1
|
Srivastava V, Nand KN, Ahmad A, Kumar R. Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery. Vaccines (Basel) 2023; 11:vaccines11020479. [PMID: 36851356 PMCID: PMC9965603 DOI: 10.3390/vaccines11020479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Virus-like particles (VLPs) are empty, nanoscale structures morphologically resembling viruses. Internal cavity, noninfectious, and particulate nature with a high density of repeating epitopes, make them an ideal platform for vaccine development and drug delivery. Commercial use of Gardasil-9 and Cervarix showed the usefulness of VLPs in vaccine formulation. Further, chimeric VLPs allow the raising of an immune response against different immunogens and thereby can help reduce the generation of medical or clinical waste. The economically viable production of VLPs significantly impacts their usage, application, and availability. To this end, several hosts have been used and tested. The present review will discuss VLPs produced using different yeasts as fermentation hosts. We also compile a list of studies highlighting the expression and purification of VLPs using a yeast-based platform. We also discuss the advantages of using yeast to generate VLPs over other available systems. Further, the issues or limitations of yeasts for producing VLPs are also summarized. The review also compiles a list of yeast-derived VLP-based vaccines that are presently in public use or in different phases of clinical trials.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Kripa N. Nand
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Ravinder Kumar
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence:
| |
Collapse
|
2
|
Jiménez-Cabello L, Utrilla-Trigo S, Barreiro-Piñeiro N, Pose-Boirazian T, Martínez-Costas J, Marín-López A, Ortego J. Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance. Vaccines (Basel) 2022; 10:vaccines10071124. [PMID: 35891288 PMCID: PMC9319458 DOI: 10.3390/vaccines10071124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) are widespread arboviruses that cause important economic losses in the livestock and equine industries, respectively. In addition to these, another arthropod-transmitted orbivirus known as epizootic hemorrhagic disease virus (EHDV) entails a major threat as there is a conducive landscape that nurtures its emergence in non-endemic countries. To date, only vaccinations with live attenuated or inactivated vaccines permit the control of these three viral diseases, although important drawbacks, e.g., low safety profile and effectiveness, and lack of DIVA (differentiation of infected from vaccinated animals) properties, constrain their usage as prophylactic measures. Moreover, a substantial number of serotypes of BTV, AHSV and EHDV have been described, with poor induction of cross-protective immune responses among serotypes. In the context of next-generation vaccine development, antigen delivery systems based on nano- or microparticles have gathered significant attention during the last few decades. A diversity of technologies, such as virus-like particles or self-assembled protein complexes, have been implemented for vaccine design against these viruses. In this work, we offer a comprehensive review of the nano- and microparticulated vaccine candidates against these three relevant orbiviruses. Additionally, we also review an innovative technology for antigen delivery based on the avian reovirus nonstructural protein muNS and we explore the prospective functionality of the nonstructural protein NS1 nanotubules as a BTV-based delivery platform.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA;
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Correspondence:
| |
Collapse
|
3
|
Garay E, Fontana D, Leschiutta L, Kratje R, Prieto C. Rational design of novel fusion rabies glycoproteins displaying a major antigenic site of foot-and-mouth disease virus for vaccine applications. Appl Microbiol Biotechnol 2022; 106:579-592. [PMID: 34971413 PMCID: PMC8718594 DOI: 10.1007/s00253-021-11747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
Chimeric virus-like particles are self-assembling structures composed of viral proteins that had been modified to incorporate sequences from different organisms, being able to trigger immune responses against the heterologous sequence. However, the identification of suitable sites for that purpose in the carrier protein is not an easy task. In this work, we describe the generation of rabies chimeric VLPs that expose a major antigenic site of foot-and-mouth disease virus (FMDV) by identifying suitable regions in rabies glycoprotein (RVG), as a proof of concept of a novel heterologous display platform for vaccine applications. To identify adequate sites for insertion of heterologous sequences without altering the correct folding of RVG, we identified regions that were evolutionally non-conserved in Lyssavirus glycoproteins and performed a structural analysis of those regions using a 3D model of RVG trimer that we generated. The heterologous sequence was inserted in three different sites within RVG sequence. In every case, it did not affect the correct folding of the protein and was surface exposed, being recognized by anti-FMDV antibodies in expressing cells as well as in the surface of VLPs. This work sets the base for the development of a heterologous antigen display platform based on rabies VLPs. KEY POINTS: • Adequate regions for foreign epitope display in RVG were found. • G-H loop of FMDV was inserted in three regions of RVG. • The foreign epitope was detected by specific antibodies on fusion proteins. • G-H loop was detected on the surface of chimeric VLPs.
Collapse
Affiliation(s)
- Ernesto Garay
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina
| | - Diego Fontana
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina.
| | - Lautaro Leschiutta
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina
| | - Ricardo Kratje
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina
| | - Claudio Prieto
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina
| |
Collapse
|
4
|
Jandrig B, Krause H, Zimmermann W, Vasiliunaite E, Gedvilaite A, Ulrich RG. Hamster Polyomavirus Research: Past, Present, and Future. Viruses 2021; 13:v13050907. [PMID: 34068409 PMCID: PMC8153644 DOI: 10.3390/v13050907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022] Open
Abstract
Hamster polyomavirus (Mesocricetus auratus polyomavirus 1, HaPyV) was discovered as one of the first rodent polyomaviruses at the end of the 1960s in a colony of Syrian hamsters (Mesocricetus auratus) affected by skin tumors. Natural HaPyV infections have been recorded in Syrian hamster colonies due to the occurrence of skin tumors and lymphomas. HaPyV infections of Syrian hamsters represent an important and pioneering tumor model. Experimental infections of Syrian hamsters of different colonies are still serving as model systems (e.g., mesothelioma). The observed phylogenetic relationship of HaPyV to murine polyomaviruses within the genus Alphapolyomavirus, and the exclusive detection of other cricetid polyomaviruses, i.e., common vole (Microtus arvalis polyomavirus 1) and bank vole (Myodes glareolus polyomavirus 1) polyomaviruses, in the genus Betapolyomavirus, must be considered with caution, as knowledge of rodent-associated polyomaviruses is still limited. The genome of HaPyV shows the typical organization of polyomaviruses with an early and a late transcriptional region. The early region encodes three tumor (T) antigens including a middle T antigen; the late region encodes three capsid proteins. The major capsid protein VP1 of HaPyV was established as a carrier for the generation of autologous, chimeric, and mosaic virus-like particles (VLPs) with a broad range of applications, e.g., for the production of epitope-specific antibodies. Autologous VLPs have been applied for entry and maturation studies of dendritic cells. The generation of chimeric and mosaic VLPs indicated the high flexibility of the VP1 carrier protein for the insertion of foreign sequences. The generation of pseudotype VLPs of original VP1 and VP2–foreign protein fusion can further enhance the applicability of this system. Future investigations should evaluate the evolutionary origin of HaPyV, monitor its occurrence in wildlife and Syrian hamster breeding, and prove its value for the generation of potential vaccine candidates and as a gene therapy vehicle.
Collapse
Affiliation(s)
- Burkhard Jandrig
- Department of Urology, University Medical Center Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Correspondence:
| | - Hans Krause
- Charité—Universitätsmedizin Berlin, Urologische Klinik, Charitéplatz 1, 10117 Berlin, Germany;
| | | | - Emilija Vasiliunaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania; (E.V.); (A.G.)
| | - Alma Gedvilaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania; (E.V.); (A.G.)
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Insel Riems, Germany
| |
Collapse
|
5
|
Eiden M, Gedvilaite A, Leidel F, Ulrich RG, Groschup MH. Vaccination with Prion Peptide-Displaying Polyomavirus-Like Particles Prolongs Incubation Time in Scrapie-Infected Mice. Viruses 2021; 13:v13050811. [PMID: 33946367 PMCID: PMC8147134 DOI: 10.3390/v13050811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
Prion diseases like scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle or Creutzfeldt–Jakob disease (CJD) in humans are fatal neurodegenerative diseases characterized by the conformational conversion of the normal, mainly α-helical cellular prion protein (PrPC) into the abnormal β-sheet rich infectious isoform PrPSc. Various therapeutic or prophylactic approaches have been conducted, but no approved therapeutic treatment is available so far. Immunisation against prions is hampered by the self-tolerance to PrPC in mammalian species. One strategy to avoid this tolerance is presenting PrP variants in virus-like particles (VLPs). Therefore, we vaccinated C57/BL6 mice with nine prion peptide variants presented by hamster polyomavirus capsid protein VP1/VP2-derived VLPs. Mice were subsequently challenged intraperitoneally with the murine RML prion strain. Importantly, one group exhibited significantly increased mean survival time of 240 days post-inoculation compared with 202 days of the control group. These data show that immunisation with VLPs presenting PrP peptides may represent a promising strategy for an effective vaccination against transmissible spongiform encephalitis agents.
