1
|
Kopp KT, Beer MD, Voorspoels J, Lysebetten DV, den Mooter GV. Spray drying for protein stabilization. Int J Pharm 2025; 677:125600. [PMID: 40280286 DOI: 10.1016/j.ijpharm.2025.125600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
During formulation development, stabilizing buffers and excipients are added to therapeutic proteins to overcome their intrinsic instability. Another approach is their solidification using techniques like freeze drying or spray drying (SD). In this work, to enhance the stability of three proteins (α-chymotrypsin, catalase and Horseradish Peroxidase (HRP)), suitable buffers and excipients were selected in solution state for three formulations (referred to as concepts) for each protein using Differential Scanning Fluorimetry (DSF) combined with Static Light Scattering (SLS). Two of these concepts were supposed to stabilize the protein and one was less stabilizing. Then, SD was performed, and the protein stability was compared to that prior SD using dynamic light scattering, UV-VIS spectroscopy, far-UV circular dichroism, size-exclusion and reversed-phase chromatography. While the selected excipients did not differ much from the ones used during a previous study on Bovine Serum Albumin (BSA), Immunoglobulin G (IgG) and lysozyme, clear stability differences during solidification were observed. The measured recovery was partly 40 % lower than prior to SD and only one catalase concept was able to maintain its original concentration. While the stability of two catalase concepts was correctly predicted by DSF/SLS, it was not the case for the other proteins. This outcome led to the question whether it is sufficient to determine protein stability during solidification using DSF/SLS or if a more holistic approach is necessary.
Collapse
Affiliation(s)
- Katharina Tatjana Kopp
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium; Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49, 3000 Leuven, Belgium
| | - Maarten De Beer
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium
| | - Jody Voorspoels
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium
| | | | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
2
|
Mehrotra S, Kaur N, Kaur S, Matharoo K, Pandey RK. From antibodies to nanobodies: The next frontier in cancer theranostics for solid tumors. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:287-329. [PMID: 39978969 DOI: 10.1016/bs.apcsb.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The field of cancer therapeutics has witnessed significant advancements over the past decades, particularly with the emergence of immunotherapy. This chapter traces the transformative journey from traditional antibody-based therapies to the innovative use of nanobodies in the treatment and diagnosis of solid tumors. Nanobodies are the smallest fragments of antibodies derived from camelid immunoglobulins and have redefined the possibilities in cancer theranostics due to their unique structural and functional properties. We provide an overview of the biochemical characteristics of nanobodies that make them particularly suitable for theranostic applications, such as their small size, high stability, enhanced infiltration into the complex tumor microenvironment (TME) and ability to bind with high affinity to epitopes that are inaccessible to conventional antibodies. Further, their ease of modification and functionalization has enabled the development of nanobody-based drug conjugates/toxins and radiolabeled compounds for precise imaging and targeted radiotherapy. We elucidate how nanobodies are being served as valuable tools for prognostic assessment, enabling clinicians to predict disease aggressiveness, monitor treatment response, and stratify patients for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Navdeep Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | |
Collapse
|
3
|
Georg Magalhães C, Ploeger Mansueli C, Manieri TM, Quintilio W, Garbuio A, de Jesus Marinho J, de Moraes JZ, Tsuruta LR, Moro AM. Impaired proliferation and migration of HUVEC and melanoma cells by human anti-FGF2 mAbs derived from a murine hybridoma by guided selection. Bioengineered 2023; 14:2252667. [PMID: 37661761 PMCID: PMC10478743 DOI: 10.1080/21655979.2023.2252667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 09/05/2023] Open
Abstract
Disadvantages of using murine monoclonal antibodies (mAb) in human therapy, such as immunogenicity response, led to the development of technologies to transform murine antibodies into human antibodies. The murine anti-FGF2 3F12E7 mAb was proposed as a promising agent to treat metastatic melanoma tumors; once it blocks the FGF2, responsible for playing a role in tumor growth, angiogenesis, and metastasis. Considering the therapeutic potential of anti-FGF2 3F12E7 mAb and its limited use in humans due to its origin, we used this antibody as the template for a guided selection humanization technique to obtain human anti-FGF2 mAbs. Three Fab libraries (murine, hybrid, and human) were constructed for humanization. The libraries were phage-displayed, and the panning was performed against recombinant human FGF2 (rFGF2). The selected human variable light and heavy chains were cloned into AbVec vectors for full-length IgG expression into HEK293-F cells. Surface plasmon resonance analyses showed binding to rFGF2 of seven mAbs out of 20 expressed. Assays performed with these mAbs resulted in two that showed proliferation reduction and cell migration attenuation of HUVEC and SK-Mel-28 melanoma cells. In-silico analyses predicted that these two human anti-FGF2 mAbs interact with FGF2 at a similar patch of residues than the chimeric anti-FGF2 antibody, comprehending a region within the heparin-binding domains of FGF2, essential for its function. These results are comparable to those achieved by the murine anti-FGF2 3F12E7 mAb and showed success in the humanization process and selection of two human mAbs with the potential to inhibit undesirable FGF2 roles.
Collapse
Affiliation(s)
| | | | | | - Wagner Quintilio
- Laboratory of Biopharmaceuticals, Butantan Institute, São Paulo, Brazil
| | - Angélica Garbuio
- Laboratory of Biopharmaceuticals, Butantan Institute, São Paulo, Brazil
| | | | - Jane Zveiter de Moraes
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Ana Maria Moro
- Laboratory of Biopharmaceuticals, Butantan Institute, São Paulo, Brazil
- CeRDI, Center for Research and Development in Immunobiologicals, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
4
|
Lu Y, Yang Y, Zhu G, Zeng H, Fan Y, Guo F, Xu D, Wang B, Chen D, Ge G. Emerging Pharmacotherapeutic Strategies to Overcome Undruggable Proteins in Cancer. Int J Biol Sci 2023; 19:3360-3382. [PMID: 37496997 PMCID: PMC10367563 DOI: 10.7150/ijbs.83026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/13/2023] [Indexed: 07/28/2023] Open
Abstract
Targeted therapies in cancer treatment can improve in vivo efficacy and reduce adverse effects by altering the tissue exposure of specific biomolecules. However, there are still large number of target proteins in cancer are still undruggable, owing to the following factors including (1) lack of ligand-binding pockets, (2) function based on protein-protein interactions (PPIs), (3) the highly specific conserved active sites among protein family members, and (4) the variability of tertiary docking structures. The current status of undruggable targets proteins such as KRAS, TP53, C-MYC, PTP, are carefully introduced in this review. Some novel techniques and drug designing strategies have been applicated for overcoming these undruggable proteins, and the most classic and well-known technology is proteolysis targeting chimeras (PROTACs). In this review, the novel drug development strategies including targeting protein degradation, targeting PPI, targeting intrinsically disordered regions, as well as targeting protein-DNA binding are described, and we also discuss the potential of these strategies for overcoming the undruggable targets. Besides, intelligence-assisted technologies like Alpha-Fold help us a lot to predict the protein structure, which is beneficial for drug development. The discovery of new targets and the development of drugs targeting them, especially those undruggable targets, remain a huge challenge. New drug development strategies, better extraction processes that do not disrupt protein-protein interactions, and more precise artificial intelligence technologies may provide significant assistance in overcoming these undruggable targets.
Collapse
Affiliation(s)
- Yuqing Lu
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Yuewen Yang
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Guanghao Zhu
- Shanghai University of Traditional Chinese Medicine, 201203 Shanghai City, China
| | - Hairong Zeng
- Shanghai University of Traditional Chinese Medicine, 201203 Shanghai City, China
| | - Yiming Fan
- Dalian Harmony Medical Testing Laboratory Co., Ltd, 116620 Dalian City, Liaoning Province, China
| | - Fujia Guo
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Dongshu Xu
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Boya Wang
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Dapeng Chen
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Guangbo Ge
- Shanghai University of Traditional Chinese Medicine, 201203 Shanghai City, China
| |
Collapse
|
5
|
Zaric BL, Macvanin MT, Isenovic ER. Free radicals: Relationship to Human Diseases and Potential Therapeutic applications. Int J Biochem Cell Biol 2023; 154:106346. [PMID: 36538984 DOI: 10.1016/j.biocel.2022.106346] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Reactive species are highly-reactive enzymatically, or non-enzymatically produced compounds with important roles in physiological and pathophysiological cellular processes. Although reactive species represent an extensively researched topic in biomedical sciences, many aspects of their roles and functions remain unclear. This review aims to systematically summarize findings regarding the biochemical characteristics of various types of reactive species and specify the localization and mechanisms of their production in cells. In addition, we discuss the specific roles of free radicals in cellular physiology, focusing on the current lines of research that aim to identify the reactive oxygen species-initiated cascades of reactions resulting in adaptive or pathological cellular responses. Finally, we present recent findings regarding the therapeutic modulations of intracellular levels of reactive oxygen species, which may have substantial significance in developing novel agents for treating several diseases.
Collapse
Affiliation(s)
- Bozidarka L Zaric
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Ruenchit P, Reamtong O, Khowawisetsut L, Adisakwattana P, Chulanetra M, Kulkeaw K, Chaicumpa W. Peptide of Trichinella spiralis Infective Larval Extract That Harnesses Growth of Human Hepatoma Cells. Front Cell Infect Microbiol 2022; 12:882608. [PMID: 35558100 PMCID: PMC9086976 DOI: 10.3389/fcimb.2022.882608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022] Open
Abstract
Trichinella spiralis, a tissue-dwelling helminth, causes human trichinellosis through ingestion of undercooked meat containing the parasite’s infective larvae. However, benefits from T. spiralis infection have been documented: reduction of allergic diseases, inhibition of collagen-induced arthritis, delay of type 1 diabetes progression, and suppression of cancer cell proliferation. Since conventional cancer treatments have limited and unreliable efficacies with adverse side effects, novel adjunctive therapeutic agents and strategies are needed to enhance the overall treatment outcomes. This study aimed to validate the antitumor activity of T. spiralis infective larval extract (LE) and extricate the parasite-derived antitumor peptide. Extracts of T. spiralis infective larvae harvested from striated muscles of infected mice were prepared and tested for antitumor activity against three types of carcinoma cells: hepatocellular carcinoma HepG2, ovarian cancer SK-OV-3, and lung adenocarcinoma A549. The results showed that LE exerted the greatest antitumor effect on HepG2 cells. Proteomic analysis of the LE revealed 270 proteins. They were classified as cellular components, proteins involved in metabolic processes, and proteins with diverse biological functions. STRING analysis showed that most LE proteins were interconnected and played pivotal roles in various metabolic processes. In silico analysis of anticancer peptides identified three candidates. Antitumor peptide 2 matched the hypothetical protein T01_4238 of T. spiralis and showed a dose-dependent anti-HepG2 effect, not by causing apoptosis or necrosis but by inducing ROS accumulation, leading to inhibition of cell proliferation. The data indicate the potential application of LE-derived antitumor peptide as a complementary agent for human hepatoma treatment.
