with diffuse cristae. Lack of β-cell K8 also leads to a reduced glucose-stimulated insulin secretion (GSIS) response in vivo, despite undisturbed systemic blood glucose regulation. K8flox/flox, Ins-Cre mice have a decreased sensitivity to STZ compared with K8 wild-type mice, which is in line with decreased membranous GLUT2 expression observed in vivo, as GLUT2 is required for STZ uptake in β-cells. In vitro, MIN6 cell plasma membrane GLUT2 is rescued in cells overexpressing K8/K18 filaments but mistargeted in cells with disrupted K8/K18 filaments. β-Cell K8 is required for islet and β-cell structural integrity, normal mitochondrial morphology, and GLUT2 plasma membrane targeting, and has implications on STZ sensitivity as well as systemic insulin responses.NEW & NOTEWORTHY Keratin 8 is the main cytoskeletal protein in the cytoplasmic intermediate filament network in β-cells. Here for the first time, we assessed the β-cell autonomous mechanical and nonmechanical roles of keratin 8 in β-cell function. We demonstrated the importance of keratin 8 in islet and β-cell structural integrity, maintaining mitochondrial morphology and GLUT2 plasma membrane targeting.
Collapse
Affiliation(s)
- Sarah Baghestani
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Caroline Haldin
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Petar Kosijer
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Catharina M Alam
- School of Applied Sciences, Edinburgh Napier University, Edinburg, United Kingdom
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Shagidulin M, Onishchenko N, Sevastianov V, Krasheninnikov M, Lyundup A, Nikolskaya A, Kryzhanovskaya A, Voznesenskaia S, Gorelova M, Perova N, Kozlov I, Venediktov A, Piavchenko G, Gautier S. Experimental Correction and Treatment of Chronic Liver Failure Using Implantable Cell-Engineering Constructs of the Auxiliary Liver Based on a Bioactive Heterogeneous Biopolymer Hydrogel. Gels 2023; 9:456. [PMID: 37367127 DOI: 10.3390/gels9060456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Our study sought approaches for chronic liver failure (CLF) treatment and correction via cell-engineered constructs (CECs). They are built from biopolymer-based, microstructured, and collagen-containing hydrogel (BMCG). We also strove to evaluate the functional activity of BMCG in liver regeneration. MATERIALS AND METHODS Allogeneic liver cells (namely, hepatocytes; LC) together with mesenchymal multipotent stem cells of bone marrow origin (MMSC BM; BMSCs) were adhered to our BMCG to compose implanted liver CECs. Thereafter, we investigated a model of CLF in rats receiving the implanted CECs. The CLF had been provoked by long-term exposure to carbon tetrachloride. The study comprised male Wistar rats (n = 120) randomized into 3 groups: Group 1 was a control group with the saline treatment of the hepatic parenchyma (n = 40); Group 2 received BMCG only (n = 40); and Group 3 was loaded with CECs implanted into the parenchyma of their livers (n = 40). August rats (n = 30) made up a donor population for LCs and MMSC BM to develop grafts for animals from Group 3. The study length was 90 days. RESULTS CECs were shown to affect both biochemical test values and morphological parameters in rats with CLF. CONCLUSION We found BMCG-derived CECs to be operational and active, with regenerative potential. Group 3 showed significant evidence of forced liver regeneration that tended to persist until the end of the study (day 90). The phenomenon is reflected by biochemical signs of hepatic functional recovery by day 30 after grafting (compared to Groups 1 and 2), whereas structural features of liver repair (necrosis prevention, missing formation of vacuoles, degenerating LC number decrease, and delay of hepatic fibrotic transformation). Such implantation of BMCG-derived CECs with allogeneic LCs and MMSC BM might represent a proper option to correct and treat CLF, as well as to maintain affected liver function in patients with liver grafting needed.
Collapse
Affiliation(s)
- Murat Shagidulin
- Federal State Budgetary Institution "Shumakov National Medical Research Centre of Transplantology and Artificial Organs" of the Ministry of Health of the Russian Federation, 123182 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education, "I.M. Sechenov First Moscow State Medical University" of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia
| | - Nina Onishchenko
- Federal State Budgetary Institution "Shumakov National Medical Research Centre of Transplantology and Artificial Organs" of the Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Victor Sevastianov
- Federal State Budgetary Institution "Shumakov National Medical Research Centre of Transplantology and Artificial Organs" of the Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Mikhail Krasheninnikov
- Research and Education Resource Centre for Cellular Technologies, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- M.V. Lomonosov Moscow State Academy of Fine Chemical Technology (MITKhT), 119571 Moscow, Russia
| | - Aleksey Lyundup
- Research and Education Resource Centre for Cellular Technologies, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Alla Nikolskaya
- Federal State Budgetary Institution "Shumakov National Medical Research Centre of Transplantology and Artificial Organs" of the Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Alena Kryzhanovskaya
- Federal State Autonomous Educational Institution of Higher Education, "I.M. Sechenov First Moscow State Medical University" of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia
| | - Sofia Voznesenskaia
- Federal State Autonomous Educational Institution of Higher Education, "I.M. Sechenov First Moscow State Medical University" of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia
| | - Mariia Gorelova
- Federal State Autonomous Educational Institution of Higher Education, "I.M. Sechenov First Moscow State Medical University" of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia
| | - Nadezhda Perova
- ANO "Institute Biomedical Research and Technology", 123557 Moscow, Russia
| | - Igor Kozlov
- Federal State Autonomous Educational Institution of Higher Education, "I.M. Sechenov First Moscow State Medical University" of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia
| | - Artem Venediktov
- Federal State Autonomous Educational Institution of Higher Education, "I.M. Sechenov First Moscow State Medical University" of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia
| | - Gennadii Piavchenko
- Federal State Autonomous Educational Institution of Higher Education, "I.M. Sechenov First Moscow State Medical University" of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia
| | - Sergey Gautier
- Federal State Budgetary Institution "Shumakov National Medical Research Centre of Transplantology and Artificial Organs" of the Ministry of Health of the Russian Federation, 123182 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education, "I.M. Sechenov First Moscow State Medical University" of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
7
|
Kang X, Shimada S, Miyahara H, Higuchi K, Mori M. BALB.NCT-Cpox is a unique mouse model of hereditary coproporphyria. Mol Genet Metab Rep 2023; 35:100964. [PMID: 36967721 PMCID: PMC10036863 DOI: 10.1016/j.ymgmr.2023.100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
In humans, mutations in the coproporphyrinogen oxidase (CPOX) gene can result in hereditary coproporphyria (HCP), characterized by high levels of coproporphyrin excretion in the urine and feces, as well as acute neurovisceral and chronic cutaneous manifestations. Appropriate animal models for comprehending the precise pathogenesis mechanism of HCP have not been reported that show similarities in terms of gene mutation, reduced CPOX activity, excess coproporphyrin accumulation, and clinical symptoms. As previously discovered, the BALB.NCT-Cpox nct mouse carries a hypomorphic mutation in the Cpox gene. Due to the mutation, BALB.NCT-Cpox nct had a drastic increase in coproporphyrin in the blood and liver persistently from a young age. In this study, we found that BALB.NCT-Cpox nct mice manifested HCP symptoms. Similar to HCP patients, BALB.NCT-Cpox nct excreted an excessive amount of coproporphyrin and porphyrin precursors in the urine and displayed neuromuscular symptoms, such as a lack of grip strength and impaired motor coordination. Male BALB.NCT-Cpox nct had nonalcoholic steatohepatitis (NASH)-like liver pathology and sclerodermatous skin pathology. A portion of male mice had liver tumors as well, whereas female BALB.NCT-Cpox nct lacked these hepatic and cutaneous pathologies. In addition, we discovered that BALB.NCT-Cpox nct exhibited microcytic anemia. These results indicate that BALB.NCT-Cpox nct mice serve as the suitable animal model to help gain insight into the pathogenesis and therapy of HCP.
Collapse
|
8
|
Litwinowicz K, Waszczuk E, Kuzan A, Bronowicka-Szydełko A, Gostomska-Pampuch K, Naporowski P, Gamian A. Alcoholic Liver Disease Is Associated with Elevated Plasma Levels of Novel Advanced Glycation End-Products: A Preliminary Study. Nutrients 2022; 14:nu14245266. [PMID: 36558425 PMCID: PMC9783524 DOI: 10.3390/nu14245266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Elucidating the biochemical mechanisms associated with the progression of alcoholic liver disease (ALD) to more advanced stages such as alcoholic hepatitis (AH) remains an important clinical and scientific challenge. Several hypotheses point to the involvement of advanced glycation end-products (AGEs) in alcohol-associated liver injuries. Recently, we determined the structure of a synthetic, melibiose-derived AGE (MAGE), which was an analog of the novel AGE subgroup AGE10. The primary objective of our study was to determine whether AGE10 was associated with alcoholic hepatitis. The secondary objective was to provide a diagnostic accuracy of AGE10 in AH. To achieve this objective, we examined the plasma levels of AGE10 in 65 healthy individuals and 65 patients with AH. The AGE10 level was measured using a competitive ELISA. Our study confirmed that patients with AH had significantly higher plasma concentrations of AGE10 compared with healthy controls (184.5 ± 71.1 μg/mL and 123.5 ± 44.9 μg/mL, respectively; p < 0.001). In addition, AGE10 showed an acceptable performance as a diagnostic marker of AH, with an AUC of 0.78. In conclusion, AH was associated with elevated levels of novel advanced glycation end-product AGE10.
Collapse
Affiliation(s)
- Kamil Litwinowicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence:
| | - Ewa Waszczuk
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-566 Wroclaw, Poland
| | - Aleksandra Kuzan
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | | | - Kinga Gostomska-Pampuch
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Naporowski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|
9
|
Phillips CL, Fu D, Herring LE, Armao D, Snider NT. Calpain-mediated proteolysis of vimentin filaments is augmented in giant axonal neuropathy fibroblasts exposed to hypotonic stress. Front Cell Dev Biol 2022; 10:1008542. [PMID: 36393840 PMCID: PMC9664965 DOI: 10.3389/fcell.2022.1008542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Giant Axonal Neuropathy (GAN) is a pediatric neurodegenerative disease caused by loss-of-function mutations in the E3 ubiquitin ligase adaptor gigaxonin, which is encoded by the KLHL16 gene. Gigaxonin regulates the degradation of multiple intermediate filament (IF) proteins, including neurofilaments, GFAP, and vimentin, which aggregate in GAN patient cells. Understanding how IFs and their aggregates are processed under stress can reveal new GAN disease mechanisms and potential targets for therapy. Here we tested the hypothesis that hypotonic stress-induced vimentin proteolysis is impaired in GAN. In both GAN and control fibroblasts exposed to hypotonic stress, we observed time-dependent vimentin cleavage that resulted in two prominent ∼40-45 kDa fragments. However, vimentin proteolysis occurred more rapidly and extensively in GAN cells compared to unaffected controls as both fragments were generated earlier and at 4-6-fold higher levels. To test enzymatic involvement, we determined the expression levels and localization of the calcium-sensitive calpain proteases-1 and -2 and their endogenous inhibitor calpastatin. While the latter was not affected, the expression of both calpains was 2-fold higher in GAN cells compared to control cells. Moreover, pharmacologic inhibition of calpains with MDL-28170 or MG-132 attenuated vimentin cleavage. Imaging analysis revealed striking colocalization between large perinuclear vimentin aggregates and calpain-2 in GAN fibroblasts. This colocalization was dramatically altered by hypotonic stress, where selective breakdown of filaments over aggregates occurred rapidly in GAN cells and coincided with calpain-2 cytoplasmic redistribution. Finally, mass spectrometry-based proteomics revealed that phosphorylation at Ser-412, located at the junction between the central "rod" domain and C-terminal "tail" domain on vimentin, is involved in this stress response. Over-expression studies using phospho-deficient and phospho-mimic mutants revealed that Ser-412 is important for filament organization, solubility dynamics, and vimentin cleavage upon hypotonic stress exposure. Collectively, our work reveals that osmotic stress induces calpain- and proteasome-mediated vimentin degradation and IF network breakdown. These effects are significantly augmented in the presence of disease-causing KLHL16 mutations that alter intermediate filament organization. While the specific roles of calpain-generated vimentin IF fragments in GAN cells remain to be defined, this proteolytic pathway is translationally-relevant to GAN because maintaining osmotic homeostasis is critical for nervous system function.