Collapse
Affiliation(s)
- Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
- Correspondence:
| | - Alma Gedvilaite
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania;
| | - Fabienne Leidel
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
- Task Force Animal Diseases, Darmstadt Regional Administrative Council, Luisenplatz 2, 64283 Darmstadt, Germany
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
| |
Collapse
|
6
|
Kumar R, Kumar P. Yeast-based vaccines: New perspective in vaccine development and application. FEMS Yeast Res 2019; 19:5298404. [PMID: 30668686 DOI: 10.1093/femsyr/foz007] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
In presently licensed vaccines, killed or attenuated organisms act as a source of immunogens except for peptide-based vaccines. These conventional vaccines required a mass culture of associated or related organisms and long incubation periods. Special requirements during storage and transportation further adds to the cost of vaccine preparations. Availability of complete genome sequence, well-established genetic, inherent natural adjuvant and non-pathogenic nature of yeast species viz. Saccharomyces cerevisiae, Pichia pastoris makes them an ideal model system for the development of vaccines both for public health and for on-farm consumption. In this review, we compile the work in this emerging field during last two decades with major emphases on S. cerevisiae and P. pastoris which are routinely used worldwide for expression of heterologous proteins with therapeutic value against infectious diseases along with possible use in cancer therapy. We also pointed towards the developments in use of whole recombinant yeast, yeast surface display and virus-like particles as a novel strategy in the fight against infectious diseases and cancer along with other aspects including suitability of yeast in vaccines preparations, yeast cell wall component as an immune stimulator or modulator and present status of yeast-based vaccines in clinical trials.
Collapse
Affiliation(s)
- Ravinder Kumar
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Piyush Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India
| |
Collapse
|
7
|
Špakova A, Šimoliūnas E, Batiuškaitė R, Pajeda S, Meškys R, Petraitytė-Burneikienė R. Self-Assembly of Tail Tube Protein of Bacteriophage vB_EcoS_NBD2 into Extremely Long Polytubes in E. coli and S. cerevisiae. Viruses 2019; 11:E208. [PMID: 30832262 PMCID: PMC6466441 DOI: 10.3390/v11030208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/01/2023] Open
Abstract
Nucleotides, peptides and proteins serve as a scaffold material for self-assembling nanostructures. In this study, the production of siphovirus vB_EcoS_NBD2 (NBD2) recombinant tail tube protein gp39 reached approximately 33% and 27% of the total cell protein level in Escherichia coli and Saccharomyces cerevisiae expression systems, respectively. A simple purification protocol allowed us to produce a recombinant gp39 protein with 85%⁻90% purity. The yield of gp39 was 2.9 ± 0.36 mg/g of wet E. coli cells and 0.85 ± 0.33 mg/g for S. cerevisiae cells. The recombinant gp39 self-assembled into well-ordered tubular structures (polytubes) in vivo in the absence of other phage proteins. The diameter of these structures was the same as the diameter of the tail of phage NBD2 (~12 nm). The length of these structures varied from 0.1 µm to >3.95 µm, which is 23-fold the normal NBD2 tail length. Stability analysis demonstrated that the polytubes could withstand various chemical and physical conditions. These polytubes show the potential to be used as a nanomaterial in various fields of science.
Collapse
Affiliation(s)
- Aliona Špakova
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Eugenijus Šimoliūnas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Raminta Batiuškaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Simonas Pajeda
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Rolandas Meškys
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Rasa Petraitytė-Burneikienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
8
|
Capelli R, Marchetti F, Tiana G, Colombo G. SAGE: A Fast Computational Tool for Linear Epitope Grafting onto a Foreign Protein Scaffold. J Chem Inf Model 2017; 57:6-10. [PMID: 27992203 DOI: 10.1021/acs.jcim.6b00584] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Computational design is becoming a driving force of structural vaccinology, whereby protein antigens are engineered to generate new biomolecules with optimized immunological properties. In particular, the design of new proteins that contain multiple, different epitopes can potentially provide novel highly efficient vaccine candidates. In this context, epitope grafting, which entails the transplantation of an antibody recognition motif from one protein onto a different protein scaffold (possibly containing other immunoreactive sequences) holds great promise for the realization of superantigens. Herein, we present SAGE (strategy for alignment and grafting of epitopes), an automated computational tool for the implantation of immunogenic epitopes onto a given scaffold. It is based on the comparison between the expected secondary structures of the candidates to be grafted with all the secondary structures in the target scaffold. Evaluating the differences both in sequence and in structure between the epitope and the scaffold returns a ranking of most probable molecules containing the new antigenic sequence. We validate this approach identifying the grafting positions obtained in previous works by experimental and computational methods, proving an efficient, flexible, and fast tool to perform the initial scanning for epitope grafting. This approach is fully general and may be applied to any target antigen and candidate epitopes with known 3D structures.
Collapse
Affiliation(s)
- Riccardo Capelli
- Center for Complexity & Biosystems and Dipartimento di Fisica, Università degli Studi di Milano and INFN , via Celoria 16, 20133 Milan, Italy.,Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche , via Mario Bianco 9, 20131 Milan, Italy
| | - Filippo Marchetti
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche , via Mario Bianco 9, 20131 Milan, Italy
| | - Guido Tiana
- Center for Complexity & Biosystems and Dipartimento di Fisica, Università degli Studi di Milano and INFN , via Celoria 16, 20133 Milan, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche , via Mario Bianco 9, 20131 Milan, Italy
| |
Collapse
|
9
|
Penumarthi A, Smooker PM. New approaches to VLP-based vaccines. MICROBIOLOGY AUSTRALIA 2017. [DOI: 10.1071/ma17038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vaccination is a long and established field of research, and outputs from the research have saved countless millions of lives. The early vaccines were developed with scant regard for the immunological mechanisms at play, largely because they were unknown. We are now in a position to use our knowledge of immunology to rationally design vaccines. This article focusses on the use of virus-like particles (VLPs) as vaccines.
Collapse
|
10
|
Kim H, Kim HJ. Yeast as an expression system for producing virus-like particles: what factors do we need to consider? Lett Appl Microbiol 2016; 64:111-123. [DOI: 10.1111/lam.12695] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/11/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022]
Affiliation(s)
- H.J. Kim
- Laboratory of Virology; College of Pharmacy; Chung-Ang University; Seoul South Korea
| | - H.-J. Kim
- Laboratory of Virology; College of Pharmacy; Chung-Ang University; Seoul South Korea
| |
Collapse
|
11
|
The Hepatitis B Virus Core Variants that Expose Foreign C-Terminal Insertions on the Outer Surface of Virus-Like Particles. Mol Biotechnol 2016; 57:1038-49. [PMID: 26446016 PMCID: PMC4619458 DOI: 10.1007/s12033-015-9895-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The major immunodominant region (MIR) and N-terminus of the hepatitis B virus (HBV) core (HBc) protein were used to expose foreign insertions on the outer surface of HBc virus-like particles (VLPs). The additions to the HBc positively charged arginine-rich C-terminal (CT) domain are usually not exposed on the VLP surface. Here, we constructed a set of recombinant HBcG vectors in which CT arginine stretches were substituted by glycine residues. In contrast to natural HBc VLPs and recombinant HBc VLP variants carrying native CT domain, the HBcG VLPs demonstrated a lowered capability to pack bacterial RNA during expression in Escherichia coli cells. The C-terminal addition of a model foreign epitope from the HBV preS1 sequence to the HBcG vectors resulted in the exposure of the inserted epitope on the VLP surface, whereas the same preS1 sequences added to the native CT of the natural HBc protein remained buried within the HBc VLPs. Based on the immunisation of mice, the preS1 epitope added to the HBcG vectors as a part of preS1(20-47) and preS1phil sequences demonstrated remarkable immunogenicity. The same epitope added to the original C-terminus of the HBc protein did not induce a notable level of anti-preS1 antibodies. HBcG vectors may contribute to the further development of versatile HBc VLP-based vaccine and gene therapy applications.
Collapse
|
12
|
Synthetic biology design to display an 18 kDa rotavirus large antigen on a modular virus-like particle. Vaccine 2015; 33:5937-44. [PMID: 26387437 DOI: 10.1016/j.vaccine.2015.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/30/2015] [Accepted: 09/04/2015] [Indexed: 11/21/2022]
Abstract
Virus-like particles are an established class of commercial vaccine possessing excellent function and proven stability. Exciting developments made possible by modern tools of synthetic biology has stimulated emergence of modular VLPs, whereby parts of one pathogen are by design integrated into a less harmful VLP which has preferential physical and manufacturing character. This strategy allows the immunologically protective parts of a pathogen to be displayed on the most-suitable VLP. However, the field of modular VLP design is immature, and robust design principles are yet to emerge, particularly for larger antigenic structures. Here we use a combination of molecular dynamic simulation and experiment to reveal two key design principles for VLPs. First, the linkers connecting the integrated antigenic module with the VLP-forming protein must be well designed to ensure structural separation and independence. Second, the number of antigenic domains on the VLP surface must be sufficiently below the maximum such that a "steric barrier" to VLP formation cannot exist. This second principle leads to designs whereby co-expression of modular protein with unmodified VLP-forming protein can titrate down the amount of antigen on the surface of the VLP, to the point where assembly can proceed. In this work we elucidate these principles by displaying the 18.1 kDa VP8* domain from rotavirus on the murine polyomavirus VLP, and show functional presentation of the antigenic structure.
