1
|
Ali SI, Salama A. Natural Immunomodulatory Agents as a Complementary Therapy for Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:337-354. [PMID: 38801589 DOI: 10.1007/978-3-031-57165-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses target innate immunity mediators such as tumor necrosis factors, interleukins, interferons, complement, and chemokines. It also targets adaptive immunity such as CD4+ T cells, CD4+ T cells, and B cells. Emerging of the recent epidemic of monkeypox virus (MPXV), a zoonotic disease native to Central and Western Africa, besides the lack of permitted treatments for poxviruses infections, encouraged researchers to identify effective inhibitors to help in preventing and treating poxviruses infections. Natural bioactive components, particularly polyphenolics, are promising for creating powerful antioxidants, anti-inflammatory, immune-stimulating, and antiviral agents. As a result, they are potentially effective therapies for preventing and treating viral diseases, such as infections caused by poxviruses including the recent pandemic MPXV. Polyphenolics: rosmarinic acid, caffeic acid, resveratrol, quercitrin, myricitrin, gingerol, gallotannin, and propolis-benzofuran A, as well as isoquinoline alkaloids: galanthamine and thalimonine represent prospective antiviral agents against MPXV, they can inhibit MPXV and other poxviruses via targeting different viral elements including DNA Topoisomerase I (TOP1), Thymidine Kinase (TK), serine/threonine protein kinase (Ser/Thr kinase), and protein A48R. The bioactive extracts of different traditional plants including Guiera senegalensis, Larrea tridentata, Sarracenia purpurea, Kalanchoe pinnata (Lam.) Pers., Zingiber officinale Roscoe, Quercus infectoria, Rhus chinensis, Prunella vulgaris L., Salvia rosmarinus, and Origanum vulgare also can inhibit the growth of different poxviruses including MPXV, vaccinia virus (VACV), variola virus, buffalopox virus, fowlpox virus, and cowpox virus. There is an urgent need for additional molecular studies to identify and confirm the anti-poxviruses properties of various natural bioactive components, especially those that showed potent antiviral activity against other viruses.
Collapse
Affiliation(s)
- Sami I Ali
- Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt.
| | - Abeer Salama
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt
| |
Collapse
|
2
|
Saghazadeh A, Rezaei N. Poxviruses and the immune system: Implications for monkeypox virus. Int Immunopharmacol 2022; 113:109364. [PMID: 36283221 PMCID: PMC9598838 DOI: 10.1016/j.intimp.2022.109364] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Poxviruses (PXVs) are mostly known for the variola virus, being the cause of smallpox; however, re-emerging PXVs have also shown a great capacity to develop outbreaks of pox-like infections in humans. The situation is alarming; PXV outbreaks have been involving both endemic and non-endemic areas in recent decades. Stopped smallpox vaccination is a reason offered mainly for this changing epidemiology that implies the protective role of immunity in the pathology of PXV infections. The immune system recognizes PXVs and elicits responses, but PXVs can antagonize these responses. Here, we briefly review the immunology of PXV infections, with emphasis on the role of pattern-recognition receptors, macrophages, and natural killer cells in the early response to PXV infections and PXVs’ strategies influencing these responses, as well as taking a glance at other immune cells, which discussion over them mainly occurs in association with PXV immunization rather than PXV infection. Throughout the review, numerous evasion mechanisms are highlighted, which might have implications for designing specific immunotherapies for PXV in the future.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Liang Z, Yao K, Wang S, Yin J, Ma X, Yin X, Wang X, Sun Y. Understanding the research advances on lumpy skin disease: A comprehensive literature review of experimental evidence. Front Microbiol 2022; 13:1065894. [PMID: 36519172 PMCID: PMC9742232 DOI: 10.3389/fmicb.2022.1065894] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 10/28/2023] Open
Abstract
Lumpy skin disease is caused by lumpy skin disease virus (LSDV), which can induce cattle with high fever and extensive nodules on the mucosa or the scarfskin, seriously influencing the cattle industry development and international import and export trade. Since 2013, the disease has spread rapidly and widely throughout the Russia and Asia. In the past few decades, progress has been made in the study of LSDV. It is mainly transmitted by blood-sucking insects, and various modes of transmission with distinct seasonality. Figuring out how the virus spreads will help eradicate LSDV at its source. In the event of an outbreak, selecting the most effective vaccine to block and eliminate the threat posed by LSDV in a timely manner is the main choice for farmers and authorities. At present, a variety of vaccines for LSDV have been developed. The available vaccine products vary in quality, protection rate, safety and side effects. Early detection of LSDV can help reduce the cost of disease. In addition, because LSDV has a huge genome, it is currently also used as a vaccine carrier, forming a new complex with other viral genes through homologous recombination. The vaccine prepared based on this can have a certain preventive effect on many kinds of diseases. Clinical detection of disease including nucleic acid and antigen level. Each method varies in convenience, accuracy, cost, time and complexity of equipment. This article reviews our current understanding of the mode of transmission of LSDV and advances in vaccine types and detection methods, providing a background for further research into various aspects of LSDV in the future.
Collapse
Affiliation(s)
- Zhengji Liang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kaishen Yao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shasha Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juanbin Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoqin Ma
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangping Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
4
|
Daian e Silva DSDO, da Fonseca FG. The Rise of Vectored Vaccines: A Legacy of the COVID-19 Global Crisis. Vaccines (Basel) 2021; 9:1101. [PMID: 34696209 PMCID: PMC8538930 DOI: 10.3390/vaccines9101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic represents a milestone in vaccine research and development in a global context. A worldwide effort, as never seen before, involved scientists from all over the world in favor of the fast, accurate and precise construction and testing of immunogens against the new coronavirus, SARS-CoV-2. Among all the vaccine strategies put into play for study and validation, those based on recombinant viral vectors gained special attention due to their effectiveness, ease of production and the amplitude of the triggered immune responses. Some of these new vaccines have already been approved for emergency/full use, while others are still in pre- and clinical trials. In this article we will highlight what is behind adeno-associated vectors, such as those presented by the immunogens ChaAdOx1, Sputnik, Convidecia (CanSino, Tianjin, China), and Janssen (Johnson & Johnson, New Jersey, EUA), in addition to other promising platforms such as Vaccinia virus MVA, influenza virus, and measles virus, among others.
Collapse
Affiliation(s)
- Danielle Soares de Oliveira Daian e Silva
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- CT Vacinas, BH-TEC Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil
| |
Collapse
|
5
|
Moraschi BF, Noronha IH, Ferreira CP, Cariste LM, Monteiro CB, Denapoli P, Vrechi T, Pereira GJS, Gazzinelli RT, Lannes-Vieira J, Rodrigues MM, Bortoluci KR, Vasconcelos JRC. Rapamycin Improves the Response of Effector and Memory CD8 + T Cells Induced by Immunization With ASP2 of Trypanosoma cruzi. Front Cell Infect Microbiol 2021; 11:676183. [PMID: 34123875 PMCID: PMC8191465 DOI: 10.3389/fcimb.2021.676183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Deficiency in memory formation and increased immunosenescence are pivotal features of Trypanosoma cruzi infection proposed to play a role in parasite persistence and disease development. The vaccination protocol that consists in a prime with plasmid DNA followed by the boost with a deficient recombinant human adenovirus type 5, both carrying the ASP2 gene of T. cruzi, is a powerful strategy to elicit effector memory CD8+ T-cells against this parasite. In virus infections, the inhibition of mTOR, a kinase involved in several biological processes, improves the response of memory CD8+ T-cells. Therefore, our aim was to assess the role of rapamycin, the pharmacological inhibitor of mTOR, in CD8+ T response against T. cruzi induced by heterologous prime-boost vaccine. For this purpose, C57BL/6 or A/Sn mice were immunized and daily treated with rapamycin for 34 days. CD8+ T-cells response was evaluated by immunophenotyping, intracellular staining, ELISpot assay and in vivo cytotoxicity. In comparison with vehicle-injection, rapamycin administration during immunization enhanced the frequency of ASP2-specific CD8+ T-cells and the percentage of the polyfunctional population, which degranulated (CD107a+) and secreted both interferon gamma (IFNγ) and tumor necrosis factor (TNF). The beneficial effects were long-lasting and could be detected 95 days after priming. Moreover, the effects were detected in mice immunized with ten-fold lower doses of plasmid/adenovirus. Additionally, the highly susceptible to T. cruzi infection A/Sn mice, when immunized with low vaccine doses, treated with rapamycin, and challenged with trypomastigote forms of the Y strain showed a survival rate of 100%, compared with 42% in vehicle-injected group. Trying to shed light on the biological mechanisms involved in these beneficial effects on CD8+ T-cells by mTOR inhibition after immunization, we showed that in vivo proliferation was higher after rapamycin treatment compared with vehicle-injected group. Taken together, our data provide a new approach to vaccine development against intracellular parasites, placing the mTOR inhibitor rapamycin as an adjuvant to improve effective CD8+ T-cell response.
