1
|
Creasy KT, Mehta MB, Schneider CV, Park J, Zhang D, Shewale SV, Millar JS, Vujkovic M, Hand NJ, Titchenell PM, Baur JA, Rader DJ. Ppp1r3b is a metabolic switch that shifts hepatic energy storage from lipid to glycogen. SCIENCE ADVANCES 2025; 11:eado3440. [PMID: 40378221 PMCID: PMC12083521 DOI: 10.1126/sciadv.ado3440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/10/2025] [Indexed: 05/18/2025]
Abstract
The PPP1R3B gene, encoding PPP1R3B protein, is critical for liver glycogen synthesis and maintaining blood glucose levels. Genetic variants affecting PPP1R3B expression are associated with several metabolic traits and liver disease, but the precise mechanisms are not fully understood. We studied the effects of both Ppp1r3b overexpression and deletion in mice and cell models and found that both changes in Ppp1r3b expression result in dysregulated metabolism and liver damage, with overexpression increasing liver glycogen stores, while deletion resulted in higher liver lipid accumulation. These patterns were confirmed in humans where variants increasing PPP1R3B expression had lower liver fat and decreased plasma lipids, whereas putative loss-of-function variants were associated with increased liver fat and elevated plasma lipids. These findings support that PPP1R3B is a crucial regulator of hepatic metabolism beyond glycogen synthesis and that genetic variants affecting PPP1R3B expression levels influence if hepatic energy is stored as glycogen or triglycerides.
Collapse
Affiliation(s)
- Kate Townsend Creasy
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Minal B. Mehta
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carolin V. Schneider
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Swapnil V. Shewale
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John S. Millar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marijana Vujkovic
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas J. Hand
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M. Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A. Baur
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J. Rader
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Sevilla-González M, Smith K, Wang N, Jensen AE, Litkowski EM, Kim H, DiCorpo DA, Hsu S, Cui J, Liu CT, Yu C, McNeil JJ, Lacaze P, Westerman KE, Chang KM, Tsao PS, Phillips LS, Goodarzi MO, Sladek R, Rotter JI, Dupuis J, Florez JC, Merino J, Meigs JB, Zhou JJ, Raghavan S, Udler MS, Manning AK. Heterogeneous effects of genetic variants and traits associated with fasting insulin on cardiometabolic outcomes. Nat Commun 2025; 16:2569. [PMID: 40089507 PMCID: PMC11910595 DOI: 10.1038/s41467-025-57452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/21/2025] [Indexed: 03/17/2025] Open
Abstract
Elevated fasting insulin levels (FI), indicative of altered insulin secretion and sensitivity, may precede type 2 diabetes (T2D) and cardiovascular disease onset. In this study, we group FI-associated genetic variants based on their genetic and phenotypic similarities and identify seven clusters with distinct mechanisms contributing to elevated FI levels. Clusters fall into two types: "non-diabetogenic hyperinsulinemia," where clusters are not associated with increased T2D risk, and "diabetogenic hyperinsulinemia," where T2D associations are driven by body fat distribution, liver function, circulating lipids, or inflammation. In over 1.1 million multi-ancestry individuals, we demonstrated that diabetogenic hyperinsulinemia cluster-specific polygenic scores exhibit varying risks for cardiovascular conditions, including coronary artery disease, myocardial infarction (MI), and stroke. Notably, the visceral adiposity cluster shows sex-specific effects for MI risk in males without T2D. This study underscores processes that decouple elevated FI levels from T2D and cardiovascular risk, offering new avenues for investigating process-specific pathways of disease.
Collapse
Affiliation(s)
- Magdalena Sevilla-González
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kirk Smith
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ningyuan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Aubrey E Jensen
- Phoenix Veterans Affairs Medical Center, Phoenix, AZ, 85012, USA
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, 90095, USA
| | - Elizabeth M Litkowski
- Veterans Affairs Eastern Colorado Health Care System, Aurora, CO, 80045, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hyunkyung Kim
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Daniel A DiCorpo
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Sarah Hsu
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jinrui Cui
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Chenglong Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - John J McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Paul Lacaze
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Kenneth E Westerman
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kyong-Mi Chang
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Philip S Tsao
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rob Sladek
- Department of Human Genetics and Department of Medicine, McGill University, Montréal, QC, Canada
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
| | - Jose C Florez
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jordi Merino
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jin J Zhou
- Phoenix Veterans Affairs Medical Center, Phoenix, AZ, 85012, USA
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, 90095, USA
| | - Sridharan Raghavan
- Veterans Affairs Eastern Colorado Health Care System, Aurora, CO, 80045, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Miriam S Udler
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
| | - Alisa K Manning
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
3
|
Shah A, Bush CO, Perry RJ. Genetic underpinnnings of type 2 diabetes. ADVANCES IN GENETICS 2025; 113:54-75. [PMID: 40409800 DOI: 10.1016/bs.adgen.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Genetics is a significant risk factor for developing type 2 diabetes, with a family history conferring a 1.5-3-fold increased risk. Intriguingly, this heritable risk is higher when the affected parent is the mother, suggesting a potential role of mitochondrial genetics -maternally inherited DNA - in diabetes pathogenesis, a hypothesis this chapter will explore. While obesity mediates some of the genetic risk of type 2 diabetes, the chapter and will focus on genetic influences on diabetes independent of obesity. Mechanistically, genetic variants directly or indirectly contribute to insulin resistance across key tissues, including liver, muscle and adipose tissue. This insulin resistance prevents the liver from efficiently suppressing glucose production in response to insulin and impairs glucose uptake in muscle during postprandial states. Insulin resistance is driven by complex interactions between the genome and environmental, which can, in turn, influence gene expression and contribute to worsening of metabolic dysfunction. This chapter examines how tissue-specific genetic changes drive insulin resistance in individual organs and how these localized dysfunctions contribute to the broader, multi-organ metabolic dysfunction that characterize type 2 diabetes.
Collapse
Affiliation(s)
- Aditya Shah
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University, New Haven, CT, United States; Woodbridge Academy Magnet School, Middlesex County, NJ, United States
| | - Clancy O Bush
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University, New Haven, CT, United States; Brain Cognition and Brain Diseases Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
| | - Rachel J Perry
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University, New Haven, CT, United States.
| |
Collapse
|
4
|
Zhang X, Chang KM, Yu J, Loomba R. Unraveling Mechanisms of Genetic Risks in Metabolic Dysfunction-Associated Steatotic Liver Diseases: A Pathway to Precision Medicine. ANNUAL REVIEW OF PATHOLOGY 2025; 20:375-403. [PMID: 39854186 DOI: 10.1146/annurev-pathmechdis-111523-023430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly. In this review, we summarize evidence regarding genetic predisposition to MASLD drawn from family and twin studies. Significantly, we delve into detailed genetic variations associated with diverse pathogenic mechanisms driving MASLD. We highlight the interplay between these genetic variants and their connections with metabolic factors, the gut microbiome, and metabolites, which collectively influence MASLD progression. These discoveries are paving the way for precise medicine, including noninvasive diagnostics and therapies. The promising landscape of novel genetically informed drug targets such as RNA interference is explored. Many of these therapies are currently under clinical validation, raising hopes for more effective MASLD treatment.
Collapse
Affiliation(s)
- Xiang Zhang
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Sato S, Iino C, Sasada T, Furusawa K, Yoshida K, Sawada K, Mikami T, Fukuda S, Nakaji S, Sakuraba H. A 4-year cohort study of the effects of PNPLA3 rs738409 genotypes on liver fat and fibrosis and gut microbiota in a non-fatty liver population. Environ Health Prev Med 2025; 30:17. [PMID: 40074353 PMCID: PMC11925709 DOI: 10.1265/ehpm.24-00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Many factors are associated with the development and progression of liver fat and fibrosis; however, genetics and the gut microbiota are representative factors. Moreover, recent studies have indicated a link between host genes and the gut microbiota. This study investigated the effect of patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 (C > G), which has been reported to be most involved in the onset and progression of fatty liver, on liver fat and fibrosis in a cohort study related to gut microbiota in a non-fatty liver population. METHODS This cohort study included 214 participants from the health check-up project in 2018 and 2022 who had non-fatty liver with controlled attenuation parameter (CAP) values <248 dB/m by FibroScan and were non-drinkers. Changes in CAP values and liver stiffness measurement (LSM), liver-related items, and gut microbiota from 2018 to 2022 were investigated separately for PNPLA3 rs738409 CC, CG, and GG genotypes. RESULTS Baseline values showed no difference among the PNPLA3 rs738409 genotypes for any of the measurement items. From 2018 to 2022, the PNPLA3 rs738409 CG and GG genotype groups showed a significant increase in CAP and body mass index; no significant change was observed in the CC genotype group. LSM increased in all genotypes, but the rate of increase was highest in the GG genotype, followed by the CG and CC genotypes. Fasting blood glucose levels increased in all genotypes; however, HOMA-IR (Homeostasis Model Assessment of Insulin Resistance) increased significantly only in the GG genotype. HDL (high-density lipoprotein) and LDL (low-density lipoprotein) cholesterol levels significantly increased in all genotypes, whereas triglycerides did not show any significant changes in any genotype. As for the gut microbiota, the relative abundance of Feacalibacterium in the PNPLA3 rs738409 GG genotype decreased by 2% over 4 years, more than 2-fold compared to CC and GG genotypes. Blautia increased significantly in the CC group. CONCLUSION The results suggest that PNPLA3 G-allele carriers of non-fatty liver develop liver fat and fibrosis due to not only obesity and insulin resistance but also the deterioration of gut microbiota, which may require a relatively long course of time, even years.
Collapse
Affiliation(s)
- Satoshi Sato
- Department of Gastroenterology, Hematology and Clinical Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Chikara Iino
- Department of Gastroenterology, Hematology and Clinical Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Takafumi Sasada
- Department of Gastroenterology, Hematology and Clinical Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Keisuke Furusawa
- Department of Gastroenterology, Hematology and Clinical Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kenta Yoshida
- Department of Gastroenterology, Hematology and Clinical Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kaori Sawada
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Tatsuya Mikami
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Shinsaku Fukuda
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Shigeyuki Nakaji
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Hirotake Sakuraba
- Department of Gastroenterology, Hematology and Clinical Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
6
|
Zou C, Liu X, He M, Sun Y, Sang Y, Peng G, Ma Y, Geng H, Liang J. Insulin Resistance Mediates the Association Between Vitamin D and Non-Alcoholic Fatty Liver Disease. Int J Prev Med 2024; 15:77. [PMID: 39867257 PMCID: PMC11759225 DOI: 10.4103/ijpvm.ijpvm_221_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/14/2023] [Indexed: 01/28/2025] Open
Abstract
Background Vitamin D (VD) deficiency and insulin resistance (IR) increase the risk of non-alcoholic fatty liver disease (NAFLD), but few studies have explored the potential mechanisms by which IR mediates the association between VD and the pathogenesis of NAFLD at the genetic level using publicly available databases. Methods This is a cross-sectional study, and we utilized the National Health and Nutrition Examination Survey (NHANES) dataset, as well as data from GSE200765 obtained from the Gene Expression Omnibus (GEO) website. A total of 723 individuals who had completed liver ultrasound examination and the detection of VD levels were included in the final analysis. A gene expression dataset, GSE200765, was also downloaded from the GEO website, to explore the potential mechanism of VD and NAFLD. Results In the NHANES data, covariates significantly differed in four VD categories, and the controlled attenuation parameter (CAP), vibration-controlled transient elastography-liver stiffness measurement (VCTE-LSM), and IR were reduced with an increase in VD levels. Mediation analysis revealed that IR mediated the association between VD and both CAP and LSM, and the estimated mediation effects were 29.0% and 39.8%, respectively. Bioinformatics analysis showed that seven differentially expressed genes (DEGs) (solute carrier family 2 member 2 [SLC2A2], protein phosphatase 1 regulatory subunit 3E [PPP1R3E], CAMP responsive element binding protein 3-like 3 [CREB3L3], Interleukin-6 [IL-6], peroxisome proliferator-activated receptor gamma coactivator 1-alpha [PPARGC1A], nuclear factor kappa B inhibitor alpha [NFKBIA], and phosphoenolpyruvate carboxykinase 2 [PCK2]) were enriched in the IR pathway in comparison groups (VD group vs. lipid group), suggesting that VD improved NAFLD via changed IR. Conclusions VD deficiency and IR were the risk factors for NAFLD, and increased VD levels improved the status of NAFLD. The underlying mechanism may be that elevated VD levels reduced IR, which improved the expression of DEGs involved in the IR pathway.