Collapse
Affiliation(s)
- Cassandra L. Phillips
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dong Fu
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Diane Armao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Natasha T. Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,*Correspondence: Natasha T. Snider,
| |
Collapse
|
10
|
Jolayemi AK, Adeyemi DO, Awoniran PO. Lead nitrate toxicity: its effects on hepatic extracellular matrix fibers, filamentous cytoskeleton and the mitigative potentials of Morinda lucida extract. Vet Anim Sci 2022; 17:100260. [PMID: 35800154 PMCID: PMC9253832 DOI: 10.1016/j.vas.2022.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Lead nitrate accumulation cause severe deleterious effect on the cellular and cytoskeletal structure of the liver. Efficacy of Morinda lucida, a medicinal plant, in the mitigation of lead nitrate-induced cellular, cytoskeletal and extracellular alterations in the liver was investigated in Wistar rats. Morinda lucida significantly reversed lead-nitrate-induced hepatocellular, cytoskeletal and extracellular changes in Wistar rats. Possible ameliorative property of Morinda lucida could be due to the antioxidant and membrane stabilizing properties of its phenolic compounds.
In this study, the effect of orally administered methanolic extract of Morinda lucida stem bark (MLSB) was tested for its efficacy to reverse lead nitrate-induced hepatotoxicity in Wistar rats. Thirty-six female rats were assigned into six groups (n = 6). Rats in group I received 2.2 mL/kg distilled water for 28 days, those in group II received 30 mg/kg lead nitrate for 14 days while those in groups III to VI received 30 mg/kg lead nitrate for 14 days followed by a treatment with 100, 250, 500 mg/kg BW MLSB extract and 0.2 mL/100 kg rats silymarin respectively for 14 days. They were sacrificed after 28 days after which biochemical, histological, and immunohistochemical parameters were examined. The results of this study showed a reduction of catalase and superoxide dismutase activities by lead nitrate. Deranged hepatic histomorphology was also observed intracellularly and extracellularly in lead nitrate-treated rats. Altered vimentin arrangement was also observed in lead nitrate-treated rats. However, 250 mg/kg BW dose of Morinda lucida significantly reversed some of these changes while the 500 mg had some toxic effect on liver tissue. We concluded that the extract at 250mg/kg BW dose may be a potential treatment for conditions associated with lead toxicity and other metallic particles.
Collapse
|
11
|
Krüger M, Samsom RA, Oosterhoff LA, van Wolferen ME, Kooistra HS, Geijsen N, Penning LC, Kock LM, Sainz-Arnal P, Baptista PM, Spee B. High level of polarized engraftment of porcine intrahepatic cholangiocyte organoids in decellularized liver scaffolds. J Cell Mol Med 2022; 26:4949-4958. [PMID: 36017767 PMCID: PMC9549510 DOI: 10.1111/jcmm.17510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/30/2022] [Accepted: 07/23/2022] [Indexed: 12/01/2022] Open
Abstract
In Europe alone, each year 5500 people require a life-saving liver transplantation, but 18% die before receiving one due to the shortage of donor organs. Whole organ engineering, utilizing decellularized liver scaffolds repopulated with autologous cells, is an attractive alternative to increase the pool of available organs for transplantation. The development of this technology is hampered by a lack of a suitable large-animal model representative of the human physiology and a reliable and continuous cell source. We have generated porcine intrahepatic cholangiocyte organoids from adult stem cells and demonstrate that these cultures remained stable over multiple passages whilst retaining the ability to differentiate into hepatocyte- and cholangiocyte-like cells. Recellularization onto porcine scaffolds was efficient and the organoids homogeneously differentiated, even showing polarization. Our porcine intrahepatic cholangiocyte system, combined with porcine liver scaffold paves the way for developing whole liver engineering in a relevant large-animal model.
Collapse
Affiliation(s)
- Melanie Krüger
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Roos-Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Loes A Oosterhoff
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Monique E van Wolferen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hans S Kooistra
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Linda M Kock
- LifeTec Group BV, Eindhoven, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Pilar Sainz-Arnal
- Laboratory of Organ Bioengineering and Regenerative Medicine, Health Research Institute of Aragon (IIS Aragon), Zaragoza, Spain
| | - Pedro M Baptista
- Laboratory of Organ Bioengineering and Regenerative Medicine, Health Research Institute of Aragon (IIS Aragon), Zaragoza, Spain
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Graupera I, Isus L, Coll M, Pose E, Díaz A, Vallverdú J, Rubio-Tomás T, Martínez-Sánchez C, Huelin P, Llopis M, Solé C, Fondevila C, Lozano JJ, Sancho-Bru P, Ginès P, Aloy P. Molecular characterization of chronic liver disease dynamics: from liver fibrosis to acute-on-chronic liver failure. JHEP Rep 2022; 4:100482. [PMID: 35540106 PMCID: PMC9079303 DOI: 10.1016/j.jhepr.2022.100482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Background & Aims The molecular mechanisms driving the progression from early-chronic liver disease (CLD) to cirrhosis and, finally, acute-on-chronic liver failure (ACLF) are largely unknown. Our aim was to develop a protein network-based approach to investigate molecular pathways driving progression from early-CLD to ACLF. Methods Transcriptome analysis was performed on liver biopsies from patients at different liver disease stages, including fibrosis, compensated cirrhosis, decompensated cirrhosis and ACLF, and control healthy livers. We created 9 liver-specific disease-related protein-protein interaction networks capturing key pathophysiological processes potentially related to CLD. We used these networks as a framework and performed gene set-enrichment analysis (GSEA) to identify dynamic gene profiles of disease progression. Results Principal component analyses revealed that samples clustered according to the disease stage. GSEA of the defined processes showed an upregulation of inflammation, fibrosis and apoptosis networks throughout disease progression. Interestingly, we did not find significant gene expression differences between compensated and decompensated cirrhosis, while ACLF showed acute expression changes in all the defined liver disease-related networks. The analyses of disease progression patterns identified ascending and descending expression profiles associated with ACLF onset. Functional analyses showed that ascending profiles were associated with inflammation, fibrosis, apoptosis, senescence and carcinogenesis networks, while descending profiles were mainly related to oxidative stress and genetic factors. We confirmed by qPCR the upregulation of genes of the ascending profile and validated our findings in an independent patient cohort. Conclusion ACLF is characterized by a specific hepatic gene expression pattern related to inflammation, fibrosis, apoptosis, senescence and carcinogenesis. Moreover, the observed profile is significantly different from that of compensated and decompensated cirrhosis, supporting the hypothesis that ACLF should be considered a distinct entity. Lay summary By using transjugular biopsies obtained from patients at different stages of chronic liver disease, we unveil the molecular pathogenic mechanisms implicated in the progression of chronic liver disease to cirrhosis and acute-on-chronic liver failure. The most relevant finding in this study is that patients with acute-on-chronic liver failure present a specific hepatic gene expression pattern distinct from that of patients at earlier disease stages. This gene expression pattern is mostly related to inflammation, fibrosis, angiogenesis, and senescence and apoptosis pathways in the liver. We unveiled the molecular pathogenic mechanisms implicated in the progression of chronic liver disease to cirrhosis and ACLF. ACLF presents a specific hepatic gene expression pattern distinct from that of patients at earlier disease stages. Gene expression pattern of ACLF is mostly related to inflammation, fibrosis, angiogenesis, senescence and apoptosis pathways in the liver.
Collapse
|
13
|
Stenvall CGA, Tayyab M, Grönroos TJ, Ilomäki MA, Viiri K, Ridge KM, Polari L, Toivola DM. Targeted deletion of keratin 8 in intestinal epithelial cells disrupts tissue integrity and predisposes to tumorigenesis in the colon. Cell Mol Life Sci 2021; 79:10. [PMID: 34951664 PMCID: PMC8709826 DOI: 10.1007/s00018-021-04081-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 01/08/2023]
Abstract
Keratin 8 (K8) is the main intestinal epithelial intermediate filament protein with proposed roles for colonic epithelial cell integrity. Here, we used mice lacking K8 in intestinal epithelial cells (floxed K8 and Villin-Cre1000 and Villin-CreERt2) to investigate the cell-specific roles of intestinal epithelial K8 for colonocyte function and pathologies. Intestinal epithelial K8 deletion decreased K8 partner proteins, K18-K20, 75-95%, and the remaining keratin filaments were located at the colonocyte apical regions with type II K7, which decreased 30%. 2-Deoxy-2-[18F]-fluoroglucose positron emission tomography in vivo imaging identified a metabolic phenotype in the lower gut of the conditional K8 knockouts. These mice developed intestinal barrier leakiness, mild diarrhea, and epithelial damage, especially in the proximal colon. Mice exhibited shifted differentiation from enterocytes to goblet cells, displayed longer crypts and an increased number of Ki67 + transit-amplifying cells in the colon. Significant proproliferative and regenerative signaling occurred in the IL-22, STAT3, and pRb pathways, with minor effects on inflammatory parameters, which, however, increased in aging mice. Importantly, colonocyte K8 deletion induced a dramatically increased sensitivity to azoxymethane-induced tumorigenesis. In conclusion, intestinal epithelial K8 plays a significant role in colonocyte epithelial integrity maintenance, proliferation regulation and tumor suppression.
Collapse
Affiliation(s)
- Carl-Gustaf A Stenvall
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Mina Tayyab
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Tove J Grönroos
- Turku PET Centre, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Maria A Ilomäki
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere University Hospital, Tampere, Finland
| | - Karen M Ridge
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lauri Polari
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
14
|
Kim S, Lim Y, Lee SY, Yoon HN, Yi H, Jang KH, Ku NO. Keratin 8 mutations in transgenic mice predispose to lung injury. J Cell Sci 2021; 134:jcs250167. [PMID: 34342355 DOI: 10.1242/jcs.250167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/28/2021] [Indexed: 11/20/2022] Open
Abstract
Keratin 8 (K8) is the cytoskeletal intermediate filament protein of simple-type epithelia. Mutations in K8 predispose the affected individual and transgenic mouse to liver disease. However, the role of K8 in the lung has not been reported in mutant transgenic mouse models. Here, we investigated the susceptibility of two different transgenic mice expressing K8 Gly62-Cys (Gly62 replaced with Cys) or Ser74-Ala (Ser74 replaced with Ala) to lung injury. The mutant transgenic mice were highly susceptible to two independent acute and chronic lung injuries compared with control mice. Both K8 Gly62-Cys mice and K8 Ser74-Ala mice showed markedly increased mouse lethality (∼74% mutant mice versus ∼34% control mice) and more severe lung damage, with increased inflammation and apoptosis, under L-arginine-mediated acute lung injury. Moreover, the K8 Ser74-Ala mice had more severe lung damage, with extensive hemorrhage and prominent fibrosis, under bleomycin-induced chronic lung injury. Our study provides the first direct evidence that K8 mutations predispose to lung injury in transgenic mice.
