1
|
Lin YR, Lam LY, Chang CM, Lam HYP. Concomitant occurrence of chronic Schistosoma mansoni infection and chronic colitis restore immune imbalance and dysbiosis leading to protection against intestinal colitis and schistosome egg-induced intestinal fibrosis. Mem Inst Oswaldo Cruz 2025; 120:e240045. [PMID: 40332187 PMCID: PMC12051921 DOI: 10.1590/0074-02760240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/23/2024] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Schistosomiasis is one of the most devastating tropical diseases in developing countries and is usually misdiagnosed with colitis because the prevalence of co-occurrence of both diseases is high. Previously, infection of Schistosoma japonicum cercariae has been shown to provide immediate protection against dextran sodium sulphate (DSS)-induced acute colitis in mice models. Studies using synthesised peptides or soluble proteins from parasites also revealed similar protection against colitis. However, most of these studies were done within a short timeframe, which cannot completely represent the actual situation where natural infection of Schistosoma or colitis is usually chronic. OBJECTIVES This study aims to investigate how chronic schistosomiasis affects chronic intestinal inflammation. METHODS Mice were infected with Schistosoma mansoni and induced simultaneously with chronic colitis. The symptoms and severity of intestinal inflammation and fibrosis were investigated by disease activity index, histology, enzyme-linked immunosorbent assay (ELISA), and quantitative polymerase chain reaction (qPCR). Furthermore, immune analysis by ELISA and qPCR and microbiome analysis by 16S rDNA sequencing were done to investigate the underlying mechanism. FINDINGS Concomitant occurrence of chronic schistosomiasis and chronic colitis significantly alleviated colitis symptoms, lessened intestinal inflammation, and reduced egg-induced fibrosis. Further analysis revealed an alternation of the intestinal immunity and gut microbiome community in mice with both diseases, which could be the potential reason for this outcome. MAIN CONCLUSIONS Our results represent a mechanism of how schistosomiasis and chronic intestinal inflammation affect each other.
Collapse
Affiliation(s)
- You-Ren Lin
- Tzu Chi University, School of Medicine, Master Program in Biomedical Sciences, Hualien, Taiwan
| | - Long Yin Lam
- The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, Kowloon, Hong Kong SAR, China
| | - Chun-Ming Chang
- Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Department of General Surgery, Hualien, Taiwan
- Tzu Chi University, Institute of Medical Sciences, Hualien, Taiwan
| | - Ho Yin Pekkle Lam
- Tzu Chi University, School of Medicine, Master Program in Biomedical Sciences, Hualien, Taiwan
- Tzu Chi University, Institute of Medical Sciences, Hualien, Taiwan
- Tzu Chi University, School of Medicine, Department of Biochemistry, Hualien, Taiwan
| |
Collapse
|
2
|
Alqudah A, Qnais E, Gammoh O, Bseiso Y, Wedyan M, Alqudah M, Aljabali AAA, Tambuwala M. Exploring Scopoletin's Therapeutic Efficacy in DSS-Induced Ulcerative Colitis: Insights into Inflammatory Pathways, Immune Modulation, and Microbial Dynamics. Inflammation 2025; 48:575-589. [PMID: 38918333 PMCID: PMC12053357 DOI: 10.1007/s10753-024-02048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 06/27/2024]
Abstract
This study aimed to investigate the therapeutic potential of scopoletin in ulcerative colitis, with a primary focus on its impact on crucial inflammatory pathways and immune responses. A male mouse model of DSS-induced colitis was employed with six distinct groups: a control group, a group subjected to DSS only, three groups treated with varying scopoletin doses, and the final group treated with dexamethasone. The investigation included an assessment of the effects of scopoletin on colitis symptoms, including alterations in body weight, Disease Activity Index (DAI), and histopathological changes in colonic tissue. Furthermore, this study scrutinized the influence of scopoletin on cytokine production, PPARγ and NF-κB expression, NLRP3 inflammasome, and the composition of intestinal bacteria. Scopoletin treatment yielded noteworthy improvements in DSS-induced colitis in mice, as evidenced by reduced weight loss and colonic shortening (p < 0.05, < 0.01, respectively). It effectively diminished TNF-α, IL-1β, and IL-12 cytokine levels (p < 0.01, p < 0.05), attenuated NLRP3 inflammasome activation and the associated cytokine release (p < 0.05, p < 0.01), and modulated the immune response by elevating PPARγ expression while suppressing NF-κB pathway activation (p < 0.05, p < 0.01). Additionally, scopoletin induced alterations in the gut microbiota composition, augmenting beneficial Lactobacillus and Bifidobacteria while reducing E. coli (p < 0.05). It also enhanced tight junction proteins, signifying an improvement in the intestinal barrier integrity (p < 0.05, < 0.01). Scopoletin is a promising therapeutic agent for managing ulcerative colitis, showing benefits that extend beyond mere anti-inflammatory actions to encompass regulatory effects on gut microbiota and restoration of intestinal integrity.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yousra Bseiso
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammad Alqudah
- Physiology Department, School of Medicine and Biomedical Sciences, Arabian Gulf University, Manama, Bahrain
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
3
|
Pandey H, Tang DWT, Wong SH, Lal D. Helminths in alternative therapeutics of inflammatory bowel disease. Intest Res 2025; 23:8-22. [PMID: 39916482 PMCID: PMC11834367 DOI: 10.5217/ir.2023.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2025] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is a nonspecific chronic inflammation of the gastrointestinal tract. Despite recent advances in therapeutics and newer management strategies, IBD largely remains untreatable. Helminth therapy is a promising alternative therapeutic for IBD that has gained some attention in the last two decades. Helminths have immunomodulatory effects and can alter the gut microbiota. The immunomodulatory effects include a strong Th2 immune response, T-regulatory cell response, and the production of regulatory cytokines. Although concrete evidence regarding the efficacy of helminth therapy in IBD is lacking, clinical studies and studies done in animal models have shown some promise. Most clinical studies have shown that helminth therapy is safe and easily tolerable. Extensive work has been done on the whipworm Trichuris, but other helminths, including Schistosoma, Trichinella, Heligmosomoides, and Ancylostoma, have also been explored for pre-clinical and animal studies. This review article summarizes the potential of helminth therapy as an alternative therapeutic or an adjuvant to the existing therapeutic procedures for IBD treatment.
Collapse
Affiliation(s)
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
4
|
Thapa D, Patil M, Warne LN, Carlessi R, Falasca M. Comprehensive Assessment of Cannabidiol and HU308 in Acute and Chronic Colitis Models: Efficacy, Safety, and Mechanistic Innovations. Cells 2024; 13:2013. [PMID: 39682761 PMCID: PMC11640522 DOI: 10.3390/cells13232013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Cannabinoids are emerging as promising treatments for inflammatory diseases such as ulcerative colitis. Specifically, cannabinoid 2 (CB2) receptors, which are upregulated during inflammation, have been distinctively linked to anti-inflammatory and analgesic effects. HU308, a synthetic cannabinoid developed to activate CB2 receptors selectively, aims to minimize unwanted off-target side effects. This study evaluated the effectiveness of both cannabidiol (CBD) and HU308 in mouse models of dextran sodium sulphate (DSS)-induced colitis, which mimic the acute and chronic phases of ulcerative colitis. Mice were treated with DSS in drinking water (four percent for the acute model and one to two percent for the chronic model) to induce colitis, as indicated by increased disease activity index (DAI) scores and inflammatory markers. Treatment with 60 mg/kg of CBD, but not lower doses, significantly reduced colitis symptoms, such as inflammation, cytokine levels, and MPO activity, while also normalizing glucagon-like peptide-1 (GLP-1) levels. HU308 showed comparable efficacy to high-dose CBD (60 mg/kg) but at a much lower dose (2.5 mg/kg), without observable toxicity. HU308 effectively normalized DAI scores, colon inflammation, ammonia levels, and GLP-1 expression in both colitis models. These results suggest that both CBD and HU308 are promising treatments for ulcerative colitis. However, HU308 demonstrates enhanced therapeutic potential by achieving similar outcomes at a fraction of the dose required for CBD, reducing the risk of off-target side effects. The ability of HU308 to modulate GLP-1, a biomarker of gut endocrine function, further underscores its promise as a novel treatment option.
Collapse
Affiliation(s)
- Dinesh Thapa
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
| | - Mohan Patil
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
| | - Leon N Warne
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Rodrigo Carlessi
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Marco Falasca
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| |
Collapse
|
5
|
Cui X, Cheng Y, Wang H, Li X, Li J, Zhang K, Mou R. Hymenolepis nana antigens alleviate ulcerative colitis by promoting intestinal stem cell proliferation and differentiation via AhR/IL-22 signaling pathway. PLoS Negl Trop Dis 2024; 18:e0012714. [PMID: 39666730 DOI: 10.1371/journal.pntd.0012714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/26/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease with an unknown etiology and is difficult to treat. Studies have shown that some helminths and their associated products have therapeutic potential in controlling or preventing inflammatory diseases. This study is to investigate the mitigation effects of Hymenolepis nana antigens (HnAg) on the UC model. HnAg significantly improved the disease activity index, colon length, and colonic pathological damage in mice with dextran sulfate sodium (DSS)-induced colitis. HnAg intervention could protect the number of goblet cells and enhance the expression of tight junction proteins and mucins, thereby improving intestinal barrier integrity. HnAg attenuated small intestinal organoid damage and stimulated intestinal stem cells proliferation in a DSS-induced mouse organoid inflammation model. The protective mechanism of HnAg might be related to the activation of the aryl hydrocarbon receptor (AhR)/IL-22 signaling pathway, which regulates intestinal barrier function and promotes the proliferation and differentiation of intestinal stem cells. In conclusion, HnAg has a therapeutic effect on UC mice. Our study provides a new approach for alleviating UC by Hymenolepis nana and its associated products.
Collapse
Affiliation(s)
- Xuanyin Cui
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, Department of Human Parasitology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Yi Cheng
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, Department of Human Parasitology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Hongyan Wang
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, Department of Human Parasitology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaomao Li
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, Department of Human Parasitology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Jinfu Li
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, Department of Human Parasitology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Ke Zhang
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, Department of Human Parasitology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Rong Mou
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, Department of Human Parasitology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Mighani L, Eilakinezhad M, Esmaeili SA, Khazaei M, Eskandari M, Nazari SE, Bazaz MM, Kharazmi K, Moghaddas E, Zarean M. Immunomodulatory effect of Dicrocoelium dendriticum ova on DSS-induced experimental colitis in C57BL/6 mouse. Sci Rep 2024; 14:24180. [PMID: 39406758 PMCID: PMC11480399 DOI: 10.1038/s41598-024-73692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammatory bowel disease (IBD) significantly diminishes an individual's quality of life and increases the risk of colorectal cancer. Recent clinical and experimental findings suggest that infection with parasitic helminths may suppress the development of certain inflammatory conditions. The objective of this study was to evaluate the immunoregulatory effects of Dicrocoelium eggs on experimentally induced colitis in C57BL/6 mice using dextran sulfate sodium (DSS). C57BL/6 mice received 3.5% DSS orally for 7 days to induce colitis, during which they were treated intraperitoneally with Dicrocoelium eggs. The severity of colitis was assessed through parameters such as body weight, stool consistency or bleeding, disease activity index (DAI), colon lengths, macroscopic scores, histopathological findings, colon gene expression levels, and serum cytokine levels. Our results indicated that Dicrocoelium eggs administration significantly reduced the severity of colitis and disease activity. Histopathological scores improved, correlating with downregulation of IFN-γ and upregulation of IL-4 expression. This findings suggest the therapeutic potential of Dicrocoelium eggs in treating colitis. Immunotherapy involving Dicrocoelium eggs primarily induces a Th2 response and modulates IFN-γ, contributing to reduced inflammation in colitis. Thus, this approach could be a promising therapeutic strategy for alleviating inflammation in IBD.