Collapse
Affiliation(s)
- Pichet Ruenchit
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Monrat Chulanetra
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kasem Kulkeaw
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Wanpen Chaicumpa,
| |
Collapse
|
7
|
Mendes S, Sá R, Magalhães M, Marques F, Sousa M, Silva E. The Role of ROS as a Double-Edged Sword in (In)Fertility: The Impact of Cancer Treatment. Cancers (Basel) 2022; 14:cancers14061585. [PMID: 35326736 PMCID: PMC8946252 DOI: 10.3390/cancers14061585] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Tumor cells are highly resistant to oxidative stress, but beyond a certain threshold, it may lead to apoptosis/necrosis. Thus, induced loss of redox balance can be a strategy used in anticancer therapies. However, the effectiveness of drugs contrasts with unknown mechanisms involved in the loss of fertility. Considering that cancer patients’ life expectancy is increasing, it raises concerns about the unknown adverse effects. Therefore, new strategies should be pursued alongside explaining to the patients their options regarding the reproduction side effects. Abstract Tumor cells are highly resistant to oxidative stress resulting from the imbalance between high reactive oxygen species (ROS) production and insufficient antioxidant defenses. However, when intracellular levels of ROS rise beyond a certain threshold, largely above cancer cells’ capacity to reduce it, they may ultimately lead to apoptosis or necrosis. This is, in fact, one of the molecular mechanisms of anticancer drugs, as most chemotherapeutic treatments alter redox homeostasis by further elevation of intracellular ROS levels or inhibition of antioxidant pathways. In traditional chemotherapy, it is widely accepted that most therapeutic effects are due to ROS-mediated cell damage, but in targeted therapies, ROS-mediated effects are mostly unknown and data are still emerging. The increasing effectiveness of anticancer treatments has raised new challenges, especially in the field of reproduction. With cancer patients’ life expectancy increasing, many aiming to become parents will be confronted with the adverse effects of treatments. Consequently, concerns about the impact of anticancer therapies on reproductive capacity are of particular interest. In this review, we begin with a short introduction on anticancer therapies, then address ROS physiological/pathophysiological roles in both male and female reproductive systems, and finish with ROS-mediated adverse effects of anticancer treatments in reproduction.
Collapse
Affiliation(s)
- Sara Mendes
- Department of Physical Education and Sports, University Institute of Maia (ISMAI), 4475-690 Maia, Portugal;
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), 5001-801 Vila Real, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.S.); (M.S.)
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal;
| | - Manuel Magalhães
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal;
- Department of Oncology, University Hospital Center of Porto (CHUP), Largo do Prof. Abel Salazar, 4099-001 Porto, Portugal;
| | - Franklim Marques
- Department of Oncology, University Hospital Center of Porto (CHUP), Largo do Prof. Abel Salazar, 4099-001 Porto, Portugal;
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.S.); (M.S.)
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal;
| | - Elisabete Silva
- Laboratory of General Physiology, Department of Immuno-Physiology and Pharmacology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), Institute for Research & Innovation in Health (I3S), University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
8
|
Wang C, Hong J, Yang Z, Zhou X, Yang Y, Kong Y, Chen B, Wu H, Qian BZ, Dimitrov DS, Zhou X, Wu Y, Ying T. Design of a Novel Fab-Like Antibody Fragment with Enhanced Stability and Affinity for Clinical use. SMALL METHODS 2022; 6:e2100966. [PMID: 35174992 DOI: 10.1002/smtd.202100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Indexed: 06/14/2023]
Abstract
With increasing interest in applying recombinant monoclonal antibodies (mAbs) in human medicine, engineered mAb fragments with reduced size and improved stability are in demand to overcome current limitations in clinical use. Herein, a novel Fab-like antibody fragment generated via an in silico-based engineering approach where the CH1 and CL domains of Fab are replaced by the IgG1 CH3 domains is described. This construct, designated as FabCH3, maintains the natural N-terminus and C-terminus of IgG antibody, can be expressed at a high level in bacterial cells and, importantly, exhibits much higher stability and affinity than the parental Fab when tested in a mesothelin-specific Fab m912, as well as a vascular endothelial growth factor A (VEGFA)-specific Fab Ranibizumab (in vivo). The high-resolution crystal structures of m912 FabCH3 and m912 Fab are determined, and the comparative analysis reveals more rigid structures in both constant domains and complementarity-determining regions of FabCH3, explaining its enhanced stability and affinity. Overall, the stabilized FabCH3 described in this report provides a versatile platform for engineering Fab-like antibody fragments with higher stability and antigen-binding affinity that can be used as a distinct class of antibody therapeutics.
Collapse
Affiliation(s)
- Chunyu Wang
- MOE/NHC Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiaxu Hong
- Department of Ophthalmology and Vision Science, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Zhenlin Yang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, 200032, China
| | - Xujiao Zhou
- Department of Ophthalmology and Vision Science, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Yuhan Yang
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yu Kong
- MOE/NHC Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Binfan Chen
- MOE/NHC Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Huifang Wu
- MOE/NHC Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bin-Zhi Qian
- Medical Research Council Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Dimiter S Dimitrov
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xingtao Zhou
- Department of Ophthalmology and Vision Science, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Yanling Wu
- MOE/NHC Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China
| | - Tianlei Ying
- MOE/NHC Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China
| |
Collapse
|
9
|
A Patent Review on the Therapeutic Application of Monoclonal Antibodies in COVID-19. Int J Mol Sci 2021; 22:ijms222111953. [PMID: 34769383 PMCID: PMC8584575 DOI: 10.3390/ijms222111953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains spike proteins that assist the virus in entering host cells. In the absence of a specific intervention, efforts are afoot throughout the world to find an effective treatment for SARS-CoV-2. Through innovative techniques, monoclonal antibodies (MAbs) are being designed and developed to block a particular pathway of SARS-CoV-2 infection. More than 100 patent applications describing the development of MAbs and their application against SARS-CoV-2 have been registered. Most of them target the receptor binding protein so that the interaction between virus and host cell can be prevented. A few monoclonal antibodies are also being patented for the diagnosis of SARS-CoV-2. Some of them, like Regeneron® have already received emergency use authorization. These protein molecules are currently preferred for high-risk patients such as those over 65 years old with compromised immunity and those with metabolic disorders such as obesity. Being highly specific in action, monoclonal antibodies offer one of the most appropriate interventions for both the prevention and treatment of SARS-CoV-2. Technological advancement has helped in producing highly efficacious MAbs. However, these agents are known to induce immunogenic and non-immunogenic reactions. More research and testing are required to establish the suitability of administering MAbs to all patients at risk of developing a severe illness. This patent study is focused on MAbs as a therapeutic option for treating COVID-19, as well as their invention, patenting information, and key characteristics.
Collapse
|
10
|
Chiu KY, Wang Q, Gunawardena HP, Held M, Faik A, Chen H. Desalting Paper Spay Mass Spectrometry (DPS-MS) for Rapid Detection of Glycans and Glycoconjugates. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 469:116688. [PMID: 35386843 PMCID: PMC8981528 DOI: 10.1016/j.ijms.2021.116688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The detection of glycans and glycoconjugates has gained increasing attention in biological fields. Traditional mass spectrometry (MS)-based methods for glycoconjugate analysis are challenged with poor intensity when dealing with complex biological samples. We developed a desalting paper spray mass spectrometry (DPS-MS) strategy to overcome the issue of signal suppression of carbohydrates in salted buffer. Glycans and glycoconjugates (i.e., glycopeptides, nucleotide sugars, etc.) in non-volatile buffer (e.g., Tris buffer) can be loaded on the paper substrate from which buffers can be removed by washing with ACN/H2O (90/10 v/v) solution. Glycans or glycoconjugates can then be eluted and spray ionized by adding ACN/H2O/formic acid (FA) (10/90/1 v/v/v) solvent and applying a high voltage (HV) to the paper substrate. This work also showed that DPS-MS is applicable for direct detection of intact glycopeptides and nucleotide sugars as well as determination of glycosylation profiling of antibody, such as NIST monoclonal antibody IgG (NISTmAb). NISTmAb was deglycosylated with PNGase F to release N-linked oligosaccharides. Twenty-six N-linked oligosaccharides were detected by DPS-MS within a 5-minute timeframe without the need for further enrichment or derivatization. This work demonstrates that DPS-MS allows fast and sensitive detection of glycans/oligosaccharides and glycosylated species in complex matrices and has great potential in bioanalysis.