Collapse
Affiliation(s)
- Sujin Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Younglan Lim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - So-Young Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Han-Na Yoon
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Hayan Yi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Kwi-Hoon Jang
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Nam-On Ku
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
- Department of Bio-Convergence ISED, Underwood International College, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
15
|
Zdanowicz K, Olanski W, Kowalczuk-Kryston M, Bobrus-Chociej A, Werpachowska I, Lebensztejn DM. Total Keratin-18 (M65) as a Potential, Early, Non-Invasive Biomarker of Hepatocyte Injury in Alcohol Intoxicated Adolescents-A Preliminary Study. Biomolecules 2021; 11:biom11060911. [PMID: 34207346 PMCID: PMC8235074 DOI: 10.3390/biom11060911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Underage drinking is associated with health risk behaviors. Serum keratin-18 (CK18) levels are increased in liver diseases and may be biomarkers of outcome. The purpose of this study was to determine if the total CK18 (M65) or caspase-cleaved CK18 (M30) levels were different in adolescents admitted to hospital because of alcohol intoxication and controls with excluded liver diseases. METHODS A prospective study included 57 adolescents after alcohol use and 23 control subjects. The concentrations of M30 and M65 in the serum samples were evaluated using an enzyme-linked immunosorbent assay. RESULTS The median age was 15 (14-17) years and 49% were male. There were significant differences in M65 levels between the study and control groups (p = 0.03). The concentrations of M30 and M65 were insignificant in adolescents divided into subgroups according to blood alcohol concentrations (BAC). Significant positive correlations were found between BAC and M65 levels (p = 0.038; r = 0.3). In receiver operating characteristic (ROC) analysis M65 (cut-off = 125.966 IU/l, Se = 70.2%, Sp = 43.5%) allowed to differentiate between patients with and without alcohol intoxication (AUC = 0.66, p = 0.03). CONCLUSION M65 appears to be a promising non-invasive biomarker of hepatocyte injury during alcohol intoxication in adolescents. Moreover, a higher concentration of M65 may indicate early organ injury before the increase in the activity of liver enzymes, alanine aminotransferase (ALT) and aspartate aminotransferase (AST).
Collapse
Affiliation(s)
- Katarzyna Zdanowicz
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, ul. Waszyngtona 17, 15-274 Bialystok, Poland; (M.K.-K.); (A.B.-C.); (I.W.); (D.M.L.)
- Correspondence: or ; Tel.: +48-857450710
| | - Witold Olanski
- Department of Pediatric Emergency Medicine, Medical University of Bialystok, ul. Waszyngtona 17, 15-274 Bialystok, Poland;
| | - Monika Kowalczuk-Kryston
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, ul. Waszyngtona 17, 15-274 Bialystok, Poland; (M.K.-K.); (A.B.-C.); (I.W.); (D.M.L.)
| | - Anna Bobrus-Chociej
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, ul. Waszyngtona 17, 15-274 Bialystok, Poland; (M.K.-K.); (A.B.-C.); (I.W.); (D.M.L.)
| | - Irena Werpachowska
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, ul. Waszyngtona 17, 15-274 Bialystok, Poland; (M.K.-K.); (A.B.-C.); (I.W.); (D.M.L.)
| | - Dariusz Marek Lebensztejn
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, ul. Waszyngtona 17, 15-274 Bialystok, Poland; (M.K.-K.); (A.B.-C.); (I.W.); (D.M.L.)
| |
Collapse
|
16
|
Lim Y, Ku NO. Revealing the Roles of Keratin 8/18-Associated Signaling Proteins Involved in the Development of Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:6401. [PMID: 34203895 PMCID: PMC8232640 DOI: 10.3390/ijms22126401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023] Open
Abstract
Although hepatocellular carcinoma (HCC) is developed with various etiologies, protection of hepatocytes seems basically essential to prevent the incidence of HCC. Keratin 8 and keratin 18 (K8/K18) are cytoskeletal intermediate filament proteins that are expressed in hepatocytes. They maintain the cell shape and protect cells under stress conditions. Their protective roles in liver damage have been described in studies of mouse models, and K8/K18 mutation frequency in liver patients. Interestingly, K8/K18 bind to signaling proteins such as transcription factors and protein kinases involved in HCC development. Since K8/K18 are abundant cytoskeletal proteins, K8/K18 binding with the signaling factors can alter the availability of the factors. Herein, we discuss the potential roles of K8/K18 in HCC development.
Collapse
Affiliation(s)
- Younglan Lim
- Interdisciplinary Program of Integrated OMICS for Biomedical Sciences, Yonsei University, Seoul 03722, Korea;
| | - Nam-On Ku
- Interdisciplinary Program of Integrated OMICS for Biomedical Sciences, Yonsei University, Seoul 03722, Korea;
- Department of Bio-Convergence ISED, Underwood International College, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
17
|
Assembly of NFL and desmin intermediate filaments: Headed in the right direction. Proc Natl Acad Sci U S A 2021; 118:2102176118. [PMID: 33707309 PMCID: PMC8020673 DOI: 10.1073/pnas.2102176118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Honma Y, Miyagawa K, Hara Y, Hayashi T, Kusanaga M, Ogino N, Minami S, Oe S, Ikeda M, Hino K, Harada M. Correlation of hepatitis C virus-mediated endoplasmic reticulum stress with autophagic flux impairment and hepatocarcinogenesis. Med Mol Morphol 2021; 54:108-121. [PMID: 33386512 DOI: 10.1007/s00795-020-00271-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/29/2022]
Abstract
Hepatitis C virus (HCV) infection has been known to use autophagy for its replication. However, the mechanisms by which HCV modulates autophagy remain controversial. We used HCV-Japanese fulminant hepatitis-1-infected Huh7 cells. HCV infection induced the accumulation of autophagosomes. Morphological analyses of monomeric red fluorescent protein (mRFP)-green fluorescent protein (GFP) tandem fluorescent-tagged LC3 transfection showed HCV infection impaired autophagic flux. Autophagosome-lysosome fusion assessed by transfection of mRFP- or GFP-LC3 and immunostaining of lysosomal-associated membrane protein 1 was inhibited by HCV infection. Decrease of HCV-induced endoplasmic reticulum (ER) stress by 4-phenylbutyric acid, a chemical chaperone, improved the HCV-mediated autophagic flux impairment. HCV infection-induced oxidative stress and subsequently DNA damage, but not apoptosis. Furthermore, HCV induced cytoprotective effects against the cellular stress by facilitating the formation of cytoplasmic inclusion bodies as shown by p62 expression and by modulating keratin protein expression and activated nuclear factor erythroid 2-related factor 2. HCV eradication by direct-acting antivirals improved autophagic flux, but DNA damage persisted. In conclusion, HCV-induced ER stress correlates with autophagic flux impairment. Decrease of ER stress is considered to be a promising therapeutic strategy for HCV-related chronic liver diseases. However, we should be aware that the risk of hepatocarcinogenesis remains even after HCV eradication.
Collapse
Affiliation(s)
- Yuichi Honma
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Koichiro Miyagawa
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yuichi Hara
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Tsuguru Hayashi
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Masashi Kusanaga
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Noriyoshi Ogino
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Sota Minami
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Shinji Oe
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Masanori Ikeda
- Department of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
19
|
Zhang D, Dong X, Liu X, Ye L, Li S, Zhu R, Ye Y, Jiang Y. Proteomic Analysis of Brain Regions Reveals Brain Regional Differences and the Involvement of Multiple Keratins in Chronic Alcohol Neurotoxicity. Alcohol Alcohol 2020; 55:147-156. [PMID: 32047899 DOI: 10.1093/alcalc/agaa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
AIMS Alcohol abuse has attracted public attention and chronic alcohol exposure can result in irreversible structural changes in the brain. The molecular mechanisms underlying alcohol neurotoxicity are complex, mandating comprehensive mining of spatial protein expression profile. METHODS In this study, mice models of chronic alcohol intoxication were established after 95% alcohol vapor administration for 30 consecutive days. On Day 30, striatum (the dorsal and ventral striatum) and hippocampus, the two major brain regions responsible for learning and memorizing while being sensitive to alcohol toxicity, were collected. After that, isobaric tags for relative and absolute quantitation -based quantitative proteomic analysis were carried out for further exploration of the novel mechanisms underlying alcohol neurotoxicity. RESULTS Proteomic results showed that in the striatum, 29 proteins were significantly up-regulated and 17 proteins were significantly down-regulated. In the hippocampus, 72 proteins were significantly up-regulated, while 2 proteins were significantly down-regulated. Analysis of the overlay proteins revealed that a total of 102 proteins were consistently altered (P < 0.05) in both hippocampus and striatum regions, including multiple keratins such as Krt6a, Krt17 and Krt5. Ingenuity pathway analysis revealed that previously reported diseases/biofunctions such as dermatological diseases and developmental disorders were enriched in those proteins. Interestingly, the glucocorticoid receptor (GR) signaling was among the top enriched pathways in both brain regions, while multiple keratins from the GR signaling such as Krt1 and Krt17 exhibited significantly opposite expression patterns in the two brain nuclei. Moreover, there are several other involved pathways significantly differed between the hippocampus and striatum. CONCLUSIONS Our data revealed brain regional differences upon alcohol consumption and indicated the critical involvement of keratins from GR signaling in alcohol neurotoxicity. The differences in proteomic results between the striatum and hippocampus suggested a necessity of taking into consideration brain regional differences and intertwined signaling pathways rather than merely focusing on single nuclei or molecule during the study of drug-induced neurotoxicity in the future.
Collapse
Affiliation(s)
- Dingang Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoru Dong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaochen Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lin Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shuhao Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Rongzhe Zhu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yonghong Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
20
|
Time-Course Changes of Serum Keratin Concentrations after Liver Transplantation: Contrasting Results of Keratin-18 and Keratin-19 Fragments. Case Reports Hepatol 2020; 2020:8895435. [PMID: 33335785 PMCID: PMC7723486 DOI: 10.1155/2020/8895435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022] Open
Abstract
Objective Under normal conditions, adult hepatocytes express only keratin-8 (K8) and keratin-18 (K18), whereas cholangiocytes also express K19. In this study, we delineate the pattern of normal time-course changes in serum K19 and K18 levels after liver transplantation. Patients and Methods. Serum levels of the K19 fragment CYFRA 21-1 and the K18 fragments tissue polypeptide specific antigen (TPS) and M30 (a neoepitope that is generated after caspase cleavage during apoptosis) were measured at baseline and at regular intervals (up to 6 months) after liver transplantation in 11 adult patients. Results There was a gradual decrease in serum K19 concentrations from baseline values after transplantation, following a time-course pattern similar to that of serum bilirubin. In contrast, serum concentrations of K18 fragments increased markedly shortly after transplantation and gradually decreased thereafter, following a time-course pattern similar to that of serum transaminases. The increase in TPS tended to occur earlier than that in M30, suggesting an initial predominance of hepatocyte necrosis followed by a predominance of apoptosis in the first days after transplantation. Five patients presented posttransplant complications (acute rejection in three cases and HCV recurrence in two cases). An early increase in serum K19 concentrations was observed in all cases. An increase in serum concentrations of K18 fragments (M30 and TPS) was observed in the two cases with HCV recurrence and was more variable in the three cases with acute rejection. Conclusions Serum concentrations of K19 and K18 fragments follow a dissimilar pattern of time-course changes after liver transplantation. The diagnostic value of variations in these normal patterns should be addressed in future studies.
