1
|
Morales-Amparano MB, Teran MG, Huerta-Ocampo JÁ, Teran LM. Impact of Enolase in Allergic Disease. Curr Allergy Asthma Rep 2024; 24:571-579. [PMID: 39167280 PMCID: PMC11377513 DOI: 10.1007/s11882-024-01170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE OF REVIEW There is growing evidence that enolase is involved in allergy. This manuscript reviews the impact of enolase in allergic disease and describes several sources of this allergen including molds, plants, animals, and pollens, among others. IgE epitopes are carefully analyzed as they may account for cross-reactivity. RECENT FINDINGS Enolase has been previously associated to food allergy and contact dermatitis. However, other groups and we have identified recently novel enolases derived from diverse pollens in patients suffering asthma and allergic rhinitis. Exposure to outdoor enolases may cause respiratory disease. Enolase has been identified across various species and its amino acid sequence is highly conserved among different sources of this allergen. The demonstration that enolase is involved in many allergic diseases including respiratory allergies, is of clinic relevance. Thus, the development of novel molecular-based diagnostic and therapeutic strategies may pave the way for improved diagnosis and therapeutics.
Collapse
Affiliation(s)
- Martha Beatriz Morales-Amparano
- Food Science Department, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas No. 46, 83304, Hermosillo, Sonora, México
| | - Maria G Teran
- Immunogenetics and Allergy Department, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosio Villegas (INER), Calzada de Tlalpan No. 4502, 14080, Ciudad de Mexico, México
| | - José Ángel Huerta-Ocampo
- Food Science Department, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas No. 46, 83304, Hermosillo, Sonora, México
| | - Luis M Teran
- Immunogenetics and Allergy Department, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosio Villegas (INER), Calzada de Tlalpan No. 4502, 14080, Ciudad de Mexico, México.
| |
Collapse
|
2
|
Karnaneedi S, Johnston EB, Bose U, Juhász A, Broadbent JA, Ruethers T, Jerry EM, Kamath SD, Limviphuvadh V, Stockwell S, Byrne K, Clarke D, Colgrave ML, Maurer-Stroh S, Lopata AL. The Allergen Profile of Two Edible Insect Species-Acheta domesticus and Hermetia illucens. Mol Nutr Food Res 2024; 68:e2300811. [PMID: 39022859 DOI: 10.1002/mnfr.202300811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/31/2024] [Indexed: 07/20/2024]
Abstract
SCOPE Edible insect proteins are increasingly introduced as an alternative sustainable food source to address the world's need to feed the growing population. Tropomyosin is the main insect allergen; however, additional potential allergens are not well characterized and the impact of extraction procedures on immunological reactivity is unknown. METHODS AND RESULTS Proteins from different commercial food products derived from cricket (Acheta domesticus) and black soldier fly (BSF) (Hermetia illucens) are extracted using five different extraction buffers. The proteins are analyzed by SDS-PAGE and immunoblotting using allergen-specific antibodies and crustacean allergic patient sera. IgE binding bands are analyzed by mass spectrometry as well as the complete allergen profile of all 30 extracts. Urea-based buffers are most efficient in extracting insect allergens. Shrimp-specific antibody cross-reactivity to tropomyosin from cricket and BSF indicates high sequence and structural similarity between shrimp and insects. Additional unique allergens are identified in both species, including hemocyanin, vitellogenin, HSP20, apolipophorin-III, and chitin-binding protein. CONCLUSIONS Identifying potential allergenic proteins and their isoforms in cricket and BSF requires specific extraction approaches using urea-based methods. While tropomyosin is the most abundant and immunoreactive allergen, seven unique allergens are identified, highlighting the need for insect species-specific allergen detection in food products.
Collapse
Affiliation(s)
- Shaymaviswanathan Karnaneedi
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
| | - Elecia B Johnston
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
| | - Utpal Bose
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, 4067, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| | - Angéla Juhász
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| | - James A Broadbent
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, 4067, Australia
| | - Thimo Ruethers
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore, 387380, Singapore
| | - Emily M Jerry
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
| | - Sandip D Kamath
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
| | - Vachiranee Limviphuvadh
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
- IFCS Programme, Singapore Institute for Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore
| | - Sally Stockwell
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, 4067, Australia
| | - Keren Byrne
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, 4067, Australia
| | - Dean Clarke
- National Measurement Institute, Melbourne, Victoria, 3207, Australia
| | - Michelle L Colgrave
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, 4067, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| | - Sebastian Maurer-Stroh
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
- IFCS Programme, Singapore Institute for Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore
- YLL School of Medicine and Department of Biological Sciences, National University of Singapore, Singapore, 117597, Singapore
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore, 387380, Singapore
| |
Collapse
|
3
|
Kim M, Choi JH, Yi MH, Oh S, Yong TS, Kim JY. Alterations in immunized antigens of Anisakis pegreffii by ampicillin-induced gut microbiome changes in mice. PARASITES, HOSTS AND DISEASES 2024; 62:351-364. [PMID: 39218634 PMCID: PMC11366539 DOI: 10.3347/phd.23114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
The gut microbiome plays an essential role in host immune responses, including allergic reactions. However, commensal gut microbiota is extremely sensitive to antibiotics and excessive usage can cause microbial dysbiosis. Herein, we investigated how changes in the gut microbiome induced by ampicillin affected the production of IgG1 and IgG2a antibodies in mice subsequently exposed to Anisakis pegreffii antigens. Ampicillin treatment caused a notable change in the gut microbiome as shown by changes in both alpha and beta diversity indexes. In a 1-dimensional immunoblot using Anisakis-specific anti-mouse IgG1, a 56-kDa band corresponding to an unnamed Anisakis protein was detected using mass spectrometry analysis only in ampicillin-treated mice. In the Anisakis-specific anti-mouse IgG2a-probed immunoblot, a 70-kDa band corresponding to heat shock protein 70 (HSP70) was only detected in ampicillin-treated and Anisakis-immunized mice. A 2-dimensional immunoblot against Anisakis extract with immunized mouse sera demonstrated altered spot patterns in both groups. Our results showed that ampicillin treatment altered the gut microbiome composition in mice, changing the immunization response to antigens from A. pegreffii. This research could serve as a basis for developing vaccines or allergy immunotherapies against parasitic infections.
Collapse
Affiliation(s)
- Myungjun Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Jun Ho Choi
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Myung-hee Yi
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Singeun Oh
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Tai-Soon Yong
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Ju Yeong Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722,
Korea
| |
Collapse
|
4
|
Xia F, Li M, Liu Q, Liu H, Yang Y, Liu M, Chen G, Luo L, Liu Y, Liu G. Allergenicity and Linear Epitope Analysis of Scy p 8, an Allergen from Mud Crab. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13402-13414. [PMID: 38821040 DOI: 10.1021/acs.jafc.4c02693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Scy p 8 (triosephosphate isomerase) as a crab allergen in inducing distinct T-helper (Th) cell differentiation and a linear epitope associated with allergenicity remain elusive. In this study, mice sensitized with Scy p 8 exhibited significantly upregulated levels of IgE, IgG1, and IL-4 release, inducing a Th2 immune response. Moreover, the release of IFN-γ (Th1) and the levels of Treg cells were downregulated, while IL-17A (Th17) was upregulated, indicating that Scy p 8 disrupted the Th1/Th2 balance and Th17/Treg balance in mice. Furthermore, bioinformatics prediction and serum samples from crab-allergic patients and mice enabled the discovery of 8 linear epitopes of Scy p 8. Meanwhile, the analysis of peptide similarity and tertiary superposition revealed that 8 epitopes of Scy p 8 exhibited conservation across various species, potentially resulting in cross-reactivity. These findings possess the potential to enhance the comprehension of crab allergens, thereby establishing a foundation for investigating cross-reactivity.
Collapse
Affiliation(s)
- Fei Xia
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Mengsi Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Qingmei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Hong Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Yang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Meng Liu
- Xiamen Ocean Vocational College, Xiamen, Fujian 361102, China
| | - Guixia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Lianzhong Luo
- Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, Xiamen, Fujian 361023, China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
- Xiamen Ocean Vocational College, Xiamen, Fujian 361102, China
| |
Collapse
|
5
|
Li S, Chu KH, Wai CYY. Genomics of Shrimp Allergens and Beyond. Genes (Basel) 2023; 14:2145. [PMID: 38136967 PMCID: PMC10742822 DOI: 10.3390/genes14122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Allergy to shellfishes, including mollusks and crustaceans, is a growing health concern worldwide. Crustacean shellfish is one of the "Big Eight" allergens designated by the U.S. Food and Drug Administration and is the major cause of food-induced anaphylaxis. Shrimp is one of the most consumed crustaceans triggering immunoglobulin E (IgE)-mediated allergic reactions. Over the past decades, the allergen repertoire of shrimp has been unveiled based on conventional immunodetection methods. With the availability of genomic data for penaeid shrimp and other technological advancements like transcriptomic approaches, new shrimp allergens have been identified and directed new insights into their expression levels, cross-reactivity, and functional impact. In this review paper, we summarize the current knowledge on shrimp allergens, as well as allergens from other crustaceans and mollusks. Specific emphasis is put on the genomic information of the shrimp allergens, their protein characteristics, and cross-reactivity among shrimp and other organisms.
Collapse
Affiliation(s)
- Shanshan Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.L.); (K.H.C.)
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.L.); (K.H.C.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Christine Yee Yan Wai
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Giannetti A, Pession A, Bettini I, Ricci G, Giannì G, Caffarelli C. IgE Mediated Shellfish Allergy in Children-A Review. Nutrients 2023; 15:3112. [PMID: 37513530 PMCID: PMC10386692 DOI: 10.3390/nu15143112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Shellfish is a leading cause of food allergy and anaphylaxis worldwide. Recent advances in molecular characterization have led to a better understanding of the allergen profile. High sequence homology between shellfish species and between shellfish and house dust mites leads to a high serological cross-reactivity, which does not accurately correlate with clinical cross-reactions. Clinical manifestations are immediate and the predominance of perioral symptoms is a typical feature of shellfish allergy. Diagnosis, as for other food allergies, is based on SPTs and specific IgE, while the gold standard is DBPCFC. Cross-reactivity between shellfish is common and therefore, it is mandatory to avoid all shellfish. New immunotherapeutic strategies based on hypoallergens and other innovative approaches represent the new frontiers for desensitization.
Collapse
Affiliation(s)
- Arianna Giannetti
- Paediatrics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.G.); (A.P.)
| | - Andrea Pession
- Paediatrics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.G.); (A.P.)
| | - Irene Bettini
- Paediatrics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.G.); (A.P.)
| | - Giampaolo Ricci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy;
| | - Giuliana Giannì
- Clinica Pediatrica, Azienda Ospedaliero-Universitaria, Medicine and Surgery Department, Università di Parma, 43126 Parma, Italy;
| | - Carlo Caffarelli
- Clinica Pediatrica, Azienda Ospedaliero-Universitaria, Medicine and Surgery Department, Università di Parma, 43126 Parma, Italy;
| |
Collapse
|
7
|
Yang J, Zhou S, Kuang H, Tang C, Song J. Edible insects as ingredients in food products: nutrition, functional properties, allergenicity of insect proteins, and processing modifications. Crit Rev Food Sci Nutr 2023; 64:10361-10383. [PMID: 37341655 DOI: 10.1080/10408398.2023.2223644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Edible insect products contain high-quality protein and other nutrients, including minerals and fatty acids. The consumption of insect food products is considered a future trend and a potential strategy that could greatly contribute to meeting food needs worldwide. However, insect proteins have the potential to be allergenic to insect consumers. In this review, the nutritional value and allergy risk of insect-derived foods, and the immune responses elicited by insect allergens are summarized and discussed. Tropomyosin and arginine kinase are the most important and widely known insect allergens, which induce Th2-biased immune responses and reduced the activity of CD4+T regulatory cells. Besides, food processing methods have been effectively improving the nutrients and characteristics of insect products. However, limited reviews systematically address the immune reactions to allergens present in edible insect proteins following treatment with food processing technologies. The conventional/novel food processing techniques and recent advances in reducing the allergenicity of insect proteins are discussed in this review, focusing on the structural changes of allergens and immune regulation.