Collapse
Affiliation(s)
- Leila Mighani
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Eilakinezhad
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Moein Eskandari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Elnaz Nazari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mojtaba Mousavi Bazaz
- Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khatereh Kharazmi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Elham Moghaddas
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Zarean
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Cutaneous Leishmaniosis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Alqudah A, Qnais E, Gammoh O, Bseiso Y, Wedyan M, Alqudah M, Oqal M, Abudalo R, Abdalla SS. Exploring the therapeutic potential of Anastatica hierochuntica essential oil in DSS-induced colitis. Inflammopharmacology 2024; 32:2035-2048. [PMID: 38520575 DOI: 10.1007/s10787-024-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/23/2024] [Indexed: 03/25/2024]
Abstract
The aim of this investigation was to explore the protective impacts and mechanisms of Anastatica hierochuntica essential oil (EOAH) against dextran sulfate sodium (DSS)-induced experimental colitis in mice. EOAH demonstrated a reduction in DSS-induced body weight decline, disease activity index (DAI), colon length reduction, colonic tissue damage, and myeloperoxidase (MPO) activity. The essential oil significantly mitigated the production of pro-inflammatory agents including TNF-α, IL-1β, and IL-12. Further analysis revealed that EOAH's anti-inflammatory effects involved the regulation of NF-κB and PPARγ pathways, as well as the inhibition of NLRP3 activation in colitis mice. Notably, EOAH treatment elevated the levels of beneficial commensal bacteria such as Lactobacillus and Bifidobacteria, while reducing Escherichia coli levels in the mice's feces. In addition, EOAH restored the expression of occludin and ZO-1 proteins in colonic tissues affected by ulcerative colitis (UC). These findings indicate that supplementing with EOAH might offer a novel therapeutic approach for UC prevention.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yousra Bseiso
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Alqudah
- Physiology Department, School of Medicine and Biomedical Sciences, Arabian Gulf University, Manama, Bahrain
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Muna Oqal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Rawan Abudalo
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Shtaywy S Abdalla
- Department of Biological Sciences, Faculty of Science, University of Jordan, Amman, Jordan
| |
Collapse
|
8
|
Slama N, Abdellatif A, Bahria K, Gasmi S, Khames M, Hadji A, Birkmayer G, Oumouna M, Amrani Y, Benachour K. NADH Intraperitoneal Injection Prevents Lung Inflammation in a BALB/C Mice Model of Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease. Cells 2024; 13:881. [PMID: 38786103 PMCID: PMC11120028 DOI: 10.3390/cells13100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Cigarette smoke is one of the main factors in Chronic Obstructive Pulmonary Disease (COPD), a respiratory syndrome marked by persistent respiratory symptoms and increasing airway obstruction. Perturbed NAD+/NADH levels may play a role in various diseases, including lung disorders like COPD. In our study, we investigated the preventive effect of NADH supplementation in an experimental model of COPD induced by cigarette smoke extract (CSE). N = 64 mice randomly distributed in eight groups were injected with NADH (two doses of 100 mg/kg or 200 mg/kg) or dexamethasone (2 mg/kg) before being exposed to CSE for up to 9 weeks. Additionally, NADH supplementation preserved lung antioxidant defenses by preventing the functional loss of key enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase, and the expression levels of glutathione (GSH) (n = 4, p < 0.001). It also reduced oxidative damage markers, such as malondialdehyde (MDA) and nitrites (n = 4, p < 0.001). A marked increase in tissue myeloperoxidase activity was assessed (MPO), confirming neutrophils implication in the inflammatory process. The latter was significantly ameliorated in the NADH-treated groups (p < 0.001). Finally, NADH prevented the CSE-induced secretion of cytokines such as Tumor Necrosis Factor alpha (TNF-α), IL-17, and IFN-y (n = 4, p < 0.001). Our study shows, for the first time, the clinical potential of NADH supplementation in preventing key features of COPD via its unique anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Nada Slama
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Amina Abdellatif
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Karima Bahria
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Sara Gasmi
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Maamar Khames
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Abderrahmene Hadji
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - George Birkmayer
- Department of Medical Chemistry, University of Graz, 8020 Graz, Austria
- Birkmayer Laboratories, 1090 Vienna, Austria
| | - Mustapha Oumouna
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Yassine Amrani
- Department of Respiratory Sciences, Institute of Lung Health and NIHR Leicester BRC-Respiratory, Glenfield Hospital, University of Leicester, Leicester LE1 7RH, UK;
| | - Karine Benachour
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| |
Collapse
|
9
|
Alghanmi M, Minshawi F, Altorki TA, Zawawi A, Alsaady I, Naser AY, Alwafi H, Alsulami SM, Azhari AA, Hashem AM, Alhabbab R. Helminth-derived proteins as immune system regulators: a systematic review of their promise in alleviating colitis. BMC Immunol 2024; 25:21. [PMID: 38637733 PMCID: PMC11025257 DOI: 10.1186/s12865-024-00614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
Helminth-derived proteins have immunomodulatory properties, influencing the host's immune response as an adaptive strategy for helminth survival. Helminth-derived proteins modulate the immune response by inducing anti-inflammatory cytokines, promoting regulatory T-cell development, and ultimately favouring a Th2-biased immune response. This systematic review focused on helminth-derived proteins and explored their impact on reducing inflammatory responses in mouse models of colitis. A systematic search across Medline, EMBASE, Web of Science, and Cochrane Library identified fourteen relevant studies. These studies reported immunomodulatory changes, including increased production of anti-inflammatory cells and cytokines. In mouse models of colitis treated with on helminth-derived proteins, significant improvements in pathological parameters such as body weight, colon length, and microscopic inflammatory scores were observed compared to control groups. Moreover, helminth-derived proteins can enhance the function of Tregs and alleviate the severity of inflammatory conditions. The findings underscore the pivotal role of helminth-derived proteins in immunomodulation, specifically in the axis of cytokine secretion and immune cell polarization. The findings offer new opportunities for treating chronic inflammatory conditions such Crohn's disease.
Collapse
Grants
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
Collapse
Affiliation(s)
- Maimonah Alghanmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Faisal Minshawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarfa A Altorki
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isra Alsaady
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agent Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdallah Y Naser
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Hassan Alwafi
- Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Soa'ad M Alsulami
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Clinical and Molecular Microbiology Laboratories, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ala A Azhari
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rowa Alhabbab
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Hasanpour H, Falak R, Mokhtarian K, Sadeghi F, Masoumi E, Asadollahi P, Badirzadeh A, Azami SJ, Gholami MD, Pashangzadeh S, Gharagozlou MJ, Naserifar R, Mowlavi G. The effects of Fasciola hepatica recombinant proteins (peroxiredoxin and cathepsin L1) on Crohn's disease experimental model. Parasite Immunol 2024; 46:e13019. [PMID: 38275199 DOI: 10.1111/pim.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
The immunomodulatory potential of the excretory-secretory (E/S) proteins of the helminths has been shown in previous investigations. This study evaluated the effects of the recombinants and excretory-secretory proteins of the Fasciola hepatica on induced colitis in Balb/c mice. The F. hepatica Recombinant proteins, Cathepsin L1 and Peroxiredoxin, and E/S proteins were intraperitoneally injected into the three mice groups as the case groups, while the control groups received PBS. Colitis was induced in mice by intraluminal administration of the 2, 4, 6-Trinitrobenzenesulfonic acid solution (TNBS). After 8 h, the case groups received the second dosage of the treatments, and it was repeated 24 h later. The immunological, pathological, and macroscopic changes were evaluated 3 days after colitis induction. The macroscopic evaluation revealed significantly lower inflammatory scores in the mice treated with recombinant Peroxiredoxin (rPRX) and recombinant Cathepsin L1 (rCL1). Despite the macroscopic observation, the pathological finding was insignificant between the groups. IFN-γ secretion was significantly lower in splenocytes of the groups that received rPRX, rCL1, and E/S than the controls. IL-10 showed significantly higher levels in groups treated with rPRX and rCL1 than controls, whereas the level of IL-4 was not statistically significant. Excretory-secretory proteins of the F. hepatica showed immunomodulatory potency and the main effects observed in this study were through the reduction of inflammatory cytokine and inflammation manifestation as well as induction of anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Hamid Hasanpour
- Department of Parasitology and Mycology, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kobra Mokhtarian
- Department of Parasitology and Mycology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Sadeghi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Solna, Sweden
| | - Elham Masoumi
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| | - Parisa Asadollahi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Badirzadeh
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sanaz Jafarpour Azami
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Salar Pashangzadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Razi Naserifar
- Department of Parasitology and Mycology, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Gholamreza Mowlavi
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Jones KM, Zhan B, Ernste KJ, Villar MJ, Bisht N, Nguyen D, Chang LY, Poveda C, Robinson GJ, Trivedi AJ, Hofferek CJ, Decker WK, Konduri V. Immunomodulatory proteins from hookworms reduce cardiac inflammation and modulate regulatory responses in a mouse model of chronic Trypanosoma cruzi infection. FRONTIERS IN PARASITOLOGY 2023; 2:1244604. [PMID: 38239430 PMCID: PMC10795693 DOI: 10.3389/fpara.2023.1244604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/19/2023] [Indexed: 01/22/2024]
Abstract
Introduction Hookworms are parasitic helminths that secrete a variety of proteins that induce anti-inflammatory immune responses, stimulating increased CD4 + Foxp3+ regulatory T cells and IL-10 production. Hookworm-derived recombinant proteins AIP-1 and AIP-2 have been shown to reduce inflammation in mouse models of inflammatory bowel disease and inflammatory airway disease by inducing CD4+Foxp3+ cells and IL-10 production. In contrast, chronic infection with the protozoal parasite Trypanosoma cruzi, the causative agent of Chagas disease, leads to chronic inflammation in tissues. Persistence of the parasites in tissues drives chronic low-grade inflammation, with increased infiltration of inflammatory cells into the heart, accompanied by increased production of inflammatory cytokines. There are no current antiparasitic drugs that effectively reduce or prevent chronic myocarditis caused by the onset of Chagas disease, thus new therapies are urgently needed. Therefore, the impact of AIP-1 and AIP-2 on myocarditis was investigated in a mouse model of chronic T. cruzi infection. Methods Female BALB/c mice infected with bioluminescent T. cruzi H1 strain trypomastigotes for 70 days were treated once daily for 7 days with 1mg/kg AIP-1 or AIP-2 protein by intraperitoneal injection. Control mice were left untreated or treated once daily for 14 days with 25mg/kg aspirin in drinking water. At 84 days of infection, splenocytes, cardiac tissue and serum were collected for evaluation. Results Treatment with both AIP-1 and AIP-2 proteins significantly reduced cardiac cellular infiltration, and reduced cardiac levels of IFNγ, IL-6 and IL-2. AIP-2 treatment reduced cardiac expression of COX-2. Further, while incubation with AIP-1 and AIP-2 proteins did not induce a significant upregulation of an immunoregulatory phenotype in dendritic cells (DC), there was a modest upregulation of CD11c +CD11b+MHCII+SIRPα+ expression, suggesting a regulatory phenotype. Ex-vivo stimulation of splenocytes from the treatment groups with AIP-1 loaded DC induced reduced levels of cytotoxic and pro-inflammatory T cells, stimulation with AIP-2 loaded DC specifically induced enhanced levels of CD4+CD25+Foxp3+ regulatory T cells among treatment groups. Discussion All in vivo and in vitro results demonstrate that hookworm-derived AIP-1 and AIP-2 proteins reduce T. cruzi induced cardiac inflammation, possibly through multiple anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Kathryn M. Jones
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, United States
| | - Bin Zhan
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, United States
| | - Keenan J. Ernste
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Maria Jose Villar
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, United States
| | - Nalini Bisht
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Duc Nguyen
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Li-Yen Chang
- Department of Medical Microbiology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cristina Poveda
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, United States
| | - Gonteria J. Robinson
- Molecular & Human Genetics Department, Baylor College of Medicine, Houston, TX, United States
| | - Akshar J. Trivedi
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Colby J. Hofferek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - William K. Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer, Baylor College of Medicine, Houston, TX, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Vanaja Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
Hanning N, De Man JG, De Winter BY. Measuring Myeloperoxidase Activity as a Marker of Inflammation in Gut Tissue Samples of Mice and Rat. Bio Protoc 2023; 13:e4758. [PMID: 37456337 PMCID: PMC10338346 DOI: 10.21769/bioprotoc.4758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/12/2023] [Accepted: 05/28/2023] [Indexed: 07/18/2023] Open
Abstract
Myeloperoxidase (MPO) is an enzyme contained in lysosomal azurophilic granules of neutrophils. MPO activity has been shown to correlate with the number of neutrophils in histological sections of the gastrointestinal tract and is therefore accepted as a biomarker of neutrophil invasion in the gut. This protocol describes an easy, cost-effective kinetic colorimetric assay to quantify myeloperoxidase activity in intestinal tissue samples. It is explained using tissue collected in mice but can also be used for other laboratory animals. In a first step, tissue specimens are homogenized using a phosphate buffer containing 0.5% hexadecyltrimethylammonium bromide (HTAB), which extracts MPO from neutrophils. The obtained supernatant is added to a reagent solution containing o-dianisidine dihydrochloride, which is a peroxidase substrate. Finally, the change in absorption is measured via spectrophotometry and converted to a standardized unit of enzyme activity. The assay is illustrated and compared to a commercially available enzyme-linked immunoassay (ELISA), demonstrating that MPO activity does not necessarily correlate with MPO protein expression in tissue samples. Key features Optimized for use in mice and rats but can also be used for samples of other species. Measures enzymatic activity instead of mRNA or protein expression. Requires a spectrophotometer. Can be performed in duplo using 10 mg of (dry-blotted) gut tissue or more. Graphical overview.