Collapse
Affiliation(s)
- Kai-Yuan Chiu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA, 07102
| | - Qi Wang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA, 07102
| | - Harsha P Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA, 19477
| | - Michael Held
- Deparment of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio USA, 45701
| | - Ahmed Faik
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio USA, 45701
- Department of Environmental and Plant Biology, Ohio University, Athens Ohio, USA, 45701
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA, 07102
| |
Collapse
|
11
|
Khan AQ, Rashid K, AlAmodi AA, Agha MV, Akhtar S, Hakeem I, Raza SS, Uddin S. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: An update on the role of ROS in anticancer action of benzophenanthridine alkaloids. Biomed Pharmacother 2021; 143:112142. [PMID: 34536761 DOI: 10.1016/j.biopha.2021.112142] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species play crucial role in biological homeostasis and pathogenesis of human diseases including cancer. In this line, now it has become evident that ROS level/concentration is a major factor in the growth, progression and stemness of cancer cells. Moreover, cancer cells maintain a delicate balance between ROS and antioxidants to promote pathogenesis and clinical challenges via targeting a battery of signaling pathways converging to cancer hallmarks. Recent findings also entail the therapeutic importance of ROS for the better clinical outcomes in cancer patients as they induce apoptosis and autophagy. Moreover, poor clinical outcomes associated with cancer therapies are the major challenge and use of natural products have been vital in attenuation of these challenges due to their multitargeting potential with less adverse effects. In fact, most available drugs are derived from natural resources, either directly or indirectly and available evidence show the clinical importance of natural products in the management of various diseases, including cancer. ROS play a critical role in the anticancer actions of natural products, particularly phytochemicals. Benzophenanthridine alkaloids of the benzyl isoquinoline family of alkaloids, such as sanguinarine, possess several pharmacological properties and are thus being studied for the treatment of different human diseases, including cancer. In this article, we review recent findings, on how benzophenanthridine alkaloid-induced ROS play a critical role in the attenuation of pathological changes and stemness features associated with human cancers. In addition, we highlight the role of ROS in benzophenanthridine alkaloid-mediated activation of the signaling pathway associated with cancer cell apoptosis and autophagy.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid Rashid
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Maha Victor Agha
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ishrat Hakeem
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
12
|
Xi Z, Liu X, Lin R, Persons JD, Ilina TV, Li W, Dimitrov DS, Ishima R. The reduced form of the antibody CH2 domain. Protein Sci 2021; 30:1895-1903. [PMID: 34107549 DOI: 10.1002/pro.4142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022]
Abstract
Among the immunoglobulin domains, the CH2 domain has the lowest thermal stability, which also depends on amino acid sequence and buffer conditions. To further identify factors that influence CH2 folding and stability, we characterized the domain in the reduced form using differential scanning fluorimetry and nuclear magnetic resonance. We show that the CH2 domain can fold, similarly to the disulfide-bridged form, without forming a disulfide-bridge, even though the protein contains two Cys residues. Although the reduced form exhibits thermal stability more than 15°C lower than the disulfide-bridged form, it does not undergo immediate full oxidization. To explain this phenomenon, we compared CH2 oxidization at different conditions and demonstrate a need for significant fluctuation of the folded conformation to enhance CH2 disulfide-bridge formation. We conclude that, since CH2 can be purified as a folded, semi-stable, reduced protein that can coexist with the oxidized form, verification of the level of oxidization at each step is critical in CH2 engineering studies.
Collapse
Affiliation(s)
- Zhaoyong Xi
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xianglei Liu
- Center for Antibody Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rui Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Gastroenterology and Hepatology, Tianjin Medical University, General Hospital, Tianjin, China
| | - John D Persons
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tatiana V Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Wei Li
- Center for Antibody Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Alimohammadi M, Rahimi A, Faramarzi F, Golpour M, Jafari-Shakib R, Alizadeh-Navaei R, Rafiei A. Effects of coenzyme Q10 supplementation on inflammation, angiogenesis, and oxidative stress in breast cancer patients: a systematic review and meta-analysis of randomized controlled- trials. Inflammopharmacology 2021; 29:579-593. [PMID: 34008150 DOI: 10.1007/s10787-021-00817-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/24/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND/OBJECTIVE Systemic inflammation and oxidative stress (OS) are associated with breast cancer. CoQ10 as an adjuvant treatment with conventional anti-cancer chemotherapy has been demonstrated to help in the inflammatory process and OS. This systematic review and meta-analysis of randomized clinical trials (RCTs) aimed to evaluate the efficacy of CoQ10 supplementation on levels of inflammatory markers, OS parameters, and matrix metalloproteinases/tissue inhibitor of metalloproteinases (MMPs/TIMPs) in patients with breast cancer. METHODS A systematic literature search was carried out using electronic databases, including PubMed, Web of Science, Scopus, Google Scholar, and Embase, up to December 2020 to identify eligible RCTs evaluating the effect of CoQ10 supplementation on OS biomarkers, inflammatory cytokines, and MMPs/TIMPs. From 827 potential reports, 5 eligible studies consisting of 9 trials were finally included in the current meta-analysis. Quality assessment and heterogeneity tests of the selected trials were performed using the PRISMA checklist protocol and the I2 statistic, respectively. Fixed and random-effects models were assessed based on the heterogeneity tests, and pooled data were determined as the standardized mean difference (SMD) with a 95% confidence interval (CI). RESULTS Our meta-analysis of the pooled findings for inflammatory biomarkers of OS and MMPs showed that CoQ10 supplementation (100 mg/day for 45-90 days) significantly decreased the levels of VEGF [SMD: - 1.88, 95% CI: (- 2. 62 to - 1.13); I2 = 93.1%, p < 0.001], IL-8 [SMD: - 2.24, 95% CI: (- 2.68 to - 1.8); I2 = 79.6%, p = 0.001], MMP-2 [SMD: - 1.49, 95% CI: (- 1.85 to - 1.14); I2 = 76.3%, p = 0.005] and MMP-9 [SMD: - 1.58, 95% CI: (- 1.97 to - 1.19); I2 = 79.6%, p = 0.002], but no significant difference was observed between CoQ10 supplementation and control group on TNF-α [SMD: - 2.30, 95% CI: (- 2.50 to - 2.11); I2 = 21.8%, p = 0.280], IL-6 [SMD: - 1.56, 95% CI: (- 1.73 to - 1.39); I2 = 0.0%, p = 0.683], IL-1β [SMD: - 3.34, 95% CI: (- 3.58 to - 3.11); I2 = 0.0%, p = 0.561], catalase (CAT) [SMD: 1.40, 95% CI: (1.15 to 1.65); I2 = 0.0%, p = 0.598], superoxide dismutase (SOD) [SMD: 2.42, 95% CI: (2.12 to 2.71); I2 = 0.0%, p = 0.986], glutathione peroxidase (GPx) [SMD: 2.80, 95% CI: (2.49 to 3.11); I2 = 0.0%, p = 0.543]], glutathione (GSH) [SMD: 4.71, 95% CI: (4.26 to 5.16); I2 = 6.1%, p = 0.302] and thiobarbituric acid reactive substances (TBARS) [SMD: - 3.20, 95% CI: (- 3.53 to - 2.86); I2 = 29.7%, p = 0.233]. CONCLUSION Overall, the findings showed that CoQ10 supplementation reduced some of the important markers of inflammation and MMPs in patients with breast cancer. However, further studies with controlled trials for other types of cancer are needed to better understand and confirm the effect of CoQ10 on tumor therapy.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Rahimi
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faramarzi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Monireh Golpour
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Jafari-Shakib
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
14
|
A Novel 89Zr-labeled DDS Device Utilizing Human IgG Variant (scFv): "Lactosome" Nanoparticle-Based Theranostics for PET Imaging and Targeted Therapy. Life (Basel) 2021; 11:life11020158. [PMID: 33670777 PMCID: PMC7923095 DOI: 10.3390/life11020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
“Theranostics,” a new concept of medical advances featuring a fusion of therapeutic and diagnostic systems, provides promising prospects in personalized medicine, especially cancer. The theranostics system comprises a novel 89Zr-labeled drug delivery system (DDS), derived from the novel biodegradable polymeric micelle, “Lactosome” nanoparticles conjugated with specific shortened IgG variant, and aims to successfully deliver therapeutically effective molecules, such as the apoptosis-inducing small interfering RNA (siRNA) intracellularly while offering simultaneous tumor visualization via PET imaging. A 27 kDa-human single chain variable fragment (scFv) of IgG to establish clinically applicable PET imaging and theranostics in cancer medicine was fabricated to target mesothelin (MSLN), a 40 kDa-differentiation-related cell surface glycoprotein antigen, which is frequently and highly expressed by malignant tumors. This system coupled with the cell penetrating peptide (CPP)-modified and photosensitizer (e.g., 5, 10, 15, 20-tetrakis (4-aminophenyl) porphyrin (TPP))-loaded Lactosome particles for photochemical internalized (PCI) driven intracellular siRNA delivery and the combination of 5-aminolevulinic acid (ALA) photodynamic therapy (PDT) offers a promising nano-theranostic-based cancer therapy via its targeted apoptosis-inducing feature. This review focuses on the combined advances in nanotechnology and material sciences utilizing the “89Zr-labeled CPP and TPP-loaded Lactosome particles” and future directions based on important milestones and recent developments in this platform.
Collapse
|
15
|
Gebert M, Jaśkiewicz M, Moszyńska A, Collawn JF, Bartoszewski R. The Effects of Single Nucleotide Polymorphisms in Cancer RNAi Therapies. Cancers (Basel) 2020; 12:E3119. [PMID: 33113880 PMCID: PMC7694039 DOI: 10.3390/cancers12113119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Tremendous progress in RNAi delivery methods and design has allowed for the effective development of siRNA-based therapeutics that are currently under clinical investigation for various cancer treatments. This approach has the potential to revolutionize cancer therapy by providing the ability to specifically downregulate or upregulate the mRNA of any protein of interest. This exquisite specificity, unfortunately, also has a downside. Genetic variations in the human population are common because of the presence of single nucleotide polymorphisms (SNPs). SNPs lead to synonymous and non-synonymous changes and they occur once in every 300 base pairs in both coding and non-coding regions in the human genome. Much less common are the somatic mosaicism variations associated with genetically distinct populations of cells within an individual that is derived from postzygotic mutations. These heterogeneities in the population can affect the RNAi's efficacy or more problematically, which can lead to unpredictable and sometimes adverse side effects. From a more positive viewpoint, both SNPs and somatic mosaicisms have also been implicated in human diseases, including cancer, and these specific changes could offer the ability to effectively and, more importantly, selectively target the cancer cells. In this review, we discuss how SNPs in the human population can influence the development and success of novel anticancer RNAi therapies and the importance of why SNPs should be carefully considered.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - Maciej Jaśkiewicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - Adrianna Moszyńska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| |
Collapse
|
16
|
Li S, Jin Y, Su Y, Li W, Xing Y, Wang F, Hong Z. Anti-HER2 Affibody-Conjugated Photosensitizer for Tumor Targeting Photodynamic Therapy. Mol Pharm 2020; 17:1546-1557. [DOI: 10.1021/acs.molpharmaceut.9b01247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shuang Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yingying Jin
- People’s Hospital of Tianjin, Tianjin 300180, P. R. China
| | - Yao Su
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Wenjing Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yutong Xing
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Fengwei Wang
- People’s Hospital of Tianjin, Tianjin 300180, P. R. China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
17
|
Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A. ROS in cancer therapy: the bright side of the moon. Exp Mol Med 2020; 52:192-203. [PMID: 32060354 PMCID: PMC7062874 DOI: 10.1038/s12276-020-0384-2] [Citation(s) in RCA: 1291] [Impact Index Per Article: 258.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) constitute a group of highly reactive molecules that have evolved as regulators of important signaling pathways. It is now well accepted that moderate levels of ROS are required for several cellular functions, including gene expression. The production of ROS is elevated in tumor cells as a consequence of increased metabolic rate, gene mutation and relative hypoxia, and excess ROS are quenched by increased antioxidant enzymatic and nonenzymatic pathways in the same cells. Moderate increases of ROS contribute to several pathologic conditions, among which are tumor promotion and progression, as they are involved in different signaling pathways and induce DNA mutation. However, ROS are also able to trigger programmed cell death (PCD). Our review will emphasize the molecular mechanisms useful for the development of therapeutic strategies that are based on modulating ROS levels to treat cancer. Specifically, we will report on the growing data that highlight the role of ROS generated by different metabolic pathways as Trojan horses to eliminate cancer cells. Highly reactive molecules called reactive oxygen species (ROS), which at low levels are natural regulators of important signaling pathways in cells, might be recruited to act as “Trojan horses” to kill cancer cells. Researchers in Italy led by Bruno Perillo of the Institute of Food Sciences in Avelllino review the growing evidence suggesting that stimulating production of natural ROS species could become useful in treating cancer. Although ROS production is elevated in cancer cells it can also promote a natural process called programmed cell death. This normally regulates cell turnover, but could be selectively activated to target diseased cells. The authors discuss molecular mechanisms underlying the potential anti-cancer activity of various ROS-producing strategies, including drugs and light-stimulated therapies. They expect modifying the production of ROS to have potential for developing new treatments.