Collapse
Affiliation(s)
- Barbara Ferri Moraschi
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Isaú Henrique Noronha
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Camila Pontes Ferreira
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Leonardo M. Cariste
- Recombinant Vaccines Laboratory, Department of Biosciences, Federal University of São Paulo, Santos, Brazil
| | - Caroline B. Monteiro
- Recombinant Vaccines Laboratory, Department of Biosciences, Federal University of São Paulo, Santos, Brazil
| | - Priscila Denapoli
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Talita Vrechi
- Department of Pharmacology, Federal University of São Paulo, (UNIFESP), São Paulo, Brazil
| | - Gustavo J. S. Pereira
- Department of Pharmacology, Federal University of São Paulo, (UNIFESP), São Paulo, Brazil
| | - Ricardo T. Gazzinelli
- René Rachou Research Center, Fiocruz, Belo Horizonte, Brazil
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Joseli Lannes-Vieira
- Laboratoy of Biology of the Interactions, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Maurício M. Rodrigues
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Karina R. Bortoluci
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Pharmacology, Federal University of São Paulo, (UNIFESP), São Paulo, Brazil
| | - José Ronnie C. Vasconcelos
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Recombinant Vaccines Laboratory, Department of Biosciences, Federal University of São Paulo, Santos, Brazil
| |
Collapse
|
6
|
Sanos SL, Kassub R, Testori M, Geiger M, Pätzold J, Giessel R, Knallinger J, Bathke B, Gräbnitz F, Brinkmann K, Chaplin P, Suter M, Hochrein H, Lauterbach H. NLRC4 Inflammasome-Driven Immunogenicity of a Recombinant MVA Mucosal Vaccine Encoding Flagellin. Front Immunol 2018; 8:1988. [PMID: 29416534 PMCID: PMC5787573 DOI: 10.3389/fimmu.2017.01988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/21/2017] [Indexed: 01/12/2023] Open
Abstract
Bacterial flagellin enhances innate and adaptive immune responses and is considered a promising adjuvant for the development of vaccines against infectious diseases and cancer. Antigen-presenting cells recognize flagellin with the extracellular TLR5 and the intracellular NLRC4 inflammasome-mediated pathway. The detailed cooperation of these innate pathways in the induction of the adaptive immune response following intranasal (i.n.) administration of a recombinant modified vaccinia virus Ankara (rMVA) vaccine encoding flagellin (rMVA-flagellin) is not known. rMVA-flagellin induced enhanced secretion of mucosal IL-1β and TNF-α resulting in elevated CTL and IgG2c antibody responses. Importantly, mucosal IgA responses were also significantly enhanced in both bronchoalveolar (BAL) and intestinal lavages accompanied by the increased migration of CD8+ T cells to the mesenteric lymph nodes (MLN). Nlrc4−/− rMVA-flagellin-immunized mice failed to enhance pulmonary CTL responses, IgG2c was lower, and IgA levels in the BAL or intestinal lavages were similar as those of control mice. Our results show the favorable adjuvant effect of rMVA-flagellin in the lung as well as the intestinal mucosa following i.n. administration with NLRC4 as the essential driver of this promising mucosal vaccine concept.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Mark Suter
- University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
7
|
The Effect of Vector Silencing during Picornavirus Vaccination against Experimental Melanoma and Glioma. PLoS One 2016; 11:e0162064. [PMID: 27560502 PMCID: PMC4999064 DOI: 10.1371/journal.pone.0162064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023] Open
Abstract
Virus vector-based vaccination against tumor-specific antigens remains a promising therapeutic approach to overcome the immune suppressive tumor microenvironment. However, the extent that the desired CD8 T cell response against the targeted tumor antigen is impacted by the CD8 T cell response against the virus vector is unclear. To address this question, we used picornavirus vaccination with Theiler’s murine encephalomyelitis virus (TMEV) as our vector against tumor-expressed ovalbumin (OVA257-264) antigen in both the B16-OVA murine melanoma and GL261-quad cassette murine glioma models. Prior to vaccination, we employed vector silencing to inhibit the CD8 T cell response against the immunodominant TMEV antigen, VP2121-130. We then monitored the resulting effect on the CD8 T cell response against the targeted tumor-specific antigen, ovalbumin. We demonstrate that employing vector silencing in the context of B16-OVA melanoma does not reduce tumor burden or improve survival, while TMEV-OVA vaccination without vector silencing controls tumor burden. Meanwhile, employing vector silencing during picornavirus vaccination against the GL261-quad cassette glioma resulted in a lower frequency of tumor antigen-specific CD8 T cells. The results of this study are relevant to antigen-specific immunotherapy, in that the virus vector-specific CD8 T cell response is not competing with tumor antigen-specific CD8 T cells. Furthermore, vector silencing may have the adverse consequence of reducing the tumor antigen-specific CD8 T cell response, as demonstrated by our findings in the GL261-quad cassette model.
Collapse
|
8
|
Gurung P, Kanneganti TD. Immune responses against protozoan parasites: a focus on the emerging role of Nod-like receptors. Cell Mol Life Sci 2016; 73:3035-51. [PMID: 27032699 PMCID: PMC4956549 DOI: 10.1007/s00018-016-2212-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 03/11/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
Abstract
Nod-like receptors (NLRs) have gained attention in recent years because of the ability of some family members to assemble into a multimeric protein complex known as the inflammasome. The role of NLRs and the inflammasome in regulating innate immunity against bacterial pathogens has been well studied. However, recent studies show that NLRs and inflammasomes also play a role during infections caused by protozoan parasites, which pose a significant global health burden. Herein, we review the diseases caused by the most common protozoan parasites in the world and discuss the roles of NLRs and inflammasomes in host immunity against these parasites.
Collapse
Affiliation(s)
- Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA.
| |
Collapse
|
9
|
García-Arriaza J, Esteban M. Enhancing poxvirus vectors vaccine immunogenicity. Hum Vaccin Immunother 2015; 10:2235-44. [PMID: 25424927 DOI: 10.4161/hv.28974] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought.
Collapse
Affiliation(s)
- Juan García-Arriaza
- a Department of Molecular and Cellular Biology; Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas (CSIC); Madrid, Spain
| | | |
Collapse
|
10
|
Quinan BR, Daian DSO, Coelho FM, da Fonseca FG. Modified vaccinia virus Ankara as vaccine vectors in human and veterinary medicine. Future Virol 2014. [DOI: 10.2217/fvl.13.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT: Disease prevention through vaccination is one of the most important achievements of medicine. Today, we have a substantial number of vaccines against a variety of pathogens. In this context, poxviruses and vaccinology are closely related, as the birth of modern vaccinology was marked by the use of poxviruses as immunogens and so was the eradication of smallpox, one of the world's most feared diseases ever. Nowadays, poxviruses continue to notoriously contribute to vaccinology since their use as vaccine vectors has become popular and widespread. One of the most promising vectors is the modified vaccinia ankara. In this review we provide an overview of the contribution of poxvirus to vaccine immunology, particularly focusing on modified vaccinia ankara-based vaccines developed to date.
Collapse
Affiliation(s)
- Bárbara R Quinan
- Laboratory of Basic & Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle SO Daian
- Laboratory of Basic & Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabiana M Coelho
- Laboratory of Basic & Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávio G da Fonseca
- Laboratory of Basic & Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, MG, Brazil
- Av. Antônio Carlos 6627, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia. Belo Horizonte, MG, Brazil, 31270-901
| |
Collapse
|
11
|
Gómez CE, Perdiguero B, García-Arriaza J, Esteban M. Clinical applications of attenuated MVA poxvirus strain. Expert Rev Vaccines 2013; 12:1395-416. [PMID: 24168097 DOI: 10.1586/14760584.2013.845531] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The highly attenuated poxvirus strain modified vaccinia virus Ankara (MVA) has reached maturity as a vector delivery system and as a vaccine candidate against a broad spectrum of diseases. This has been largely recognized from research on virus-host cell interactions and immunological studies in pre-clinical and clinical trials. This review addresses the studies of MVA vectors used in phase I/II clinical trials, with the aim to provide the main findings obtained on their behavior when tested against relevant human diseases and cancer and also highlights the strategies currently implemented to improve the MVA immunogenicity. The authors assess that MVA vectors are progressing as strong vaccine candidates either alone or when administered in combination with other vectors.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Vasconcelos JR, Dominguez MR, Araújo AF, Ersching J, Tararam CA, Bruna-Romero O, Rodrigues MM. Relevance of long-lived CD8(+) T effector memory cells for protective immunity elicited by heterologous prime-boost vaccination. Front Immunol 2012; 3:358. [PMID: 23264773 PMCID: PMC3525016 DOI: 10.3389/fimmu.2012.00358] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/10/2012] [Indexed: 11/13/2022] Open
Abstract
Owing to the importance of major histocompatibility complex class Ia-restricted CD8(+) T cells for host survival following viral, bacterial, fungal, or parasitic infection, it has become largely accepted that these cells should be considered in the design of a new generation of vaccines. For the past 20 years, solid evidence has been provided that the heterologous prime-boost regimen achieves the best results in terms of induction of long-lived protective CD8(+) T cells against a variety of experimental infections. Although this regimen has often been used experimentally, as is the case for many vaccines, the mechanism behind the efficacy of this vaccination regimen is still largely unknown. The main purpose of this review is to examine the characteristics of the protective CD8(+) T cells generated by this vaccination regimen. Part of its efficacy certainly relies on the generation and maintenance of large numbers of specific lymphocytes. Other specific characteristics may also be important, and studies on this direction have only recently been initiated. So far, the characterization of these protective, long-lived T cell populations suggests that there is a high frequency of polyfunctional T cells; these cells cover a large breadth and display a T effector memory (TEM) phenotype. These TEM cells are capable of proliferating after an infectious challenge and are highly refractory to apoptosis due to a control of the expression of pro-apoptotic receptors such as CD95. Also, they do not undergo significant long-term immunological erosion. Understanding the mechanisms that control the generation and maintenance of the protective activity of these long-lived TEM cells will certainly provide important insights into the physiology of CD8(+) T cells and pave the way for the design of new or improved vaccines.
Collapse
Affiliation(s)
- José R Vasconcelos
- Centro de Terapia Celular e Molecular, Universidade Federal de São Paulo - Escola Paulista de Medicina São Paulo, São Paulo, Brazil ; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo - Escola Paulista de Medicina São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Wang F, Feng X, Zheng Q, Hou H, Cao R, Zhou B, Liu Q, Liu X, Pang R, Zhao J, Deng W, Chen P. Multiple linear epitopes (B-cell, CTL and Th) of JEV expressed in recombinant MVA as multiple epitope vaccine induces a protective immune response. Virol J 2012; 9:204. [PMID: 22985466 PMCID: PMC3511265 DOI: 10.1186/1743-422x-9-204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 07/06/2012] [Indexed: 11/10/2022] Open
Abstract
Epitope-based vaccination might play an important role in the protective immunity against Japanese encephalitis virus (JEV) infection. The purpose of the study is to evaluate the immune characteristics of recombinant MVA carrying multi-epitope gene of JEV (rMVA-mep). The synthetic gene containing critical epitopes (B-cell, CTL and Th) of JEV was cloned into the eukaryotic expression vector pGEM-K1L, and the rMVA-mep was prepared. BALB/c mice were immunized with different dosages of purified rMVA-mep and the immune responses were determined in the form of protective response against JEV, antibodies titers (IgG1 and IgG2a), spleen cell lymphocyte proliferation, and the levels of interferon-γ and interleukin-4 cytokines. The results showed that live rMVA-mep elicited strongly immune responses in dose-dependent manner, and the highest level of immune responses was observed from the groups immunized with 107 TCID50 rMVA-mep among the experimental three concentrations. There were almost no difference of cytokines and neutralizing antibody titers among 107 TCID50 rMVA-mep, recombinant ED3 and inactivated JEV vaccine. It was noteworthy that rMVA-mep vaccination potentiates the Th1 and Th2-type immune responses in dose-dependent manner, and was sufficient to protect the mice survival against lethal JEV challenge. These findings demonstrated that rMVA-mep can produce adequate humoral and cellular immune responses, and protection in mice, which suggested that rMVA-mep might be an attractive candidate vaccine for preventing JEV infection.