Collapse
Affiliation(s)
- Nikita Hanning
- Laboratory of Experimental Medicine and Paediatrics and InflaMed Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joris G. De Man
- Laboratory of Experimental Medicine and Paediatrics and InflaMed Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y. De Winter
- Laboratory of Experimental Medicine and Paediatrics and InflaMed Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
13
|
Jeon H, Amarasekara DS, Lee N, Park HW, Yu J, Rho J. TDAG51 deficiency attenuates dextran sulfate sodium-induced colitis in mice. Sci Rep 2022; 12:20619. [PMID: 36450854 PMCID: PMC9712416 DOI: 10.1038/s41598-022-24873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of chronic inflammatory diseases of the gastrointestinal tract. Although the multifactorial etiology of IBD pathogenesis is relatively well documented, the regulatory factors that confer a risk of IBD pathogenesis remain less explored. In this study, we report that T-cell death-associated gene 51 (TDAG51/PHLDA1) is a novel regulator of the development of dextran sulfate sodium (DSS)-induced colitis in mice. TDAG51 expression was elevated in the colon tissues of DSS-induced experimental colitis mice. TDAG51 deficiency protected mice against acute DSS-induced lethality and body weight changes and disease severity. DSS-induced structural damage and mucus secretion in colon tissues were significantly reduced in TDAG51-deficient mice compared with wild-type mice. We observed similar results in a DSS-induced chronic colitis mouse model. Finally, we showed that the production of inflammatory mediators, including proinflammatory enzymes, molecules and cytokines, was decreased in DSS-treated TDAG51-deficient mice compared with DSS-treated wild-type mice. Thus, we demonstrated that TDAG51 deficiency plays a protective role against DSS-induced colitis by decreasing the production of inflammatory mediators in mice. These findings suggest that TDAG51 is a novel regulator of the development of DSS-induced colitis and is a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Hyoeun Jeon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Dulshara Sachini Amarasekara
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Nari Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Hye-Won Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Jiyeon Yu
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea.
| |
Collapse
|
14
|
Hou X, Zhu F, Zheng W, Jacques ML, Huang J, Guan F, Lei J. Protective effect of Schistosoma japonicum eggs on TNBS-induced colitis is associated with regulating Treg/Th17 balance and reprogramming glycolipid metabolism in mice. Front Cell Infect Microbiol 2022; 12:1028899. [PMID: 36304936 PMCID: PMC9592807 DOI: 10.3389/fcimb.2022.1028899] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) have been classified as modern refractory diseases. However, safe, well-tolerated, and effective treatments for IBDs are still lacking. Therefore, there is an urgent need to develop novel therapeutic targets with fewer undesirable adverse reactions. A growing body of research has shown that infection with live helminths or exposure to defined helminth-derived components can downregulate pathogenic inflammation due to their immunoregulatory ability. Here we were to explore the protective role of Schistosoma japonicum eggs on murine experimental colitis caused by trinitrobenzene sulfonic acid (TNBS) and the underlying mechanism. Frequencies of splenic Treg and Th17 cells were detected by flow cytometry. Protein and mRNA expressions of Foxp3 and RORγt were investigated by Western Blot and quantitative real-time polymerase chain reaction (qPCR), respectively. Concentrations of transforming growth factor-beta1 (TGF-β1), interleukin-10 (IL-10) and IL-17A were assessed with ELISA. Expression levels of genes related to glycolipid metabolism were measured with qPCR. The results showed that pre-exposure to S. japonicum eggs contributed to the relief of colitis in the TNBS model, evidenced by improved body weight loss, reversing spleen enlargement and colon shortening, and decreased histology scores. Compared with the TNBS group, the TNBS+Egg group had increased Treg immune response, accompanied by decreased Th17 immune response, leading to the reconstruction of Treg/Th17 balance. In addition, a ratio of Treg/Th17 was correlated negatively with the histological scores in the experiment groups. Furthermore, the regulation of Treg/Th17 balance by S. japonicum eggs was associated with inhibiting the glycolysis pathway and lipogenesis, along with promoting fatty acid oxidation in the TNBS+Egg group. These data indicate that S. japonicum eggs have a protective effect against TNBS-induced colitis, which is related to restoring Treg/Th17 balance and regulating glucose and lipid metabolism.
Collapse
Affiliation(s)
- Xiao Hou
- Department of Clinical Laboratory, The General Hospital of Central Theater Command, The People's Liberation Army, Wuhan, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feifan Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenwen Zheng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Muziazia Lupemba Jacques
- Department of Parasitology, Kinshasa Institute of Medical, Kinshasa, Democratic Republic of the Congo
| | - Jin Huang
- Department of Clinical Laboratory, Wuhan Pu’ai Hospital, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jiahui Lei,
| |
Collapse
|
15
|
Zhang Z, Cui Y, Liu S, Huang J, Liu Y, Zhou Y, Zhu Z. Short-term treatment with zingerone ameliorates dextran sulfate sodium-induced mouse experimental colitis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4873-4882. [PMID: 35246845 DOI: 10.1002/jsfa.11850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a relapsing and chronic inflammatory disease of the gastrointestinal tract, which seriously threatens human health. Zingerone (ZO) has been proven to be effective for many diseases. The purpose of this study is to investigate the protective effects and potential mechanisms of ZO extracted from ginger on dextran sulfate sodium (DSS)-induced mouse ulcerative colitis (UC). RESULTS The results showed that ZO alleviated the weight loss of UC model mice, reduced the disease activity index scores, and inhibited the shortening of colon length. ZO also improved DSS-induced pathological changes in colon tissue and inhibited the secretion of pro-inflammatory cytokines in colon and mesenteric lymph nodes. Further mechanism analysis found that ZO inhibited DSS-induced nuclear factor-κB pathway activation, and regulated peroxisome proliferator-activated receptor γ (PPARγ) expression. To further explore whether PPARγ was involved in the anti-UC effect of ZO, PPARγ inhibitor GW9662 was used. Although ZO also showed a protective effect on GW9662-treated colitis mice, the protective role was significantly weakened. Importantly, the administration of GW9662 significantly aggravated UC compared with the ZO + DSS group. In addition, we preliminarily found that ZO had the effects of inhibiting DSS-induced oxidative stress, maintaining intestinal barrier, and inhibiting the content of LPS and the population of Escherichia coli. CONCLUSIONS These results indicated that supplementation with ZO might be a new dietary strategy for the treatment of UC. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Yueqi Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
| | - Siyu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
| | - Jiang Huang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
| | - Yu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| |
Collapse
|
16
|
Liu Y, Chen M. Insights into the underlying mechanisms and clinical management of microscopic colitis in relation to other gastrointestinal disorders. Gastroenterol Rep (Oxf) 2022; 10:goac011. [PMID: 35401986 PMCID: PMC8988210 DOI: 10.1093/gastro/goac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 11/14/2022] Open
Abstract
Microscopic colitis (MC) is a chronic inflammatory disease of the large intestine and as a relatively late recognized condition, its relationship with other disorders of the gastrointestinal tract is gradually being understood and investigated. As a multifactorial disease, MC interacts with inflammatory bowel disease, celiac disease, and irritable bowel syndrome through genetic overlap, immunological factors, and gut microflora. The risk of colorectal cancer was significantly lower in MC, gastrointestinal infections increased the risk of developing MC, and there was an inverse association between Helicobacter pylori infection and MC. A variety of associations are found between MC and other gastrointestinal disorders, where aspects such as genetic effects, resemblance of immunological profiles, and intestinal microecology are potential mechanisms behind the relationships. Clinicians should be aware of these connections to achieve a better understanding and management of MC.
Collapse
Affiliation(s)
- Yuanbin Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| |
Collapse
|
17
|
Na-AIP-1 secreted by human hookworms suppresses collagen-induced arthritis. Inflammopharmacology 2022; 30:527-535. [PMID: 35031905 DOI: 10.1007/s10787-021-00909-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/02/2021] [Indexed: 11/05/2022]
Abstract
Proteins from helminths have been posed as new immunomodulatory agents with exciting potential in the treatment of immune-mediated diseases including rheumatoid arthritis (RA). In this study we assess the effects of a helminthic excretory/secretory (ES) protein Na-AIP-1 as monotherapy and in combination with methotrexate (MTX) in the well-described collagen-induced arthritis (CIA) model of RA. CIA was induced in DBA/1 J mice which were treated after the onset of arthritis with Na-AIP-1 monotherapy, MTX or Na-AIP-1 + MTX. The clinical scores for weight, arthritis and paw width were recorded along with joint histology as outcome measures. For the clinical parameters of weight, paw score and paw width, none of the Na-AIP-1 monotherapy, MTX therapy or Na-AIP-1 + MTX combination therapy groups displayed any significant difference when compared to the arthritis control. However, a significant reduction in histological score was identified after both monotherapy (Na-AIP-1: 0.83 ± 0.24 vs Arthritis control: 5.58 ± 1.49, p = 0.0277) and combination therapy (Na-AIP-1 + MTX: 0.55 ± 0.28 vs Arthritis control: 5.58 ± 1.49, p = 0.0233) when compared to arthritis control. Furthermore, Na-AIP-1 as both monotherapy (Na-AIP-1: 0.83 ± 0.24 vs MTX: 5.73 ± 1.82 p = 0.0261) and combination therapy (Na-AIP-1 + MTX: 0.55 ± 0.28 vs MTX: 5.73 ± 1.82, p = 0.0221) also significantly reduced histological score when compared to MTX monotherapy. Na-AIP-1 significantly reduced joint pathology in CIA. The hookworm protein Na-AIP-1 seems to be effective in the treatment of RA as monotherapy and when dosed together with MTX, constituting a potential new candidate for drug development. Research should focus on elucidating the mechanism of Na-AIP-1 action as a means to identify novel targets for therapeutics and to further our current understanding of immunobiology in RA.
