1
|
Phylogenetic relationships of fluorescent pseudomonads deduced from the sequence analysis of 16S rRNA, Pseudomonas-specific and rpoD genes. 3 Biotech 2016; 6:80. [PMID: 28330150 PMCID: PMC4764612 DOI: 10.1007/s13205-016-0386-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/03/2015] [Indexed: 11/12/2022] Open
Abstract
Phylogenetic relationship of 22 FLPs was
revealed on the basis of polymorphism in three genes namely 16S rDNA, Pseudomonas-specific and rpoD gene regions. The primers for 16S rDNA, Pseudomonas-specific region and rpoD gene region were amplifying a region of 1492, 990 and 760 bp, respectively, from all the isolates investigated. The RFLP analysis of the PCR products resulted in a classification of these fluorescent pseudomonads which was best answered by rpoD-based RFLP analysis. The 22 FLPs were placed in two major clusters and seven subclusters suggesting that these were genotypically heterogenous and might belong to several species within Pseudomonas sensu stricto. Sequence analysis of these three genes for three selected isolates AS5, AS7 and AS15 showed 16S rDNA and Pseudomonas-specific gene region phylogenies were generally similar, but rpoD gene phylogeny was somewhat different from these two genes. These results were also congruent with the results of RFLP of these three genes. rpoD provided comparable phylogenetic resolution to that of the 16S rRNA and Pseudomonas-specific genes at all taxonomic levels, except between closely related organisms (species and subspecies levels), for which it provided better resolution. This is particularly relevant in the context of a growing number of studies focusing on subspecies diversity, in which single-copy protein-encoding genes such as rpoD could complement and better justify the information provided by the 16S rRNA gene. Hence rpoD can be used further as an evolutionary chronometer for species-level identification.
Collapse
|
2
|
Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR. Organoid Models of Human Gastrointestinal Development and Disease. Gastroenterology 2016; 150:1098-1112. [PMID: 26774180 PMCID: PMC4842135 DOI: 10.1053/j.gastro.2015.12.042] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
We have greatly advanced our ability to grow a diverse range of tissue-derived and pluripotent stem cell-derived gastrointestinal (GI) tissues in vitro. These systems, broadly referred to as organoids, have allowed the field to move away from the often nonphysiological, transformed cell lines that have been used for decades in GI research. Organoids are derived from primary tissues and have the capacity for long-term growth. They contain varying levels of cellular complexity and physiological similarity to native organ systems. We review the latest discoveries from studies of tissue-derived and pluripotent stem cell-derived intestinal, gastric, esophageal, liver, and pancreatic organoids. These studies have provided important insights into GI development, tissue homeostasis, and disease and might be used to develop personalized medicines.
Collapse
Affiliation(s)
- Priya H. Dedhia
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nina Bertaux-Skeirik
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio.
| | - Jason R. Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Authors for Correspondence: Jason R. Spence – , Twitter: @TheSpenceLab, Yana Zavros –
| |
Collapse
|
3
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
4
|
Jahn KA, Biazik JM, Braet F. GM1 Expression in Caco-2 Cells: Characterisation of a Fundamental Passage-dependent Transformation of a Cell Line. J Pharm Sci 2011; 100:3751-62. [DOI: 10.1002/jps.22418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/20/2010] [Accepted: 11/01/2010] [Indexed: 01/23/2023]
|
5
|
Characterization of basolateral-to-apical transepithelial transport of cadmium in intestinal TC7 cell monolayers. Biometals 2011; 24:857-74. [PMID: 21424617 DOI: 10.1007/s10534-011-9440-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
Abstract
Cadmium (Cd) is a toxic metal with an extremely long half-life in humans. The intestinal absorption of Cd has been extensively studied but the role the intestinal epithelium may play in metal excretion has never been considered. The basolateral (BL)-to-apical (AP) transepithelial transport of Cd was characterized in TC7 human intestinal cells. Both AP and BL uptakes varied with days in culture, and BL uptake was twofold higher compared to AP in differentiated cultures. A 50% increase in the BL uptake of 0.5 μM (109)Cd was observed at pH 8.5 in a chloride but not nitrate medium, suggesting the involvement of a pH-sensitive mechanism of transport for chloro-complexes. Fe and Zn inhibited the BL uptake of Cd whereas complexation by albumin had no effect, but the stimulatory effect of pH 8.5 was lost in the presence of albumin. The BL uptake of [(3)H]-MPP(+) and (109)Cd were both inhibited by decynium22 without reciprocal inhibition. MRP2 and MDR1 mRNA levels increased as a function of days in culture. A 25 and 20% decrease in the cellular AP efflux of Cd was observed in the presence of verapamil and probenecid, respectively. In cells treated with BSO, which lowered by 26% the total cellular thiol content, the inhibitory effect of verapamil increased, whereas that of probenecid decreased. These results reveal the existence of a decynium22-sensitive mechanism of transport for Cd at the BL membrane, and suggest the involvement of MDR1 and MRP2 in cellular Cd efflux at the AP membrane. It is conceivable that the intestinal epithelium may contribute to Cd blood excretion.
Collapse
|
6
|
Boucher MJ, Laprise P, Rivard N. Cyclic AMP-dependent protein kinase A negatively modulates adherens junction integrity and differentiation of intestinal epithelial cells. J Cell Physiol 2005; 202:178-90. [PMID: 15389533 DOI: 10.1002/jcp.20104] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED Intestinal epithelial cell differentiation is a complex process in which many different signaling pathways are likely involved. An increase in the intracellular levels of cyclic AMP (cAMP) has been shown to inhibit enterocyte differentiation; however, the mechanisms through which cAMP/PKA signaling modulates differentiation of human intestinal epithelial cells are still not well understood. Herein, we report that: (1) treatment of Caco-2/15 cells with 8Br-cAMP repressed sucrase-isomaltase and villin protein expression and strongly attenuated morphological differentiation of enterocyte-like features in Caco-2/15 such as epithelial cell polarity and brush border formation; (2) treatment of confluent Caco-2/15 cells with 8Br-cAMP led to a strong decrease in F-actin localized at cell-cell contact sites along with a reduced amount of E-cadherin and catenins, but not of ZO-1, at cell-cell interfaces concomitant with a decreased association of these proteins with the actin cytoskeleton; (3) inhibition of PKA by H89 prevented disruption of adherens junctions by extracellular calcium depletion; (4) treatment of Caco-2/15 cells with 8Br-cAMP prevented the recruitment and activation of p85/PI-3K to E-cadherin-mediated cell-cell contacts, an important event in the assembly of adherens junctions and differentiation of these cells; (5) E-cadherin appears to be phosphorylated on serine in vivo in a PKA-dependent mechanism. CONCLUSION Our studies show that cAMP/PKA signaling negatively regulates adherens junction integrity as well as morphological and functional differentiation of intestinal epithelial cells.
Collapse
Affiliation(s)
- Marie-Josée Boucher
- CIHR Group on Functional Development and Physiopathology of the Digestive Tract, Département d'Anatomie et Biologie Cellulaire, Faculty of Medicine, University of Sherbrooke, QC, Canada
| | | | | |
Collapse
|
7
|
Cui XL, Ananian C, Perez E, Strenger A, Beuve AV, Ferraris RP. Cyclic AMP stimulates fructose transport in neonatal rat small intestine. J Nutr 2004; 134:1697-703. [PMID: 15226456 DOI: 10.1093/jn/134.7.1697] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intestinal fructose transporter (GLUT5) expression normally increases significantly after completion of weaning in neonatal rats. Increases in GLUT5 mRNA, protein, and activity can be induced in early weaning pups by precocious consumption of dietary fructose or by perfusion of the small intestine with fructose solutions. Little is known about the signal transduction pathway of the dietary fructose-mediated increase in GLUT5 expression during early intestinal development. Recent microarray results indicate that key gluconeogenic enzymes modulated by cAMP are markedly upregulated by fructose perfusion; hence, we tested the hypothesis that cAMP plays an important role in regulating intestinal fructose absorption by simultaneously perfusing adenylyl cyclase, phosphodiesterase, or protein kinase A (PKA) inhibitors along with fructose. Intestinal fructose uptake rates increased by 100% in rat pups perfused with 8-bromo-cAMP. Simultaneous fructose and dideoxyadenosine (DDA; inhibitor of adenylyl cyclase) perfusion completely inhibited increases in fructose uptake rate induced by perfusion with fructose alone. Fructose perfusion increased intestinal mucosal cAMP concentrations by 27%, but simultaneous perfusion of fructose and DDA inhibited the fructose-induced increase in cAMP. However, GLUT5 and sodium-glucose cotransporter (SGLT1) mRNA abundance and glucose transport rates were each not significantly affected by 8-bromo-cAMP and DDA. Moreover, simultaneous perfusion of the small intestine with fructose and PKA inhibitor or N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamid. 2HCl, both inhibitors of PKA, did not prevent the fructose-induced increases in GLUT5 mRNA abundance and fructose uptake rate. Cyclic AMP appears to modulate fructose transport without affecting GLUT5 mRNA abundance, and without involving PKA.