Collapse
Affiliation(s)
- Jing Yang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
- School of Food Nutrition and Health (Hotpot) Modern Industry, Chongqing Technology and Business University, Chongqing, China
| | - Shuling Zhou
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Hong Kuang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Chunhong Tang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
- School of Food Nutrition and Health (Hotpot) Modern Industry, Chongqing Technology and Business University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Grijincu M, Huțu I, Weber M, Babaev E, Stolz F, Valenta R, Păunescu V, Panaitescu C, Chen KW. Physicochemical and immunological characterization of Amb a 12, a novel ragweed (Ambrosia artemisiifolia) pollen allergen. Mol Immunol 2023; 157:18-29. [PMID: 36966550 DOI: 10.1016/j.molimm.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/30/2022] [Accepted: 03/14/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND Ragweed is an invasive plant in Europe, causing hay fever and asthma in allergic patients. Climate change is predicted to increase expansion and allergenicity. Elevated NO2 induced upregulation of a new allergen in ragweed pollen, an enolase, Amb a 12. OBJECTIVE of this study was producing ragweed enolase as a recombinant protein and characterizing its physicochemical and immunological features. METHODS Amb a 12 was designed for E. coli and insect cell expression. Physicochemical features were determined by mass spectrometry, circular dichroism measurements and enzymatic activity assay. Immunological characteristics were determined in ELISA, in a mediator release assay and by investigation of association with clinical symptoms. Common allergen sources were screened for similar proteins. RESULTS Ragweed enolase was produced as a 48 kDa protein forming oligomers in both expression systems, showing differences in secondary structure content and enzymatic activity depending on expression system. IgE frequency and allergenicity were low regardless of expression system. Enolase-specific serum bound to similar sized molecules in mugwort, timothy grass and birch pollen, as well as food allergen sources, while highest IgE inhibition was achieved with peach pulp extract. CONCLUSIONS Amb a 12 had high sequence similarity and comparable IgE frequency to enolase allergens from different sources. 50 kDa proteins were found in other pollen and food allergen sources, suggesting that enolases might be pan-allergens in pollen and plant foods.
Collapse
Affiliation(s)
- Manuela Grijincu
- Center of Immuno-physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania; OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, Timișoara, Romania
| | - Ioan Huțu
- University of Life Sciences "King Mihai I of Romania", Timişoara, Romania
| | - Milena Weber
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | | | - Frank Stolz
- Biomay AG, Vienna Competence Center, Vienna, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow, Russia; Department of Clinical Immunology and Allergy, Sechenov First State Medical University, Moscow, Russia; Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Virgil Păunescu
- Center of Immuno-physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania; OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, Timișoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania; OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, Timișoara, Romania.
| | - Kuan-Wei Chen
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, Timișoara, Romania
| |
Collapse
|
9
|
Pomés A, Arruda LK. Cockroach allergy: Understanding complex immune responses to develop novel therapies. Mol Immunol 2023; 156:157-169. [PMID: 36930991 PMCID: PMC10134214 DOI: 10.1016/j.molimm.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023]
Abstract
Cockroach allergy is associated with the development of asthma. The identification of cockroach allergens, which began in the 1990 s, is an ongoing process that has led to the current listing of 20 official allergen groups in the WHO/IUIS Allergen Nomenclature database. The function and structure of some of these allergens has been determined and define their natural delivery into the environment and their allergenicity. Analysis of antigenic determinants by X-ray crystallography and rational design of site-directed mutagenesis led to the identification of IgE binding sites for the design of molecules with reduced IgE reactivity and T cell modulatory capacity. New developments in recent years include component analyses of B and T cell reactivity and a recent cockroach immunotherapy trial, CRITICAL, that will contribute to understand the immune response to cockroach and to define future directions for cockroach allergy diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Anna Pomés
- Director of Basic Research, InBio, 700 Harris Street, Charlottesville, VA 22903, USA.
| | - L Karla Arruda
- Professor of Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| |
Collapse
|
10
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, et alDramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Show More Authors] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
11
|
Zhang Z, Li XM, Wang H, Lin H, Xiao H, Li Z. Seafood allergy: Allergen, epitope mapping and immunotherapy strategy. Crit Rev Food Sci Nutr 2023; 63:1314-1338. [PMID: 36825451 DOI: 10.1080/10408398.2023.2181755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Seafoods are fashionable delicacies with high nutritional values and culinary properties, while seafood belongs to worldwide common food allergens. In recent years, many seafood allergens have been identified, while the diversity of various seafood species give a great challenge in identifying and characterizing seafood allergens, mapping IgE-binding epitopes and allergen immunotherapy development, which are critical for allergy diagnostics and immunotherapy treatments. This paper reviewed the recent progress on seafood (fish, crustacean, and mollusk) allergens, IgE-binding epitopes and allergen immunotherapy for seafood allergy. In recent years, many newly identified seafood allergens were reported, this work concluded the current situation of seafood allergen identification and designation by the World Health Organization (WHO)/International Union of Immunological Societies (IUIS) Allergen Nomenclature Sub-Committee. Moreover, this review represented the recent advances in identifying the IgE-binding epitopes of seafood allergens, which were helpful to the diagnosis, prevention and treatment for seafood allergy. Furthermore, the allergen immunotherapy could alleviate seafood allergy and provide promising approaches for seafood allergy treatment. This review represents the recent advances and future outlook on seafood allergen identification, IgE-binding epitope mapping and allergen immunotherapy strategies for seafood allergy prevention and treatment.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology and Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Hao Wang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Zhenxing Li
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
12
|
Jiao YX, Song LB, Xu ZQ, Zhu DX, Yang YS, Tian M, Sun JL, Wei JF. Purification and characterization of enolase as a novel allergen in Platanus acerifolia pollen. Int Immunopharmacol 2022; 113:109313. [DOI: 10.1016/j.intimp.2022.109313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/11/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
13
|
Zhao J, Timira V, Ahmed I, Chen Y, Wang H, Zhang Z, Lin H, Li Z. Crustacean shellfish allergens: influence of food processing and their detection strategies. Crit Rev Food Sci Nutr 2022; 64:3794-3822. [PMID: 36263970 DOI: 10.1080/10408398.2022.2135485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Despite the increasing popularity of crustacean shellfish among consumers due to their rich nutrients, they can induce a serious allergic response, sometimes even life-threatening. In the past decades, a variety of crustacean allergens have been identified to facilitate the diagnosis and management of crustacean allergies. Although food processing techniques can ease the risk of crustacean shellfish allergy, no available processing methods to tackle crustacean allergies thoroughly. Strict dietary avoidance of crustacean shellfish and its component is the best option for the protection of sensitized individuals, which should rely on the compliance of food labeling and, as such, on their verification by sensitive, reliable, and accurate detection techniques. In this present review, the physiochemical properties, structure aspects, and immunological characteristics of the major crustacean allergens have been described and discussed. Subsequently, the current research progresses on how various processing techniques cause the alterations and modifications in crustacean allergens to produce hypoallergenic crustacean food products were summarized and discussed. Particularly, various analytical methodologies employed in crustacean shellfish allergen detection, and the effect of food processing and matrix on these techniques, are also herein emphasized for the appropriate selection of analytical detection tools to safeguard consumers safety.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Yan Chen
- China National Center for Food Safety Risk Assessment, Chaoyang District, Beijing, P.R. China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| |
Collapse
|
14
|
Xu ZQ, Zhu LX, Lu C, Jiao YX, Zhu DX, Guo M, Yang YS, Cao MD, Zhang LS, Tian M, Sun JL, Wei JF. Identification of Per a 13 as a novel allergen in American cockroach. Mol Immunol 2022; 143:41-49. [PMID: 35033813 DOI: 10.1016/j.molimm.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cockroaches are an important source of indoor allergens. Environmental exposure to cockroach allergens is closely associated with the development of immunoglobulin E (IgE)-mediated allergic diseases. However, the allergenic components in the American cockroaches are not fully studied yet. In order to develop novel diagnostic and therapeutic strategies for cockroach allergy, it is necessary to comprehensively investigate this undescribed allergen in the American cockroach. METHODS The full-length cDNA of the potential allergen was isolated from the cDNA library of the American cockroach by PCR cloning. Both the recombinant and natural protein molecules were purified and characterized. The allergenicity was further analyzed by enzyme linked immunosorbent assay, immunoblot, and basophil activation test using sera from cockroach allergic patients. RESULTS A novel allergen belonging to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was firstly identified in the American cockroach and named as Per a 13. The cDNA of this allergen is 1255 base pairs in length and contains an open reading frame of 999 base pairs, encoding 332 amino acids. The purified Per a 13 was fully characterized and assessed to react with IgEs from 49.3 % of cockroach allergic patients, and patients with allergic rhinitis were more sensitized to it. Moreover, the allergenicity was further confirmed by immunoblot and basophil activation test. CONCLUSIONS We firstly identified GAPDH (Per a 13) in the American cockroach, which is a novel type of inhalant allergen derived from animal species. These findings could be useful in developing novel diagnostic and therapeutic strategies for cockroach allergy.
Collapse
Affiliation(s)
- Zhi-Qiang Xu
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Xiang Zhu
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Lu
- Precision Medicine Center, the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yong-Xin Jiao
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan-Xuan Zhu
- Clinical Allergy Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Miao Guo
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong-Shi Yang
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meng-Da Cao
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Shan Zhang
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Man Tian
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Jin-Lyu Sun
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China; Clinical Allergy Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Clinical Pharmacy, School of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Kiewiet MBG, Perusko M, Grundström J, Hamsten C, Starkhammar M, Apostolovic D, van Hage M. Cross-reactivity between tick and wasp venom can contribute to frequent wasp sensitization in patients with the α-Gal syndrome. Clin Transl Allergy 2022; 12:e12113. [PMID: 35070272 PMCID: PMC8762686 DOI: 10.1002/clt2.12113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND α-Gal syndrome (AGS) is a food allergy with severe delayed allergic reactions, mediated by IgE-reactivity to galactose-α1,3-galactose (α-Gal). AGS is strongly associated with tick bites. An increased incidence of venom sensitization has been found in AGS patients. Here, we evaluated the frequency of wasp sensitization in Swedish AGS patients and the possible cross-reactivity between wasp venom and tick proteins. METHODS Sera from 136 Swedish AGS patients and 29 wasp-positive non-AGS control sera were analyzed for IgE-reactivity against wasp venom (Vespula spp.), the European tick Ixodes ricinus (Streptavidin ImmunoCAP), α-Gal and total IgE by ImmunoCAP. The presence of α-Gal on wasp venom proteins (Vespula vulgaris) was investigated by western blot (WB), and possible cross-reactivity between wasp venom and tick proteins by enzyme-linked immunosorbent assay and WB. Involvement of cross-reactive carbohydrate domains (CCDs) was also assessed. RESULTS Wasp sensitization was present in 54% of AGS patients, although the IgE levels were low. Wasp sensitized patients had higher IgE levels to α-Gal and total IgE levels compared to non-wasp sensitized AGS patients. α-Gal was not detected in wasp venom, but cross-reactivity between wasp and tick proteins was demonstrated which was not dependent on CCDs. The same cross-reactivity was also observed in the control sera. Furthermore, 17 putative cross-reactive peptides were identified using an in silico approach. CONCLUSIONS For the first time, cross-reactivity between wasp venom and tick proteins has been described. This may be a reason why the majority of Swedish AGS patients, who have all been tick bitten, are also sensitized against wasp.