Collapse
|
13
|
Pleckaityte M, Bremer CM, Gedvilaite A, Kucinskaite-Kodze I, Glebe D, Zvirbliene A. Construction of polyomavirus-derived pseudotype virus-like particles displaying a functionally active neutralizing antibody against hepatitis B virus surface antigen. BMC Biotechnol 2015; 15:85. [PMID: 26370129 PMCID: PMC4570255 DOI: 10.1186/s12896-015-0203-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/04/2015] [Indexed: 11/18/2022] Open
Abstract
Background Virus-like particles (VLPs) can be efficiently produced by heterologous expression of viral structural proteins in yeast. Due to their repetitive structure, VLPs are extensively used for protein engineering and generation of chimeric VLPs with inserted foreign epitopes. Hamster polyomavirus VP1 represents a promising epitope carrier. However, insertion of large sized protein sequences may interfere with its self-assembly competence. The co-expression of polyomavirus capsid protein VP1 with minor capsid protein VP2 or its fusion protein may result in pseudotype VLPs where an intact VP1 protein mediates VLP formation. In the current study, the capacity of VP1 protein to self-assemble to VLPs and interact with the modified VP2 protein has been exploited to generate pseudotype VLPs displaying large-sized antibody molecules. Results Polyomavirus-derived pseudotype VLPs harbouring a surface-exposed functionally active neutralizing antibody specific to hepatitis B virus (HBV) surface antigen (HBsAg) have been generated. The pseudotype VLPs consisting of an intact hamster polyomavirus (HaPyV) major capsid protein VP1 and minor capsid protein VP2 fused with the anti-HBsAg molecule were efficiently produced in yeast Saccharomyces cerevisiae and purified by density-gradient centrifugation. Formation of VLPs was confirmed by electron microscopy. Two types of pseudotype VLPs were generated harbouring either the single-chain fragment variable (scFv) or Fc-engineered scFv on the VLP surface. The antigen-binding activity of the purified pseudotype VLPs was evaluated by ELISA and virus-neutralization assay on HBV-susceptible primary hepatocytes from Tupaia belangeri. Both types of the pseudotype VLPs were functionally active and showed a potent HBV-neutralizing activity comparable to that of the parental monoclonal antibody. The VP2-fused scFv molecules were incorporated into the VLPs with higher efficiency as compared to the VP2-fused Fc-scFv. However, the pseudotype VLPs with displayed VP2-fused Fc-scFv molecule showed higher antigen-binding activity and HBV-neutralizing capacity that might be explained by a better accessibility of the Fc-engineered scFv of the VLP surface. Conclusions Polyomavirus-derived pseudotype VLPs harbouring multiple functionally active antibody molecules with virus-neutralizing capability may represent a novel platform for developing therapeutic tools with a potential application for post-exposure or therapeutic treatment of viral infections.
Collapse
Affiliation(s)
- Milda Pleckaityte
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Graciuno 8, LT-02241, Vilnius, Lithuania.
| | - Corinna M Bremer
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, German Centre for Infection Research, Justus-Liebig University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| | - Alma Gedvilaite
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Graciuno 8, LT-02241, Vilnius, Lithuania.
| | - Indre Kucinskaite-Kodze
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Graciuno 8, LT-02241, Vilnius, Lithuania.
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, German Centre for Infection Research, Justus-Liebig University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| | - Aurelija Zvirbliene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Graciuno 8, LT-02241, Vilnius, Lithuania.
| |
Collapse
|
14
|
Evaluation of Trichodysplasia Spinulosa-Associated Polyomavirus Capsid Protein as a New Carrier for Construction of Chimeric Virus-Like Particles Harboring Foreign Epitopes. Viruses 2015; 7:4204-29. [PMID: 26230706 PMCID: PMC4576179 DOI: 10.3390/v7082818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 12/21/2022] Open
Abstract
Recombinant virus-like particles (VLPs) represent a promising tool for protein engineering. Recently, trichodysplasia spinulosa-associated polyomavirus (TSPyV) viral protein 1 (VP1) was efficiently produced in yeast expression system and shown to self-assemble to VLPs. In the current study, TSPyV VP1 protein was exploited as a carrier for construction of chimeric VLPs harboring selected B and T cell-specific epitopes and evaluated in comparison to hamster polyomavirus VP1 protein. Chimeric VLPs with inserted either hepatitis B virus preS1 epitope DPAFR or a universal T cell-specific epitope AKFVAAWTLKAAA were produced in yeast Saccharomyces cerevisiae. Target epitopes were incorporated either at the HI or BC loop of the VP1 protein. The insertion sites were selected based on molecular models of TSPyV VP1 protein. The surface exposure of the insert positions was confirmed using a collection of monoclonal antibodies raised against the intact TSPyV VP1 protein. All generated chimeric proteins were capable to self-assemble to VLPs, which induced a strong immune response in mice. The chimeric VLPs also activated dendritic cells and T cells as demonstrated by analysis of cell surface markers and cytokine production profiles in spleen cell cultures. In conclusion, TSPyV VP1 protein represents a new potential carrier for construction of chimeric VLPs harboring target epitopes.
Collapse
|
15
|
Fang CY, Tsai YD, Lin MC, Wang M, Chen PL, Chao CN, Huang YL, Chang D, Shen CH. Inhibition of Human Bladder Cancer Growth by a Suicide Gene Delivered by JC Polyomavirus Virus-like Particles in a Mouse Model. J Urol 2015; 193:2100-6. [PMID: 25623749 DOI: 10.1016/j.juro.2015.01.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Chiung-Yao Fang
- Department of Medical Research, Chiayi Christian Hospital, Chiayi, Taiwan, Republic of China
| | - Yi-Da Tsai
- Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan, Republic of China
| | - Mien-Chun Lin
- Department of Urology, Chiayi Christian Hospital, Chiayi, Taiwan, Republic of China
- Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan, Republic of China
| | - Meilin Wang
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Pei-Lain Chen
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, Republic of China
| | - Chun-Nun Chao
- Department of Pediatrics, Chiayi Christian Hospital, Chiayi, Taiwan, Republic of China
| | - Yih-Leh Huang
- Department of Medical Research, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan, Republic of China
| | - Deching Chang
- Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan, Republic of China
| | - Cheng-Huang Shen
- Department of Urology, Chiayi Christian Hospital, Chiayi, Taiwan, Republic of China
| |
Collapse
|
16
|
Fleury MJJ, Nicol JTJ, Samimi M, Arnold F, Cazal R, Ballaire R, Mercey O, Gonneville H, Combelas N, Vautherot JF, Moreau T, Lorette G, Coursaget P, Touzé A. Identification of the neutralizing epitopes of Merkel cell polyomavirus major capsid protein within the BC and EF surface loops. PLoS One 2015; 10:e0121751. [PMID: 25812141 PMCID: PMC4374900 DOI: 10.1371/journal.pone.0121751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/04/2015] [Indexed: 11/19/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the first polyomavirus clearly associated with a human cancer, i.e. the Merkel cell carcinoma (MCC). Polyomaviruses are small naked DNA viruses that induce a robust polyclonal antibody response against the major capsid protein (VP1). However, the polyomavirus VP1 capsid protein epitopes have not been identified to date. The aim of this study was to identify the neutralizing epitopes of the MCPyV capsid. For this goal, four VP1 mutants were generated by insertional mutagenesis in the BC, DE, EF and HI loops between amino acids 88-89, 150-151, 189-190, and 296-297, respectively. The reactivity of these mutants and wild-type VLPs was then investigated with anti-VP1 monoclonal antibodies and anti-MCPyV positive human sera. The findings together suggest that immunodominant conformational neutralizing epitopes are present at the surface of the MCPyV VLPs and are clustered within BC and EF loops.