Collapse
|
18
|
Ding Y, Liu B, Zhang Y, Fang F, Li X, Wang S, Wen J. Hydrogen sulphide protects mice against the mutual aggravation of cerebral ischaemia/reperfusion injury and colitis. Eur J Pharmacol 2022; 914:174682. [PMID: 34871558 DOI: 10.1016/j.ejphar.2021.174682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
This study was undertaken to determine whether ischaemia/reperfusion (I/R)-induced brain injury and dextran sulfate sodium (DSS)-induced colitis in mice are related. A cerebral I/R model of mice was established by blocking the bilateral common carotid arteries; 3% DSS in drinking water was administered to mice for 7 days to induce colitis; mice with cerebral I/R and colitis were administered DSS for 7 days from the third day onwards after acute cerebral I/R. Brain damage and intestinal inflammation were also tested. The results revealed that cerebral I/R induced brain damage and a marked increase in glial fibrillary acidic protein (GFAP) expression and upregulation of Rho-associated coiled coil-forming protein kinase (RhoA/ROCK) pathway in mouse hippocampal tissues. However, in the colon tissues of mice with colitis, we found a reduction in GFAP. In addition, the expression of endogenous hydrogen sulphide (H2S) synthase reduced in mice brain tissues with cerebral I/R injury, as well. as in mouse colon tissues with colitis. Interestingly, the cerebral I/R-induced pathological changes in mouse brain tissues were aggravated by colitis, colitis mediated colon inflammation, and pathological changes in intestinal tissues had deteriorated when the mice suffered cerebral I/R 2 days before DSS administration. However, brain injury and colon inflammation in mice suffering from both cerebral I/R and colitis were ameliorated by NaHS, an exogenous H2S donor. Furthermore, we found that NaHS promoted the transformation of astrocytes from "A1" to "A2" type. These findings reveal that cerebral I/R injury and colitis are related, the mechanism is correlated with endogenous H2S deficiency.
Collapse
Affiliation(s)
- Yanyu Ding
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Bo Liu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Fang Fang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xueyan Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Song Wang
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230032, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
19
|
Arai T, Lopes F. Potential of human helminth therapy for resolution of inflammatory bowel disease: The future ahead. Exp Parasitol 2021; 232:108189. [PMID: 34848244 DOI: 10.1016/j.exppara.2021.108189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease (IBD) is associated with a dysregulated mucosal immune response in the gastrointestinal tract. The number of patients with IBD has increased worldwide, especially in highly industrialized western societies. The population of patients with IBD in North America is forecasted to reach about four million by 2030; meanwhile, there is no definitive therapy for IBD. Current anti-inflammatory, immunosuppressive, or biological treatment may induce and maintain remission, but not all patients respond to these treatments. Recent studies explored parasitic helminths as a novel modality of therapy due to their potent immunoregulatory properties in humans. Research using IBD animal models infected with a helminth or administered helminth-derived products such as excretory-secretory products has been promising, and helminth-microbiota interactions exert their anti-inflammatory effects by modulating the host immunity. Recent studies also indicate that evidence that helminth-derived metabolites may play a role in anticolitic effects. Thus, the helminth shows a potential benefit for treatment against IBD. Here we review the current feasibility of "helminth therapy" from the laboratory for application in IBD management.
Collapse
Affiliation(s)
- Toshio Arai
- Institution of Parasitology, McGill University, Quebec, Canada; Department of Gastroenterology, Hashimoto Municipal Hospital, Wakayama, Japan
| | - Fernando Lopes
- Institution of Parasitology, McGill University, Quebec, Canada.
| |
Collapse
|
20
|
Shan W, Zhang W, Xue F, Ma Y, Dong L, Wang T, Zheng Y, Feng D, Chang M, Yuan G, Wang X. Schistosoma japonicum peptide SJMHE1 inhibits acute and chronic colitis induced by dextran sulfate sodium in mice. Parasit Vectors 2021; 14:455. [PMID: 34488863 PMCID: PMC8422783 DOI: 10.1186/s13071-021-04977-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/24/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Harnessing helminth-based immunoregulation is a novel therapeutic strategy for many immune dysfunction disorders, including inflammatory bowel diseases (IBDs). We previously identified a small molecule peptide from Schistosoma japonicum and named it SJMHE1. SJMHE1 can suppress delayed-type hypersensitivity, collagen-induced arthritis and asthma in mice. In this study, we assessed the effects of SJMHE1 on dextran sulfate sodium (DSS)-induced acute and chronic colitis. METHODS Acute and chronic colitis were induced in C57BL/6 mice by DSS, following which the mice were injected with an emulsifier SJMHE1 or phosphate-buffered saline. The mice were then examined for body weight loss, disease activity index, colon length, histopathological changes, cytokine expression and helper T (Th) cell subset distribution. RESULTS SJMHE1 treatment significantly suppressed DSS-induced acute and chronic colitis, improved disease activity and pathological damage to the colon and modulated the expression of pro-inflammatory and anti-inflammatory cytokines in splenocytes and the colon. In addition, SJMHE1 treatment reduced the percentage of Th1 and Th17 cells and increased the percentage of Th2 and regulatory T (Treg) cells in the splenocytes and mesenteric lymph nodes of mice with acute colitis. Similarly, SJMHE1 treatment upregulated the expression of interleukin-10 (IL-10) mRNA, downregulated the expression of IL-17 mRNA and modulated the Th cell balance in mice with chronic colitis. CONCLUSIONS Our data show that SJMHE1 provided protection against acute and chronic colitis by restoring the immune balance. As a small molecule, SJMHE1 might be a novel agent for the treatment of IBDs without immunogenicity concerns.
Collapse
Affiliation(s)
- Wenqi Shan
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenzhe Zhang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Blood Transfusion, The Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Fei Xue
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central Laboratory, Jintan Hospital, Jiangsu University, Jintan, Jiangsu, China
| | - Liyang Dong
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ting Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Zheng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ming Chang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China. .,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
21
|
Van Spaendonk H, Ceuleers H, Smet A, Berg M, Joossens J, Van der Veken P, Francque SM, Lambeir AM, De Man JG, De Meester I, Augustyns K, De Winter BY. The Effect of a Novel Serine Protease Inhibitor on Inflammation and Intestinal Permeability in a Murine Colitis Transfer Model. Front Pharmacol 2021; 12:682065. [PMID: 34248633 PMCID: PMC8264366 DOI: 10.3389/fphar.2021.682065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background: A protease/antiprotease disbalance is observed in inflammatory bowel diseases (IBD). We therefore studied the effect of the novel serine protease inhibitor UAMC-00050 on intestinal inflammation and permeability in a chronic colitis T cell transfer mouse model to get further insight into the regulation of T cell-mediated immunopathology. Methods: Colitis was induced in severe combined immunodeficient (SCID) mice, by the adoptive transfer of CD4+CD25-CD62L+ T cells. Animals were treated intraperitoneally (i.p.) 2x/day with vehicle or UAMC-00050 (5 mg/kg) from week 2 onwards. Colonic inflammation was assessed by clinical parameters, colonoscopy, macroscopy, microscopy, myeloperoxidase activity and cytokine expression levels. At week 4, 4 kDa FITC-dextran intestinal permeability was evaluated and T helper transcription factors, protease-activated receptors and junctional proteins were quantified by RT-qPCR. Results: Adoptive transfer of CD4+CD25-CD62L+ T cells resulted in colonic inflammation and an altered intestinal permeability. The serine protease inhibitor UAMC-00050 ameliorated both the inflammatory parameters and the intestinal barrier function. Furthermore, a decrease in colonic mRNA expression of Tbet and PAR4 was observed in colitis mice after UAMC-00050 treatment. Conclusion: The beneficial effect of UAMC-00050 on inflammation was apparent via a reduction of Tbet, IFN-γ, TNF-α, IL-1β and IL-6. Based on these results, we hypothesize a pivotal effect of serine protease inhibition on the Th1 inflammatory profile potentially mediated via PAR4.
Collapse
Affiliation(s)
- Hanne Van Spaendonk
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Maya Berg
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Jurgen Joossens
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Pieter Van der Veken
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Sven M. Francque
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Anne-Marie Lambeir
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Joris G. De Man
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Ingrid De Meester
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y. De Winter
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
22
|
Buitrago G, Pickering D, Ruscher R, Cobos Caceres C, Jones L, Cooper M, Van Waardenberg A, Ryan S, Miles K, Field M, Dredge K, Daly NL, Giacomin PR, Loukas A. A netrin domain-containing protein secreted by the human hookworm Necator americanus protects against CD4 T cell transfer colitis. Transl Res 2021; 232:88-102. [PMID: 33676036 DOI: 10.1016/j.trsl.2021.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
The symbiotic relationships shared between humans and their gastrointestinal parasites present opportunities to discover novel therapies for inflammatory diseases. A prime example of this phenomenon is the interaction of humans and roundworms such as the hookworm, Necator americanus. Epidemiological observations, animal studies and clinical trials using experimental human hookworm infection show that hookworms can suppress inflammation in a safe and well-tolerated way, and that the key to their immunomodulatory properties lies within their secreted proteome. Herein we describe the identification of 2 netrin domain-containing proteins from the N. americanus secretome, and explore their potential in treating intestinal inflammation in mouse models of ulcerative colitis. One of these proteins, subsequently named Na-AIP-1, was effective at suppressing disease when administered prophylactically in the acute TNBS-induced model of colitis. This protective effect was validated in the more robust CD4 T cell transfer model of chronic colitis, where prophylactic Na-AIP-1 reduced T-cell-dependent type-1 cytokine responses in the intestine and the associated intestinal pathology. Mechanistic studies revealed that depletion of CD11c+ cells abrogated the protective anticolitic effect of Na-AIP-1. Next generation sequencing of colon tissue in the T-cell transfer model of colitis revealed that Na-AIP-1 induced a transcriptomic profile associated with the downregulation of metabolic and signaling pathways involved in type-1 inflammation, notably TNF. Finally, co-culture of Na-AIP-1 with a human monocyte-derived M1 macrophage cell line resulted in significantly reduced secretion of TNF. Na-AIP-1 is now a candidate for clinical development as a novel therapeutic for the treatment of human inflammatory bowel diseases.
Collapse
Affiliation(s)
- Geraldine Buitrago
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Darren Pickering
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Claudia Cobos Caceres
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Linda Jones
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Martha Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Ashley Van Waardenberg
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Stephanie Ryan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Kim Miles
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Matthew Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Keith Dredge
- Zucero Therapeutics Ltd, Brisbane, Queensland, Australia
| | - Norelle L Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| |
Collapse
|
23
|
Mu Y, McManus DP, Hou N, Cai P. Schistosome Infection and Schistosome-Derived Products as Modulators for the Prevention and Alleviation of Immunological Disorders. Front Immunol 2021; 12:619776. [PMID: 33692793 PMCID: PMC7937812 DOI: 10.3389/fimmu.2021.619776] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Parasitic helminths, comprising the flatworms (tapeworms and flukes) and nematodes (roundworms), have plagued humans persistently over a considerable period of time. It is now known that the degree of exposure to these and other pathogens inversely correlates with the incidence of both T helper 1 (Th1)-mediated autoimmunity and Th2-mediated allergy. Accordingly, there has been recent increased interest in utilizing active helminth worm infections and helminth-derived products for the treatment of human autoimmune and inflammatory diseases and to alleviate disease severity. Indeed, there is an accumulating list of novel helminth derived molecules, including proteins, peptides, and microRNAs, that have been shown to exhibit therapeutic potential in a variety of disease models. Here we consider the blood-dwelling schistosome flukes, which have evolved subtle immune regulatory mechanisms that promote parasite survival but at the same time minimize host tissue immunopathology. We review and discuss the recent advances in using schistosome infection and schistosome-derived products as therapeutics to treat or mitigate human immune-related disorders, including allergic asthma, arthritis, colitis, diabetes, sepsis, cystitis, and cancer.