Collapse
Affiliation(s)
- Caiyan Zou
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Affiliated Hospital of Southeast University, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu, China
| | - Xuekui Liu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Affiliated Hospital of Southeast University, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu, China
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou Institute of Medical Science, Jiangsu Province, China
| | - Maosheng He
- Department of Ultrasound, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Yan Sun
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Affiliated Hospital of Southeast University, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu, China
| | - Yiquan Sang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Affiliated Hospital of Southeast University, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu, China
| | - Gangshan Peng
- Department of Graduate School, Xuzhou Medical University, Xuzhou, China
| | - Yamei Ma
- Department of Bengbu Medical College, Bengbu, China
| | - Houfa Geng
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Affiliated Hospital of Southeast University, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Affiliated Hospital of Southeast University, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
7
|
Sato S, Iino C, Sasada T, Soma G, Furusawa K, Yoshida K, Sawada K, Mikami T, Fukuda S, Nakaji S, Sakuraba H. An epidemiological study on the factors including genetic polymorphism influencing ALT >30 U/L and liver fibrosis progression in metabolic dysfunction-associated steatotic liver disease among the general population. JGH Open 2024; 8:e70043. [PMID: 39713746 PMCID: PMC11659511 DOI: 10.1002/jgh3.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 12/24/2024]
Abstract
Background and Aim Identifying the factors contributing to the progression of metabolic dysfunction-associated steatotic liver disease (MASLD), a lifestyle-related disease, is crucial for preventing future liver-related deaths. This study aimed to epidemiologically investigate factors, including single-nucleotide polymorphisms (SNPs) associated with alanine aminotransferase (ALT) levels >30 U/L and potential risk factors for liver fibrosis, in a general population cohort of patients with MASLD. Methods Among 1059 participants in the health checkup project, 228 who were diagnosed with MASLD were analyzed. Liver fat content and stiffness were measured using FibroScan, and 13 SNPs associated with non-alcoholic fatty liver disease (NAFLD) were measured in addition to other clinical parameters. Results In the multivariate analysis, male sex, younger age, and high triglyceride levels were significant risk factors for ALT levels >30 U/L (P-value < 0.05). Furthermore, among the 13 SNPs measured, only the GG genotypes of patatin-like phospholipase domain-containing 3 gene (PNPLA3) rs738409 and rs2896019 were significant risk factors for ALT levels >30 U/L (P-value 0.004 and 0.007). The GG genotypes of PNPLA3 rs738409 and rs2896019 had higher FibroScan-aspartate aminotransferase (FAST) and APRI scores than the CC + CG and TT + TG genotypes (P-value < 0.05). In addition, multivariate analysis revealed that the GG genotypes of rs738409 and rs2896019 were significant risk factors independent of cardiovascular metabolic risk for patients with MASLD (P-value 0.038 and 0.021). Conclusion An individualized treatment approach is warranted for patients with MASLD due to the influence of various factors on its progression, including genetic factors and lifestyle diseases.
Collapse
Affiliation(s)
- Satoshi Sato
- Department of Gastroenterology, Hematology and Clinical ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Chikara Iino
- Department of Gastroenterology, Hematology and Clinical ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Takafumi Sasada
- Department of Gastroenterology, Hematology and Clinical ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Go Soma
- Department of Gastroenterology, Hematology and Clinical ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Keisuke Furusawa
- Department of Gastroenterology, Hematology and Clinical ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kenta Yoshida
- Department of Gastroenterology, Hematology and Clinical ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kaori Sawada
- Department of Preemptive MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Tatsuya Mikami
- Department of Preemptive MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Shinsaku Fukuda
- Department of Preemptive MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Shigeyuki Nakaji
- Department of Preemptive MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hirotake Sakuraba
- Department of Gastroenterology, Hematology and Clinical ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
8
|
Koch RL, Stanton JB, McClatchy S, Churchill GA, Craig SW, Williams DN, Johns ME, Chase KR, Thiesfeldt DL, Flynt JC, Pazdro R. Discovery of genomic loci for liver health and steatosis reveals overlap with glutathione redox genetics. Redox Biol 2024; 75:103248. [PMID: 38917671 PMCID: PMC11254179 DOI: 10.1016/j.redox.2024.103248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver condition in the United States, encompassing a wide spectrum of liver pathologies including steatosis, steatohepatitis, fibrosis, and cirrhosis. Despite its high prevalence, there are no medications currently approved by the Food and Drug Administration for the treatment of NAFLD. Recent work has suggested that NAFLD has a strong genetic component and identifying causative genes will improve our understanding of the molecular mechanisms contributing to NAFLD and yield targets for future therapeutic investigations. Oxidative stress is known to play an important role in NAFLD pathogenesis, yet the underlying mechanisms accounting for disturbances in redox status are not entirely understood. To better understand the relationship between the glutathione redox system and signs of NAFLD in a genetically-diverse population, we measured liver weight, serum biomarkers aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and graded liver pathology in a large cohort of Diversity Outbred mice. We compared hepatic endpoints to those of the glutathione redox system previously measured in the livers and kidneys of the same mice, and we screened for statistical and genetic associations using the R/qtl2 software. We discovered several novel genetic loci associated with markers of liver health, including loci that were associated with both liver steatosis and glutathione redox status. Candidate genes within each locus point to possible new mechanisms underlying the complex relationship between NAFLD and the glutathione redox system, which could have translational implications for future studies targeting NAFLD pathology.
Collapse
Affiliation(s)
- Rebecca L Koch
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - James B Stanton
- Department of Pathology, University of Georgia, Athens, GA, USA, 30602
| | | | | | - Steven W Craig
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Darian N Williams
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Mallory E Johns
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Kylah R Chase
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Dana L Thiesfeldt
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Jessica C Flynt
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602.
| |
Collapse
|
9
|
Xie X, Gao M, Wang H, Zhang M, Zhao W, Li C, Zhang W, Yang J, Zhang Y, Chen E, Guo Y, Guo Z, Ngowi EE, Wang X, Zhu Y, Wang Y, Li X, Yao H, Yan L, Fang F, Li M, Qiao A, Liu X. LncRNA-Snhg3 regulates mouse hepatic glycogenesis under normal chow diet. FASEB J 2024; 38:e23880. [PMID: 39132919 DOI: 10.1096/fj.202401064r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Long noncoding RNAs (lncRNAs) are strongly associated with glucose homeostasis, but their roles remain largely unknown. In this study, the potential role of lncRNA-Snhg3 in glucose metabolism was evaluated both in vitro and in vivo. Here, we found a positive relationship between Snhg3 and hepatic glycogenesis. Glucose tolerance improved in hepatocyte-specific Snhg3 knock-in (Snhg3-HKI) mice, while it worsened in hepatocyte-specific Snhg3 knockout (Snhg3-HKO) mice. Furthermore, hepatic glycogenesis had shown remarkable increase in Snhg3-HKI mice and reduction in Snhg3-HKO mice, respectively. Mechanistically, Snhg3 increased mRNA and protein expression levels of PPP1R3B through inducing chromatin remodeling and promoting the phosphorylation of protein kinase B. Collectively, these results suggested that lncRNA-Snhg3 plays a critical role in hepatic glycogenesis.
Collapse
Affiliation(s)
- Xianghong Xie
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Mingyue Gao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Heping Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Minglong Zhang
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Zhao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Chunmei Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Weihong Zhang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Jiahui Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Yinliang Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Enhui Chen
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yanfang Guo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zeyu Guo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ebenezeri Erasto Ngowi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China
| | - Xiaoman Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yinghan Zhu
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yiting Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaolu Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hong Yao
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Li Yan
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Fude Fang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Meixia Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Aijun Qiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China
| | - Xiaojun Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Guo S, Zhang J, Li H, Cheng CK, Zhang J. Genetic and Modifiable Risk Factors for Postoperative Complications of Total Joint Arthroplasty: A Genome-Wide Association and Mendelian Randomization Study. Bioengineering (Basel) 2024; 11:797. [PMID: 39199755 PMCID: PMC11351150 DOI: 10.3390/bioengineering11080797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Background: Total joint arthroplasty (TJA) is an orthopedic procedure commonly used to treat damaged joints. Despite the efficacy of TJA, postoperative complications, including aseptic prosthesis loosening and infections, are common. Moreover, the effects of individual genetic susceptibility and modifiable risk factors on these complications are unclear. This study analyzed these effects to enhance patient prognosis and postoperative management. Methods: We conducted an extensive genome-wide association study (GWAS) and Mendelian randomization (MR) study using UK Biobank data. The cohort included 2964 patients with mechanical complications post-TJA, 957 with periprosthetic joint infection (PJI), and a control group of 398,708 individuals. Genetic loci associated with postoperative complications were identified by a GWAS analysis, and the causal relationships of 11 modifiable risk factors with complications were assessed using MR. Results: The GWAS analysis identified nine loci associated with post-TJA complications. Two loci near the PPP1R3B and RBM26 genes were significantly linked to mechanical complications and PJI, respectively. The MR analysis demonstrated that body mass index was positively associated with the risk of mechanical complications (odds ratio [OR]: 1.42; p < 0.001). Higher educational attainment was associated with a decreased risk of mechanical complications (OR: 0.55; p < 0.001) and PJI (OR: 0.43; p = 0.001). Type 2 diabetes was suggestively associated with mechanical complications (OR, 1.18, p = 0.02), and hypertension was suggestively associated with PJI (OR, 1.41, p = 0.008). Other lifestyle factors, including smoking and alcohol consumption, were not causally related to postoperative complications. Conclusions: The genetic loci near PPP1R3B and RBM26 influenced the risk of post-TJA mechanical complications and infections, respectively. The effects of genetic and modifiable risk factors, including body mass index and educational attainment, underscore the need to perform personalized preoperative assessments and the postoperative management of surgical patients. These results indicate that integrating genetic screening and lifestyle interventions into patient care can improve the outcomes of TJA and patient quality of life.
Collapse
Affiliation(s)
- Sijia Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (S.G.); (J.Z.)
- Engineering Research Center of Digital Medicine of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiping Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (S.G.); (J.Z.)
- Engineering Research Center of Digital Medicine of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huiwu Li
- Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China;
| | - Cheng-Kung Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (S.G.); (J.Z.)
- Engineering Research Center of Digital Medicine of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingwei Zhang
- Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China;
| |
Collapse
|
11
|
Mahmoudi SK, Tarzemani S, Aghajanzadeh T, Kasravi M, Hatami B, Zali MR, Baghaei K. Exploring the role of genetic variations in NAFLD: implications for disease pathogenesis and precision medicine approaches. Eur J Med Res 2024; 29:190. [PMID: 38504356 PMCID: PMC10953212 DOI: 10.1186/s40001-024-01708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases, affecting more than one-quarter of people worldwide. Hepatic steatosis can progress to more severe forms of NAFLD, including NASH and cirrhosis. It also may develop secondary diseases such as diabetes and cardiovascular disease. Genetic and environmental factors regulate NAFLD incidence and progression, making it a complex disease. The contribution of various environmental risk factors, such as type 2 diabetes, obesity, hyperlipidemia, diet, and sedentary lifestyle, to the exacerbation of liver injury is highly understood. Nevertheless, the underlying mechanisms of genetic variations in the NAFLD occurrence or its deterioration still need to be clarified. Hence, understanding the genetic susceptibility to NAFLD is essential for controlling the course of the disease. The current review discusses genetics' role in the pathological pathways of NAFLD, including lipid and glucose metabolism, insulin resistance, cellular stresses, and immune responses. Additionally, it explains the role of the genetic components in the induction and progression of NAFLD in lean individuals. Finally, it highlights the utility of genetic knowledge in precision medicine for the early diagnosis and treatment of NAFLD patients.
