1
|
Zhao L, Zhang J, Wang L, Qin Y, Liu Y, Li M, Wang X, Zhang Q, Liu H, Dong S. Hepatotoxic effect of DEP in zebrafish is via oxidative stress, genotoxicity, and modulation of molecular pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125891. [PMID: 39986561 DOI: 10.1016/j.envpol.2025.125891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Diethyl phthalate (DEP) is a commonly used phthalate ester (PAE) plasticizer known for its excellent plasticity and flexibility. Environmental exposure to DEP may have adverse effects on human health. Currently, few studies have focused on the specific effects and mechanisms on aquatic organisms. This study investigated the effects of oxidative stress effects and genotoxicity of DEP on zebrafish liver, as well as molecular interactions with antioxidant enzymes both in vitro and in vivo. The results revealed that exposure to DEP led to changes in the activity of antioxidant enzymes, which may be due to changes in the structure and conformation of antioxidant enzymes induced by DEP. This disruption of redox homeostasis in the liver of adult zebrafish led to oxidative stress, resulting in oxidative damage and genotoxicity in tissues. These damages did not exhibit concentration or time dependence, as indicated by integrated biomarker response (IBR) analysis for zebrafish. This study established a rapid and effective ecological risk assessment model to evaluate the biological toxicity of DEP through animal and molecular experiments, which could provide technical support for the risk management of DEP and the formulation of scientific and rational management strategies. Additionally, it may serve as a scientific reference for preventing and treating diseases caused by DEP.
Collapse
Affiliation(s)
- Lining Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Jing Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Linyu Wang
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering & Material, Handan University, Handan, 056005, China
| | - Yiming Qin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Yue Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Meiyu Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Xiaobo Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Qing Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Huan Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Sijun Dong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China.
| |
Collapse
|
2
|
Tahir R, Samra, Afzal F, Liang J, Yang S. Novel protective aspects of dietary polyphenols against pesticidal toxicity and its prospective application in rice-fish mode: A Review. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109418. [PMID: 38301811 DOI: 10.1016/j.fsi.2024.109418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Ji Liang
- School of Humanities, Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
3
|
Üremiş MM, Gültekin S, Üremiş N, Şafak T, Çiğremiş Y, Gül M, Aydin M, Zayman E, Türköz Y. Protective role of vitamin E against acrylamide-induced testicular toxicity from pregnancy to adulthood: insights into oxidative stress and aromatase regulation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:829-841. [PMID: 37515736 DOI: 10.1007/s00210-023-02638-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
Acrylamide (ACR) is a toxic chemical frequently encountered in daily life, posing health risks. This study aimed to elucidate the molecular-level mechanism of ACR's toxic effects on testicles and investigate whether Vitamin E can mitigate these effects. A total of 40 adult pregnant rats were utilized, divided into four groups: Control, ACR, Vitamin E, and ACR + Vitamin E. ACR and Vitamin E were administered to the mother rats during pregnancy and lactation, and to the male offspring until the 8th week post-birth. Serum hormone levels, oxidant-antioxidant parameters, histopathological examination of testicular tissue, and mRNA and protein levels of the testicular and liver aromatase gene were analyzed. Spermiogram analysis was conducted on the collected sperm samples from the male offspring. The results revealed that ACR exposure adversely affected hormone levels, oxidant-antioxidant parameters, histological findings, as well as aromatase gene and protein expressions. However, Vitamin E administration effectively prevented the toxic effects of ACR. These findings demonstrate that ACR application significantly impairs the reproductive performance of male offspring rats by increasing liver aromatase activity.
Collapse
Affiliation(s)
- Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Sevinç Gültekin
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Nuray Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Tarık Şafak
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Yılmaz Çiğremiş
- Department of Medical Biology and Genetics, Medical Faculty, Inonu University, Malatya, Turkey
| | - Mehmet Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Muhterem Aydin
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Emrah Zayman
- Department of Histology and Embryology, Medical Faculty, Malatya Turgut Özal University, Malatya, Türkiye
| | - Yusuf Türköz
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey.
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey.
| |
Collapse
|
4
|
Korkmaz N, Uğurer O, Örün İ. Toxic effects of the synthetic pyrethroid permethrin on the hematological parameters and antioxidant enzyme systems of the freshwater fish Cyprinus carpio L. ECOTOXICOLOGY (LONDON, ENGLAND) 2023:10.1007/s10646-023-02675-2. [PMID: 37300635 DOI: 10.1007/s10646-023-02675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
This study investigated changes in hematological and antioxidant parameters of carp exposed to two different doses of synthetic pyrethroid permethrin (control, vehicle, 10 ppm, and 20 ppm) for two different periods (4 days and 21 days). Hematological analyses were then performed on a veterinary Ms4 (Melet Schloesing, France) blood counter using commercially available kits (Cat. No. WD1153). Buege and Aust for MDA, Luck for CAT, McCord and Frivovich for SOD, Lawrence and Burk methods for GSH-Px were used to determine antioxidant parameters. Decreases in RBC count, Hb amount, Hct value, granulocyte ratios, and increases in total WBC and lymphocyte ratios were statistically significant in both dose groups treated with permethrin compared to the control group (p < 0.05). However, there was no statistically significant difference in monocyte ratios (p > 0.05). Overall, permethrin exposure caused an increase in MDA levels in the liver and gill tissues of carp in both dose and duration groups compared to the control group. Also, no statistically significant difference between the two dose groups in the liver tissue was observed in terms of duration (p > 0.05). Nonetheless, the increase in MDA levels in PERM10 and PERM20 dose groups in the gill tissues over 21 days was statistically significant (p < 0.05). Furthermore, permethrin exposure increased CAT, SOD, and GSH-Px enzyme activities in the gill tissue, while impacting in the opposite direction the liver tissue. Finally, regarding MDA, CAT, SOD, and GSH-Px levels, the control, and control acetone dose groups of all experimental groups were observed to be similar (p > 0.05). As a result, permethrin produced a toxic effect on Cyprinus carpio, triggering changes in blood parameters and inducing the antioxidant enzyme system.
Collapse
Affiliation(s)
- Nuh Korkmaz
- Department of Biology, Faculty of Arts and Sciences, Osmaniye Korkut Ata University, Osmaniye, Turkey.
| | - Orhan Uğurer
- Department of Biology, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| | - İbrahim Örün
- Department of Biology, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| |
Collapse
|
5
|
Li MZ, Zhao Y, Dai XY, Talukder M, Li JL. Lycopene ameliorates DEHP exposure-induced renal pyroptosis through the Nrf2/Keap-1/NLRP3/Caspase-1 axis. J Nutr Biochem 2023; 113:109266. [PMID: 36610486 DOI: 10.1016/j.jnutbio.2022.109266] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is commonly used as a plasticizer in plastic products, and due to its unique chemical composition, it frequently dissolves and enters the environment. Lycopene as a natural carotenoid has been shown to have powerful antioxidant capacity and strong kidney protection. This study aimed to investigate the role of the interplay between oxidative stress and the classical pyroptosis pathway in LYC alleviating DEHP-induced renal injury. ICR mice were given DEHP (500 mg/kg/d or 1000 mg/kg/d) and/or LYC (5 mg/kg/d) for 28 days to explore the underlying mechanisms of this hypothesis. Our results indicated that DEHP caused the shedding of renal tubular epithelial cells, increased the content of kidney injury molecule-1 (Kim-1) and neutrophil gelatinase-associated lipocalin (NGAL) in the tissue, the decrease of antioxidant activity markers and the increase of oxidative stress indexes. It is gratifying that LYC alleviates DEHP-induced renal injury. The expression of nuclear factor erythrocyte 2-related factor 2 (Nrf2) and its downstream target genes is improved in DEHP induced renal injury through LYC mediated protection. Meanwhile, LYC supplementation can inhibit DEHP-induced Caspase-1/NLRP3-dependent pyroptosis and inflammatory responses. Taken together, DEHP administration resulted in nephrotoxicity, but these changes ameliorated by LYC may through crosstalk between the Nrf2/Keap-1/NLRP3/Caspase-1 pathway. Our study provides new evidence that LYC protects against kidney injury caused by DEHP.