Collapse
Affiliation(s)
- Yi Mu
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nan Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pengfei Cai
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Maruszewska-Cheruiyot M, Szewczak L, Krawczak-Wójcik K, Głaczyńska M, Donskow-Łysoniewska K. The production of excretory-secretory molecules from Heligmosomoides polygyrus bakeri fourth stage larvae varies between mixed and single sex cultures. Parasit Vectors 2021; 14:106. [PMID: 33557937 PMCID: PMC7871589 DOI: 10.1186/s13071-021-04613-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/28/2021] [Indexed: 01/06/2023] Open
Abstract
Background Excretory-secretory (ES) products are crucial in maintaining helminths in the host. Consequently, the proteins of ES are potential vaccine molecules and potential therapeutic agents for autoimmune diseases. Heligmosomoides polygyrus bakeri, a gastrointestinal parasite of mice, is a model of hookworm infection in humans. ES produced by both sexes of H. polygyrus bakeri L4 stage cultured separately shows different immunomodulatory properties than ES obtained when both sexes are cultured together. Accordingly, the objective of this study was to identify and compare the excretory-secretory molecules from single-sex and mixed cultures. Methods The composition of ES of male and female L4 stage nematodes in the presence (cultured together) or absence (cultured alone) of the opposite sex was examined. Proteins were identified using mass spectrometry. The functions of identified proteins were explored with Blast2GO. Results A total of 258 proteins derived from mixed larval culture in the presence of sex pheromones were identified, 160 proteins from pure female cultures and 172 from pure male cultures. Exposure of nematodes to the sex pheromones results in abundant production of proteins with immunomodulatory properties such as Val proteins, acetylcholinesterases, TGF-β mimic 9 and HpARI. Proteins found only in ES from mixed larval cultures were TGF-β mimics 6 and 7 as well as galectin. Conclusions The presence of the opposite sex strongly influences the composition of ES products, probably by chemical (pheromone) communication between individuals. However, examination of the composition of ES from various conditions gives an opportunity for searching for new potentially therapeutic compounds and anthelminthics as well as components of vaccines. Manipulation of the nematode environment might be important for the studies on the immunomodulatory potential of nematodes.![]()
Collapse
Affiliation(s)
- Marta Maruszewska-Cheruiyot
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland.
| | - Ludmiła Szewczak
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Katarzyna Krawczak-Wójcik
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Magdalena Głaczyńska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | | |
Collapse
|
25
|
Cristina Borges Araujo E, Cariaco Y, Paulo Oliveira Almeida M, Patricia Pallete Briceño M, Neto de Sousa JE, Rezende Lima W, Maria Costa-Cruz J, Maria Silva N. Beneficial effects of Strongyloides venezuelensis antigen extract in acute experimental toxoplasmosis. Parasite Immunol 2020; 43:e12811. [PMID: 33247953 DOI: 10.1111/pim.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Toxoplasma gondii is a protozoan with worldwide distribution and triggers a strong Th1 immune response in infected susceptible hosts. On the contrary, most helminth infections are characterized by Th2 immune response and the use of helminth-derived antigens to regulate immune response in inflammatory disorders has been broadly investigated. OBJECTIVES The aim of this study was to investigate whether treatment with Strongyloides venezuelensis antigen extract (SvAg) would alter immune response against T gondii. METHODS C57BL/6 mice were orally infected with T gondii and treated with SvAg, and parasitological, histological and immunological parameters were investigated. RESULTS It was observed that SvAg treatment improved survival rates of T gondii-infected mice. At day 7 post-infection, the parasite load was lower in the lung and small intestine of infected SvAg-treated mice than untreated infected mice. Remarkably, SvAg-treated mice infected with T gondii presented reduced inflammatory lesions in the small intestine than infected untreated mice and decreased intestinal and systemic levels of IFN-γ, TNF-α and IL-6. In contrast, SvAg treatment increased T gondii-specific IgA serum levels in infected mice. CONCLUSIONS S venezuelensis antigen extract has anti-parasitic and anti-inflammatory properties during T gondii infection suggesting as a possible alternative to parasite and inflammation control.
Collapse
Affiliation(s)
- Ester Cristina Borges Araujo
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Yusmaris Cariaco
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Marcos Paulo Oliveira Almeida
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | | | - José Eduardo Neto de Sousa
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Wânia Rezende Lima
- Instituto de Biotecnologia, Universidade Federal de Catalão, Rua Terezinha Margon Vaz, s/n Residencial Barka II, Catalão, Brasil
| | - Julia Maria Costa-Cruz
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Neide Maria Silva
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| |
Collapse
|
26
|
No Worm Is an Island; The Influence of Commensal Gut Microbiota on Cyathostomin Infections. Animals (Basel) 2020; 10:ani10122309. [PMID: 33291496 PMCID: PMC7762139 DOI: 10.3390/ani10122309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary There is increasing evidence for the importance of gut bacteria in animal health and disease. This is particularly relevant for gastrointestinal infections, such as parasitic worms, which share a niche with gut bacteria. Parasitic worms are highly prevalent in domestic horses and are a significant cause of disease in this population. This commentary explores the complex relationships between the most common parasitic worm in horses (cyathostomins) and gut bacteria, based on recent studies in horses and other species. We propose novel theories and avenues for research that harness these relationships and have the potential to improve control of parasitic worms, and overall equine health, in the future. Abstract The importance of the gut microbiome for host health has been the subject of intense research over the last decade. In particular, there is overwhelming evidence for the influence of resident microbiota on gut mucosal and systemic immunity; with significant implications for the outcome of gastrointestinal (GI) infections, such as parasitic helminths. The horse is a species that relies heavily on its gut microbiota for GI and overall health, and disturbances in this complex ecosystem are often associated with life-threatening disease. In turn, nearly all horses harbour parasitic helminths from a young age, the most prevalent of which are the small strongyles, or cyathostomins. Research describing the relationship between gut microbiota and cyathostomin infection is in its infancy, however, to date there is evidence of meaningful interactions between these two groups of organisms which not only influence the outcome of cyathostomin infection but have long term consequences for equine host health. Here, we describe these interactions alongside supportive evidence from other species and suggest novel theories and avenues for research which have the potential to revolutionize our approach to cyathostomin prevention and control in the future.
Collapse
|
27
|
Breugelmans T, Van Spaendonk H, De Man JG, De Schepper HU, Jauregui-Amezaga A, Macken E, Lindén SK, Pintelon I, Timmermans JP, De Winter BY, Smet A. In-Depth Study of Transmembrane Mucins in Association with Intestinal Barrier Dysfunction During the Course of T Cell Transfer and DSS-Induced Colitis. J Crohns Colitis 2020; 14:974-994. [PMID: 32003421 DOI: 10.1093/ecco-jcc/jjaa015] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS There is evidence for a disturbed intestinal barrier function in inflammatory bowel diseases [IBD] but the underlying mechanisms are unclear. Because mucins represent the major components of the mucus barrier and disturbed mucin expression is reported in the colon of IBD patients, we studied the association between mucin expression, inflammation and intestinal permeability in experimental colitis. METHODS We quantified 4-kDa FITC-dextran intestinal permeability and the expression of cytokines, mucins, junctional and polarity proteins at dedicated time points in the adoptive T cell transfer and dextran sodium sulfate [DSS]-induced colitis models. Mucin expression was also validated in biopsies from IBD patients. RESULTS In both animal models, the course of colitis was associated with increased interleukin-1β [IL-1β] and tumour necrosis factor-α [TNF-α] expression and increased Muc1 and Muc13 expression. In the T cell transfer model, a gradually increasing Muc1 expression coincided with gradually increasing 4-kDa FITC-dextran intestinal permeability and correlated with enhanced IL-1β expression. In the DSS model, Muc13 expression coincided with rapidly increased 4-kDa FITC-dextran intestinal permeability and correlated with TNF-α and Muc1 overexpression. Moreover, a significant association was observed between Muc1, Cldn1, Ocln, Par3 and aPKCζ expression in the T cell transfer model and between Muc13, Cldn1, Jam2, Tjp2, aPkcζ, Crb3 and Scrib expression in the DSS model. Additionally, MUC1 and MUC13 expression was upregulated in inflamed mucosa of IBD patients. CONCLUSIONS Aberrantly expressed MUC1 and MUC13 might be involved in intestinal barrier dysfunction upon inflammation by affecting junctional and cell polarity proteins, indicating their potential as therapeutic targets in IBD.
Collapse
Affiliation(s)
- Tom Breugelmans
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Hanne Van Spaendonk
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Heiko U De Schepper
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, University Hospital of Antwerp, Antwerp, Belgium
| | | | - Elisabeth Macken
- Department of Gastroenterology and Hepatology, University Hospital of Antwerp, Antwerp, Belgium
| | - Sara K Lindén
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Isabel Pintelon
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
28
|
Khatri V, Chauhan N, Kalyanasundaram R. Parasite Cystatin: Immunomodulatory Molecule with Therapeutic Activity against Immune Mediated Disorders. Pathogens 2020; 9:E431. [PMID: 32486220 PMCID: PMC7350340 DOI: 10.3390/pathogens9060431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
The use of parasites or their products for treating chronic inflammation associated diseases (CIADs) has generated significant attention recently. Findings from basic and clinical research have provided valuable information on strengthening the notion that parasites' molecules can be developed as biotherapeutic agents. Completion of the genome, secreotome, and proteome of the parasites has provided an excellent platform for screening and identifying several host immunomodulatory molecules from the parasites and evaluate their therapeutic potential for CIADs. One of the widely studied host immunomodulatory molecules of the parasites is the cysteine protease inhibitor (cystatin), which is primarily secreted by the parasites to evade host immune responses. In this review, we have attempted to summarize the findings to date on the use of helminth parasite-derived cystatin as a therapeutic agent against CIADs. Although several studies suggest a role for alternatively activated macrophages, other regulatory cells, and immunosuppressive molecules, in this immunoregulatory activity of the parasite-derived cystatin, there is still no clear demonstration as to how cystatin induces its anti-inflammatory effect in suppressing CIADs.
Collapse
Affiliation(s)
- Vishal Khatri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61107, USA; (N.C.); (R.K.)
| | | | | |
Collapse
|
29
|
Exposure time determines the protective effect of Trichinella spiralis on experimental colitis. Microb Pathog 2020; 147:104263. [PMID: 32442663 DOI: 10.1016/j.micpath.2020.104263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Several studies demonstrate the protective effect of Trichinella spiralis (T. spiralis) on autoimmune diseases, however the optimal exposure time remains unexplored. This study aimed to determine whether pre-exposure of mice to T. spiralis conferred greater protection than introduction of the parasite in the acute phase of experimental colitis. We compared the effect of T. spiralis on dextran sodium sulfate (DSS)-induced colitis using two exposure paradigms: introduction three weeks prior to, or immediately after the induction period. Inflammation scores, morphological changes and cytokine profiles in serum and colonic tissue were assessed. At a parasite dose of 300 cysts, post exposure had a more pronounced effect on cytokine profiles, improved gross appearance of colon tissue, and reduced inflammatory symptoms. In addition, we demonstrate that regardless of cyst number, pre-exposure to T. spiralis did not confer protective benefits when compared to parasite introduction in the acute phase of DSS-induced colitis. Moreover, our data indicates that the underlying mechanisms of action involve an IL-17/TNF-alpha synergistic reaction, suppression of Th1 and Th2 responses, and an upregulation of the regulatory cytokines IL-10 and TGF-beta 1. Our results demonstrate that moderate exposure to T. spiralis in the acute phase of DSS-induced colitis improves disease associated inflammation and tissue disruption.
Collapse
|
30
|
Ryan SM, Eichenberger RM, Ruscher R, Giacomin PR, Loukas A. Harnessing helminth-driven immunoregulation in the search for novel therapeutic modalities. PLoS Pathog 2020; 16:e1008508. [PMID: 32407385 PMCID: PMC7224462 DOI: 10.1371/journal.ppat.1008508] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parasitic helminths have coevolved with humans over millennia, intricately refining and developing an array of mechanisms to suppress or skew the host’s immune system, thereby promoting their long-term survival. Some helminths, such as hookworms, cause little to no overt pathology when present in modest numbers and may even confer benefits to their human host. To exploit this evolutionary phenomenon, clinical trials of human helminth infection have been established and assessed for safety and efficacy for a range of immune dysfunction diseases and have yielded mixed outcomes. Studies of live helminth therapy in mice and larger animals have convincingly shown that helminths and their excretory/secretory products possess anti-inflammatory drug-like properties and represent an untapped pharmacopeia. These anti-inflammatory moieties include extracellular vesicles, proteins, glycans, post-translational modifications, and various metabolites. Although the concept of helminth-inspired therapies holds promise, it also presents a challenge to the drug development community, which is generally unfamiliar with foreign biologics that do not behave like antibodies. Identification and characterization of helminth molecules and vesicles and the molecular pathways they target in the host present a unique opportunity to develop tailored drugs inspired by nature that are efficacious, safe, and have minimal immunogenicity. Even so, much work remains to mine and assess this out-of-the-box therapeutic modality. Industry-based organizations need to consider long-haul investments aimed at unraveling and exploiting unique and differentiated mechanisms of action as opposed to toe-dipping entries with an eye on rapid and profitable turnarounds.