Collapse
Affiliation(s)
- Maxime J J Fleury
- L'UNAM Université, Groupe d'Etude des Interactions Hôte-Pathogène, UPRES EA 3142, Université d'Angers, Angers, France
| | - Jérôme T J Nicol
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Mahtab Samimi
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France; CHRU de Tours-Hôpital Trousseau, Service de Dermatologie, Tours, France
| | - Françoise Arnold
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Raphael Cazal
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Raphaelle Ballaire
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Olivier Mercey
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Hélène Gonneville
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Nicolas Combelas
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | | | - Thierry Moreau
- UMR INSERM 1100, Mécanismes Protéolytiques dans l'Inflammation, Faculté de Médecine, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Gérard Lorette
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France; CHRU de Tours-Hôpital Trousseau, Service de Dermatologie, Tours, France
| | - Pierre Coursaget
- Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Antoine Touzé
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| |
Collapse
|
17
|
Tan M, Jiang X. Subviral particle as vaccine and vaccine platform. Curr Opin Virol 2014; 6:24-33. [PMID: 24662314 PMCID: PMC4072748 DOI: 10.1016/j.coviro.2014.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 01/01/2023]
Abstract
Recombinant subvirual particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
18
|
Zvirbliene A, Kucinskaite-Kodze I, Razanskiene A, Petraityte-Burneikiene R, Klempa B, Ulrich RG, Gedvilaite A. The use of chimeric virus-like particles harbouring a segment of hantavirus Gc glycoprotein to generate a broadly-reactive hantavirus-specific monoclonal antibody. Viruses 2014; 6:640-60. [PMID: 24513568 PMCID: PMC3939476 DOI: 10.3390/v6020640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/07/2014] [Accepted: 01/18/2014] [Indexed: 11/16/2022] Open
Abstract
Monoclonal antibodies (MAbs) against viral glycoproteins have important diagnostic and therapeutic applications. In most cases, the MAbs specific to viral glycoproteins are raised against intact virus particles. The biosynthesis of viral glycoproteins in heterologous expression systems such as bacteria, yeast, insect or mammalian cells is often problematic due to their low expression level, improper folding and limited stability. To generate MAbs against hantavirus glycoprotein Gc, we have used initially a recombinant yeast-expressed full-length Puumala virus (PUUV) Gc protein. However, this approach was unsuccessful. As an alternative recombinant antigen, chimeric virus-like particles (VLPs) harboring a segment of PUUV Gc glycoprotein were generated in yeast Saccharomyces cerevisiae. A 99 amino acid (aa)-long segment of Gc protein was inserted into the major capsid protein VP1 of hamster polyomavirus at previously defined positions: either site #1 (aa 80-89) or site #4 (aa 280-289). The chimeric proteins were found to self-assemble to VLPs as evidenced by electron microscopy. Chimeric VLPs induced an efficient insert-specific antibody response in immunized mice. Monoclonal antibody (clone #10B8) of IgG isotype specific to hantavirus Gc glycoprotein was generated. It recognized recombinant full-length PUUV Gc glycoprotein both in ELISA and Western blot assay and reacted specifically with hantavirus-infected cells in immunofluorescence assay. Epitope mapping studies revealed the N-terminally located epitope highly conserved among different hantavirus strains. In conclusion, our approach to use chimeric VLPs was proven useful for the generation of virus-reactive MAb against hantavirus Gc glycoprotein. The generated broadly-reactive MAb #10B8 might be useful for various diagnostic applications.
Collapse
Affiliation(s)
- Aurelija Zvirbliene
- Vilnius University Institute of Biotechnology, V.A. Graiciuno 8, Vilnius LT-02241, Lithuania.
| | - Indre Kucinskaite-Kodze
- Vilnius University Institute of Biotechnology, V.A. Graiciuno 8, Vilnius LT-02241, Lithuania.
| | - Ausra Razanskiene
- Vilnius University Institute of Biotechnology, V.A. Graiciuno 8, Vilnius LT-02241, Lithuania.
| | | | - Boris Klempa
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité Medical School, Berlin 10117, Germany.
| | - Rainer G Ulrich
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Alma Gedvilaite
- Vilnius University Institute of Biotechnology, V.A. Graiciuno 8, Vilnius LT-02241, Lithuania.
| |
Collapse
|
19
|
|
20
|
Teunissen EA, de Raad M, Mastrobattista E. Production and biomedical applications of virus-like particles derived from polyomaviruses. J Control Release 2013; 172:305-321. [PMID: 23999392 DOI: 10.1016/j.jconrel.2013.08.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
Virus-like particles (VLPs), aggregates of capsid proteins devoid of viral genetic material, show great promise in the fields of vaccine development and gene therapy. These particles spontaneously self-assemble after heterologous expression of viral structural proteins. This review will focus on the use of virus-like particles derived from polyomavirus capsid proteins. Since their first recombinant production 27 years ago these particles have been investigated for a myriad of biomedical applications. These virus-like particles are safe, easy to produce, can be loaded with a broad range of diverse cargoes and can be tailored for specific delivery or epitope presentation. We will highlight the structural characteristics of polyomavirus-derived VLPs and give an overview of their applications in diagnostics, vaccine development and gene delivery.
Collapse
Affiliation(s)
- Erik A Teunissen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Markus de Raad
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
21
|
Morkuniene R, Zvirbliene A, Dalgediene I, Cizas P, Jankeviciute S, Baliutyte G, Jokubka R, Jankunec M, Valincius G, Borutaite V. Antibodies bound to Aβ oligomers potentiate the neurotoxicity of Aβ by activating microglia. J Neurochem 2013; 126:604-15. [DOI: 10.1111/jnc.12332] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Ramune Morkuniene
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
- Department of Biochemistry; Medical Academy; Lithuanian University of Health Sciences; Kaunas Lithuania
| | | | - Indre Dalgediene
- Vilnius University; Institute of Biotechnology; Vilnius Lithuania
| | - Paulius Cizas
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
- Department of Biochemistry; Medical Academy; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Silvija Jankeviciute
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Giedre Baliutyte
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Ramunas Jokubka
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Marija Jankunec
- Vilnius University; Institute of Biochemistry; Vilnius Lithuania
| | | | - Vilmante Borutaite
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| |
Collapse
|
22
|
Pushko P, Pumpens P, Grens E. Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology 2013; 56:141-65. [DOI: 10.1159/000346773] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Pleckaityte M, Zvirbliene A, Sezaite I, Gedvilaite A. Production in yeast of pseudotype virus-like particles harboring functionally active antibody fragments neutralizing the cytolytic activity of vaginolysin. Microb Cell Fact 2011; 10:109. [PMID: 22171920 PMCID: PMC3266213 DOI: 10.1186/1475-2859-10-109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/15/2011] [Indexed: 02/05/2023] Open
Abstract
Background Recombinant antibodies can be produced in different formats and different expression systems. Single chain variable fragments (scFvs) represent an attractive alternative to full-length antibodies and they can be easily produced in bacteria or yeast. However, the scFvs exhibit monovalent antigen-binding properties and short serum half-lives. The stability and avidity of the scFvs can be improved by their multimerization or fusion with IgG Fc domain. The aim of the current study was to investigate the possibilities to produce in yeast high-affinity scFv-Fc proteins neutralizing the cytolytic activity of vaginolysin (VLY), the main virulence factor of Gardnerella vaginalis. Results The scFv protein derived from hybridoma cell line producing high-affinity neutralizing antibodies against VLY was fused with human IgG1 Fc domain. Four different variants of anti-VLY scFv-Fc fusion proteins were constructed and produced in yeast Saccharomyces cerevisiae. The non-tagged scFv-Fc and hexahistidine-tagged scFv-Fc proteins were found predominantly as insoluble aggregates and therefore were not suitable for further purification and activity testing. The addition of yeast α-factor signal sequence did not support secretion of anti-VLY scFv-Fc but increased the amount of its intracellular soluble form. However, the purified protein showed a weak VLY-neutralizing capability. In contrast, the fusion of anti-VLY scFv-Fc molecules with hamster polyomavirus-derived VP2 protein and its co-expression with VP1 protein resulted in an effective production of pseudotype virus-like particles (VLPs) that exhibited strong VLY-binding activity. Recombinant scFv-Fc molecules displayed on the surface of VLPs neutralized VLY-mediated lysis of human erythrocytes and HeLa cells with high potency comparable to that of full-length antibody. Conclusions Recombinant scFv-Fc proteins were expressed in yeast with low efficiency. New approach to display the scFv-Fc molecules on the surface of pseudotype VLPs was successful and allowed generation of multivalent scFv-Fc proteins with high VLY-neutralizing potency. Our study demonstrated for the first time that large recombinant antibody molecule fused with hamster polyomavirus VP2 protein and co-expressed with VP1 protein in the form of pseudotype VLPs was properly folded and exhibited strong antigen-binding activity. The current study broadens the potential of recombinant VLPs as a highly efficient carrier for functionally active complex proteins.