Collapse
Affiliation(s)
- Mu-Zi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China
| | - Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barisha, Bangladesh
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, Heilong Jiang, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China.
| |
Collapse
|
6
|
Wang Y, Wang D, Yin K, Liu Y, Lu H, Zhao H, Xing M. Lycopene attenuates oxidative stress, inflammation, and apoptosis by modulating Nrf2/NF-κB balance in sulfamethoxazole-induced neurotoxicity in grass carp (Ctenopharyngodon Idella). FISH & SHELLFISH IMMUNOLOGY 2022; 121:322-331. [PMID: 35032680 DOI: 10.1016/j.fsi.2022.01.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
All drugs that can penetrate the blood-brain barrier (BBB) may lead to mental state changes, including the widely used anti-infective drug sulfamethoxazole (SMZ). Herein, we investigated whether lycopene (LYC) could ameliorate SMZ-induced brain injury and the postulated mechanisms involved. A total of 120 grass carps were exposed under SMZ (0.3 μg/L, waterborne) or LYC (10 mg/kg fish weight, diet) or their combination for 30 days. Firstly, brain injury induced by SMZ exposure was suggested by the damage of BBB (decreases of Claudins, Occludin and Zonula Occludens), and the decrease of neurotransmitter activity (AChE). Through inducing oxidative stress (elevations of malondialdehyde and 8-hydroxy-2 deoxyguanosine, inhibition of glutathione), SMZ increased the intra-nuclear level of NF-κB and its target genes (TNF-α and interleukins), creating an inflammatory microenvironment. As a positive feed-back mechanism, apoptosis begins with activation of pro-death proteins (Bax/Bcl-2) and activation of caspases (caspase-9 and caspase-3). Meanwhile, a compensatory upregulation of constitutive Nrf2 and its downstream antioxidative gene expression (NAD(P)H Quinone Dehydrogenase 1 and Heme oxygenase 1) and accelerated autophagy (increases of autophagy-related genes and p62 inhibition) were activated as a defense mechanism. Intriguingly, under SMZ stress, LYC co-administration decreased NF-κB/apoptosis cascades and restored Nrf2/autophagy levels. The neuroprotective roles of LYC make this natural compound a valuable agent for prevention SMZ stress in environment. This study suggests that LYC might be developed as a potential candidate for alleviating environmental SMZ stress in aquaculture.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
7
|
Is the Synthetic Fungicide Fosetyl-Al Safe for the Ecotoxicological Models Danio rerio and Enchytraeus crypticus? APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Worldwide, pesticides have contaminated the environment, affecting non-target species. The aim of this work was to evaluate the effects of fosetyl-Al (FOS) on model organisms. Based on the 3 Rs for animal research and described guidelines, the OECD 236 and 220 were applied with some modifications. The FOS test concentrations were 0.02–0.2–2–20–200 mg/L for Danio rerio and 250–500–750–1000–1250 mg/kg for Enchytraeus crypticus. Besides the standard endpoints, additional endpoints were evaluated (D. rerio: behavior and biochemical responses; E. crypticus: extension of exposure duration (28 d (days) + 28 d) and organisms’ sizes). For D. rerio, after 96 h (h), hatching was inhibited (200 mg/L), proteins’ content increased (2 and 20 mg/L), lipids’ content decreased (2 mg/L), glutathione S-transferase activity increased (2 mg/L), and, after 120 h, larvae distance swam increased (20 mg/L). For E. crypticus, after 28 d, almost all the tested concentrations enlarged the organisms’ sizes and, after 56 d, 1250 mg/kg decreased the reproduction. In general, alterations in the organisms’ biochemical responses, behavior, and growth occurred at lower concentrations than the effects observed at the standard endpoints. This ecotoxicological assessment showed that FOS may not be considered safe for the tested species, only at higher concentrations than the predicted environmental concentrations (PECs). This research highlighted the importance of a multi-endpoint approach to assess the (eco)toxic effects of the contaminants.
Collapse
|
8
|
Zhao H, Wang Y, Mu M, Guo M, Yu H, Xing M. Lycopene alleviates sulfamethoxazole-induced hepatotoxicity in grass carp ( Ctenopharyngodon idellus) via suppression of oxidative stress, inflammation and apoptosis. Food Funct 2021; 11:8547-8559. [PMID: 33026005 DOI: 10.1039/d0fo01638a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antibiotics are used worldwide to treat diseases in humans and other animals; most of them and their secondary metabolites are discharged into the aquatic environment, posing a serious threat to human health. However, the toxicity of antibiotics on aquatic organisms, especially the effects on the detoxification system and immune system, has not been thoroughly studied. Lycopene (LYC) is a naturally occurring hydrocarbon carotenoid, which has received extensive attention as a potential antioxidant. The aim of this study was to investigate whether LYC alleviates exogenous toxicity in carp induced by sulfamethoxazole (SMZ) and the underlying molecular mechanisms. The grass carp were treated with SMZ (0.3 μg L-1) and/or LYC (10 mg per kg body weight) for 30 days. Indexes, such as hepatic function-related including histopathological changes and biochemical parameters, detoxification system-related including the cytochrome P450 enzyme system and antioxidant system, and immune system-related including inflammatory and apoptosis processes were detected. The results showed that SMZ stress leads to significant pathological damage of the liver and induction of oxidative stress. LYC coadministration recovered the cytochrome p450-1A1 homeostasis and decreased SMZ-induced accumulation of intracellular reactive oxygen species (ROS). Mechanistically, indicators in the innate immune system (such as toll like receptors (TLRs), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and IL-8) and the apoptosis pathway (p53, PUMA, B-cell lymphoma-2 (Bcl-2), BCL2-associated X (Bax), and Caspase-9/3) disclosed adaptive activation under SMZ exposure; these anomalies returned to normal or close-to-normal levels after LYC coadministration. Therefore, LYC dietary supplement possesses liver protective function against exogenous toxic compounds like SMZ, making LYC a functional aquatic feed ingredient for aquiculture.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Hongxian Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
9
|
Shameema K, Anand PP, Vardhanan YS. Protective effect of Catharanthus roseus plant extracts against endosulfan and its isomers induced impacts on non-targeted insect model, Drosophila melanogaster and live brain cell imaging. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108916. [PMID: 33141080 DOI: 10.1016/j.cbpc.2020.108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
Endosulfan has been recognized as a highly controversial pesticide due to its acute toxicity, potential bioaccumulation, persistency, and long-range atmospheric transport. Several plant extracts act as antioxidant agents against wide-range of pesticide toxicity hazards through the free radicals scavenging properties. Plants' secondary metabolites are considered as efficient protective agents against various cellular toxic injuries. Understanding these properties of botanicals, several researchers currently focused on the detoxification and ameliorative potency of plant extracts against highly toxic chemicals. In our studies, we focused on the endosulfan total and its isomers (alpha and beta) induced changes on Drosophila melanogaster and their ameliorative effects by co-administrated with methanolic and aqueous extracts of Catharanthus roseus whole plant. We selected the 1/5th EC50 concentration of alpha-endosulfan, beta-endosulfan, and endosulfan (total) and co-administrated with 1/50th EC50 concentration of aqueous and methanolic extracts and evaluated their ameliorative effects, in terms of verifying the life stage activities, protein profiling and also by using live brain cells imaging. We finally concluded that, the methanolic and aqueous extracts inhibit the toxic impacts caused by endosulfan and its isomers and also increasing the survival rate of the test organism.
Collapse
Affiliation(s)
- K Shameema
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Kerala 673 635, India
| | - P P Anand
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Kerala 673 635, India
| | - Y Shibu Vardhanan
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Kerala 673 635, India.
| |
Collapse
|
10
|
Félix F, Oliveira CCV, Cabrita E. Antioxidants in Fish Sperm and the Potential Role of Melatonin. Antioxidants (Basel) 2020; 10:E36. [PMID: 33396234 PMCID: PMC7824569 DOI: 10.3390/antiox10010036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/30/2022] Open
Abstract
In recent years, the effects of novel antioxidants have played an important role in the research focusing on fish cell protection. As food demand grows, aquaculture production becomes more intensive, and fish are more exposed to oxidative stress conditions, like high densities, temperature shifting, frequent fish handling and samplings, and prophylactic or disease treatments, which expose fish to a different environment. Particularly in reproduction, germ cells lose antioxidant capacity with spermatogenesis, as spermatozoa are more prone to oxidative stress. Antioxidants have been used in a variety of fish physiological problems including in reproduction and in the establishment of cryopreservation protocols. From the most used antioxidants to natural plant food and herbs, and endogenously produced antioxidants, like melatonin, a review of the literature available in terms of their effects on the protection of fish spermatozoa is presented here in a classified structure. Several direct and indirect approaches to improve gamete quality using antioxidants administration are mentioned (through feed supplementation or by adding in cryopreservation media), as well as factors affecting the efficiency of these molecules and their mechanisms of action. Special attention is given to the unclear melatonin pathway and its potential scavenger activity to prevent and counteract oxidative stress damage on fish spermatozoa.