Collapse
Affiliation(s)
- Mensiena B. G. Kiewiet
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska Institutet and University HospitalStockholmSweden
| | - Marija Perusko
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska Institutet and University HospitalStockholmSweden
| | - Jeanette Grundström
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska Institutet and University HospitalStockholmSweden
| | - Carl Hamsten
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska Institutet and University HospitalStockholmSweden
| | | | - Danijela Apostolovic
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska Institutet and University HospitalStockholmSweden
| | - Marianne van Hage
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska Institutet and University HospitalStockholmSweden
| |
Collapse
|
16
|
Lee S, Kim JY, Yi MH, Lee IY, Yong D, Yong TS. Reduced production of the major allergens Bla g 1 and Bla g 2 in Blattella germanica after antibiotic treatment. PLoS One 2021; 16:e0257114. [PMID: 34813599 PMCID: PMC8610280 DOI: 10.1371/journal.pone.0257114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/06/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Allergens present in the feces or frass of cockroaches can cause allergic sensitization in humans. The use of fecal and frass extracts for immunotherapy has been previously investigated but has not yet been fully standardized. Here, we treated cockroaches with ampicillin to produce extracts with reduced amounts of total bacteria. METHODS We performed targeted high-throughput sequencing of 16S rDNA to compare the microbiomes of ampicillin-treated and untreated (control) cockroaches. RNA-seq was performed to identify differentially expressed genes (DEGs) in ampicillin-treated cockroaches. RESULTS Analysis of the microbiome revealed that alpha diversity was lower in the ampicillin-treated group than in the control group. Beta diversity analysis indicated that ampicillin treatment altered bacterial composition in the microbiome of cockroaches. Quantitative polymerase chain reaction revealed that almost all bacteria were removed from ampicillin-treated cockroaches. RNA-seq analysis revealed 1,236 DEGs in ampicillin-treated cockroaches (compared to untreated cockroaches). Unlike bacterial composition, the DEGs varied between the two groups. Among major allergens, the expression of Bla g 2 decreased significantly in ampicillin-treated cockroaches (compared to untreated group). CONCLUSIONS In this study, the reduced level of allergens observed in cockroaches may be related to lower amounts of total bacteria caused by treatment with antibiotics. It is possible to make a protein extract with few bacteria for use in immunotherapy.
Collapse
Affiliation(s)
- Seogwon Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Yeong Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Korea
| | - Myung-Hee Yi
- Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Korea
| | - In-Yong Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Korea
- Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, Incheon, Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
17
|
Cantillo JF, Puerta L. Mosquitoes: Important Sources of Allergens in the Tropics. FRONTIERS IN ALLERGY 2021; 2:690406. [PMID: 35387048 PMCID: PMC8974784 DOI: 10.3389/falgy.2021.690406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
There are more than 3,000 mosquito species. Aedes aegypti, Ae. communis, and C. quinquefasciatus are, among others, three of the most important mosquito allergen sources in the tropics, western, and industrialized countries. Several individuals are sensitized to mosquito allergens, but the epidemiological data indicates that the frequency of sensitization markedly differs depending on the geographical region. Additionally, the geographical localization of mosquito species has been affected by global warming and some mosquito species have invaded areas where they were not previously found, at the same time as other species have been displaced. This phenomenon has repercussions in the pathogenesis and the accuracy of the diagnosis of mosquito allergy. Allergic individuals are sensitized to mosquito allergens from two origins: saliva and body allergens. Exposure to saliva allergens occurs during mosquito bite and induces cutaneous allergic reactions. Experimental and clinical data suggest that body allergens mediate different manifestations of allergic reactions such as asthma and rhinitis. The most studied mosquito species is Ae. aegypti, from which four and five allergens of the saliva and body, respectively, have been reported. Many characterized allergens are homologs to arthropod-derived allergens, which cause strong cross-reactivity at the humoral and cellular level. The generalized use of whole body Ae. communis or C. quinquefasciatus extracts complicates the diagnosis of mosquito allergy because they have low concentration of saliva allergens and may result in poor diagnosis of the affected population when other species are the primary sensitizer. This review article discusses the current knowledge about mosquito allergy, allergens, cross-reactivity, and proposals of component resolved approaches based on mixtures of purified recombinant allergens to replace saliva-based or whole-body extracts, in order to perform an accurate diagnosis of allergy induced by mosquito allergen exposure.
Collapse
Affiliation(s)
- Jose Fernando Cantillo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
- Inmunotek, S.L., Madrid, Spain
| | - Leonardo Puerta
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
- *Correspondence: Leonardo Puerta
| |
Collapse
|
18
|
The Role of Enolases in Allergic Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3026-3032. [PMID: 33862268 DOI: 10.1016/j.jaip.2021.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Enolase is one of the most abundant cytosolic enzymes as well as an important glycolytic metalloenzyme highly conserved among organisms from different taxonomical groups. Participation of enolase in processes in which its enzymatic activity is not required has been widely reported. Some of these processes provide special qualities to microorganisms, which favor, in some cases, their pathogenicity. Remarkably, enolase has been reported as an allergen by itself, it is well recognized as allergenic in molds and yeasts, whereas it has also been recognized by the immune system of susceptible individuals acting as a food and inhaled allergen from other diverse sources such as insects, birds, fishes, and plants. To date, 14 enolases have been officially recognized by the World Health Organization/International Union of Immunological Societies Allergen Nomenclature Subcommittee. The use of discovery proteomics has also uncovered novel allergenic enolases, particularly from pollen sources. Here, we review the relevance of enolases as sensitizers and as nonsensitizing cross-reactive allergens in allergic disease.
Collapse
|
19
|
Karmakar B, Saha B, Jana K, Gupta Bhattacharya S. Identification and biochemical characterization of Asp t 36, a new fungal allergen from Aspergillus terreus. J Biol Chem 2021; 295:17852-17864. [PMID: 33454019 DOI: 10.1074/jbc.ra120.015801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/14/2020] [Indexed: 11/06/2022] Open
Abstract
Aspergillus terreus is an allergenic fungus, in addition to causing infections in both humans and plants. However, the allergens in this fungus are still unknown, limiting the development of diagnostic and therapeutic strategies. We used a proteomic approach to search for allergens, identifying 16 allergens based on two-dimensional immunoblotting with A. terreus susceptible patient sera. We further characterized triose-phosphate isomerase (Asp t 36), one of the dominant IgE (IgE)-reactive proteins. The gene was cloned and expressed in Escherichia coli. Phylogenetic analysis showed Asp t 36 to be highly conserved with close similarity to the triose-phosphate isomerase protein sequence from Dermatophagoides farinae, an allergenic dust mite. We identified four immunodominant epitopes using synthetic peptides, and mapped them on a homology-based model of the tertiary structure of Asp t 36. Among these, two were found to create a continuous surface patch on the 3D structure, rendering it an IgE-binding hotspot. Biophysical analysis indicated that Asp t 36 shows similar secondary structure content and temperature sensitivity with other reported triose-phosphate isomerase allergens. In vivo studies using a murine model displayed that the recombinant Asp t 36 was able to stimulate airway inflammation, as demonstrated by an influx of eosinophils, goblet cell hyperplasia, elevated serum Igs, and induction of Th2 cytokines. Collectively, our results reveal the immunogenic property of Asp t 36, a major allergen from A. terreus, and define a new fungal allergen more broadly. This allergen could serve as a potent candidate for investigating component resolved diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Bijoya Karmakar
- Division of Plant Biology, Bose Institute (Main Campus), Kolkata, India
| | - Bodhisattwa Saha
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.
| | - Kuladip Jana
- Division of Molecular Medicines, Bose Institute (Centenary Building), Kolkata, India
| | | |
Collapse
|
20
|
Pomés A, Schulten V, Glesner J, da Silva Antunes R, Sutherland A, Bacharier LB, Beigelman A, Busse P, Frazier A, Sette A. IgE and T Cell Reactivity to a Comprehensive Panel of Cockroach Allergens in Relation to Disease. Front Immunol 2021; 11:621700. [PMID: 33643303 PMCID: PMC7902920 DOI: 10.3389/fimmu.2020.621700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/22/2020] [Indexed: 02/04/2023] Open
Abstract
IgE sensitization to cockroach allergens is associated with development of allergic diseases, such as asthma. To understand the relevance of different cockroach allergens for diagnosis and immunotherapy, a comprehensive analysis of IgE antibody levels and T cell reactivity to an expanded set of cockroach allergens and their relationship to disease was performed in a cohort of USA cockroach sensitized patients. IgE antibody levels to recombinant chitinase and hemocyanin were measured for 23 subjects by custom-made ImmunoCAPs and compared with IgE levels to eight cockroach allergens we previously reported for the same cohort. Ex vivo T cell activation (Ox40/PDL-1 expression) of PBMCs stimulated with peptide pools derived from 11 German cockroach proteins, including nine official cockroach allergens, plus chitinase and vitellogenin, was determined by flow cytometry. IgE prevalences to chitinase (17%) and hemocyanin (44%) were comparable to values for the other eight allergens that we previously reported (21-57%). Hemocyanin (Bla g 3), was a major allergen (one to which more than 50% of patients with an allergy to its source react) for a sub-group of 15 highly cockroach-sensitized subjects (IgE > 3.5 kUA/L: 53%). Chitinase was officially named as new allergen Bla g 12. Cockroach-specific IgE levels in plasma showed excellent correlation with the sum of 10 allergen-specific IgE (r = 0.94, p < 0.001). T cell reactivity to 11 proteins was highly variable among subjects, the highest being for vitellogenin, followed by Bla g 3. The main finding was that cockroach allergen-specific IgE and T cell reactivity patterns were unique per subject, and lacked immunodominant allergens and correlation with clinical phenotype/disease severity in the studied cohort. Knowing the subject-specific B/T cell reactivity profiles to a comprehensive panel of cockroach allergens will contribute to diagnosis of cockroach allergy and will be important for planning and assessing allergen immunotherapy outcomes, according to the allergen content in therapeutic cockroach extracts.
Collapse
Affiliation(s)
- Anna Pomés
- Basic Research, Indoor Biotechnologies, Inc., Charlottesville, VA, United States
| | - Véronique Schulten
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Jill Glesner
- Basic Research, Indoor Biotechnologies, Inc., Charlottesville, VA, United States
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Leonard B Bacharier
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Avraham Beigelman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States.,Kipper Institute of Allergy and Immunology, Schneider Children's Medical Center of Israel, Tel Aviv University, Tel Aviv, Israel
| | - Paula Busse
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
21
|
Jeong KY, Park JW. Insect Allergens on the Dining Table. Curr Protein Pept Sci 2020; 21:159-169. [PMID: 31309888 DOI: 10.2174/1389203720666190715091951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
Edible insects are important sources of nutrition, particularly in Africa, Asia, and Latin America. Recently, edible insects have gained considerable interest as a possible solution to global exhaustion of the food supply with population growth. However, little attention has been given to the adverse reactions caused by insect consumption. Here, we provide an overview of the food allergens in edible insects and offer insights for further studies. Most of the edible insect allergens identified to date are highly cross-reactive invertebrate pan-allergens such as tropomyosin and arginine kinase. Allergic reactions to these allergens may be cross-reactions resulting from sensitization to shellfish and/or house dust mites. No unique insect allergen specifically eliciting a food allergy has been described. Many of the edible insect allergens described thus far have counterpart allergens in cockroaches, which are an important cause of respiratory allergies, but it is questionable whether inhalant allergens can cause food allergies. Greater effort is needed to characterize the allergens that are unique to edible insects so that safe edible insects can be developed. The changes in insect proteins upon food processing or cooking should also be examined to enhance our understanding of edible insect food allergies.