Collapse
Affiliation(s)
- Milda Pleckaityte
- Vilnius University, Institute of Biotechnology, Department of Eukaryote Genetic Engineering, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | |
Collapse
|
24
|
Petraitytė-Burneikienė R, Nalivaiko K, Lasickienė R, Firantienė R, Ėmužytė R, Sasnauskas K, Žvirblienė A. Generation of recombinant metapneumovirus nucleocapsid protein as nucleocapsid-like particles and development of virus-specific monoclonal antibodies. Virus Res 2011; 161:131-9. [DOI: 10.1016/j.virusres.2011.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 11/29/2022]
|
25
|
Mazeike E, Gedvilaite A, Blohm U. Induction of insert-specific immune response in mice by hamster polyomavirus VP1 derived virus-like particles carrying LCMV GP33 CTL epitope. Virus Res 2011; 163:2-10. [PMID: 21864590 PMCID: PMC7114473 DOI: 10.1016/j.virusres.2011.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/07/2011] [Accepted: 08/08/2011] [Indexed: 01/12/2023]
Abstract
Hamster polyomavirus (HaPyV) major capsid protein VP1 based chimeric virus-like particles (VLPs) carrying model GP33 CTL epitope derived from Lymphocytic choriomeningitis virus (LCMV) were generated in yeast and examined for their capability to induce CTL response in mice. Chimeric VP1-GP33 VLPs were effectively processed in antigen presenting cells in vitro and in vivo and induced antigen-specific CD8+ T cell proliferation. Mice immunized only once with VP1-GP33 VLPs without adjuvant developed an effective GP33-specific memory T cell response: 70% were fully and 30% partially protected from LCMV infection. Moreover, aggressive growth of tumors expressing GP33 was significantly delayed in these mice in vivo. Therefore, HaPyV VP1-derived VLP harboring CTL epitopes are attractive vaccine candidates for the induction of insert-specific CTL immune response.
Collapse
Affiliation(s)
- Egle Mazeike
- Vilnius University, Institute of Biotechnology, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | |
Collapse
|
26
|
Chang CF, Wang M, Ou WC, Chen PL, Shen CH, Lin PY, Fang CY, Chang D. Human JC virus-like particles as a gene delivery vector. Expert Opin Biol Ther 2011; 11:1169-75. [DOI: 10.1517/14712598.2011.583914] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Chimeric porcine circoviruses (PCV) containing amino acid epitope tags in the C terminus of the capsid gene are infectious and elicit both anti-epitope tag antibodies and anti-PCV type 2 neutralizing antibodies in pigs. J Virol 2011; 85:4591-5. [PMID: 21307200 DOI: 10.1128/jvi.02294-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A chimeric porcine circovirus (PCV1-2) with the capsid gene of pathogenic PCV2 cloned into the genomic backbone of nonpathogenic PCV1 is attenuated in pigs but elicits protective immunity against PCV2. In this study, short epitope tags were inserted into the C terminus of the capsid protein of the chimeric PCV1-2 vaccine virus, resulting in a tractable marker virus that is infectious both in vitro and in vivo. Pigs experimentally infected with the epitope-tagged PCV1-2 vaccine viruses produced tag-specific antibodies, as well as anti-PCV2 neutralizing antibodies, indicating that the epitope-tagged viruses could potentially serve as a positive-marker modified live-attenuated vaccine.
Collapse
|
28
|
Ding Y, Chuan YP, He L, Middelberg AP. Modeling the competition between aggregation and self-assembly during virus-like particle processing. Biotechnol Bioeng 2010; 107:550-60. [DOI: 10.1002/bit.22821] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Pease LF, Lipin DI, Tsai DH, Zachariah MR, Lua LHL, Tarlov MJ, Middelberg APJ. Quantitative characterization of virus-like particles by asymmetrical flow field flow fractionation, electrospray differential mobility analysis, and transmission electron microscopy. Biotechnol Bioeng 2009; 102:845-55. [PMID: 18958863 DOI: 10.1002/bit.22085] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Here we characterize virus-like particles (VLPs) by three very distinct, orthogonal, and quantitative techniques: electrospray differential mobility analysis (ES-DMA), asymmetric flow field-flow fractionation with multi-angle light scattering detection (AFFFF-MALS) and transmission electron microscopy (TEM). VLPs are biomolecular particles assembled from viral proteins with applications ranging from synthetic vaccines to vectors for delivery of gene and drug therapies. VLPs may have polydispersed, multimodal size distributions, where the size distribution can be altered by subtle changes in the production process. These three techniques detect subtle size differences in VLPs derived from the non-enveloped murine polyomavirus (MPV) following: (i) functionalization of the surface of VLPs with an influenza viral peptide fragment; (ii) packaging of foreign protein internally within the VLPs; and (iii) packaging of genomic DNA internally within the VLPs. These results demonstrate that ES-DMA and AFFFF-MALS are able to quantitatively determine VLP size distributions with greater rapidity and statistical significance than TEM, providing useful technologies for product development and process analytics.
Collapse
Affiliation(s)
- Leonard F Pease
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Petraityte R, Tamosiunas PL, Juozapaitis M, Zvirbliene A, Sasnauskas K, Shiell B, Russell G, Bingham J, Michalski WP. Generation of Tioman virus nucleocapsid-like particles in yeast Saccharomyces cerevisiae. Virus Res 2009; 145:92-6. [PMID: 19559738 DOI: 10.1016/j.virusres.2009.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
Tioman virus (TioV) was isolated from a number of pooled urine samples of Tioman Island flying foxes (Pteropus hypomelanus) during the search for the reservoir host of Nipah virus. Studies have established TioV as a new virus in the family Paramyxoviridae. This novel paramyxovirus is antigenically related to Menangle virus that was isolated in Australia in 1997 during disease outbreak in pigs. TioV causes mild disease in pigs and has a predilection for lymphoid tissues. Recent serosurvey showed that 1.8% of Tioman Islanders had neutralizing antibodies against TioV, indicating probable past infection. For the development of convenient serological tests for this virus, recombinant TioV nucleocapsid (N) protein was expressed in the yeast Saccharomyces cerevisiae. High yields of recombinant TioV N protein were obtained. Electron microscopy demonstrated that purified recombinant N protein self-assembled into nucleocapsid-like particles which were identical in density and morphology to authentic nucleocapsids from paramyxovirus-infected cells. Different size nucleocapsid-like particles were stable and readily purified by CsCl gradient ultracentrifugation. Polyclonal sera raised in rabbits after immunization with recombinant TioV N protein reacted reliably with TioV infected tissues in immunohistochemistry tests. It confirmed that the antigenic properties of yeast derived TioV N protein are identical to authentic viral protein.
Collapse
Affiliation(s)
- Rasa Petraityte
- Institute of Biotechnology, V. Graiciuno 8, Vilnius, Lithuania.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ramqvist T, Dalianis T. Immunotherapeutic polyoma and human papilloma virus-like particles. Immunotherapy 2009; 1:303-12. [DOI: 10.2217/1750743x.1.2.303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polyomavirus and human papillomavirus (HPV) virus-like particles (VLPs) can be obtained by producing their major capsid protein VP1 (for polyomavirus) or L1 (for HPV) free from other viral genes in, for example, a baculovirus insect system, yeast, Escherichia coli or similar systems. Polyomavirus and HPV VLPs can immunize healthy individuals, and in some cases T-cell-deficient hosts, against primary infection with the corresponding virus. Chimeric VLPs from polyomaviruses or HPVs containing fusion proteins between the VP1/L1 or VP2/VP3/L2 minor capsid proteins and selected antigens can also be produced. These VLPs can then induce B- or T-cell immune responses and be used as preventive or therapeutic vaccines against cancers induced by the corresponding virus, or a cancer bearing the selected tumor antigen.