Collapse
Affiliation(s)
- Bruno Perillo
- Istituto di Scienze dell'Alimentazione, C.N.R., 83100, Avellino, Italy. .,Istituto per l'Endocrinologia e l'Oncologia Sperimentale, C.N.R., 80131, Naples, Italy.
| | - Marzia Di Donato
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Antonio Pezone
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Naples, Italy
| | - Erika Di Zazzo
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Pia Giovannelli
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Giovanni Galasso
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Gabriella Castoria
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Antimo Migliaccio
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
18
|
Wen J, Lord H, Knutson N, Wikström M. Nano differential scanning fluorimetry for comparability studies of therapeutic proteins. Anal Biochem 2020; 593:113581. [PMID: 31935356 DOI: 10.1016/j.ab.2020.113581] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 01/26/2023]
Abstract
Differential scanning calorimetry (DSC) has been extensively used in the biopharmaceutical industry to characterize protein thermal stability and domain folding integrity. Recently, nano differential scanning fluorimetry (nanoDSF) has emerged as a powerful tool for thermal stability analysis and studies of protein domain unfolding. Due to increased interests in the qualification of characterization methods, we are in this study presenting the qualification results for the comparability studies of thermal stability analysis using nanoDSF. The results show that nanoDSF is able to detect thermal transition signals for mAbs, BiTE® molecules, and cytokines at a wide concentration range with high precision, clearly indicating that nanoDSF is suitable for characterization including comparability studies of therapeutic proteins. Compared to the current recognized industry standard DSC, the nanoDSF method enables thermal stability analysis over a much wider concentration range, consumes considerably less materials, and provides significantly higher throughput.
Collapse
Affiliation(s)
- Jie Wen
- Higher Order Structure, Attribute Sciences, Thousand Oaks, CA, 91320, United States.
| | - Harrison Lord
- Higher Order Structure, Attribute Sciences, Thousand Oaks, CA, 91320, United States
| | - Nicholas Knutson
- Higher Order Structure, Attribute Sciences, Thousand Oaks, CA, 91320, United States
| | - Mats Wikström
- Higher Order Structure, Attribute Sciences, Thousand Oaks, CA, 91320, United States.
| |
Collapse
|
19
|
Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020; 27:1. [PMID: 31894001 PMCID: PMC6939334 DOI: 10.1186/s12929-019-0592-z] [Citation(s) in RCA: 1253] [Impact Index Per Article: 250.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
It has been more than three decades since the first monoclonal antibody was approved by the United States Food and Drug Administration (US FDA) in 1986, and during this time, antibody engineering has dramatically evolved. Current antibody drugs have increasingly fewer adverse effects due to their high specificity. As a result, therapeutic antibodies have become the predominant class of new drugs developed in recent years. Over the past five years, antibodies have become the best-selling drugs in the pharmaceutical market, and in 2018, eight of the top ten bestselling drugs worldwide were biologics. The global therapeutic monoclonal antibody market was valued at approximately US$115.2 billion in 2018 and is expected to generate revenue of $150 billion by the end of 2019 and $300 billion by 2025. Thus, the market for therapeutic antibody drugs has experienced explosive growth as new drugs have been approved for treating various human diseases, including many cancers, autoimmune, metabolic and infectious diseases. As of December 2019, 79 therapeutic mAbs have been approved by the US FDA, but there is still significant growth potential. This review summarizes the latest market trends and outlines the preeminent antibody engineering technologies used in the development of therapeutic antibody drugs, such as humanization of monoclonal antibodies, phage display, the human antibody mouse, single B cell antibody technology, and affinity maturation. Finally, future applications and perspectives are also discussed.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Chyi Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Chiu Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Zen Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Hsin-Jung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan. .,, 128 Academia Rd., Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
20
|
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019; 24:69. [PMID: 31867046 PMCID: PMC6902517 DOI: 10.1186/s11658-019-0196-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
21
|
Ali MS, Tabassum S, Al-Lohedan HA, Farah MA, Al-Anazi KM, Usman M. Fluorescent delivery vehicle containing cobalt oxide-umbelliferone nanoconjugate: DNA/protein interaction studies and anticancer activity on MF7 cancer cell line. RSC Adv 2019; 9:26503-26518. [PMID: 35531044 PMCID: PMC9070427 DOI: 10.1039/c9ra02412c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/27/2019] [Indexed: 11/21/2022] Open
Abstract
Fluorescent labeling is limited to certain molecules and alters biomolecule functionality. A new class of nanomaterial with anticancer activity and fluorescence properties has been designed and prepared. This nanotherapeutic conjugate of natural molecules has a selective binding site in cancer cell lines. Natural drug umbelliferone was taken with cobalt metal ions in a one pot assembly in the presence of tannic acid which yields new fluorescent nanoparticles of umbelliferone cobalt oxide nanoconjugate. Umbelliferone has high fluorescent properties and also has coordination ability to bind with central metal ions. The nanoconjugate was synthesized and characterized by using TEM, EDX analysis, SEM, XRD, and FTIR spectroscopy. TEM shows that the average size of the particles formed with umbelliferone is ∼20 nm. The solubility of the drug nanoparticles in water showed compatibility with cancer cells and provided a favorable environment to investigate the mechanism of action on the MCF-7 cell line. The nanoconjugate is microcrystalline in nature and gives a clear suspension in water. The nanocobalt conjugate was loaded on TiO2 nanoparticles by ultrasonication, and the solution was digested overnight. The conjugate of the drug with a TiO2 drug carrier was stable in solution and maintained the nanostructure ∼34.6 nm. A comparative study with nano-vehicle TiO2 and the nanoconjugate was performed. TiO2 was used to compare the anti-cancer activity of the nanoconjugate at low dose in vitro. It was observed that the nanoconjugate with TiO2 is capable of reaching the specific target like the TiO2 nanoparticle and enhance the chemotherapeutic impact. Hence, the nanoconjugate can also be used like nano-TiO2, as the drug and carrier. The ct-DNA and HSA protein binding studies were done and validated by docking studies.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Sciences, King Saud University P.O. Box 2455 Riyadh 11451 Kingdom of Saudi Arabia +96 6530128012
| | - Sartaj Tabassum
- Surfactant Research Chair, Department of Chemistry, College of Sciences, King Saud University P.O. Box 2455 Riyadh 11451 Kingdom of Saudi Arabia +96 6530128012
- Department of Chemistry, Aligarh Muslim University Aligarh-2002 India +91 9358255791
| | - Hamad A Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Sciences, King Saud University P.O. Box 2455 Riyadh 11451 Kingdom of Saudi Arabia +96 6530128012
| | - Mohammad Abul Farah
- Department of Zoology, College of Sciences, King Saud University Riyadh 11451 Kingdom of Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Sciences, King Saud University Riyadh 11451 Kingdom of Saudi Arabia
| | - Mohammad Usman
- Department of Chemistry, Aligarh Muslim University Aligarh-2002 India +91 9358255791
| |
Collapse
|
22
|
Miao R, Xia LY, Chen HH, Huang HH, Liang Y. Improved Classification of Blood-Brain-Barrier Drugs Using Deep Learning. Sci Rep 2019; 9:8802. [PMID: 31217424 PMCID: PMC6584536 DOI: 10.1038/s41598-019-44773-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Blood-Brain-Barrier (BBB) is a strict permeability barrier for maintaining the Central Nervous System (CNS) homeostasis. One of the most important conditions to judge a CNS drug is to figure out whether it has BBB permeability or not. In the past 20 years, the existing prediction approaches are usually based on the data of the physical characteristics and chemical structure of drugs. However, these methods are usually only applicable to small molecule compounds based on passive diffusion through BBB. To deal this problem, one of the most famous methods is multi-core SVM method, which is based on clinical phenotypes about Drug Side Effects and Drug Indications to predict drug penetration of BBB. This paper proposed a Deep Learning method to predict the Blood-Brain-Barrier permeability based on the clinical phenotypes data. The validation result on three datasets proved that Deep Learning method achieves better performance than the other existing methods. The average accuracy of our method reaches 0.97, AUC reaches 0.98, and the F1 score is 0.92. The results proved that Deep Learning methods can significantly improve the prediction accuracy of drug BBB permeability and it can help researchers to reduce clinical trials and find new CNS drugs.