Collapse
Affiliation(s)
- Seyedeh Kosar Mahmoudi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Shadi Tarzemani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Taha Aghajanzadeh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| | - Mohammadreza Kasravi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| |
Collapse
|
12
|
Uehara K, Lee WD, Stefkovich M, Biswas D, Santoleri D, Garcia Whitlock A, Quinn W, Coopersmith T, Creasy KT, Rader DJ, Sakamoto K, Rabinowitz JD, Titchenell PM. mTORC1 controls murine postprandial hepatic glycogen synthesis via Ppp1r3b. J Clin Invest 2024; 134:e173782. [PMID: 38290087 PMCID: PMC10977990 DOI: 10.1172/jci173782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/26/2024] [Indexed: 02/01/2024] Open
Abstract
In response to a meal, insulin drives hepatic glycogen synthesis to help regulate systemic glucose homeostasis. The mechanistic target of rapamycin complex 1 (mTORC1) is a well-established insulin target and contributes to the postprandial control of liver lipid metabolism, autophagy, and protein synthesis. However, its role in hepatic glucose metabolism is less understood. Here, we used metabolomics, isotope tracing, and mouse genetics to define a role for liver mTORC1 signaling in the control of postprandial glycolytic intermediates and glycogen deposition. We show that mTORC1 is required for glycogen synthase activity and glycogenesis. Mechanistically, hepatic mTORC1 activity promotes the feeding-dependent induction of Ppp1r3b, a gene encoding a phosphatase important for glycogen synthase activity whose polymorphisms are linked to human diabetes. Reexpression of Ppp1r3b in livers lacking mTORC1 signaling enhances glycogen synthase activity and restores postprandial glycogen content. mTORC1-dependent transcriptional control of Ppp1r3b is facilitated by FOXO1, a well characterized transcriptional regulator involved in the hepatic response to nutrient intake. Collectively, we identify a role for mTORC1 signaling in the transcriptional regulation of Ppp1r3b and the subsequent induction of postprandial hepatic glycogen synthesis.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute for Diabetes, Obesity, and Metabolism
- Biochemistry and Molecular Biophysics Graduate Group, and
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Won Dong Lee
- Lewis Sigler Institute for Integrative Genomics
- Department of Chemistry, and
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, New Jersey, USA
| | | | - Dipsikha Biswas
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Dominic Santoleri
- Institute for Diabetes, Obesity, and Metabolism
- Biochemistry and Molecular Biophysics Graduate Group, and
| | | | | | | | - Kate Townsend Creasy
- Institute for Diabetes, Obesity, and Metabolism
- Department of Medicine, Division of Translational Medicine and Human Genetics, and
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J. Rader
- Institute for Diabetes, Obesity, and Metabolism
- Department of Medicine, Division of Translational Medicine and Human Genetics, and
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Joshua D. Rabinowitz
- Lewis Sigler Institute for Integrative Genomics
- Department of Chemistry, and
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Paul M. Titchenell
- Institute for Diabetes, Obesity, and Metabolism
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Manning A, Sevilla-González M, Smith K, Wang N, Jensen A, Litkowski E, Kim H, DiCorpo D, Westerman K, Cui J, Liu CT, Yu C, McNeil J, Lacaze P, Chang KM, Tsao P, Phillips L, Goodarzi M, Sladek R, Rotter J, Dupuis J, Florez J, Merino J, Meigs J, Zhou J, Raghavan S, Udler M. Heterogeneous effects on type 2 diabetes and cardiovascular outcomes of genetic variants and traits associated with fasting insulin. RESEARCH SQUARE 2023:rs.3.rs-3317661. [PMID: 37790568 PMCID: PMC10543499 DOI: 10.21203/rs.3.rs-3317661/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Hyperinsulinemia is a complex and heterogeneous phenotype that characterizes molecular alterations that precede the development of type 2 diabetes (T2D). It results from a complex combination of molecular processes, including insulin secretion and insulin sensitivity, that differ between individuals. To better understand the physiology of hyperinsulinemia and ultimately T2D, we implemented a genetic approach grouping fasting insulin (FI)-associated genetic variants based on their molecular and phenotypic similarities. We identified seven distinctive genetic clusters representing different physiologic mechanisms leading to rising FI levels, ranging from clusters of variants with effects on increased FI, but without increased risk of T2D (non-diabetogenic hyperinsulinemia), to clusters of variants that increase FI and T2D risk with demonstrated strong effects on body fat distribution, liver, lipid, and inflammatory processes (diabetogenic hyperinsulinemia). We generated cluster-specific polygenic scores in 1,104,258 individuals from five multi-ancestry cohorts to show that the clusters differed in associations with cardiometabolic traits. Among clusters characterized by non-diabetogenic hyperinsulinemia, there was both increased and decreased risk of coronary artery disease despite the non-increased risk of T2D. Similarly, the clusters characterized by diabetogenic hyperinsulinemia were associated with an increased risk of T2D, yet had differing risks of cardiovascular conditions, including coronary artery disease, myocardial infarction, and stroke. The strongest cluster-T2D associations were observed with the same direction of effect in non-Hispanic Black, Hispanic, non-Hispanic White, and non-Hispanic East Asian populations. These genetic clusters provide important insights into granular metabolic processes underlying the physiology of hyperinsulinemia, notably highlighting specific processes that decouple increasing FI levels from T2D and cardiovascular risk. Our findings suggest that increasing FI levels are not invariably associated with adverse cardiometabolic outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz Veterans Affairs Medical Center and University of Pennsylvania Perelman School of Medicine
| | - Phil Tsao
- Stanford University School of Medicine
| | | | | | | | - Jerome Rotter
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | | | | | | | - James Meigs
- Department of Medicine, Harvard Medical School
| | | | | | | |
Collapse
|
14
|
Wang C, Fu H, Yang J, Liu L, Zhang F, Yang C, Li H, Chen J, Li Q, Wang X, Ye Y, Sheng N, Guo Y, Dai J, Xu G, Liu X, Wang J. PFO5DoDA disrupts hepatic homeostasis primarily through glucocorticoid signaling inhibition. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130831. [PMID: 36696776 DOI: 10.1016/j.jhazmat.2023.130831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Legacy per- and polyfluoroalkyl substances (PFASs) are a worldwide health concern due to their potential bioaccumulation and toxicity in humans. A variety of perfluoroether carboxylic acids (PFECAs) have been developed as next-generation replacements of legacy PFASs. However, information regarding their possible environmental and human health risks is limited. In the present study, we explored the effects of PFECAs on mice based on long-term exposure to environmentally relevant doses of perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoDA). Results showed that PFECAs exposure suppressed many cellular stress signals and resulted in hepatomegaly. PFO5DoDA acted as an agonist of the peroxisome proliferator-activated receptor (PPAR) in vitro and modulated PPAR-dependent gene expression in the liver. Importantly, PFECAs had an inhibitory effect on the glucocorticoid receptor (GR), which may contribute to the extensive suppression of stress signals. Of note, the GR suppression induced by PFECAs was not reported by legacy perfluorooctanoic acid (PFOA). PFO5DoDA-induced changes in both GR and PPAR signals remodeled hepatic metabolic profiles, including decreased fatty acids and amino acids and increased β-oxidation. Mechanistically, PFO5DoDA inhibited GR transactivation by degradation of GR proteins. Our results emphasize the potential risk of PFECAs to human health, which were introduced to ease concerns regarding legacy PFASs.
Collapse
Affiliation(s)
- Chang Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Huayu Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jun Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lei Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Fenghong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Chunyu Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongyuan Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiamiao Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yaorui Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jianshe Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
15
|
Soon GST, Torbenson M. The Liver and Glycogen: In Sickness and in Health. Int J Mol Sci 2023; 24:ijms24076133. [PMID: 37047105 PMCID: PMC10094386 DOI: 10.3390/ijms24076133] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The liver is a major store of glycogen and is essential in maintaining systemic glucose homeostasis. In healthy individuals, glycogen synthesis and breakdown in the liver are tightly regulated. Abnormal glycogen metabolism results in prominent pathological changes in the liver, often manifesting as hepatic glycogenosis or glycogen inclusions. This can occur in genetic glycogen storage disease or acquired conditions with insulin dysregulation such as diabetes mellitus and non-alcoholic fatty liver disease or medication effects. Some primary hepatic tumors such as clear cell hepatocellular carcinoma also demonstrate excessive glycogen accumulation. This review provides an overview of the pathological manifestations and molecular mechanisms of liver diseases associated with abnormal glycogen accumulation.
Collapse
Affiliation(s)
- Gwyneth S T Soon
- Department of Pathology, National University Hospital, Singapore 119074, Singapore
| | - Michael Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Luukkonen PK, Färkkilä M, Jula A, Salomaa V, Männistö S, Lundqvist A, Perola M, Åberg F. Abdominal obesity and alcohol use modify the impact of genetic risk for incident advanced liver disease in the general population. Liver Int 2023; 43:1035-1045. [PMID: 36843445 DOI: 10.1111/liv.15554] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND & AIMS Genetic variants, abdominal obesity and alcohol use are risk factors for incident liver disease (ILD). We aimed to study whether variants either alone or when aggregated into genetic risk scores (GRSs) associate with ILD, and whether waist-hip ratio (WHR) or alcohol use interacts with this risk. METHODS Our study included 33 770 persons (mean age 50 years, 47% men) who participated in health-examination surveys (FINRISK 1992-2012 or Health 2000) with data on alcohol use, WHR and 63 genotypes associated with liver disease. Data were linked with national health registers for liver-related outcomes (hospitalizations, malignancies and death). Exclusions were baseline clinical liver disease. Mean follow-up time was 12.2 years. Cox regression analyses between variants and ILD were adjusted for age, sex and BMI. RESULTS Variants in PNPLA3, IFNL4, TM6SF2, FDFT1, PPP1R3B, SERPINA1 and HSD17B13 were associated with ILD. GRSs calculated from these variants were not associated with WHR or alcohol use, but were exponentially associated with ILD (up to 25-fold higher risk in high versus low score). The risk of ILD in individuals with high GRS and high WHR or alcohol use compared with those with none of these risk factors was increased by up to 90-fold. GRSs provided new prognostic information particularly in individuals with high WHR. CONCLUSIONS The effect of multiple genetic variants on the risk of ILD is potentiated by abdominal obesity and alcohol use. Simple GRSs may help to identify individuals with adverse lifestyle who are at a particularly high risk of ILD.
Collapse
Affiliation(s)
- Panu K Luukkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Abdominal Center, Helsinki University Hospital, Helsinki, Finland.,Department of Internal Medicine, University of Helsinki, Helsinki, Finland
| | - Martti Färkkilä
- Clinic of Gastroenterology, Helsinki University, Helsinki University Hospital, Helsinki, Finland
| | - Antti Jula
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Veikko Salomaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Satu Männistö
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Markus Perola
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Fredrik Åberg
- Transplantation and Liver Surgery Clinic, Helsinki University Hospital, Helsinki University, Helsinki, Finland
| |
Collapse
|
17
|
Sulaiman SA, Dorairaj V, Adrus MNH. Genetic Polymorphisms and Diversity in Nonalcoholic Fatty Liver Disease (NAFLD): A Mini Review. Biomedicines 2022; 11:106. [PMID: 36672614 PMCID: PMC9855725 DOI: 10.3390/biomedicines11010106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease with a wide spectrum of liver conditions ranging from hepatic steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. The prevalence of NAFLD varies across populations, and different ethnicities have specific risks for the disease. NAFLD is a multi-factorial disease where the genetics, metabolic, and environmental factors interplay and modulate the disease's development and progression. Several genetic polymorphisms have been identified and are associated with the disease risk. This mini-review discussed the NAFLD's genetic polymorphisms and focusing on the differences in the findings between the populations (diversity), including of those reports that did not show any significant association. The challenges of genetic diversity are also summarized. Understanding the genetic contribution of NAFLD will allow for better diagnosis and management explicitly tailored for the various populations.
Collapse
Affiliation(s)
- Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaa’cob Latiff, Cheras, Kuala Lumpur 56000, Malaysia; (V.D.); (M.N.H.A.)
| | | | | |
Collapse
|
18
|
Verweij N, Haas ME, Nielsen JB, Sosina OA, Kim M, Akbari P, De T, Hindy G, Bovijn J, Persaud T, Miloscio L, Germino M, Panagis L, Watanabe K, Mbatchou J, Jones M, LeBlanc M, Balasubramanian S, Lammert C, Enhörning S, Melander O, Carey DJ, Still CD, Mirshahi T, Rader DJ, Parasoglou P, Walls JR, Overton JD, Reid JG, Economides A, Cantor MN, Zambrowicz B, Murphy AJ, Abecasis GR, Ferreira MAR, Smagris E, Gusarova V, Sleeman M, Yancopoulos GD, Marchini J, Kang HM, Karalis K, Shuldiner AR, Della Gatta G, Locke AE, Baras A, Lotta LA. Germline Mutations in CIDEB and Protection against Liver Disease. N Engl J Med 2022; 387:332-344. [PMID: 35939579 DOI: 10.1056/nejmoa2117872] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Exome sequencing in hundreds of thousands of persons may enable the identification of rare protein-coding genetic variants associated with protection from human diseases like liver cirrhosis, providing a strategy for the discovery of new therapeutic targets. METHODS We performed a multistage exome sequencing and genetic association analysis to identify genes in which rare protein-coding variants were associated with liver phenotypes. We conducted in vitro experiments to further characterize associations. RESULTS The multistage analysis involved 542,904 persons with available data on liver aminotransferase levels, 24,944 patients with various types of liver disease, and 490,636 controls without liver disease. We found that rare coding variants in APOB, ABCB4, SLC30A10, and TM6SF2 were associated with increased aminotransferase levels and an increased risk of liver disease. We also found that variants in CIDEB, which encodes a structural protein found in hepatic lipid droplets, had a protective effect. The burden of rare predicted loss-of-function variants plus missense variants in CIDEB (combined carrier frequency, 0.7%) was associated with decreased alanine aminotransferase levels (beta per allele, -1.24 U per liter; 95% confidence interval [CI], -1.66 to -0.83; P = 4.8×10-9) and with 33% lower odds of liver disease of any cause (odds ratio per allele, 0.67; 95% CI, 0.57 to 0.79; P = 9.9×10-7). Rare coding variants in CIDEB were associated with a decreased risk of liver disease across different underlying causes and different degrees of severity, including cirrhosis of any cause (odds ratio per allele, 0.50; 95% CI, 0.36 to 0.70). Among 3599 patients who had undergone bariatric surgery, rare coding variants in CIDEB were associated with a decreased nonalcoholic fatty liver disease activity score (beta per allele in score units, -0.98; 95% CI, -1.54 to -0.41 [scores range from 0 to 8, with higher scores indicating more severe disease]). In human hepatoma cell lines challenged with oleate, CIDEB small interfering RNA knockdown prevented the buildup of large lipid droplets. CONCLUSIONS Rare germline mutations in CIDEB conferred substantial protection from liver disease. (Funded by Regeneron Pharmaceuticals.).