Collapse
Affiliation(s)
- Xue-Lin Cui
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, NJ 07103-2714, USA
| | | | | | | | | | | |
Collapse
|
8
|
Martin-Latil S, Cotte-Laffitte J, Beau I, Quéro AM, Géniteau-Legendre M, Servin AL. A cyclic AMP protein kinase A-dependent mechanism by which rotavirus impairs the expression and enzyme activity of brush border-associated sucrase-isomaltase in differentiated intestinal Caco-2 cells. Cell Microbiol 2004; 6:719-31. [PMID: 15236639 DOI: 10.1111/j.1462-5822.2004.00396.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We undertook a study of the mechanism by which rhesus monkey rotavirus (RRV) impairs the expression and enzyme activity of brush border-associated sucrase isomaltase (SI) in cultured, human, fully differentiated, intestinal Caco-2 cells. We provide evidence that the RRV-induced defects in the expression and enzyme activity of SI are not related to the previously observed, RRV-induced, Ca2+ -dependent, disassembly of the F-actin cytoskeleton. This conclusion is based on the facts that: (i) the intracellular Ca2+ blocker, BAPTA/AM, which antagonizes the RRV-induced increase in [Ca2+](i), fails to inhibit the RRV-induced decrease in SI expression and enzyme activity; and (ii) Jasplakinolide (JAS) treatment, known to stabilize actin filaments, had no effect on the RRV-induced decrease in SI expression. Results reported here demonstrate that the RRV-induced impairment in the expression and enzyme activity of brush border-associated SI results from a hitherto unknown mechanism involving PKA signalling. This conclusion is based on the observations that (i) intracellular cAMP was increased in RRV-infected cells and (ii) treatment of RRV-infected cells with PKA blockers resulted in the reappearance of apical SI expression, accompanied by the restoration of the enzyme activity at the brush border. In addition, in RRV-infected cells a twofold increase of phosphorylated form of cytokeratin 18 was observed after immunopurification and Western Blot analysis, which was antagonized by exposing the RRV-infected cells to the PKA blockers.
Collapse
Affiliation(s)
- Sandra Martin-Latil
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Pathogènes et Fonctions des Cellules Epithéliales Polarisées, Faculté de Pharmacie, Université Paris XI, 92296 Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
9
|
Chantret I, Dancourt J, Dupré T, Delenda C, Bucher S, Vuillaumier-Barrot S, Ogier de Baulny H, Peletan C, Danos O, Seta N, Durand G, Oriol R, Codogno P, Moore SEH. A deficiency in dolichyl-P-glucose:Glc1Man9GlcNAc2-PP-dolichyl alpha3-glucosyltransferase defines a new subtype of congenital disorders of glycosylation. J Biol Chem 2003; 278:9962-71. [PMID: 12480927 DOI: 10.1074/jbc.m211950200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The underlying causes of type I congenital disorders of glycosylation (CDG I) have been shown to be mutations in genes encoding proteins involved in the biosynthesis of the dolichyl-linked oligosaccharide (Glc(3)Man(9)GlcNAc(2)-PP-dolichyl) that is required for protein glycosylation. Here we describe a CDG I patient displaying gastrointestinal problems but no central nervous system deficits. Fibroblasts from this patient accumulate mainly Man(9)GlcNAc(2)-PP-dolichyl, but in the presence of castanospermine, an endoplasmic reticulum glucosidase inhibitor Glc(1)Man(9)GlcNAc(2)-PP-dolichyl predominates, suggesting inefficient addition of the second glucose residue onto lipid-linked oligosaccharide. Northern blot analysis revealed the cells from the patient to possess only 10-20% normal amounts of mRNA encoding the enzyme, dolichyl-P-glucose:Glc(1)Man(9)GlcNAc(2)-PP-dolichyl alpha3-glucosyltransferase (hALG8p), which catalyzes this reaction. Sequencing of hALG8 genomic DNA revealed exon 4 to contain a base deletion in one allele and a base insertion in the other. Both mutations give rise to premature stop codons predicted to generate severely truncated proteins, but because the translation inhibitor emetine was shown to stabilize the hALG8 mRNA from the patient to normal levels, it is likely that both transcripts undergo nonsense-mediated mRNA decay. As the cells from the patient were successfully complemented with wild type hALG8 cDNA, we conclude that these mutations are the underlying cause of this new CDG I subtype that we propose be called CDG Ih.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Carbohydrate Metabolism, Inborn Errors/diagnosis
- Carbohydrate Metabolism, Inborn Errors/enzymology
- Carbohydrate Metabolism, Inborn Errors/genetics
- Cells, Cultured
- Chloroform/pharmacology
- Chromatography, Thin Layer
- Codon, Terminator
- DNA Mutational Analysis
- DNA, Complementary/metabolism
- Fibroblasts/metabolism
- Glucosyltransferases/chemistry
- Glucosyltransferases/metabolism
- Glycosylation
- Humans
- Lipids/chemistry
- Lymphocytes/metabolism
- Molecular Sequence Data
- Mutation
- Oligosaccharides/chemistry
- RNA, Messenger/metabolism
- Signal Transduction
- Time Factors
Collapse
Affiliation(s)
- Isabelle Chantret
- Unité de Glycobiologie et Signalisation Cellulaire, INSERM, U504, Bâtiment INSERM, 16 Avenue Paul Vaillant-Couturier, 94807 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Peiffer I, Bernet-Camard MF, Rousset M, Servin AL. Impairments in enzyme activity and biosynthesis of brush border-associated hydrolases in human intestinal Caco-2/TC7 cells infected by members of the Afa/Dr family of diffusely adhering Escherichia coli. Cell Microbiol 2001; 3:341-57. [PMID: 11298656 DOI: 10.1046/j.1462-5822.2001.00121.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wild-type diffusely adhering Escherichia coli (DAEC) harbouring afimbrial adhesin (Afa) or fimbrial Dr and F1845 adhesins (Afa/Dr DAEC) apically infecting the human intestinal epithelial cells promote injuries in the brush border of the cells. We report here that infection by Afa/Dr DAEC wild-type strains C1845 and IH11128 in polarized human fully differentiated Caco-2/TC7 cells dramatically impaired the enzyme activity of functional brush border-associated proteins sucrase-isomaltase (SI) and dipeptidylpeptidase IV (DPP IV). Blockers of the transduction signal molecules, previously found to be active against the Afa/Dr DAEC-induced cytoskeleton injury, were inactive against the Afa/Dr-induced decrease in sucrase enzyme activity. In parallel, Afa/Dr DAEC infection promotes the blockade of the biosynthesis of SI and DPP IV without affection enzyme stability. The observation that no changes occurred in mRNA levels of SI and DPP IV upon infection suggested that the decrease in biosynthesis probably resulted from a decrease in the translation rate. When the cells were infected with recombinant E. coli strains expressing homologous adhesins of the wild-type strains, neither a decrease in sucrase and DPP IV enzyme activities nor an inhibition of enzyme biosynthesis were observed. In conclusion, taken together, these data give new insights into the mechanisms by which the wild-type Afa/Dr DAEC strains induce functional injuries in polarized fully differentiated human intestinal cells. Moreover, the results revealed that other pathogenic factor(s) distinct from the Afa/Dr adhesins may play(s) a crucial role in this mechanism of pathogenicity.