Collapse
Affiliation(s)
- Fengjuan Wang
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Heterologous plasmid DNA prime-recombinant human adenovirus 5 boost vaccination generates a stable pool of protective long-lived CD8(+) T effector memory cells specific for a human parasite, Trypanosoma cruzi. Infect Immun 2011; 79:2120-30. [PMID: 21357719 DOI: 10.1128/iai.01190-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recently, we described a heterologous prime-boost strategy using plasmid DNA followed by replication-defective human recombinant adenovirus type 5 as a powerful strategy to elicit long-lived CD8(+) T-cell-mediated protective immunity against experimental systemic infection of mice with a human intracellular protozoan parasite, Trypanosoma cruzi. In the present study, we further characterized the protective long-lived CD8(+) T cells. We compared several functional and phenotypic aspects of specific CD8(+) T cells present 14 or 98 days after the last immunizing dose and found the following: (i) the numbers of specific cells were similar, as determined by multimer staining or by determining the number of gamma interferon (IFN-γ)-secreting cells by enzyme-linked immunospot (ELISPOT) assay; (ii) these cells were equally cytotoxic in vivo; (iii) following in vitro stimulation, a slight decline in the frequency of multifunctional cells (CD107a(+) IFN-γ(+) or CD107a(+) IFN-γ(+) tumor necrosis factor alpha positive [TNF-α(+)]) was paralleled by a significant increase of CD107a singly positive cells after 98 days; (iv) the expression of several surface markers was identical, except for the reexpression of CD127 after 98 days; (v) the use of genetically deficient mice revealed a role for interleukin-12 (IL-12)/IL-23, but not IFN-γ, in the maintenance of these memory cells; and (vi) subsequent immunizations with an unrelated virus or a plasmid vaccine or the depletion of CD4(+) T cells did not significantly erode the number or function of these CD8(+) T cells during the 15-week period. From these results, we concluded that heterologous plasmid DNA prime-adenovirus boost vaccination generated a stable pool of functional protective long-lived CD8(+) T cells with an effector memory phenotype.
Collapse
|
15
|
Takayama E, Ono T, Carnero E, Umemoto S, Yamaguchi Y, Kanayama A, Oguma T, Takashima Y, Tadakuma T, García-Sastre A, Miyahira Y. Quantitative and qualitative features of heterologous virus-vector-induced antigen-specific CD8+ T cells against Trypanosoma cruzi infection. Int J Parasitol 2010; 40:1549-61. [PMID: 20620143 DOI: 10.1016/j.ijpara.2010.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 12/27/2022]
Abstract
We studied some aspects of the quantitative and qualitative features of heterologous recombinant (re) virus-vector-induced, antigen-specific CD8(+) T cells against Trypanosoma cruzi. We used three different, highly attenuated re-viruses, i.e., influenza virus, adenovirus and vaccinia virus, which all expressed a single, T. cruzi antigen-derived CD8(+) T-cell epitope. The use of two out of three vectors or the triple virus-vector vaccination regimen not only confirmed that the re-vaccinia virus, which was placed last in order for sequential immunisation, was an effective booster for the CD8(+) T-cell immunity in terms of the number of antigen-specific CD8(+) T cells, but also demonstrated that (i) the majority of cells exhibit the effector memory (T(EM)) phenotype, (ii) robustly secrete IFN-γ, (iii) express higher intensity of the CD122 molecule and (iv) present protective activity against T. cruzi infection. In contrast, placing the re-influenza virus last in sequential immunisation had a detrimental effect on the quantitative and qualitative features of CD8(+) T cells. The triple virus-vector vaccination was more effective at inducing a stronger CD8(+) T-cell immunity than using two re-viruses. The different quantitative and qualitative features of CD8(+) T cells induced by different immunisation regimens support the notion that the refinement of the best choice of multiple virus-vector combinations is indispensable for the induction of a maximum number of CD8(+) T cells of high quality.
Collapse
Affiliation(s)
- Eiji Takayama
- Department of Global Infectious Diseases and Tropical Medicine, National Defense Medical College, Tokorozawa City, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Perforin and gamma interferon expression are required for CD4+ and CD8+ T-cell-dependent protective immunity against a human parasite, Trypanosoma cruzi, elicited by heterologous plasmid DNA prime-recombinant adenovirus 5 boost vaccination. Infect Immun 2009; 77:4383-95. [PMID: 19651871 DOI: 10.1128/iai.01459-08] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4(+) and CD8(+) T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4(+) and CD8(+) T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-gamma) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8(+) T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-gamma or IFN-gamma/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-gamma in the presence of highly cytotoxic T cells. Vaccinated IFN-gamma-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-gamma in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy.
Collapse
|
17
|
Overstreet MG, Cockburn IA, Chen YC, Zavala F. Protective CD8 T cells against Plasmodium liver stages: immunobiology of an 'unnatural' immune response. Immunol Rev 2009; 225:272-83. [PMID: 18837788 DOI: 10.1111/j.1600-065x.2008.00671.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SUMMARY Immunization with high doses of irradiated sporozoites delivered by the bites of infected mosquitoes has been shown to induce protective responses against malaria, mediated in part by CD8(+) T cells. In contrast, natural transmission involving low exposure to live sporozoite antigen fails to elicit strong immunity. In this review, we examine how irradiated sporozoite immunization breaks the natural host-parasite interaction and induces protective CD8(+) T cells. Upon biting, the malaria-infected mosquitoes deposit parasites in the skin, many of which eventually exit to the bloodstream and infect hepatocytes. However, certain antigens, including the circumsporozoite (CS) protein, remain in the skin and are presented in the draining lymph node. These antigens prime specific CD8(+) T cells, which migrate to the liver where they eliminate parasitized hepatocytes. We discuss the relevance of the different tissue compartments involved in the induction and effector phases of this response, as well as the cellular requirements for priming and memory development of CD8(+) T cells, which include a complete dependence on dendritic cells and a near absolute need for CD4(+) T-cell help. Finally, we discuss the impact of the immunodominant CS protein on this protection and the implications of these findings for vaccine design.
Collapse
Affiliation(s)
- Michael Glen Overstreet
- Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
18
|
Cockburn IA, Chakravarty S, Overstreet MG, García-Sastre A, Zavala F. Memory CD8+ T cell responses expand when antigen presentation overcomes T cell self-regulation. THE JOURNAL OF IMMUNOLOGY 2008; 180:64-71. [PMID: 18097005 DOI: 10.4049/jimmunol.180.1.64] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial memory CD8+ T cell responses are not readily expanded by either repeated infections or immunizations. This is a major obstacle to the development of T cell vaccines. Prime-boost immunization with heterologous microbes sharing the same CD8+ epitope can induce a large expansion of the CD8+ response; however, different vectors vary greatly in their ability to boost for reasons that are poorly understood. To investigate how efficient memory T cell expansion can occur, we evaluated immune regulatory events and Ag presentation after secondary immunization with strong and weak boosting vectors. We found that dendritic cells were essential for T cell boosting and that Ag presentation by these cells was regulated by cognate memory CD8+ T cells. When weak boosting vectors were used for secondary immunization, pre-established CD8+ T cells were able to effectively curtail Ag presentation, resulting in limited CD8+ T cell expansion. In contrast, a strong boosting vector, vaccinia virus, induced highly efficient Ag presentation that overcame regulation by cognate T cells and induced large numbers of memory CD8+ T cells to expand. Thus, efficient targeting of Ag to dendritic cells in the face of cognate immunity is an important requirement for T cell expansion.
Collapse
Affiliation(s)
- Ian A Cockburn
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
19
|
Hafalla JCR, Rai U, Bernal-Rubio D, Rodriguez A, Zavala F. Efficient development of plasmodium liver stage-specific memory CD8+ T cells during the course of blood-stage malarial infection. J Infect Dis 2008; 196:1827-35. [PMID: 18190264 DOI: 10.1086/522965] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Immunity to Plasmodium liver stages in individuals in malaria-endemic areas is inextricably linked to concomitant blood-stage parasitemia. Although Plasmodium sporozoite infection induces measurable CD8+ T cell responses, the development of memory T cells during active erythrocytic infection remains uncharacterized. Using transgenic T cells, we assessed antigen-specific effector CD8+ T cell responses induced by normal (NorSpz) and radiation-attenuated (IrrSpz) Plasmodium yoelii sporozoites. The magnitude, phenotypic activation, and differentiation pathway of CD8+ T cells were similarly induced by NorSpz and IrrSpz. Moreover, in normal mice, memory T cells elicited after priming with NorSpz and IrrSpz generated identical recall responses after a heterologous boost strategy. Furthermore, these recall responses exhibited comparable in vivo antiparasite activity. Our results indicate that sporozoites that retain their infective capacity induce memory CD8+ T cells that are robustly recalled by secondary immunization. Thus, erythrocytic infection does not preclude the establishment of memory CD8+ T cell responses to malarial liver stages.
Collapse
Affiliation(s)
- Julius C R Hafalla
- Department of Medical Parasitology, New York University School of Medicine, 341 E. 25th Street, New York, NY 10010, USA
| | | | | | | | | |
Collapse
|
20
|
Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 2008; 8:108-20. [PMID: 18219306 DOI: 10.1038/nrc2326] [Citation(s) in RCA: 295] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA vaccination has suddenly become a favoured strategy for inducing immunity. The molecular precision offered by gene-based vaccines, together with the facility to include additional genes to direct and amplify immunity, has always been attractive. However, the apparent failure to translate operational success in preclinical models to the clinic, for reasons that are now rather obvious, reduced initial enthusiasm. Recently, novel delivery systems, especially electroporation, have overcome this translational block. Here, we assess the development, current performance and potential of DNA vaccines for the treatment of cancer.