Collapse
Affiliation(s)
| | - Catarina C. V. Oliveira
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus Gambelas, 8005-139 Faro, Portugal;
| | - Elsa Cabrita
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus Gambelas, 8005-139 Faro, Portugal;
| |
Collapse
|
11
|
Khafaga AF, Naiel MAE, Dawood MAO, Abdel-Latif HMR. Dietary Origanum vulgare essential oil attenuates cypermethrin-induced biochemical changes, oxidative stress, histopathological alterations, apoptosis, and reduces DNA damage in Common carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105624. [PMID: 32947072 DOI: 10.1016/j.aquatox.2020.105624] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The study was designed to evaluate the possible protective roles of dietary Origanum vulgare essential oil (OVEO) against cypermethrin (CP)-induced serum biochemical changes and oxidative stress of common carp (Cyprinus carpio). Moreover, histopathological alterations, apoptosis, cell proliferation, and DNA damage in the gills and hepatic tissues were also assessed. Briefly, fish were allotted into six groups with three triplicates whereas a group fed on basal diet and did not exposed to CP and served as control (CTR), two groups were fed on diets supplemented with two levels of OVEO (0.5 % and 1.0 %), a group exposed to sub-lethal concentration of CP (1/10 of 96 h-LC50 = 0.4134 μg/L), and two other groups exposed to the same concentration of CP and fed on diets supplemented with both levels of OVEO (CP + 0.5 % OVEO, and CP + 1.0 % OVEO), respectively, for 30 days. CP induced significant elevation of serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), urea, and creatinine levels indicating hepato-renal toxicity (P < 0.05). Besides, there was a significant decrease in serum catalase (CAT) and superoxide dismutase (SOD) activities (P < 0.05). Moreover, CP induced significant histopathologic alterations in gills, anterior kidneys, and hepatic tissues with activation of apoptosis (Caspase-3) and proliferating cell nuclear antigen (PCNA). Comet assay demonstrated significant DNA damage in gills and liver tissues of the CP-exposed group. Interestingly, a significant attenuation of serum ALT, AST, ALP, urea, creatinine, CAT, and SOD levels (P < 0.05) was noticed in CP-exposed fish and concurrently fed diets supplemented with either 0.5 % or 1.0 % OVEO. Moreover, histopathologic alterations and apoptosis were significantly reduced along with a concomitant significant decrease in DNA damage (P < 0.05) which indicated the mitigation of DNA damage. Conclusively, the study showed that OVEO is an effective counteractive treatment against CP-induced damage in exposed common carp and is recommended during the formulation of fish rations.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Behera Province, Egypt
| | - Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Behera Province, Egypt.
| |
Collapse
|
12
|
Molecular analysis and bioinformatic characterization of cooper, zinc-superoxide dismutase (Cu/Zn-sod) gene of Caiman latirostris. Mol Biol Rep 2020; 47:8849-8857. [DOI: 10.1007/s11033-020-05937-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023]
|
13
|
Atlante A, Amadoro G, Bobba A, Latina V. Functional Foods: An Approach to Modulate Molecular Mechanisms of Alzheimer's Disease. Cells 2020; 9:E2347. [PMID: 33114170 PMCID: PMC7690784 DOI: 10.3390/cells9112347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
A new epoch is emerging with intense research on nutraceuticals, i.e., "food or food product that provides medical or health benefits including the prevention and treatment of diseases", such as Alzheimer's disease. Nutraceuticals act at different biochemical and metabolic levels and much evidence shows their neuroprotective effects; in particular, they are able to provide protection against mitochondrial damage, oxidative stress, toxicity of β-amyloid and Tau and cell death. They have been shown to influence the composition of the intestinal microbiota significantly contributing to the discovery that differential microorganisms composition is associated with the formation and aggregation of cerebral toxic proteins. Further, the routes of interaction between epigenetic mechanisms and the microbiota-gut-brain axis have been elucidated, thus establishing a modulatory role of diet-induced epigenetic changes of gut microbiota in shaping the brain. This review examines recent scientific literature addressing the beneficial effects of some natural products for which mechanistic evidence to prevent or slowdown AD are available. Even if the road is still long, the results are already exceptional.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| | - Antonella Bobba
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| |
Collapse
|
14
|
Liu B, Yan L, Jiao X, Sun X, Zhao Z, Yan J, Guo M, Zang Y. Lycopene Alleviates Hepatic Hypoxia/Reoxygenation Injury Through Nrf2/HO-1 Pathway in AML12 Cell. J Interferon Cytokine Res 2020; 40:406-417. [PMID: 32813603 DOI: 10.1089/jir.2020.0038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Bing Liu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lihong Yan
- The Library of the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xuefei Jiao
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaozhi Sun
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zonggang Zhao
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Junwei Yan
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mingjin Guo
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yunjin Zang
- Institute of Transplantation Science, Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
15
|
Yang C, Lim W, Song G. Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comp Biochem Physiol C Toxicol Pharmacol 2020; 234:108758. [PMID: 32289527 DOI: 10.1016/j.cbpc.2020.108758] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
Organophosphate and organochlorine pesticides are banned in most countries because they cause high toxicity and bioaccumulation in non-target organisms. Pyrethroid pesticides have been applied to agriculture and aquaculture since the 1970s to replace traditional pesticides. However, pyrethroids are approximately 1000 times more toxic to fish than to mammals and birds. Fish-specific organs such as the gills and their late metabolic action against this type of pesticide make fish highly susceptible to the toxicity of pyrethroid pesticides. Oxidative stress plays an important role in the neurological, reproductive, and developmental toxicity caused by pyrethroids. Deltamethrin, cypermethrin, and lambda-cyhalothrin are representative pyrethroid pesticides that induce oxidative stress in tissues such as the gills, liver, and muscles of fish and cause histopathological changes. Although they are observed in low concentrations in aquatic environments such as rivers, lakes, and surface water they induce DNA damage and apoptosis in fish. Pyrethroid pesticides cause ROS-mediated oxidative stress in fish species including carp, tilapia, and trout. They also cause lipid peroxidation and alter the state of DNA, proteins, and lipids in the cells of fish. Moreover, changes in antioxidant enzyme activity following pyrethroid pesticide exposure make fish more susceptible to oxidative stress caused by environmental pollutants. In this review, we examine the occurrence of pyrethroid pesticides in the aquatic environment and oxidative stress-induced toxicity in fish exposed to pyrethroids.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
16
|
Shan YX, Zhu Y, Li JJ, Wang NM, Yu QT, Xue CB. Acute lethal and sublethal effects of four insecticides on the lacewing (Chrysoperla sinica Tjeder). CHEMOSPHERE 2020; 250:126321. [PMID: 32135440 DOI: 10.1016/j.chemosphere.2020.126321] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
The lacewing, Chrysoperla sinica, is an important predatory insect, which plays an important role in the integrated pest management of agroforestry pests. However, the extensive use of insecticides negatively affects C. sinica. The acute toxicity, risk level, and, sublethal effects on growth and production, predation ability, protective enzyme activity and genotoxicity of four insecticides: indoxacarb, emamectin benzoate, imidacloprid and lambda-cyhalothrin to C. sinica were studied. The results showed that all four insecticides had lethal toxicity to larvae of C. sinica. Among them, emamectin benzoate had the highest toxicity with LC50 value of 7.41 mg/L. The insecticides also had different effects on the growth and reproduction of C. sinica, of which lambda-cyhalothrin had the greatest impacts. Even at a very low LC1 concentration (3.37 mg/L), it had strong impacts on the growth, reproduction and predatory ability of C. sinica. The four insecticides also caused a decrease in the predatory ability of the lacewing, of which lambda-cyhalothrin had the greatest effect. During the larval stage, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were significantly decreased by the four insecticides. At the pupal and adult stages, the effects of the four insecticides on the activities of protective enzymes were different, and the activities of SOD, CAT and POD decreased or increased. Indoxacarb and lambda-cyhalothrin exposure induced DNA damage in the haemocytes of C. sinica and produced obvious genotoxicity. These results provide important scientific basis for the rational use of these insecticides and the protection and utilization of lacewing.
Collapse
Affiliation(s)
- Yin-Xue Shan
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yang Zhu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Jing-Jing Li
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Nian-Meng Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Qi-Tong Yu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Chao-Bin Xue
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
17
|
Ibrahim MA, Ibrahem MD. Acrylamide-induced hematotoxicity, oxidative stress, and DNA damage in liver, kidney, and brain of catfish (Clarias gariepinus). ENVIRONMENTAL TOXICOLOGY 2020; 35:300-308. [PMID: 31675142 DOI: 10.1002/tox.22863] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/28/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
This study was carried out to explore the possible deleterious impacts of acrylamide (ACR) on catfish (Clarias gariepinus). The estimation of mortalities, the examination of the clinical picture, the evaluation of blood parameters, oxidative stress, DNA damage, and the histopathological picture were performed in the liver, kidney, and brain samples of the experimentally ACR-exposed catfish. The 96 hours LC50 value was estimated to be 133 mg/L by the hydrostatic method. Fish were reared in water containing four different concentrations of ACR as follows: 20%, 40%, 60%, and 80% of the estimated LC50 for 2 weeks. Abnormal behavioral, clinical, and postmortem responses were depicted. The anemic response including significant decreases in red blood cells, hemoglobin, and packed cell volume following the ascending concentrations of ACR were recorded. The malondialdehyde was significantly increased, whereas reduced glutathione level, superoxide dismutase, and total antioxidant capacity were significantly decreased. The DNA fragmentation assay illustrated a clear laddering pattern in all the tested organs. Notably, the brain was the most influenced organ. It is presumed that ACR contamination showed adverse impacts on the catfish.