Collapse
Affiliation(s)
- Stephanie M. Ryan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Ramon M. Eichenberger
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Paul R. Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- * E-mail:
| |
Collapse
|
31
|
Immunomodulatory effect of Syphacia obvelata in treatment of experimental DSS-induced colitis in mouse model. Sci Rep 2019; 9:19127. [PMID: 31836772 PMCID: PMC6911064 DOI: 10.1038/s41598-019-55552-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023] Open
Abstract
The ability of helminth parasite infections to manipulate the immune system of their host towards T regulatory responses has been proposed to suppress the inflammatory response. The aim of this study was to investigate the protective and therapeutic effect of Syphacia obvelata in the treatment of experimental DSS -induced colitis. 50 male C57BL/6 mice were divided into 5 groups: healthy uninfected controls, DSS colitis, receiving only S. obv, preventive (S. obv + DSS) and therapeutic group (DSS + S.obv). Colitis intensity was investigated by measuring body weight changes, stool consistency/bleeding and colon length. To evaluate the immune responses induced by this nematode, TNF-α, IL-10, IL-17, IFN-γ and expressing of FoxP3+ T cells were measured in mesenteric lymph nodes and Peyer’s patches cells. Mice in preventive and therapeutic groups treated with S. obv egg significantly ameliorated the severity of the DSS colitis, indicated by the reduced disease manifestations, improved histopathological scores correlated with the up regulation of Treg responses and down regulation of proinflammatory cytokines. S. obv can prevention and reverse on-going murine DSS colitis. The data suggest that induction of Tregs and change in cytokine profiles during helminthic therapies were responsible for reversed inflammatory events in IBD.
Collapse
|
32
|
Zhang Z, Shen P, Xie W, Cao H, Liu J, Cao Y, Zhang N. Pingwei San ameliorates dextran sulfate sodium-induced chronic colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:91-99. [PMID: 30844487 DOI: 10.1016/j.jep.2019.01.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ping weisan (PWS), a famous traditional Chinese medicinal, is published in the Prescriptions of Taiping Benevolent Dispensary. PWS has been proven to be effective for many diseases, especially chronic diseases. AIM OF THE STUDY The purpose of this study was to investigate the effect and potential mechanism of PWS on chronic colitis in mice. MATERIALS AND METHODS Chronic colitis was induced in mice using 2.5% DSS for two cycles of 5 days, and different doses of PWS (2, 4, 8 g/kg) were administered throughout the experiment. The disease activity index (DAI), length of colon and pathological changes were measured. Cytokine levels in vivo and in vitro were detected by ELISA. The protein levels of TLR4, PPARγ and the key proteins in NF-κB pathway and NLRP3 inflammasome were measured by western blot. RESULTS PWS decreased DSS-induced DAI, colon length shortening and colonic pathological damage. PWS also reduced TNF-α, IL-1β and IL-12 production. In addition, PWS suppressed NF-κB pathway activation by regulating the expression of TLR4 and PPARγ. Our data also indicated that PWS could inhibit NLRP3 inflammasome activation. CONCLUSIONS PWS treatment alleviated the degree of colitis caused by DSS, suggesting that PWS might be a novel agent for the treatment of chronic colitis.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Peng Shen
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenbing Xie
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, China
| | - Hongyang Cao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiuxi Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Naisheng Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
33
|
Hookworm-Derived Metabolites Suppress Pathology in a Mouse Model of Colitis and Inhibit Secretion of Key Inflammatory Cytokines in Primary Human Leukocytes. Infect Immun 2019; 87:IAI.00851-18. [PMID: 30670556 DOI: 10.1128/iai.00851-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
Iatrogenic hookworm therapy shows promise for treating disorders that result from a dysregulated immune system, including inflammatory bowel disease (IBD). Using a murine model of trinitrobenzenesulfonic acid-induced colitis and human peripheral blood mononuclear cells, we demonstrated that low-molecular-weight metabolites derived from both somatic extracts (LMWM-SE) and excretory-secretory products (LMWM-ESP) of the hookworm, Ancylostoma caninum, display anti-inflammatory properties. Administration to mice of LMWM-ESP as well as sequentially extracted fractions of LMWM-SE using both methanol (SE-MeOH) and hexane-dichloromethane-acetonitrile (SE-HDA) resulted in significant protection against T cell-mediated immunopathology, clinical signs of colitis, and impaired histological colon architecture. To assess bioactivity in human cells, we stimulated primary human leukocytes with lipopolysaccharide in the presence of hookworm extracts and showed that SE-HDA suppressed ex vivo production of inflammatory cytokines. Gas chromatography-mass spectrometry (MS) and liquid chromatography-MS analyses revealed the presence of 46 polar metabolites, 22 fatty acids, and five short-chain fatty acids (SCFAs) in the LMWM-SE fraction and 29 polar metabolites, 13 fatty acids, and six SCFAs in the LMWM-ESP fraction. Several of these small metabolites, notably the SCFAs, have been previously reported to have anti-inflammatory properties in various disease settings, including IBD. This is the first report showing that hookworms secrete small molecules with both ex vivo and in vivo anti-inflammatory bioactivity, and this warrants further exploration as a novel approach to the development of anti-inflammatory drugs inspired by coevolution of gut-dwelling hookworms with their vertebrate hosts.
Collapse
|
34
|
Shen P, Zhang Z, Zhu K, Cao H, Liu J, Lu X, Li Y, Jing Y, Yuan X, Fu Y, Cao Y, Zhang N. Evodiamine prevents dextran sulfate sodium-induced murine experimental colitis via the regulation of NF-κB and NLRP3 inflammasome. Biomed Pharmacother 2019; 110:786-795. [PMID: 30554117 DOI: 10.1016/j.biopha.2018.12.033] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Evodiamine (EVO), an extraction from the traditional Chinese medicine Evodia rutaecarpa, has been reported to possess anti-inflammatory, anti-tumor and other pharmacological activities. However, the effectiveness of EVO to relieve dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) has not been evaluated. In this study, the protective effects and mechanisms of EVO on DSS-induced UC mice were investigated. The results indicated that treatment with EVO ameliorated DSS-induced UC mice body weight loss, disease activity index (DAI), colon length shortening, colonic pathological damage, and myeloperoxidase (MPO) activity. The production of TNF-α, IL-1β and IL-6 was also significantly inhibited by EVO. Further mechanistic results showed that EVO restrained the inflammation by regulating NF-κB signal and NLRP3 inflammasome. Furthermore, results also showed that EVO contributed to the tight junction (TJ) architecture integrity by modulating the expression of zonula occludens-1 (ZO-1) and occludin during colitis. Surprisingly, treatment with EVO reduced the concentration of plasmatic lipopolysaccharide (LPS) and re-balanced the levels of Escherichia coli and Lactobacillus. These findings suggested that EVO may have a potential protective effect on DSS-induced colitis and may be useful for the prevention and treatment of UC.
Collapse
Affiliation(s)
- Peng Shen
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Zecai Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China; Key laboratory for Zoonosis, Ministry of Education, Changchun, 130062, People's Republic of China
| | - Kunpeng Zhu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Hongyang Cao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Jiuxi Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xiaojie Lu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Yanxin Li
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Yue Jing
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xin Yuan
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Yunhe Fu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| | - Naisheng Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
35
|
Segal Y, Blank M, Shoenfeld Y. Tuftsin phosphorylcholine—a novel compound harnessing helminths to fight autoimmunity. Immunol Res 2018; 66:637-641. [DOI: 10.1007/s12026-018-9051-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Zuo T, Ng SC. The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease. Front Microbiol 2018; 9:2247. [PMID: 30319571 PMCID: PMC6167487 DOI: 10.3389/fmicb.2018.02247] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
In the twenty first century, the changing epidemiology of inflammatory bowel disease (IBD) globally with increasing disease incidence across many countries relates to the altered gut microbiota, due to a combinatorial effect of environmental factors, human immune responses and genetics. IBD is a gastrointestinal disease associated with a gut microbial dysbiosis, including an expansion of facultative anaerobic bacteria of the family Enterobacteriaceae. Advances in high-throughput sequencing enable us to entangle the gut microbiota in human health and IBD beyond the gut bacterial microbiota, expanding insights into the mycobiota, virobiota and helminthes. Caudovirales (viruses) and Basidiomycota, Ascomycota, and Candida albicans (fungi) are revealed to be increased in IBD. The deconvolution of the gut microbiota in IBD lays the basis for unveiling the roles of these various gut microbiota components in IBD pathogenesis and being conductive to instructing on future IBD diagnosis and therapeutics. Here we comprehensively elucidate the alterations in the gut microbiota in IBD, discuss the effect of diets in the gut microbiota in relation to IBD, and illustrate the potential of manipulation of gut microbiota for IBD therapeutics. The therapeutic strategy of antibiotics, prebiotics, probiotics and fecal microbiota transplantation will benefit the effective application of precision microbiome manipulation in IBD.
Collapse
Affiliation(s)
- Tao Zuo
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Faculty of Medicine, Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C. Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Faculty of Medicine, Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Xu J, Wu L, Yu P, Liu M, Lu Y. Effect of two recombinant Trichinella spiralis serine protease inhibitors on TNBS-induced experimental colitis of mice. Clin Exp Immunol 2018; 194:400-413. [PMID: 30105843 DOI: 10.1111/cei.13199] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 12/22/2022] Open
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease (CD), is a chronic autoimmune disease. Parasitic infections and their products have been shown to have protective effects on autoimmune diseases, including IBD. In this experiment, 96 male BALB/c mice aged 6-8 weeks were divided randomly into two large groups: prevention and therapy. The changes in the various indicators of colitis were detected to demonstrate that Trichinella spiralis serine protease inhibitors can relieve the inflammatory severity of 2,4,6-trinitrobenzenesulphonic acid solution (TNBS)-induced colitis and to explore possible immunological mechanisms. Results showed that the disease activity index (DAI) score, myeloperoxidase (MPO) activity, macroscopic and microscopic damage degrees of colon all decreased significantly, interferon (IFN)-γ expression decreased, interleukin (IL)-4 expression increased, nuclear factor kappa B (NF)-κB expression decreased and the percentage of CD4+ CD25+ forkhead box protein 3 (FoxP3+ ) regulatory T cells (Treg ) cells in the spleen. MLN increased significantly compared to the phosphate-buffered saline (PBS)/2,4,6-trinitrobenzenesulphonic acid solution (TNB) group. We found the same results with the T. spiralis Kazal-type serine protease inhibitors (TsKaSPI)+TNBS and TsAdSPI+TNBS groups in the large prevention group and the large therapy group, compared to the TNBS+PBS group with the TNBS+TsKaSPI and TNBS+TsAdSPI groups. Immunization with TsKaSPI and TsAdSPI on the CD models showed an intervention effect, possibly because TsKaSPI and TsAdSPI induced a T helper type 2 (Th2)-type immune response and balanced the TNBS-induced Th1-type immune response.