Collapse
Affiliation(s)
- Jason Rice
- Genetic Vaccine Group, Cancer Sciences Division, University of Southampton School of Medicine, Southampton General Hospital, Southampton,SO16 6YD, UK
| | | | | |
Collapse
|
21
|
Gómez CE, Nájera JL, Domingo-Gil E, Ochoa-Callejero L, González-Aseguinolaza G, Esteban M. Virus distribution of the attenuated MVA and NYVAC poxvirus strains in mice. J Gen Virol 2007; 88:2473-2478. [PMID: 17698656 DOI: 10.1099/vir.0.83018-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombinant vaccinia viruses based on the attenuated NYVAC and MVA strains are promising vaccine candidates against a broad spectrum of diseases. Whilst these vectors are safe and immunogenic in animals and humans, little is known about their comparative behaviour in vivo. In this investigation, a head-to-head analysis was carried out of virus dissemination in mice inoculated by the mucosal or systemic route with replication-competent (WRluc) and attenuated recombinant (MVAluc and NYVACluc) viruses expressing the luciferase gene. Bioluminescence imaging showed that, in contrast to WRluc, the attenuated recombinants expressed the reporter gene transiently, with MVAluc expression limited to the first 24 h and NYVACluc giving a longer signal, up to 72 h post-infection, for most of the routes assayed. Moreover, luciferase levels in MVAluc-infected tissues peaked earlier than those in tissues infected by NYVACluc. These findings may be of immunological relevance when these vectors are used as recombinant vaccines.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | - José Luis Nájera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | - Elena Domingo-Gil
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | - Laura Ochoa-Callejero
- Division of Hepatology and Gene Therapy, Center for Investigation in Applied Medicine (CIMA), University of Navarra, 31080 Pamplona, Spain
| | - Gloria González-Aseguinolaza
- Division of Hepatology and Gene Therapy, Center for Investigation in Applied Medicine (CIMA), University of Navarra, 31080 Pamplona, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
22
|
Miyahira Y. Trypanosoma cruzi infection from the view of CD8+ T cell immunity--an infection model for developing T cell vaccine. Parasitol Int 2007; 57:38-48. [PMID: 17728174 DOI: 10.1016/j.parint.2007.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 11/28/2022]
Abstract
Chagas' disease is caused by Trypanosoma cruzi (T. cruzi) which was once prevalent in Central and South America. Although the recent success in Triatoma vector control has made the disease being possibly "extinct" in the near future, the development of effective preventive and therapeutic vaccines is still necessary to prevent the resurgence of the neglected infection. In addition to the importance for containing the disease, T. cruzi infection presents unique features for elucidating hosts' immune responses against intracellular infectious agents. Due to its biological capacity for invading into principally any types of cells and for causing systemic infection which damages particularly muscle and neural cells, T cell immunity is critical for resolving its infection. Although T cell-mediated immune responses have been, so far, extensively investigated in viral and bacterial infections, parasitic infection such as malaria has presented epoch-making discovery in T cell immunity. Recent advances in the analyses of T cell-mediated immune responses against T. cruzi infection now make this infectious disease potentially more suitable for detecting subtle immunological changes in hosts' immune defense upon modifying immune system. The current review focuses on the usefulness of T. cruzi infection as a model for developing effective CD8(+) T cell-mediated vaccine against intracellular infectious agents.
Collapse
Affiliation(s)
- Yasushi Miyahira
- Department of Global Infectious Diseases and Tropical Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama 359-8513 Japan.
| |
Collapse
|
23
|
Weyer J, Rupprecht CE, Mans J, Viljoen GJ, Nel LH. Generation and evaluation of a recombinant modified vaccinia virus Ankara vaccine for rabies. Vaccine 2007; 25:4213-22. [PMID: 17434244 DOI: 10.1016/j.vaccine.2007.02.084] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/18/2007] [Accepted: 02/28/2007] [Indexed: 11/22/2022]
Abstract
Modified vaccinia virus Ankara (MVA) has become a vaccine vector of choice for recombinant vaccine development. A MVA-based rabies vaccine would be advantageous for use as a vaccine for dogs (and wildlife), particularly if it proves innocuous and efficacious by the oral route. Here, the generation and immunological testing of a recombinant MVA expressing a rabies virus glycoprotein gene is described. In a murine model, higher dosages of recombinant MVA were needed to induce equivocal immune responses as with Vaccinia Copenhagen or Vaccinia Western Reserve recombinants, when administered by a parenteral route. The MVA recombinant was not immunogenic or efficacious when administered per os in naïve mice. The ability of the recombinant MVA to induce anamnestic responses in dogs and raccoons was also investigated. Recombinant MVA boosted humoral immune responses in these animals when administered peripherally, but not when administered orally.
Collapse
Affiliation(s)
- Jacqueline Weyer
- University of Pretoria, Department of Microbiology and Plant Pathology, Pretoria 0002, South Africa
| | | | | | | | | |
Collapse
|
24
|
Abstract
Leishmaniaare protozoan parasites spread by a sandfly insect vector and causing a spectrum of diseases collectively known as leishmaniasis. The disease is a significant health problem in many parts of the world resulting in an estimated 12 million new cases each year. Current treatment is based on chemotherapy, which is difficult to administer, expensive and becoming ineffective due to the emergence of drug resistance. Leishmaniasis is considered one of a few parasitic diseases likely to be controllable by vaccination. The relatively uncomplicated leishmanial life cycle and the fact that recovery from infection renders the host resistant to subsequent infection indicate that a successful vaccine is feasible. Extensive evidence from studies in animal models indicates that solid protection can be achieved by immunisation with protein or DNA vaccines. However, to date no such vaccine is available despite substantial efforts by many laboratories. Advances in our understanding ofLeishmaniapathogenesis and generation of host protective immunity, together with the completedLeishmaniagenome sequence open new avenues for vaccine research. The major remaining challenges are the translation of data from animal models to human disease and the transition from the laboratory to the field. This review focuses on advances in anti-leishmania vaccine development over the recent years and examines current problems hampering vaccine development and implementation.
Collapse
Affiliation(s)
- L Kedzierski
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Melbourne, Australia.
| | | | | |
Collapse
|
25
|
Gómez CE, Nájera JL, Jiménez V, Bieler K, Wild J, Kostic L, Heidari S, Chen M, Frachette MJ, Pantaleo G, Wolf H, Liljeström P, Wagner R, Esteban M. Generation and immunogenicity of novel HIV/AIDS vaccine candidates targeting HIV-1 Env/Gag-Pol-Nef antigens of clade C. Vaccine 2006; 25:1969-92. [PMID: 17224219 DOI: 10.1016/j.vaccine.2006.11.051] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/06/2006] [Accepted: 11/23/2006] [Indexed: 11/20/2022]
Abstract
Recombinants based on the attenuated vaccinia virus strains MVA and NYVAC are considered candidate vectors against different human diseases. In this study we have generated and characterized in BALB/c and in transgenic HHD mice the immunogenicity of two attenuated poxvirus vectors expressing in a single locus (TK) the codon optimized HIV-1 genes encoding gp120 and Gag-Pol-Nef (GPN) polyprotein of clade C (referred as MVA-C and NYVAC-C). In HHD mice primed with either MVA-C or NYVAC-C, or primed with DNA-C and boosted with the poxvirus vectors, the splenic T cell responses against clade C peptides spanning gp120/GPN was broad and mainly directed against Gag-1, Env-1 and Env-2 peptide pools. In BALB/c mice immunized with the homologous or the heterologous combination of poxvirus vectors or with Semliki forest virus (SFV) vectors expressing gp120/GPN, the immune response was also broad but the most immunogenic peptides were Env-1, GPN-1 and GPN-2. Differences in the magnitude of the cellular immune responses were observed between the poxvirus vectors depending on the protocol used. The specific cellular immune response triggered by the poxvirus vectors was Th1 type. The cellular response against the vectors was higher for NYVAC than for MVA in both HHD and BALB/c mice, but differences in viral antigen recognition between the vectors was observed in sera from the poxvirus-immunized animals. These results demonstrate the immunogenic potential of MVA-C and NYVAC-C as novel vaccine candidates against clade C of HIV-1.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Base Sequence
- Codon/genetics
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Gene Products, pol/genetics
- Gene Products, pol/immunology
- Genetic Vectors
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Immunization, Secondary
- Interferon-gamma/biosynthesis
- Interleukin-2/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Models, Animal
- Molecular Sequence Data
- Semliki forest virus
- Spleen/immunology
- T-Lymphocytes/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccinia virus
- Viral Vaccines
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gómez CE, Nájera JL, Jiménez EP, Jiménez V, Wagner R, Graf M, Frachette MJ, Liljeström P, Pantaleo G, Esteban M. Head-to-head comparison on the immunogenicity of two HIV/AIDS vaccine candidates based on the attenuated poxvirus strains MVA and NYVAC co-expressing in a single locus the HIV-1BX08 gp120 and HIV-1(IIIB) Gag-Pol-Nef proteins of clade B. Vaccine 2006; 25:2863-85. [PMID: 17113200 DOI: 10.1016/j.vaccine.2006.09.090] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 09/06/2006] [Accepted: 09/21/2006] [Indexed: 11/26/2022]
Abstract
In this investigation we have generated and defined the immunogenicity of two novel HIV/AIDS vaccine candidates based on the highly attenuated vaccinia virus strains, MVA and NYVAC, efficiently expressing in the same locus (TK) and under the same viral promoter the codon optimized HIV-1 genes encoding gp120 and Gag-Pol-Nef antigens of clade B (referred as MVA-B and NYVAC-B). In infected human HeLa cells, gp120 is released from cells and GPN is produced as a polyprotein; NYVAC-B induces severe apoptosis but not MVA-B. The two poxvirus vectors showed genetic stability of the inserts. In BALB/c and in transgenic HHD mice for human HLA-A2 class I, both vectors are efficient immunogens and induced broad cellular immune responses against peptides represented in the four HIV-1 antigens. Some differences were observed in the magnitude and breadth of the immune response in the mouse models. In DNA prime/poxvirus boost protocols, the strongest immune response, as measured by fresh IFN-gamma and IL-2 ELISPOT, was obtained in BALB/c mice boosted with NYVAC-B, while in HHD mice there were no differences between the poxvirus vectors. When the prime/boost was performed with homologous or with combination of poxvirus vectors, the protocols MVA-B/MVA-B and NYVAC-B/NYVAC-B, or the combination NYVAC-B/MVA-B gave the most consistent broader immune response in both mouse models, although the magnitude of the overall response was higher for the DNA-B/poxvirus-B regime. All of the immunization protocols induced some humoral response against the gp160 protein from HIV-1 clone LAV. Our findings indicate that MVA-B and NYVAC-B meet the criteria to be potentially useful vaccine candidates against HIV/AIDS.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antigens, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Apoptosis/immunology
- Base Sequence
- Chick Embryo
- Fusion Proteins, gag-pol/biosynthesis
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/immunology
- Gene Products, nef/biosynthesis
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Genomic Instability
- HIV Envelope Protein gp120/biosynthesis
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- HLA-A2 Antigen/immunology
- HeLa Cells
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Molecular Sequence Data
- Polymerase Chain Reaction/methods
- Poxviridae/genetics
- Poxviridae/immunology
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hafalla JCR, Cockburn IA, Zavala F. Protective and pathogenic roles of CD8+ T cells during malaria infection. Parasite Immunol 2006; 28:15-24. [PMID: 16438672 DOI: 10.1111/j.1365-3024.2006.00777.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CD8+ T cells play a key role in protection against pre-erythrocytic stages of malaria infection. Many vaccine strategies are based on the idea of inducing a strong infection-blocking CD8+ T cell response. Here, we summarize what is known about the development, specificity and protective effect of malaria-specific CD8+ T cells and report on recent developments in the field. Although work in mouse models continues to make progress in our understanding of the basic biology of these cells, many questions remain to be answered - particularly on the roles of these cells in human infections. Increasing evidence is also emerging of a harmful role for CD8+ T cells in the pathology of cerebral malaria in rodent systems. Once again, the relevance of these results to human disease is one of the primary questions facing workers in this field.