Collapse
Affiliation(s)
- Niek Verweij
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Mary E Haas
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Jonas B Nielsen
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Olukayode A Sosina
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Minhee Kim
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Parsa Akbari
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Tanima De
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - George Hindy
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Jonas Bovijn
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Trikaldarshi Persaud
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Lawrence Miloscio
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Mary Germino
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Lampros Panagis
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Kyoko Watanabe
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Joelle Mbatchou
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Marcus Jones
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Michelle LeBlanc
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Suganthi Balasubramanian
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Craig Lammert
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Sofia Enhörning
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Olle Melander
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - David J Carey
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Christopher D Still
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Tooraj Mirshahi
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Daniel J Rader
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Prodromos Parasoglou
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Johnathon R Walls
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - John D Overton
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Jeffrey G Reid
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Aris Economides
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Michael N Cantor
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Brian Zambrowicz
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Andrew J Murphy
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Goncalo R Abecasis
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Manuel A R Ferreira
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Eriks Smagris
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Viktoria Gusarova
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Mark Sleeman
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - George D Yancopoulos
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Jonathan Marchini
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Hyun M Kang
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Katia Karalis
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Alan R Shuldiner
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Giusy Della Gatta
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Adam E Locke
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Aris Baras
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| | - Luca A Lotta
- From the Regeneron Genetics Center (N.V., M.E.H., J.B.N., O.A.S., M.K., P.A., T.D., G.H., J.B., T.P., L.M., K.W., J. Mbatchou, M.J., M.L., S.B., J.D.O., J.G.R., A.E., M.N.C., G.R.A., M.A.R.F., J. Marchini, H.M.K., K.K., A.R.S., G.D.G., A.E.L., A.B., L.A.L.), Regeneron Pharmaceuticals (M.G., L.P., P.P., J.R.W., B.Z., A.J.M., E.S., V.G., M.S., G.D.Y.), Tarrytown, NY; Indiana University School of Medicine, Indianapolis (C.L.); the Department of Clinical Sciences Malmö, Lund University, and the Department of Emergency and Internal Medicine, Skåne University Hospital - both in Malmö, Sweden (S.E., O.M.); and the Department of Molecular and Functional Genomics, Geisinger Health System, Danville (D.J.C., C.D.S., T.M.), and the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.) - both in Pennsylvania
| |
Collapse
|
19
|
Vujkovic M, Ramdas S, Lorenz KM, Guo X, Darlay R, Cordell HJ, He J, Gindin Y, Chung C, Myers RP, Schneider CV, Park J, Lee KM, Serper M, Carr RM, Kaplan DE, Haas ME, MacLean MT, Witschey WR, Zhu X, Tcheandjieu C, Kember RL, Kranzler HR, Verma A, Giri A, Klarin DM, Sun YV, Huang J, Huffman JE, Creasy KT, Hand NJ, Liu CT, Long MT, Yao J, Budoff M, Tan J, Li X, Lin HJ, Chen YDI, Taylor KD, Chang RK, Krauss RM, Vilarinho S, Brancale J, Nielsen JB, Locke AE, Jones MB, Verweij N, Baras A, Reddy KR, Neuschwander-Tetri BA, Schwimmer JB, Sanyal AJ, Chalasani N, Ryan KA, Mitchell BD, Gill D, Wells AD, Manduchi E, Saiman Y, Mahmud N, Miller DR, Reaven PD, Phillips LS, Muralidhar S, DuVall SL, Lee JS, Assimes TL, Pyarajan S, Cho K, Edwards TL, Damrauer SM, Wilson PW, Gaziano JM, O'Donnell CJ, Khera AV, Grant SFA, Brown CD, Tsao PS, Saleheen D, Lotta LA, Bastarache L, Anstee QM, Daly AK, Meigs JB, Rotter JI, Lynch JA, Rader DJ, Voight BF, Chang KM. A multiancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation. Nat Genet 2022; 54:761-771. [PMID: 35654975 PMCID: PMC10024253 DOI: 10.1038/s41588-022-01078-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/18/2022] [Indexed: 02/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing cause of chronic liver disease. Using a proxy NAFLD definition of chronic elevation of alanine aminotransferase (cALT) levels without other liver diseases, we performed a multiancestry genome-wide association study (GWAS) in the Million Veteran Program (MVP) including 90,408 cALT cases and 128,187 controls. Seventy-seven loci exceeded genome-wide significance, including 25 without prior NAFLD or alanine aminotransferase associations, with one additional locus identified in European American-only and two in African American-only analyses (P < 5 × 10-8). External replication in histology-defined NAFLD cohorts (7,397 cases and 56,785 controls) or radiologic imaging cohorts (n = 44,289) replicated 17 single-nucleotide polymorphisms (SNPs) (P < 6.5 × 10-4), of which 9 were new (TRIB1, PPARG, MTTP, SERPINA1, FTO, IL1RN, COBLL1, APOH and IFI30). Pleiotropy analysis showed that 61 of 77 multiancestry and all 17 replicated SNPs were jointly associated with metabolic and/or inflammatory traits, revealing a complex model of genetic architecture. Our approach integrating cALT, histology and imaging reveals new insights into genetic liability to NAFLD.
Collapse
Affiliation(s)
- Marijana Vujkovic
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shweta Ramdas
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kim M Lorenz
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Rebecca Darlay
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Heather J Cordell
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jing He
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Robert P Myers
- Gilead Sciences, Inc., Foster City, CA, USA
- The Liver Company, Palo Alto, CA, USA
| | - Carolin V Schneider
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joseph Park
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kyung Min Lee
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Marina Serper
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rotonya M Carr
- Division of Gastroenterology, University of Washington, Seattle, WA, USA
| | - David E Kaplan
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mary E Haas
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew T MacLean
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Walter R Witschey
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiang Zhu
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Catherine Tcheandjieu
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel L Kember
- Mental Illness Research Education and Clinical Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Henry R Kranzler
- Mental Illness Research Education and Clinical Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Anurag Verma
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ayush Giri
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Derek M Klarin
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Vascular Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yan V Sun
- Atlanta VA Medical Center, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Jie Huang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | | | - Kate Townsend Creasy
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicholas J Hand
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Michelle T Long
- Department of Medicine, Section of Gastroenterology, Boston University School of Medicine, Boston, MA, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Matthew Budoff
- Department of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jingyi Tan
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiaohui Li
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Henry J Lin
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ruey-Kang Chang
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ronald M Krauss
- Departments of Pediatrics and Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Silvia Vilarinho
- Section of Digestive Diseases, Department of Internal Medicine, and Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Joseph Brancale
- Section of Digestive Diseases, Department of Internal Medicine, and Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - K Rajender Reddy
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Jeffrey B Schwimmer
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Naga Chalasani
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathleen A Ryan
- Program for Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Braxton D Mitchell
- Program for Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Andrew D Wells
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisabetta Manduchi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yedidya Saiman
- Department of Medicine, Section of Hepatology, Lewis Katz School of Medicine at Temple University, Temple University Hospital, Philadelphia, PA, USA
| | - Nadim Mahmud
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donald R Miller
- Center for Healthcare Organization and Implementation Research, Bedford VA Healthcare System, Bedford, MA, USA
- Center for Population Health, Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Peter D Reaven
- Phoenix VA Health Care System, Phoenix, AZ, USA
- College of Medicine, University of Arizona, Phoenix, AZ, USA
| | - Lawrence S Phillips
- Atlanta VA Medical Center, Decatur, GA, USA
- Division of Endocrinology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sumitra Muralidhar
- Office of Research and Development, Veterans Health Administration, Washington, DC, USA
| | - Scott L DuVall
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jennifer S Lee
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Themistocles L Assimes
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Saiju Pyarajan
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kelly Cho
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Todd L Edwards
- Nashville VA Medical Center, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott M Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter W Wilson
- Atlanta VA Medical Center, Decatur, GA, USA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - J Michael Gaziano
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Amit V Khera
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Struan F A Grant
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christopher D Brown
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Philip S Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Danish Saleheen
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Non-Communicable Diseases, Karachi, Sindh, Pakistan
| | | | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quentin M Anstee
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ann K Daly
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Julie A Lynch
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- College of Nursing and Health Sciences, University of Massachusetts, Lowell, MA, USA
| | - Daniel J Rader
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin F Voight
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Dalbeni A, Castelli M, Zoncapè M, Minuz P, Sacerdoti D. Platelets in Non-alcoholic Fatty Liver Disease. Front Pharmacol 2022; 13:842636. [PMID: 35250588 PMCID: PMC8895200 DOI: 10.3389/fphar.2022.842636] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
Non alcoholic steatohepatitis (NASH) is the inflammatory reaction of the liver to excessive accumulation of lipids in the hepatocytes. NASH can progress to cirrhosis and hepatocellular carcinoma (HCC). Fatty liver is the hepatic manifestation of metabolic syndrome. A subclinical inflammatory state is present in patients with metabolic alterations like insulin resistance, type-2 diabetes, obesity, hyperlipidemia, and hypertension. Platelets participate in immune cells recruitment and cytokines-induced liver damage. It is hypothesized that lipid toxicity cause accumulation of platelets in the liver, platelet adhesion and activation, which primes the immunoinflammatory reaction and activation of stellate cells. Recent data suggest that antiplatelet drugs may interrupt this cascade and prevent/improve NASH. They may also improve some metabolic alterations. The pathophysiology of inflammatory liver disease and the implication of platelets are discussed in details.
Collapse
Affiliation(s)
- Andrea Dalbeni
- Division of General Medicine C, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
- Liver Unit, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Marco Castelli
- Division of General Medicine C, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Mirko Zoncapè
- Division of General Medicine C, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
- Liver Unit, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Pietro Minuz
- Division of General Medicine C, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
- *Correspondence: Pietro Minuz,
| | - David Sacerdoti
- Liver Unit, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| |
Collapse
|
21
|
Liu X, Zhang J, Xiong X, Chen C, Xing Y, Duan Y, Xiao S, Yang B, Ma J. An Integrative Analysis of Transcriptome and GWAS Data to Identify Potential Candidate Genes Influencing Meat Quality Traits in Pigs. Front Genet 2021; 12:748070. [PMID: 34745221 PMCID: PMC8567094 DOI: 10.3389/fgene.2021.748070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the genetic factors behind meat quality traits is of great significance to animal breeding and production. We previously conducted a genome-wide association study (GWAS) for meat quality traits in a White Duroc × Erhualian F2 pig population using Illumina porcine 60K SNP data. Here, we further investigate the functional candidate genes and their network modules associated with meat quality traits by integrating transcriptomics and GWAS information. Quantitative trait transcript (QTT) analysis, gene expression QTL (eQTL) mapping, and weighted gene co-expression network analysis (WGCNA) were performed using the digital gene expression (DGE) data from 493 F2 pig's muscle and liver samples. Among the quantified 20,108 liver and 23,728 muscle transcripts, 535 liver and 1,014 muscle QTTs corresponding to 416 and 721 genes, respectively, were found to be significantly (p < 5 × 10-4) correlated with 22 meat quality traits measured on longissiums dorsi muscle (LM) or semimembranosus muscle (SM). Transcripts associated with muscle glycolytic potential (GP) and pH values were enriched for genes involved in metabolic process. There were 42 QTTs (for 32 genes) shared by liver and muscle tissues, of which 10 QTTs represent GP- and/or pH-related genes, such as JUNB, ATF3, and PPP1R3B. Furthermore, a genome-wide eQTL mapping revealed a total of 3,054 eQTLs for all annotated transcripts in muscle (p < 2.08 × 10-5), including 1,283 cis-eQTLs and 1771 trans-eQTLs. In addition, WGCNA identified five modules relevant to glycogen metabolism pathway and highlighted the connections between variations in meat quality traits and genes involved in energy process. Integrative analysis of GWAS loci, eQTL, and QTT demonstrated GALNT15/GALNTL2 and HTATIP2 as strong candidate genes for drip loss and pH drop from postmortem 45 min to 24 h, respectively. Our findings provide valuable insights into the genetic basis of meat quality traits and greatly expand the number of candidate genes that may be valuable for future functional analysis and genetic improvement of meat quality.
Collapse
Affiliation(s)
- Xianxian Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Junjie Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xinwei Xiong
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yuyun Xing
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yanyu Duan
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Junwu Ma
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
22
|
Meroni M, Longo M, Tria G, Dongiovanni P. Genetics Is of the Essence to Face NAFLD. Biomedicines 2021; 9:1359. [PMID: 34680476 PMCID: PMC8533437 DOI: 10.3390/biomedicines9101359] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide. It is closely related to obesity, insulin resistance (IR) and dyslipidemia so much so it is considered the hepatic manifestation of the Metabolic Syndrome. The NAFLD spectrum extends from simple steatosis to nonalcoholic steatohepatitis (NASH), a clinical condition which may progress up to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). NAFLD is a complex disease whose pathogenesis is shaped by both environmental and genetic factors. In the last two decades, several heritable modifications in genes influencing hepatic lipid remodeling, and mitochondrial oxidative status have been emerged as predictors of progressive hepatic damage. Among them, the patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M, the Transmembrane 6 superfamily member 2 (TM6SF2) p.E167K and the rs641738 membrane bound-o-acyltransferase domain-containing 7 (MBOAT7) polymorphisms are considered the most robust modifiers of NAFLD. However, a forefront frontier in the study of NAFLD heritability is to postulate score-based strategy, building polygenic risk scores (PRS), which aggregate the most relevant genetic determinants of NAFLD and biochemical parameters, with the purpose to foresee patients with greater risk of severe NAFLD, guaranteeing the most highly predictive value, the best diagnostic accuracy and the more precise individualized therapy.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milano, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| |
Collapse
|
23
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
24
|
Liu Y, Basty N, Whitcher B, Bell JD, Sorokin EP, van Bruggen N, Thomas EL, Cule M. Genetic architecture of 11 organ traits derived from abdominal MRI using deep learning. eLife 2021; 10:e65554. [PMID: 34128465 PMCID: PMC8205492 DOI: 10.7554/elife.65554] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiometabolic diseases are an increasing global health burden. While socioeconomic, environmental, behavioural, and genetic risk factors have been identified, a better understanding of the underlying mechanisms is required to develop more effective interventions. Magnetic resonance imaging (MRI) has been used to assess organ health, but biobank-scale studies are still in their infancy. Using over 38,000 abdominal MRI scans in the UK Biobank, we used deep learning to quantify volume, fat, and iron in seven organs and tissues, and demonstrate that imaging-derived phenotypes reflect health status. We show that these traits have a substantial heritable component (8-44%) and identify 93 independent genome-wide significant associations, including four associations with liver traits that have not previously been reported. Our work demonstrates the tractability of deep learning to systematically quantify health parameters from high-throughput MRI across a range of organs and tissues, and use the largest-ever study of its kind to generate new insights into the genetic architecture of these traits.