Collapse
Affiliation(s)
- Rui Miao
- Faculty of Information Technology, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Liang-Yong Xia
- Faculty of Information Technology, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Hao-Heng Chen
- Faculty of Information Technology, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Hai-Hui Huang
- School of Information Science and Engineering, Shaoguan University, No. 288, University Road, Zhenjiang District, Shaoguan City, Guangdong Province, China
| | - Yong Liang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| |
Collapse
|
23
|
Gebremariam T, Alkhazraji S, Soliman SSM, Gu Y, Jeon HH, Zhang L, French SW, Stevens DA, Edwards JE, Filler SG, Uppuluri P, Ibrahim AS. Anti-CotH3 antibodies protect mice from mucormycosis by prevention of invasion and augmenting opsonophagocytosis. SCIENCE ADVANCES 2019; 5:eaaw1327. [PMID: 31206021 PMCID: PMC6561750 DOI: 10.1126/sciadv.aaw1327] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/03/2019] [Indexed: 05/06/2023]
Abstract
Mucorales are fungal pathogens that cause mucormycosis, a lethal angioinvasive disease. Previously, we demonstrated that Rhizopus, the most common cause of mucormycosis, invades endothelial cells by binding of its CotH proteins to the host receptor GRP78. Loss of CotH3 renders the fungus noninvasive and attenuates Rhizopus virulence in mice. Here, we demonstrate that polyclonal antibodies raised against peptides of CotH3 protected diabetic ketoacidotic (DKA) and neutropenic mice from mucormycosis compared to mice treated with control preimmune serum. Passive immunization with anti-CotH3 antibodies enhanced neutrophil inlfux and triggered Fc receptor-mediated enhanced opsonophagocytosis killing of Rhizopus delemar. Monoclonal antibodies raised against the CotH3 peptide also protected immunosuppressed mice from mucormycosis caused by R. delemar and other Mucorales and acted synergistically with antifungal drugs in protecting DKA mice from R. delemar infection. These data identify anti-CotH3 antibodies as a promising adjunctive immunotherapeutic option against a deadly disease that often poses a therapeutic challenge.
Collapse
Affiliation(s)
- Teclegiorgis Gebremariam
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
| | - Sondus Alkhazraji
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
| | - Sameh S. M. Soliman
- Sharjah Institute for Medical Research, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yiyou Gu
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
| | - Heewon H. Jeon
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
| | - Lina Zhang
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Samuel W. French
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA, USA
- The Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - John E. Edwards
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Scott G. Filler
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Priya Uppuluri
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ashraf S. Ibrahim
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Corresponding author.
| |
Collapse
|
24
|
Lim MS, So MK, Lim CS, Song DH, Kim JW, Woo J, Ko BJ. Validation of Rapi-Fluor method for glycan profiling and application to commercial antibody drugs. Talanta 2019; 198:105-110. [DOI: 10.1016/j.talanta.2019.01.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/09/2023]
|
25
|
Dubuisson A, Favreau C, Fourmaux E, Lareure S, Rodrigues-Saraiva R, Pellat-Deceunynck C, El Alaoui S, Micheau O. Generation and characterization of novel anti-DR4 and anti-DR5 antibodies developed by genetic immunization. Cell Death Dis 2019; 10:101. [PMID: 30718507 PMCID: PMC6362131 DOI: 10.1038/s41419-019-1343-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022]
Abstract
Development of therapeutic antibodies in oncology has attracted much interest in the past decades. More than 30 of them have been approved and are being used to treat patients suffering from cancer. Despite encouraging results, and albeit most clinical trials aiming at evaluating monoclonal antibodies directed against TRAIL agonist receptors have been discontinued, DR4 or DR5 remain interesting targets, since these receptors are overexpressed by tumour cells and are able to trigger their death. In an effort to develop novel and specific anti-DR4 and anti-DR5 antibodies with improved properties, we used genetic immunization to express native proteins in vivo. Injection of DR4 and DR5 cDNA into the tail veins of mice elicited significant humoral anti-DR4 and anti-DR5 responses and fusions of the corresponding spleens resulted in numerous hybridomas secreting antibodies that could specifically recognize DR4 or DR5 in their native forms. All antibodies bound specifically to their targets with a very high affinity, from picomolar to nanomolar range. Among the 21 anti-DR4 and anti-DR5 monoclonal antibodies that we have produced and purified, two displayed proapoptotic properties alone, five induced apoptosis after cross-linking, four were found to potentiate TRAIL-induced apoptosis and three displayed antiapoptotic potential. The most potent anti-DR4 antibody, C#16, was assessed in vivo and was found, alone, to inhibit tumour growth in animal models. This is the first demonstration that DNA-based immunization method can be used to generate novel monoclonal antibodies targeting receptors of the TNF superfamily that may constitute new therapeutic agents.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Female
- HEK293 Cells
- Humans
- Immunization
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists
- Receptors, TNF-Related Apoptosis-Inducing Ligand/antagonists & inhibitors
- Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
- Receptors, TNF-Related Apoptosis-Inducing Ligand/immunology
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Agathe Dubuisson
- Université Bourgogne Franche-Comté, INSERM, LNC UMR1231, F-21079, Dijon, France
- Research Department, CovalAb, 11 Avenue Albert Einstein, 69100 Villeurbanne, Lyon, France
- INSERM, UMR1231, « Equipe labellisée Ligue contre le Cancer » and Laboratoire d'Excellence LipSTIC, F-21079, Dijon, France
| | - Cécile Favreau
- Université Bourgogne Franche-Comté, INSERM, LNC UMR1231, F-21079, Dijon, France
- INSERM, UMR1231, « Equipe labellisée Ligue contre le Cancer » and Laboratoire d'Excellence LipSTIC, F-21079, Dijon, France
| | - Eric Fourmaux
- Research Department, CovalAb, 11 Avenue Albert Einstein, 69100 Villeurbanne, Lyon, France
| | - Sabrina Lareure
- Research Department, CovalAb, 11 Avenue Albert Einstein, 69100 Villeurbanne, Lyon, France
| | - Rafael Rodrigues-Saraiva
- Université Bourgogne Franche-Comté, INSERM, LNC UMR1231, F-21079, Dijon, France
- INSERM, UMR1231, « Equipe labellisée Ligue contre le Cancer » and Laboratoire d'Excellence LipSTIC, F-21079, Dijon, France
| | | | - Said El Alaoui
- Research Department, CovalAb, 11 Avenue Albert Einstein, 69100 Villeurbanne, Lyon, France
| | - Olivier Micheau
- Université Bourgogne Franche-Comté, INSERM, LNC UMR1231, F-21079, Dijon, France.
- Research Department, CovalAb, 11 Avenue Albert Einstein, 69100 Villeurbanne, Lyon, France.
- INSERM, UMR1231, « Equipe labellisée Ligue contre le Cancer » and Laboratoire d'Excellence LipSTIC, F-21079, Dijon, France.
| |
Collapse
|
26
|
Weber F, Breustedt D, Schlicht S, Meyer CA, Niewoehner J, Ebeling M, Freskgard PO, Bruenker P, Singer T, Reth M, Iglesias A. First Infusion Reactions are Mediated by FcγRIIIb and Neutrophils. Pharm Res 2018; 35:169. [PMID: 29951887 PMCID: PMC6021477 DOI: 10.1007/s11095-018-2448-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
Abstract
Purpose Administration of therapeutic monoclonal antibodies (mAbs) is frequently accompanied by severe first infusion reactions (FIR). The mechanism driving FIR is still unclear. This study aimed to investigate the cellular and molecular mechanisms causing FIR in humanized mouse models and their potential for evaluating FIR risk in patients. Methods Mice humanized for Fc gamma receptors (FcγRs) were generated by recombination-mediated genomic replacement. Body temperature, cytokine release and reactive oxygen species (ROS) were measured to assess FIR to mAbs. Results Infusion of human mAb specific for mouse transferrin receptor (HamTfR) into FcγR-humanized mice, produced marked transient hypothermia accompanied by an increase in inflammatory cytokines KC and MIP-2, and ROS. FIR were dependent on administration route and Fc-triggered effector functions mediated by neutrophils. Human neutrophils also induced FIR in wild type mice infused with HamTfR. Specific knock-in mice demonstrated that human FcγRIIIb on neutrophils was both necessary and sufficient to cause FIR. FcγRIIIb-mediated FIR was abolished by depleting neutrophils or blocking FcγRIIIb with CD11b antibodies. Conclusions Human FcγRIIIb and neutrophils are primarily responsible for triggering FIR. Clinical strategies to prevent FIR in patients should focus on this pathway and may include transient depletion of neutrophils or blocking FcγRIIIb with specific mAbs. Electronic supplementary material The online version of this article (10.1007/s11095-018-2448-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Felix Weber
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Bldg 93 Room 5.10, Grenzacherstrasse 124, 4070, Basel, CH, Switzerland
| | - Daniel Breustedt
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Bldg 93 Room 5.10, Grenzacherstrasse 124, 4070, Basel, CH, Switzerland
- Novartis Pharma AG, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sonja Schlicht
- Small Molecule Research, Therapeutic Modalities, Roche Innovation Center Basel, Basel, Switzerland
| | - Claas A Meyer
- Small Molecule Research, Therapeutic Modalities, Roche Innovation Center Basel, Basel, Switzerland
| | - Jens Niewoehner
- Large Molecule Research, Therapeutic Modalities, Roche Innovation Center Munich, Munich, Germany
| | - Martin Ebeling
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Bldg 93 Room 5.10, Grenzacherstrasse 124, 4070, Basel, CH, Switzerland
| | - Per-Ola Freskgard
- Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Peter Bruenker
- Large Molecule Research, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Thomas Singer
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Bldg 93 Room 5.10, Grenzacherstrasse 124, 4070, Basel, CH, Switzerland
| | - Michael Reth
- Institute of Biology III (Molecular Immunology), University of Freiburg, Freiburg im Breisgau, Germany
| | - Antonio Iglesias
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Bldg 93 Room 5.10, Grenzacherstrasse 124, 4070, Basel, CH, Switzerland.
| |
Collapse
|
27
|
Jin Y, Lei C, Hu D, Dimitrov DS, Ying T. Human monoclonal antibodies as candidate therapeutics against emerging viruses. Front Med 2017; 11:462-470. [PMID: 29159596 PMCID: PMC7088856 DOI: 10.1007/s11684-017-0596-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022]
Abstract
The emergence of new pathogens, such as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and Ebola virus, poses serious challenges to global public health and highlights the urgent need for novel antiviral approaches. Monoclonal antibodies (mAbs) have been successfully used to treat various diseases, particularly cancer and immunological disorders. Antigen-specific mAbs have been isolated using several different approaches, including hybridoma, transgenic mice, phage display, yeast display, and single B-cell isolation. Consequently, an increasing number of mAbs, which exhibit high potency against emerging viruses in vitro and in animal models of infection, have been developed. In this paper, we summarize historical trends and recent developments in mAb discovery, compare the advantages and disadvantages of various approaches to mAb production, and discuss the potential use of such strategies for the development of antivirals against emerging diseases. We also review the application of recently developed human mAbs against SARS-CoV, MERS-CoV, and Ebola virus and discuss prospects for the development of mAbs as therapeutic agents against emerging viral diseases.