Collapse
Affiliation(s)
- Marwa A Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Mai D Ibrahem
- Department of Public health, Faculty of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
18
|
Qiu S, Fu H, Zhou R, Yang Z, Bai G, Shi B. Toxic effects of glyphosate on intestinal morphology, antioxidant capacity and barrier function in weaned piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109846. [PMID: 31677563 DOI: 10.1016/j.ecoenv.2019.109846] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
At present, the public is paying more attention to the adverse effects of pesticides on human and animal health and the environment. Glyphosate is a broad-spectrum pesticide that is widely used in agricultural production. In this manuscript, the effects of diets containing glyphosate on intestinal morphology, intestinal immune factors, intestinal antioxidant capacity and the mRNA expression associated with the Nrf2 signaling pathway were investigated in weaned piglets. Twenty-eight healthy female hybrid weaned piglets (Duroc × Landrace × Yorkshire) were randomly selected with an average weight of 12.24 ± 0.61 kg. Weaned piglets were randomly assigned into 4 treatment groups and fed a basal diet supplemented with 0, 10, 20, and 40 mg/kg glyphosate for a 35-day feeding trial. We found that glyphosate had no effect on intestinal morphology. In the duodenum, glyphosate increased the activities of CAT and SOD (linear, P < 0.05) and increased the levels of MDA (linear and quadratic, P < 0.05). In the duodenum, glyphosate remarkably increased the relative mRNA expression levels of Nrf2 (linear and quadratic, P < 0.05) and NQO1 (linear and quadratic, P < 0.05) and reduced the relative mRNA expression levels of GPx1, HO-1 and GCLM (linear and quadratic, P < 0.05). In the jejunum, glyphosate remarkably increased the relative mRNA expression levels of Nrf2 (linear and quadratic, P < 0.05) and decreased the relative mRNA expression levels of GCLM (linear and quadratic, P < 0.05). Glyphosate increased the mRNA expression levels of IL-6 in the duodenum (linear and quadratic, P < 0.05) and the mRNA expression levels of IL-6 in the jejunum (linear, P < 0.05). Glyphosate increased the mRNA expression of NF-κB in the jejunum (linear, P = 0.05). Additionally, the results demonstrated that glyphosate linearly decreased the ZO-1 mRNA expression levels in the jejunum and the mRNA expression of claudin-1 in the duodenum (P < 0.05). In the duodenum, glyphosate increased the protein expression levels of Nrf2 (linear, P = 0.025). Overall, glyphosate exposure may result in oxidative stress in the intestines of piglets, which can be alleviated by enhancing the activities of antioxidant enzymes and self-detoxification.
Collapse
Affiliation(s)
- Shengnan Qiu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huiyang Fu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ruiying Zhou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zheng Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guangdong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
19
|
Kayis T, Altun M, Coskun M. Thiamethoxam-mediated alteration in multi-biomarkers of a model organism, Galleria mellonella L. (Lepidoptera: Pyralidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36623-36633. [PMID: 31732954 DOI: 10.1007/s11356-019-06810-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Thiamethoxam (TMX), a second-generation neonicotinoid, is extensively used to control numerous pests that infest crops. We investigated the effects of TMX (10, 20, 30, 40, and 50 μg/mL for 24, 48, 72, and 96 h) on biomarkers such as antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)); malondialdehyde (MDA), protein, lipid, and carbohydrate levels; micronucleus formation; and total hemocyte count in a model organism, Galleria mellonella L. SOD and CAT activities significantly decreased after 72 and 96 h of treatment at all TMX concentrations compared with control. MDA level increased following treatment with all TMX doses, with the exception of that following treatment with the lowest dose (10 μg/mL) at all tested treatment durations. Lipid and carbohydrate levels significantly decreased following treatment with high doses of TMX (40 and 50 μg/mL) after 48, 72, and 96 h. Micronucleated cell number significantly increased following treatment with all TMX doses at all tested treatment durations, except with 10 μg/mL of TMX for 24 h, when compared with control. During the first 72 h, total hemocyte count significantly decreased following treatment with 20-, 30-, 40-, and 50-μg/mL TMX; however, it was significantly reduced at all doses of TMX after 96 h. These results suggest that TMX can induce immunotoxicity, oxidative stress, and genotoxicity in a potential target and also in the model organism, G. mellonella. In addition, our study provides additional information regarding the prospective toxic effects of TMX.
Collapse
Affiliation(s)
- Tamer Kayis
- Faculty of Science and Letters, Department of Biology, Adiyaman University, 02040, Adiyaman, Turkey.
| | - Murat Altun
- Institutes of Natural and Applied Sciences, Adiyaman University, 02040, Adiyaman, Turkey
| | - Mustafa Coskun
- Faculty of Science and Letters, Department of Biology, Adiyaman University, 02040, Adiyaman, Turkey
| |
Collapse
|
20
|
Özok N. Effects of cypermethrin on antioxidant enzymes and lipid peroxidation of Lake Van fish (Alburnus tarichi). Drug Chem Toxicol 2019; 43:51-56. [DOI: 10.1080/01480545.2019.1660363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Necati Özok
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
21
|
Abdel-Daim MM, Eissa IAM, Abdeen A, Abdel-Latif HMR, Ismail M, Dawood MAO, Hassan AM. Lycopene and resveratrol ameliorate zinc oxide nanoparticles-induced oxidative stress in Nile tilapia, Oreochromis niloticus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 69:44-50. [PMID: 30953933 DOI: 10.1016/j.etap.2019.03.016] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 05/21/2023]
Abstract
Industrial products contained nano-zinc oxide (ZnONP) can gain access to the aquaculture environment causing hazardous effects on the living biota. Therefore, this work was planned to examine the ameliorative effects of dietary supplementation of lycopene (LYC) and/or resveratrol (RES) against ZnONP toxicity in Nile tilapia. Five groups with 20 fish each were used; Control, received tap water only; ZnONP group, was intoxicated with ZnONP (50 mg/L); ZnONP-LYC group, was exposed to ZnONP and LYC (500 mg/ kg of the diet); ZnONP-RES group, was exposed to ZnONP and RES (50 mg/kg of the diet); ZnONP-LYC-RES group, was exposed to ZnONP and a combination of LYC and RES. The experiment was continued for 30 days. Fish blood and tissues were then assembled for determination of liver and kidney function and oxidative stress status in liver, kidney, and gills tissue. Results revealed a considerable elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), cholesterol, urea, and creatinine with a noticeable lowering of total proteins and albumin serum levels in response to ZnONP intoxication. In addition, there were significant increase in malondialdehyde (MDA) and reduction in the reduced-glutathione (GSH) levels and superoxide dismutase (SOD) and catalase (CAT) activities. However, treatment with LYC and/or RES ameliorated the ZnONP-inflicted oxidative stress which possibly attributed to their beneficial antioxidant activities.
Collapse
Affiliation(s)
- Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Ismail A M Eissa
- Fish Diseases and Management Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Behera, Egypt
| | - Mona Ismail
- Fish Diseases and Management Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ahmed M Hassan
- Department of Hygiene, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
22
|
Hedayati N, Naeini MB, Nezami A, Hosseinzadeh H, Wallace Hayes A, Hosseini S, Imenshahidi M, Karimi G. Protective effect of lycopene against chemical and natural toxins: A review. Biofactors 2019; 45:5-23. [PMID: 30339717 DOI: 10.1002/biof.1458] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022]
Abstract
People are exposed to a number of environmental, occupational, and therapeutic toxic agents which may be natural or man made. These hazardous substances may manifest as direct side effects on the function of organs or indirectly induced alteration of gene expression, cancer-associated metabolic pathways, and/or alter homeostasis. Lycopene, as a one of the most potent antioxidant, is found in fruits and vegetables. High-intake of lycopene has been shown to be effective in decreasing the risk of both natural toxins including mycotoxins, bacterial toxins, and chemical toxins including heavy metals, pesticides as well as herbicides. Recently, there is growing attention in understanding the mechanisms of the phytochemicals and carotenoids as antioxidative, antiapoptotic, radical scavenging, and chelating agents and their roles in the modulation of inflammatory pathways. This review summarizes available data from several recent studies about lycopene and its role against chemical and natural toxicants. © 2018 BioFactors, 45(1):5-23, 2019.