Collapse
Affiliation(s)
- Yi Liu
- Calico Life Sciences LLCSouth San FranciscoUnited States
| | - Nicolas Basty
- Research Centre for Optimal Health, School of Life Sciences, University of WestminsterLondonUnited Kingdom
| | - Brandon Whitcher
- Research Centre for Optimal Health, School of Life Sciences, University of WestminsterLondonUnited Kingdom
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of WestminsterLondonUnited Kingdom
| | | | | | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of WestminsterLondonUnited Kingdom
| | - Madeleine Cule
- Calico Life Sciences LLCSouth San FranciscoUnited States
| |
Collapse
|
25
|
Männistö V, Kaminska D, Käkelä P, Neuvonen M, Niemi M, Alvarez M, Pajukanta P, Romeo S, Nieuwdorp M, Groen AK, Pihlajamäki J. Protein Phosphatase 1 Regulatory Subunit 3B Genotype at rs4240624 Has a Major Effect on Gallbladder Bile Composition. Hepatol Commun 2021; 5:244-257. [PMID: 33553972 PMCID: PMC7850313 DOI: 10.1002/hep4.1630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 02/04/2023] Open
Abstract
The protein phosphatase 1 regulatory subunit 3B (PPP1R3B) gene is a target of farnesoid X receptor (FXR), which is a major regulator of bile acid metabolism. Both PPP1R3B and FXR have been suggested to take part in glycogen metabolism, which may explain the association of PPP1R3B gene variants with altered hepatic computed tomography attenuation. We analyzed the effect of PPP1R3B rs4240624 variant on bile acid composition in individuals with obesity. The study cohort consisted of 242 individuals from the Kuopio Obesity Surgery Study (73 men, 169 women, age 47.6 ± 9.0 years, body mass index 43.2 ± 5.4 kg/m2) with PPP1R3B genotype and liver RNA sequencing (RNA-seq) data available. Fasting plasma and gallbladder bile samples were collected from 50 individuals. Bile acids in plasma did not differ based on the PPP1R3B rs4240624 genotype. However, the concentration of total bile acids (109 ± 55 vs. 35 ± 19 mM; P = 1.0 × 10-5) and all individual bile acids (also 7α-hydroxy-4-cholesten-3-one [C4]) measured from bile were significantly lower in those with the AG genotype compared to those with the AA genotype. In addition, total cholesterol (P = 0.011) and phospholipid (P = 0.001) levels were lower in individuals with the AG genotype, but cholesterol saturation index did not differ, indicating that the decrease in cholesterol and phospholipid levels was secondary to the change in bile acids. Liver RNA-seq data demonstrated that expression of PPP1R3B, tankyrase (TNKS), Homo sapiens chromosome 8 clone RP11-10A14.5 (AC022784.1 [LOC157273]), Homo sapiens chromosome 8 clone RP11-375N15.1 (AC021242.1), and Homo sapiens chromosome 8, clone RP11-10A14 (AC022784.6) associated with the PPP1R3B genotype. In addition, genes enriched in transmembrane transport and phospholipid binding pathways were associated with the genotype. Conclusion: The rs4240624 variant in PPP1R3B has a major effect on the composition of gallbladder bile. Other transcripts in the same loci may be important mediators of the variant effect.
Collapse
Affiliation(s)
- Ville Männistö
- Department of MedicineUniversity of Eastern Finland and Kuopio University HospitalKuopioFinland.,Department of Experimental Vascular MedicineAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Dorota Kaminska
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Pirjo Käkelä
- Department of SurgeryUniversity of Eastern Finland and Kuopio University HospitalKuopioFinland
| | - Mikko Neuvonen
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland.,Department of Clinical PharmacologyHUS Diagnostic Services, Helsinki University HospitalHelsinkiFinland.,Individualized Drug Therapy Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Mikko Niemi
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland.,Department of Clinical PharmacologyHUS Diagnostic Services, Helsinki University HospitalHelsinkiFinland.,Individualized Drug Therapy Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Marcus Alvarez
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCAUSA
| | - Päivi Pajukanta
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCAUSA.,Bioinformatics Interdepartmental ProgramUniversity of California Los AngelesLos AngelesCAUSA.,Institute for Precision HealthUniversity of California Los AngelesLos AngelesCAUSA
| | - Stefano Romeo
- Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden.,Cardiology DepartmentSahlgrenska University HospitalGothenburgSweden.,Clinical Nutrition Department of Medical and Surgical ScienceUniversity Magna GraeciaCatanzaroItaly
| | - Max Nieuwdorp
- Department of Experimental Vascular MedicineAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Albert K Groen
- Department of Experimental Vascular MedicineAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland.,Department of Medicine, Endocrinology, and Clinical NutritionKuopio University HospitalKuopioFinland
| |
Collapse
|
26
|
Kahali B, Chen Y, Feitosa MF, Bielak LF, O’Connell JR, Musani SK, Hegde Y, Chen Y, Stetson LC, Guo X, Fu YP, Smith AV, Ryan KA, Eiriksdottir G, Cohain AT, Allison M, Bakshi A, Bowden DW, Budoff MJ, Carr JJ, Carskadon S, Chen YDI, Correa A, Crudup BF, Du X, Harris TB, Yang J, Kardia SLR, Launer LJ, Liu J, Mosley TH, Norris JM, Terry JG, Palanisamy N, Schadt EE, O’Donnell CJ, Yerges-Armstrong LM, Rotter JI, Wagenknecht LE, Handelman SK, Gudnason V, Province MA, Peyser PA, Halligan B, Palmer ND, Speliotes EK. A Noncoding Variant Near PPP1R3B Promotes Liver Glycogen Storage and MetS, but Protects Against Myocardial Infarction. J Clin Endocrinol Metab 2021; 106:372-387. [PMID: 33231259 PMCID: PMC7823249 DOI: 10.1210/clinem/dgaa855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 01/02/2023]
Abstract
CONTEXT Glycogen storage diseases are rare. Increased glycogen in the liver results in increased attenuation. OBJECTIVE Investigate the association and function of a noncoding region associated with liver attenuation but not histologic nonalcoholic fatty liver disease. DESIGN Genetics of Obesity-associated Liver Disease Consortium. SETTING Population-based. MAIN OUTCOME Computed tomography measured liver attenuation. RESULTS Carriers of rs4841132-A (frequency 2%-19%) do not show increased hepatic steatosis; they have increased liver attenuation indicative of increased glycogen deposition. rs4841132 falls in a noncoding RNA LOC157273 ~190 kb upstream of PPP1R3B. We demonstrate that rs4841132-A increases PPP1R3B through a cis genetic effect. Using CRISPR/Cas9 we engineered a 105-bp deletion including rs4841132-A in human hepatocarcinoma cells that increases PPP1R3B, decreases LOC157273, and increases glycogen perfectly mirroring the human disease. Overexpression of PPP1R3B or knockdown of LOC157273 increased glycogen but did not result in decreased LOC157273 or increased PPP1R3B, respectively, suggesting that the effects may not all occur via affecting RNA levels. Based on electronic health record (EHR) data, rs4841132-A associates with all components of the metabolic syndrome (MetS). However, rs4841132-A associated with decreased low-density lipoprotein (LDL) cholesterol and risk for myocardial infarction (MI). A metabolic signature for rs4841132-A includes increased glycine, lactate, triglycerides, and decreased acetoacetate and beta-hydroxybutyrate. CONCLUSIONS These results show that rs4841132-A promotes a hepatic glycogen storage disease by increasing PPP1R3B and decreasing LOC157273. rs4841132-A promotes glycogen accumulation and development of MetS but lowers LDL cholesterol and risk for MI. These results suggest that elevated hepatic glycogen is one cause of MetS that does not invariably promote MI.
Collapse
Affiliation(s)
- Bratati Kahali
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Yue Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence F Bielak
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey R O’Connell
- Department of Endocrinology, Diabetes, and Nutrition, University of Maryland-Baltimore, Baltimore, MD, USA
| | - Solomon K Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yash Hegde
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yanhua Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - L C Stetson
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics at Harbor-UCLA, Torrance, CA, USA
| | - Yi-ping Fu
- Framingham Heart Study, NHLBI, NIH, Framingham, MA, USA
- Office of Biostatistics Research, Division of Cardiovascular Diseases, NHLBI, NIH, Bethesda, MD, USA
| | - Albert Vernon Smith
- School of Public Health, Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Kathleen A Ryan
- Department of Endocrinology, Diabetes, and Nutrition, University of Maryland-Baltimore, Baltimore, MD, USA
| | | | - Ariella T Cohain
- Department of Genetics and Genomics Sciences, Icahn School of Medicine, New York, NY, USA
| | - Matthew Allison
- Department of Family Medicine and Public Health, University of California, San Diego, CA, USA
| | - Andrew Bakshi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Matthew J Budoff
- Department of Internal Medicine, LA Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - J Jeffrey Carr
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Yii-Der I Chen
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics at Harbor-UCLA, Torrance, CA, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Breland F Crudup
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiaomeng Du
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute of Aging, Bethesda, MD, USA
| | - Jian Yang
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Sharon L R Kardia
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute of Aging, Bethesda, MD, USA
| | - Jiankang Liu
- Brigham and Women’s Hospital, Havard University, Boston, MA, USA
| | - Thomas H Mosley
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jill M Norris
- Department of Preventive Medicine and Biometrics, University of Colorado at Denver Health Sciences Center, Aurora, CO, USA
| | - James G Terry
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Eric E Schadt
- Department of Genetics and Genomics Sciences, Icahn School of Medicine, New York, NY, USA
| | - Christopher J O’Donnell
- Framingham Heart Study, NHLBI, NIH, Framingham, MA, USA
- Cardiology Section, Department of Medicine, Boston Veteran’s Administration Healthcare, Boston, MA, USA
| | - Laura M Yerges-Armstrong
- Department of Endocrinology, Diabetes, and Nutrition, University of Maryland-Baltimore, Baltimore, MD, USA
- Target Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics at Harbor-UCLA, Torrance, CA, USA
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Samuel K Handelman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Patricia A Peyser
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Brian Halligan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Elizabeth K Speliotes
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Foulkes AS, Selvaggi C, Cao T, O'Reilly ME, Cynn E, Ma P, Lumish H, Xue C, Reilly MP. Nonconserved Long Intergenic Noncoding RNAs Associate With Complex Cardiometabolic Disease Traits. Arterioscler Thromb Vasc Biol 2020; 41:501-511. [PMID: 33176448 DOI: 10.1161/atvbaha.120.315045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Transcriptome profiling of human tissues has revealed thousands of long intergenic noncoding RNAs (lincRNAs) at loci identified through large-scale genome-wide studies for complex cardiometabolic traits. This raises the question of whether genetic variation at nonconserved lincRNAs has any systematic association with complex disease, and if so, how different this pattern is from conserved lincRNAs. We evaluated whether the associations between nonconserved lincRNAs and 8 complex cardiometabolic traits resemble or differ from the pattern of association for conserved lincRNAs. Approach and Results: Our investigation of over 7000 lincRNA annotations from GENCODE Release 33-GRCh38.p13 for complex trait genetic associations leveraged several large, established meta-analyses genome-wide association study summary data resources, including GIANT (Genetic Investigation of Anthropometric Traits), UK Biobank, GLGC (Global Lipids Genetics Consortium), Cardiogram (Coronary Artery Disease Genome Wide Replication and Meta-Analysis), and DIAGRAM (Diabetes Genetics Replication and Meta-Analysis)/DIAMANTE (Diabetes Meta-Analysis of Trans-Ethnic Association Studies). These analyses revealed that (1) nonconserved lincRNAs associate with a range of cardiometabolic traits at a rate that is generally consistent with conserved lincRNAs; (2) these findings persist across different definitions of conservation; and (3) overall across all cardiometabolic traits, approximately one-third of genome-wide association study-associated lincRNAs are nonconserved, and this increases to about two-thirds using a more stringent definition of conservation. CONCLUSIONS These findings suggest that the traditional notion of conservation driving prioritization for functional and translational follow-up of complex cardiometabolic genomic discoveries may need to be revised in the context of the abundance of nonconserved long noncoding RNAs in the human genome and their apparent predilection to associate with complex cardiometabolic traits.
Collapse
Affiliation(s)
- Andrea S Foulkes
- Biostatistics Center, Massachusetts General Hospital, Boston (A.S.F., C.S., T.C.).,Department of Medicine, Harvard Medical School, Boston, MA (A.S.F.).,Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA (A.S.F., T.C.)
| | - Caitlin Selvaggi
- Biostatistics Center, Massachusetts General Hospital, Boston (A.S.F., C.S., T.C.)
| | - Tingyi Cao
- Biostatistics Center, Massachusetts General Hospital, Boston (A.S.F., C.S., T.C.).,Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA (A.S.F., T.C.)
| | - Marcella E O'Reilly
- Cardiology Division, Department of Medicine (M.E.O., E.C., H.L., C.X., M.P.R.), Columbia University, New York, NY
| | - Esther Cynn
- Cardiology Division, Department of Medicine (M.E.O., E.C., H.L., C.X., M.P.R.), Columbia University, New York, NY
| | - Puyang Ma
- Data Science Institute, Stanford University, CA (P.M.)
| | - Heidi Lumish
- Cardiology Division, Department of Medicine (M.E.O., E.C., H.L., C.X., M.P.R.), Columbia University, New York, NY
| | - Chenyi Xue
- Cardiology Division, Department of Medicine (M.E.O., E.C., H.L., C.X., M.P.R.), Columbia University, New York, NY
| | - Muredach P Reilly
- Cardiology Division, Department of Medicine (M.E.O., E.C., H.L., C.X., M.P.R.), Columbia University, New York, NY.,Irving Institute for Clinical and Translational Sciences (M.P.R.), Columbia University, New York, NY
| |
Collapse
|
28
|
Jonas W, Schürmann A. Genetic and epigenetic factors determining NAFLD risk. Mol Metab 2020; 50:101111. [PMID: 33160101 PMCID: PMC8324682 DOI: 10.1016/j.molmet.2020.101111] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatic steatosis is a common chronic liver disease that can progress into more severe stages of NAFLD or promote the development of life-threatening secondary diseases for some of those affected. These include the liver itself (nonalcoholic steatohepatitis or NASH; fibrosis and cirrhosis, and hepatocellular carcinoma) or other organs such as the vessels and the heart (cardiovascular disease) or the islets of Langerhans (type 2 diabetes). In addition to elevated caloric intake and a sedentary lifestyle, genetic and epigenetic predisposition contribute to the development of NAFLD and the secondary diseases. SCOPE OF REVIEW We present data from genome-wide association studies (GWAS) and functional studies in rodents which describe polymorphisms identified in genes relevant for the disease as well as changes caused by altered DNA methylation and gene regulation via specific miRNAs. The review also provides information on the current status of the use of genetic and epigenetic factors as risk markers. MAJOR CONCLUSION With our overview we provide an insight into the genetic and epigenetic landscape of NAFLD and argue about the applicability of currently defined risk scores for risk stratification and conclude that further efforts are needed to make the scores more usable and meaningful.