Collapse
|
21
|
Kořínková L, Pražienková V, Černá L, Karnošová A, Železná B, Kuneš J, Maletínská L. Pathophysiology of NAFLD and NASH in Experimental Models: The Role of Food Intake Regulating Peptides. Front Endocrinol (Lausanne) 2020; 11:597583. [PMID: 33324348 PMCID: PMC7726422 DOI: 10.3389/fendo.2020.597583] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity, diabetes, insulin resistance, sedentary lifestyle, and Western diet are the key factors underlying non-alcoholic fatty liver disease (NAFLD), one of the most common liver diseases in developed countries. In many cases, NAFLD further progresses to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and to hepatocellular carcinoma. The hepatic lipotoxicity and non-liver factors, such as adipose tissue inflammation and gastrointestinal imbalances were linked to evolution of NAFLD. Nowadays, the degree of adipose tissue inflammation was shown to directly correlate with the severity of NAFLD. Consumption of higher caloric intake is increasingly emerging as a fuel of metabolic inflammation not only in obesity-related disorders but also NAFLD. However, multiple causes of NAFLD are the reason why the mechanisms of NAFLD progression to NASH are still not well understood. In this review, we explore the role of food intake regulating peptides in NAFLD and NASH mouse models. Leptin, an anorexigenic peptide, is involved in hepatic metabolism, and has an effect on NAFLD experimental models. Glucagon-like peptide-1 (GLP-1), another anorexigenic peptide, and GLP-1 receptor agonists (GLP-1R), represent potential therapeutic agents to prevent NAFLD progression to NASH. On the other hand, the deletion of ghrelin, an orexigenic peptide, prevents age-associated hepatic steatosis in mice. Because of the increasing incidence of NAFLD and NASH worldwide, the selection of appropriate animal models is important to clarify aspects of pathogenesis and progression in this field.
Collapse
Affiliation(s)
- L. Kořínková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - V. Pražienková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - L. Černá
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - A. Karnošová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - B. Železná
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - J. Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
22
|
Bhatia D, Hinsu A, Panchal K, Sabara P, Jakhesara S, Koringa P. Molecular portrait of squamous cell carcinoma of the bovine horn evaluated by high-throughput targeted exome sequencing: a preliminary report. BMC Vet Res 2020; 16:461. [PMID: 33243240 PMCID: PMC7690171 DOI: 10.1186/s12917-020-02683-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/18/2020] [Indexed: 02/04/2023] Open
Abstract
Background Squamous Cell Carcinoma of horn, also known as horn cancer, is a prevailing type of cancer in cattles especially Bos indicus. It is one of the most prevalent disease in Indian bullocks often resulting in death and huge economic losses to farmers. Here, we have reported the use of targeted exome sequencing to identify variants present in horn cancer affected horn mucosa tissue and blood of the same animal to identify some of the prevalent markers of horn cancer. Results We have observed higher number of variants present in tissue as compared to blood as well as among cancer samples compared to samples from normal animals. Eighty six and 1437 cancer-specific variants were identified among the predicted variants in blood and tissue samples, respectively. Total 25 missense variants were observed distributed over 18 genes. KRT8 gene coding for Keratin8, one of the key constituents of horn, displayed 5 missense variants. Additionally, three other genes involved in apoptosis pathway and two genes involved in antigen presentation and processing also contained variants. Conclusions Several genes involved in various apoptotic pathways were found to contain non-synonymous mutations. Keratin8 coding for Keratin, a chief constituent of horn was observed to have the highest number of mutations. In all, we present a preliminary report of mutations observed in horn cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02683-y.
Collapse
Affiliation(s)
- Dhruv Bhatia
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, 388001, India
| | - Ankit Hinsu
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, 388001, India
| | - Ketankumar Panchal
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, 388001, India
| | - Pritesh Sabara
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, 388001, India
| | - Subhash Jakhesara
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, 388001, India
| | - Prakash Koringa
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, 388001, India.
| |
Collapse
|
23
|
Hyun J, Jung Y. DNA Methylation in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:8138. [PMID: 33143364 PMCID: PMC7662478 DOI: 10.3390/ijms21218138] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a widespread hepatic disorder in the United States and other Westernized countries. Nonalcoholic steatohepatitis (NASH), an advanced stage of NAFLD, can progress to end-stage liver disease, including cirrhosis and liver cancer. Poor understanding of mechanisms underlying NAFLD progression from simple steatosis to NASH has limited the development of effective therapies and biomarkers. An accumulating body of studies has suggested the importance of DNA methylation, which plays pivotal roles in NAFLD pathogenesis. DNA methylation signatures that can affect gene expression are influenced by environmental and lifestyle experiences such as diet, obesity, and physical activity and are reversible. Hence, DNA methylation signatures and modifiers in NAFLD may provide the basis for developing biomarkers indicating the onset and progression of NAFLD and therapeutics for NAFLD. Herein, we review an update on the recent findings in DNA methylation signatures and their roles in the pathogenesis of NAFLD and broaden people's perspectives on potential DNA methylation-related treatments and biomarkers for NAFLD.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Cell and Matter Institute, Dankook University, Cheonan 31116, Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
24
|
Elkomy A, Abdelhiee EY, Fadl SE, Emam MA, Gad FAM, Sallam A, Alarifi S, Abdel-Daim MM, Aboubakr M. L-Carnitine Mitigates Oxidative Stress and Disorganization of Cytoskeleton Intermediate Filaments in Cisplatin-Induced Hepato-Renal Toxicity in Rats. Front Pharmacol 2020; 11:574441. [PMID: 33117167 PMCID: PMC7552923 DOI: 10.3389/fphar.2020.574441] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cisplatin (CP) is one of the most active medications in cancer treatment and has some adverse effects such as hepatotoxicity and nephrotoxicity. The present research was planned to determine the protective effects of L-carnitine (LC) against CP-induced hepato-renal oxidative stress in rats, via investigating of some serum biochemical and tissue oxidative/antioxidant parameters, histological alterations, and immunohistochemical expressions of two different intermediate filaments (IFs) proteins; vimentin (VIM) and cytokeratin 18 (CK18). Twenty-eight rats were divided into four groups (7 rats each). Groups I and II were orally administered saline and LC (100 mg/kg body weight), respectively, once daily for 30 consecutive days. Group III received saline orally once daily and a single dose of CP on the 27th day of the experiment [7.5 mg/kg, intraperitoneal (IP)]. Group IV received both LC and CP. Injection of CP significantly (P ≤ 0.05) increased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) activities and creatinine and urea levels, while serum total protein, albumin, and globulin concentrations significantly (P ≤ 0.05) decreased. In addition, CP induced a dramatic increase in the Malondialdehyde (MDA) level along with a substantial decrease in reduced glutathione (GSH) and catalase (CAT) in the hepato-renal tissues. Histologically, both liver and kidney of the CP treated group revealed marked degenerative changes. Moreover, overexpression of both VIM and CK18 in hepato-renal tissues were noted after CP injection. On the other hand, the administration of LC in the CP injected group (Group IV) restored the biochemical parameters, histological, and immunohistochemical pictures toward the normalcy. In conclusion, LC may be supplemented for chemotherapy with CP to ameliorate its oxidative stress and restore the normal organization of IFs, especially VIM and CK18 within the CP intoxicated hepato-renal cells.
Collapse
Affiliation(s)
- Ashraf Elkomy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ehab Yahya Abdelhiee
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Sabreen Ezzat Fadl
- Department of Biochemistry, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | | | - Fatma Abdel-Monem Gad
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Adham Sallam
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
25
|
Honma Y, Sato-Morita M, Katsuki Y, Mihara H, Baba R, Hino K, Kawashima A, Ariyasu T, Harada M. Trehalose alleviates oxidative stress-mediated liver injury and Mallor-Denk body formation via activating autophagy in mice. Med Mol Morphol 2020; 54:41-51. [PMID: 32588144 DOI: 10.1007/s00795-020-00258-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Autophagy is a degradation pathway for long-lived cytoplasmic proteins or damaged organelles and also for many aggregate-prone and disease-causing proteins. Endoplasmic reticulum (ER) stress and oxidative stress are associated with the pathophysiology of various liver diseases. These stresses induce the accumulation of abnormal proteins, Mallory-Denk body (MDB) formation and apoptosis in hepatocytes. A disaccharide trehalose had been reported to induce autophagy and decrease aggregate-prone proteins and cytotoxicity in neurodegenerative disease models. But the effects of trehalose in hepatocytes have not been fully understood. We examined the effect of trehalose on autophagy, ER stress and oxidative stress-mediated cytotoxicity and MDB formation in hepatocytes using mice model with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) treatment for 3 months. We administered trehalose by intraperitoneal injection of water containing 10% trehalose (0.02 mg/g body weight) every other day for 3 months. Our results demonstrated that trehalose induced autophagy and reduced ER stress, oxidative stress, MDB formation and apoptosis in hepatocytes of DDC-fed mice by Western blotting and immunostaining analyses. Electron microscopy revealed that trehalose induced autolysosome formation, which located is close to the MDBs. Thus, our findings suggest that trehalose can become a therapeutic agent for oxidative stress-related liver diseases via activating autophagy.
Collapse
Affiliation(s)
- Yuichi Honma
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Miyuki Sato-Morita
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yuka Katsuki
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hitomi Mihara
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Ryoko Baba
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Katsuhiko Hino
- Core Technology Division, R&D Center, Hayashibara Co., Ltd., Okayama, Japan
| | - Akira Kawashima
- Applied Technology Division, R&D Center, Hayashibara Co., Ltd., Okayama, Japan
| | - Toshio Ariyasu
- Applied Technology Division, R&D Center, Hayashibara Co., Ltd., Okayama, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
26
|
He L, Ye X, Gao M, Yang J, Ma J, Xiao F, Wei H. Down-regulation of GLT25D1 inhibited collagen secretion and involved in liver fibrogenesis. Gene 2019; 729:144233. [PMID: 31759980 DOI: 10.1016/j.gene.2019.144233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 07/28/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023]
Abstract
Collagen β (1-O) galactosyltransferase 1 (GLT25D1) has been reported to transfer galactose to hydroxylysine residues via β (1-O) linkages in collagen. However, the role of Glt25d1 in liver fibrogenesis is still unknow. Recently, we generated a Glt25d1 knockout mouse to elucidate the role of Glt25d1 in vivo. However, we found that complete deletion of the Glt25d1 gene resulted in embryonic lethality at E11.5. Histopathological analysis revealed that dysplasia in Glt25d1-/- labyrinth with defects of the vascular network. Immunohistochemical showed that the decrease in proliferation of Glt25d1-/- liver and the developing central nervous system (CNS). The role of Glt25d1 in liver fibrogenesis was explored by Glt25d1+/- mice. Glt25d1+/- mice and wild-type (WT) mice were injected intraperitoneally with the same dose of CCl4. The higher level of serum alanine aminotransferase was observed in Glt25d1+/- mice. Reverse transcription-quantitative polymerase chainreaction demonstrated that the mRNA expression levels of the inflammatory cytokines such as, Tnf-α, Cxcl-1 and Mcp-1, showed a significantly increase in CCl4-treated Glt25d1+/- mice. Collagen-I, collagen-III and α-SMA transcripts accumulation was markedly increased in the Glt25d1+/- mice. However, Masson's trichrome staining revealed a trend to decrease in the ECM proteins deposition of Glt25d1+/- liver. Immunohistochemistry and Western blots revealed that the protein expression of Collagen-III was reduced and a trend to a decrease in collagen-I was observed in the Glt25d1+/- liver compared with those of WT mice. Our results demonstrate that Glt25d1 knockout results in embryonic lethality and down-regulation of Glt25d1 may inhibit collagen secretion during liver fibrogenesis.