Collapse
Affiliation(s)
- Torbjörn Ramqvist
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK R8:01, 171 76 Stockholm, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK R8:01, 171 76 Stockholm, Sweden
| |
Collapse
|
32
|
Todorova I, Iliev I, Gedvilaitė A, Zvirbliene A, Sasnauskas K, Shikova E. Elisa Using Yeast-Expressed Polyomavirus-Like Particles Detects Serum Antibodies. BIOTECHNOL BIOTEC EQ 2009. [DOI: 10.1080/13102818.2009.10818545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
33
|
Verschoor E, Niphuis H, Fagrouch Z, Christian P, Sasnauskas K, Pizarro M, Heeney J. Seroprevalence of SV40-like polyomavirus infections in captive and free-ranging macaque species. J Med Primatol 2008; 37:196-201. [DOI: 10.1111/j.1600-0684.2007.00276.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Synthesis of recombinant human parainfluenza virus 1 and 3 nucleocapsid proteins in yeast Saccharomyces cerevisiae. Virus Res 2008; 133:178-86. [DOI: 10.1016/j.virusres.2007.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 11/20/2022]
|
35
|
Fric J, Marek M, Hrusková V, Holán V, Forstová J. Cellular and humoral immune responses to chimeric EGFP-pseudocapsids derived from the mouse polyomavirus after their intranasal administration. Vaccine 2008; 26:3242-51. [PMID: 18468739 DOI: 10.1016/j.vaccine.2008.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 03/06/2008] [Accepted: 04/05/2008] [Indexed: 01/05/2023]
Abstract
Mouse polyomavirus (MPyV) VP1-pseudocapsids carrying enhanced green fluorescent protein (EGFP-VLPs) were used for intranasal immunization of mice. EGFP-VLPs induced strong anti-VP1 but not anti-EGFP antibody production. In vitro restimulation with antigen-pulsed bone marrow-derived dendritic cells (BMDCs) induced remarkable T-cell proliferative response specific for both VP1 and EGFP antigen and IL-2 and IFN-gamma production. Surprisingly, no specific cytotoxic activities against VP1 and EGFP proteins were detected. After intranasal administration of EGFP-VLPs, as well as after polyomavirus infection, a moderate reduction of CD4(+)CD25(+)Foxp3(+) T cells was observed in spleens but not in lymph nodes and peripheral blood, suggesting that both MPyV virions and pseudocapsids are able to induce changes in distribution of regulatory T cells. Treatment of EGFP-VLPs pulsed BMDCs with inhibitors of endosomal acidification proved that presentation of peptides on MHCgp class II is dependent on acidic endosomal environment. Substantial decrease of CD4-specific T-cell proliferation in the presence of proteasome inhibitor suggests that MHCgp class II might load VPL-derived peptides processed by proteasomes. Thus, polyomavirus derived VLPs appear to be promising delivery and adjuvant vehicles for therapeutic proteins.
Collapse
Affiliation(s)
- Jan Fric
- Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | | | | | | | | |
Collapse
|
36
|
Skrastina D, Bulavaite A, Sominskaya I, Kovalevska L, Ose V, Priede D, Pumpens P, Sasnauskas K. High immunogenicity of a hydrophilic component of the hepatitis B virus preS1 sequence exposed on the surface of three virus-like particle carriers. Vaccine 2008; 26:1972-81. [DOI: 10.1016/j.vaccine.2008.02.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 01/28/2008] [Accepted: 02/07/2008] [Indexed: 01/16/2023]
|
37
|
Dorn DC, Lawatscheck R, Zvirbliene A, Aleksaite E, Pecher G, Sasnauskas K, Özel M, Raftery M, Schönrich G, Ulrich RG, Gedvilaite A. Cellular and Humoral Immunogenicity of Hamster Polyomavirus-Derived Virus-Like Particles Harboring a Mucin 1 Cytotoxic T-Cell Epitope. Viral Immunol 2008; 21:12-27. [DOI: 10.1089/vim.2007.0085] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- David C. Dorn
- Institute of Virology, Charité Medical School, Campus Mitte, Berlin, Germany
- Medical Clinic for Oncology and Hematology, Charité Medical School, Campus Mitte, Berlin, Germany
| | - Robert Lawatscheck
- Institute of Virology, Charité Medical School, Campus Mitte, Berlin, Germany
| | | | | | - Gabriele Pecher
- Medical Clinic for Oncology and Hematology, Charité Medical School, Campus Mitte, Berlin, Germany
| | | | | | - Martin Raftery
- Institute of Virology, Charité Medical School, Campus Mitte, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité Medical School, Campus Mitte, Berlin, Germany
| | - Rainer G. Ulrich
- Institute of Virology, Charité Medical School, Campus Mitte, Berlin, Germany
| | | |
Collapse
|
38
|
Lawatscheck R, Aleksaite E, Schenk JA, Micheel B, Jandrig B, Holland G, Sasnauskas K, Gedvilaite A, Ulrich RG. Chimeric polyomavirus-derived virus-like particles: the immunogenicity of an inserted peptide applied without adjuvant to mice depends on its insertion site and its flanking linker sequence. Viral Immunol 2007; 20:453-60. [PMID: 17931115 DOI: 10.1089/vim.2007.0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We inserted the sequence of the carcinoembryonic antigen-derived T cell epitope CAP-1-6D (CEA) into different positions of the hamster polyomavirus major capsid protein VP1. Independently from additional flanking linkers, yeast-expressed VP1 proteins harboring the CEA insertion between VP1 amino acid residues 80 and 89 (site 1) or 288 and 295 (site 4) or simultaneously at both positions assembled to chimeric virus-like particles (VLPs). BALB/c mice immunized with adjuvant-free VLPs developed VP1- and epitope-specific antibodies. The level of the CEA-specific antibody response was determined by the insertion site, the number of inserts, and the flanking linker. The strongest CEA-specific antibody response was observed in mice immunized with VP1 proteins harboring the CEA insert at site 1. Moreover, the CEA-specific antibodies in these mice were still detectable 6 mo after the final booster immunization. Our results indicate that hamster polyomavirus-derived VLPs represent a highly immunogenic carrier for foreign insertions that might be useful for clinical and therapeutic applications.
Collapse
Affiliation(s)
- Robert Lawatscheck
- University of Potsdam, Institute of Biochemistry and Biology, Department of Biotechnology, Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lundstig A, Stattin P, Persson K, Sasnauskas K, Viscidi RP, Gislefoss RE, Dillner J. No excess risk for colorectal cancer among subjects seropositive for the JC polyomavirus. Int J Cancer 2007; 121:1098-102. [PMID: 17471560 DOI: 10.1002/ijc.22770] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human polyomaviruses JC virus (JCV) and BK virus (BKV) are oncogenic in experimental systems and commonly infect humans. JCV DNA has been reported to be present in human colon mucosa and in colorectal cancers. To investigate whether the risk for colorectal cancer is associated with JCV or BKV infection, we performed a case-control study nested in the Janus biobank, a cohort of 330,000 healthy Norwegian subjects. A 30-year prospective follow-up using registry linkages identified 386 men with colorectal cancer who had baseline serum samples taken >3 months before diagnosis. Control subjects were matched for sex, age and date of blood sampling and county of residence. Seropositivity for JCV or BKV had high (97-100%) sensitivity for detection of viral DNA-positive subjects and discriminated the different polyomaviruses. Seropositivity was mostly stable over time in serial samples. The relative risk for colorectal cancer among JCV seropositive subjects was 0.9 (95% CI: 0.7-1.3) and the BKV-associated relative risk was 1.1 (95% CI: 0.8-1.5). Determining seropositivity using alternative cutoffs also found no evidence of excess risk. In summary, this prospective study found no association between JCV or BKV infections and excess risk for colorectal cancer.
Collapse
Affiliation(s)
- Annika Lundstig
- Department of Medical Microbiology, Lund University, University Hospital, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
40
|
Ramqvist T, Andreasson K, Dalianis T. Vaccination, immune and gene therapy based on virus-like particles against viral infections and cancer. Expert Opin Biol Ther 2007; 7:997-1007. [PMID: 17665989 DOI: 10.1517/14712598.7.7.997] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Virus-like particles (VLPs) are self-assembling, non-replicating particles lacking the viral genome that are formed by one or several viral structural proteins. VLPs can be purified after expression in yeast cells, insect cells using baculoviruses, Escherichia coli or mammalian cells. Recently, vaccines based on VLPs have come into focus with the FDA approval of a VLP-based vaccine against human papilloma viruses. However, this application of VLPs is just one of many developments within the VLP field. Other potential applications under development besides vaccines against viruses or cancers also include gene delivery and treatment of different disorders.
Collapse
Affiliation(s)
- Torbjörn Ramqvist
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Centrum Karolinska, Stockholm, Sweden.
| | | | | |
Collapse
|
41
|
Zhang L, Jin N, Song Y, Wang H, Ma H, Li Z, Jiang W. Construction and characterization of a recombinant fowlpox virus containing HIV-1 multi-epitope-p24 chimeric gene in mice. ACTA ACUST UNITED AC 2007; 50:212-20. [PMID: 17447028 DOI: 10.1007/s11427-007-0017-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
Abstract
The epidemic of HIV/AIDS is sweeping across the world. It is of great importance to figure out new ways to curb this disease. Epitope-based vaccine is one of these solutions. In this study, a chimeric gene was obtained by combination of a designed HIV-1 multi-epitope gene (MEG) and HIV-1 p24 gene. A recombinant plasmid pUTA2-MEGp24 was then constructed by inserting MEGp24 gene into the downstream of the promoter (ATI-P7.5x20) of fowlpox virus (FPV) transfer vector pUTA2. The recombinant plasmid and wild-type FPV 282E4 strain were then co-transfected into CEF cells and homologous recombination occurred. A recombinant virus expressing HIV-1 protein MEGp24 was screened by genome PCR and Western blot assay. Large scale preparation and purification of the recombinant fowlpox virus (rFPV) were then carried out. BALB/c mice were immunized intramuscularly with the rFPV for three times on day 0, 14 and 42. Mice were executed and sampled one week after the third inoculation. Anti-HIV-1 antibody in serum and Th1 cytokines in the supernatant of cultured spleen cells were assayed by ELISA. The count of T lymphocyte subsets and the CTL activity of spleen lymphocytes were analyzed by flow cytometry and lactate dehydrogenase (LDH) release assay, respectively. The results showed that HIV-1 specific antibody in serum and increased T lymphocyte subsets (CD4(+) T, CD8(+) T) were detected in the immunization group. CTL target-killing activity and higher secretion of Th1 cytokines (IFN-gamma and IL-2) of spleen lymphocytes stimulated by H-2(d)-restricted CTL peptide were observed in immunized mice. We concluded that the rFPV may induce HIV-1 specific immunity especially cellular immunity in mice.