Collapse
Affiliation(s)
- Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany; University of Potsdam, Institute of Nutritional Sciences, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
29
|
The Protein Phosphatase 1 Complex Is a Direct Target of AKT that Links Insulin Signaling to Hepatic Glycogen Deposition. Cell Rep 2020; 28:3406-3422.e7. [PMID: 31553910 DOI: 10.1016/j.celrep.2019.08.066] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/02/2019] [Accepted: 08/21/2019] [Indexed: 11/24/2022] Open
Abstract
Insulin-stimulated hepatic glycogen synthesis is central to glucose homeostasis. Here, we show that PPP1R3G, a regulatory subunit of protein phosphatase 1 (PP1), is directly phosphorylated by AKT. PPP1R3G phosphorylation fluctuates with fasting-refeeding cycle and is required for insulin-stimulated dephosphorylation, i.e., activation of glycogen synthase (GS) in hepatocytes. In this study, we demonstrate that knockdown of PPP1R3G significantly inhibits insulin response. The introduction of wild-type PPP1R3G, and not phosphorylation-defective mutants, increases hepatic glycogen deposition, blood glucose clearance, and insulin sensitivity in vivo. Mechanistically, phosphorylated PPP1R3G displays increased binding for, and promotes dephosphorylation of, phospho-GS. Furthermore, PPP1R3B, another regulatory subunit of PP1, binds to the dephosphorylated GS, thereby relaying insulin stimulation to hepatic glycogen deposition. Importantly, this PP1-mediated signaling cascade is independent of GSK3. Therefore, we reveal a regulatory axis consisting of insulin/AKT/PPP1R3G/PPP1R3B that operates in parallel to the GSK3-dependent pathway, controlling glycogen synthesis and glucose homeostasis in insulin signaling.
Collapse
|
30
|
Al-Qarni R, Iqbal M, Al-Otaibi M, Al-Saif F, Alfadda AA, Alkhalidi H, Bamehriz F, Hassanain M. Validating candidate biomarkers for different stages of non-alcoholic fatty liver disease. Medicine (Baltimore) 2020; 99:e21463. [PMID: 32898995 PMCID: PMC7478685 DOI: 10.1097/md.0000000000021463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic condition caused by the accumulation of fat in the liver. NAFLD may range from simple steatosis to advanced cirrhosis, and affects more than 1 billion people around the world. To date, there has been no effective treatment for NAFLD. In this study, we evaluated the expression of 4 candidate NAFLD biomarkers to assess their possible applicability in the classification and treatment of the disease.Twenty-six obese subjects, who underwent bariatric surgery, were recruited and their liver biopsies obtained. Expression of 4 candidate biomarker genes, PNPLA3, COL1A1, PPP1R3B, and KLF6 were evaluated at gene and protein levels by RT-qPCR and enzyme-linked immunosorbent assay (ELISA), respectively.A significant increase in the levels of COL1A1 protein (P = .03) and PNPLA3 protein (P = .03) were observed in patients with fibrosis-stage NAFLD compared to that in patients with steatosis-stage NAFLD. However, no significant differences were found in abundance of PPP1R3B and KLF6 proteins or at the gene level for any of the candidate.This is the first study, to our knowledge, to report on the expression levels of candidate biomarker genes for NAFLD in the Saudi population. Although PNPLA3 and PPP1R3B had been previously suggested as biomarkers for steatosis and KLF6 as a possible marker for the fibrosis stage of NAFLD, our results did not support these findings. However, other studies that had linked PNPLA3 to fibrosis in advanced NAFLD supported our current finding of high PNPLA3 protein in patients with fibrosis. Additionally, our results support COL1A1 protein as a potential biomarker for the fibrosis stage of NAFLD, and indicate its use in the screening of patients with NAFLD. Further studies are required to validate the use of COL1A1 as a biomarker for advanced NAFLD in a larger cohort.
Collapse
Affiliation(s)
| | | | | | - Faisal Al-Saif
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Fahad Bamehriz
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mazen Hassanain
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Oncology, McGill University, Montreal, Quebec, Canada
- Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Dwivedi N, Mondal S, P. K. S, T. S, Sachdeva K, Bathula C, K. V, K. S. N, Damodar S, Dhar SK, Das M. Relative quantification of BCL2 mRNA for diagnostic usage needs stable uncontrolled genes as reference. PLoS One 2020; 15:e0236338. [PMID: 32785215 PMCID: PMC7423076 DOI: 10.1371/journal.pone.0236338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/02/2020] [Indexed: 01/21/2023] Open
Abstract
Dysregulation of BCL2 is a pathophysiology observed in haematological malignancies. For implementation of available treatment-options it is preferred to know the relative quantification of BCL2 mRNA with appropriate reference genes. For the choice of reference genes-(i) Reference Genes were selected by assessing variation of >60,000 genes from 4 RNA-seq datasets of haematological malignancies followed by filtering based on their GO biological process annotations and proximity of their chromosomal locations to known disease translocations. Selected genes were experimentally validated across various haematological malignancy samples followed by stability comparison using geNorm, NormFinder, BestKeeper and RefFinder. (ii) 43 commonly used Reference Genes were obtained from literature through extensive systematic review. Levels of BCL2 mRNA was assessed by qPCR normalized either by novel reference genes from this study or GAPDH, the most cited reference gene in literature and compared. The analysis showed PTCD2, PPP1R3B and FBXW9 to be the most unregulated genes across lymph-nodes, bone marrow and PBMC samples unlike the Reference Genes used in literature. BCL2 mRNA level shows a consistent higher expression in haematological malignancy patients when normalized by these novel Reference Genes as opposed to GAPDH, the most cited Reference Gene. These reference genes should also be applicable in qPCR platforms using Taqman probes and other model systems including cell lines and rodent models. Absence of sample from healthy-normal individual in diagnostic cases call for careful selection of Reference Genes for relative quantification of a biomarker by qPCR.BCL2 can be used as molecular diagnostics only if normalized with a set of reference genes with stable yet low levels of expression across different types of haematological malignancies.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/isolation & purification
- Bone Marrow/pathology
- Cell Line, Tumor
- Datasets as Topic
- Disease Models, Animal
- Feasibility Studies
- Gene Expression Regulation, Neoplastic
- Genes, Essential
- Hematologic Neoplasms/blood
- Hematologic Neoplasms/diagnosis
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/pathology
- Humans
- Leukocytes, Mononuclear
- Proto-Oncogene Proteins c-bcl-2/blood
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/isolation & purification
- RNA, Messenger/blood
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- RNA-Seq/standards
- Real-Time Polymerase Chain Reaction/standards
- Reference Standards
Collapse
Affiliation(s)
- Nehanjali Dwivedi
- Tumor Immunology Program, MSMF, MSMC, Narayana Health City, Bangalore, India
- MAHE, Manipal, India
| | - Sreejeta Mondal
- Tumor Immunology Program, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Smitha P. K.
- Tumor Immunology Program, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Sowmya T.
- Tumor Immunology Program, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Kartik Sachdeva
- Tumor Immunology Program, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Christopher Bathula
- Tumor Immunology Program, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Vishnupriyan K.
- Tumor Immunology Program, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Nataraj K. S.
- Department of Haematology, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Sharat Damodar
- Department of Haematology, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Sujan K. Dhar
- Beyond Antibody, InCite Labs, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Manjula Das
- Tumor Immunology Program, MSMF, MSMC, Narayana Health City, Bangalore, India
- Beyond Antibody, InCite Labs, MSMF, MSMC, Narayana Health City, Bangalore, India
| |
Collapse
|
32
|
Meroni M, Longo M, Dongiovanni P. Genetic and metabolic factors: the perfect combination to treat metabolic associated fatty liver disease. EXPLORATION OF MEDICINE 2020; 1:218-243. [DOI: 10.37349/emed.2020.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 01/04/2025] Open
Abstract
The prevalence of nonalcoholic or more recently re-defined metabolic associated fatty liver disease (MAFLD) is rapidly growing worldwide. It is characterized by hepatic fat accumulation exceeding 5% of liver weight not attributable to alcohol consumption. MAFLD refers to an umbrella of conditions ranging from simple steatosis to nonalcoholic steatohepatitis which may finally progress to cirrhosis and hepatocellular carcinoma. MAFLD is closely related to components of the metabolic syndrome and to environmental factors. In addition to the latter, genetic predisposition plays a key role in MAFLD pathogenesis and strictly contributes to its progressive forms. The candidate genes which have been related to MAFLD hereditability are mainly involved in lipids remodeling, lipid droplets assembly, lipoprotein packaging and secretion, de novo lipogenesis, and mitochondrial redox status. In the recent years, it has emerged the opportunity to translate the genetics into clinics by aggregating the genetic variants mostly associated with MAFLD in polygenic risk scores. These scores might be used in combination with metabolic factors to identify those patients at higher risk to develop more severe liver disease and to schedule an individual therapeutic approach.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| |
Collapse
|
33
|
Casamayor A, Ariño J. Controlling Ser/Thr protein phosphatase PP1 activity and function through interaction with regulatory subunits. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:231-288. [PMID: 32951813 DOI: 10.1016/bs.apcsb.2020.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein phosphatase 1 is a major Ser/Thr protein phosphatase activity in eukaryotic cells. It is composed of a catalytic polypeptide (PP1C), with little substrate specificity, that interacts with a large variety of proteins of diverse structure (regulatory subunits). The diversity of holoenzymes that can be formed explain the multiplicity of cellular functions under the control of this phosphatase. In quite a few cases, regulatory subunits have an inhibitory role, downregulating the activity of the phosphatase. In this chapter we shall introduce PP1C and review the most relevant families of PP1C regulatory subunits, with particular emphasis in describing the structural basis for their interaction.
Collapse
Affiliation(s)
- Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola, del Vallès, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola, del Vallès, Spain
| |
Collapse
|
34
|
Manning AK, Goustin AS, Kleinbrink EL, Thepsuwan P, Cai J, Ju D, Leong A, Udler MS, Brown JB, Goodarzi MO, Rotter JI, Sladek R, Meigs JB, Lipovich L. A Long Non-coding RNA, LOC157273, Is an Effector Transcript at the Chromosome 8p23.1- PPP1R3B Metabolic Traits and Type 2 Diabetes Risk Locus. Front Genet 2020; 11:615. [PMID: 32754192 PMCID: PMC7367044 DOI: 10.3389/fgene.2020.00615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/20/2020] [Indexed: 01/08/2023] Open
Abstract
AIMS Causal transcripts at genomic loci associated with type 2 diabetes (T2D) are mostly unknown. The chr8p23.1 variant rs4841132, associated with an insulin-resistant diabetes risk phenotype, lies in the second exon of a long non-coding RNA (lncRNA) gene, LOC157273, located 175 kilobases from PPP1R3B, which encodes a key protein regulating insulin-mediated hepatic glycogen storage in humans. We hypothesized that LOC157273 regulates expression of PPP1R3B in human hepatocytes. METHODS We tested our hypothesis using Stellaris fluorescent in situ hybridization to assess subcellular localization of LOC157273; small interfering RNA (siRNA) knockdown of LOC157273, followed by RT-PCR to quantify LOC157273 and PPP1R3B expression; RNA-seq to quantify the whole-transcriptome gene expression response to LOC157273 knockdown; and an insulin-stimulated assay to measure hepatocyte glycogen deposition before and after knockdown. RESULTS We found that siRNA knockdown decreased LOC157273 transcript levels by approximately 80%, increased PPP1R3B mRNA levels by 1.7-fold, and increased glycogen deposition by >50% in primary human hepatocytes. An A/G heterozygous carrier (vs. three G/G carriers) had reduced LOC157273 abundance due to reduced transcription of the A allele and increased PPP1R3B expression and glycogen deposition. CONCLUSION We show that the lncRNA LOC157273 is a negative regulator of PPP1R3B expression and glycogen deposition in human hepatocytes and a causal transcript at an insulin-resistant T2D risk locus.