Collapse
Affiliation(s)
- I Peiffer
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 510, Faculté de Pharmacie Paris XI, F-92296 Châtenay-Malabry Cedex, France
| | | | | | | |
Collapse
|
11
|
Carrière V, Lacasa M, Rousset M. Activity of hepatocyte nuclear factor 1alpha and hepatocyte nuclear factor 1beta isoforms is differently affected by the inhibition of protein phosphatases 1/2A. Biochem J 2001; 354:301-8. [PMID: 11171107 PMCID: PMC1221656 DOI: 10.1042/0264-6021:3540301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Phosphorylation/dephosphorylation processes are known to control the activity of several transcription factors. The nutrition-dependent expression of sucrase-isomaltase and Na+/glucose co-transporter 1, two proteins implicated in the intestinal absorption of glucose, has been shown to be closely related to modifications of hepatocyte nuclear factor 1 (HNF1) activity. This study was conducted to determine whether phosphorylation/dephosphorylation processes could control HNF1 activity. We show that expression of the gene encoding sucrase-isomaltase is inhibited in the enterocytic Caco-2 clone TC7 by okadaic acid at a concentration that is known to inhibit protein phosphatases 1/2A and that does not affect cell viability. At the same concentration, phosphorylation of the HNF1alpha and HNF1beta isoforms is greatly enhanced and their DNA-binding capacity is decreased. The phosphorylation state of HNF1beta isoforms directly affects their DNA-binding capacity. In contrast, the decreased DNA-binding activity of the HNF1alpha isoforms, which was observed after the inhibition of protein phosphatases 1/2A, is due to a net decrease in their total cellular and nuclear amounts. Such an effect results from a decrease in both the HNF1alpha mRNA levels and the half-life of the protein. This is the first evidence for the implication of protein phosphatases 1/2A in the control of the activity of HNF1 isoforms. Moreover, these results emphasize a physiological role for the balance between phosphatases and kinases in the nutrition-dependent regulation of HNF1-controlled genes.
Collapse
Affiliation(s)
- V Carrière
- INSERM U505, Université Pierre et Marie Curie, 15 rue de l'école de Médecine, 75006 Paris, France.
| | | | | |
Collapse
|
12
|
Mariadason JM, Rickard KL, Barkla DH, Augenlicht LH, Gibson PR. Divergent phenotypic patterns and commitment to apoptosis of Caco-2 cells during spontaneous and butyrate-induced differentiation. J Cell Physiol 2000; 183:347-54. [PMID: 10797309 DOI: 10.1002/(sici)1097-4652(200006)183:3<347::aid-jcp7>3.0.co;2-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Caco-2 cells differentiate spontaneously when cultured in confluence and on exposure to the physiologically relevant short-chain fatty acid, butyrate. This study aimed to compare the phenotype induced by these pathways and their relations to cell turnover. Caco-2 cells were treated with butyrate at a nontoxic concentration of 2 mM for 3 days, or allowed to spontaneously differentiate for 0-21 days. Brush border hydrolase activities and carcinoembryonic antigen (CEA) expression, transepithelial resistance and dome formation, expression of components of the urokinase system, and cell turnover by flow cytometry, and the degree of DNA fragmentation were quantified. Butyrate induced increases in alkaline phosphatase activity and CEA expression but not the activities of other hydrolases, while culture alone induced progressive increases in the activities/expression of all markers. Butyrate induced a significantly greater increase in transepithelial resistance (TER) than occurred during culture alone but the densities of domes were similar. Butyrate induced a ninefold increase in urokinase receptor expression and twofold increase in urokinase activity, while culture alone induced a significantly smaller increase in receptor expression, an increase in plasminogen activator inhibitor-1 but no change in activity. While both stimuli induced cell cycle arrest, only butyrate increased the proportion of cells undergoing apoptosis. In conclusion, differentiation of Caco-2 cells can proceed along multiple pathways but does not necessarily lead to apoptosis. The phenotypic changes during spontaneous differentiation mimic those that occur in normal colonic epithelial cells in vivo during their migration from the crypt base to neck, while butyrate-induced effects more closely follow those occurring when normal colonic epithelial cells migrate from crypt neck to the surface compartment.
Collapse
Affiliation(s)
- J M Mariadason
- University of Melbourne, Department of Medicine, The Royal Melbourne Hospital, Victoria, Australia. john_mariadasoncnetzero.net
| | | | | | | | | |
Collapse
|
13
|
Pageot LP, Perreault N, Basora N, Francoeur C, Magny P, Beaulieu JF. Human cell models to study small intestinal functions: recapitulation of the crypt-villus axis. Microsc Res Tech 2000; 49:394-406. [PMID: 10820523 DOI: 10.1002/(sici)1097-0029(20000515)49:4<394::aid-jemt8>3.0.co;2-k] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium is continuously and rapidly renewed by a process involving cell generation, migration, and differentiation, from the stem cell population located at the bottom of the crypt to the extrusion of the terminally differentiated cells at the tip of the villus. Because of the lack of normal human intestinal cell models, most of our knowledge about the regulation of human intestinal cell functions has been derived from studies conducted on cell cultures generated from experimental animals and human colon cancers. However, important advances have been achieved over recent years in the generation of normal human intestinal cell models. These models include (a) intestinal cell lines with typical crypt cell proliferative noncommitted characteristics, (b) conditionally immortalized intestinal cell lines that can be induced to differentiate, and (c) primary cultures of differentiated villuslike cells that can be maintained in culture for up to 10 days. Each of these models should help in the investigation of the specific aspects of human intestinal function and regulation. Furthermore, taken together, these models provide an integrated system that allows an in vitro recapitulation of the entire crypt-villus axis of the normal human small intestine.
Collapse
Affiliation(s)
- L P Pageot
- MRC Group in Functional Development and Physiopathology of the Digestive Tract, Département d'anatomie et de biologie cellulaire, Faculté de médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | |
Collapse
|
14
|
Jourdan N, Brunet JP, Sapin C, Blais A, Cotte-Laffitte J, Forestier F, Quero AM, Trugnan G, Servin AL. Rotavirus infection reduces sucrase-isomaltase expression in human intestinal epithelial cells by perturbing protein targeting and organization of microvillar cytoskeleton. J Virol 1998; 72:7228-36. [PMID: 9696817 PMCID: PMC109945 DOI: 10.1128/jvi.72.9.7228-7236.1998] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus infection is the most common cause of severe infantile gastroenteritis worldwide. These viruses infect mature enterocytes of the small intestine and cause structural and functional damage, including a reduction in disaccharidase activity. It was previously hypothesized that reduced disaccharidase activity resulted from the destruction of rotavirus-infected enterocytes at the villus tips. However, this pathophysiological model cannot explain situations in which low disaccharidase activity is observed when rotavirus-infected intestine exhibits few, if any, histopathologic changes. In a previous study, we demonstrated that the simian rotavirus strain RRV replicated in and was released from human enterocyte-like Caco-2 cells without cell destruction (N. Jourdan, M. Maurice, D. Delautier, A. M. Quero, A. L. Servin, and G. Trugnan, J. Virol. 71:8268-8278, 1997). In the present study, to reinvestigate disaccharidase expression during rotavirus infection, we studied sucrase-isomaltase (SI) in RRV-infected Caco-2 cells. We showed that SI activity and apical expression were specifically and selectively decreased by RRV infection without apparent cell destruction. Using pulse-chase experiments and cell surface biotinylation, we demonstrated that RRV infection did not affect SI biosynthesis, maturation, or stability but induced the blockade of SI transport to the brush border. Using confocal laser scanning microscopy, we showed that RRV infection induces important alterations of the cytoskeleton that correlate with decreased SI apical surface expression. These results lead us to propose an alternate model to explain the pathophysiology associated with rotavirus infection.