Collapse
Affiliation(s)
- Lingling He
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Xiaohui Ye
- Beijing Huaxin Hospital, The First Affiliated Hospital of Tsinghua Uinversity, Beijing, China.
| | - Meixin Gao
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Junru Yang
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Jiali Ma
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Fan Xiao
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Hongshan Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
27
|
Maitra D, Bragazzi Cunha J, Elenbaas JS, Bonkovsky HL, Shavit JA, Omary MB. Porphyrin-Induced Protein Oxidation and Aggregation as a Mechanism of Porphyria-Associated Cell Injury. Cell Mol Gastroenterol Hepatol 2019; 8:535-548. [PMID: 31233899 PMCID: PMC6820234 DOI: 10.1016/j.jcmgh.2019.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Genetic porphyrias comprise eight diseases caused by defects in the heme biosynthetic pathway that lead to accumulation of heme precursors. Consequences of porphyria include photosensitivity, liver damage and increased risk of hepatocellular carcinoma, and neurovisceral involvement, including seizures. Fluorescent porphyrins that include protoporphyrin-IX, uroporphyrin and coproporphyrin, are photo-reactive; they absorb light energy and are excited to high-energy singlet and triplet states. Decay of the porphyrin excited to ground state releases energy and generates singlet oxygen. Porphyrin-induced oxidative stress is thought to be the major mechanism of porphyrin-mediated tissue damage. Although this explains the acute photosensitivity in most porphyrias, light-induced porphyrin-mediated oxidative stress does not account for the effect of porphyrins on internal organs. Recent findings demonstrate the unique role of fluorescent porphyrins in causing subcellular compartment-selective protein aggregation. Porphyrin-mediated protein aggregation associates with nuclear deformation, cytoplasmic vacuole formation and endoplasmic reticulum dilation. Porphyrin-triggered proteotoxicity is compounded by inhibition of the proteasome due to aggregation of some of its subunits. The ensuing disruption in proteostasis also manifests in cell cycle arrest coupled with aggregation of cell proliferation-related proteins, including PCNA, cdk4 and cyclin B1. Porphyrins bind to native proteins and, in presence of light and oxygen, oxidize several amino acids, particularly methionine. Noncovalent interaction of oxidized proteins with porphyrins leads to formation of protein aggregates. In internal organs, particularly the liver, light-independent porphyrin-mediated protein aggregation occurs after secondary triggers of oxidative stress. Thus, porphyrin-induced protein aggregation provides a novel mechanism for external and internal tissue damage in porphyrias that involve fluorescent porphyrin accumulation.
Collapse
Affiliation(s)
- Dhiman Maitra
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Juliana Bragazzi Cunha
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jared S Elenbaas
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, Missouri
| | - Herbert L Bonkovsky
- Gastroenterology & Hepatology, and Molecular Medicine & Translational Science, Wake Forest University School of Medicine/NC Baptist Hospital, Winston-Salem, North Carolina
| | - Jordan A Shavit
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; Cell Biology, Faculty of Science and Technology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
28
|
Jang KH, Yoon HN, Lee J, Yi H, Park SY, Lee SY, Lim Y, Lee HJ, Cho JW, Paik YK, Hancock WS, Ku NO. Liver disease-associated keratin 8 and 18 mutations modulate keratin acetylation and methylation. FASEB J 2019; 33:9030-9043. [PMID: 31199680 DOI: 10.1096/fj.201800263rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Keratin 8 (K8) and keratin 18 (K18) are the intermediate filament proteins whose phosphorylation/transamidation associate with their aggregation in Mallory-Denk bodies found in patients with various liver diseases. However, the functions of other post-translational modifications in keratins related to liver diseases have not been fully elucidated. Here, using a site-specific mutation assay combined with nano-liquid chromatography-tandem mass spectrometry, we identified K8-Lys108 and K18-Lys187/426 as acetylation sites, and K8-Arg47 and K18-Arg55 as methylation sites. Keratin mutation (Arg-to-Lys/Ala) at the methylation sites, but not the acetylation sites, led to decreased stability of the keratin protein. We compared keratin acetylation/methylation in liver disease-associated keratin variants. The acetylation of K8 variants increased or decreased to various extents, whereas the methylation of K18-del65-72 and K18-I150V variants increased. Notably, the highly acetylated/methylated K18-I150V variant was less soluble and exhibited unusually prolonged protein stability, which suggests that additional acetylation of highly methylated keratins has a synergistic effect on prolonged stability. Therefore, the different levels of acetylation/methylation of the liver disease-associated variants regulate keratin protein stability. These findings extend our understanding of how disease-associated mutations in keratins modulate keratin acetylation and methylation, which may contribute to disease pathogenesis.-Jang, K.-H., Yoon, H.-N., Lee, J., Yi, H., Park, S.-Y., Lee, S.-Y., Lim, Y., Lee, H.-J., Cho, J.-W., Paik, Y.-K., Hancock, W. S., Ku, N.-O. Liver disease-associated keratin 8 and 18 mutations modulate keratin acetylation and methylation.
Collapse
Affiliation(s)
- Kwi-Hoon Jang
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Han-Na Yoon
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Jongeun Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Hayan Yi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Sang-Yoon Park
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - So-Young Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Younglan Lim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Hyoung-Joo Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Jin-Won Cho
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Young-Ki Paik
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Williams S Hancock
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Nam-On Ku
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea.,Department of Bio-Convergence Integrated Science and Engineering Division, Underwood International College, Yonsei University, Seoul, Korea
| |
Collapse
|
29
|
Coskun A, Baykal AT, Oztug M, Kazan D, Kaya E, Emiroglu R, Yılmaz S, Dundar HZ, Akgoz M, Berber I, Aktas H, Bilsel G, Karaosmanoglu K, Çetiner B, Arslan C, Yurtsever I, Yazıcı C. Proteomic Analysis of Liver Preservation Solutions Prior to Liver Transplantation. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164615666180905104543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective: Transplantation is the preferred treatment for patients with end-stage liver diseases. However, in clinical practice, functional preservation of the liver is a major concern before the transplantation. Although various protective solutions are used (in combination with hypothermia), the functional preservation time for liver is still limited to hours. We analyzed the preservation medium to detect the proteins released from the liver during storage period.
Material/Methods:
Samples were collected from the pre-transplant preservation mediums of 23 liver donors. For all donors, the cases involved Donation after Brain Death (DBD). 2D-PAGE and LCMSMS methodologies were used to detect the proteins and peptides from the preservation mediums.
Results:
A total of 198 proteins originating from the liver were detected.
Conclusion:
The data provide valuable insights into biomarkers that may be used to evaluate organ injury, functional status, and suitability for transplantation. Additionally, the findings could be valuable for the development of new strategies for effective preservation of solid organs prior to transplantation.
Collapse
Affiliation(s)
- Abdurrahman Coskun
- Department of Medical Biochemistry, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Merve Oztug
- TUBITAK UME (National Metrology Institute), Gebze, Turkey
| | - Dilek Kazan
- Department of Bioengineering, Engineering Faculty, Marmara University, Istanbul, Turkey
| | - Ekrem Kaya
- Department of General Surgery, School of Medicine, Uludag University, Bursa, Turkey
| | - Remzi Emiroglu
- Department of General Surgery, School of Medicine,Acibadem University, Istanbul, Turkey
| | - Sezai Yılmaz
- Department of General Surgery, School of Medicine, Inonu University, Malatya, Turkey
| | - Halit Ziya Dundar
- Department of General Surgery, School of Medicine, Uludag University, Bursa, Turkey
| | - Muslum Akgoz
- TUBITAK UME (National Metrology Institute), Gebze, Turkey
| | - Ibrahim Berber
- Department of General Surgery, School of Medicine,Acibadem University, Istanbul, Turkey
| | - Hikmet Aktas
- Vocational School of Health Services, Acibadem University Istanbul, Turkey
| | - Gokhan Bilsel
- TUBITAK UME (National Metrology Institute), Gebze, Turkey
| | - Kubra Karaosmanoglu
- Department of Bioengineering, Engineering Faculty, Marmara University, Istanbul, Turkey
| | - Banu Çetiner
- Department of Medical Biochemistry, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Cansu Arslan
- Department of Medical Biochemistry, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Ilknur Yurtsever
- Regenerative and Restorative Medicine Research Center, Medipol University, Istanbul, Turkey
| | - Cevat Yazıcı
- Department of Medical Biochemistry, School of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
30
|
Saggi H, Maitra D, Jiang A, Zhang R, Wang P, Cornuet P, Singh S, Locker J, Ma X, Dailey H, Abrams M, Omary MB, Monga SP, Nejak-Bowen K. Loss of hepatocyte β-catenin protects mice from experimental porphyria-associated liver injury. J Hepatol 2019; 70:108-117. [PMID: 30287339 PMCID: PMC6459193 DOI: 10.1016/j.jhep.2018.09.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Porphyrias result from anomalies of heme biosynthetic enzymes and can lead to cirrhosis and hepatocellular cancer. In mice, these diseases can be modeled by administration of a diet containing 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), which causes accumulation of porphyrin intermediates, resulting in hepatobiliary injury. Wnt/β-catenin signaling has been shown to be a modulatable target in models of biliary injury; thus, we investigated its role in DDC-driven injury. METHODS β-Catenin (Ctnnb1) knockout (KO) mice, Wnt co-receptor KO mice, and littermate controls were fed a DDC diet for 2 weeks. β-Catenin was exogenously inhibited in hepatocytes by administering β-catenin dicer-substrate RNA (DsiRNA), conjugated to a lipid nanoparticle, to mice after DDC diet and then weekly for 4 weeks. In all experiments, serum and livers were collected; livers were analyzed by histology, western blotting, and real-time PCR. Porphyrin was measured by fluorescence, quantification of polarized light images, and liquid chromatography-mass spectrometry. RESULTS DDC-fed mice lacking β-catenin or Wnt signaling had decreased liver injury compared to controls. Exogenous mice that underwent β-catenin suppression by DsiRNA during DDC feeding also showed less injury compared to control mice receiving lipid nanoparticles. Control livers contained extensive porphyrin deposits which were largely absent in mice lacking β-catenin signaling. Notably, we identified a network of key heme biosynthesis enzymes that are suppressed in the absence of β-catenin, preventing accumulation of toxic protoporphyrins. Additionally, mice lacking β-catenin exhibited fewer protein aggregates, improved proteasomal activity, and reduced induction of autophagy, all contributing to protection from injury. CONCLUSIONS β-Catenin inhibition, through its pleiotropic effects on metabolism, cell stress, and autophagy, represents a novel therapeutic approach for patients with porphyria. LAY SUMMARY Porphyrias are disorders resulting from abnormalities in the steps that lead to heme production, which cause build-up of toxic by-products called porphyrins. Liver is commonly either a source or a target of excess porphyrins, and complications can range from minor abnormalities to liver failure. In this report, we inhibited Wnt/β-catenin signaling in an experimental model of porphyria, which resulted in decreased liver injury. Targeting β-catenin affected multiple components of the heme biosynthesis pathway, thus preventing build-up of porphyrin intermediates. Our study suggests that drugs inhibiting β-catenin activity could reduce the amount of porphyrin accumulation and help alleviate symptoms in patients with porphyria.