Collapse
Affiliation(s)
- J Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - L Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - P Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - M Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Y Lu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
38
|
Helminth Antigen-Conditioned Dendritic Cells Generate Anti-Inflammatory Cd4 T Cells Independent of Antigen Presentation via Major Histocompatibility Complex Class II. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2589-2604. [PMID: 30121255 DOI: 10.1016/j.ajpath.2018.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022]
Abstract
A recently identified feature of the host response to infection with helminth parasites is suppression of concomitant disease. Dendritic cells (DCs) exposed to antigens from the tapeworm Hymenolepis diminuta significantly reduce the severity of dinitrobenzene sulfonic acid-induced colitis in mice. Here we elucidate mechanisms underlying this cellular immunotherapy. We show a requirement for Ccr7 expression on transferred H. diminuta antigen-treated (HD)-DCs, suggesting that homing to secondary lymphoid tissues is important for suppression of colitis. Furthermore, sodium metaperiodate-sensitive helminth-derived glycans are required to drive the anti-colitic response in recipient mice. Induction of Th2-type cytokines and Gata-3+Cd4+ cells in secondary lymphoid tissues is dependent on major histocompatibility complex class II (MHC II) protein expression on transferred DCs, although remarkably, transfer of MHC II-/- HD-DCs still attenuated dinitrobenzene sulfonic acid-induced colitis in recipient mice. Moreover, transfer of Cd4+ splenic T cells retrieved from mice administered MHC II-/- HD-DCs suppressed dinitrobenzene sulfonic acid-induced colitis in recipient mice. Our studies reveal that HD-DCs can suppress colitis via an alternative MHC II-independent pathway that involves, in part, mobilization of T-cell responses. These data support the utility of HD-DCs in blocking colitis, revealing a requirement for Ccr7 and providing for HD-DC autologous immunotherapy for disease in which MHC II expression and/or function is compromised.
Collapse
|
39
|
Rodrigues VF, Bahia MPS, Cândido NR, Moreira JMP, Oliveira VG, Araújo ES, Rodrigues Oliveira JL, Rezende MDC, Correa A, Negrão-Corrêa D. Acute infection with Strongyloides venezuelensis increases intestine production IL-10, reduces Th1/Th2/Th17 induction in colon and attenuates Dextran Sulfate Sodium-induced colitis in BALB/c mice. Cytokine 2018; 111:72-83. [PMID: 30118915 DOI: 10.1016/j.cyto.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Helminth infection can reduce the severity of inflammatory bowel disease. However, the modulatory mechanisms elicited by helminth infection are not yet fully understood and vary depending on the experimental model. Herein we evaluated the effect of acute infection of BALB/c mice with Strongyloides venezuelensis on the clinical course of ulcerative colitis induced by Dextran Sulfate Sodium (DSS) treatment of these animals. For the experiments, S. venezuelensis-infected BALB/c mice were treated orally with 4% DSS solution for seven days. As controls, we used untreated S. venezuelensis infected, DSS-treated uninfected, and untreated/uninfected BALB/c mice. During DSS treatment, mice from the different groups were compared with regards to the clinical signs related to the severity of colitis and intestinal inflammation. Mice acutely infected with S. venezulensis and treated with DSS had reduced clinical score, shortening of the colon, and tissue inflammation. Moreover, DSS-treated and infected mice showed reduced IL-4, INF-γ, and IL-17 levels and increase of IL-10 production in the colon and/or in the supernatant of mesenteric lymph nodes cell cultures that resulted in lower eosinophil peroxidase and myeloperoxidase activity in colon homogenates, when compared with DSS-treated uninfected mice. DSS-treated infected mice also preserved the intestine architecture and had normal differentiation of goblet cells and mucus production in the colon mucosa. In conclusion, the data indicate that the clinical improvement reported in DSS-treated infected mice was accompanied by the lower production of Th1/Th2/Th17 pro-inflammatory cytokines, stimulation of IL-10, and induction of mucosal repair mechanisms.
Collapse
Affiliation(s)
- Vanessa Fernandes Rodrigues
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Márcia Paulliny Soares Bahia
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Núbia Rangel Cândido
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - João Marcelo Peixoto Moreira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Vinicius Gustavo Oliveira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Emília Souza Araújo
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Jailza Lima Rodrigues Oliveira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Michelle de Carvalho Rezende
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Ary Correa
- Departments of Microbiology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Deborah Negrão-Corrêa
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil.
| |
Collapse
|
40
|
Wang K, Lv Q, Miao YM, Qiao SM, Dai Y, Wei ZF. Cardamonin, a natural flavone, alleviates inflammatory bowel disease by the inhibition of NLRP3 inflammasome activation via an AhR/Nrf2/NQO1 pathway. Biochem Pharmacol 2018; 155:494-509. [PMID: 30071202 DOI: 10.1016/j.bcp.2018.07.039] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/27/2018] [Indexed: 01/02/2023]
Abstract
The present study aimed to evaluate the anti-colitis effect and underlying mechanisms of cardamonin, a natural flavone isolated from Alpinia katsumadai Hayata. The results showed that oral cardamonin significantly inhibited dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice, evidenced by improvement of disease activity index scores, myeloperoxidase activity, length shortening and histopathological changes of colons. A rectal administration of cardamonin also exhibited marked anti-colitis effect, suggesting that oral cardamonin might function in a prototype form. Cardamonin down-regulated levels of IL-1β, TNF-α, IL-6, NLRP3, cleaved caspase-1, ASC, cleaved IL-1β in colons of colitis mice. In vitro, cardamonin inhibited NLRP3 inflammasome activation in THP-1 and bone marrow-derived macrophages. It acted as an AhR activator, enhanced dissociation of AhR/HSP90 complexes, association of AhR/ARNT complexes, AhR nuclear translocation, XRE reporter gene activity, and AhR/ARNT/XRE DNA binding activity in THP-1 cells. The AhR antagonist CH223191 obviously abolished NLRP3 inflammasome activation inhibited by cardamonin. Furthermore, cardamonin elevated levels of Nrf2 and its target genes NQO1, Trx1, SOD2, HO-1, and the effect on NQO1 was the most obvious. The relationship of cardamonin-adjusted AhR activation, expressions of Nrf2 and NQO1, and NLRP3 inflammasome activation was confirmed by using CH223191, siAhR, ML385 and siNQO1, respectively. Finally, CH223191 was shown to abolish amelioration of cardamonin on DSS- and TNBS-induced colitis, inhibition of NLRP3 inflammasome activation and up-regulation of Nrf2 and NQO1 levels in colons. Taken together, cardamonin ameliorated colitis in mice through the activation of AhR/Nrf2/NQO1 pathway and consequent inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Qi Lv
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yu-Meng Miao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Si-Miao Qiao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Zhi-Feng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
41
|
Abstract
In the 21st century, urbanization represents a major demographic shift in developed and developing countries. Rapid urbanization in the developing world has been associated with an increasing incidence of several autoimmune diseases, including IBD. Patients with IBD exhibit a decrease in the diversity and richness of the gut microbiota, while urbanization attenuates the gut microbial diversity and might have a role in the pathogenesis of IBD. Environmental exposures during urbanization, including Westernization of diet, increased antibiotic use, pollution, improved hygiene status and early-life microbial exposure, have been shown to affect the gut microbiota. The disparate patterns of the gut microbiota composition in rural and urban areas offer an opportunity to understand the contribution of a 'rural microbiome' in potentially protecting against the development of IBD. This Perspective discusses the effect of urbanization and its surrogates on the gut microbiome (bacteriome, virome, mycobiome and helminths) in both human health and IBD and how such changes might be associated with the development of IBD.
Collapse
|
42
|
Eichenberger RM, Ryan S, Jones L, Buitrago G, Polster R, Montes de Oca M, Zuvelek J, Giacomin PR, Dent LA, Engwerda CR, Field MA, Sotillo J, Loukas A. Hookworm Secreted Extracellular Vesicles Interact With Host Cells and Prevent Inducible Colitis in Mice. Front Immunol 2018; 9:850. [PMID: 29760697 PMCID: PMC5936971 DOI: 10.3389/fimmu.2018.00850] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal (GI) parasites, hookworms in particular, have evolved to cause minimal harm to their hosts, allowing them to establish chronic infections. This is mediated by creating an immunoregulatory environment. Indeed, hookworms are such potent suppressors of inflammation that they have been used in clinical trials to treat inflammatory bowel diseases (IBD) and celiac disease. Since the recent description of helminths (worms) secreting extracellular vesicles (EVs), exosome-like EVs from different helminths have been characterized and their salient roles in parasite–host interactions have been highlighted. Here, we analyze EVs from the rodent parasite Nippostrongylus brasiliensis, which has been used as a model for human hookworm infection. N. brasiliensis EVs (Nb-EVs) are actively internalized by mouse gut organoids, indicating a role in driving parasitism. We used proteomics and RNA-Seq to profile the molecular composition of Nb-EVs. We identified 81 proteins, including proteins frequently present in exosomes (like tetraspanin, enolase, 14-3-3 protein, and heat shock proteins), and 27 sperm-coating protein-like extracellular proteins. RNA-Seq analysis revealed 52 miRNA species, many of which putatively map to mouse genes involved in regulation of inflammation. To determine whether GI nematode EVs had immunomodulatory properties, we assessed their potential to suppress GI inflammation in a mouse model of inducible chemical colitis. EVs from N. brasiliensis but not those from the whipworm Trichuris muris or control vesicles from grapes protected against colitic inflammation in the gut of mice that received a single intraperitoneal injection of EVs. Key cytokines associated with colitic pathology (IL-6, IL-1β, IFNγ, and IL-17a) were significantly suppressed in colon tissues from EV-treated mice. By contrast, high levels of the anti-inflammatory cytokine IL-10 were detected in Nb-EV-treated mice. Proteins and miRNAs contained within helminth EVs hold great potential application in development of drugs to treat helminth infections as well as chronic non-infectious diseases resulting from a dysregulated immune system, such as IBD.
Collapse
Affiliation(s)
- Ramon M Eichenberger
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Stephanie Ryan
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Linda Jones
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Geraldine Buitrago
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Ramona Polster
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Marcela Montes de Oca
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jennifer Zuvelek
- Pathology Queensland Cairns Laboratory, Queensland Health, Cairns, QLD, Australia
| | - Paul R Giacomin
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Lindsay A Dent
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Christian R Engwerda
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Matthew A Field
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
43
|
Shen P, Zhang Z, He Y, Gu C, Zhu K, Li S, Li Y, Lu X, Liu J, Zhang N, Cao Y. Magnolol treatment attenuates dextran sulphate sodium-induced murine experimental colitis by regulating inflammation and mucosal damage. Life Sci 2018; 196:69-76. [PMID: 29355546 DOI: 10.1016/j.lfs.2018.01.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 02/07/2023]
Abstract
Magnolol, the main and active ingredient of the Magnolia officinalis, has been widely used in traditional prescription to the human disorders. Magnolol has been proved to have several pharmacological properties including anti-bacterial, anti-oxidant and anti-inflammatory activities. However, the effects of magnolol on ulcerative colitis (UC) have not been reported. The aim of this study was to investigate the protective effects and mechanisms of magnolol on dextran sulphate sodium (DSS)-induced colitis in mice. The results showed that magnolol significantly alleviated DSS-induced body weight loss, disease activities index (DAI), colon length shortening and colonic pathological damage. In addition, magnolol restrained the expression of TNF-α, IL-1β and IL-12 via the regulation of nuclear factor-κB (NF-κB) and Peroxisome proliferator-activated receptor-γ (PPAR-γ) pathways. Magnolol also enhanced the expression of ZO-1 and occludin in DSS-induced mice colonic tissues. These results showed that magnolol played protective effects on DSS-induced colitis and may be an alternative therapeutic reagent for colitis treatment.