Collapse
Affiliation(s)
- N Jourdan
- Institut National de la Santé et de la Recherche Médicale, CJF 94 07, Pathogénie Cellulaire et Moléculaire des Microorganismes Entérovirulents, Faculté de Pharmacie, Université Paris XI, 92296 Chatenay-Malabry Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Van Beers EH, Rings EH, Taminiau JA, Heymans HS, Einerhand AW, Dekker J, Büller HA. Regulation of lactase and sucrase-isomaltase gene expression in the duodenum during childhood. J Pediatr Gastroenterol Nutr 1998; 27:37-46. [PMID: 9669724 DOI: 10.1097/00005176-199807000-00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND In children, lactase and sucrase-isomaltase are essential intestinal glycohydrolases, and insufficiency of either enzyme causes diarrhea and malnutrition. Little is known about the regulation of lactase and sucrase-isomaltase expression in the duodenum during childhood. In this study, the mechanisms of regulation of duodenal expression of both enzymes were examined in a study population with ages ranging from 1 to 18 years. METHODS Duodenal biopsy specimens from 60 white children were used to analyze tissue morphology and to quantify lactase and sucrase-isomaltase mRNA and protein. RESULTS Among healthy subjects, high interindividual variability was noted in both mRNA and protein levels for lactase and sucrase-isomaltase. Lactase mRNA level per subject did not correlate with sucrase-isomaltase mRNA level and thus appeared independent. Both lactase and sucrase-isomaltase protein levels correlated significantly with their respective mRNA levels. For each enzyme, a significant inverse correlation was observed between the degree of villus atrophy and mRNA levels. Aging from 1 to 18 years did not result in significant changes in mRNA or protein levels of either enzyme. Immunostaining patterns within the duodenal epithelium for lactase differed from sucrase-isomaltase in adjacent sections, illustrating independent regulation at the cellular level. CONCLUSIONS In the duodenum of white children, lactase and sucrase-isomaltase seem primarily regulated at the transcriptional level. The expression of each enzyme in the intestinal epithelium is regulated by an independent mechanism. Lactase and sucrase-isomaltase exhibit stable mRNA and protein levels in healthy children as they grow to adulthood. Mucosal damage affected levels of both enzymes negatively.
Collapse
Affiliation(s)
- E H Van Beers
- Laboratory for Pediatric Gastroenterology and Nutrition, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Rodolosse A, Barbat A, Chantret I, Lacasa M, Brot-Laroche E, Zweibaum A, Rousset M. Selecting agent hygromycin B alters expression of glucose-regulated genes in transfected Caco-2 cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G931-8. [PMID: 9612275 DOI: 10.1152/ajpgi.1998.274.5.g931] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Incorporation into plasmids of genes conferring resistance to aminoglycoside antibiotics such as hygromycin B is currently utilized for selection in experiments involving gene transfer in eukaryotic cells. Using a subclone of Caco-2 cells stably transfected with an episomal plasmid containing the hygromycin resistance gene, we observed that transformed cells subcultured in the presence of hygromycin B exhibit, compared with the same cells subcultured in antibiotic-free medium, a sixfold increase in the rates of glucose consumption and lactic acid production and dramatic changes, at mRNA and protein level, of the expressions of sucrase-isomaltase and hexose transporter GLUT-2, which are downregulated, contrasting with an upregulation of hexose transporter GLUT-1. This occurs without significant modifications of the differentiation status of the cells, as demonstrated by the normal expression of villin, ZO-1, dipeptidyl peptidase IV, or Na(+)-K(+)-ATPase. The plasmid copy number is, however, the same, whether or not the cells are cultured in the presence of hygromycin B. These results draw attention to the need to consider antibiotic-dependent alterations of metabolism and gene expression in transfection experiments.
Collapse
Affiliation(s)
- A Rodolosse
- Unité de Recherches sur la Différenciation Cellulaire Intestinale, Institut National de la Santé et de la Recherche Médicale, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Banan A, Smith GS, Rieckenberg CL, Kokoska ER, Miller TA. Protection against ethanol injury by prostaglandin in a human intestinal cell line: role of microtubules. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G111-21. [PMID: 9458780 DOI: 10.1152/ajpgi.1998.274.1.g111] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostaglandins have been shown to protect the gastrointestinal (GI) epithelium from injury induced by various luminal insults independent of their known acid-inhibitory effects, a process termed "cytoprotection." The mechanism of this protective action remains unknown. The present investigation determined the role of microtubules (a major cytoskeletal component) in GI injury induced by ethanol (EtOH) and its prevention by 16,16-dimethylprostaglandin E2 (dmPGE2) using cells from a human colonic cell line known as Caco-2 cells. These cells were preincubated in Eagle's minimum essential medium with and without dmPGE2 (2.6 microM) for 15 min and subsequently incubated in media containing 1, 2.5, 5, 7.5, and 10% EtOH. The effects on cell viability and tubulin (the major protein backbone of microtubules) were then determined. EtOH concentrations > or = 2.5% extensively disrupted the microtubules as demonstrated by fragmentation, kinking, and perturbation of the microtubule organizer center. EtOH treatment also led to a significant decrease in the S2 (polymerized) fraction and an increase in the S1 (monomeric) pool of tubulin. Concomitant with these effects were marked decreases in cellular viability. DmPGE2 pretreatment abolished the disruption of microtubules, significantly increased the S2 fraction of tubulin, and increased cellular viability in cultures exposed to EtOH. Furthermore, pretreatment with colchicine, an inhibitor of microtubule assembly, prevented the cytoprotective action of dmPGE2. Taxol, a microtubule stabilizing agent, mimicked the effects of dmPGE2 by also enhancing microtubule integrity and increasing cellular viability in cells exposed to EtOH. Our data indicate that organization and stabilization of microtubules may play an essential role in the mechanism of prostaglandin-induced protection.
Collapse
Affiliation(s)
- A Banan
- Theodore Cooper Surgical Research Institute, Department of Surgery, Saint Louis University Medical Center, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
18
|
Sapin C, Baricault L, Trugnan G. PKC-dependent long-term effect of PMA on protein cell surface expression in Caco-2 cells. Exp Cell Res 1997; 231:308-18. [PMID: 9087172 DOI: 10.1006/excr.1997.3488] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several recent data indicate that protein traffic is under the control of different phosphorylation pathways. In previous works, we have shown that cell surface expression of apical hydrolases and of a basolateral protein, "525" antigen, was impaired in Caco-2 cells treated with forskolin, a potent PKA activator (L. Baricault et al., 1995, J. Cell Sci., 108, 2109-2121). Surprisingly, in these experiments forskolin did not seem to act through PKA activation. These cAMP-independent effects of FK may rely on cross-talk between intracellular phosphorylation pathways as described recently for PKA and PKC pathways. Therefore, we tested the hypothesis that PKC activation may induce effects comparable to those of FK on three brush border hydrolases as well as on 525 antigen cell surface expression in Caco-2 cells. Using enzymatic activity measurements and pulse-chase experiments combined with cell surface biotinylation assays, we show that long-term treatment with phorbol 12-myristate 13-acetate (PMA) impairs the overall expression of neither brush border hydrolases nor that of the 525 antigen but decreases total cell surface expression of these proteins. The apical and basolateral delivery pathways are equally affected. Using confocal laser scanning microscopy we show that the DPP IV and the 525 antigen that were not recovered from the cell surface were sequestrated in Lamp-1-positive lysosomal-related vesicles. PMA stimulates PKC translocation even after a 3-week treatment and induces PKC epsilon redistribution to a vesicular- and membrane-associated compartment also labeled with cytokeratins. These results demonstrate that PMA-dependent PKC activation strongly impairs protein cell surface targeting. They also suggest that these PKC-dependent effects which are similar to those previously obtained with FK are relevant to the described cross-talk between PKA- and PKC-dependent phosphorylation pathways.