Collapse
Affiliation(s)
- Kyoung Yong Jeong
- Department of Internal Medicine, Institute of Allergy, Yonsei University, College of Medicine, Seoul 03722, Korea
| | - Jung-Won Park
- Department of Internal Medicine, Institute of Allergy, Yonsei University, College of Medicine, Seoul 03722, Korea
| |
Collapse
|
22
|
Jao TM, Fang WH, Ciou SC, Yu SL, Hung YL, Weng WT, Lin TY, Tsai MH, Yang YC. PCDH10 exerts tumor-suppressor functions through modulation of EGFR/AKT axis in colorectal cancer. Cancer Lett 2020; 499:290-300. [PMID: 33271263 DOI: 10.1016/j.canlet.2020.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Protocadherin 10 (PCDH10) is identified as a tumor suppressor in multiple cancers. The molecular mechanisms that mediate the functions of PCDH10 have yet to be fully elucidated. Here, we demonstrated that ectopic expression of PCDH10 in colorectal cancer (CRC) cells induced cell cycle retardation and increased apoptosis through regulation of the p53/p21/Rb axis and Bcl-2 expression. Overexpression of PCDH10 reversed the epithelial-mesenchymal transition (EMT) process with morphological changes and EMT marker alterations. Mechanistic study revealed that PCDH10 inhibited AKT/GSK3β signaling pathway which in turn reduced β-catenin activity and thus attenuated Snail and Twist1 expression. Furthermore, PCDH10 inhibited the stemness of CRC cells, including spheroid formation and stem cell markers. A proteomics approach revealed that PCDH10 could interact with EGFR, which was further verified by co-immunoprecipitation. Moreover, restoration of PCDH10 expression reduced EGFR phosphorylation. Accordingly, our work proposes a novel pathway by which PCDH10 directly engages in the negative regulation of EGFR/AKT/β-catenin signaling pathway, resulting in tumor suppression.
Collapse
Affiliation(s)
- Tzu-Ming Jao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan; Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung City, 813, Taiwan
| | - Woei-Horng Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Shih-Ci Ciou
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Yu-Lin Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Wei-Ting Weng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Tsai-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Ming-Hong Tsai
- Department of Surgery, Cardinal Tien Hospital, New Taipei City, 231, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, 242, Taiwan.
| | - Ya-Chien Yang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan.
| |
Collapse
|
23
|
Bessa LW, Pieterse E, Sigge G, Hoffman LC. Insects as human food; from farm to fork. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5017-5022. [PMID: 29288490 DOI: 10.1002/jsfa.8860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/11/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Over the course of the last few years, the consumption of insects, known as entomophagy, has sparked increasing interest amongst scientists and environmentalists as a potential solution to the inevitable global food security and sustainability issues humans will be facing in the coming years. Despite the fact that insects have been an integral part of over 2 billion people's diet worldwide, the concept of eating insects is still new to Western culture. As a result, there are many unknowns regarding insects as a food source, and this has led to a number of studies and investigations being done in recent years to create more knowledge and awareness around this new concept in the food industry. This review discusses some of the key topics and new developments published over recent years, such as the nutritional benefits, food safety concerns, functional properties, potential product concepts and the current ideas and attitudes towards insects as a food source in Western culture. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Leah Wilson Bessa
- Department of Food Science, Stellenbosch University, Matieland, South Africa
- Department of Animal Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Elsje Pieterse
- Department of Animal Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Gunnar Sigge
- Department of Food Science, Stellenbosch University, Matieland, South Africa
| | | |
Collapse
|
24
|
Bessa LW, Pieterse E, Marais J, Hoffman LC. Why for feed and not for human consumption? The black soldier fly larvae. Compr Rev Food Sci Food Saf 2020; 19:2747-2763. [DOI: 10.1111/1541-4337.12609] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Leah W. Bessa
- Department of Animal SciencesUniversity of Stellenbosch Stellenbosch South Africa
| | - Elsje Pieterse
- Department of Animal SciencesUniversity of Stellenbosch Stellenbosch South Africa
| | - Jeannine Marais
- Department of Food ScienceStellenbosch University Stellenbosch South Africa
| | - Louwrens C. Hoffman
- Department of Animal SciencesUniversity of Stellenbosch Stellenbosch South Africa
- Centre for Nutrition and Food SciencesQueensland Alliance for Agriculture and Food InnovationUniversity of Queensland, Coopers Plains Queensland Australia
| |
Collapse
|
25
|
Kochanowski M, Różycki M, Dąbrowska J, Bełcik A, Karamon J, Sroka J, Cencek T. Proteomic and Bioinformatic Investigations of Heat-Treated Anisakis simplex Third-Stage Larvae. Biomolecules 2020; 10:E1066. [PMID: 32708775 PMCID: PMC7407331 DOI: 10.3390/biom10071066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023] Open
Abstract
Anisakis simplex third-stage larvae are the main source of hidden allergens in marine fish products. Some Anisakis allergens are thermostable and, even highly processed, could cause hypersensitivity reactions. However, Anisakis proteome has not been studied under autoclaving conditions of 121 °C for 60 min, which is an important process in the food industry. The aim of the study was the identification and characterization of allergens, potential allergens, and other proteins of heat-treated A. simplex larvae. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify 470 proteins, including allergens-Ani s 1, Ani s 2, Ani s 3, Ani s 4, Ani s 5-and 13 potential allergens that were mainly homologs of Anisakis spp., Ascaris spp., and Acari allergens. Ani s 2, Ani s 3, Ani s 5, and three possible allergens were found among the top 25 most abundant proteins. The computational analysis allowed us to detect allergen epitopes, assign protein families, and domains as well as to annotate the localization of proteins. The predicted 3D models of proteins revealed similarities between potential allergens and homologous allergens. Despite the partial degradation of heated A. simplex antigens, their immunoreactivity with anti-A. simplex IgG antibodies was confirmed using a Western blot. In conclusion, identified epitopes of allergenic peptides highlighted that the occurrence of Anisakis proteins in thermally processed fish products could be a potential allergic hazard. Further studies are necessary to confirm the IgE immunoreactivity and thermostability of identified proteins.
Collapse
Affiliation(s)
- Maciej Kochanowski
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.R.); (J.D.); (A.B.); (J.K.); (J.S.); (T.C.)
| | | | | | | | | | | | - Tomasz Cencek
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.R.); (J.D.); (A.B.); (J.K.); (J.S.); (T.C.)
| |
Collapse
|
26
|
Mattison CP, Tungtrongchitr A, Tille KS, Cottone CB, Riegel C. Cloning, Expression, and Immunological Characterization of Formosan Subterranean Termite (Blattodea: Rhinotermitidae) Arginine Kinase. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5875975. [PMID: 32706873 PMCID: PMC7380462 DOI: 10.1093/jisesa/ieaa071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 05/20/2023]
Abstract
Several parts of the world regularly consume termites. Arthropod arginine kinase proteins often cross-react with human immunoblobulin E (IgE) antibodies and they are considered pan-allergens. The Formosan subterranean termite Coptotermes formosanus (C. formosanus (Shiraki) [Isoptera: Rhinotermitidae]), along with cockroaches, belong to the order Blattodea and they are common household pests in tropical and subtropical parts of the world. An sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) band migrating at approximately 37 kDa in C. formosanus termite extracts cross-reacted with IgE from five cockroach allergic patient samples by immunoblot. Liquid chromatography-mass spectrometry analysis of gel slices from the corresponding region of a gel indicated several peptides from the excised region were identical to the American cockroach arginine kinase allergen, Per a 9. The sequence of the full-length C. formosanus arginine kinase gene indicates the protein it encodes is 96% identical to American cockroach Per a 9, 94% identical to German cockroach Bla g 9, and 82-84% identical to shrimp arginine kinase proteins Pen m 2, Lit v 2, and Cra c 2. Full-length C. formosanus arginine kinase was fused to a glutathione S-transferase tag and recombinantly expressed and purified from Escherichia coli by affinity chromatography. The recombinant protein was recognized by IgE from 11 of 12 cockroach or shrimp allergic samples, but did not cross-react with dust mite allergic or peanut/tree nut allergic samples. The results of this study indicate the C. formosanus arginine kinase cross-reacts with cockroach and shrimp allergic IgE, and if consumed would likely act as an allergen.
Collapse
Affiliation(s)
- Christopher P Mattison
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA
- Corresponding author, e-mail:
| | - Anchalee Tungtrongchitr
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Parasitology, Mahidol University, Bangkok, Thailand
| | - Katherine S Tille
- Malcolm Grow Medical Clinics and Surgical Center, Joint Base Andrews, MD
- Current address: Allergy & Asthma Center of Western Colorado, 1120 Wellington Avenue, Grand Junction, CO 81501
| | - Carrie B Cottone
- New Orleans Mosquito, Termite and Rodent Control Board, New Orleans, LA
| | - Claudia Riegel
- New Orleans Mosquito, Termite and Rodent Control Board, New Orleans, LA
| |
Collapse
|
27
|
Mindaye ST, David NA, Zarkesh Esfahani SA, Schal C, Matsui EC, Rabin RL, Slater JE. Measurement of German cockroach allergens and their isoforms in allergen extracts with mass spectrometry. Clin Exp Allergy 2020; 50:741-751. [PMID: 32243003 DOI: 10.1111/cea.13604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/11/2020] [Accepted: 03/22/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Allergen extracts are the primary tool for diagnosis and treatment of allergic diseases. In the United States, most allergen extracts are non-standardized. More sophisticated analytical approaches are needed to characterize these products and enable manufacturers and regulators to better determine potency. OBJECTIVE To expand the multiple reaction monitoring (MRM) assay for an in-depth characterization of German cockroach (GCr; Blattella germanica) allergen extracts. METHODS We applied advanced liquid chromatography (LC) and mass spectrometry (MS) techniques including MRM. The expanded LC/MRM-MS method was optimized to measure known GCr allergens and their isoforms/variants in commercial extracts and environmental samples. We performed isoform-specific allergen measurements in multiple extracts from four commercial sources and extracts prepared using environmental samples from urban homes. To investigate causes of heterogeneity, we examined over 30 extraction process variables. RESULTS Evaluation of the commercial extracts confirmed the variability of production lots and commercial sources. Commonly used defatting and extraction protocols yielded extracts with comparable allergen profiles and content. However, the identity and quality of source materials was a major contributor to variability. In comparing commercial GCr extracts to environmental samples, relative quantities of Bla g 1, Bla g 2, Bla g 3, Bla g 4 and Bla g 11 were similar, while Bla g 5, Bla g 6, Bla g 7 and Bla g 8 were present in the environmental samples but largely absent for the commercial extracts. CONCLUSIONS AND CLINICAL RELEVANCE LC/MRM-MS can be used to measure all known GCr allergens in commercial allergen extracts and environmental samples. Significant differences exist between allergen profiles of commercial extracts and the profiles of environmental samples from dwellings. This analytical platform can serve as a template to achieve better product characterization of similarly complex products.