Collapse
Affiliation(s)
- J C R Hafalla
- Department of Medical Parasitology, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
28
|
Abaitua F, Rodríguez JR, Garzón A, Rodríguez D, Esteban M. Improving recombinant MVA immune responses: Potentiation of the immune responses to HIV-1 with MVA and DNA vectors expressing Env and the cytokines IL-12 and IFN-gamma. Virus Res 2006; 116:11-20. [PMID: 16214252 DOI: 10.1016/j.virusres.2005.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 07/22/2005] [Accepted: 08/22/2005] [Indexed: 11/23/2022]
Abstract
Recombinants based on vaccinia virus vectors, especially on the highly attenuated modified vaccinia virus Ankara (MVA) strain, are now being tested in clinical trials for safety and immunogenicity, using prime/boost heterologous regimes of vaccination. Due to the limited replication capacity of MVA, it is necessary to develop procedures that can enhance the specific cellular immune responses to the recombinant antigen delivered by the MVA vector. In this investigation, we have characterized the systemic immune responses in BALB/c mice using interferon-gamma (IFN-gamma) or interleukin-12 (IL-12) in an adjuvant-like manner elicited by MVA recombinants or naked DNA vectors expressing one of those cytokines in combination with the human immunodeficiency virus type 1 (HIV-1) envelope (Env) as antigen. In infected mice, virus gene expression in splenocytes and levels of cytokines IFN-gamma and IL-12 in serum were maximal by 6h post-infection (hpi) with MVA recombinants expressing IFN-gamma (MVAIFN-gamma) or IL-12 (MVAIL-12). In the infected animals, co-expression of HIV-1 env (MVAENV) and either IFN-gamma or IL-12 from MVA recombinants produced a two and three-fold increase of anti-env CD8+ T cell response, respectively. When priming was carried out with DNA vectors expressing HIV-1 env and either IFN-gamma or IL-12, the magnitude of the specific anti-env CD8+ T cell stimulation after MVAENV booster was further enhanced. Our findings revealed that IFN-gamma or IL-12 can be used to potentiate the cellular immune response to HIV-1 env, when delivered either from a single MVA recombinant or from a DNA vector. The increment of the CD8+ T cell response was higher in a DNA/MVA prime/boost protocol. Thus, the immune response of MVA vectors can be improved with the co-delivery of the cytokines IFN-gamma or IL-12.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Adjuvants, Immunologic/genetics
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Cytokines/biosynthesis
- DNA, Viral
- Female
- Gene Products, env/genetics
- Gene Products, env/immunology
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- HIV-1/immunology
- Immunization, Secondary
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin-12/genetics
- Interleukin-12/immunology
- Mice
- Mice, Inbred BALB C
- Models, Animal
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Fernando Abaitua
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Campus Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
29
|
Pérez-Jiménez E, Kochan G, Gherardi MM, Esteban M. MVA-LACK as a safe and efficient vector for vaccination against leishmaniasis. Microbes Infect 2006; 8:810-22. [PMID: 16504562 DOI: 10.1016/j.micinf.2005.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/15/2005] [Accepted: 10/03/2005] [Indexed: 10/25/2022]
Abstract
An optimal vaccine against leishmaniasis should elicit parasite specific CD4+ and cytotoxic CD8+ T cells. In this investigation, we described a prime/boost immunization approach based on DNA and on poxvirus vectors (Western Reserve, WR, and the highly attenuated modified vaccinia virus Ankara, MVA), both expressing the LACK antigen of Leishmania infantum, that triggers different levels of specific CD8+ T cell responses and protection (reduction in lesion size and parasitemia) against L. major infection in mice. A prime/boost vaccination with DNA-LACK/MVA-LACK elicits higher CD8+ T cell responses than a similar protocol with the replication competent VV-LACK. Both CD4+ and CD8+ T cells were induced by DNA-LACK/MVA-LACK immunization. The levels of IFN-gamma and TNF-alpha secreting CD8+ T cells were higher in splenocytes from DNA-LACK/MVA-LACK than in DNA-LACK/VV-LACK immunized animals. Moreover, protection against L. major was significantly higher in DNA-LACK/MVA-LACK than in DNA-LACK/VV-LACK immunized animals when boosted with the same virus dose, and correlated with high levels of IFN-gamma and TNF-alpha secreting CD8+ T cells. In DNA-LACK/MVA-LACK vaccinated animals, the extent of lesion size reduction ranged from 65 to 92% and this protection was maintained for at least 17 weeks after challenge with the parasite. These findings demonstrate that in heterologous prime/boost immunization approaches, the protocol DNA-LACK/MVA-LACK is superior to DNA-LACK/VV-LACK in triggering specific CD8+ T cell immune responses and in conferring protection against cutaneous leishmaniasis. Thus, MVA-LACK is a safe and efficient vector for vaccination against leishmaniasis.
Collapse
MESH Headings
- Animals
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- DNA, Protozoan
- Drug Administration Schedule
- Female
- Immunization, Secondary
- Interferon-gamma/metabolism
- Leishmania major
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/pathology
- Leishmaniasis, Cutaneous/prevention & control
- Mice
- Mice, Inbred BALB C
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Vaccines/adverse effects
- Protozoan Vaccines/genetics
- Protozoan Vaccines/immunology
- T-Lymphocytes/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus
Collapse
Affiliation(s)
- Eva Pérez-Jiménez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
30
|
Miyahira Y, Takashima Y, Kobayashi S, Matsumoto Y, Takeuchi T, Ohyanagi-Hara M, Yoshida A, Ohwada A, Akiba H, Yagita H, Okumura K, Ogawa H. Immune responses against a single CD8+-T-cell epitope induced by virus vector vaccination can successfully control Trypanosoma cruzi infection. Infect Immun 2005; 73:7356-65. [PMID: 16239534 PMCID: PMC1273883 DOI: 10.1128/iai.73.11.7356-7365.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 07/09/2005] [Accepted: 08/07/2005] [Indexed: 11/20/2022] Open
Abstract
In order to develop CD8+-T-cell-mediated immunotherapy against intracellular infectious agents, vaccination using recombinant virus vectors has become a promising strategy. In this study, we generated recombinant adenoviral and vaccinia virus vectors expressing a single CD8+-T-cell epitope, ANYNFTLV, which is derived from a Trypanosoma cruzi antigen. Immunogenicity of these two recombinant virus vectors was confirmed by the detection of ANYNFTLV-specific CD8+ T cells in the spleens of immunized mice. Priming/boosting immunization using combinations of these two recombinant virus vectors revealed that the adenovirus vector was efficient for priming and the vaccinia virus vector was effective for boosting the CD8+-T-cell responses. Moreover, we also demonstrated that the ANYNFTLV-specific CD8+-T-cell responses were further augmented by coadministration of recombinant vaccinia virus vector expressing the receptor activator of NFkappaB (RANK) ligand as an adjuvant. By priming with the adenovirus vector expressing ANYNFTLV and boosting with the vaccinia virus vectors expressing ANYNFTLV and RANK ligand, the immunized mice were efficiently protected from subsequent challenge with lethal doses of T. cruzi. These results indicated, for the first time, that the induction of immune responses against a single CD8+-T-cell epitope derived from an intrinsic T. cruzi antigen was sufficient to control lethal T. cruzi infection.
Collapse
Affiliation(s)
- Yasushi Miyahira
- Atopy Research Center, Department of Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The majority of infections initiate their departure from a mucosal surface, such as Human immunodeficiency virus (HIV), a sexually transmitted virus. Therefore, the induction of mucosal immunity is a high priority in the development of vaccines against mucosal pathogens. The selection of an appropriate antigen delivery system is necessary to induce an efficient mucosal immune response. Poxvirus vectors have been the most intensively studied live recombinant vector, and numerous studies have demonstrated their ability to induce mucosal immune responses against foreign expressed antigens. Previous studies have demonstrated that recombinants based on the attenuated modified vaccinia virus Ankara (MVA) vector were effective in inducing protective responses against different respiratory viruses, such as influenza and respiratory syncytial virus, following immunization via mucosal routes. Recent studies performed in the murine and macaque models have shown that recombinant MVA (rMVA) does not only stimulate HIV-specific immunity in the genital and rectal tracts following mucosal delivery, but can also control simian/human immunodeficiency viraemia and disease progression. In addition, a prime-boost vaccination approach against tuberculosis emphasized the importance of the intranasal rMVA antigen delivery to induce protective immunity against Mycobacterium tuberculosis. The aim of this review is to summarize the studies employing recombinant poxviruses, specifically rMVA as a mucosal delivery vector. The results demonstrate that rMVAs can activate specific immune responses at mucosal surfaces, and encourage further studies to characterize and improve the MVA mucosal immunogenicity of poxvirus vectors.