Collapse
Affiliation(s)
- Peng Shen
- College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Zecai Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Yue He
- College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Cong Gu
- College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Kunpeng Zhu
- College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Shan Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Yanxin Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Xiaojie Lu
- College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Jiuxi Liu
- College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Naisheng Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|
44
|
Togre N, Bhoj P, Amdare N, Goswami K, Tarnekar A, Shende M. Immunomodulatory potential of recombinant filarial protein, rWbL2, and its therapeutic implication in experimental ulcerative colitis in mouse. Immunopharmacol Immunotoxicol 2018; 40:483-490. [PMID: 29411665 DOI: 10.1080/08923973.2018.1431925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Immunomodulation by helminth proteins has potential therapeutic implications in inflammatory bowel disease. In the present study, we have explored the therapeutic effect of a RAL family protein of filarial parasite Wuchereria bancrofti i.e., rWbL2 protein against DSS induced colitis in a mouse model. MATERIALS AND METHODS Anti-inflammatory activity of rWbL2 on mice peritoneal exudate cells was analyzed under in vitro condition. The colitis mice were treated intraperitoneally (i.p.) with rWbL2 in increasing doses (10 µg, 25 µg, and 50 µg) on days 4, 5, and 6. Disease severity was assessed by disease activity index (DAI), macroscopic and histopathological scores, and enzyme myeloperoxidase activity (MPO) in the colon. The response of the cultured splenocytes from treated mice to Con-A stimulation, in terms of ELISA-based assessment of the protein followed by the assessment of mRNA expression of cytokines, was measured by real-time PCR analysis. RESULT rWbL2 protein showed anti-inflammatory activity in vitro. Treatment with rWbL2 (at 25 µg/dose) effectively attenuated disease severity by reducing weight loss, DAI, mucosal edema, colon damage, and MPO activity. This therapeutic effect was found to be associated with increased release of anti-inflammatory cytokine IL-10 and decreased release of pro-inflammatory cytokine IFN-γ and TNF-α by the splenocytes of treated mice followed by stimulation with Con-A. CONCLUSIONS These results provide evidence of the strong immunomodulatory potential of rWbL2 protein implicating its therapeutic application against ulcerative colitis.
Collapse
Affiliation(s)
- Namdev Togre
- a Department of Biochemistry and JB Tropical Disease Research Center , Mahatma Gandhi Institute of Medical Sciences , Sevagram , Maharashtra , India
| | - Priyanka Bhoj
- a Department of Biochemistry and JB Tropical Disease Research Center , Mahatma Gandhi Institute of Medical Sciences , Sevagram , Maharashtra , India
| | - Nitin Amdare
- a Department of Biochemistry and JB Tropical Disease Research Center , Mahatma Gandhi Institute of Medical Sciences , Sevagram , Maharashtra , India
| | - Kalyan Goswami
- a Department of Biochemistry and JB Tropical Disease Research Center , Mahatma Gandhi Institute of Medical Sciences , Sevagram , Maharashtra , India
| | - Aaditya Tarnekar
- b Department of Anatomy , Mahatma Gandhi Institute of Medical Sciences , Sevagram , Maharashtra , India
| | - Moreshwar Shende
- b Department of Anatomy , Mahatma Gandhi Institute of Medical Sciences , Sevagram , Maharashtra , India
| |
Collapse
|
45
|
Shepherd C, Wangchuk P, Loukas A. Of dogs and hookworms: man's best friend and his parasites as a model for translational biomedical research. Parasit Vectors 2018; 11:59. [PMID: 29370855 PMCID: PMC5785905 DOI: 10.1186/s13071-018-2621-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023] Open
Abstract
We present evidence that the dog hookworm (Ancylostoma caninum) is underutilised in the study of host-parasite interactions, particularly as a proxy for the human-hookworm relationship. The inability to passage hookworms through all life stages in vitro means that adult stage hookworms have to be harvested from the gut of their definitive hosts for ex vivo research. This makes study of the human-hookworm interface difficult for technical and ethical reasons. The historical association of humans, dogs and hookworms presents a unique triad of positive evolutionary pressure to drive the A. caninum-canine interaction to reflect that of the human-hookworm relationship. Here we discuss A. caninum as a proxy for human hookworm infection and situate this hookworm model within the current research agenda, including the various 'omics' applications and the search for next generation biologics to treat a plethora of human diseases. Historically, the dog hookworm has been well described on a physiological and biochemical level, with an increasing understanding of its role as a human zoonosis. With its similarity to human hookworm, the recent publications of hookworm genomes and other omics databases, as well as the ready availability of these parasites for ex vivo culture, the dog hookworm presents itself as a valuable tool for discovery and translational research.
Collapse
Affiliation(s)
- Catherine Shepherd
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| | - Phurpa Wangchuk
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| |
Collapse
|
46
|
Togre N, Bhoj P, Goswami K, Tarnekar A, Patil M, Shende M. Human filarial proteins attenuate chronic colitis in an experimental mouse model. Parasite Immunol 2018; 40. [DOI: 10.1111/pim.12511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022]
Affiliation(s)
- N. Togre
- Department of Biochemistry & JB Tropical Disease Research Center; Mahatma Gandhi Institute of Medical Sciences; Sevagram Maharashtra India
| | - P. Bhoj
- Department of Biochemistry & JB Tropical Disease Research Center; Mahatma Gandhi Institute of Medical Sciences; Sevagram Maharashtra India
| | - K. Goswami
- Department of Biochemistry & JB Tropical Disease Research Center; Mahatma Gandhi Institute of Medical Sciences; Sevagram Maharashtra India
| | - A. Tarnekar
- Department of Anatomy; Mahatma Gandhi Institute of Medical Sciences; Sevagram Maharashtra India
| | - M. Patil
- University Department of Biochemistry; RTM Nagpur University; Nagpur Maharashtra India
| | - M. Shende
- Department of Anatomy; Mahatma Gandhi Institute of Medical Sciences; Sevagram Maharashtra India
| |
Collapse
|
47
|
Navarro S, Pickering DA, Ferreira IB, Jones L, Ryan S, Troy S, Leech A, Hotez PJ, Zhan B, Laha T, Prentice R, Sparwasser T, Croese J, Engwerda CR, Upham JW, Julia V, Giacomin PR, Loukas A. Hookworm recombinant protein promotes regulatory T cell responses that suppress experimental asthma. Sci Transl Med 2017; 8:362ra143. [PMID: 27797959 DOI: 10.1126/scitranslmed.aaf8807] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022]
Abstract
In the developed world, declining prevalence of some parasitic infections correlates with increased incidence of allergic and autoimmune disorders. Moreover, experimental human infection with some parasitic worms confers protection against inflammatory diseases in phase 2 clinical trials. Parasitic worms manipulate the immune system by secreting immunoregulatory molecules that offer promise as a novel therapeutic modality for inflammatory diseases. We identify a protein secreted by hookworms, anti-inflammatory protein-2 (AIP-2), that suppressed airway inflammation in a mouse model of asthma, reduced expression of costimulatory markers on human dendritic cells (DCs), and suppressed proliferation ex vivo of T cells from human subjects with house dust mite allergy. In mice, AIP-2 was primarily captured by mesenteric CD103+ DCs and suppression of airway inflammation was dependent on both DCs and Foxp3+ regulatory T cells (Tregs) that originated in the mesenteric lymph nodes (MLNs) and accumulated in distant mucosal sites. Transplantation of MLNs from AIP-2-treated mice into naïve hosts revealed a lymphoid tissue conditioning that promoted Treg induction and long-term maintenance. Our findings indicate that recombinant AIP-2 could serve as a novel curative therapeutic for allergic asthma and potentially other inflammatory diseases.
Collapse
Affiliation(s)
- Severine Navarro
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| | - Darren A Pickering
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Ivana B Ferreira
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Linda Jones
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Stephanie Ryan
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Sally Troy
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Andrew Leech
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | | | - Bin Zhan
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Roger Prentice
- Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - John Croese
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | | | - John W Upham
- University of Queensland, Brisbane, Queensland, Australia.,Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Valerie Julia
- CNRS UMR7275, INSERM U1080, Université de Nice Sophia Antipolis, Nice, France
| | - Paul R Giacomin
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| |
Collapse
|
48
|
Preventive Trichuris suis ova (TSO) treatment protects immunocompetent rabbits from DSS colitis but may be detrimental under conditions of immunosuppression. Sci Rep 2017; 7:16500. [PMID: 29184071 PMCID: PMC5705695 DOI: 10.1038/s41598-017-16287-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/09/2017] [Indexed: 01/03/2023] Open
Abstract
Trichuris suis ova (TSO) have been tested for therapeutic application in inflammatory bowel diseases (IBD) yet understanding of the underlying mechanisms and safety in an immunocompromised host is limited due to lack of a suitable animal model. We used a recently established rabbit model of dextran sodium sulphate (DSS) induced colitis to study the efficacy, mechanisms and safety of TSO therapy in immunocompetent and immunosuppressed animals. TSO treatment prevented the DSS induced weight loss, delayed the onset of DSS induced symptoms by 2 days and significantly reduced the disease activity (DAI). TSO treatment protected caecal histology and prevented the colitis-associated loss in faecal microbiota diversity. Mainly the transcriptome of lamina propria mononuclear cells (LPMC) was affected by TSO treatment, showing dampened innate and adaptive inflammatory responses. The protective effect of TSO was lost in immunosuppressed rabbits, where TSO exacerbated colitis. Our data show that preventive TSO treatment ameliorates colitis severity in immunocompetent rabbits, modulates LPMC immune responses and reduces faecal dysbiosis. In contrast, the same TSO treatment exacerbates colitis in immunosuppressed animals. Our data provide further evidence for a therapeutic effect of TSO in IBD, yet caution is required with regard to TSO treatment in immunosuppressed patients.
Collapse
|
49
|
Wu Z, Wang L, Tang Y, Sun X. Parasite-Derived Proteins for the Treatment of Allergies and Autoimmune Diseases. Front Microbiol 2017; 8:2164. [PMID: 29163443 PMCID: PMC5682104 DOI: 10.3389/fmicb.2017.02164] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/20/2017] [Indexed: 12/26/2022] Open
Abstract
The morbidity associated with atopic diseases and immune dysregulation disorders such as asthma, food allergies, multiple sclerosis, atopic dermatitis, type 1 diabetes mellitus, and inflammatory bowel disease has been increasing all around the world over the past few decades. Although the roles of non-biological environmental factors and genetic factors in the etiopathology have been particularly emphasized, they do not fully explain the increase; for example, genetic factors in a population change very gradually. Epidemiological investigation has revealed that the increase also parallels a decrease in infectious diseases, especially parasitic infections. Thus, the reduced prevalence of parasitic infections may be another important reason for immune dysregulation. Parasites have co-evolved with the human immune system for a long time. Some parasite-derived immune-evasion molecules have been verified to reduce the incidence and harmfulness of atopic diseases in humans by modulating the immune response. More importantly, some parasite-derived products have been shown to inhibit the progression of inflammatory diseases and consequently alleviate their symptoms. Thus, parasites, and especially their products, may have potential applications in the treatment of autoimmune diseases. In this review, the potential of parasite-derived products and their analogs for use in the treatment of atopic diseases and immune dysregulation is summarized.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Yanlai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| |
Collapse
|
50
|
Floudas A, Cluxton CD, Fahel J, Khan AR, Saunders SP, Amu S, Alcami A, Fallon PG. Composition of the Schistosoma mansoni worm secretome: Identification of immune modulatory Cyclophilin A. PLoS Negl Trop Dis 2017; 11:e0006012. [PMID: 29073139 PMCID: PMC5681295 DOI: 10.1371/journal.pntd.0006012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/10/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022] Open
Abstract
The helminth Schistosoma mansoni modulates the infected host's immune system to facilitate its own survival, by producing excretory/secretory molecules that interact with a variety of the host's cell types including those of the immune system. Herein, we characterise the S. mansoni adult male worm secretome and identify 111 proteins, including 7 vaccine candidates and several molecules with potential immunomodulatory activity. Amongst the molecules present in the secretome, a 17-19kDa protein analogous to human cyclophilin A was identified. Given the ability of cyclophilin A to modulate the immune system by regulating antigen presenting cell activity, we sought to determine whether recombinant S. mansoni Cyclophilin A (rSmCypA) is capable of modulating bone-marrow derived dendritic cell (BMDC) and T cell responses under in vitro conditions. rSmCypA was enzymatically active and able to alter the pro-inflammatory cytokine profile of LPS-activated dendritic cells. rSmCypA also modulated DC function in the induction of CD4+ T cell proliferation with a preferential expansion of Treg cells. This work demonstrates the unique protein composition of the S. mansoni male worm secretome and immunomodulatory activity of S. mansoni Cyclophilin A.
Collapse
Affiliation(s)
- Achilleas Floudas
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Christopher D. Cluxton
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Julia Fahel
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Adnan R. Khan
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Sean P. Saunders
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Sylvie Amu
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Padraic G. Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- * E-mail:
| |
Collapse
|