Collapse
Affiliation(s)
- Samuel T Mindaye
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, CBER/FDA, Silver Spring, MD, USA
| | - Natalie A David
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, CBER/FDA, Silver Spring, MD, USA
| | - Sayyed Amin Zarkesh Esfahani
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, CBER/FDA, Silver Spring, MD, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Elizabeth C Matsui
- Department of Population Health and Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Ronald L Rabin
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, CBER/FDA, Silver Spring, MD, USA
| | - Jay E Slater
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, CBER/FDA, Silver Spring, MD, USA
| |
Collapse
|
28
|
Caraballo L, Valenta R, Puerta L, Pomés A, Zakzuk J, Fernandez-Caldas E, Acevedo N, Sanchez-Borges M, Ansotegui I, Zhang L, van Hage M, Abel-Fernández E, Karla Arruda L, Vrtala S, Curin M, Gronlund H, Karsonova A, Kilimajer J, Riabova K, Trifonova D, Karaulov A. The allergenic activity and clinical impact of individual IgE-antibody binding molecules from indoor allergen sources. World Allergy Organ J 2020; 13:100118. [PMID: 32373267 PMCID: PMC7195550 DOI: 10.1016/j.waojou.2020.100118] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
A large number of allergens have been discovered but we know little about their potential to induce inflammation (allergenic activity) and symptoms. Nowadays, the clinical importance of allergens is determined by the frequency and intensity of their IgE antibody binding (allergenicity). This is a rather limited parameter considering the development of experimental allergology in the last 20 years and the criteria that support personalized medicine. Now it is known that some allergens, in addition to their IgE antibody binding properties, can induce inflammation through non IgE mediated pathways, which can increase their allergenic activity. There are several ways to evaluate the allergenic activity, among them the provocation tests, the demonstration of non-IgE mediated pathways of inflammation, case control studies of IgE-binding frequencies, and animal models of respiratory allergy. In this review we have explored the current status of basic and clinical research on allergenic activity of indoor allergens and confirm that, for most of them, this important property has not been investigated. However, during recent years important advances have been made in the field, and we conclude that for at least the following, allergenic activity has been demonstrated: Der p 1, Der p 2, Der p 5 and Blo t 5 from HDMs; Per a 10 from P. americana; Asp f 1, Asp f 2, Asp f 3, Asp f 4 and Asp f 6 from A. fumigatus; Mala s 8 and Mala s 13 from M. sympodialis; Alt a 1 from A. alternata; Pen c 13 from P. chrysogenum; Fel d 1 from cats; Can f 1, Can f 2, Can f 3, Can f 4 and Can f 5 from dogs; Mus m 1 from mice and Bos d 2 from cows. Defining the allergenic activity of other indoor IgE antibody binding molecules is necessary for a precision-medicine-oriented management of allergic diseases.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
- Corresponding author. Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia.
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, Moscow, Russian Federation
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Leonardo Puerta
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Anna Pomés
- Indoor Biotechnologies, Inc. Charlottesville, VA, USA
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Mario Sanchez-Borges
- Allergy and Clinical Immunology Department, Centro Médico Docente La Trinidad, Caracas, Venezuela
| | - Ignacio Ansotegui
- Department of Allergy & Immunology Hospital Quironsalud Bizkaia, Bilbao, Spain
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Eva Abel-Fernández
- Inmunotek, Madrid, Spain and University of South Florida College of Medicine, Tampa, USA
| | - L. Karla Arruda
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hans Gronlund
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Antonina Karsonova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jonathan Kilimajer
- Inmunotek, Madrid, Spain and University of South Florida College of Medicine, Tampa, USA
| | - Ksenja Riabova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Daria Trifonova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
29
|
Sookrung N, Tungtrongchitr A, Chaicumpa W. Cockroaches: Allergens, Component-Resolved Diagnosis (CRD) and Component-Resolved Immunotherapy. Curr Protein Pept Sci 2020; 21:124-141. [DOI: 10.2174/1389203720666190731144043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022]
Abstract
Allergic diseases are assuming increasing trend of prevalence worldwide. The diseases confer increasing demand on medical and healthcare facilities. Patients with allergies have poor quality of life and impaired cognition. Adult patients have subpar working efficiency while afflicted children are less effective at school, often have school absenteeism and need more attention of their caregivers. All of them lead to negative socio-economic impact. This narrative review focuses on cockroach allergy including currently recognized cockroach allergens, pathogenic mechanisms of allergy, componentresolved diagnosis and allergen-specific immunotherapy, particularly the component-resolved immunotherapy and the molecular mechanisms that bring about resolution of the chronic airway inflammation.
Collapse
Affiliation(s)
- Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anchalee Tungtrongchitr
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
30
|
Xia F, Li MS, Liu QM, Liu M, Yang Y, Cao MJ, Chen GX, Jin T, Liu GM. Crystal Structure Analysis and Conformational Epitope Mutation of Triosephosphate Isomerase, a Mud Crab Allergen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12918-12926. [PMID: 31668066 DOI: 10.1021/acs.jafc.9b05279] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The triosephosphate isomerase (TIM), Scy p 8, is a crab allergen and shows cross-reactivity in the shellfish. Here, recombinant Scy p 8 was expressed, and its crystal structure was determined at a resolution of 1.8 Å. The three-dimensional structure of Scy p 8 is primarily composed of a (β/α)8-barrel motif prototype. Additionally, Scy p 8 showed cross-reactivity with high sequential and secondary structural identity among TIMs from shellfish species. The site-directed mutagenesis of critical amino acids of conformational epitopes was carried out, and the mutants of Trp 168 and Lys 237 to Ala reduced immunoglobulin E (IgE)-binding activity by approximately 30%, compared with wild-type TIM in an inhibition ELISA; however, it still induced basophil activation despite the interpatient variability between patients. These results can help to provide an accurate template for the analysis of the IgE binding and establish meaningful relationships between structure and allergenicity.
Collapse
Affiliation(s)
- Fei Xia
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian 361021 , China
| | - Meng-Si Li
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian 361021 , China
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian 361021 , China
| | - Meng Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian 361021 , China
| | - Yang Yang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian 361021 , China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian 361021 , China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University , Xiamen , Fujian 361003 , China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine , University of Science & Technology of China , Hefei , Anhui 230027 , China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian 361021 , China
| |
Collapse
|
31
|
Pomés A, Glesner J, Calatroni A, Visness CM, Wood RA, O'Connor GT, Kattan M, Bacharier LB, Wheatley LM, Gern JE, Busse WW. Cockroach allergen component analysis of children with or without asthma and rhinitis in an inner-city birth cohort. J Allergy Clin Immunol 2019; 144:935-944. [PMID: 31201891 DOI: 10.1016/j.jaci.2019.05.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cockroach is one of the most important sources of indoor allergens and can lead to IgE sensitization and development of rhinitis and asthma. OBJECTIVE We sought to perform a cockroach allergen component analysis to determine the allergens and antibody levels and patterns of sensitization associated with asthma and rhinitis. METHODS Antibody (IgE, IgG, and IgG4) levels to total cockroach and 8 cockroach allergens were determined in 2 groups of cockroach-sensitized 10-year-old children with (n = 19) or without (n = 28) asthma and rhinitis. Allergen-specific antibody levels were measured in streptavidin ImmunoCAPs loaded with each of the recombinant allergens from groups 1, 2, 4, 5, 6, 7, 9, and 11, and total cockroach-specific IgE levels were measured with the i6 ImmunoCAP. RESULTS IgE antibody levels to cockroach allergens and extract, but not IgG or IgG4 antibody levels, differed between subjects with and without asthma and rhinitis. Specifically, recognition of more cockroach allergens with higher allergen-specific IgE levels was associated with disease. Variable patterns of sensitization with no immunodominant allergens were found in both groups. There was a good correlation between the sum of allergen-specific IgE and total cockroach IgE levels (r = 0.86, P < .001). CONCLUSIONS Component analysis of 8 cockroach allergens revealed significant differences in IgE reactivity associated with the presence of asthma and rhinitis. Allergen-specific IgE titers and sensitization profiles were associated with asthma and rhinitis.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc, Basic Research, Charlottesville, Va.
| | - Jill Glesner
- Indoor Biotechnologies, Inc, Basic Research, Charlottesville, Va
| | | | | | - Robert A Wood
- Departments of Pediatrics and Allergy and Immunology, Johns Hopkins University, Baltimore, Md
| | - George T O'Connor
- Department of Medicne, Boston University School of Medicine, Boston, Mass
| | - Meyer Kattan
- Department of Pediatrics, Columbia University, New York, NY
| | - Leonard B Bacharier
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Lisa M Wheatley
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - James E Gern
- Departments of Pediatrics and Medicine, University of Wisconsin-Madison, Madison, Wis
| | - William W Busse
- Departments of Pediatrics and Medicine, University of Wisconsin-Madison, Madison, Wis
| | | |
Collapse
|
32
|
Glesner J, Filep S, Vailes LD, Wünschmann S, Chapman MD, Birrueta G, Frazier A, Jeong KY, Schal C, Bacharier L, Beigelman A, Busse P, Schulten V, Sette A, Pomés A. Allergen content in German cockroach extracts and sensitization profiles to a new expanded set of cockroach allergens determine in vitro extract potency for IgE reactivity. J Allergy Clin Immunol 2019; 143:1474-1481.e8. [PMID: 30170124 PMCID: PMC6395535 DOI: 10.1016/j.jaci.2018.07.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cockroach allergens are an important cause of IgE-mediated sensitization in inner-city asthmatic patients. However, cockroach extracts used for diagnosis and immunotherapy are not standardized. OBJECTIVE We sought to determine the allergen content of nonstandardized German cockroach extracts and the levels of sensitization to an expanded set of cockroach allergens as determinants of in vitro extract potency for IgE reactivity. METHODS Twelve German cockroach extracts were compared for allergen content and potency of IgE reactivity. Bla g 1, Bla g 2, and Bla g 5 were measured by using immunoassays. IgE antibody levels to 8 purified recombinant allergens from groups 1, 2, 4, 5, 6, 7, 9, and 11 were measured by using ImmunoCAP. IgE antibody binding inhibition assays were performed to assess extract in vitro potencies (concentration inhibiting 30% of the total IgE antibody-binding inhibition) relative to an arbitrarily selected reference extract in 5 patients with cockroach allergy. RESULTS Allergen levels were highly variable. Three new major allergens (groups 6, 9, and 11), were identified among highly cockroach-sensitized subjects (CAP class ≥ 3). Sensitization profiles were unique per subject without immunodominant allergens. The sum of IgE to 8 allergen components showed a good correlation with cockroach-specific IgE levels (r = 0.88, P < .001). In vitro potencies varied among different extracts per subject and among subjects for each extract. CONCLUSIONS The in vitro potency of German cockroach extracts for IgE reactivity depends on allergen content and allergen-specific IgE titers of patients with cockroach allergy. These factors are relevant for selection of potent extracts to be used for immunotherapy and for the design and interpretation of data from immunotherapy trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - April Frazier
- La Jolla Institute for Allergy & Immunology, La Jolla, Calif
| | - Kyoung Yong Jeong
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Leonard Bacharier
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Avraham Beigelman
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Paula Busse
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Alessandro Sette
- La Jolla Institute for Allergy & Immunology, La Jolla, Calif; Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Anna Pomés
- Indoor Biotechnologies, Charlottesville, Va.
| |
Collapse
|
33
|
Rodríguez-Bolaños M, Perez-Montfort R. Medical and Veterinary Importance of the Moonlighting Functions of Triosephosphate Isomerase. Curr Protein Pept Sci 2019; 20:304-315. [DOI: 10.2174/1389203719666181026170751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Triosephosphate isomerase is the fifth enzyme in glycolysis and its canonical function is the
reversible isomerization of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Within the
last decade multiple other functions, that may not necessarily always involve catalysis, have been described.
These include variations in the degree of its expression in many types of cancer and participation
in the regulation of the cell cycle. Triosephosphate isomerase may function as an auto-antigen and
in the evasion of the immune response, as a factor of virulence of some organisms, and also as an important
allergen, mainly in a variety of seafoods. It is an important factor to consider in the cryopreservation
of semen and seems to play a major role in some aspects of the development of Alzheimer's disease. It
also seems to be responsible for neurodegenerative alterations in a few cases of human triosephosphate
isomerase deficiency. Thus, triosephosphate isomerase is an excellent example of a moonlighting protein.