Collapse
Affiliation(s)
- M Magdalena Gherardi
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
- National Reference Center for AIDS, Department of Microbiology, School of Medicine, University of Buenos Aires, Paraguay 2155 piso 11 (C1121ABG), Buenos Aires, Argentina
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
32
|
Garzón MR, Berraondo P, Crettaz J, Ochoa L, Vera M, Lasarte JJ, Vales A, Van Rooijen N, Ruiz J, Prieto J, Zulueta J, González-Aseguinolaza G. Induction of gp120-specific protective immune responses by genetic vaccination with linear polyethylenimine-plasmid complex. Vaccine 2005; 23:1384-92. [PMID: 15661387 DOI: 10.1016/j.vaccine.2004.09.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 08/13/2004] [Accepted: 09/10/2004] [Indexed: 11/22/2022]
Abstract
The induction of IFN-gamma-secreting CD8+ T cells and neutralizing antibodies to HIV-1 are both key requirements for prevention of viral transmission and clearance of pathogenic HIV. Although DNA vaccination has been shown to induce both humoral and cellular immune responses against HIV antigens, the magnitude of the immune responses has always been disappointing. In this report, we analyze the ability of polyethylenimine (PEI)-DNA complex expressing an HIV-glycoprotein 120 (gp120) antigen (PEI-pgp120) to induce systemic CD8+ T cell and humoral responses to the gp120 antigen. The administration of PEI-plasmid complex resulted in rapid elevation of serum levels of IL-12 and IFN-gamma. Furthermore, a single administration of PEI-pgp120 complex elicits a number of gp120-specific CD8+ T cells 20 times higher than that elicited by three intramuscular injections of naked DNA. Interestingly, we found that systemic vaccination with PEI-pgp120 induced protective immune responses against both systemic and mucosal challenges with a recombinant vaccinia virus expressing a gp120 antigen. The data also demonstrated that the depletion of macrophages with liposome-encapsulated clodronate completely abolished gp120-specific cellular response. Overall, our results showed that a single administration of PEI-pgp120 complexes, eliciting strong immune responses, is an effective vaccination approach to generate protection against systemic and mucosal viral infections.
Collapse
Affiliation(s)
- Manolo Rodrigo Garzón
- Laboratory of Gene Therapy of Viral Hepatitis, Division of Hepatology and Gene Therapy, Clínica Universitaria/School of Medicine, Center for Applied Medical Research, University of Navarra, Pío XII 55, 31080 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Buchan S, Grønevik E, Mathiesen I, King CA, Stevenson FK, Rice J. Electroporation as a "prime/boost" strategy for naked DNA vaccination against a tumor antigen. THE JOURNAL OF IMMUNOLOGY 2005; 174:6292-8. [PMID: 15879128 DOI: 10.4049/jimmunol.174.10.6292] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have developed novel DNA fusion vaccines encoding tumor Ags fused to pathogen-derived sequences. This strategy activates linked T cell help and, using fragment C of tetanus toxin, amplification of anti-tumor Ab, CD4(+), and CD8(+) T cell responses is achievable in mice. However, there is concern that simple DNA vaccine injection may produce inadequate responses in larger humans. To overcome this, we tested electroporation as a method to increase the transfection efficiency and immune responses by these tumor vaccines in vivo in mice. Using a DNA vaccine expressing the CTL epitope AH1 from colon carcinoma CT26, we confirmed that effective priming and tumor protection in mice are highly dependent on vaccine dose and volume. However, suboptimal vaccination was rendered effective by electroporation, priming higher levels of AH1-specific CD8(+) T cells able to protect mice from tumor growth. Electroporation during priming with our optimal vaccination protocol did not improve CD8(+) T cell responses. In contrast, electroporation during boosting strikingly improved vaccine performance. The prime/boost strategy was also effective if electroporation was used at both priming and boosting. For Ab induction, DNA vaccination is generally less effective than protein. However, prime/boost with naked DNA followed by electroporation dramatically increased Ab levels. Thus, the priming qualities of DNA fusion vaccines, integrated with the improved Ag expression offered by electroporation, can be combined in a novel homologous prime/boost approach, to generate superior antitumor immune responses. Therefore, boosting may not require viral vectors, but simply a physical change in delivery, facilitating application to the cancer clinic.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Neoplasm/biosynthesis
- Antigens, Neoplasm/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cell Proliferation
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/prevention & control
- Cytotoxicity, Immunologic/genetics
- Dose-Response Relationship, Immunologic
- Electroporation/methods
- Epitopes, T-Lymphocyte/immunology
- H-2 Antigens/immunology
- Histocompatibility Antigen H-2D
- Immunization, Secondary/methods
- Immunoglobulin G/biosynthesis
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Retroviridae Proteins, Oncogenic/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Sarah Buchan
- Molecular Immunology Group, Southampton University Hospitals Trust, Southampton, United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Hutchings CL, Gilbert SC, Hill AVS, Moore AC. Novel Protein and Poxvirus-Based Vaccine Combinations for Simultaneous Induction of Humoral and Cell-Mediated Immunity. THE JOURNAL OF IMMUNOLOGY 2005; 175:599-606. [PMID: 15972697 DOI: 10.4049/jimmunol.175.1.599] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The presence of both cell-mediated and humoral immunity is important in protection from and clearance of a number of infectious pathogens. We describe novel vaccine regimens using combinations of plasmid DNA, poxvirus and protein to induce strong Ag-specific T cell and Ab responses simultaneously in a murine model. Intramuscular (i.m.) immunization with plasmid DNA encoding the middle Ag of hepatitis B (DNA) concurrently with a commercial hepatitis B virus (HBV) vaccine (Engerix-B) followed by boosting immunizations with both modified vaccinia virus Ankara (MVA) encoding the middle Ag of HBV and Engerix-B induced high levels of CD4(+) and CD8(+) T cells and high titer Ab responses to hepatitis B surface Ag (HbsAg). Substitution of Engerix-B with adjuvant-free rHBsAg induced similar T cell responses and greatly enhanced Ab levels. Repeated immunizations with recombinant or nonrecombinant MVA mixed with Ag induced higher titers of Abs compared with immunization with either Ag or Engerix-B further demonstrating this novel adjuvant effect of MVA. The poxviruses NYVAC, fowlpox (FP9) and ALVAC, and to a lesser extent, adenovirus, also displayed similar adjuvant properties when used in combination with rHBsAg. The use of poxviruses as an adjuvant for protein to concurrently induce Ag-specific T cells and Abs could be applied to the development of vaccines for many diseases, including HIV and malaria, where both cell mediated and humoral immunity may be important for protection.
Collapse
Affiliation(s)
- Claire L Hutchings
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
35
|
Abstract
The Roll Back Malaria campaign vowed to halve the global burden of malaria in ten years but, midway into that campaign, few new malaria control tools have been introduced, and many established methods appear to be failing with effective chemotherapy being perhaps the most problematic. It has been repeatedly argued that the discovery and implementation of a safe and effective vaccine against malaria is a major priority in the control of the disease. Indeed, many malaria control experts believe that sustainable reductions in malaria control will be nigh on impossible in the absence of such a vaccine. While most would agree that we are still some way from being able to introduce a vaccine, steady progress is being made. We review here some new approaches and developments in vaccine research that were discussed at the Molecular Approaches to Malaria conference held 1-5 February 2004 in Lorne, Australia.
Collapse
Affiliation(s)
- Jon Eric Tongren
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | | | | |
Collapse
|
36
|
|
37
|
Vasconcelos JR, Hiyane MI, Marinho CRF, Claser C, Machado AMV, Gazzinelli RT, Bruña-Romero O, Alvarez JM, Boscardin SB, Rodrigues MM. Protective immunity against trypanosoma cruzi infection in a highly susceptible mouse strain after vaccination with genes encoding the amastigote surface protein-2 and trans-sialidase. Hum Gene Ther 2004; 15:878-86. [PMID: 15353042 DOI: 10.1089/hum.2004.15.878] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protective immunity against lethal infection is developed when BALB/c or C57BL/6 mice are immunized with plasmids containing genes from the protozoan parasite Trypanosoma cruzi. However, genetic vaccination of the highly susceptible mouse strain A/Sn promoted limited survival after challenge. This observation questioned whether this type of vaccination would be appropriate for highly susceptible individuals. Here, we compared the protective efficacy and the immune response after individual or combined genetic vaccination of A/Sn mice with genes encoding trans-sialidase (TS) or the amastigote surface protein-2 (ASP-2). After challenge, a significant proportion of A/Sn mice immunized with either the asp-2 gene or simultaneously with asp-2 and ts genes, survived infection. In contrast, the vast majority of mice immunized with the ts gene or the vector alone died. Parasitological and histological studies performed in the surviving mice revealed that these mice harbored parasites; however, minimal inflammatory responses were seen in heart and striated muscle. We used this model to search for an in vitro correlation for protection. We found that protective immunity correlated with a higher secretion of interferon- by spleen cells on in vitro restimulation with ASP-2 and the presence of ASP-2-specific CD8 cells. Depletion of either CD4 or CD8 or both T-cell subpopulations prior to the challenge rendered the mice susceptible to infection demonstrating the critical contribution of both cell types in protective immunity. Our results reinforce the prophylactic potential of genetic vaccination with asp-2 and ts genes by describing protective immunity against lethal T. cruzi infection and chronic tissue pathology in a highly susceptible mouse strain.