Collapse
Affiliation(s)
- Alisa K. Manning
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Anton Scott Goustin
- Center for Molecular Medicine & Genetics, Wayne State University, Detroit, MI, United States
| | - Erica L. Kleinbrink
- Center for Molecular Medicine & Genetics, Wayne State University, Detroit, MI, United States
| | - Pattaraporn Thepsuwan
- Center for Molecular Medicine & Genetics, Wayne State University, Detroit, MI, United States
| | - Juan Cai
- Center for Molecular Medicine & Genetics, Wayne State University, Detroit, MI, United States
| | - Donghong Ju
- Center for Molecular Medicine & Genetics, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute at Wayne State University, Detroit, MI, United States
| | - Aaron Leong
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Miriam S. Udler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, United States
| | - James Bentley Brown
- Department of Statistics, University of California, Berkeley, Berkeley, CA, United States
- Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
- Computational Biosciences Group, Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Robert Sladek
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
- McGill University and Genome Québec Innovation Centre, Montréal, QC, Canada
| | - James B. Meigs
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Leonard Lipovich
- Center for Molecular Medicine & Genetics, Wayne State University, Detroit, MI, United States
- Department of Neurology, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
35
|
Sookoian S, Pirola CJ, Valenti L, Davidson NO. Genetic Pathways in Nonalcoholic Fatty Liver Disease: Insights From Systems Biology. Hepatology 2020; 72:330-346. [PMID: 32170962 PMCID: PMC7363530 DOI: 10.1002/hep.31229] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a burgeoning worldwide epidemic whose etiology reflects multiple interactions between environmental and genetic factors. Here, we review the major pathways and dominant genetic modifiers known to be relevant players in human NAFLD and which may determine key components of the heritability of distinctive disease traits including steatosis and fibrosis. In addition, we have employed general assumptions which are based on known genetic factors in NAFLD to build a systems biology prediction model that includes functional enrichment. This prediction model highlights additional complementary pathways that represent plausible intersecting signaling networks that we define here as an NAFLD-Reactome. We review the evidence connecting variants in each of the major known genetic modifiers (variants in patatin-like phospholipase domain containing 3, transmembrane 6 superfamily member 2, membrane-bound O-acyltransferase domain containing 7, glucokinase regulator, and hydroxysteroid 17-beta dehydrogenase 13) to NAFLD and expand the associated underlying mechanisms using functional enrichment predictions, based on both preclinical and cell-based experimental findings. These major candidate gene variants function in distinct pathways, including substrate delivery for de novo lipogenesis; mitochondrial energy use; lipid droplet assembly, lipolytic catabolism, and fatty acid compartmentalization; and very low-density lipoprotein assembly and secretion. The NAFLD-Reactome model expands these pathways and allows for hypothesis testing, as well as serving as a discovery platform for druggable targets across multiple pathways that promote NAFLD development and influence several progressive outcomes. In conclusion, we summarize the strengths and weaknesses of studies implicating selected variants in the pathophysiology of NAFLD and highlight opportunities for future clinical research and pharmacologic intervention, as well as the implications for clinical practice.
Collapse
Affiliation(s)
- Silvia Sookoian
- University of Buenos Aires, School of Medicine, Institute of Medical Research ALanari, Ciudad Autónoma de Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET)−University of Buenos Aires, Institute of Medical Research (IDIM), Department of Clinical and Molecular Hepatology, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlos J. Pirola
- University of Buenos Aires, School of Medicine, Institute of Medical Research ALanari, Ciudad Autónoma de Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET)−University of Buenos Aires, Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luca Valenti
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca Granda OspedalePoliclinico Milano, Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Milan, Italy
| | - Nicholas O. Davidson
- Departments of Medicine and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
36
|
Trépo E, Valenti L. Update on NAFLD genetics: From new variants to the clinic. J Hepatol 2020; 72:1196-1209. [PMID: 32145256 DOI: 10.1016/j.jhep.2020.02.020] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver diseases in high-income countries and the burden of NAFLD is increasing at an alarming rate. The risk of developing NAFLD and related complications is highly variable among individuals and is determined by environmental and genetic factors. Genome-wide association studies have uncovered robust and reproducible associations between variations in genes such as PNPLA3, TM6SF2, MBOAT7, GCKR, HSD17B13 and the natural history of NAFLD. These findings have provided compelling new insights into the biology of NAFLD and highlighted potentially attractive pharmaceutical targets. More recently the development of polygenic risk scores, which have shown promising results for the clinical risk prediction of other complex traits (such as cardiovascular disease and breast cancer), have provided new impetus for the clinical validation of genetic variants in NAFLD risk stratification. Herein, we review current knowledge on the genetic architecture of NAFLD, including gene-environment interactions, and discuss the implications for disease pathobiology, drug discovery and risk prediction. We particularly focus on the potential clinical translation of recent genetic advances, discussing methodological hurdles that must be overcome before these discoveries can be implemented in everyday practice.
Collapse
Affiliation(s)
- Eric Trépo
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, C.U.B. Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Translational Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
37
|
Seidelin AS, Nordestgaard BG, Tybjærg-Hansen A, Stender S. Genetic Variation at PPP1R3B Increases Hepatic CT Attenuation and Interacts With Prandial Status on Plasma Glucose. J Clin Endocrinol Metab 2020; 105:5812597. [PMID: 32219298 DOI: 10.1210/clinem/dgaa151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/23/2020] [Indexed: 01/08/2023]
Abstract
CONTEXT A common genetic variant near PPP1R3B (rs4841132G > A) has been associated with increased hepatic computed tomography (CT) attenuation and with plasma levels of glucose and liver enzymes. OBJECTIVE To elucidate the association of rs4841132 with hepatic CT attenuation, and to test if synergistic effects modify the association of the variant with plasma glucose and liver enzymes. DESIGN Population-based cohort study. SETTING AND PARTICIPANTS The Copenhagen City Heart Study and the Copenhagen General Population Study combined, totaling 107 192 individuals from the Danish general population. Hepatic CT scans were available in 6445 individuals. MAIN OUTCOME MEASURES Hepatic CT attenuation and plasma levels of glucose and liver enzymes. RESULTS The rs4841132 A-allele (rs4841132-A) was associated with higher hepatic CT attenuation (P = 5 × 10-6). The probability of carrying rs4841132-A increased with higher hepatic CT attenuation in the range above 65 Hounsfield units, but remained constant at the range below (P = 4 × 10-8 for nonlinearity). Rs4841132-A was associated with up to 0.17 mmol/L higher plasma glucose in fasting individuals, but with up to 0.17 mmol/L lower glucose in postprandial individuals (P = 6 × 10-5 for interaction between rs4841132 and time since last meal on plasma glucose). Finally, rs4841132-A was associated with up to 2 U/L higher plasma alanine transaminase (P = 3 × 10-6). This association was not modified by adiposity, alcohol intake, or steatogenic genetic risk. CONCLUSIONS Rs4841132-A associates with higher hepatic CT attenuation in a distinctly nonlinear manner, and its association with plasma glucose depends on prandial status. The overall association pattern supports that rs4841132-A promotes hepatic glycogen synthesis postprandially.
Collapse
Affiliation(s)
- Anne-Sofie Seidelin
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals and Faculty of Health, Copenhagen, Denmark
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospitals and Faculty of Health, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospitals and Faculty of Health, Herlev, Denmark
- The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospitals and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals and Faculty of Health, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospitals and Faculty of Health, Herlev, Denmark
- The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospitals and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals and Faculty of Health, Copenhagen, Denmark
| |
Collapse
|
38
|
Raja AM, Ciociola E, Ahmad IN, Dar FS, Naqvi SMS, Moaeen-ud-Din M, Raja GK, Romeo S, Mancina RM. Genetic Susceptibility to Chronic Liver Disease in Individuals from Pakistan. Int J Mol Sci 2020; 21:ijms21103558. [PMID: 32443539 PMCID: PMC7278956 DOI: 10.3390/ijms21103558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease, with viral or non-viral etiology, is endemic in many countries and is a growing burden in Asia. Among the Asian countries, Pakistan has the highest prevalence of chronic liver disease. Despite this, the genetic susceptibility to chronic liver disease in this country has not been investigated. We performed a comprehensive analysis of the most robustly associated common genetic variants influencing chronic liver disease in a cohort of individuals from Pakistan. A total of 587 subjects with chronic liver disease and 68 healthy control individuals were genotyped for the HSD17B13 rs7261356, MBOAT7 rs641738, GCKR rs1260326, PNPLA3 rs738409, TM6SF2 rs58542926 and PPP1R3B rs4841132 variants. The variants distribution between case and control group and their association with chronic liver disease were tested by chi-square and binary logistic analysis, respectively. We report for the first time that HSD17B13 variant results in a 50% reduced risk for chronic liver disease; while MBOAT7; GCKR and PNPLA3 variants increase this risk by more than 35% in Pakistani individuals. Our genetic analysis extends the protective role of the HSD17B13 variant against chronic liver disease and disease risk conferred by the MBOAT7; GCKR and PNPLA3 variants in the Pakistani population.
Collapse
Affiliation(s)
- Asad Mehmood Raja
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.M.R.); (S.M.S.N.); (G.K.R.)
| | - Ester Ciociola
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, Wallenberg Laboratory, 413 45 Gothenburg, Sweden;
| | - Imran Nazir Ahmad
- Department of Pathology and Laboratory Medicine, Shifa International Hospitals Ltd., Islamabad 44790, Pakistan;
| | - Faisal Saud Dar
- Liver Transplantation, Hepatobiliary and Pancreatic Services Unit, Shifa International Hospitals Ltd., Islamabad 44790, Pakistan;
| | - Syed Muhammad Saqlan Naqvi
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.M.R.); (S.M.S.N.); (G.K.R.)
| | - Muhammad Moaeen-ud-Din
- Department of Animal Breeding and Genetics/National Center for Livestock Breeding, Genetics & Genomics, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan;
| | - Ghazala Kaukab Raja
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.M.R.); (S.M.S.N.); (G.K.R.)
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, Wallenberg Laboratory, 413 45 Gothenburg, Sweden;
- Department of Cardiology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
- Correspondence: (S.R.); (R.M.M.); Tel.: +46-(0)313-426-735 (S.R.); +46-(0)31342186 (R.M.M.)
| | - Rosellina Margherita Mancina
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, Wallenberg Laboratory, 413 45 Gothenburg, Sweden;
- Correspondence: (S.R.); (R.M.M.); Tel.: +46-(0)313-426-735 (S.R.); +46-(0)31342186 (R.M.M.)
| |
Collapse
|
39
|
Stanislawski MA, Shaw J, Litkowski E, Lange EM, Perng W, Dabelea D, Lange LA. Genetic Risk for Hepatic Fat among an Ethnically Diverse Cohort of Youth: The Exploring Perinatal Outcomes among Children Study. J Pediatr 2020; 220:146-153.e2. [PMID: 32143931 PMCID: PMC8148653 DOI: 10.1016/j.jpeds.2020.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To assess the importance of genetic and nongenetic risk factors contributing to hepatic fat accumulation in a multiethnic population of youth. STUDY DESIGN We investigated the relationship between genetic factors and hepatic fat fraction (HFF) in 347 children aged 12.5-19.5 years. We examined 5 single nucleotide polymorphisms previously associated with HFF and a weighted genetic risk score (GRS) and examined how these associations varied with ethnicity (Hispanic vs non-Hispanic white) and body mass index (BMI) category. We also compared how much variation in HFF was explained by genetic factors vs cardiometabolic factors (BMI z-score and the Homeostasis Model of Insulin Resistance) or diet. RESULTS PNPLA3 rs738409 and the GRS were each associated with HFF among Hispanic (β = 0.39; 95% CI, 0.16-0.62; P = .001; and β = 0.20; 95% CI, 0.05-0.34; P = .007, respectively) but not non-Hispanic white (β = 0.04; 95% CI, -0.18 to 0.26; P = .696; and β = 0.03; 95% CI, -0.09 to 0.14; P = .651, respectively) youth. Cardiometabolic risk factors explained more of the variation in HFF than genetic risk factors among non-lean Hispanic individuals (27.2% for cardiometabolic markers vs 6.4% for rs738409 and 4.3% for the GRS), and genetic risk factors were more important among lean individuals (2.7% for cardiometabolic markers vs 12.6% for rs738409 and 4.4% for the GRS). CONCLUSIONS Poor cardiometabolic health may be more important than genetic factors when predicting HFF in overweight and obese young populations. Genetic risk is an important contributor to pediatric HFF among lean Hispanics, but further studies are necessary to elucidate the strength of the association between genetic risk and HFF in non-Hispanic white youth.
Collapse
Affiliation(s)
- Maggie A Stanislawski
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO.
| | - Jessica Shaw
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Elizabeth Litkowski
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ethan M Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
40
|
Meroni M, Longo M, Rustichelli A, Dongiovanni P. Nutrition and Genetics in NAFLD: The Perfect Binomium. Int J Mol Sci 2020; 21:ijms21082986. [PMID: 32340286 PMCID: PMC7215858 DOI: 10.3390/ijms21082986] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a global healthcare burden since it is epidemiologically related to obesity, type 2 diabetes (T2D) and Metabolic Syndrome (MetS). It embraces a wide spectrum of hepatic injuries, which include simple steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The susceptibility to develop NAFLD is highly variable and it is influenced by several cues including environmental (i.e., dietary habits and physical activity) and inherited (i.e., genetic/epigenetic) risk factors. Nonetheless, even intestinal microbiota and its by-products play a crucial role in NAFLD pathophysiology. The interaction of dietary exposure with the genome is referred to as 'nutritional genomics,' which encompasses both 'nutrigenetics' and 'nutriepigenomics.' It is focused on revealing the biological mechanisms that entail both the acute and persistent genome-nutrient interactions that influence health and it may represent a promising field of study to improve both clinical and health nutrition practices. Thus, the premise of this review is to discuss the relevance of personalized nutritional advices as a novel therapeutic approach in NAFLD tailored management.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Alice Rustichelli
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
- Correspondence: ; Tel.: +39-02-5503-3467; Fax: +39-02-5503-4229
| |
Collapse
|
41
|
Saki S, Saki N, Poustchi H, Malekzadeh R. Assessment of Genetic Aspects of Non-alcoholic Fatty Liver and Premature Cardiovascular Events. Middle East J Dig Dis 2020; 12:65-88. [PMID: 32626560 PMCID: PMC7320986 DOI: 10.34172/mejdd.2020.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Recent evidence has demonstrated a strong interplay and multifaceted relationship between non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD). CVD is the major cause of death in patients with NAFLD. NAFLD also has strong associations with diabetes and metabolic syndrome. In this comprehensive review, we aimed to overview the primary environmental and genetic risk factors of NAFLD, and CVD and also focus on the genetic aspects of these two disorders. NAFLD and CVD are both heterogeneous diseases with common genetic and molecular pathways. We have searched for the latest published articles regarding this matter and tried to provide an overview of recent insights into the genetic aspects of NAFLD and CVD. The common genetic and molecular pathways involved in NAFLD and CVD are insulin resistance (IR), subclinical inflammation, oxidative stress, and atherogenic dyslipidemia. According to an investigation, the exact associations between genomic characteristics of NAFLD and CVD and casual relationships are not fully determined. Different gene polymorphisms have been identified as the genetic components of the NAFLDCVD association. Some of the most documented ones of these gene polymorphisms are patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13), adiponectin-encoding gene (ADIPOQ), apolipoprotein C3 (APOC3), peroxisome proliferator-activated receptors (PPAR), leptin receptor (LEPR), sterol regulatory element-binding proteins (SREBP), tumor necrosis factor-alpha (TNF-α), microsomal triglyceride transfer protein (MTTP), manganese superoxide dismutase (MnSOD), membrane-bound O-acyltransferase domain-containing 7 (MBOAT7), and mutation in DYRK1B that substitutes cysteine for arginine at position 102 in kinase-like domain. Further cohort studies with a significant sample size using advanced genomic assessments and next-generation sequencing techniques are needed to shed more light on genetic associations between NAFLD and CVD.