Collapse
Affiliation(s)
- Narges Hedayati
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehri Bemani Naeini
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Nezami
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
- Michigan State University Institute for Integrative Toxicology, East Lansing, MI, USA
| | - Sarasadat Hosseini
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Davico CE, Loteste A, Parma MJ, Poletta G, Simoniello MF. Stress oxidative and genotoxicity in Prochilodus lineatus (Valenciennes, 1836) exposed to commercial formulation of insecticide cypermethrin. Drug Chem Toxicol 2018; 43:79-84. [PMID: 30192683 DOI: 10.1080/01480545.2018.1497643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The use of toxic pesticides has become a world problem because they can contaminate streams and rivers, producing an adverse impact on non-target aquatic biota, including fishes. Cypermethrin is one of the most important insecticides to control ectoparasites in wide-scale. The aim of this study was to evaluate the effect of commercial formulations of cypermethrin, SHERPA O (0.0, 0.075, 0.15, and 0.3 µg/L of cypermethrin) in fish Prochilodus lineatus for 96 h in semi-static condition, using biomarkers of genotoxicity: micronucleus frequency (MNF) in erythrocytes and biomarkers of oxidative damage: lipid peroxidation (TBARS) and antioxidant defenses, catalase (CAT) and glutathione (GSH) in liver tissue. Our results showed a significant decrease (p < 0.05) of CAT at pesticide concentrations of 0.150 and 0.300 μg/L, but no significant difference was observed in TBARS or GSH in any exposed group (p > 0.05) in comparison to the control. A significant increase was observed in the MNF in the group exposed to 0.3 μg/L of cypermethrin compared to negative control (p < 0.05). Finally, P. lineatus proved to be a sensitive species to the commercial formulations of cypermethrin and that CAT and MNF are effective indicators of these toxic effects.
Collapse
Affiliation(s)
- C E Davico
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - A Loteste
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina.,Instituto Nacional de Limnología, CONICET-UNL, Ciudad Universitaria, Santa Fe, Argentina
| | - M J Parma
- Instituto Nacional de Limnología, CONICET-UNL, Ciudad Universitaria, Santa Fe, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - G Poletta
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - M F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| |
Collapse
|
24
|
Sun Y, Zhang J, Song W, Shan A. Vitamin E alleviates phoxim-induced toxic effects on intestinal oxidative stress, barrier function, and morphological changes in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26682-26692. [PMID: 30003487 DOI: 10.1007/s11356-018-2666-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Phoxim is an organic phosphorus pesticide that remains easily in the environment, such as human food and animal feed. The objective of this study was to explore the effect of vitamin E on phoxim-induced oxidative stress in the intestinal tissues of Sprague-Dawley (SD) rats. Forty-eight Sprague-Dawley rats were randomly assigned to a control group and three treatment groups: treatment group 1 (phoxim: 20 mg/kg·BW), treatment group 2 (phoxim: 180 mg/kg·BW), and treatment 3 (vitamin E + phoxim: 200 mg/kg·BW + 180 mg/kg·BW). Phoxim was given by gavage administration once a day for 28 days. The results showed that phoxim significantly reduced jejunum villus height in rats (P < 0.05), and decreased the mRNA expression of junction protein genes of rats, including Occlidin and Claudin-4 (P < 0.05). Phoxim reduced GSH content and T-AOC level in the intestinal mucosa (P < 0.05). The mRNA expression levels of oxidative stress-related genes (Nrf2 and GPx2) were decreased. The mRNA expression of SOD was significantly increased. In addition, phoxim increased the level of interleukin-6 (IL-6) in jejunum mucosa and significantly reduced the level of IL-8 in ileum mucosas, while significantly increased TNF-α secretion. The mRNA expression levels of IL-1β, IL-6, and IL-8 were significantly decreased, and mRNA expression of TNF-α was significantly increased (P < 0.05). Phoxim also increased the DNA expression of total cecal bacteria and Escherichia coli, inhibited the DNA expression of Lactobacillus and destroyed the intestinal barrier. Two hundred milligrams per kilogram BW vitamin E reduced the effect of phoxim on intestinal structure, alleviated the oxidative stress in intestinal tissue, and decreased the level of TNF-α. The mRNA expressions of antioxidative stress genes (SOD and GPx2) were significantly increased. The DNA expression level of Lactobacillus was significantly increased. In conclusion, vitamin E helped reduce the toxicity of organophosphate pesticides, such as phoxim on rat intestinal tissue.
Collapse
Affiliation(s)
- Yuecheng Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wentao Song
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
25
|
Nunes MEM, Müller TE, Murussi C, do Amaral AMB, Gomes JLC, Marins AT, Leitemperger J, Rodrigues CCR, Fiuza TL, Costa MD, Severo ES, Rosemberg DB, Loro VL. Oxidative effects of the acute exposure to a pesticide mixture of cypermethrin and chlorpyrifos on carp and zebrafish - A comparative study. Comp Biochem Physiol C Toxicol Pharmacol 2018; 206-207:48-53. [PMID: 29551388 DOI: 10.1016/j.cbpc.2018.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 12/19/2022]
Abstract
The use of commercial pesticides combinations increases the risk of intoxication in non-target aquatic organisms. Here, we investigate the potential of a commercial pesticide formulation containing (CYP) plus chlorpyrifos (CPF) to induce oxidative damage on two fish species (common carp and zebrafish). Carp and zebrafish were exposed for 96 h under laboratory conditions. Fish were divided in three different groups: CTL, 0.3 μg L-1 or 0.6 μg L-1 of CYP and 0.5 or 1 μg L-1 of CPF in commercial formulation. Both carp and zebrafish showed an increase in lipid peroxidation (LPO) and glutathione-S-transferase (GST) activity when compared to control group. Other oxidative parameters responded differently to exposure in carp and zebrafish. There were an increase in ascorbic acid (ASA) levels and decrease in catalase (CAT) activity and non-protein thiols (NPSH) levels in treated groups of carps. In the other hand, zebrafish showed significant decrease in ASA and increase in CAT activity and NPSH levels. Overall, we demonstrate noxious effects on redox parameters in two fish experimental models and different effects were observe in each fish species exposed to commercial pesticide formulation. This difference responses observed can be related with specific mechanisms of detoxification and antioxidant defense system of each species.