Collapse
Affiliation(s)
- José Ronnie Vasconcelos
- Centro Interdisciplinar de Terapia Gênica (CINTERGEN), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, SP, Brazil, 04044-010
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gómez CE, Abaitua F, Rodríguez D, Esteban M. Efficient CD8+ T cell response to the HIV-env V3 loop epitope from multiple virus isolates by a DNA prime/vaccinia virus boost (rWR and rMVA strains) immunization regime and enhancement by the cytokine IFN-γ. Virus Res 2004; 105:11-22. [PMID: 15325077 DOI: 10.1016/j.virusres.2004.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 03/30/2004] [Accepted: 04/02/2004] [Indexed: 12/16/2022]
Abstract
The cytotoxic T-lymphocyte response (CTL) has been shown to be determinant in the clearance of many viral infections and hence, vaccine candidates against AIDS are designed to enhance this arm of the immune system. In this study, we have analyzed the antigen specific immune responses triggered in mice by different combinations of vaccine vehicles expressing the multiepitope polypeptide TAB13. This chimeric protein contains the V3 region of the gp120 from eight different HIV-1 isolates and was efficiently expressed by a DNA vector (DNA-TAB), and also by vaccinia virus recombinants (rVV) based either on the attenuated modified vaccinia virus Ankara (MVA-TAB) or Western Reserve (VV-TAB) strains. Inoculation of a DNA-TAB vector in priming followed by a booster with VV-TAB or MVA-TAB induces a humoral immune response against TAB13 protein and efficiently enhanced the CD8+ T cell response against V3 epitopes from HIV-1 isolates LR150, MN, and IIIB in comparison with animals immunized with two doses of DNA-TAB. A protocol that incorporates a DNA vector expressing IFN-gamma (DNA-IFN-gamma) with DNA-TAB in the priming, followed by a booster with MVA-TAB, triggered the highest values of specific CD8+ T cell response. By examining the cytokine pattern, the immune response induced by these vaccination approaches was predominantly of Th-1 type. These findings establish safe strategies for the enhanced generation of T cell mediated immunity to HIV-1 that can benefit in the design of an effective vaccine against AIDS.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Amino Acid Sequence
- Animals
- Base Sequence
- CD8-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Cricetinae
- Cytokines/analysis
- Epitopes/genetics
- Epitopes/immunology
- Female
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- HIV-1/immunology
- Immunization, Secondary
- Injections, Intramuscular
- Injections, Intraperitoneal
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
39
|
Gherardi MM, Pérez-Jiménez E, Nájera JL, Esteban M. Induction of HIV Immunity in the Genital Tract After Intranasal Delivery of a MVA Vector: Enhanced Immunogenicity After DNA Prime-Modified Vaccinia Virus Ankara Boost Immunization Schedule. THE JOURNAL OF IMMUNOLOGY 2004; 172:6209-20. [PMID: 15128809 DOI: 10.4049/jimmunol.172.10.6209] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vaccines intended to prevent mucosal transmission of HIV should be able to induce multiple immune effectors in the host including Abs and cell-mediated immune responses at mucosal sites. The aim of this study was to characterize and to enhance the immunogenicity of a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 Env IIIB Ag (MVAenv) inoculated in BALB/c mice by mucosal routes. Intravaginal inoculation of MVAenv was not immunogenic, whereas intranasally it induced a significant immune response to the HIV Ag. Intranasal codelivery of MVAenv plus cholera toxin (CT) significantly enhanced the cellular and humoral immune response against Env in the spleen and genitorectal draining lymph nodes, respectively. Heterologous DNAenv prime-MVAenv boost by intranasal immunization, together with CT, produced a cellular immune response in the spleen 10-fold superior to that in the absence of CT. A key finding of these studies was that both MVAenv/MVAenv and DNAenv/MVAenv schemes, plus CT, induced a specific mucosal CD8(+) T cell response in genital tissue and draining lymph nodes. In addition, both immunizations also generated systemic Abs, and more importantly, mucosal IgA and IgG Abs in vaginal washings. Specific secretion of beta-chemokines was also generated by both immunizations, with a stronger response in mice immunized by the DNA-CT/MVA-CT regimen. Our findings are of relevance in the area of vaccine development and support the optimization of protocols of immunization based on MVA as vaccine vectors to induce mucosal immune responses against HIV.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/genetics
- Administration, Intranasal
- Administration, Intravaginal
- Animals
- Cholera Toxin/administration & dosage
- Cholera Toxin/immunology
- Female
- Gene Products, env/biosynthesis
- Gene Products, env/immunology
- Genetic Vectors
- HIV Antibodies/biosynthesis
- HIV-1/genetics
- HIV-1/immunology
- Immunity, Cellular
- Immunity, Mucosal/genetics
- Immunization Schedule
- Immunization, Secondary/methods
- Interferon-gamma/metabolism
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymph Nodes/virology
- Mice
- Mice, Inbred BALB C
- Rectum/immunology
- Rectum/pathology
- Rectum/virology
- Urogenital System/immunology
- Urogenital System/virology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Vaccinia virus/physiology
- Virus Replication/immunology
Collapse
Affiliation(s)
- M Magdalena Gherardi
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Freda K Stevenson
- Molecular Immunology Group, Tenovus Laboratory, Cancer Sciences Division Southampton University Hospitals Trust, Southampton SO16 6YD, United Kingdom
| | | | | |
Collapse
|
41
|
Smith CL, Dunbar PR, Mirza F, Palmowski MJ, Shepherd D, Gilbert SC, Coulie P, Schneider J, Hoffman E, Hawkins R, Harris AL, Cerundolo V. Recombinant modified vaccinia Ankara primes functionally activated CTL specific for a melanoma tumor antigen epitope in melanoma patients with a high risk of disease recurrence. Int J Cancer 2004; 113:259-66. [PMID: 15386406 DOI: 10.1002/ijc.20569] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recombinant plasmid DNA and attenuated poxviruses are under development as cancer and infectious disease vaccines. We present the results of a phase I clinical trial of recombinant plasmid DNA and modified vaccinia Ankara (MVA), both encoding 7 melanoma tumor antigen cytotoxic T lymphocyte (CTL) epitopes. HLA-A*0201-positive patients with surgically treated melanoma received either a "prime-boost" DNA/MVA or a homologous MVA-only regimen. Ex vivo tetramer analysis, performed at multiple time points, provided detailed kinetics of vaccine-driven CTL responses specific for the high-affinity melan-A(26-35) analogue epitope. Melan-A26-35-specific CTL were generated in 2/6 patients who received DNA/MVA (detectable only after the first MVA injection) and 4/7 patients who received MVA only. Ex vivo ELISPOT analysis and in vitro proliferation assays confirmed the effector function of these CTL. Responses were seen in smallpox-vaccinated as well as vaccinia-naive patients, as defined by anti-vaccinia antibody responses demonstrated by ELISA assay. The observations that 1) CTL responses were generated to only 1 of the recombinant epitopes and 2) that the magnitude of these responses (0.029-0.19% CD8(+) T cells) was below the levels usually seen in acute viral infections suggest that to ensure high numbers of CTL specific for multiple recombinant epitopes, a deeper understanding of the interplay between CTL responses specific for the viral vector and recombinant epitopes is required.
Collapse
Affiliation(s)
- Caroline L Smith
- Tumour Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, OX3 9DS, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
González-Aseguinolaza G, Nakaya Y, Molano A, Dy E, Esteban M, Rodríguez D, Rodríguez JR, Palese P, García-Sastre A, Nussenzweig RS. Induction of protective immunity against malaria by priming-boosting immunization with recombinant cold-adapted influenza and modified vaccinia Ankara viruses expressing a CD8+-T-cell epitope derived from the circumsporozoite protein of Plasmodium yoelii. J Virol 2003; 77:11859-66. [PMID: 14557672 PMCID: PMC229373 DOI: 10.1128/jvi.77.21.11859-11866.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We immunized mice with an attenuated (cold-adapted) influenza virus followed by an attenuated vaccinia virus (modified vaccinia virus Ankara), both expressing a CD8(+)-T-cell epitope derived from malaria sporozoites. This vaccination regimen elicited high levels of protection against malaria. This is the first time that the vaccine efficacy of a recombinant cold-adapted influenza virus vector expressing a foreign antigen has been evaluated.
Collapse
Affiliation(s)
- Gloria González-Aseguinolaza
- Department of Medical & Molecular Parasitology, NYU School of Medicine. Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rodrigues MM, Boscardin SB, Vasconcelos JR, Hiyane MI, Salay G, Soares IS. Importance of CD8 T cell-mediated immune response during intracellular parasitic infections and its implications for the development of effective vaccines. AN ACAD BRAS CIENC 2003; 75:443-68. [PMID: 14605680 DOI: 10.1590/s0001-37652003000400005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obligatory intracellular parasites such as Plasmodium sp, Trypanosoma cruzi, Toxoplasma gondii and Leishmania sp are responsible for the infection of hundreds of millions of individuals every year. These parasites can deliver antigens to the host cell cytoplasm that are presented through MHC class I molecules to protective CD8 T cells. The in vivo priming conditions of specific CD8 T cells during natural infection are largely unknown and remain as an area that has been poorly explored. The antiparasitic mechanisms mediated by CD8 T cells include both interferon-gamma-dependent and -independent pathways. The fact that CD8 T cells are potent inhibitors of parasitic development prompted many investigators to explore whether induction of these T cells can be a feasible strategy for the development of effective subunit vaccines against these parasitic diseases. Studies performed on experimental models supported the hypothesis that CD8 T cells induced by recombinant viral vectors or DNA vaccines could serve as the basis for human vaccination. Regimens of immunization consisting of two different vectors (heterologous prime-boost) are much more efficient in terms of expansion of protective CD8 T lymphocytes than immunization with a single vector. The results obtained using experimental models have led to clinical vaccination trials that are currently underway.
Collapse
Affiliation(s)
- Mauricio M Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04023-062 São Paulo, SP, Brasil.
| | | | | | | | | | | |
Collapse
|
44
|
Aspden K, Passmore JA, Tiedt F, Williamson AL. Evaluation of lumpy skin disease virus, a capripoxvirus, as a replication-deficient vaccine vector. J Gen Virol 2003; 84:1985-1996. [PMID: 12867628 DOI: 10.1099/vir.0.19116-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lumpy skin disease virus (LSDV), a capripoxvirus with a host range limited to ruminants, was evaluated as a replication-deficient vaccine vector for use in non-ruminant hosts. By using the rabies virus glycoprotein (RG) as a model antigen, it was demonstrated that recombinant LSDV encoding the rabies glycoprotein (rLSDV-RG) was able to express RG in both permissive (ruminant) and non-permissive (non-ruminant) cells. The recombinant LSDV, however, replicated to maturity only in permissive but not in non-permissive cells. Recombinant LSDV-RG was assessed for its ability to generate immunity against RG in non-ruminant hosts (rabbits and mice). Rabbits inoculated with rLSDV-RG produced rabies virus (RV) neutralizing antibodies at levels twofold higher than those reported by the WHO to be protective. BALB/c mice immunized with rLSDV-RG elicited levels of RV-specific cellular immunity (T-cell proliferation) comparable with those of mice immunized with a commercial inactivated rabies vaccine (Verorab; Pasteur Merieux). Most importantly, mice immunized with rLSDV-RG were protected from an aggressive intracranial rabies virus challenge.