Collapse
Affiliation(s)
- Sara Saki
- Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Saki
- Hoveizeh Cohort Study, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Poustchi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Chandrasekharan K, Alazawi W. Genetics of Non-Alcoholic Fatty Liver and Cardiovascular Disease: Implications for Therapy? Front Pharmacol 2020; 10:1413. [PMID: 31969816 PMCID: PMC6960381 DOI: 10.3389/fphar.2019.01413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. The most common cause of mortality in NAFLD is cardiovascular disease (CVD), and a key of focus in drug development is to discover therapies that target both liver injury and CVD risk. NAFLD and CVD are complex disease spectra with complex heritability patterns. Nevertheless, genome wide association studies and meta-analyses of these have identified genetic loci that are associated with increased risk of relevant pathological features of disease or clinical endpoints. This review focuses on the genetic risk loci identified in the NAFLD spectrum and asks whether any of these are also risk factors for CVD. Surprisingly, given the shared co-morbidities and risk factors, little robust evidence exists that NAFLD and CVD share genetic risk. Despite this, therapeutic intervention that targets both liver disease and CVD remains an important clinical need and a major focus for pharmaceutical development.
Collapse
Affiliation(s)
- Karthik Chandrasekharan
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - William Alazawi
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
43
|
Valenti L, Pelusi S. The Natural History of NAFLD: Environmental vs. Genetic Risk Factors. NON-ALCOHOLIC FATTY LIVER DISEASE 2020:129-145. [DOI: 10.1007/978-3-319-95828-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
44
|
Gellert-Kristensen H, Nordestgaard BG, Tybjaerg-Hansen A, Stender S. High Risk of Fatty Liver Disease Amplifies the Alanine Transaminase-Lowering Effect of a HSD17B13 Variant. Hepatology 2020; 71:56-66. [PMID: 31155741 DOI: 10.1002/hep.30799] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
A common loss-of-function variant in HSD17B13 (rs72613567:TA) was recently found to protect from chronic liver disease. Whether the variant confers protection from specific risk factors for liver disease is unclear. We tested the association of rs72613567 with plasma levels of alanine transaminase (ALT) and clinical liver disease and mortality in 111,612 individuals from the Danish general population, including 497 with cirrhosis and 113 with hepatocellular carcinoma. HSD17B13 rs72613567:TA was associated with stepwise lower levels of plasma ALT of up to 1.3 U/L in TA/TA homozygotes versus T/T homozygotes. For each TA-allele, the risk of cirrhosis and hepatocellular carcinoma was reduced by 15% and 28%, respectively. In prospective analyses, the TA-allele was associated with up to 33% lower rates of liver-related mortality in the general population, and with up to 49% reduced liver-related mortality in patients with cirrhosis. The ALT-lowering effect of rs72613567:TA was amplified by increasing adiposity, alcohol consumption, and genetic risk of fatty liver disease. The TA-allele was associated with only marginally lower ALT in lean nondrinkers with low genetic risk of hepatic steatosis. In contrast, compared with T/T homozygotes, TA/TA homozygotes had 12% to 18% lower plasma ALT among the most obese, in heavy drinkers, and in individuals carrying three or four steatogenic alleles in patatin-like phospholipase domain-containing protein 3 (PNPLA3) and transmembrane 6 superfamily 2 (TM6SF2). Conclusion: High risk of fatty liver disease amplifies the ALT-lowering effect of HSD17B13 rs72613567:TA in the Danish general population.
Collapse
Affiliation(s)
- Helene Gellert-Kristensen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark.,The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospitals, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark.,The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospitals, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
45
|
Taliento AE, Dallio M, Federico A, Prati D, Valenti L. Novel Insights into the Genetic Landscape of Nonalcoholic Fatty Liver Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2755. [PMID: 31375010 PMCID: PMC6695718 DOI: 10.3390/ijerph16152755] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common liver disorder worldwide, is epidemiologically associated with overweight, insulin resistance features and type 2 diabetes, and can progress to advanced liver fibrosis and hepatocellular carcinoma. Genetic factors play an important role in the development of NAFLD, which is a multifactorial disease. Several common naturally occurring variants modulating lipid and retinol metabolism in hepatocytes predispose to NAFLD development and progression, in particular those in PNPLA3, TM6SF2, MBOAT7, and HSD17B13. In addition, genetic variants that protect hepatic cells from oxidative stress modulate the susceptibility to progressive NAFLD. Although the molecular mechanisms linking these genetic variants with liver disease are not yet fully understood, hepatic fat has emerged as a major driver of the disease, while altered retinol metabolism and mitochondrial oxidative stress play a role in determining the development of advanced NAFLD.
Collapse
Affiliation(s)
- Alice Emma Taliento
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico IRCCS, 20122 Milan, Italy
| | - Marcello Dallio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy.
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Daniele Prati
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico IRCCS, 20122 Milan, Italy
| | - Luca Valenti
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico IRCCS, 20122 Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milano, Italy.
| |
Collapse
|
46
|
Romeo S. Don't forget to ask how mum and dad are doing. Liver Int 2019; 39:623-624. [PMID: 30916862 DOI: 10.1111/liv.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.,Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.,Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
47
|
Liu S, Li L, Meng J, Song K, Huang B, Wang W, Zhang G. Association and Functional Analyses Revealed That PPP1R3B Plays an Important Role in the Regulation of Glycogen Content in the Pacific Oyster Crassostrea gigas. Front Genet 2019; 10:106. [PMID: 30853975 PMCID: PMC6396720 DOI: 10.3389/fgene.2019.00106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
The Pacific oyster (Crassostrea gigas) is one of the most important aquaculture species worldwide. Glycogen contributes greatly to the special taste and creamy white color of oysters. Previous genome-wide association studies (GWAS) identified several single nucleotide polymorphism (SNP) sites that were strongly related to glycogen content. Genes within 100 kb upstream and downstream of the associated SNPs were screened. One gene annotated as protein phosphatase 1 regulatory subunit 3B (PPP1R3B), which can promote glycogen synthesis together with protein phosphatase 1 catalytic subunit (PPP1C) in mammals, was selected as a candidate gene in this study. First, full-length CgPPP1R3B was cloned and its function was characterized. The gene expression profiles of CgPPP1R3B in different tissues and seasons showed a close relationship to glycogen content. RNA interference (RNAi) experiments of this gene in vivo showed that decreased CgPPP1R3B levels resulted in lower glycogen contents in the experimental group than in the control group. Co-immunoprecipitation (Co-IP) and yeast two-hybrid (Y2H) assays indicated that CgPPP1R3B can interact with CgPPP1C, glycogen synthase (CgGS) and glycogen phosphorylase (CgGP), thus participating in glycogen metabolism. Co-sedimentation analysis in vitro demonstrated that the CgPPP1R3B protein can bind to glycogen molecules directly, and these results indicated the conserved function of the CgPPP1R3B protein compared to that of mammals. In addition, thirteen SNPs were precisely mapped in this gene. Ten of the thirteen SNPs were confirmed to be significantly (p < 0.05) related to glycogen content in an independent wild population (n = 288). The CgPPP1R3B levels in oysters with high glycogen content were significantly higher than those of oysters with low glycogen content, and gene expression levels were significantly associated with various genotypes of four associated SNPs (p < 0.05). The data indicated that the associated SNPs may control glycogen content by regulating CgPPP1R3B expression. These results suggest that CgPPP1R3B is an important gene for glycogen metabolic regulation and that the associated SNPs of this gene are potential markers for oyster molecular breeding for increased glycogen content.
Collapse
Affiliation(s)
- Sheng Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Kai Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Baoyu Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
48
|
Dang Y, Hao S, Zhou W, Zhang L, Ji G. The traditional Chinese formulae Ling-gui-zhu-gan decoction alleviated non-alcoholic fatty liver disease via inhibiting PPP1R3C mediated molecules. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:8. [PMID: 30616587 PMCID: PMC6323852 DOI: 10.1186/s12906-018-2424-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ling-gui-zhu-gan decoction (LGZG), a classic traditional Chinese medicine formula, has been confirmed to be effective in improving steatosis in non-alcoholic fatty liver disease (NAFLD). However, the mechanism under the efficacy remains unclear. Hence, this study was designed to investigate the mechanisms of LGZG on alleviating steatosis. METHODS Twenty four rats were randomly divided into three groups: normal group, NAFLD group, fed with high fat diet (HFD) and LGZG group (fed with HFD and supplemented with LGZG). After 4 weeks intervention, blood and liver were collected. Liver steatosis was detected by Oil Red O staining, and blood lipids were biochemically determined. Whole genome genes were detected by RNA-Seq and the significant different genes were verified by RT-qPCR. The protein expression of Protein phosphatase 1 regulatory subunit 3C (PPP1R3C) and key molecules of glycogen and lipid metabolism were measured by western blot. Chromophore substrate methods measured glycogen phosphorylase (GPa) activity and glycogen content. RESULTS HFD can markedly induce hepatic steatosis and promote liver triglyceride (TG) and serum cholesterol (CHOL) contents, while liver TG and serum CHOL were both markedly decreased by LGZG treatment for 4 weeks. By RNA sequencing, we found that NAFLD rats showed significantly increase of PPP1R3C expression and LGZG reduced its expression. RT-qPCR and Western blot both verified the alteration of PPP1R3C upon LGZG intervention. LGZG also promoted the activity of glycogen phosphorylase liver type (PYGL) and inhibited the activity of glycogen synthase (GS) in NAFLD rats, resulting in glycogenolysis increase and glycogen synthesis decrease in the liver. By detecting glycogen content, we also found that LGZG reduced hepatic glycogen in NAFLD rats. In addition, we analyzed the key molecules in hepatic de novo lipogenesis and cholesterol synthesis, and indicated that LGZG markedly inhibited the activity of acetyl-CoA carboxylase (ACC), sterol receptor element-binding protein-1c (SREBP-1c) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), resulting in lipid synthesis decrease in the liver. CONCLUSION Our data highlighted the role of PPP1R3C targeting pathways, and found that hepatic glycogen metabolism might be the potential target of LGZG in preventing NAFLD.
Collapse
Affiliation(s)
- Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Shijun Hao
- Zhoupu Hospital, Shanghai University of Medicine &Health Sciences, Shanghai, 201318 China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| |
Collapse
|
49
|
Ferreira M, Beullens M, Bollen M, Van Eynde A. Functions and therapeutic potential of protein phosphatase 1: Insights from mouse genetics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:16-30. [PMID: 30056088 PMCID: PMC7114192 DOI: 10.1016/j.bbamcr.2018.07.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023]
Abstract
Protein phosphatase 1 (PP1) catalyzes more than half of all phosphoserine/threonine dephosphorylation reactions in mammalian cells. In vivo PP1 does not exist as a free catalytic subunit but is always associated with at least one regulatory PP1-interacting protein (PIP) to generate a large set of distinct holoenzymes. Each PP1 complex controls the dephosphorylation of only a small subset of PP1 substrates. We screened the literature for genetically engineered mouse models and identified models for all PP1 isoforms and 104 PIPs. PP1 itself and at least 49 PIPs were connected to human disease-associated phenotypes. Additionally, phenotypes related to 17 PIPs were clearly linked to altered PP1 function, while such information was lacking for 32 other PIPs. We propose structural reverse genetics, which combines structural characterization of proteins with mouse genetics, to identify new PP1-related therapeutic targets. The available mouse models confirm the pleiotropic action of PP1 in health and diseases.
Collapse
Affiliation(s)
- Mónica Ferreira
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Monique Beullens
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
50
|
Pirola CJ, Sookoian S. Editorial: surviving your genes-the role of PNPLA3 variation in end-stage liver disease. Aliment Pharmacol Ther 2018; 48:773-775. [PMID: 30246305 DOI: 10.1111/apt.14901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- C J Pirola
- Institute of Medical Research A Lanari, University of Buenos Aires, Ciudad Autonoma de Buenos Aires, Argentina.,Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Ciudad Autonoma de Buenos Aires, Argentina
| | - S Sookoian
- Institute of Medical Research A Lanari, University of Buenos Aires, Ciudad Autonoma de Buenos Aires, Argentina.,Department of Clinical and Molecular Hepatology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|