Collapse
Affiliation(s)
- Mauro E M Nunes
- Graduate Program in Biological Sciences: Toxicological Biochemistry, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Talise E Müller
- Graduate Program in Biological Sciences: Toxicological Biochemistry, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Camila Murussi
- Graduate Program in Biological Sciences: Toxicological Biochemistry, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Aline M B do Amaral
- Graduate Program in Animal Biodiversity Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Jeane L C Gomes
- Graduate Program in Animal Biodiversity Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Aline T Marins
- Graduate Program in Animal Biodiversity Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Jossiele Leitemperger
- Graduate Program in Biological Sciences: Toxicological Biochemistry, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cintia C R Rodrigues
- Graduate Program in Biological Sciences: Toxicological Biochemistry, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Tiago L Fiuza
- Graduate Program in Biological Sciences: Toxicological Biochemistry, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Maiara D Costa
- Graduate Program in Biological Sciences: Toxicological Biochemistry, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Eduardo S Severo
- Graduate Program in Animal Biodiversity Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Graduate Program in Biological Sciences: Toxicological Biochemistry, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
| | - Vania L Loro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Animal Biodiversity Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
26
|
Zhang C, Zhou T, Wang J, Zhang S, Zhu L, Du Z, Wang J. Acute and chronic toxic effects of fluoxastrobin on zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:769-775. [PMID: 28826114 DOI: 10.1016/j.scitotenv.2017.08.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/04/2017] [Accepted: 08/05/2017] [Indexed: 05/18/2023]
Abstract
Fluoxastrobin is a new strobilurin fungicide, similar to azoxystrobin and pyraclostrobin. Before the wide application of fluoxastrobin, the present study was performed to assay the acute and chronic toxicity of fluoxastrobin on zebrafish (Danio rerio). The 96-hour median lethal concentration (96h LC50) after initiation of zebrafish exposure to fluoxastrobin was 0.51mg/L with a 95% confidence interval of 0.45 to 0.57mg/L, indicating that fluoxastrobin was highly toxic to zebrafish. As endpoints, we assayed the levels of reactive oxygen species (ROS), malondialdehyde (MDA), the activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and the degree of DNA damage at three different doses, 0.001, 0.01, and 0.1mg/L on days 7, 14, 21, and 28. The antioxidant enzymes partially ameliorated the ROS induced by fluoxastrobin t and were in turn inhibited by excess ROS, especially at 0.1mg/L. Lipid peroxidation and DNA damage were stimulated by ROS. The fluoxastrobin contents of the tested solutions were also determined; at the fluoxastrobin doses of 0.001, 0.01, and 0.1mg/L, the contents on day 28 were 3.9, 5.0, and 0.64% greater than those on day 0. Thus, fluoxastrobin was relatively stable in an aquatic environment. In addition, the present study provided more information regarding the toxic effects of fluoxastrobin and the scientific methods for selection and evaluation of fungicides in the future.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Tongtong Zhou
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Shuai Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
27
|
Arslan H, Özdemir S, Altun S. Cypermethrin toxication leads to histopathological lesions and induces inflammation and apoptosis in common carp (Cyprinus carpio L.). CHEMOSPHERE 2017; 180:491-499. [PMID: 28431387 DOI: 10.1016/j.chemosphere.2017.04.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Cypermethrin (Cyp), a known neurotoxic pesticide, is widely used in agricultural applications. In the present study, the aim was to determine the histopathological effects of Cyp toxication and evaluate the activation of inducible nitric oxide synthetase (iNOS) and 8-hydroxy-2-deoxyguanosine (8-OHdG) using an immunofluorescence assay. Thereafter, we identified the expressions of caspase 3, capsase 8, iNOS, and metallothionein 1 (MT1) genes in common carp using quantitative reverse transcription polymerase chain reaction (qRT-PCR). High and low doses of Cyp were administered to experimental groups for 24, 48, 72, and 96 h. As a result, necrotic neurons in different stages and desquamation of ependymal cells due to necrosis were detected in the brain. Histopathological changes, including hyperplasia of lamellar cells, telangiectasia of lamellae and thickening due to cellular infiltration in gills, hemorrhage, diffuse hydropic degeneration, and focal necrosis in the liver were observed in the experimental groups. Immunopositive reactions of 8-OHdG were clearly observed in the nuclei and cytoplasm of neurons, and positive reactions for iNOS were detected in the cytoplasm of neurons and in the glial cells of the experimental groups. Furthermore, we found that caspase 3, capsase 8, iNOS, and MT1 genes were up-regulated in the brain when exposed to both high and low doses of Cyp. In conclusion, our findings revealed that Cyp toxication harms the organs of common carp, particularly the brain, and also gives rise to inflammation, DNA damage, and apoptosis. Therefore, the use of Cyp should be restricted to protect the health of aquatic animals.
Collapse
Affiliation(s)
- Harun Arslan
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Yakutiye, 25240, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Ataturk University, Yakutiye, 25240, Erzurum, Turkey
| | - Serdar Altun
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Yakutiye, 25240, Erzurum, Turkey
| |
Collapse
|
28
|
Zhang C, Shao Y, Zhu L, Wang J, Wang J, Guo Y. Acute toxicity, biochemical toxicity and genotoxicity caused by 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium tetrafluoroborate in zebrafish (Danio rerio) livers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 51:131-137. [PMID: 28238700 DOI: 10.1016/j.etap.2017.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/15/2017] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
The present study examined the potential toxicity of 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) and 1-butyl-3- methylimidazolium tetrafluoroborate ([Bmim]BF4) in the liver cells of zebrafish (Danio rerio) with different doses (20-160mg/L) on 7 and 14days. The effects of [Bmim]Cl and [Bmim]BF4 on acute toxicity, reactive oxygen species (ROS), antioxidant enzymes, glutathione S-transferase (GST), malondialdehyde (MDA), and DNA damage degree in livers of zebrafish were determined. The 50% lethal concentration (LC50) values after a 96-h exposure to [Bmim]Cl and [Bmim]BF4 were 632.8±67.4 and 604.6±56.2mg/L, respectively, which indicated that the substances were practically harmless. The minor discrepancy may be caused by the different anions. The ROS levels were dose-dependent, which may cause the inhibition of antioxidant enzyme activity, lipid peroxidation, DNA damage and the stimulation of detoxifying enzyme activity. The present study can also provide scientific support for the future selection and evaluation of ionic liquids (ILs).
Collapse
Affiliation(s)
- Cheng Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Yuting Shao
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Yingying Guo
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
29
|
Zhang C, Li XN, Xiang LR, Qin L, Lin J, Li JL. Atrazine triggers hepatic oxidative stress and apoptosis in quails (Coturnix C. coturnix) via blocking Nrf2-mediated defense response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:49-56. [PMID: 27915142 DOI: 10.1016/j.ecoenv.2016.11.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/05/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
The bioaccumulation and environmental persistence of atrazine (ATZ) poses a severe hazard to animal ecosystem. Quail has strong sensitivity to environmental pollutant, thus it is one of the most important ecological pollution indicator. However, true proof for the effects of ATZ exposure on the liver of quails is lacking. To evaluate the liver injury and the role of Nrf2-mediated defense responses during ATZ exposure, male quails were treated with ATZ (0, 50, 250 and 500mg/kg) by oral gavage for 45 days. Histopathological and ultrastructural changes, oxidative stress indices, apoptosis-related factors and Nrf2 pathway were detected. ATZ caused irreparable mitochondrial damage and destroyed morphophysiological integrity of the quail liver. Lower level ATZ (<250mg/kg) activated Nrf2 signaling pathway to protect liver against oxidative stress and apoptosis via enhancing antioxidative activity. Higher level ATZ (>500mg/kg) induced oxidative stress and apoptosis through decrease of non-enzymatic antioxidant, antioxidant enzymes and anti-apoptosis factors and increase of apoptosis factors expressions. Taken together, our results suggested that ATZ-induced hepatotoxicity in quails was associated with blocking Nrf2-mediated defense response.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Li-Run Xiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lei Qin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China; Laboratory animal centre, Qiqihar Medical University, Qiqihar 161006, People's Republic of China
| | - Jia Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
30
|
Eraslan G, Kanbur M, Siliğ Y, Karabacak M, Soyer Sarica Z, Şahin S. The acute and chronic toxic effect of cypermethrin, propetamphos, and their combinations in rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:1415-1429. [PMID: 25926273 DOI: 10.1002/tox.22147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 05/27/2023]
Abstract
This study was aimed at determining the acute and chronic toxic effects of cypermethrin, propetamphos, and combined cypermethrin and propetamphos. Four groups, each comprising 10 animals, were established for the acute (a) and chronic (b) toxicity trials, and in total, 80 male Wistar albino rats were used. In the acute toxicity trial, the first group was maintained for control purposes, and groups 2a, 3a, and 4a were administered only once with 80 mg/kg.bw of cypermethrin, 25 mg/kg.bw of propetamphos and 80 mg/kg.bw of cypermethrin combined with 25 mg/kg.bw of propetamphos, respectively, by gavage directly into the stomach. In the chronic toxicity trial, the first group was also maintained for control purposes, while groups 2b, 3b, and 4b were administered daily with 12 mg/kg.bw of cypermethrin, 4 mg/kg.bw of propetamphos, and 12 mg/kg.bw of cypermethrin combined with 4 mg/kg.bw of propetamphos respectively, by gavage directly into the stomach for 60 days. Blood and tissue (liver, kidney, brain, spleen, and testis) samples were taken 24 h after pesticide administration in the acute toxicity trial and at the end of day 60 in the chronic toxicity trial. Oxidative stress (MDA, NO, SOD, CAT, GSH-Px, and G6PD) parameters, serum biochemical parameters (glucose, triglyceride, cholesterol, HDL, LDL, BUN, creatinine, AST, ALT, ALP, protein, and albumin) and hepatic drug-metabolizing parameters (CYP2E1, CYPB5, CYTC, GST, and GSH) were investigated in the samples. When administered either alone or in combination, both pesticides inhibited the antioxidant enzymes and increased MDA and NO levels. For the drug-metabolizing parameters investigated, particularly in the chronic period, either increase (CYP2E1, CYPB5, and CYTC) or decrease (GST and GSH) was observed. Furthermore, some negative changes were detected in the serum biochemical parameters. In result, cypermethrin and propetamphos combinations and long-term exposure to these combinations produced a greater toxic effect than the administration of these insecticides alone. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1415-1429, 2016.