Collapse
Affiliation(s)
- Mónica Rodríguez-Bolaños
- Departamento de Bioquimica y Biologia Estructural, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Coyoacan, 04510 Mexico DF, Mexico
| | - Ruy Perez-Montfort
- Departamento de Bioquimica y Biologia Estructural, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Coyoacan, 04510 Mexico DF, Mexico
| |
Collapse
|
34
|
Pascal M, Kamath SD, Faber M. Diagnosis and Management of Shellfish Allergy: Current Approach and Future Needs. CURRENT TREATMENT OPTIONS IN ALLERGY 2018. [DOI: 10.1007/s40521-018-0186-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Fernandez-Cassi X, Supeanu A, Jansson A, Boqvist S, Vagsholm I. Novel foods: a risk profile for the house cricket ( Acheta domesticus). EFSA J 2018; 16:e16082. [PMID: 32626053 PMCID: PMC7015497 DOI: 10.2903/j.efsa.2018.e16082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Novel foods could represent a sustainable alternative to traditional farming and conventional foodstuffs. Starting in 2018, Regulation (EU) 2283/2015 entered into force, laying down provisions for the approval of novel foods in Europe, including insects. This Approved Regulation establishes the requirements that enable Food Business Operators to bring new foods into the EU market, while ensuring high levels of food safety for European consumers. The present risk profile tackles the hazards for one of the most promising novel food insects, the house cricket (Acheta domesticus). The risk profile envisages a closed A. domesticus crickets rearing system, under Hazard Analysis and Critical Control Points (HACCP) and good farming practices (GFP), in contrast with open cricket farms. The methodology used involves screening the literature and identifying possible hazards, followed by adding relevant inclusion criteria for the evidence obtained. These criteria include animal health and food safety aspects, for the entire lifespan of crickets, based on the farm to fork One Health principle. When data were scarce, comparative evidence from close relatives of the Orthoptera genus was used (e.g. grasshoppers, locusts and other cricket species). Nevertheless, significant data gaps in animal health and food safety are present. Even if HACCP‐type systems are implemented, the risk profile identifies the following considerable concerns: (1) high total aerobic bacterial counts; (2) survival of spore‐forming bacteria following thermal processing; (3) allergenicity of insects and insect‐derived products; and (4) the bioaccumulation of heavy metals (e.g. cadmium). Other hazards like parasites, fungi, viruses, prions, antimicrobial resistance and toxins are ranked as low risk. For some hazards, a need for additional evidence is highlighted.
Collapse
|
36
|
Wanandy T, Wilson R, Gell D, Rose HE, Gueven N, Davies NW, Brown SGA, Wiese MD. Towards complete identification of allergens in Jack Jumper (Myrmecia pilosula) ant venom and their clinical relevance: An immunoproteomic approach. Clin Exp Allergy 2018; 48:1222-1234. [DOI: 10.1111/cea.13224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/25/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Troy Wanandy
- Jack Jumper Allergy Program; Royal Hobart Hospital; Hobart TAS Australia
- Division of Pharmacy; School of Medicine; University of Tasmania; Hobart TAS Australia
- School of Medicine; University of Tasmania; Hobart TAS Australia
- Department of Pharmacy; Royal Hobart Hospital; Hobart TAS Australia
| | - Richard Wilson
- Central Science Laboratory; University of Tasmania; Hobart TAS Australia
| | - David Gell
- School of Medicine; University of Tasmania; Hobart TAS Australia
| | - Hayley E. Rose
- Jack Jumper Allergy Program; Royal Hobart Hospital; Hobart TAS Australia
| | - Nuri Gueven
- Division of Pharmacy; School of Medicine; University of Tasmania; Hobart TAS Australia
| | - Noel W. Davies
- Central Science Laboratory; University of Tasmania; Hobart TAS Australia
| | - Simon G. A. Brown
- Jack Jumper Allergy Program; Royal Hobart Hospital; Hobart TAS Australia
- School of Medicine; University of Tasmania; Hobart TAS Australia
- Ambulance Tasmania; Hobart TAS Australia
- Department of Emergency Medicine; Royal Hobart Hospital; Hobart TAS Australia
| | - Michael D. Wiese
- Jack Jumper Allergy Program; Royal Hobart Hospital; Hobart TAS Australia
- School of Pharmacy and Medical Sciences; University of South Australia; Adelaide SA Australia
| |
Collapse
|
37
|
Lu M, Jin Y, Cerny R, Ballmer-Weber B, Goodman RE. Combining 2-DE immunoblots and mass spectrometry to identify putative soybean (Glycine max) allergens. Food Chem Toxicol 2018; 116:207-215. [PMID: 29673863 DOI: 10.1016/j.fct.2018.04.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/14/2018] [Indexed: 12/25/2022]
Abstract
Soybean is recognized as a commonly allergenic food, but the identity of important allergens is not well studied. Recently, some global regulatory agencies started requiring quantitative analysis of individual allergens, including unproven allergens, as part of the risk assessment for genetically engineered (GE) soybeans. We sought to identify soybean proteins that bind IgE from any of 10 individual soybean-sensitized subjects. Soybean IgE binding proteins were identified by 2-DE immunoblots using sera from four soy-allergic and plasma from six soy-sensitized human subjects. Corresponding spots were excised from stained gels, digested, and analyzed using a quadrupole TOF Synapt G2-S tandem mass spectrometer. Results showed the major IgE binding proteins were subunits of either β-conglycinin (Gly m 5) or glycinin (Gly m 6). Soybean Kunitz trypsin inhibitor (SKTI) was a significant IgE binding protein for four subjects. Soybean agglutinin, seed biotinylated protein (SBP) of 65 kDa, late embryogenesis protein (LEP), and sucrose-binding protein were identified as IgE binding only for soy-sensitized subjects. We conclude that the major soybean allergens are isoforms of Gly m 5, Gly m 6, and possibly SKTI and that requirements for quantitative measurement of proteins that are not clear allergens is not relevant to safety.
Collapse
Affiliation(s)
- Mei Lu
- Department of Food Science and Technology, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, NE, 68588, USA
| | - Yuan Jin
- Department of Food Science and Technology, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, NE, 68588, USA
| | - Ron Cerny
- Department of Chemistry, University of Nebraska-Lincoln, 639 N. 12th Street, Lincoln, NE 68588, USA
| | - Barbara Ballmer-Weber
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - Richard E Goodman
- Department of Food Science and Technology, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, NE, 68588, USA.
| |
Collapse
|
38
|
Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol Immunol 2018; 100:28-57. [PMID: 29858102 DOI: 10.1016/j.molimm.2018.04.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
Seafood refers to several distinct groups of edible aquatic animals including fish, crustacean, and mollusc. The two invertebrate groups of crustacean and mollusc are, for culinary reasons, often combined as shellfish but belong to two very different phyla. The evolutionary and taxonomic diversity of the various consumed seafood species poses a challenge in the identification and characterisation of the major and minor allergens critical for reliable diagnostics and therapeutic treatments. Many allergenic proteins are very different between these groups; however, some pan-allergens, including parvalbumin, tropomyosin and arginine kinase, seem to induce immunological and clinical cross-reactivity. This extensive review details the advances in the bio-molecular characterisation of 20 allergenic proteins within the three distinct seafood groups; fish, crustacean and molluscs. Furthermore, the structural and biochemical properties of the major allergens are described to highlight the immunological and subsequent clinical cross-reactivities. A comprehensive list of purified and recombinant allergens is provided, and the applications of component-resolved diagnostics and current therapeutic developments are discussed.
Collapse
|
39
|
de Gier S, Verhoeckx K. Insect (food) allergy and allergens. Mol Immunol 2018; 100:82-106. [PMID: 29731166 DOI: 10.1016/j.molimm.2018.03.015] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Insects represent an alternative for meat and fish in satisfying the increasing demand for sustainable sources of nutrition. Approximately two billion people globally consume insects. They are particularly popular in Asia, Latin America, and Africa. Most research on insect allergy has focussed on occupational or inhalation allergy. Research on insect food safety, including allergenicity, is therefore of great importance. The objective of this review is to provide an overview of cases reporting allergy following insect ingestion, studies on food allergy to insects, proteins involved in insect allergy including cross-reactive proteins, and the possibility to alter the allergenic potential of insects by food processing and digestion. Food allergy to insects has been described for silkworm, mealworm, caterpillars, Bruchus lentis, sago worm, locust, grasshopper, cicada, bee, Clanis bilineata, and the food additive carmine, which is derived from female Dactylopius coccus insects. For cockroaches, which are also edible insects, only studies on inhalation allergy have been described. Various insect allergens have been identified including tropomyosin and arginine kinase, which are both pan-allergens known for their cross-reactivity with homologous proteins in crustaceans and house dust mite. Cross-reactivity and/or co-sensitization of insect tropomyosin and arginine kinase has been demonstrated in house dust mite and seafood (e.g. prawn, shrimp) allergic patients. In addition, many other (allergenic) species (various non-edible insects, arachnids, mites, seafoods, mammals, nematoda, trematoda, plants, and fungi) have been identified with sequence alignment analysis to show potential cross-reactivity with allergens of edible insects. It was also shown that thermal processing and digestion did not eliminate insect protein allergenicity. Although purified natural allergens are scarce and yields are low, recombinant allergens from cockroach, silkworm, and Indian mealmoth are readily available, giving opportunities for future research on diagnostic allergy tests and vaccine candidates.
Collapse
Affiliation(s)
- Steffie de Gier
- Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kitty Verhoeckx
- Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, The Netherlands; TNO, Zeist, The Netherlands.
| |
Collapse
|
40
|
Cantillo JF, Puerta L, Puchalska P, Lafosse-Marin S, Subiza JL, Fernández-Caldas E. Allergenome characterization of the mosquito Aedes aegypti. Allergy 2017; 72:1499-1509. [PMID: 28235135 DOI: 10.1111/all.13150] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Saliva and muscle-derived mosquito allergens have been purified and characterized. However, the complete set of allergens remains to be elucidated. In this study, we identified and characterized IgE-binding proteins from the mosquito species Aedes aegypti. METHODS Serum was obtained from 15 allergic individuals with asthma and/or rhinitis and sensitized to mosquito. IgE binding was determined by ELISA. Total proteins from freeze-dried bodies of A. aegypti were extracted and IgE-reactive proteins were identified by 2D gel electrophoresis, followed by Western blot with pooled or individual sera. IgE-reactive spots were further characterized by mass spectrometry. RESULTS Twenty-five IgE-reactive spots were identified, corresponding to 10 different proteins, some of which appeared as different variants or isoforms. Heat-shock cognate 70 (HSC-70) and tropomyosin showed IgE reactivity with 60% of the sera, lysosomal aspartic protease, and "AAEL006070-PA" (Uniprot: Q177P3) with 40% and the other proteins with <33.3% of the sera. Different variants or isoforms of tropomyosin, arginine or creatine kinase, glyceraldehyde-3-phosphate dehydrogenase (GPDH), calcium-binding protein, and phosphoglycerate mutase were also identified. The mixture of three allergens (Aed a 6, Aed a 8, and Aed a 10) seems to identify more than 80% of A. aegypti-sensitized individuals, indicating that these allergens should be considered when designing of improved mosquito allergy diagnostic tools. CONCLUSIONS The newly identified allergens may play a role in the pathophysiology of mosquito allergy in the tropics, and some of them might be important arthropod-related proteins involved in cross-reactivity between A. aegypti and other allergenic arthropods.