Collapse
Affiliation(s)
- Yujia Jin
- Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Cheng Lei
- Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dan Hu
- Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dimiter S Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
28
|
Giorgetti J, D'Atri V, Canonge J, Lechner A, Guillarme D, Colas O, Wagner-Rousset E, Beck A, Leize-Wagner E, François YN. Monoclonal antibody N-glycosylation profiling using capillary electrophoresis - Mass spectrometry: Assessment and method validation. Talanta 2017; 178:530-537. [PMID: 29136858 DOI: 10.1016/j.talanta.2017.09.083] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023]
Abstract
Characterization of therapeutic proteins represents a major challenge for analytical sciences due to their heterogeneity caused by post-translational modifications (PTM). Among these PTM, glycosylation which is possibly the most prominent, require comprehensive identification because of their major influence on protein structure and effector functions of monoclonal antibodies (mAbs). As a consequence, glycosylation profiling must be deeply characterized. For this application, several analytical methods such as separation-based or MS-based methods, were evaluated. However, no CE-ESI-MS approach has been assessed and validated. Here, we illustrate how the use of CE-ESI-MS method permits the comprehensive characterization of mAbs N-glycosylation at the glycopeptide level to perform relative quantitation of N-glycan species. Validation of the CE-ESI-MS method in terms of robustness and reproducibility was demonstrated through the relative quantitation of glycosylation profiles for ten different mAbs produced in different cell lines. Glycosylation patterns obtained for each mAbs were compared to Hydrophilic Interaction Chromatography of 2-aminobenzamide labelled glycans with fluorescence detector (HILIC-FD) analysis considered as a reference method. Very similar glycoprofiling were obtained with the CE-ESI-MS and HILIC-FD demonstrating the attractiveness of CE-ESI-MS method to characterize and quantify the glycosylation heterogeneity of a wide range of therapeutic mAbs with high accuracy and precision.
Collapse
Affiliation(s)
- Jérémie Giorgetti
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Julie Canonge
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Antony Lechner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Olivier Colas
- Centre d'immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | | | - Alain Beck
- Centre d'immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France.
| |
Collapse
|
29
|
Goldberg DS, Lewus RA, Esfandiary R, Farkas DC, Mody N, Day KJ, Mallik P, Tracka MB, Sealey SK, Samra HS. Utility of High Throughput Screening Techniques to Predict Stability of Monoclonal Antibody Formulations During Early Stage Development. J Pharm Sci 2017; 106:1971-1977. [DOI: 10.1016/j.xphs.2017.04.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
|
30
|
Reactive Oxygen Species-Mediated Mechanisms of Action of Targeted Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28698765 DOI: 10.1155/2017/1485283,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeted cancer therapies, involving tyrosine kinase inhibitors and monoclonal antibodies, for example, have recently led to substantial prolongation of survival in many metastatic cancers. Compared with traditional chemotherapy and radiotherapy, where reactive oxygen species (ROS) have been directly linked to the mediation of cytotoxic effects and adverse events, the field of oxidative stress regulation is still emerging in targeted cancer therapies. Here, we provide a comprehensive review regarding the current evidence of ROS-mediated effects of antibodies and tyrosine kinase inhibitors, use of which has been indicated in the treatment of solid malignancies and lymphomas. It can be concluded that there is rapidly emerging evidence of ROS-mediated effects of some of these compounds, which is also relevant in the context of drug resistance and how to overcome it.
Collapse
|
31
|
Teppo HR, Soini Y, Karihtala P. Reactive Oxygen Species-Mediated Mechanisms of Action of Targeted Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1485283. [PMID: 28698765 PMCID: PMC5494102 DOI: 10.1155/2017/1485283] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 01/21/2023]
Abstract
Targeted cancer therapies, involving tyrosine kinase inhibitors and monoclonal antibodies, for example, have recently led to substantial prolongation of survival in many metastatic cancers. Compared with traditional chemotherapy and radiotherapy, where reactive oxygen species (ROS) have been directly linked to the mediation of cytotoxic effects and adverse events, the field of oxidative stress regulation is still emerging in targeted cancer therapies. Here, we provide a comprehensive review regarding the current evidence of ROS-mediated effects of antibodies and tyrosine kinase inhibitors, use of which has been indicated in the treatment of solid malignancies and lymphomas. It can be concluded that there is rapidly emerging evidence of ROS-mediated effects of some of these compounds, which is also relevant in the context of drug resistance and how to overcome it.
Collapse
Affiliation(s)
- Hanna-Riikka Teppo
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Ylermi Soini
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Peeter Karihtala
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
32
|
Saeed AFUH, Wang R, Ling S, Wang S. Antibody Engineering for Pursuing a Healthier Future. Front Microbiol 2017; 8:495. [PMID: 28400756 PMCID: PMC5368232 DOI: 10.3389/fmicb.2017.00495] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
Since the development of antibody-production techniques, a number of immunoglobulins have been developed on a large scale using conventional methods. Hybridoma technology opened a new horizon in the production of antibodies against target antigens of infectious pathogens, malignant diseases including autoimmune disorders, and numerous potent toxins. However, these clinical humanized or chimeric murine antibodies have several limitations and complexities. Therefore, to overcome these difficulties, recent advances in genetic engineering techniques and phage display technique have allowed the production of highly specific recombinant antibodies. These engineered antibodies have been constructed in the hunt for novel therapeutic drugs equipped with enhanced immunoprotective abilities, such as engaging immune effector functions, effective development of fusion proteins, efficient tumor and tissue penetration, and high-affinity antibodies directed against conserved targets. Advanced antibody engineering techniques have extensive applications in the fields of immunology, biotechnology, diagnostics, and therapeutic medicines. However, there is limited knowledge regarding dynamic antibody development approaches. Therefore, this review extends beyond our understanding of conventional polyclonal and monoclonal antibodies. Furthermore, recent advances in antibody engineering techniques together with antibody fragments, display technologies, immunomodulation, and broad applications of antibodies are discussed to enhance innovative antibody production in pursuit of a healthier future for humans.
Collapse
Affiliation(s)
- Abdullah F U H Saeed
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Sumei Ling
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
33
|
Gao Z, Chen Y, Cai X, Xu R. Predict drug permeability to blood-brain-barrier from clinical phenotypes: drug side effects and drug indications. Bioinformatics 2017; 33:901-908. [PMID: 27993785 PMCID: PMC5860495 DOI: 10.1093/bioinformatics/btw713] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/16/2016] [Accepted: 11/19/2016] [Indexed: 12/25/2022] Open
Abstract
Motivation Blood-Brain-Barrier (BBB) is a rigorous permeability barrier for maintaining homeostasis of Central Nervous System (CNS). Determination of compound's permeability to BBB is prerequisite in CNS drug discovery. Existing computational methods usually predict drug BBB permeability from chemical structure and they generally apply to small compounds passing BBB through passive diffusion. As abundant information on drug side effects and indications has been recorded over time through extensive clinical usage, we aim to explore BBB permeability prediction from a new angle and introduce a novel approach to predict BBB permeability from drug clinical phenotypes (drug side effects and drug indications). This method can apply to both small compounds and macro-molecules penetrating BBB through various mechanisms besides passive diffusion. Results We composed a training dataset of 213 drugs with known brain and blood steady-state concentrations ratio and extracted their side effects and indications as features. Next, we trained SVM models with polynomial kernel and obtained accuracy of 76.0%, AUC 0.739, and F 1 score (macro weighted) 0.760 with Monte Carlo cross validation. The independent test accuracy was 68.3%, AUC 0.692, F 1 score 0.676. When both chemical features and clinical phenotypes were available, combining the two types of features achieved significantly better performance than chemical feature based approach (accuracy 85.5% versus 72.9%, AUC 0.854 versus 0.733, F 1 score 0.854 versus 0.725; P < e -90 ). We also conducted de novo prediction and identified 110 drugs in SIDER database having the potential to penetrate BBB, which could serve as start point for CNS drug repositioning research. Availability and Implementation https://github.com/bioinformatics-gao/CASE-BBB-prediction-Data. Contact rxx@case.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhen Gao
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Yang Chen
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaoshu Cai
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, USA
| | - Rong Xu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
34
|
Srikanth J, Agalyadevi R, Babu P. Targeted, Site-specific quantitation of N- and O-glycopeptides using 18O-labeling and product ion based mass spectrometry. Glycoconj J 2016; 34:95-105. [PMID: 27714477 DOI: 10.1007/s10719-016-9733-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 10/20/2022]
Abstract
The site-specific quantitation of N- and O-glycosylation is vital to understanding the function(s) of different glycans expressed at a given site of a protein under physiological and disease conditions. Most commonly used precursor ion intensity based quantification method is less accurate and other labeled methods are expensive and require enrichment of glycopeptides. Here, we used glycopeptide product (y and Y0) ions and 18O-labeling of C-terminal carboxyl group as a strategy to obtain quantitative information about fold-change and relative abundance of most of the glycoforms attached to the glycopeptides. As a proof of concept, the accuracy and robustness of this targeted, relative quantification LC-MS method was demonstrated using Rituximab. Furthermore, the N-glycopeptide quantification results were compared with a biosimilar of Rituximab and validated with quantitative data obtained from 2-AB-UHPLC-FL method. We further demonstrated the intensity fold-change and relative abundance of 46 unique N- and O-glycopeptides and aglycopeptides from innovator and biosimilar samples of Etanercept using both the normal-MS and product ion based quantitation. The results showed a very similar site-specific expression of N- and O-glycopeptides between the samples but with subtle differences. Interestingly, we have also been able to quantify macro-heterogeneity of all N- and O-glycopetides of Etanercept. In addition to applications in biotherapeutics, the developed method can also be used for site-specific quantitation of N- and O-glycopeptides and aglycopeptides of glycoproteins with known glycosylation pattern.