Collapse
Affiliation(s)
- Kate Aspden
- Division of Medical Virology, Department of Clinical Laboratory Science & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Jo-Ann Passmore
- Division of Medical Virology, Department of Clinical Laboratory Science & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Friedrich Tiedt
- Division of Medical Virology, Department of Clinical Laboratory Science & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Anna-Lise Williamson
- National Health Laboratory Service, University of Cape Town, Observatory 7925, Cape Town, South Africa
- Division of Medical Virology, Department of Clinical Laboratory Science & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| |
Collapse
|
45
|
Ramiro MJ, Zárate JJ, Hanke T, Rodriguez D, Rodriguez JR, Esteban M, Lucientes J, Castillo JA, Larraga V. Protection in dogs against visceral leishmaniasis caused by Leishmania infantum is achieved by immunization with a heterologous prime-boost regime using DNA and vaccinia recombinant vectors expressing LACK. Vaccine 2003; 21:2474-84. [PMID: 12744881 DOI: 10.1016/s0264-410x(03)00032-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A heterologous prime-boost vaccination regime with DNA and recombinant vaccinia virus (rVV) vectors expressing relevant antigens has been shown to enhance specific cellular immune responses and to elicit protection against a variety of pathogens in animal models. In this paper, we describe the effectiveness of the prime-boost strategy by immunizing dogs with a plasmid carrying the gene for the LACK antigen from Leishmania infantum (DNA-LACK) followed by a booster with a rVV containing the same gene (rVV-LACK). Thereafter, animals were challenged with L. infantum to induce visceral leishmaniasis (VL). In the vaccinated dogs as compared with the controls, the outcome of the infection after challenge with a high inoculum (10(8)) of L. infantum stationary promastigotes was assessed by tissue parasite load, specific anti-Leishmania antibody production, cytokine level and development of clinical signs of leishmaniasis. We observed a 60% protection against infection in dogs immunized by DNA-LACK prime/rVV/-LACK boost while two doses of DNA-LACK did not elicit protection against the disease. The interleukin 4 (IL-4), interferon gamma (IFNgamma) and IL-12 (p40 subunit) cytokine mRNA expression profiles in PBMC as well as lymphocyte proliferative response and the IgG2/IgG1 ratios specific for LACK suggest that in vaccinated animals there is triggering of cellular immune responses. This type of DNA/rVV prime/boost immunization approach may have utility against visceral leishmaniasis in dogs.
Collapse
Affiliation(s)
- Maria J Ramiro
- Centro de Investigaciones Biológicas, Velazquez 144, CSIC, Madrid 28006, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gherardi MM, Nájera JL, Pérez-Jiménez E, Guerra S, García-Sastre A, Esteban M. Prime-boost immunization schedules based on influenza virus and vaccinia virus vectors potentiate cellular immune responses against human immunodeficiency virus Env protein systemically and in the genitorectal draining lymph nodes. J Virol 2003; 77:7048-57. [PMID: 12768024 PMCID: PMC156204 DOI: 10.1128/jvi.77.12.7048-7057.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccines that elicit systemic and mucosal immune responses should be the choice to control human immunodeficiency virus (HIV) infections. We have previously shown that prime-boost immunizations with influenza virus Env and vaccinia virus (VV) WR Env recombinants induced an enhanced systemic CD8(+) T-cell response against HIV-1 Env antigen. In this report, we analyzed in BALB/c mice after priming with influenza virus Env the ability of two VV recombinants expressing HIV-1 Env B (VV WR Env and the highly attenuated modified VV Ankara [MVA] Env) to boost cellular immune responses in the spleen and in the lymph nodes draining the genital and rectal tracts. Groups of mice were primed by the intranasal route with 10(4) PFU of influenza virus Env and boosted 14 days later by the intraperitoneal or intranasal route with 10(7) PFU of MVA Env or VV WR Env, while the control group received two immunizations with influenza virus Env. We found that the combined immunization (Flu/VV) increased more than 60 times the number of gamma interferon-specific CD8(+) T cells compared to the Flu/Flu scheme. Significantly, boosting with MVA Env by the intraperitoneal route induced a response 1.25 or 2.5 times (spleen or genital lymph nodes) higher with respect to that found after the boost with VV WR Env. Mice with an enhanced CD8(+) T-cell response also had an increased Th1/Th2 ratio, evaluated by the cytokine pattern secreted following in vitro restimulation with gp160 protein and by the specific immunoglobulin G2a (IgG2a)/IgG1 ratio in serum. By the intranasal route recombinant WR Env booster gave a more efficient immune response (10 and 1.3 times in spleen and genital lymph nodes, respectively) than recombinant MVA Env. However, the scheme influenza virus Env/MVA Env increased four times the response in the spleen, giving a low but significant response in the genital lymph nodes compared with a single intranasal immunization with MVA Env. These results demonstrate that the combination Flu/MVA in prime-booster immunization regimens is an effective vaccination approach to generate cellular immune responses to HIV antigens at sites critical for protective responses.
Collapse
Affiliation(s)
- M Magdalena Gherardi
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Miyahira Y, Katae M, Kobayashi S, Takeuchi T, Fukuchi Y, Abe R, Okumura K, Yagita H, Aoki T. Critical contribution of CD28-CD80/CD86 costimulatory pathway to protection from Trypanosoma cruzi infection. Infect Immun 2003; 71:3131-7. [PMID: 12761091 PMCID: PMC155781 DOI: 10.1128/iai.71.6.3131-3137.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The CD28-CD80/CD86-mediated T-cell costimulatory pathway has been variably implicated in infectious immunity. In this study, we investigated the role of this costimulatory pathway in resistance to Trypanosoma cruzi infection by using CD28-deficient mice and blocking antibodies against CD80 and CD86. CD28-deficient mice exhibited markedly exacerbated T. cruzi infection, as evidenced by unrelenting parasitemia and 100% mortality after infection with doses that are nonlethal in wild-type mice. The blockade of both CD80 and CD86 by administering specific monoclonal antibodies also exacerbated T. cruzi infection in wild-type mice. Splenocytes from T. cruzi-infected, CD28-deficient mice exhibited greatly impaired gamma interferon production in response to T. cruzi antigen stimulation in vitro compared to those from infected wild-type mice. The induction of T. cruzi antigen-specific CD8(+) T cells was also impaired in T. cruzi-infected, CD28-deficient mice. In addition to these defects in natural protection against T. cruzi infection, CD28-deficient mice were also defective in the induction of CD8(+)-T-cell-mediated protective immunity against T. cruzi infection by DNA vaccination. These results demonstrate, for the first time, a critical contribution of the CD28-CD80/CD86 costimulatory pathway not only to natural protection against primary T. cruzi infection but also to DNA vaccine-induced protective immunity to Chagas' disease.
Collapse
Affiliation(s)
- Yasushi Miyahira
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tapia E, Pérez-Jiménez E, López-Fuertes L, Gonzalo R, Gherardi MM, Esteban M. The combination of DNA vectors expressing IL-12 + IL-18 elicits high protective immune response against cutaneous leishmaniasis after priming with DNA-p36/LACK and the cytokines, followed by a booster with a vaccinia virus recombinant expressing p36/LACK. Microbes Infect 2003; 5:73-84. [PMID: 12650765 DOI: 10.1016/s1286-4579(02)00077-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Protocols of immunization based on the DNA prime/vaccinia virus (VV) boost regime with recombinants expressing relevant antigens have been shown to elicit protection against a variety of pathogens in animal model systems, and various phase I clinical trials have been initiated with this vaccination approach. We have previously shown that mice immunized with a DNA vector expressing p36/LACK of Leishmania infantum followed by a booster with VVp36/LACK induced significant protection against Leishmania major infection. To further improve this protocol of immunization, here we investigated whether the cytokines interleukin-12 (IL-12) and IL-18 could enhance protection against L. major infection in BALB/c mice. We found that priming with DNA vectors expressing p36/LACK and either IL-12 or IL-18, followed by a booster with a VV recombinant expressing the same L. infantum LACK antigen, elicit a higher cellular immune response than by using the same protocol in the absence of the cytokines. The cytokine IL-12 triggered a higher number of IFN-gamma-secreting cells specific for p36 protein than IL-18. When immunized animals were challenged with promastigotes, the highest protection against L. major infection was observed in animals primed with DNAp36 + DNA IL-12 + DNA IL-18 and boosted with VVp36. This protection correlated with a Th1 type of immune response. Our findings revealed that in prime/booster protocols, co-expressing IL-12 and IL-18 during priming is an efficient approach to protect against leishmaniasis. This combined prime/booster immunization regime could have wide use in fighting against parasitic and other infectious diseases.
Collapse
Affiliation(s)
- Esther Tapia
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
T cells from different subsets play a major role in protective immunity against pre-erythrocytic stages of malaria parasites. Exposure of humans and animals to malaria sporozoites induces (alphabeta CD8(+) and CD4(+) T cells specific for antigens expressed in pre-erythrocytic stages of Plasmodium. These T cells inhibit parasite development in the liver, and immunization with subunit vaccines expressing the respective antigenic moieties confers protection against sporozoite challenge. gammadelta and natural killer T cells can also play a role in protective immunity. Recent studies with mice transgenic for the alphabeta T-cell receptor have revealed the existence of complex mechanisms regulating the induction and development of these responses.
Collapse
Affiliation(s)
- Moriya Tsuji
- Department of Medical and Molecular Parasitology, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | | |
Collapse
|
50
|
López-Fuertes L, Pérez-Jiménez E, Vila-Coro AJ, Sack F, Moreno S, Konig SA, Junghans C, Wittig B, Timón M, Esteban M. DNA vaccination with linear minimalistic (MIDGE) vectors confers protection against Leishmania major infection in mice. Vaccine 2002; 21:247-57. [PMID: 12450700 DOI: 10.1016/s0264-410x(02)00450-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunization protocols based on priming with plasmid DNA and boosting with recombinants of vaccinia virus (rVV) encoding the same antigen offer great promise for the prevention and treatment of many parasitic and viral infections for which conventional vaccination has little or no effect. To overcome some of the potential problems associated to the use of plasmids, we have developed minimalistic, immunogenically defined, gene expression (MIDGE((R))) vectors. These linear vectors contain only the minimum sequence required for gene expression and can be chemically modified to increase the immune response. Here, we demonstrate that MIDGE vectors coding for the LACK antigen confer a highly effective protection against Leishmania infection in susceptible Balb/c mice. Protection is achieved at lower doses of vector compared to conventional plasmids. This efficacy could be greatly improved by the addition of a nuclear localization signal (NLS) peptide to the end of the MIDGE vector. In fact, immunization with two doses of NLS-modified MIDGE conferred similar or even better protection than that achieved by priming with plasmid DNA followed by boosting with rVV. These results demonstrate that MIDGE vectors are a good alternative to plasmid and rVV for immunization.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Gene Expression
- Genetic Vectors/genetics
- HeLa Cells
- Humans
- Immunization
- Leishmania major/immunology
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/prevention & control
- Mice
- Mice, Inbred BALB C
- Protozoan Proteins
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/immunology
- Recombinant Proteins/immunology
- Tumor Cells, Cultured
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- L López-Fuertes
- Mologen Molecular Medicines SL, Antonio de Cabezon 83, Piso 2, 28034 Fuencarral, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|