Collapse
Affiliation(s)
- J. F. Cantillo
- Institute for Immunological Research/University of Cartagena; Cartagena Colombia
| | - L. Puerta
- Institute for Immunological Research/University of Cartagena; Cartagena Colombia
| | - P. Puchalska
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; Faculty of Biology, Environmental Sciences and Chemistry; University of Alcalá; Madrid Spain
| | | | | | - E. Fernández-Caldas
- Inmunotek S.L.; Alcalá de Henares Spain
- Division of Allergy and Immunology; University of South Florida; Tampa FL USA
| |
Collapse
|
41
|
Mindaye ST, Spiric J, David NA, Rabin RL, Slater JE. Accurate quantification of 5 German cockroach (GCr) allergens in complex extracts using multiple reaction monitoring mass spectrometry (MRM MS). Clin Exp Allergy 2017; 47:1661-1670. [PMID: 28756650 DOI: 10.1111/cea.12986] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND German cockroach (GCr) allergen extracts are complex and heterogeneous products, and methods to better assess their potency and composition are needed for adequate studies of their safety and efficacy. OBJECTIVE AND METHODS The objective of this study was to develop an assay based on liquid chromatography and multiple reaction monitoring mass spectrometry (LC-MRM MS) for rapid, accurate, and reproducible quantification of 5 allergens (Bla g 1, Bla g 2, Bla g 3, Bla g 4, and Bla g 5) in crude GCr allergen extracts. RESULTS We first established a comprehensive peptide library of allergens from various commercial extracts as well as recombinant allergens. Peptide mapping was performed using high-resolution MS, and the peptide library was then used to identify prototypic and quantotypic peptides to proceed with MRM method development. Assay development included a systematic optimization of digestion conditions (buffer, digestion time, and trypsin concentration), chromatographic separation, and MS parameters. Robustness and suitability were assessed following ICH (Q2 [R1]) guidelines. The method is precise (RSD < 10%), linear over a wide range (r > 0.99, 0.01-1384 fmol/μL), and sensitive (LLOD and LLOQ <1 fmol/μL). Having established the parameters for LC-MRM MS, we quantified allergens from various commercial GCr extracts and showed considerable variability that may impact clinical efficacy. CONCLUSIONS AND CLINICAL RELEVANCE Our data demonstrate that the LC-MRM MS method is valuable for absolute quantification of allergens in GCr extracts and likely has broader applicability to other complex allergen extracts. Definitive quantification provides a new standard for labelling of allergen extracts, which will inform patient care, enable personalized therapy, and enhance the efficacy of immunotherapy for environmental and food allergies.
Collapse
Affiliation(s)
- S T Mindaye
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, CBER/FDA, Silver Spring, MD, USA
| | - J Spiric
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, CBER/FDA, Silver Spring, MD, USA
| | - N A David
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, CBER/FDA, Silver Spring, MD, USA
| | - R L Rabin
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, CBER/FDA, Silver Spring, MD, USA
| | - J E Slater
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, CBER/FDA, Silver Spring, MD, USA
| |
Collapse
|
42
|
Khurana T, Bridgewater JL, Rabin RL. Allergenic extracts to diagnose and treat sensitivity to insect venoms and inhaled allergens. Ann Allergy Asthma Immunol 2017; 118:531-536. [PMID: 28477785 DOI: 10.1016/j.anai.2016.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/18/2016] [Accepted: 05/31/2016] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To review allergenic extracts used to diagnose or treat insect allergies, including how the extracts are manufactured and their measurements of potency or concentration. DATA SOURCES Peer-reviewed articles derived from searching PubMed (National Center for Biotechnology Information) about insect allergies and extract preparation. Encyclopedia of Life (http://www.eol.org/) and http://allergome.org/ were also referenced for background information on insects and associated allergens. STUDY SELECTIONS Search terms used for the PubMed searches included insect allergens and allergies, Apidae, Vespidae, fire ants, cockroach allergies, insect allergen extract preparation, and standardization. RESULTS Humans may be sensitized to insect allergens by inhalation or through stings. Cockroaches and moths are predominantly responsible for inhalation insect allergy and are a major indoor allergen in urban settings. Bees, fire ants, and wasps are responsible for sting allergy. In the United States, there are multiple insect allergen products commercially available that are regulated by the US Food and Drug Administration. Of those extracts, honeybee venom and insect venom proteins are standardized with measurements of potency. The remaining insect allergen extracts are nonstandardized products that do not have potency measurements. CONCLUSION Sensitization to inhalational and stinging insect allergens is reported worldwide. Crude insect allergen extracts are used for diagnosis and specific immunotherapy. A variety of source materials are used by different manufacturers to prepare these extracts, which may result in qualitative differences that are not reflected in measurements of potency or protein concentration.
Collapse
Affiliation(s)
- Taruna Khurana
- Division of Vaccines and Related Products Applications, US Food and Drug Administration, Silver Spring, Maryland
| | - Jennifer L Bridgewater
- Division of Bacterial, Parasitic and Allergenic Products, US Food and Drug Administration, Silver Spring, Maryland
| | - Ronald L Rabin
- Division of Bacterial, Parasitic and Allergenic Products, US Food and Drug Administration, Silver Spring, Maryland.
| |
Collapse
|
43
|
Pomés A, Mueller GA, Randall TA, Chapman MD, Arruda LK. New Insights into Cockroach Allergens. Curr Allergy Asthma Rep 2017; 17:25. [PMID: 28421512 DOI: 10.1007/s11882-017-0694-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW This review addresses the most recent developments on cockroach allergen research in relation to allergic diseases, especially asthma. RECENT FINDINGS The number of allergens relevant to cockroach allergy has recently expanded considerably up to 12 groups. New X-ray crystal structures of allergens from groups 1, 2, and 5 revealed interesting features with implications for allergen standardization, sensitization, diagnosis, and therapy. Cockroach allergy is strongly associated with asthma particularly among children and young adults living in inner-city environments, posing challenges for disease control. Environmental interventions targeted at reducing cockroach allergen exposure have provided conflicting results. Immunotherapy may be a way to modify the natural history of cockroach allergy and decrease symptoms and asthma severity among sensitized and exposed individuals. The new information on cockroach allergens is important for the assessment of allergen markers of exposure and disease, and for the design of immunotherapy trials.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA.
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, Intramural Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, MD-MR01, Research Triangle Park, NC, 27709, USA
| | - Thomas A Randall
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, MD-MR01, Research Triangle Park, NC, 27709, USA
| | - Martin D Chapman
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| | - L Karla Arruda
- Department of Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto, SP, 14049-900, Brazil
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to evaluate the most recent findings on indoor allergens and their impact on allergic diseases. RECENT FINDINGS Indoor allergens are present inside buildings (home, work environment, school), and given the chronic nature of the exposures, indoor allergies tend to be associated with the development of asthma. The most common indoor allergens are derived from dust mites, cockroaches, mammals (including wild rodents and pets), and fungi. The advent of molecular biology and proteomics has led to the identification, cloning, and expression of new indoor allergens, which have facilitated research to elucidate their role in allergic diseases. This review is an update on new allergens and their molecular features, together with the most recent reports on their avoidance for allergy prevention and their use for diagnosis and treatment. Research progress on indoor allergens will result in the development of new diagnostic tools and design of coherent strategies for immunotherapy.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA.
| | - Martin D Chapman
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| | - Sabina Wünschmann
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| |
Collapse
|
45
|
Yang Y, Zhang YX, Liu M, Maleki SJ, Zhang ML, Liu QM, Cao MJ, Su WJ, Liu GM. Triosephosphate Isomerase and Filamin C Share Common Epitopes as Novel Allergens of Procambarus clarkii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:950-963. [PMID: 28072528 DOI: 10.1021/acs.jafc.6b04587] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Triosephosphate isomerase (TIM) is a key enzyme in glycolysis and has been identified as an allergen in saltwater products. In this study, TIM with a molecular mass of 28 kDa was purified from the freshwater crayfish (Procambarus clarkii) muscle. A 90-kDa protein that showed IgG/IgE cross-reactivity with TIM was purified and identified as filamin C (FLN c), which is an actin-binding protein. TIM showed similar thermal and pH stability with better digestion resistance compared with FLN c. The result of the surface plasmon resonance (SPR) experiment demonstrated the infinity of anti-TIM polyclonal antibody (pAb) to both TIM and FLN c. Five linear and 3 conformational epitopes of TIM, as well as 9 linear and 10 conformational epitopes of FLN c, were mapped by phage display. Epitopes of TIM and FLN c demonstrated the sharing of certain residues; the occurrence of common epitopes in the two allergens accounts for their cross-reactivity.
Collapse
Affiliation(s)
- Yang Yang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , Xiamen, Fujian 361021, China
| | - Yong-Xia Zhang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , Xiamen, Fujian 361021, China
| | - Meng Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , Xiamen, Fujian 361021, China
| | - Soheila J Maleki
- Agricultural Research Service, Southern Regional Research Center, U. S. Department of Agriculture , New Orleans, Louisiana 70124, United States
| | - Ming-Li Zhang
- Xiamen Second Hospital , Xiamen, Fujian 361021, China
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , Xiamen, Fujian 361021, China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , Xiamen, Fujian 361021, China
| | - Wen-Jin Su
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , Xiamen, Fujian 361021, China
| |
Collapse
|
46
|
Mousavi F, Majd A, Shahali Y, Ghahremaninejad F, Shokouhi Shoormasti R, Pourpak Z. Immunoproteomics of tree of heaven (Ailanthus atltissima) pollen allergens. J Proteomics 2016; 154:94-101. [PMID: 28041857 DOI: 10.1016/j.jprot.2016.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/30/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
Abstract
Ailanthus altissima pollen (AAP) is considered as an emerging cause of respiratory allergy in United States, Italy and Iran. However, the allergenic composition of AAP is still unknown and has yet to be characterized. The present study aimed to identify AAP allergens using a proteomics-based approach. For this purpose, optimized AAP protein extracts were analyzed using 1D- and 2D- gel electrophoresis and confronted to twenty sera from individuals with respiratory allergy during the AAP season. Candidate allergens were detected using the serum from an allergic patient with clinical history of AAP pollinosis. IgE-binding spots were identified using MALDI-TOF/TOF mass spectrometry and database searching. According to our results, AAP extracts were rich in proteins (up to 16.25mg/ml) with a molecular-weight distribution ranging from 10 to 175kDa. Two-D electrophoresis of AAP extracts revealed 125 protein spots from which 13 were IgE reactive. These IgE-binding proteins were identified as enolase, calreticulin, probable pectate lyase 6, conserved hypothetical protein and ras-related protein RHN1-like. By our knowledge, this study is the first report identifying AAP allergens. These findings will open up further avenues for the diagnosis and immunotherapy of the AAP allergy as well as for the cloning and molecular characterization of relevant allergens. BIOLOGICAL SIGNIFICANCE Ailanthus altissima colonizes new areas every year in Iran and is spreading aggressively worldwide. According to USDA, the tree of heaven is now present as an invasive plant in 30 states in US (www.invasivespeciesinfo.gov/plants/treeheaven.shtml) and come to dominate large areas in many regions. Up to now, several cases of allergy to A. altissima pollen have been reported in United States, Italy and Iran [1-4]. However, there is still no information on the sensitizing allergens and the molecular origin of these clinical symptoms, which constitutes a serious threat to patients suffering from respiratory allergies in these regions. To our knowledge, the current study describes, therefore, the first panel of proteins responsible for IgE-mediated A. altissima pollinosis by using a gel-based proteomic approach. This work represents the pioneer proteomic investigation on Simaroubaceae spp. and provides useful insights for further studies on the allergens of this widely distributed plant family.