Collapse
Affiliation(s)
- Harvinder Saggi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dhiman Maitra
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - An Jiang
- 2nd Affilitated Hospital, Xi’an Jiaotong University, Xi’an, Chin
| | - Rong Zhang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Pengcheng Wang
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Pamela Cornuet
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph Locker
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Liver Research Center, Pittsburgh, PA, United States
| | - Xiaochao Ma
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Harry Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Marc Abrams
- Dicerna Pharmaceuticals, Inc, Cambridge, MA, United States
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Satdarshan P. Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Liver Research Center, Pittsburgh, PA, United States
| | - Kari Nejak-Bowen
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States.
| |
Collapse
|
31
|
Lalor L, Titeux M, Palisson F, Fuentes I, Yubero MJ, Tasanen K, Huilaja L, Has C, Tadini G, Haggstrom AN, Hovnanian A, Lucky AW. Epidermolysis bullosa simplex-generalized severe type due to keratin 5 p.Glu477Lys mutation: Genotype-phenotype correlation and in silico modeling analysis. Pediatr Dermatol 2019; 36:132-138. [PMID: 30515866 DOI: 10.1111/pde.13722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND/OBJECTIVES Epidermolysis bullosa is a group of diseases caused by mutations in skin structural proteins. Availability of genetic sequencing makes identification of causative mutations easier, and genotype-phenotype description and correlation are important. We describe six patients with a keratin 5 mutation resulting in a glutamic acid to lysine substitution at position 477 (p.Glu477Lys) who have a distinctive, severe and sometimes fatal phenotype. We also perform in silico modeling to show protein structural changes resulting in instability. METHODS In this case series, we collected clinical data from six patients with this mutation identified from their national or local epidermolysis bullosa databases. We performed in silico modeling of the keratin 5-keratin 14 coil 2B complex using CCBuilder and rendered with Pymol (Schrodinger, LLC, New York, NY). RESULTS Features include aplasia cutis congenita, generalized blistering, palmoplantar keratoderma, onychodystrophy, airway and developmental abnormalities, and a distinctive reticulated skin pattern. Our in silico model of the keratin 5 p.Glu477Lys mutation predicts conformational change and modification of the surface charge of the keratin heterodimer, severely impairing filament stability. CONCLUSIONS Early recognition of the features of this genotype will improve care. In silico analysis of mutated keratin structures provides useful insights into structural instability.
Collapse
Affiliation(s)
- Leah Lalor
- Division of Pediatric Dermatology, MCW Department of Dermatology, Milwaukee, Wisconsin
| | - Matthias Titeux
- Laboratory of Genetic Skin Diseases, Inserm UMR1163, Imagine Institute, Paris, France.,University Paris Descartes - Sorbonne Paris Cite, Paris, France
| | - Francis Palisson
- Fundacion DEBRA Chile, Santiago, Chile.,Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Ignacia Fuentes
- Fundacion DEBRA Chile, Santiago, Chile.,Centro de Genetica y Genomica, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - María J Yubero
- Fundacion DEBRA Chile, Santiago, Chile.,Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Kaisa Tasanen
- Department of Dermatology, Pedego Research Unit, Oulu Center for Cell-Matrix Research, MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Laura Huilaja
- Department of Dermatology, Pedego Research Unit, Oulu Center for Cell-Matrix Research, MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Cristina Has
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Gianluca Tadini
- Pediatric Dermatology, Fondazione IRCC Ca'Granda - Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Anita N Haggstrom
- Department of Dermatology and Pediatrics, Indiana University, Indianapolis, Indiana
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, Inserm UMR1163, Imagine Institute, Paris, France.,University Paris Descartes - Sorbonne Paris Cite, Paris, France
| | - Anne W Lucky
- Epidermolysis Bullosa Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
32
|
Merry TL, Petrov MS. The rise of genetically engineered mouse models of pancreatitis: A review of literature. Biomol Concepts 2018; 9:103-114. [DOI: 10.1515/bmc-2018-0011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022] Open
Abstract
AbstractPancreatitis is increasingly recognized as not merely a local inflammation of the pancreas but also a disease with high frequency of systemic sequelae. Current understanding of the cellular mechanisms that trigger it and affect the development of sequelae are limited. Genetically engineered mouse models can be a useful tool to study the pathophysiology of pancreatitis. This article gives an overview of the genetically engineered mouse models that spontaneously develop pancreatitis and discusses those that most closely replicate different pancreatitis hallmarks observed in humans.
Collapse
Affiliation(s)
- Troy L. Merry
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Maxim S. Petrov
- Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Ye X, He L, Ma J, Li Y, Zhang M, Yang J, Zhang J, Xiao F, Wei H. Downregulation of Glt25d1 aggravates carbon tetrachloride‑induced acute hepatic injury through activation of the TGF‑β1/Smad2 signaling pathway. Mol Med Rep 2018; 18:3611-3618. [PMID: 30132521 PMCID: PMC6131360 DOI: 10.3892/mmr.2018.9392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 05/16/2018] [Indexed: 12/25/2022] Open
Abstract
Collagen β (1-O) galactosyltransferase 1 (GLT25D1) has been reported to transfer galactose to hydroxylysine residues via β (1-O) linkages in collagen. The present study investigated the function of the collagen galactosyltransferase activity of GLT25D1 against carbon tetrachloride (CCl4)-induced acute liver injury in vitro. Glt25d1+/− mice and wild-type (WT) mice were injected intraperitoneally with the same dose of CCl4. The grade of hepatic injury and the extent of hepatocyte necrosis in the acute phase were assessed 48 h following CCl4 injection. Hepatocyte necrosis was evaluated by histological examination and by serum alanine aminotransferase and aspartate aminotransferase levels, which were higher in the Glt25d1+/− mice compared with those in the WT mice. Reverse transcription-quantitative polymerase chain reaction was performed, and the results demonstrated that the mRNA expression levels of inflammatory cytokines, including tumor necrosis factor-α and interleukin-6 were significantly increased in the Glt25d1+/− mice. Furthermore, western blot analyses were performed, and the results demonstrated that the protein levels of cleaved caspase-3 and −9 were also markedly increased in the Glt25d1+/− liver, indicating that hepatocyte apoptosis was induced. Additionally, the expression levels of transforming growth factor (TGF)-β1 and phosphorylated small mothers against decapentaplegic (Smad)2 were markedly upregulated, indicating activation of the TGF-β1/Smad2 signaling pathway during CCl4-induced acute liver injury in Glt25d1+/− mice. CCl4 administration also resulted in severe damage to Glt25d1+/− primary hepatocytes in vitro. Taken together, the downregulation of Glt25d1 deteriorated CCl4-induced liver injury in mice, which may involve triggering inflammatory responses, apoptosis and TGF-β1/Smad2 signaling pathway activation.
Collapse
Affiliation(s)
- Xiaohui Ye
- Department of Gastroenterology, Peking University Ditan Teaching Hospital, Beijing 100015, P.R. China
| | - Lingling He
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Jiali Ma
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Yufeng Li
- Department of Gastroenterology, Beijing Changping Hospital, Beijing 100085, P.R. China
| | - Manka Zhang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, Beijing 100015, P.R. China
| | - Junru Yang
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Jian Zhang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, Beijing 100015, P.R. China
| | - Fan Xiao
- Department of Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Hongshan Wei
- Department of Gastroenterology, Peking University Ditan Teaching Hospital, Beijing 100015, P.R. China
| |
Collapse
|
34
|
The role of keratins in the digestive system: lessons from transgenic mouse models. Histochem Cell Biol 2018; 150:351-359. [PMID: 30039330 DOI: 10.1007/s00418-018-1695-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 01/17/2023]
Abstract
Keratins are the largest subfamily of intermediate filament proteins. They are either type I acidic or type II basic keratins. Keratins form obligate heteropolymer in epithelial cells and their expression patterns are tissue-specific. Studies have shown that keratin mutations are the cause of many diseases in humans or predispose humans to acquiring them. Using mouse models to study keratin-associated human diseases is critical, because they allow researchers to get a better understanding of these diseases and their progressions, and so many such studies have been conducted. Acknowledging the importance, researches with genetically modified mice expressing human disease-associated keratin mutants have been widely done. Numerous studies using keratin knockout mice, keratin-overexpressed mice, or transgenic mice expressing keratin mutants have been conducted. This review summarizes the mouse models that have been used to study type I and type II keratin expression in the digestive organs, namely, the liver, pancreas, and colon.
Collapse
|
35
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health concern and the prevalence continues to increase in many industrialized and developing countries around the world. NAFLD affects adults and children. NAFLD-related cirrhosis is expected to become the top indication for liver transplantation in the near future, and the incidence of NAFLD-related hepatocellular carcinoma is also increasing. Nonalcoholic steatohepatitis is the more severe form of NAFLD. The pathogenesis of NALFD/nonalcoholic steatohepatitis is complex and new concepts continue to evolve. The diagnosis and categorization of nonalcoholic steatohepatitis currently rests on hepatopathologists. Accurate morphologic interpretation is important for therapeutic, prognostic, and investigational purposes.
Collapse
Affiliation(s)
- Michael H Schild
- Department of Pathology, Duke University, DUHS, Box 3912, Durham, NC 27710, USA
| | - Cynthia D Guy
- Department of Pathology, Duke University, DUHS, Box 3912, Durham, NC 27710, USA.
| |
Collapse
|
36
|
Chan JKL, Yuen D, Too PHM, Sun Y, Willard B, Man D, Tam C. Keratin 6a reorganization for ubiquitin-proteasomal processing is a direct antimicrobial response. J Cell Biol 2018; 217:731-744. [PMID: 29191848 PMCID: PMC5800800 DOI: 10.1083/jcb.201704186] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/01/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
Skin and mucosal epithelia deploy antimicrobial peptides (AMPs) to eliminate harmful microbes. We reported that the intermediate filament keratin 6a (K6a) is constitutively processed into antimicrobial fragments in corneal epithelial cells. In this study, we show that K6a network remodeling is a host defense response that directly up-regulates production of keratin-derived AMPs (KAMPs) by the ubiquitin-proteasome system (UPS). Bacterial ligands trigger K6a phosphorylation at S19, S22, S37, and S60, leading to network disassembly. Mutagenic analysis of K6a confirmed that the site-specific phosphorylation augmented its solubility. K6a in the cytosol is ubiquitinated by cullin-RING E3 ligases for subsequent proteasomal processing. Without an appreciable increase in K6a gene expression and proteasome activity, a higher level of cytosolic K6a results in enhanced KAMP production. Although proteasome-mediated proteolysis is known to produce antigenic peptides in adaptive immunity, our findings demonstrate its new role in producing AMPs for innate immune defense. Manipulating K6a phosphorylation or UPS activity may provide opportunities to harness the innate immunity of epithelia against infection.