Collapse
Affiliation(s)
- LiShu Zhang
- The 11th Institute, Academy of Military Medical Sciences, Changchun 130062, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Juozapaitis M, Serva A, Kucinskaite I, Zvirbliene A, Slibinskas R, Staniulis J, Sasnauskas K, Shiell BJ, Bowden TR, Michalski WP. Generation of menangle virus nucleocapsid-like particles in yeast Saccharomyces cerevisiae. J Biotechnol 2007; 130:441-7. [PMID: 17602774 DOI: 10.1016/j.jbiotec.2007.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 04/25/2007] [Accepted: 05/18/2007] [Indexed: 11/18/2022]
Abstract
Menangle virus (MenV), which was isolated in Australia in 1997 during an outbreak of severe reproductive disease in pigs, is a novel member of the genus Rubulavirus in the family Paramyxoviridae. Although successfully eradicated from the affected piggery, fruit bats are considered to be the natural reservoir of the virus and therefore an ongoing risk of re-introduction to the pig population exists. Accordingly, reagents to facilitate serological surveillance are required to enhance the diagnostic capability for MenV, which is a newly recognized cause of disease in pigs with the potential to severely affect production in naive breeding herds. To address this need, recombinant MenV nucleocapsid (N) protein was expressed in the yeast Saccharomyces cerevisiae. Using the expression vector pFGG3 under control of the GAL7 promoter, high yields of recombinant MenV N protein were obtained. Electron microscopy demonstrated that purified recombinant N protein self-assembled into nucleocapsid-like particles which were identical in density and morphology, although not in length, to authentic nucleocapsids from virus-infected cells. Electron microscopy analysis also showed that yeast-expressed N protein which lacked the C-terminal tail (amino acid residues 400-519) formed significantly longer and denser nucleocapsid-like particles. Nucleocapsid-like particles derived from the full-length recombinant protein were stable and readily purified by CsCl gradient ultracentrifugation. When used as coating antigen in an indirect ELISA, the recombinant N protein reacted with sera derived from pigs experimentally infected with MenV and a simple serological assay to detect MenV-specific antibodies in pigs, fruit bats and humans could be designed on this basis.
Collapse
|
43
|
Ramqvist T, Andreasson K, Dalianis T. Murine polyomavirus virus-like particles as vectors for gene and immune therapy and as vaccines. Future Virol 2007. [DOI: 10.2217/17460794.2.3.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polyomavirus virus-like particles (VLPs) can be produced free from viral genes and used as vectors for gene and immune therapy and as vaccines. For large-scale VLP manufacture, the major viral capsid protein (VP)1, is produced in a baculovirus insect cell system, Escherichia coli or yeast, and will self-assemble into VLPs under appropriate conditions. Murine polyomavirus (MPyV) VLP vaccination prevents primary MPyV infection and outgrowth of some MPyV-tumors in mice. Furthermore, MPyV-VLPs bind and introduce eukaryotic DNA into various cells in vitro and in vivo, while MPyV-VLPs containing fusion proteins between capsid proteins VP1, -2 or -3 and selected antigens can be used as vaccines. Similar findings apply to other polyomavirus VLPs. In summary, polyomavirus VLPs are useful vectors for immune and gene therapy and as vaccines, and different polyomavirus VLPs can be used for prime-boost therapy.
Collapse
Affiliation(s)
- Torbjörn Ramqvist
- Karolinska University Hospital, Department of Oncology-Pathology, Karolinska Institutet, CCK R8:01 171 76 Stockholm, Sweden
| | - Kalle Andreasson
- Karolinska University Hospital, Department of Oncology-Pathology, Karolinska Institutet, CCK R8:01 171 76 Stockholm, Sweden
| | - Tina Dalianis
- Karolinska University Hospital, Department of Oncology-Pathology, Karolinska Institutet, CCK R8:01 171 76 Stockholm, Sweden
| |
Collapse
|
44
|
Juozapaitis M, Serva A, Zvirbliene A, Slibinskas R, Staniulis J, Sasnauskas K, Shiell BJ, Wang LF, Michalski WP. Generation of henipavirus nucleocapsid proteins in yeast Saccharomyces cerevisiae. Virus Res 2007; 124:95-102. [PMID: 17123657 DOI: 10.1016/j.virusres.2006.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/15/2006] [Accepted: 10/20/2006] [Indexed: 11/30/2022]
Abstract
Hendra and Nipah viruses are newly emerged, zoonotic viruses and their genomes have nucleotide and predicted amino acid homologies placing them in the family Paramyxoviridae. Currently these viruses are classified in the new genus Henipavirus, within the subfamily Paramyxovirinae, family Paramyxoviridae. The genes encoding HeV and NiV nucleocapsid proteins were cloned into the yeast Saccharomyces cerevisiae expression vector pFGG3 under control of GAL7 promoter. A high level of expression of these proteins (18-20 mg l(-1) of yeast culture) was obtained. Mass spectrometric analysis confirmed the primary structure of both proteins with 92% sequence coverage obtained using MS/MS analysis. Electron microscopy demonstrated the assembly of typical herring-bone structures of purified recombinant nucleocapsid proteins, characteristic for other paramyxoviruses. The nucleocapsid proteins revealed stability in yeast and can be easily purified by cesium chloride gradient ultracentrifugation. HeV nucleocapsid protein was detected by sera derived from fruit bats, humans, horses infected with HeV, and NiV nucleocapsid protein was immunodetected with sera from, fruit bats, humans and pigs. The development of an efficient and cost-effective system for generation of henipavirus nucleocapsid proteins might help to improve reagents for diagnosis of viruses.
Collapse
|
45
|
Neugebauer M, Walders B, Brinkman M, Ruehland C, Schumacher T, Bertling WM, Geuther E, Reiser COA, Reichel C, Strich S, Hess J. Development of a vaccine marker technology: Display of B cell epitopes on the surface of recombinant polyomavirus-like pentamers and capsoids induces peptide-specific antibodies in piglets after vaccination. Biotechnol J 2006; 1:1435-46. [PMID: 17109492 DOI: 10.1002/biot.200600149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Highly immunogenic capsomers (pentamers) and virus-like particles (VLPs) were generated through insertion of foreign B cell epitopes into the surface-exposed loops of the VP1 protein of murine polyomavirus and via heterologous expression of the recombinant fusion proteins in E. coli. Usually, complex proteins like the keyhole limpet hemocyanin (KLH) act as standard carrier devices for the display of such immunogenic peptides after chemical linkage. Here, a comparative analysis revealed that antibody responses raised against the carrier entities, KLH or VP1 pentamers, did not significantly differ up to 18 weeks, demonstrating the highly immunogenic nature of VP1-based particulate structures. The carrier-specific antibody response was reproducibly detected in the meat juice after processing. More importantly, chimeric VP1 pentamers and VLPs carrying peptides of 12 and 14 amino acids in length, inserted into the BC2 loop, induced a strong and long-lasting humoral immune response against VP1 and the inserted foreign epitope. Remarkably, the epitope-specific antibody response was only moderately decreased when VP1 pentamers were used instead of VLPs. In conclusion, we identified polyomavirus VP1-based structures displaying surface-exposed immunodominant B cell epitopes as being an efficient carrier system for the induction of potent peptide-specific antibodies. The application of this approach in vaccine marker technology in livestock holding and the meat production chain is discussed.