Collapse
Affiliation(s)
- C Sapin
- INSERM, CJF 96-07, Faculté de médecine Saint Antoine, Paris, France
| | | | | |
Collapse
|
19
|
Rodolosse A, Carrière V, Chantret I, Lacasa M, Zweibaum A, Rousset M. Glucose-dependent transcriptional regulation of the human sucrase-isomaltase (SI) gene. Biochimie 1997; 79:119-23. [PMID: 9209707 DOI: 10.1016/s0300-9084(97)81502-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously shown that the transcription of the human sucrase-isomaltase (SI) gene was negatively regulated by glucose. Using two clonal metabolic variants of the human colon adenocarcinoma cell line Caco-2 we demonstrate here that: 1) although similar growth-related variations of phosphoenolpyruvate carboxykinase (PEPCK), frutose 1,6-diphosphatase (F1, 6-dPase), pyruvate kinase (PK) and SI mRNA levels are observed, only F1,6-dPase, PK and SI mRNA levels vary in the same way in response to modifications of glucose utilization; and 2) regulatory elements responsible for the glucose-dependent transcription of the SI gene are located within the -370/+30 region of the promoter.
Collapse
Affiliation(s)
- A Rodolosse
- Unité de Recherches sur la Différenciation Cellulaire Intestinale, INSERM U178, Villejuif, France
| | | | | | | | | | | |
Collapse
|
20
|
Rodolosse A, Chantret I, Lacasa M, Chevalier G, Zweibaum A, Swallow D, Rousset M. A limited upstream region of the human sucrase-isomaltase gene confers glucose-regulated expression on a heterologous gene. Biochem J 1996; 315 ( Pt 1):301-6. [PMID: 8670122 PMCID: PMC1217186 DOI: 10.1042/bj3150301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have previously shown that glucose can exert a repressive effect on the transcription of the sucrase-isomaltase (SI) gene in the differentiated enterocyte-like human colon carcinoma cell lines HT-29 and Caco-2. To characterize the region through which glucose exerts this effect, three different-length fragments of the 5'-flanking region of the human SI gene were linked to the reporter gene luciferase in an episomal vector carrying a hygromycin resistance gene. These fragments were used for transfection into a clone of the Caco-2 cell line, PF11, which has high glucose consumption and only expresses SI at high levels when cultured in the presence of a low supply of glucose. By using the stably transformed PF11 cells grown either in standard high glucose (25 mM) or in low glucose (1 mM) it was possible to show that the smallest fragment of the SI promoter, extending from bases -370 to +30, contains all the information required for the glucose repression of the reporter gene luciferase.
Collapse
Affiliation(s)
- A Rodolosse
- INSERM U178 and Université Paris-Sud, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Brot-Laroche E. Differential regulation of the fructose transporters GLUT2 and GLUT5 in the intestinal cell line Caco-2. Proc Nutr Soc 1996; 55:201-8. [PMID: 8832792 DOI: 10.1079/pns19960021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- E Brot-Laroche
- Unité de Recherches sur la Diférenciation Cellulaire Intestinale, INSERM U178, Villejuif, France
| |
Collapse
|
22
|
Meunier V, Bourrié M, Berger Y, Fabre G. The human intestinal epithelial cell line Caco-2; pharmacological and pharmacokinetic applications. Cell Biol Toxicol 1995; 11:187-94. [PMID: 8564649 DOI: 10.1007/bf00756522] [Citation(s) in RCA: 300] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastrointestinal tract remains the most popular and acceptable route of administration for drugs. It offers the great advantage of convenience and many compounds are well absorbed and thereby provide acceptable plasma concentration-time profiles. Currently there is considerable interest from the pharmaceutical industry in development of cell culture systems that would mimic the intestinal mucosa in order to evaluate strategies for investigating and/or enhancing drug absorption. The intestinal epithelial cells of primary interest, from the standpoint of drug absorption and metabolism, are the villus cells, which are fully differentiated cells. An in vitro cell culture system consisting of a monolayer of viable, polarized and fully differentiated villus cells, similar to that found in the small intestine, would be a valuable tool in the study of drug and nutrient transport and metabolism. The Caco-2 cell line, which exhibits a well-differentiated brush border on the apical surface and tight junctions, and expresses typical small-intestinal microvillus hydrolases and nutrient transporters, has proven to be the most popular in vitro model (a) to rapidly assess the cellular permeability of potential drug candidates, (b) to elucidate pathways of drug transport (e.g., passive versus carrier mediated), (c) to assess formulation strategies designed to enhance membrane permeability, (d) to determine the optimal physicochemical characteristics for passive diffusion of drugs, and (e) to assess potential toxic effects of drug candidates or formulation components on this biological barrier. Since differentiated Caco-2 cells express various cytochrome P450 isoforms and phase II enzymes such as UDP-glucuronosyltransferases, sulfotransferases and glutathione-S-transferases, this model could also allow the study of presystemic drug metabolism.
Collapse
Affiliation(s)
- V Meunier
- Sanofi Recherche, Department of Preclinical Metabolism and Pharmacokinetics, Montpellier, France
| | | | | | | |
Collapse
|
23
|
Baricault L, Fransen JA, Garcia M, Sapin C, Codogno P, Ginsel LA, Trugnan G. Rapid sequestration of DPP IV/CD26 and other cell surface proteins in an autophagic-like compartment in Caco-2 cells treated with forskolin. J Cell Sci 1995; 108 ( Pt 5):2109-21. [PMID: 7657729 DOI: 10.1242/jcs.108.5.2109] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enterocytic differentiation of Caco-2 cells, a human colon adenocarcinoma cell line, is accompanied by the transcriptionally regulated expression of a subset of proteins and their correct sorting towards the cell surface. In the present work we have explored the possibility that post-translational events may interfere with this process by investigating the short term effects of a potent adenylyl cyclase activator, forskolin, on cell surface expression of dipeptidyl peptidase IV. Previous works have shown that this protein is targeted towards the apical domain through either a direct or an indirect route. Domain specific biochemical experiments demonstrate that cell surface expression of neosynthesized dipeptidyl peptidase IV rapidly decreases after a 1 hour forskolin treatment. Both initial basolateral and apical dipeptidyl peptidase IV membrane delivery were altered by forskolin treatment. Decrease of dipeptidyl peptidase IV cell surface expression was not restricted to this protein, since membrane expression of '525' antigen, a basolateral protein and of sucrase-isomaltase, an apically targeted hydrolase, which unlike dipeptidyl peptidase IV mainly follows a direct route to the brush border membrane, also decreases. In addition endocytosis of proteins from the apical and from the basolateral domain was essentially unchanged, suggesting that forskolin's target may be located on the exocytic pathway. Confocal laser scanning microscopy and immuno-electron microscopy studies demonstrate that, within 5 minutes of forskolin treatment, the cell surface proteins studied accumulate in intracellular vesicles which were co-labeled with a polyclonal antibody raised against Lamp-1, a lysosomal membrane marker. Electron microscopy studies show that these vesicles display an autophagic-like morphology. Finally, biochemical experiments indicate that dibutyryl cAMP does not mimick the forskolin effect, thus suggesting that it is a cAMP-independent phenomenon.
Collapse
Affiliation(s)
- L Baricault
- Unité de Recherches sur la Neuroendocrinologie et la Biologie Cellulaire Digestives, INSERM U410, Paris, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Cell culture systems in the elucidation of cellular and molecular mechanisms associated with intestinal adaptation. J Nutr Biochem 1995. [DOI: 10.1016/0955-2863(95)00035-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Van Beers EH, Büller HA, Grand RJ, Einerhand AW, Dekker J. Intestinal brush border glycohydrolases: structure, function, and development. Crit Rev Biochem Mol Biol 1995; 30:197-262. [PMID: 7555019 DOI: 10.3109/10409239509085143] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The hydrolytic enzymes of the intestinal brush border membrane are essential for the degradation of nutrients to absorbable units. Particularly, the brush border glycohydrolases are responsible for the degradation of di- and oligosaccharides into monosaccharides, and are thus crucial for the energy-intake of humans and other mammals. This review will critically discuss all that is known in the literature about intestinal brush border glycohydrolases. First, we will assess the importance of these enzymes in degradation of dietary carbohydrates. Then, we will closely examine the relevant features of the intestinal epithelium which harbors these glycohydrolases. Each of the glycohydrolytic brush border enzymes will be reviewed with respect to structure, biosynthesis, substrate specificity, hydrolytic mechanism, gene regulation and developmental expression. Finally, intestinal disorders will be discussed that affect the expression of the brush border glycohydrolases. The clinical consequences of these enzyme deficiency disorders will be discussed. Concomitantly, these disorders may provide us with important details regarding the functions and gene expression of these enzymes under specific (pathogenic) circumstances.