Collapse
Affiliation(s)
- Gökhan Eraslan
- Erciyes University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Kayseri, Turkey.
| | - Murat Kanbur
- Erciyes University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Kayseri, Turkey
| | - Yavuz Siliğ
- Cumhuriyet University, Faculty of Medicine, Department of Biochemistry, Sivas, Turkey
| | - Mürsel Karabacak
- Erciyes University, Safiye Çıkrıkcıoğlu Vacational Collage, Animal Health Department, Kayseri, Turkey
| | - Zeynep Soyer Sarica
- Erciyes University, Hakan Çetinsaya Experimental Animal Center, Kayseri, Turkey
| | - Serap Şahin
- Cumhuriyet University, Faculty of Pharmacy, Department of Biochemistry, Sivas, Turkey
| |
Collapse
|
31
|
Abass MA, Elkhateeb SA, Abd El-Baset SA, Kattaia AA, Mohamed EM, Atteia HH. Lycopene ameliorates atrazine-induced oxidative damage in adrenal cortex of male rats by activation of the Nrf2/HO-1 pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15262-15274. [PMID: 27102619 DOI: 10.1007/s11356-016-6637-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
Atrazine (ATZ) is one of the most commonly used herbicides contaminating plants, soil and water resources. Several strategies have been used to counteract ATZ toxicity. Here, we tested the hypothesis that lycopene could ameliorate ATZ-induced toxicity in the adrenal cortex. For this purpose, 35 adult male albino rats were randomized into five equal groups: untreated control, vehicle control (received 0.5 mL corn oil/day), lycopene (treated with lycopene dissolved in 0.5 mL corn oil, 10 mg/kg b.w./day), ATZ (received ATZ dissolved in 0.5 mL corn oil 300 mg/kg b.w./day), and ATZ + lycopene (treated with ATZ and lycopene at the same previously mentioned doses). All treatments were given by oral gavage for 4 weeks. We found that ATZ exposure significantly increased relative adrenal weight, plasma ACTH levels, and adrenal oxidative stress as manifested by elevated malondialdehyde levels, decreased reduced glutathione content and depressed antioxidant enzyme activities in adrenal cortex tissues with respect to control groups. Furthermore, the transcription of adrenal cortex nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor kappa B, and caspase-3 genes was increased significantly compared with the control groups. This was accompanied with DNA fragmentation and structural and ultrastructural changes in zona glomerulosa and zona fasiculata of the adrenal cortex. Notably, all these changes were partially ameliorated in rats treated concomitantly with ATZ and lycopene. Our results showed that lycopene exerts protective effects against ATZ-induced toxicity in rat adrenal cortex. These effects may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Marwa Ahmed Abass
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shereen Ahmed Elkhateeb
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia Adel Abd El-Baset
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa Alhosiny Kattaia
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman Mosallam Mohamed
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
32
|
Liu T, Guo Y, Wang J, Wang J, Zhu L, Zhang J, Zhang C. Assessing toxic effects of [Omim]Cl and [Omim]BF4 in zebrafish adults using a biomarker approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7360-7368. [PMID: 26686854 DOI: 10.1007/s11356-015-5887-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
In the present study, the toxic effects of 1-octyl-3-methylimidazolium chloride ([Omim]Cl) and 1-octyl-3-methylimidazolium tetrafluoroborate ([Omim]BF4) on the zebrafish livers were studied at 0, 5, 10, 20, and 40 mg L(-1) on the 7th and 14th days. In addition, the concentrations of [Omim]Cl and [Omim]BF4 in the test water, the acute toxicity of the two ionic liquids (ILs), and the influence of anions on the toxicity of the ILs were evaluated. The acute toxicity test results showed 50 % lethal concentration (LC50) values of 152.3 ± 12.1 mg L(-1) for [Omim]Cl and 144.0 ± 11.4 mg L(-1) for [Omim]BF4. At the lowest concentration investigated (5 mg L(-1)), [Omim]Cl and [Omim]BF4 did not significantly affect zebrafish during the exposure period. However, the toxic effects of these substances were enhanced as dosing concentrations and exposure times were increased. Levels of reactive oxygen species (ROS) were significantly enhanced on the 7th day after 20 mg L(-1) and on the 14th day after 10 mg L(-1) of either substance was applied, resulting in oxidative damage, such as lipid peroxidation and DNA damage. The experimental results also indicated little effect of the anions on the toxicity of ILs and consistent toxic effects of [Omim]Cl and [Omim]BF4. Graphical Abstract The graphical abstract for the present study after exposure to [Omim]Cl and [Omim]BF4. The letter R represents the anions Cl(-) and BF4 (.)
Collapse
Affiliation(s)
- Tong Liu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Yingying Guo
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, People's Republic of China.
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, People's Republic of China.
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China.
| | - Jun Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Cheng Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, People's Republic of China
| |
Collapse
|
33
|
Yucel Y, Tabur S, Gozeneli O, Kocarslan S, Seker A, Buyukaslan H, Şavik E, Aktumen A, Ozgonul A, Uzunkoy A, Aksoy N. The effects of lycopene on intestinal injury due to methotrexate in rats. Redox Rep 2016; 21:113-8. [PMID: 26359686 DOI: 10.1179/1351000215y.0000000041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effects of lycopene (Lyc) on methotrexate (Mtx)-induced intestinal damage in rats. METHOD Twenty-eight male Sprague Dawley rats were divided into four equal groups: control, Mtx, Lyc, and Mtx-L. CONTROL GROUP Rats were given only the vehicle. Lyc group: Rats were given Lyc (10 mg/kg) with corn oil by oral gavage for 10 days. Mtx group: Rats were injected intraperitoneally with a single dose of 20 mg/kg of Mtx and given corn oil by oral gavage. Mtx-L group: Rats were treated with Lyc (10 mg/kg) for 10 days after a single dose of Mtx (20 mg/kg). All of the rats were euthanized using terminal anesthesia, and the intestinal tissues were removed for histological examination and for pro-inflammatory cytokine measurement (tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β)), total oxidative status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI). RESULTS Mtx administration increased histopathological damage and increased TNF-α, IL-1β, TOS, TAC, and OSI levels in the small intestine tissues. Lyc therapy applied to the Mtx-L group provided significant improvement in all parameters of histopathological damage to the small intestine and significantly reduced the levels of IL-1β, TOS, and OSI in the intestinal tissues. CONCLUSIONS The results of this study indicate that Lyc might be useful for protecting intestinal damage induced by Mtx in rats by reducing the increased oxidative stress and pro-inflammatory cytokine (IL-1β) levels.
Collapse
Affiliation(s)
- Yusuf Yucel
- a Department of General Surgery, Medical Faculty , Harran University , 63100 Sanliurfa , Turkey
| | - Suzan Tabur
- b Division of Endocrinology, Department of Internal Medicine , Gaziantep University Faculty of Medicine , Turkey
| | - Orhan Gozeneli
- a Department of General Surgery, Medical Faculty , Harran University , 63100 Sanliurfa , Turkey
| | - Sezen Kocarslan
- c Department of Pathology, Medical Faculty , Harran University , 63100 Sanliurfa , Turkey
| | - Ahmet Seker
- a Department of General Surgery, Medical Faculty , Harran University , 63100 Sanliurfa , Turkey
| | - Hasan Buyukaslan
- d Emergency Department, Medical Faculty , Harran University , 63100 Sanliurfa , Turkey
| | - Emin Şavik
- e Department of Clinical Biochemistry, Faculty of Medicine , Harran University , 63100 Sanliurfa , Turkey
| | - Alpay Aktumen
- f Department of Pathology, Medical Faculty , Karabuk University , Karabuk , Turkey
| | - Abdullah Ozgonul
- a Department of General Surgery, Medical Faculty , Harran University , 63100 Sanliurfa , Turkey
| | - Ali Uzunkoy
- a Department of General Surgery, Medical Faculty , Harran University , 63100 Sanliurfa , Turkey
| | - Nurten Aksoy
- e Department of Clinical Biochemistry, Faculty of Medicine , Harran University , 63100 Sanliurfa , Turkey
| |
Collapse
|
34
|
Hoseinifar SH, Khalili M, Rufchaei R, Raeisi M, Attar M, Cordero H, Esteban MÁ. Effects of date palm fruit extracts on skin mucosal immunity, immune related genes expression and growth performance of common carp (Cyprinus carpio) fry. FISH & SHELLFISH IMMUNOLOGY 2015; 47:706-711. [PMID: 26439417 DOI: 10.1016/j.fsi.2015.09.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/16/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to investigate the effects of date palm fruit extracts (DPFE) on skin mucosal immunity, immune related genes expression and growth performance of fry common carp (Cyprinus carpio). One hundred and twenty specimens (4.06 ± 0.13 g) were supplied and allocated into six aquaria; specimens in three aquaria were fed non-supplemented diet (control) while the fish in the other 3 aquaria were fed with DPFE at 200 ml kg(-1). At the end of feeding trial (8 weeks) skin mucus immune parameters (total immunoglobulins, lysozyme, protease and alkaline phosphatase activity) and immune related gene expression (tumor necrosis factor α [tnfa], lysozyme [ly] and interleukin-1-beta, [il1b]) in the head-kidney were studied. The results revealed that feeding carp fry with 200 ml kg(-1) DPFE remarkably elevated the three skin mucus immune parameters tested (P < 0.05). However, evaluation of immune related gene expression demonstrated that the expression of tnfa and il1b was considerably decreased (P < 0.05) in fish fed DPFE diet, while the expression of ly remained similar (P > 0.05) compared to control fish (fed control diet). Furthermore, growth performance parameters were significantly improved in fry fed DPFE (P < 0.05). More studies are needed to understand different aspects of DPFE administration in fry mucosal immunity.