Collapse
Affiliation(s)
- Jonathan K L Chan
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Ophthalmology, Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH
| | - Don Yuen
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Priscilla Hiu-Mei Too
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yan Sun
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Belinda Willard
- Proteomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - David Man
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Connie Tam
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Ophthalmology, Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
37
|
Honma Y, Sato-Morita M, Katsuki Y, Mihara H, Baba R, Harada M. Trehalose activates autophagy and decreases proteasome inhibitor-induced endoplasmic reticulum stress and oxidative stress-mediated cytotoxicity in hepatocytes. Hepatol Res 2018; 48:94-105. [PMID: 28295916 DOI: 10.1111/hepr.12892] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/23/2017] [Accepted: 03/08/2017] [Indexed: 02/08/2023]
Abstract
AIM Endoplasmic reticulum stress is associated with the pathophysiology of various liver diseases. Endoplasmic reticulum stress mediates the accumulation of abnormal proteins and leads to oxidative stress, cytoplasmic inclusion body formation, and apoptosis in hepatocytes. Autophagy is a bulk degradation pathway for long-lived cytoplasmic proteins or damaged organelles and is also a major degradation pathway for many aggregate-prone and disease-causing proteins. We previously reported that rapamycin, a mammalian target of rapamycin inhibitor, activated autophagy and decreased proteasome inhibitor-mediated ubiquitinated protein accumulation, cytoplasmic inclusion body formation, and apoptosis in hepatocytes. Trehalose is a non-reducing disaccharide that has been shown to activate autophagy. It has been reported to decrease aggregate-prone proteins and ameliorate cytotoxicity in neurodegenerative disease models. However, the effects of trehalose in hepatocytes are unclear. METHODS We show here that trehalose activated autophagy and reduced endoplasmic reticulum stress, cytoplasmic inclusion body formation, and apoptosis in proteasome inhibitor-treated liver-derived cultured cells. CONCLUSION To our knowledge, this is the first report showing that trehalose activates autophagy and has cytoprotective effects in hepatocytes. Our findings suggest that trehalose can become a therapeutic agent for endoplasmic reticulum stress-related liver diseases.
Collapse
Affiliation(s)
- Yuichi Honma
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Miyuki Sato-Morita
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuka Katsuki
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hitomi Mihara
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryoko Baba
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
38
|
Cheng F, Eriksson JE. Intermediate Filaments and the Regulation of Cell Motility during Regeneration and Wound Healing. Cold Spring Harb Perspect Biol 2017; 9:9/9/a022046. [PMID: 28864602 DOI: 10.1101/cshperspect.a022046] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SUMMARYIntermediate filaments (IFs) comprise a diverse group of flexible cytoskeletal structures, the assembly, dynamics, and functions of which are regulated by posttranslational modifications. Characteristically, the expression of IF proteins is specific for tissues, differentiation stages, cell types, and functional contexts. Recent research has rapidly expanded the knowledge of IF protein functions. From being regarded as primarily structural proteins, it is now well established that IFs act as powerful modulators of cell motility and migration, playing crucial roles in wound healing and tissue regeneration, as well as inflammatory and immune responses. Although many of these IF-associated functions are essential for tissue repair, the involvement of IF proteins has been established in many additional facets of tissue healing and regeneration. Here, we review the recent progress in understanding the multiple functions of cytoplasmic IFs that relate to cell motility in the context of wound healing, taking examples from studies on keratin, vimentin, and nestin. Wound healing and regeneration include orchestration of a broad range of cellular processes, including regulation of cell attachment and migration, proliferation, differentiation, immune responses, angiogenesis, and remodeling of the extracellular matrix. In this respect, IF proteins now emerge as multifactorial and tissue-specific integrators of tissue regeneration, thereby acting as essential guardian biopolymers at the interface between health and disease, the failing of which contributes to a diverse range of pathologies.
Collapse
Affiliation(s)
- Fang Cheng
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.,Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| | - John E Eriksson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.,Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| |
Collapse
|
39
|
Wei X, Wei H, Lin W, Hu Z, Zhang J. Cell death biomarker M65 is a useful indicator of liver inflammation and fibrosis in chronic hepatitis B: A cross-sectional study of diagnostic accuracy. Medicine (Baltimore) 2017; 96:e6807. [PMID: 28514295 PMCID: PMC5440132 DOI: 10.1097/md.0000000000006807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cell death markers, M65 and M30, have been suggested to be sensitive markers of liver inflammation and fibrosis in nonalcoholic fatty liver disease and chronic hepatitis C. Our aim was to investigate whether these markers were useful in diagnosing liver inflammation and fibrosis in chronic hepatitis B (CHB).We examined 186 patients with CHB; 18 sex- and age-matched healthy subjects were controls. The blood samples were collected from CHB patients within 1 week before or after liver biopsy. According to METAVIR score system, liver inflammation was graded from A0 to A3, and fibrosis from F0 to F4.Serum M65 and M30 levels were in parallel with the grades of liver inflammation. M65, not M30, increased significantly in patients with severe inflammation and normal alanine aminotransferase. M65 is one of the independent predictors of severe liver inflammation (≥A2). The levels of M65 and M30 levels significantly increased in parallel with the degree of inflammation in F1 patients, whereas they showed no statistical difference between different stages of fibrosis in A1 patients.Serum M65 is a useful indicator of liver inflammation in CHB patients. Serum M65, not M30, is valuable in the grading of liver fibrosis.
Collapse
Affiliation(s)
- Xinhuan Wei
- Department of Hepatitis C and Drug-induced Liver Injury, Beijing Youan Hospital
| | - Hongshan Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Lin
- Department of Hepatitis C and Drug-induced Liver Injury, Beijing Youan Hospital
| | - Zhongjie Hu
- Department of Hepatitis C and Drug-induced Liver Injury, Beijing Youan Hospital
| | - Jing Zhang
- Department of Hepatitis C and Drug-induced Liver Injury, Beijing Youan Hospital
| |
Collapse
|
40
|
Markova M, Pivovarova O, Hornemann S, Sucher S, Frahnow T, Wegner K, Machann J, Petzke KJ, Hierholzer J, Lichtinghagen R, Herder C, Carstensen-Kirberg M, Roden M, Rudovich N, Klaus S, Thomann R, Schneeweiss R, Rohn S, Pfeiffer AFH. Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals With Type 2 Diabetes. Gastroenterology 2017; 152:571-585.e8. [PMID: 27765690 DOI: 10.1053/j.gastro.2016.10.007] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/02/2016] [Accepted: 10/09/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) is associated with increased risk of hepatic, cardiovascular, and metabolic diseases. High-protein diets, rich in methionine and branched chain amino acids (BCAAs), apparently reduce liver fat, but can induce insulin resistance. We investigated the effects of diets high in animal protein (AP) vs plant protein (PP), which differ in levels of methionine and BCAAs, in patients with type 2 diabetes and NAFLD. We examined levels of liver fat, lipogenic indices, markers of inflammation, serum levels of fibroblast growth factor 21 (FGF21), and activation of signaling pathways in adipose tissue. METHODS We performed a prospective study of individuals with type 2 diabetes and NAFLD at a tertiary medical center in Germany from June 2013 through March 2015. We analyzed data from 37 subjects placed on a diet high in AP (rich in meat and dairy foods; n = 18) or PP (mainly legume protein; n = 19) without calorie restriction for 6 weeks. The diets were isocaloric with the same macronutrient composition (30% protein, 40% carbohydrates, and 30% fat). Participants were examined at the start of the study and after the 6-week diet period for body mass index, body composition, hip circumference, resting energy expenditure, and respiratory quotient. Body fat and intrahepatic fat were detected by magnetic resonance imaging and spectroscopy, respectively. Levels of glucose, insulin, liver enzymes, and inflammation markers, as well as individual free fatty acids and free amino acids, were measured in collected blood samples. Hyperinsulinemic euglycemic clamps were performed to determine whole-body insulin sensitivity. Subcutaneous adipose tissue samples were collected and analyzed for gene expression patterns and phosphorylation of signaling proteins. RESULTS Postprandial levels of BCAAs and methionine were significantly higher in subjects on the AP vs the PP diet. The AP and PP diets each reduced liver fat by 36%-48% within 6 weeks (for AP diet P = .0002; for PP diet P = .001). These reductions were unrelated to change in body weight, but correlated with down-regulation of lipolysis and lipogenic indices. Serum level of FGF21 decreased by 50% in each group (for AP diet P < .0002; for PP diet P < .0002); decrease in FGF21 correlated with loss of hepatic fat. In gene expression analyses of adipose tissue, expression of the FGF21 receptor cofactor β-klotho was associated with reduced expression of genes encoding lipolytic and lipogenic proteins. In patients on each diet, levels of hepatic enzymes and markers of inflammation decreased, insulin sensitivity increased, and serum level of keratin 18 decreased. CONCLUSIONS In a prospective study of patients with type 2 diabetes, we found diets high in protein (either animal or plant) significantly reduced liver fat independently of body weight, and reduced markers of insulin resistance and hepatic necroinflammation. The diets appear to mediate these changes via lipolytic and lipogenic pathways in adipose tissue. Negative effects of BCAA or methionine were not detectable. FGF21 level appears to be a marker of metabolic improvement. ClinicalTrials.gov ID NCT02402985.
Collapse
Affiliation(s)
- Mariya Markova
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research, Germany.
| | - Olga Pivovarova
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research, Germany; Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
| | - Silke Hornemann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research, Germany
| | - Stephanie Sucher
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research, Germany
| | - Turid Frahnow
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research, Germany
| | - Katrin Wegner
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Jürgen Machann
- German Center for Diabetes Research, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | | | - Johannes Hierholzer
- Department of Diagnostic and Interventional Radiology, Ernst von Bergmann Hospital, Potsdam, Germany
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Christian Herder
- German Center for Diabetes Research, Germany; Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
| | - Maren Carstensen-Kirberg
- German Center for Diabetes Research, Germany; Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research, Germany; Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Natalia Rudovich
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research, Germany; Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
| | - Susanne Klaus
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Ralph Thomann
- Institut für Getreideverarbeitung GmbH, Nuthetal, Germany
| | | | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany; Institute for Food and Environmental Research, Nuthetal, Germany
| | - Andreas F H Pfeiffer
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research, Germany; Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
| |
Collapse
|
41
|
|
42
|
Bettermann K, Mehta AK, Hofer EM, Wohlrab C, Golob-Schwarzl N, Svendova V, Schimek MG, Stumptner C, Thüringer A, Speicher MR, Lackner C, Zatloukal K, Denk H, Haybaeck J. Keratin 18-deficiency results in steatohepatitis and liver tumors in old mice: A model of steatohepatitis-associated liver carcinogenesis. Oncotarget 2016; 7:73309-73322. [PMID: 27689336 PMCID: PMC5341981 DOI: 10.18632/oncotarget.12325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023] Open
Abstract
Backround: Steatohepatitis (SH)-associated liver carcinogenesis is an increasingly important issue in clinical medicine. SH is morphologically characterized by steatosis, hepatocyte injury, ballooning, hepatocytic cytoplasmic inclusions termed Mallory-Denk bodies (MDBs), inflammation and fibrosis. RESULTS 17-20-months-old Krt18-/- and Krt18+/- mice in contrast to wt mice spontaneously developed liver lesions closely resembling the morphological spectrum of human SH as well as liver tumors. The pathologic alterations were more pronounced in Krt18-/- than in Krt18+/- mice. The frequency of liver tumors with male predominance was significantly higher in Krt18-/- compared to age-matched Krt18+/- and wt mice. Krt18-deficient tumors in contrast to wt animals displayed SH features and often pleomorphic morphology. aCGH analysis of tumors revealed chromosomal aberrations in Krt18-/- liver tumors, affecting loci of oncogenes and tumor suppressor genes. MATERIALS AND METHODS Livers of 3-, 6-, 12- and 17-20-months-old aged wild type (wt), Krt18+/- and Krt18-/- (129P2/OlaHsd background) mice were analyzed by light and immunofluorescence microscopy as well as immunohistochemistry. Liver tumors arising in aged mice were analyzed by array comparative genomic hybridization (aCGH). CONCLUSIONS Our findings show that K18 deficiency of hepatocytes leads to steatosis, increasing with age, and finally to SH. K18 deficiency and age promote liver tumor development in mice, frequently on the basis of chromosomal instability, resembling human HCC with stemness features.