Collapse
|
26
|
Baricault L, de Néchaud B, Sapin C, Codogno P, Denoulet P, Trugnan G. The network organization and the phosphorylation of cytokeratins are concomitantly modified by forskolin in the enterocyte-like differentiated Caco-2 cell line. J Cell Sci 1994; 107 ( Pt 10):2909-18. [PMID: 7533173 DOI: 10.1242/jcs.107.10.2909] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Confluent Caco-2 cells, originating from a human colon carcinoma, display morphological and functional characteristics of differentiated enterocytes such as the presence of a polarized monolayer covered by an apical brush border that express several hydrolases. The adaptation of these cells to grow in the continuous presence of forskolin, a drug known to stimulate adenylyl cyclase permanently, has been previously shown to result in a decreased apical expression of hydrolases and in morphological alterations including the disappearance of intercellular spaces and shortening of microvilli. In the present work we have analyzed the possibility that cytoskeletal proteins may be the target of forskolin in living Caco-2 cells. We show that forskolin initiates dramatic changes in the spatial organization of the cytokeratin network that correlate with an increased phosphorylation of cytokeratin molecules, whereas microtubules, microfilaments and vimentin remain mainly unaffected. Indirect immunofluorescence studies show that the cytokeratin network is redistributed from the cell periphery to the cytoplasm. Biochemical experiments indicate that forskolin doesn't interfere with the cytokeratin profile, since the three cytokeratins normally found in intestine (CK 8, CK 18, CK 19) are similarly expressed in both control and forskolin-Caco-2 cells. Analysis of 32P-labeled cytokeratin extracted from the two cell populations demonstrates that forskolin quantitatively increases the phosphorylation of type I cytokeratin (CK 18 and CK 19), whereas the phosphorylation of type II cytokeratin (CK 8) is altered both quantitatively and qualitatively with the emergence of a new phosphorylation site. These results provide a new cell system in which it is possible to control the subcellular distribution of cytokeratin by changing their phosphorylation status and therefore to study their potential cellular functions.
Collapse
Affiliation(s)
- L Baricault
- Unité de recherches sur la neuroendocrinologie et la biologie cellulaire digestives, INSERM U. 410, CHU X. Bichat, Paris, France
| | | | | | | | | | | |
Collapse
|
27
|
Mahraoui L, Takeda J, Mesonero J, Chantret I, Dussaulx E, Bell GI, Brot-Laroche E. Regulation of expression of the human fructose transporter (GLUT5) by cyclic AMP. Biochem J 1994; 301 ( Pt 1):169-75. [PMID: 8037665 PMCID: PMC1137157 DOI: 10.1042/bj3010169] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of cyclic AMP on the expression of the fructose transporter, GLUT5, was studied in Caco-2 cells, a human colon cancer cell line that differentiates spontaneously in culture into cells with the properties of small intestine enterocytes. Treatment of differentiated Caco-2 cells with 50 microM forskolin, which stimulates adenylate cyclase and raises intracellular cyclic AMP levels, increased fructose uptake 2-fold and raised GLUT5 protein and mRNA levels 5- and 7-fold respectively. The increased GLUT5 mRNA levels in forskolin-treated cells are a result of stabilization of GLUT5 mRNA in these cells and increased transcription. The effect of cyclic AMP on GLUT5 transcription was assessed by measuring the activity of human GLUT5 promoter-reporter gene constructs in forskolin-treated differentiated Caco-2 cells. The results showed that forskolin stimulated the activity of the GLUT5-reporter gene constructs and this stimulatory effect was mediated by cis-acting regulatory sequences.
Collapse
Affiliation(s)
- L Mahraoui
- Unité de Recherches sur la Différenciation Cellulaire Intestinale, INSERM U178, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Herold G, Rogler G, Rogler D, Stange EF. Morphology of CaCo-2 cells varies in different cell batches. In Vitro Cell Dev Biol Anim 1994; 30A:289-91. [PMID: 8069453 DOI: 10.1007/bf02631447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Mahraoui L, Rodolosse A, Barbat A, Dussaulx E, Zweibaum A, Rousset M, Brot-Laroche E. Presence and differential expression of SGLT1, GLUT1, GLUT2, GLUT3 and GLUT5 hexose-transporter mRNAs in Caco-2 cell clones in relation to cell growth and glucose consumption. Biochem J 1994; 298 Pt 3:629-33. [PMID: 8141777 PMCID: PMC1137906 DOI: 10.1042/bj2980629] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Seven clones from the Caco-2 cell line, three isolated from passage 29 (PD7, PD10, PF11) and four from passage 198 (TB10, TC7, TF3, TG6), all of them selected on the basis of differences in the levels of expression of sucrase-isomaltase and rates of glucose consumption, were analysed for the expression of hexose-transporter mRNAs (SGLT1, GLUT1-GLUT5) in relation to the phases of cell growth and the associated variations of the rates of glucose consumption. All clones showed a similar pattern of evolution of the rates of glucose consumption, which decreased from the exponential to the late-stationary phase, but differed, in a 1-40-fold range, in the values observed at late postconfluency. According to these values, clones could be divided into high- (PD10, PF11) and low-glucose-consuming cells (PD7, TB10, TC7, TF3 and TG6). GLUT1 and GLUT3 mRNAs were expressed in all clones and showed a similar pattern of evolution: their level decreased, from the exponential to the stationary phase, in close correlation with the decrease in rates of glucose consumption, with only high-glucose-consuming clones maintaining high levels in the stationary phase. In contrast, SGLT1, GLUT2 and GLUT5 mRNAs were only expressed, like sucrase-isomaltase mRNA, in the low-glucose-consuming clones, and their level increased from the exponential to the stationary phase, in parallel with the differentiation of the cells. GLUT4 was undetectable in all the clones. Glucose deprivation generally resulted in a discrete decrease in the levels of all transporter mRNAs in all clones, one exception being GLUT2, which in the high-glucose-consuming clones is only detectable when the cells are grown in low glucose. These clones should be ideal tools with which to study in vitro, at the single-cell level, how these transporters concur to the utilization and transport of hexoses and how their exclusive or co-ordinated expression is regulated.
Collapse
Affiliation(s)
- L Mahraoui
- Unité de Recherches sur la Différenciation Cellulaire Intestinale, INSERM U178, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Hauri HP, Sander B, Naim H. Induction of lactase biosynthesis in the human intestinal epithelial cell line Caco-2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:539-46. [PMID: 7508390 DOI: 10.1111/j.1432-1033.1994.tb19969.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The human colonic adenocarcinoma cell line Caco-2 forms monolayers of differentiated enterocyte-like cells when cultured on permeable supports. After confluency, Caco-2 cells express a number of brush-border enzymes including lactase-phlorizin hydrolase, sucrase-isomaltase and dipeptidylpeptidase IV. We have studied, with particular emphasis on lactase-phlorizin hydrolase, the modulation of biosynthesis of these enzymes by stimulating second messenger systems. Forskolin induced lactase-phlorizin hydrolase synthesis approximately fourfold within 7 h, suppressed sucrase-isomaltase synthesis, and had little effect on dipeptidylpeptidase IV. Dibutyryl-cAMP, 8-bromo-cAMP and vasoactive intestinal peptide also increased lactase-phlorizin hydrolase biosynthesis, indicating c-AMP dependent regulation. The induction of lactase-phlorizin hydrolase biosynthesis could be inhibited by actinomycin D and was preceded by a fourfold increase in lactase-phlorizin hydrolase mRNA levels, suggesting transcriptional control. Phorbol 12-myristate 13-acetate had an inhibitory effect on brush-border enzyme synthesis, in particular on sucrase-isomaltase, and blocked the forskolin-induced biosynthesis of lactase-phlorizin hydrolase. Lactase-phlorizin hydrolase synthesis was also inducible by hydrocortisone, but maximal induction required at least 3 days during which time sucrase-isomaltase synthesis diminished. The results indicate opposite regulation of lactase-phlorizin hydrolase and sucrase-isomaltase via cAMP and corticosteroids, and suggest that the Caco-2 cell line can serve as a model system to study aspects of the humoral regulation of human intestinal brush-border enzymes in cell culture.