Collapse
|
46
|
Zielonka A, Gedvilaite A, Ulrich R, Lüschow D, Sasnauskas K, Müller H, Johne R. Generation of virus-like particles consisting of the major capsid protein VP1 of goose hemorrhagic polyomavirus and their application in serological tests. Virus Res 2006; 120:128-37. [PMID: 16780983 DOI: 10.1016/j.virusres.2006.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 02/10/2006] [Accepted: 02/10/2006] [Indexed: 10/24/2022]
Abstract
Goose hemorrhagic polyomavirus (GHPV) is the causative agent of hemorrhagic nephritis and enteritis of geese (HNEG), a fatal disease of young geese with high mortality rates. GHPV cannot be efficiently propagated in tissue culture. To provide antigens for diagnostic tests and vaccines, its major structural protein VP1 was recombinantly expressed in Sf9 insect cells and in the yeast Saccharomyces cerevisiae. As demonstrated by density gradient centrifugation and electron microscopy, GHPV-VP1 expressed in insect cells formed virus-like particles (VLPs) with a diameter of 45 nm indistinguishable from infectious polyomavirus particles. However, efficiency of VLP formation was low as compared to the monkey polyomavirus SV-40-VP1. In yeast cells, GHPV-VP1 alone formed smaller VLPs, 20 nm in diameter. Remarkably, co-expression of GHPV-VP2 resulted in VLPs with a diameter of 45 nm. All three types of GHPV-VLPs were shown to hemagglutinate chicken erythrocytes. ELISA and hemagglutination inhibition tests using the VLPs as antigen detected GHPV-specific antibodies in up to 85.7% of sera derived from flocks with HNEG but in none of the sera of a clinically healthy flock. However, GHPV-specific antibodies were also detected in sera from two other flocks without HNEG indicating a broad distribution of GHPV due to subclinical or unrecognised infections.
Collapse
Affiliation(s)
- Anja Zielonka
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Voronkova T, Kazaks A, Ose V, Ozel M, Scherneck S, Pumpens P, Ulrich R. Hamster polyomavirus-derived virus-like particles are able to transfer in vitro encapsidated plasmid DNA to mammalian cells. Virus Genes 2006; 34:303-14. [PMID: 16927120 DOI: 10.1007/s11262-006-0028-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 04/25/2006] [Indexed: 01/31/2023]
Abstract
The authentic major capsid protein 1 (VP1) of hamster polyomavirus (HaPyV) consists of 384 amino acid (aa) residues (42 kDa). Expression from an additional in-frame initiation codon located upstream from the authentic VP1 open reading frame (at position -4) might result in the synthesis of a 388 aa-long, amino-terminally extended VP1 (aa -4 to aa 384; VP1(ext)). In a plasmid-mediated Drosophila Schneider (S2) cell expression system, both VP1 derivatives as well as a VP1(ext) variant with an amino acid exchange of the authentic Met1Gly (VP1(ext-M1)) were expressed to a similar high level. Although all three proteins were detected in nuclear as well as cytoplasmic fractions, formation of virus-like particles (VLPs) was observed exclusively in the nucleus as confirmed by negative staining electron microscopy. The use of a tryptophan promoter-driven Escherichia coli expression system resulted in the efficient synthesis of VP1 and VP1(ext) and formation of VLPs. In addition, establishment of an in vitro disassembly/reassembly system allowed the encapsidation of plasmid DNA into VLPs. Encapsidated DNA was found to be protected against the action of DNase I. Mammalian COS-7 and CHO cells were transfected with HaPyV-VP1-VLPs carrying a plasmid encoding enhanced green fluorescent protein (eGFP). In both cell lines eGFP expression was detected indicating successful transfer of the plasmid into the cells, though at a still low level. Cesium chloride gradient centrifugation allowed the separation of VLPs with encapsidated DNA from "empty" VLPs, which might be useful for further optimization of transfection. Therefore, heterologously expressed HaPyV-VP1 may represent a promising alternative carrier for foreign DNA in gene transfer applications.
Collapse
Affiliation(s)
- Tatyana Voronkova
- Biomedical Research and Study Centre, Ratsupites 1, Riga LV-1067, Latvia.
| | | | | | | | | | | | | |
Collapse
|
48
|
Gedvilaite A, Dorn DC, Sasnauskas K, Pecher G, Bulavaite A, Lawatscheck R, Staniulis J, Dalianis T, Ramqvist T, Schönrich G, Raftery MJ, Ulrich R. Virus-like particles derived from major capsid protein VP1 of different polyomaviruses differ in their ability to induce maturation in human dendritic cells. Virology 2006; 354:252-60. [PMID: 16904154 DOI: 10.1016/j.virol.2006.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 04/13/2006] [Accepted: 07/07/2006] [Indexed: 11/20/2022]
Abstract
As polyomavirus major capsid protein VP1-derived virus-like particles (VLPs) have been demonstrated to be highly immunogenic, we studied their interaction with human dendritic cells (hDCs). Exposure of hDCs to VLPs originating from murine (MPyV) or hamster polyomavirus (HaPyV) induced hDC maturation. In contrast, exposure of hDCs to VLPs derived from human polyomaviruses (BK and JC) and simian virus 40 (SV40) only marginally induced DC maturation. The hDCs stimulated by HaPyV- or MPyV-derived VLPs readily produced interleukin-12 and stimulated CD8-positive T-cell responses in vitro. The highest frequencies of activated T cells were again observed after pulsing with HaPyV- and MPyV-derived VLPs. Monocyte-derived hDCs both bound and internalized the various tested polyomavirus VP1-derived VLPs with different levels of efficiency, partially explaining their individual maturation potentials. In conclusion, our data suggest a high variability in uptake of polyomavirus-derived VLPs and potency to induce hDC maturation.
Collapse
Affiliation(s)
- Alma Gedvilaite
- Institute of Biotechnology, V Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ruehland C, Reichel C, Neugebauer M, Strich S, Bertling WM, Reiser COA, Hess J. ImmunoTrack®: The novel antibody-based technology for tracing in animal health. Biotechnol J 2006; 1:625-32. [PMID: 16892310 DOI: 10.1002/biot.200600040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper describes a novel antibody-based livestock movement control tool and method of meat allocation, both in livestock husbandry as well as during the meat-processing chain. Immuno Track fulfills diverse prerequisites and meets regulatory demands which are substantial for a successful monitoring technology: (i) the induction of long-lasting antibody responses detectable onsite throughout the whole mast period of pigs, (ii) a single immunization injection with protein derivatives is sufficient to evoke a strong epitope-specific antibody response, and (iii) the complete degradation of the protein markers after the antibody response has been triggered in meatproducing animals such as cattle or pigs. There are diverse fields of application for the Immuno-Track marker technology, such as in quality meat programs, as compliance markers for animal vaccines or as a tool for verification of origin. Combination of this monitoring technology with the husbandry and identification databases for cattle and pigs within the European Community will lead to greater transparency in meat production, thereby regaining consumers' trust in concomitant structures of the meat-producing industry.
Collapse
|
50
|
Zvirbliene A, Samonskyte L, Gedvilaite A, Voronkova T, Ulrich R, Sasnauskas K. Generation of monoclonal antibodies of desired specificity using chimeric polyomavirus-derived virus-like particles. J Immunol Methods 2006; 311:57-70. [PMID: 16516908 DOI: 10.1016/j.jim.2006.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 11/18/2005] [Accepted: 01/04/2006] [Indexed: 11/30/2022]
Abstract
Foreign protein sequences presented on hamster polyomavirus (HaPyV) major capsid protein VP1-derived virus-like particles (VLPs) have been demonstrated to be highly immunogenic. The current study was aimed to evaluate VP1-derived chimeric VLPs as tools for hybridoma technology to generate monoclonal antibodies (mAbs) of desired specificity. Chimeric VLPs containing inserts of different size and origin were used as immunogens. Chimeric VLPs carrying a 9 amino acid (aa)-long cytotoxic T-cell epitope (STAPPVHNV) of human mucin 1 (MUC1) elicited a strong epitope-specific humoral immune response in mice and promoted the production of MUC1-specific mAbs. From a total of seven mAbs of IgG isotype generated against the chimeric VLPs, two mAbs were directed against the MUC1 epitope and five mAbs against the VP1-carrier. Two out of five anti-VP1 mAbs recognized epitopes located at the previously defined insertion site #2 (aa 223/224), which confirms its surface-exposed localization. Chimeric VLPs carrying a 120-aa long sequence of Puumala hantavirus (PUUV) nucleocapsid protein (NP) promoted the generation of five mAbs of IgG isotype specific to PUUV NP. All mAbs recognized the full-length NP of different PUUV strains. In contrast, no VP1-specific mAbs were obtained. The ability of chimeric VLPs to activate antigen-presenting cells was evaluated by studying the uptake of chimeric VLPs by murine spleen cell-derived dendritic cells (DCs). Efficient uptake of VLPs and activation of murine DCs were demonstrated, which may represent the basis of the strong immunogenicity of chimeric VLPs. In conclusion, chimeric VLPs effectively stimulated the production of IgG antibodies specific for foreign epitopes presented at surface-exposed regions. Thus, chimeric HaPyV VP1-derived VLPs represent efficient immunogens for hybridoma technology and provide a promising alternative to chemical coupling of synthetic peptides to carrier proteins.
Collapse
Affiliation(s)
- A Zvirbliene
- Institute of Biotechnology, V. Graiciuno 8, LT-02241 Vilnius, Lithuania.
| | | | | | | | | | | |
Collapse
|