Collapse
Affiliation(s)
- Kira Bettermann
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | | | - Eva M. Hofer
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | - Christina Wohlrab
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | | | - Vendula Svendova
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz 8036, Austria
| | - Michael G. Schimek
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz 8036, Austria
| | | | - Andrea Thüringer
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | | | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | - Helmut Denk
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| |
Collapse
|
43
|
Keratins Are Altered in Intestinal Disease-Related Stress Responses. Cells 2016; 5:cells5030035. [PMID: 27626448 PMCID: PMC5040977 DOI: 10.3390/cells5030035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 12/17/2022] Open
Abstract
Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery.
Collapse
|
44
|
Robles-Díaz M, Medina-Caliz I, Stephens C, Andrade RJ, Lucena MI. Biomarkers in DILI: One More Step Forward. Front Pharmacol 2016; 7:267. [PMID: 27597831 PMCID: PMC4992729 DOI: 10.3389/fphar.2016.00267] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022] Open
Abstract
Despite being relatively rare, drug-induced liver injury (DILI) is a serious condition, both for the individual patient due to the risk of acute liver failure, and for the drug development industry and regulatory agencies due to associations with drug development attritions, black box warnings, and postmarketing withdrawals. A major limitation in DILI diagnosis and prediction is the current lack of specific biomarkers. Despite refined usage of traditional liver biomarkers in DILI, reliable disease outcome predictions are still difficult to make. These limitations have driven the growing interest in developing new more sensitive and specific DILI biomarkers, which can improve early DILI prediction, diagnosis, and course of action. Several promising DILI biomarker candidates have been discovered to date, including mechanistic-based biomarker candidates such as glutamate dehydrogenase, high-mobility group box 1 protein and keratin-18, which can also provide information on the injury mechanism of different causative agents. Furthermore, microRNAs have received much attention lately as potential non-invasive DILI biomarker candidates, in particular miR-122. Advances in “omics” technologies offer a new approach for biomarker exploration studies. The ability to screen a large number of molecules (e.g., metabolites, proteins, or DNA) simultaneously enables the identification of ‘toxicity signatures,’ which may be used to enhance preclinical safety assessments and disease diagnostics. Omics-based studies can also provide information on the underlying mechanisms of distinct forms of DILI that may further facilitate the identification of early diagnostic biomarkers and safer implementation of personalized medicine. In this review, we summarize recent advances in the area of DILI biomarker studies.
Collapse
Affiliation(s)
- Mercedes Robles-Díaz
- Unidad de Gestión Clínica de Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Málaga, Spain
| | - Inmaculada Medina-Caliz
- Unidad de Gestión Clínica de Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Málaga, Spain
| | - Camilla Stephens
- Unidad de Gestión Clínica de Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Málaga, Spain
| | - Raúl J Andrade
- Unidad de Gestión Clínica de Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Málaga, Spain
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Málaga, Spain
| |
Collapse
|
45
|
Gilbert S, Loranger A, Omary MB, Marceau N. Keratin impact on PKCδ- and ASMase-mediated regulation of hepatocyte lipid raft size - implication for FasR-associated apoptosis. J Cell Sci 2016; 129:3262-73. [PMID: 27422101 DOI: 10.1242/jcs.171124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/13/2016] [Indexed: 11/20/2022] Open
Abstract
Keratins are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a cell-differentiation-regulated manner. Hepatocytes express the keratin 8 and 18 pair (denoted K8/K18) of IFs, and a loss of K8 or K18, as in K8-null mice, leads to degradation of the keratin partner. We have previously reported that a K8/K18 loss in hepatocytes leads to altered cell surface lipid raft distribution and more efficient Fas receptor (FasR, also known as TNFRSF6)-mediated apoptosis. We demonstrate here that the absence of K8 or transgenic expression of the K8 G62C mutant in mouse hepatocytes reduces lipid raft size. Mechanistically, we find that the lipid raft size is dependent on acid sphingomyelinase (ASMase, also known as SMPD1) enzyme activity, which is reduced in absence of K8/K18. Notably, the reduction of ASMase activity appears to be caused by a less efficient redistribution of surface membrane PKCδ toward lysosomes. Moreover, we delineate the lipid raft volume range that is required for an optimal FasR-mediated apoptosis. Hence, K8/K18-dependent PKCδ- and ASMase-mediated modulation of lipid raft size can explain the more prominent FasR-mediated signaling resulting from K8/K18 loss. The fine-tuning of ASMase-mediated regulation of lipid rafts might provide a therapeutic target for death-receptor-related liver diseases.
Collapse
Affiliation(s)
- Stéphane Gilbert
- Centre de recherche sur le cancer de l'Université Laval and Centre de recherche du CHU de Québec (HDQ), Québec, Canada G1R 2J6
| | - Anne Loranger
- Centre de recherche sur le cancer de l'Université Laval and Centre de recherche du CHU de Québec (HDQ), Québec, Canada G1R 2J6
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Normand Marceau
- Centre de recherche sur le cancer de l'Université Laval and Centre de recherche du CHU de Québec (HDQ), Québec, Canada G1R 2J6
| |
Collapse
|
46
|
Clarke JI, Dear JW, Antoine DJ. Recent advances in biomarkers and therapeutic interventions for hepatic drug safety – false dawn or new horizon? Expert Opin Drug Saf 2016; 15:625-34. [DOI: 10.1517/14740338.2016.1160057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joanna I. Clarke
- MRC Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - James W. Dear
- Pharmacology, Toxicology and Therapeutics Unit, BHF/University Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Daniel J. Antoine
- MRC Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
47
|
Djudjaj S, Papasotiriou M, Bülow RD, Wagnerova A, Lindenmeyer MT, Cohen CD, Strnad P, Goumenos DS, Floege J, Boor P. Keratins are novel markers of renal epithelial cell injury. Kidney Int 2016; 89:792-808. [PMID: 26924053 DOI: 10.1016/j.kint.2015.10.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/25/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022]
Abstract
Keratins, the intermediate filaments of the epithelial cell cytoskeleton, are up-regulated and post-translationally modified in stress situations. Renal tubular epithelial cell stress is a common finding in progressive kidney diseases, but little is known about keratin expression and phosphorylation. Here, we comprehensively describe keratin expression in healthy and diseased kidneys. In healthy mice, the major renal keratins, K7, K8, K18, and K19, were expressed in the collecting ducts and K8, K18 in the glomerular parietal epithelial cells. Tubular expression of all 4 keratins increased by 20- to 40-fold in 5 different models of renal tubular injury as assessed by immunohistochemistry, Western blot, and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The up-regulation became significant early after disease induction, increased with disease progression, was found de novo in distal tubules and was accompanied by altered subcellular localization. Phosphorylation of K8 and K18 increased under stress. In humans, injured tubules also exhibited increased keratin expression. Urinary K18 was only detected in mice and patients with tubular cell injury. Keratins labeled glomerular parietal epithelial cells forming crescents in patients and animals. Thus, all 4 major renal keratins are significantly, early, and progressively up-regulated upon tubular injury regardless of the underlying disease and may be novel sensitive markers of renal tubular cell stress.
Collapse
Affiliation(s)
- Sonja Djudjaj
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Marios Papasotiriou
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Department of Nephrology, University Hospital of Patras, Patras, Greece
| | - Roman D Bülow
- Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Alexandra Wagnerova
- Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Maja T Lindenmeyer
- Division of Nephrology and Institute of Physiology, University Zürich, Zürich, Switzerland
| | - Clemens D Cohen
- Division of Nephrology and Institute of Physiology, University Zürich, Zürich, Switzerland
| | - Pavel Strnad
- Department of Internal Medicine 3 and Interdisziplinäres Zentrum für Klinische Forschung, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | | | - Jürgen Floege
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Peter Boor
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
48
|
|
49
|
Bohnekamp J, Magin TM. Small molecule targeting of a myosin partner restores an intact keratin cytoskeleton despite presence of a dominant keratin mutation. Hepatology 2015; 62:1667-9. [PMID: 26387879 DOI: 10.1002/hep.28126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Jens Bohnekamp
- Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Thomas M Magin
- Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
50
|
Sun J, Groppi VE, Gui H, Chen L, Xie Q, Liu L, Omary MB. High-Throughput Screening for Drugs that Modulate Intermediate Filament Proteins. Methods Enzymol 2015; 568:163-85. [PMID: 26795471 DOI: 10.1016/bs.mie.2015.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intermediate filament (IF) proteins have unique and complex cell and tissue distribution. Importantly, IF gene mutations cause or predispose to more than 80 human tissue-specific diseases (IF-pathies), with the most severe disease phenotypes being due to mutations at conserved residues that result in a disrupted IF network. A critical need for the entire IF-pathy field is the identification of drugs that can ameliorate or cure these diseases, particularly since all current therapies target the IF-pathy complication, such as diabetes or cardiovascular disease, rather than the mutant IF protein or gene. We describe a high-throughput approach to identify drugs that can normalize disrupted IF proteins. This approach utilizes transduction of lentivirus that expresses green fluorescent protein-tagged keratin 18 (K18) R90C in A549 cells. The readout is drug "hits" that convert the dot-like keratin filament distribution, due to the R90C mutation, to a wild-type-like filamentous array. A similar strategy can be used to screen thousands of compounds and can be utilized for practically any IF protein with a filament-disrupting mutation, and could therefore potentially target many IF-pathies. "Hits" of interest require validation in cell culture then using in vivo experimental models. Approaches to study the mechanism of mutant IF normalization by potential drugs of interest are also described. The ultimate goal of this drug screening approach is to identify effective and safe compounds that can potentially be tested for clinical efficacy in patients.
Collapse
Affiliation(s)
- Jingyuan Sun
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA; Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Vincent E Groppi
- Department of Pharmacology, The Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan, USA
| | - Honglian Gui
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA; Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Lu Chen
- Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Li Liu
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA.
| |
Collapse
|