Collapse
Affiliation(s)
- H P Hauri
- Department of Pharmacology, University of Basel, Switzerland
| | | | | |
Collapse
|
31
|
Chantret I, Rodolosse A, Barbat A, Dussaulx E, Brot-Laroche E, Zweibaum A, Rousset M. Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for glucose-dependent negative regulation. J Cell Sci 1994; 107 ( Pt 1):213-25. [PMID: 8175910 DOI: 10.1242/jcs.107.1.213] [Citation(s) in RCA: 300] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of the brush border-associated hydrolase sucrase-isomaltase was shown to increase from early to late passages of Caco-2 cells, concomitant with a decrease in the rates of glucose consumption. Twenty-six clones were isolated from early (P29) and late (P198) passages of the cell line. These clones show considerable and inverse differences in the levels of sucrase activities and rates of glucose consumption, without marked changes in other features of enterocytic differentiation of the cells (presence of an apical brush border, levels of expression of other brush border-associated hydrolases). Clones with low sucrase-isomaltase expression show a mosaic expression of the enzyme and a 38-fold higher rate of glucose consumption than clones with high sucrase-isomaltase expression. The clones with high expression show an homogeneous apical distribution of the enzyme and 70-fold and 35-fold higher levels of sucrase activities and sucrase-isomaltase mRNA, respectively. In contrast no differences were found from one clone to another in the enrichment of sucrase activity in brush border-enriched fractions as compared to cell homogenates. Switch to low glucose-containing medium (1 mM versus 25 mM in standard culture conditions) of cells with low sucrase-isomaltase results in an increased and more homogeneous expression of the enzyme and a tenfold augmentation of the levels of sucrase-isomaltase mRNA and sucrase activity. These results show that glucose interferes with the expression of sucrase-isomaltase in Caco-2 cells at the mRNA level.
Collapse
Affiliation(s)
- I Chantret
- Unité de Recherches sur la Différenciation Cellulaire Intestinale, INSERM U178, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Ménard D, Beaulieu JF. Human Intestinal Brush Border Membrane Hydrolases. MEMBRANE PHYSIOPATHOLOGY 1994. [DOI: 10.1007/978-1-4615-2616-2_18] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Chantret I, Lacasa M, Chevalier G, Swallow D, Rousset M. Monensin and forskolin inhibit the transcription rate of sucrase-isomaltase but not the stability of its mRNA in Caco-2 cells. FEBS Lett 1993; 328:55-8. [PMID: 8102104 DOI: 10.1016/0014-5793(93)80964-v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Treatment of Caco-2 cells with forskolin (25 microM) or monensin (1 microM) has previously been shown to cause a marked decrease in the level of sucrase-isomaltase (SI) mRNA, without any effect on the expression of dipeptidylpeptidase IV (DPP-IV). In the present work, we report that there is no significant difference in the stability of SI mRNA between control and treated cells. On the other hand, we demonstrate a decrease in the transcription rate of SI mRNA which is sufficient to account for the decrease in the steady-state level of SI mRNA both in forskolin- and monensin-treated Caco-2 cells.
Collapse
Affiliation(s)
- I Chantret
- Unité de Recherches sur la Différenciation Cellulaire Intestinale, INSERM U178, Villejuif, France
| | | | | | | | | |
Collapse
|
34
|
Chantret I, Lacasa M, Chevalier G, Ruf J, Islam I, Mantei N, Edwards Y, Swallow D, Rousset M. Sequence of the complete cDNA and the 5' structure of the human sucrase-isomaltase gene. Possible homology with a yeast glucoamylase. Biochem J 1992; 285 ( Pt 3):915-23. [PMID: 1353958 PMCID: PMC1132882 DOI: 10.1042/bj2850915] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The complete sequence of the 6 kb cDNA and the 5' genomic structure are reported for the gene coding for the human intestinal brush border hydrolase sucrase-isomaltase. The human sucrase-isomaltase cDNA shows a high level of identity (83%) with that of the rabbit enzyme, indicating that the protein shares the same structural domains in both species. In addition to the previously reported homology with lysosomal alpha-glucosidase, the sucrase and isomaltase subunits also appear to be homologous to a yeast glucoamylase. A 14 kb human genomic clone has been isolated which includes the first three exons and the first two introns of the gene, as well as 9.5 kb 5' to the major start site of transcription. The first exon comprises 62 bp of untranslated sequence and the second starts exactly at the initiation ATG codon. Typical CAAT and TATA boxes are seen upstream of the first exon. A genetic polymorphism is described which involves a PstI site in the second intron. Southern blotting, sequencing and mRNA studies indicate that the structures of the sucrase-isomaltase gene and its mRNA are unaltered in the two human colon cancer cell lines Caco-2 and HT-29 in comparison with normal human small intestine.
Collapse
Affiliation(s)
- I Chantret
- MRC Human Biochemical Genetics Unit, Galton Laboratory, University College London, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vachon PH, Beaulieu JF. Transient mosaic patterns of morphological and functional differentiation in the Caco-2 cell line. Gastroenterology 1992; 103:414-23. [PMID: 1634060 DOI: 10.1016/0016-5085(92)90829-n] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To gain further insight on the mosaic expression of specific functional intestinal markers (such as sucrase-isomaltase) in postconfluent Caco-2 cells, a human colon cancer cell line unique in its property to differentiate in vitro into a mature enterocyte-like cell type, a comparative study was undertaken to examine the morphological and functional differentiation of Caco-2 cells at various culture stages. The observations clearly indicate that Caco-2 cells can exist only in three different states in culture: homogeneously undifferentiated (at subconfluence), heterogeneously polarized and differentiated (between 0 and 20 days after confluence), and homogeneously polarized and differentiated (after 30 days). Indeed, in the intermediate state, a strong discrepancy is found among adjacent differentiating cells throughout the monolayer relative to sucrase-isomaltase expression as well as to cell morphology and brush border organization. Back-scattered electron imaging analysis showed a lack of correlation between these parameters at the cellular level. These observations indicate that morphological and functional differentiations of Caco-2 cells progress concomitantly according to a transient mosaic pattern, thus providing evidence that these two processes are not coupled.
Collapse
Affiliation(s)
- P H Vachon
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Québec, Canada
| | | |
Collapse
|
36
|
Kernéis S, Chauvière G, Darfeuille-Michaud A, Aubel D, Coconnier MH, Joly B, Servin AL. Expression of receptors for enterotoxigenic Escherichia coli during enterocytic differentiation of human polarized intestinal epithelial cells in culture. Infect Immun 1992; 60:2572-80. [PMID: 1319401 PMCID: PMC257205 DOI: 10.1128/iai.60.7.2572-2580.1992] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To study the expression of human intestinal receptors for enterotoxigenic Escherichia coli (ETEC), the human polarized intestinal epithelial cell line Caco-2 in culture and several subpopulations of HT-29 cells in culture--parental (mainly undifferentiated) HT-29 cells (HT-29 Std), an enterocytelike subpopulation obtained by selection through glucose deprivation (HT-29 Glc-), and an enterocytelike subpopulation obtained by selection through glucose deprivation which maintains its differentiation characteristics when switched back to standard glucose-containing medium (HT-29 Glc-/+)--were used. Since Caco-2 spontaneously differentiated in culture under standard culture conditions (in the presence of glucose) and HT-29 cells were undifferentiated when cultured under standard conditions (HT-29 Std) and differentiated when grown in a glucose-free medium (HT-29 Glc-), we studied the expression of the receptors for colonization factor antigens (CFA) I, II, and III and the 2230 antigen of ETEC in relation to enterocytic differentiation. We provide evidence that expression of ETEC CFA receptors develops in parallel with other differentiation functions of the cultured cells. The expression of ETEC-specific brush border receptors was studied by indirect immunofluorescence using antibodies raised against purified ETEC CFA. No ETEC receptors were detected in HT-29 Std or short-term-cultured Caco-2 cells. However, among the population of HT-29 Std cells, 2 to 4% of the cells were found to bind ETEC, and these cells expressed positive carcinoembryonic antigen immunoreactivity. This indicated that among the population of undifferentiated HT-29 cells, clusters of differentiated cells were present. ETEC CFA receptors were expressed in the apical and basolateral domains of differentiated HT-29 cells, whereas in differentiated Caco-2 cells only apical expression was observed. Both in HT-29 cells (HT-29 Glc-/+) and in Caco-2 cells cultured under standard conditions, ETEC CFA receptors develop as a function of day in culture. This indicated that the expression of the ETEC CFA receptors was a growth-related event. Indeed, ETEC CFA receptors developed in step with the apical expression of differentiation-associated proteins.