Collapse
Affiliation(s)
- Jandhyam Srikanth
- Glycomics and Glycoproteomics & Biologics Characterization Facility, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences (NCBS) - TIFR, GKVK Post, Bellary Road, Bangalore, Karnataka, 560065, India
| | - Rathinasamy Agalyadevi
- Glycomics and Glycoproteomics & Biologics Characterization Facility, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences (NCBS) - TIFR, GKVK Post, Bellary Road, Bangalore, Karnataka, 560065, India
| | - Ponnusamy Babu
- Glycomics and Glycoproteomics & Biologics Characterization Facility, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences (NCBS) - TIFR, GKVK Post, Bellary Road, Bangalore, Karnataka, 560065, India.
| |
Collapse
|
35
|
Knutson S, Raja E, Bomgarden R, Nlend M, Chen A, Kalyanasundaram R, Desai S. Development and Evaluation of a Fluorescent Antibody-Drug Conjugate for Molecular Imaging and Targeted Therapy of Pancreatic Cancer. PLoS One 2016; 11:e0157762. [PMID: 27336622 PMCID: PMC4918962 DOI: 10.1371/journal.pone.0157762] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/03/2016] [Indexed: 11/18/2022] Open
Abstract
Antibodies are widely available and cost-effective research tools in life science, and antibody conjugates are now extensively used for targeted therapy, immunohistochemical staining, or in vivo diagnostic imaging of cancer. Significant advances in site-specific antibody labeling technologies have enabled the production of highly characterized and homogenous conjugates for biomedical purposes, and some recent studies have utilized site-specific labeling to synthesize bifunctional antibody conjugates with both imaging and drug delivery properties. While these advances are important for the clinical safety and efficacy of such biologics, these techniques can also be difficult, expensive, and time-consuming. Furthermore, antibody-drug conjugates (ADCs) used for tumor treatment generally remain distinct from conjugates used for diagnosis. Thus, there exists a need to develop simple dual-labeling methods for efficient therapeutic and diagnostic evaluation of antibody conjugates in pre-clinical model systems. Here, we present a rapid and simple method utilizing commercially available reagents for synthesizing a dual-labeled fluorescent ADC. Further, we demonstrate the fluorescent ADC’s utility for simultaneous targeted therapy and molecular imaging of cancer both in vitro and in vivo. Employing non-site-specific, amine-reactive chemistry, our novel biopharmaceutical theranostic is a monoclonal antibody specific for a carcinoembryonic antigen (CEA) biomarker conjugated to both paclitaxel and a near-infrared (NIR), polyethylene glycol modified (PEGylated) fluorophore (DyLight™ 680-4xPEG). Using in vitro systems, we demonstrate that this fluorescent ADC selectively binds a CEA-positive pancreatic cancer cell line (BxPC-3) in immunofluorescent staining and flow cytometry, exhibits efficient internalization kinetics, and is cytotoxic. Model studies using a xenograft of BxPC-3 cells in athymic mice also show the fluorescent ADC’s efficacy in detecting tumors in vivo and inhibiting tumor growth more effectively than equimolar amounts of unconjugated drug. Overall, our results demonstrate that non-selective, amine-targeting chemistry is an effective dual-labeling method for synthesizing and evaluating a bifunctional fluorescent antibody-drug conjugate, allowing concurrent detection, monitoring and treatment of cancer.
Collapse
Affiliation(s)
- Steve Knutson
- Department of Research and Development, Thermo Fisher Scientific, Rockford, Illinois, United States of America
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States of America
- * E-mail: (SK); (SD)
| | - Erum Raja
- Department of Research and Development, Thermo Fisher Scientific, Rockford, Illinois, United States of America
| | - Ryan Bomgarden
- Department of Research and Development, Thermo Fisher Scientific, Rockford, Illinois, United States of America
| | - Marie Nlend
- Department of Research and Development, Thermo Fisher Scientific, Rockford, Illinois, United States of America
| | - Aoshuang Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States of America
| | - Ramaswamy Kalyanasundaram
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States of America
| | - Surbhi Desai
- Department of Research and Development, Thermo Fisher Scientific, Rockford, Illinois, United States of America
- * E-mail: (SK); (SD)
| |
Collapse
|
36
|
Reusch D, Haberger M, Falck D, Peter B, Maier B, Gassner J, Hook M, Wagner K, Bonnington L, Bulau P, Wuhrer M. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles-Part 2: Mass spectrometric methods. MAbs 2016; 7:732-42. [PMID: 25996192 PMCID: PMC4622708 DOI: 10.1080/19420862.2015.1045173] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To monitor the Fc glycosylation of therapeutic immunoglobulin G in bioprocess development, product characterization and release analytics, reliable techniques for glycosylation analysis are needed. Several analytical methods are suitable for this application. We recently presented results comparing detection methods for glycan analysis that are separation-based, but did not include mass spectrometry (MS). In the study reported here, we comprehensively compared MS-based methods for Fc glycosylation profiling of an IgG biopharmaceutical. A therapeutic antibody reference material was analyzed 6-fold on 2 different days, and the methods investigated were compared with respect to precision, accuracy, throughput and analysis time. Emphasis was put on the detection and quantitation of sialic acid-containing glycans. Eleven MS methods were compared to hydrophilic interaction liquid chromatography of 2-aminobenzamide labeled glycans with fluorescence detection, which served as a reference method and was also used in the first part of the study. The methods compared include electrospray MS of the heavy chain and Fc part after limited digestion, liquid chromatography MS of a tryptic digest, porous graphitized carbon chromatography MS of released glycans, electrospray MS of glycopeptides, as well as matrix assisted laser desorption ionization MS of glycans and glycopeptides. Most methods showed excellent precision and accuracy. Some differences were observed with regard to the detection and quantitation of low abundant glycan species like the sialylated glycans and the amount of artefacts due to in-source decay.
Collapse
Key Words
- 2-AB, 2-aminobenzamide
- CE, capillary electrophoresis
- ESI-MS
- ESI-MS, electrospray ionization-mass spectrometry
- Fab, fragment antigen-binding
- Fc, fragment crystallizable
- HILIC-UHPLC, hydrophilic interaction liquid chromatography-ultra high performance liquid chromatography
- HILIC-UPLC
- HPAEC-PAD, high-performance anion exchange chromatography with pulsed amperometric detection
- IdeS protease, proteolytic enzyme like protease from Streptococcus pyrogenes
- IgG glycosylation
- IgG, immunoglobulin G
- LC-MS
- LCMS, liquid chromatography-mass spectrometry
- MALDI, matrix assisted laser desorption ionization
- MALDI-MS
- PGC-MS, porous graphitized carbon chromatography- mass spectrometry
- PNGase F, Peptide-N-Glycosidase F
- RP-HPLC, reversed phase high performance liquid chromatography
- TIC, total ion chromatogram
- glycan analysis
- mAb, monoclonal antibody
- mass spectrometry
- method comparison
- monoclonal antibody (mAb)
Collapse
Affiliation(s)
- Dietmar Reusch
- a Pharma Biotech Development Penzberg; Roche Diagnostics GmbH ; Penzberg , Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang W, Sun L, Li T, Ma Y, Li J, Liu Y, Li M, Wang L, Li C, Xie Y, Wen Y, Liang M, Chen L, Tong S. A human monoclonal antibody against small envelope protein of hepatitis B virus with potent neutralization effect. MAbs 2015; 8:468-77. [PMID: 26713590 DOI: 10.1080/19420862.2015.1134409] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hepatitis B virus (HBV) produces large (L), middle (M), and small (S) envelope proteins, alternatively referred to as hepatitis B surface antigen (HBsAg). Currently, yeast-derived S protein serves as the preventive vaccine, while hepatitis B immune globulin (HBIG) concentrated from pooled plasma of vaccine recipients is employed for post-exposure prophylaxis. However, only a small proportion of the antibodies in HBIG are HBV specific. In the present study, a human monoclonal anti-S antibody (G12) was developed, produced under GLP conditions, and subjected to a panel of functional assays. In vitro results demonstrated high affinity of G12 for the S protein (KD = 7.56 nM). It reacted with envelope proteins of all 7 HBV genotypes tested (A-F, H) by immunofluorescent staining, and more than 97% of HBsAg-positive patient serum samples by enzyme-linked immunosorbent assay. G12 recognized a conformational epitope, although the exact sequence remains unknown. Strikingly, G12 was at least 1,000-fold more potent than HBIG in neutralizing HBV infectivity in both HepaRG cell line and HepG2 cells reconstituted with the HBV receptor. In a transgenic mouse model of HBV persistence, a single peritoneal injection of G12 markedly diminished serum HBsAg titers in all 7 mice, which was sustained for the observation period of 144 d in mice with low pre-treatment levels. While the therapeutic potential of G12 warrants further investigation using a large number of animals, G12 is a potent neutralizing human monoclonal antibody and a promising candidate to replace or supplement HBIG in the prevention of HBV infection.