Collapse
Affiliation(s)
- Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Mohsen Khalili
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Rudabeh Rufchaei
- Inland Water Aquaculture Institute, Specialized Research Station of Aquatics Nutrition and Live Food, BandareAnzali, Iran
| | - Mojtaba Raeisi
- Cereal Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Public Health, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marzieh Attar
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Héctor Cordero
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
35
|
Hashem HE, Abd El-Haleem MR, Abass MA. Epithelial and stromal alterations in prostate after cypermethrin administration in adult albino rats (histological and biochemical study). Tissue Cell 2015; 47:366-72. [DOI: 10.1016/j.tice.2015.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/19/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
36
|
Margaritelis NV, Veskoukis AS, Paschalis V, Vrabas IS, Dipla K, Zafeiridis A, Kyparos A, Nikolaidis MG. Blood reflects tissue oxidative stress: a systematic review. Biomarkers 2015; 20:97-108. [PMID: 25582635 DOI: 10.3109/1354750x.2014.1002807] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We examined whether the levels of oxidative stress biomarkers measured in blood reflect the tissue redox status. Data from studies that measured redox biomarkers in blood, heart, liver, kidney and skeletal muscle were analyzed. In seven out of nine investigated redox biomarkers (malondialdehyde, reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase, vitamin C and E) there was generally good qualitative and quantitative agreement between the blood and tissues. In contrast, oxidized glutathione and the reduced to oxidized glutathione ratio showed poor agreement between the blood and tissues. This study suggests that most redox biomarkers measured in blood adequately reflect tissue redox status.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki , Serres , Greece
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu T, Zhu L, Han Y, Wang J, Wang J, Zhao Y. The cytotoxic and genotoxic effects of metalaxy-M on earthworms (Eisenia fetida). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2344-2350. [PMID: 25043480 DOI: 10.1002/etc.2682] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/13/2014] [Accepted: 07/10/2014] [Indexed: 06/03/2023]
Abstract
As the main optical isomer of metalaxyl, metalaxyl-M has been widely used worldwide in recent years because of its notable effect on the prevention and control of crop diseases. Together with the toxicity and degradation of metalaxyl-M, the chemical has attracted the attention of researchers. The present study examined the toxic effects of metalaxyl-M on earthworms at 0 mg kg(-1) , 0.1 mg kg(-1) , 1 mg kg(-1) , and 3 mg kg(-1) on days 7, 14, 21 and 28 after exposure. The results showed that metalaxyl-M could cause an obvious increase in the production of reactive oxygen species (ROS) when the concentration was higher than 0.1 mg kg(-1) , which led to lipid peroxidation in earthworms. Metalaxyl-M can induce DNA damage in earthworms, and the level of DNA damage markedly increased with increasing the concentration of metalaxyl-M. Metalaxyl-M also has a serious influence on the activities of antioxidant enzymes, which results in irreversible oxidative damage in cells. The changes of these indicators all indicated that metalaxyl-M may cause cytotoxic and genotoxic effects on earthworms.
Collapse
Affiliation(s)
- Tong Liu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agriculture University, Taian, Peoples Republic of China, China
| | | | | | | | | | | |
Collapse
|
38
|
Biomarkers of type II synthetic pyrethroid pesticides in freshwater fish. BIOMED RESEARCH INTERNATIONAL 2014; 2014:928063. [PMID: 24868555 PMCID: PMC4017726 DOI: 10.1155/2014/928063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/31/2014] [Indexed: 11/17/2022]
Abstract
Type II synthetic pyrethroids contain an alpha-cyano group which renders them more neurotoxic than their noncyano type I counterparts. A wide array of biomarkers have been employed to delineate the toxic responses of freshwater fish to various type II synthetic pyrethroids. These include hematological, enzymatic, cytological, genetic, omic and other types of biomarkers. This review puts together the applications of different biomarkers in freshwater fish species in response to the toxicity of the major type II pyrethroid pesticides and assesses their present status, while speculating on the possible future directions.
Collapse
|
39
|
Tricarico PM, Kleiner G, Valencic E, Campisciano G, Girardelli M, Crovella S, Knowles A, Marcuzzi A. Block of the mevalonate pathway triggers oxidative and inflammatory molecular mechanisms modulated by exogenous isoprenoid compounds. Int J Mol Sci 2014; 15:6843-56. [PMID: 24758928 PMCID: PMC4013665 DOI: 10.3390/ijms15046843] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/02/2022] Open
Abstract
Deregulation of the mevalonate pathway is known to be involved in a number of diseases that exhibit a systemic inflammatory phenotype and often neurological involvements, as seen in patients suffering from a rare disease called mevalonate kinase deficiency (MKD). One of the molecular mechanisms underlying this pathology could depend on the shortage of isoprenoid compounds and the subsequent mitochondrial damage, leading to oxidative stress and pro-inflammatory cytokines’ release. Moreover, it has been demonstrated that cellular death results from the balance between apoptosis and pyroptosis, both driven by mitochondrial damage and the molecular platform inflammasome. In order to rescue the deregulated pathway and decrease inflammatory markers, exogenous isoprenoid compounds were administered to a biochemical model of MKD obtained treating a murine monocytic cell line with a compound able to block the mevalonate pathway, plus an inflammatory stimulus. Our results show that isoprenoids acted in different ways, mainly increasing the expression of the evaluated markers [apoptosis, mitochondrial dysfunction, nucleotide-binding oligomerization-domain protein-like receptors 3 (NALP3), cytokines and nitric oxide (NO)]. Our findings confirm the hypothesis that inflammation is triggered, at least partially, by the shortage of isoprenoids. Moreover, although further studies are necessary, the achieved results suggest a possible role for exogenous isoprenoids in the treatment of MKD.
Collapse
Affiliation(s)
- Paola Maura Tricarico
- Department of Medicine and Surgery and Health, University of Trieste, Piazzale Europa, 1, 34128 Trieste, Italy.
| | - Giulio Kleiner
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Erica Valencic
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Giuseppina Campisciano
- Department of Medicine and Surgery and Health, University of Trieste, Piazzale Europa, 1, 34128 Trieste, Italy.
| | - Martina Girardelli
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Sergio Crovella
- Department of Medicine and Surgery and Health, University of Trieste, Piazzale Europa, 1, 34128 Trieste, Italy.
| | - Alessandra Knowles
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Annalisa Marcuzzi
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| |
Collapse
|
40
|
Effects of cyhalothrin-based pesticide on early life stages of common carp (Cyprinus carpio L.). BIOMED RESEARCH INTERNATIONAL 2014; 2014:107373. [PMID: 24860807 PMCID: PMC4016908 DOI: 10.1155/2014/107373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/28/2014] [Accepted: 03/21/2014] [Indexed: 01/24/2023]
Abstract
The effects of Nexide (a.i. gamma-cyhalothrin 60 g L−1) on cumulative mortality, growth indices, and ontogenetic development of embryos and larvae of common carp (Cyprinus carpio L.) were studied. Levels of oxidative stress parameters glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), glutathione-S-transferase (GST), and lipid peroxidation were determined. Eggs of newly fertilised common carp were exposed to Nexide at concentrations 5, 25, 50, 100, and 250 μg L−1 (0.3, 1.5, 3, 6, and 15 μg L−1 gamma-cyhalothrin). All organisms exposed to concentrations higher than 50 μg L−1 died soon after hatching; at 25 μg L−1, 95% mortality was recorded. Larvae exposed to 5 μg L−1 showed significantly lower growth and retarded ontogenetic development compared to control. Histological examination of the livers of larvae from the exposed group revealed dystrophic changes. The value of detoxification enzyme GST of organisms from the exposed group was significantly higher compared to the control and the value of defensive enzyme GPx was significantly lower compared to the control. The results of our investigation confirmed that contamination of aquatic environment by pesticides containing cyhalothrin may impair growth and development of early life stages of carp and cause disbalance of defensive enzymes.
Collapse
|