Collapse
Affiliation(s)
- S Kernéis
- Département de Microbiologie et Immunologie, UFR Sciences Pharmaceutiques Paris XI, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Darmoul D, Lacasa M, Baricault L, Marguet D, Sapin C, Trotot P, Barbat A, Trugnan G. Dipeptidyl peptidase IV (CD 26) gene expression in enterocyte-like colon cancer cell lines HT-29 and Caco-2. Cloning of the complete human coding sequence and changes of dipeptidyl peptidase IV mRNA levels during cell differentiation. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42906-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
Beaulieu JF, Quaroni A. Clonal analysis of sucrase-isomaltase expression in the human colon adenocarcinoma Caco-2 cells. Biochem J 1991; 280 ( Pt 3):599-608. [PMID: 1764023 PMCID: PMC1130497 DOI: 10.1042/bj2800599] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To investigate the biosynthetic basis for the mosaic expression of brush border enzymes in confluent Caco-2 cells, a human colon carcinoma cell line exhibiting characteristics of adult small intestinal enterocytes, we have obtained a series of clones differing markedly in their growth rates, amounts of transforming growth factor-alpha/epidermal growth factor-like activity released into the culture medium, and sucrase-isomaltase (SI) activity. Other intestinal markers (aminopeptidase N, dipeptidylpeptidase IV, lactase, alkaline phosphatase and 'crypt cell antigen') displayed a much more limited variability in expression, suggesting that the Caco-2 cell clones we have obtained did not differ in their overall ability to differentiate. Immunofluorescence staining, metabolic labelling with radioactive methionine and hybridization analysis of SI mRNA abundance were used to investigate SI synthesis and its regulation in clones endowed with low, intermediate or high sucrase activity. The results obtained have demonstrated heterogeneous SI expression, even in clonal cell lines, and a negative correlation between SI expression and growth factor concentrations in the culture medium, suggesting an autocrine regulation of cell proliferation and differentiation in confluent Caco-2 cells. Pulse-chase experiments using the two clones endowed with the lowest and highest levels of SI activity, followed by immunoprecipitation of labelled SI with epitope-specific antibodies and SDS/PAGE analysis, suggested that both transcriptional and post-translational mechanisms play a role in the regulation of SI expression in intestinal cells.
Collapse
Affiliation(s)
- J F Beaulieu
- Section of Physiology, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
39
|
Darmoul D, Baricault L, Sapin C, Chantret I, Trugnan G, Rousset M. Decrease of mRNA levels and biosynthesis of sucrase-isomaltase but not dipeptidylpeptidase IV in forskolin or monensin-treated Caco-2 cells. EXPERIENTIA 1991; 47:1211-5. [PMID: 1684938 DOI: 10.1007/bf01918387] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Treatment for 48 h of differentiated, confluent Caco-2 cells with 2.5 10(-5) M forskolin or 10(-6) M monensin, which produces a significant decrease of the de novo biosynthesis of sucrase-isomaltase, does not change quantitatively the de novo biosynthesis of dipeptidylpeptidase IV. Western blot analysis and silver nitrate staining indicate that neither drug induces any modification in the steady state expression of these two brush border hydrolases. Northern blot analysis shows that the level of dipeptidylpeptidase IV mRNA does not change in treated as compared to control Caco-2 cells. In contrast, forskolin and monensin dramatically decrease the level of sucrase-isomaltase mRNA. These observations suggest a separate regulation of biosynthesis for sucrase-isomaltase and dipeptidylpeptidase IV in intestinal cells. The mechanisms responsible for such a difference are discussed. Among them, the role of glucose metabolism, which is perturbed by both drugs, appears to be of crucial importance.
Collapse
Affiliation(s)
- D Darmoul
- Unité de Recherches sur la différenciation cellulaire intestinale, Institut National de la Santé et de la Recherche Médicale, U178, Villejuif, France
| | | | | | | | | | | |
Collapse
|
40
|
Lesuffleur T, Kornowski A, Augeron C, Dussaulx E, Barbat A, Laboisse C, Zweibaum A. Increased growth adaptability to 5-fluorouracil and methotrexate of HT-29 sub-populations selected for their commitment to differentiation. Int J Cancer 1991; 49:731-7. [PMID: 1937959 DOI: 10.1002/ijc.2910490517] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adaptation of the heterogeneous human colon carcinoma cell line HT-29 to lethal concentrations of methotrexate (MTX) and 5-fluorouracil (FUra) was shown to result in the emergence of sub-populations of cells all stably committed to differentiation. It was postulated that these populations result from selection of a few cells present in the parental line which possess, associated with their ability to differentiate, particular advantages allowing them to adapt to adverse conditions such as MTX or FUra. The purpose of the present study was to further verify this hypothesis by investigating whether HT-29 sub-populations selected for the commitment of all cells to differentiation would spontaneously be more resistant and adaptable than the parental cells to MTX and FUra. This study included a mucus-secreting clone (HT29-16E), a transporting clone (HT29-19A), and an enterocytic population selected by glucose deprivation (HT29-Glc-/+). Although all 3 populations show only a slight increase in their spontaneous resistance to both drugs, as substantiated by the values of IC50 which are only less than 2-fold higher than in parental cells, they are more adaptable as judged by growth curves, over a 50-day culture period, under exposure to 1 microM FUra and 0.1 microM MTX. In sharp contrast to parental cells, which, at these concentrations, show a high rate of mortality, all 3 populations, although growing slowly, reach densities more or less close, depending on the drug and population concerned, to that of control untreated cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Lesuffleur
- Unité de Recherches sur la Différenciation Cellulaire Intestinale, INSERM U178, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Chapter 5 Cell Biology and Molecular Genetics of Enterocyte Differentiation. CURRENT TOPICS IN MEMBRANES 1991. [DOI: 10.1016/s0070-2161(08)60803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
42
|
Smith MW, Peacock MA, James PS. Galactose increases microvillus development in mouse jejunal enterocytes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1991; 100:489-93. [PMID: 1685965 DOI: 10.1016/0300-9629(91)90505-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. Mice fed low carbohydrate and galactose-containing diets have been used to determine both positional and temporal aspects of microvillus development during enterocyte migration from intestinal crypts towards the tips of jejunal villi. 2. The positional dependence of microvillus growth was found to be similar in mice fed low carbohydrate (3.0 kcal/g), galactose-containing lipid substituted (2.9 kcal/g) and galactose-containing agar substituted (5.1 kcal/g) diets. The daily calorific intake by mice fed these diets was about 10.4 kcal/mouse. The maximal microvillus length reached by enterocytes fed galactose was nearly twice that measured in mice fed the low carbohydrate diet. 3. Enterocyte migration rate in mice fed the low carbohydrate and the high calorie galactose-containing diet was twice that measured in mice fed the low calorie galactose-containing diet. These changes were not associated with any noticeable alteration in the size of intestinal crypts. 4. Changes in maximal microvillus length (M) can be predicted from the equation M = 0.0016 CD + 0.073 CD/R, where CD and R refer to crypt depth and enterocyte migration rate respectively, Smith M. W. and Brown D. (1989). Dual control over microvillus elongation during enterocyte development. Comp. Biochem. Physiol. 93A, 623-628. Substituting measured values for CD and R in this equation revealed a specific capacity of galactose to potentiate microvillus development when presented in the form of a high calorie diet. 5. The possibility that galactose, which is poorly metabolized in mice, can increase microvillus expression by interfering specifically with some aspect of carbohydrate metabolism is discussed.
Collapse
Affiliation(s)
- M W Smith
- AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, U.K
| | | | | |
Collapse
|