Collapse
Affiliation(s)
- Fateme Mousavi
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ahmad Majd
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran; Department of Biology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Youcef Shahali
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Farrokh Ghahremaninejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Zahra Pourpak
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
The Ubiquitin Ligase Itch and Ubiquitination Regulate BFRF1-Mediated Nuclear Envelope Modification for Epstein-Barr Virus Maturation. J Virol 2016; 90:8994-9007. [PMID: 27466427 DOI: 10.1128/jvi.01235-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The cellular endosomal sorting complex required for transport (ESCRT) was recently found to mediate important morphogenesis processes at the nuclear envelope (NE). We previously showed that the Epstein-Barr virus (EBV) BFRF1 protein recruits the ESCRT-associated protein Alix to modulate NE structure and promote EBV nuclear egress. Here, we uncover new cellular factors and mechanisms involved in this process. BFRF1-induced NE vesicles are similar to those observed following EBV reactivation. BFRF1 is ubiquitinated, and elimination of possible ubiquitination by either lysine mutations or fusion of a deubiquitinase hampers NE-derived vesicle formation and virus maturation. While it interacts with multiple Nedd4-like ubiquitin ligases, BFRF1 preferentially binds Itch ligase. We show that Itch associates with Alix and BFRF1 and is required for BFRF1-induced NE vesicle formation. Our data demonstrate that Itch, ubiquitin, and Alix control the BFRF1-mediated modulation of the NE and EBV maturation, uncovering novel regulatory mechanisms of nuclear egress of viral nucleocapsids. IMPORTANCE The nuclear envelope (NE) of eukaryotic cells not only serves as a transverse scaffold for cellular processes, but also as a natural barrier for most DNA viruses that assemble their nucleocapsids in the nucleus. Previously, we showed that the cellular endosomal sorting complex required for transport (ESCRT) machinery is required for the nuclear egress of EBV. Here, we further report the molecular interplay among viral BFRF1, the ESCRT adaptor Alix, and the ubiquitin ligase Itch. We found that BFRF1-induced NE vesicles are similar to those observed following EBV reactivation. The lysine residues and the ubiquitination of BFRF1 regulate the formation of BFRF1-induced NE-derived vesicles and EBV maturation. During the process, a ubiquitin ligase, Itch, preferably associates with BFRF1 and is required for BFRF1-induced NE vesicle formation. Therefore, our data indicate that Itch, ubiquitin, and Alix control the BFRF1-mediated modulation of the NE, suggesting novel regulatory mechanisms for ESCRT-mediated NE modulation.
Collapse
|
48
|
Pedrosa M, Boyano-Martínez T, García-Ara C, Quirce S. Shellfish Allergy: a Comprehensive Review. Clin Rev Allergy Immunol 2016; 49:203-16. [PMID: 24870065 DOI: 10.1007/s12016-014-8429-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Shellfish allergy is of increasing concern, as its prevalence has risen in recent years. Many advances have been made in allergen characterization. B cell epitopes in the major allergen tropomyosin have been characterized. In addition to tropomyosin, arginine kinase, sarcoplasmic calcium-binding protein, and myosin light chain have recently been reported in shellfish. All are proteins that play a role in muscular contraction. Additional allergens such as hemocyanin have also been described. The effect of processing methods on these allergens has been studied, revealing thermal stability and resistance to peptic digestion in some cases. Modifications after Maillard reactions have also been addressed, although in some cases with conflicting results. In recent years, new hypoallergenic molecules have been developed, which constitute a new therapeutic approach to allergic disorders. A recombinant hypoallergenic tropomyosin has been developed, which opens a new avenue in the treatment of shellfish allergy. Cross-reactivity with species that are not closely related is common in shellfish-allergic patients, as many of shellfish allergens are widely distributed panallergens in invertebrates. Cross-reactivity with house dust mites is well known, but other species can also be involved in this phenomenon.
Collapse
Affiliation(s)
- María Pedrosa
- Allergy Department, Hospital La Paz Institute for Health Research (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Teresa Boyano-Martínez
- Allergy Department, Hospital La Paz Institute for Health Research (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Carmen García-Ara
- Allergy Department, Hospital La Paz Institute for Health Research (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Santiago Quirce
- Allergy Department, Hospital La Paz Institute for Health Research (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain
| |
Collapse
|
49
|
Pomés A, Chapman MD, Wünschmann S. Indoor Allergens and Allergic Respiratory Disease. Curr Allergy Asthma Rep 2016. [PMID: 27184001 DOI: 10.1007/s11882-016-0622-9.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to evaluate the most recent findings on indoor allergens and their impact on allergic diseases. RECENT FINDINGS Indoor allergens are present inside buildings (home, work environment, school), and given the chronic nature of the exposures, indoor allergies tend to be associated with the development of asthma. The most common indoor allergens are derived from dust mites, cockroaches, mammals (including wild rodents and pets), and fungi. The advent of molecular biology and proteomics has led to the identification, cloning, and expression of new indoor allergens, which have facilitated research to elucidate their role in allergic diseases. This review is an update on new allergens and their molecular features, together with the most recent reports on their avoidance for allergy prevention and their use for diagnosis and treatment. Research progress on indoor allergens will result in the development of new diagnostic tools and design of coherent strategies for immunotherapy.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA.
| | - Martin D Chapman
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| | - Sabina Wünschmann
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| |
Collapse
|
50
|
Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S, Aalberse RC, Agache I, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilò MB, Blank S, Bohle B, Bosshard PP, Breiteneder H, Brough HA, Caraballo L, Caubet JC, Crameri R, Davies JM, Douladiris N, Ebisawa M, EIgenmann PA, Fernandez-Rivas M, Ferreira F, Gadermaier G, Glatz M, Hamilton RG, Hawranek T, Hellings P, Hoffmann-Sommergruber K, Jakob T, Jappe U, Jutel M, Kamath SD, Knol EF, Korosec P, Kuehn A, Lack G, Lopata AL, Mäkelä M, Morisset M, Niederberger V, Nowak-Węgrzyn AH, Papadopoulos NG, Pastorello EA, Pauli G, Platts-Mills T, Posa D, Poulsen LK, Raulf M, Sastre J, Scala E, Schmid JM, Schmid-Grendelmeier P, van Hage M, van Ree R, Vieths S, Weber R, Wickman M, Muraro A, Ollert M. EAACI Molecular Allergology User's Guide. Pediatr Allergy Immunol 2016; 27 Suppl 23:1-250. [PMID: 27288833 DOI: 10.1111/pai.12563] [Citation(s) in RCA: 535] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The availability of allergen molecules ('components') from several protein families has advanced our understanding of immunoglobulin E (IgE)-mediated responses and enabled 'component-resolved diagnosis' (CRD). The European Academy of Allergy and Clinical Immunology (EAACI) Molecular Allergology User's Guide (MAUG) provides comprehensive information on important allergens and describes the diagnostic options using CRD. Part A of the EAACI MAUG introduces allergen molecules, families, composition of extracts, databases, and diagnostic IgE, skin, and basophil tests. Singleplex and multiplex IgE assays with components improve both sensitivity for low-abundance allergens and analytical specificity; IgE to individual allergens can yield information on clinical risks and distinguish cross-reactivity from true primary sensitization. Part B discusses the clinical and molecular aspects of IgE-mediated allergies to foods (including nuts, seeds, legumes, fruits, vegetables, cereal grains, milk, egg, meat, fish, and shellfish), inhalants (pollen, mold spores, mites, and animal dander), and Hymenoptera venom. Diagnostic algorithms and short case histories provide useful information for the clinical workup of allergic individuals targeted for CRD. Part C covers protein families containing ubiquitous, highly cross-reactive panallergens from plant (lipid transfer proteins, polcalcins, PR-10, profilins) and animal sources (lipocalins, parvalbumins, serum albumins, tropomyosins) and explains their diagnostic and clinical utility. Part D lists 100 important allergen molecules. In conclusion, IgE-mediated reactions and allergic diseases, including allergic rhinoconjunctivitis, asthma, food reactions, and insect sting reactions, are discussed from a novel molecular perspective. The EAACI MAUG documents the rapid progression of molecular allergology from basic research to its integration into clinical practice, a quantum leap in the management of allergic patients.
Collapse
Affiliation(s)
- P M Matricardi
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - J Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic Ackermann, Hanf, & Kleine-Tebbe, Berlin, Germany
| | - H J Hoffmann
- Department of Respiratory Diseases and Allergy, Institute of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - R Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - C Hilger
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - S Hofmaier
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - R C Aalberse
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - I Agache
- Department of Allergy and Clinical Immunology, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - R Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - B Ballmer-Weber
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - D Barber
- IMMA-School of Medicine, University CEU San Pablo, Madrid, Spain
| | - K Beyer
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - T Biedermann
- Department of Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - M B Bilò
- Allergy Unit, Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Ancona, Italy
| | - S Blank
- Center of Allergy and Environment (ZAUM), Helmholtz Center Munich, Technical University of Munich, Munich, Germany
| | - B Bohle
- Division of Experimental Allergology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - P P Bosshard
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - H Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - H A Brough
- Paediatric Allergy, Department of Asthma, Allergy and Respiratory Science, King's College London, Guys' Hospital, London, UK
| | - L Caraballo
- Institute for Immunological Research, The University of Cartagena, Cartagena de Indias, Colombia
| | - J C Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - R Crameri
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland
| | - J M Davies
- School of Biomedical Sciences, Institute of Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - N Douladiris
- Allergy Unit, 2nd Paediatric Clinic, National & Kapodistrian University, Athens, Greece
| | - M Ebisawa
- Department of Allergy, Clinical Research Center for Allergology and Rheumatology, Sagamihara National Hospital, Kanagawa, Japan
| | - P A EIgenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - M Fernandez-Rivas
- Allergy Department, Hospital Clinico San Carlos IdISSC, Madrid, Spain
| | - F Ferreira
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - G Gadermaier
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - M Glatz
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - R G Hamilton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T Hawranek
- Department of Dermatology, Paracelsus Private Medical University, Salzburg, Austria
| | - P Hellings
- Department of Otorhinolaryngology, Academic Medical Center (AMC), Amsterdam, The Netherlands
- Department of Otorhinolaryngology, University Hospitals Leuven, Leuven, Belgium
| | - K Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - T Jakob
- Department of Dermatology and Allergology, University Medical Center Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany
| | - U Jappe
- Division of Clinical and Molecular Allergology, Research Centre Borstel, Airway Research Centre North (ARCN), Member of the German Centre for Lung Research (DZL), Borstel, Germany
- Interdisciplinary Allergy Division, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - M Jutel
- Department of Clinical Immunology, 'ALL-MED' Medical Research Institute, Wrocław Medical University, Wrocław, Poland
| | - S D Kamath
- Molecular Allergy Research Laboratory, Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville City, Qld, Australia
| | - E F Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Korosec
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - A Kuehn
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - G Lack
- King's College London, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
- Division of Asthma, Allergy and Lung Biology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - A L Lopata
- Department of Clinical Immunology, 'ALL-MED' Medical Research Institute, Wrocław Medical University, Wrocław, Poland
| | - M Mäkelä
- Skin and Allergy Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - M Morisset
- National Service of Immuno-Allergology, Centre Hospitalier Luxembourg (CHL), Luxembourg, UK
| | - V Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - A H Nowak-Węgrzyn
- Pediatric Allergy and Immunology, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N G Papadopoulos
- Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - E A Pastorello
- Unit of Allergology and Immunology, Niguarda Ca' Granda Hospital, Milan, Italy
| | - G Pauli
- Service de Pneumologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - T Platts-Mills
- Department of Microbiology & Immunology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - D Posa
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - L K Poulsen
- Allergy Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - M Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-University Bochum (IPA), Bochum, Germany
| | - J Sastre
- Allergy Division, Fundación Jimenez Díaz, Madrid, Spain
| | - E Scala
- Experimental Allergy Unit, IDI-IRCCS, Rome, Italy
| | - J M Schmid
- Department of Respiratory Diseases and Allergy, Institute of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - P Schmid-Grendelmeier
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - M van Hage
- Department of Medicine Solna, Clinical Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - R van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Vieths
- Department of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - R Weber
- School of Medicine, University of Colorado, Denver, CO, USA
- Department of Medicine, National Jewish Health Service, Denver, CO, USA
| | - M Wickman
- Sachs' Children's Hospital, Karolinska Institutet, Stockholm, Sweden
| | - A Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, Department of Mother and Child Health, University of Padua, Padua, Italy
| | - M Ollert
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| |
Collapse
|