Collapse
Affiliation(s)
- Wei Wang
- a Department of Pathobiology and Key Laboratory of Medical Molecular Virology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| | - Lina Sun
- b Key Laboratory for Medical Virology, NHFPC, National Institute for Viral Disease Control and Prevention , China
| | - Tiansheng Li
- a Department of Pathobiology and Key Laboratory of Medical Molecular Virology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| | - Yanchun Ma
- c Putuo District Center Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Jisu Li
- d Liver Research Center, The Warren Alpert School of Medicine, Brown University , Providence , Rhode Island , USA
| | - Yang Liu
- b Key Laboratory for Medical Virology, NHFPC, National Institute for Viral Disease Control and Prevention , China
| | - Meng Li
- a Department of Pathobiology and Key Laboratory of Medical Molecular Virology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| | - Lei Wang
- a Department of Pathobiology and Key Laboratory of Medical Molecular Virology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| | - Chuan Li
- b Key Laboratory for Medical Virology, NHFPC, National Institute for Viral Disease Control and Prevention , China
| | - Youhua Xie
- a Department of Pathobiology and Key Laboratory of Medical Molecular Virology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| | - Yumei Wen
- a Department of Pathobiology and Key Laboratory of Medical Molecular Virology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| | - Mifang Liang
- b Key Laboratory for Medical Virology, NHFPC, National Institute for Viral Disease Control and Prevention , China
| | - Li Chen
- a Department of Pathobiology and Key Laboratory of Medical Molecular Virology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| | - Shuping Tong
- a Department of Pathobiology and Key Laboratory of Medical Molecular Virology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| |
Collapse
|
38
|
Abstract
Immune checkpoint inhibitors are drugs that interfere with tumor escape responses. Some members of this class are already approved, and expected to be blockbusters in the future. Many companies have developed patent activities in this field. This article focuses on the patent landscape, and discusses key players and cases related to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Ulrich Storz
- a Senior Partner, Michalski; Hüttermann Patent Attorneys ; Düsseldorf , Germany
| |
Collapse
|
39
|
Mendler CT, Friedrich L, Laitinen I, Schlapschy M, Schwaiger M, Wester HJ, Skerra A. High contrast tumor imaging with radio-labeled antibody Fab fragments tailored for optimized pharmacokinetics via PASylation. MAbs 2015; 7:96-109. [PMID: 25484039 PMCID: PMC4622060 DOI: 10.4161/19420862.2014.985522] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although antigen-binding fragments (Fabs) of antibodies constitute established tracers for in vivo radiodiagnostics, their functionality is hampered by a very short circulation half-life. PASylation, the genetic fusion with a long, conformationally disordered amino acid chain comprising Pro, Ala and Ser, provides a convenient way to expand protein size and, consequently, retard renal filtration. Humanized αHER2 and αCD20 Fabs were systematically fused with 100 to 600 PAS residues and produced in E. coli. Cytofluorimetric titration analysis on tumor cell lines confirmed that antigen-binding activities of the parental antibodies were retained. The radio-iodinated PASylated Fabs were studied by positron emission tomography (PET) imaging and biodistribution analysis in mouse tumor xenograft models. While the unmodified αHER2 and αCD20 Fabs showed weak tumor uptake (0.8% and 0.2% ID/g, respectively; 24 h p.i.) tumor-associated radioactivity was boosted with increasing PAS length (up to 9 and 26-fold, respectively), approaching an optimum for Fab-PAS400. Remarkably, 6- and 5-fold higher tumor-to-blood ratios compared with the unmodified Fabs were measured in the biodistribution analysis (48 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200, respectively. These findings were confirmed by PET studies, showing high imaging contrast in line with tumor-to-blood ratios of 12.2 and 5.7 (24 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200. Even stronger tumor signals were obtained with the corresponding αCD20 Fabs, both in PET imaging and biodistribution analysis, with an uptake of 2.8% ID/g for Fab-PAS100vs. 0.24% ID/g for the unmodified Fab. Hence, by engineering Fabs via PASylation, plasma half-life can be tailored to significantly improve tracer uptake and tumor contrast, thus optimally matching reagent/target interactions.
Collapse
Key Words
- ABD, albumin binding domain
- CD20
- CDC, complement-dependent cytotoxicity
- CDR, complementarity-determining region
- CLL, chronic lymphocytic leukemia
- DMEM, Dulbecco's modified Eagle medium
- EPR, enhanced permeability and retention effect
- FACS, fluorescence-activated cell sorting
- FBS, fetal bovine serum
- Fab, antigen-binding fragment
- FcRn, neonatal Fc receptor
- HER2
- HER2, human epidermal growth factor receptor 2
- ID, injected dose
- IDA, iminodiacetic acid
- Ig, immunoglobulin
- MIP, maximum intensity projection
- NHL, non-Hodgkin lymphoma
- PEGylation
- PET, positron emission tomography
- PK, pharmacokinetics
- RIT, radioimmuno therapy
- SEC, size exclusion chromatography
- SPECT, single photon emission computed tomography
- TLC, thin layer chromatography
- antibody fragment
- mAb, monoclonal antibody
- p.i., post injection
- plasma half-life
- protein tracer
- scFv, single-chain variable antibody fragment
Collapse
Affiliation(s)
- Claudia T Mendler
- a Munich Center for Integrated Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie ; Technische Universität München ; Freising-Weihenstephan , Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Reusch D, Haberger M, Maier B, Maier M, Kloseck R, Zimmermann B, Hook M, Szabo Z, Tep S, Wegstein J, Alt N, Bulau P, Wuhrer M. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles--part 1: separation-based methods. MAbs 2015; 7:167-79. [PMID: 25524468 PMCID: PMC4623496 DOI: 10.4161/19420862.2014.986000] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulin G (IgG) crystallizable fragment (Fc) glycosylation is crucial for antibody effector functions, such as antibody-dependent cell-mediated cytotoxicity, and for their pharmacokinetic and pharmacodynamics behavior. To monitor the Fc-glycosylation in bioprocess development, as well as product characterization and release analytics, reliable techniques for glycosylation analysis are needed. A wide range of analytical methods has found its way into these applications. In this study, a comprehensive comparison was performed of separation-based methods for Fc-glycosylation profiling of an IgG biopharmaceutical. A therapeutic antibody reference material was analyzed 6-fold on 2 different days, and the methods were compared for precision, accuracy, throughput and other features; special emphasis was placed on the detection of sialic acid-containing glycans. Seven, non-mass spectrometric methods were compared; the methods utilized liquid chromatography-based separation of fluorescent-labeled glycans, capillary electrophoresis-based separation of fluorescent-labeled glycans, or high-performance anion exchange chromatography with pulsed amperometric detection. Hydrophilic interaction liquid chromatography-ultra high performance liquid chromatography of 2-aminobenzamide (2-AB)-labeled glycans was used as a reference method. All of the methods showed excellent precision and accuracy; some differences were observed, particularly with regard to the detection and quantitation of minor glycan species, such as sialylated glycans.
Collapse
Key Words
- 2-AB labeling
- 2-AB, 2-aminobenzamide
- ANTS, 8-aminonaphthalene-1, 3, 6-trisulfonate
- APTS labeling
- APTS, 8-aminopyrene-1, 3, 6-trisulfonic acid
- CCGE, cartridge-based capillary gel electrophoresis
- CE-LIF
- CE-LIF, capillary electrophoresis-laser induced fluorescence
- CHO, Chinese hamster ovary
- DNA analyzer
- DSA-FACE, DNA-sequencer-aided fluorophore-assisted carbohydrate electrophoresis
- ESI-MS, electrospray ionization-mass spectrometry
- Fab, fragment, antigen-binding
- Fc, fragment crystallizable
- HILIC-UPLC
- HILIC-UPLC, hydrophilic interaction liquid chromatography-ultra high performance liquid chromatography
- HPAEC
- HPAEC-PAD, high-performance anion exchange chromatography with pulsed amperometric detection
- HPLC, high performance liquid chromatography
- HR, high resolution
- IAB, InstantAB labeling
- IgG glycosylation
- IgG, immunoglobulin G
- MALDI-MS, matrix-assisted laser desorption/ionization-mass spectrometry
- glycan analysis
- high-throughput
- mAb, monoclonal antibody
- method comparison
- monoclonal antibody (mAb)
Collapse
Affiliation(s)
- Dietmar Reusch
- a Pharma Biotech Development Penzberg; Roche Diagnostics GmbH ; Penzberg , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhao Q, Ahmed M, Tassev DV, Hasan A, Kuo TY, Guo HF, O'Reilly RJ, Cheung NKV. Affinity maturation of T-cell receptor-like antibodies for Wilms tumor 1 peptide greatly enhances therapeutic potential. Leukemia 2015; 29:2238-47. [PMID: 25987253 PMCID: PMC4788467 DOI: 10.1038/leu.2015.125] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 01/01/2023]
Abstract
WT1126 (RMFPNAPYL) is a human leukocyte antigen-A2 (HLA-A2)-restricted peptide derived from Wilms tumor protein 1 (WT1), which is widely expressed in a broad spectrum of leukemias, lymphomas and solid tumors. A novel T-cell-receptor (TCR)-like single-chain variable fragment (scFv) antibody specific for the T-cell epitope consisting of the WT1/HLA-A2 complex was isolated from a human scFv phage library. This scFv was affinity-matured by mutagenesis combined with yeast display and structurally analyzed using a homology model. This monovalent scFv showed a 100-fold affinity improvement (dissociation constant (KD)=3 nm) and exquisite specificity towards its targeted epitope or HLA-A2+/WT1+ tumor cells. Bivalent scFv-huIgG1-Fc fusion protein demonstrated an even higher avidity (KD=2 pm) binding to the T-cell epitope and to tumor targets and was capable of mediating antibody-dependent cell-mediated cytotoxicity or tumor lysis by chimeric antigen receptor-expressing human T- or NK-92-MI-transfected cells. This antibody demonstrated specific and potent cytotoxicity in vivo towards WT1-positive leukemia xenograft that was HLA-A2 restricted. In summary, T-cell epitopes can provide novel targets for antibody-based therapeutics. By combining phage and yeast displays and scFv-Fc fusion platforms, a strategy for developing high-affinity TCR-like antibodies could be rapidly explored for potential clinical development.
Collapse
Affiliation(s)
- Q Zhao
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Ahmed
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - D V Tassev
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Hasan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Pediatric Stem Cell Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T-Y Kuo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Pediatric Stem Cell Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - H-F Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - R J O'Reilly
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Pediatric Stem Cell Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - N-K V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
42
|
Abstract
INTRODUCTION Over the past decade, several library-based methods have been developed to discover ligands with strong binding affinities for their targets. These methods mimic the natural evolution for screening and identifying ligand-target interactions with specific functional properties. Phage display technology is a well-established method that has been applied to many technological challenges including novel drug discovery. AREAS COVERED This review describes the recent advances in the use of phage display technology for discovering novel bioactive compounds. Furthermore, it discusses the application of this technology to produce proteins and peptides as well as minimize the use of antibodies, such as antigen-binding fragment, single-chain fragment variable or single-domain antibody fragments like VHHs. EXPERT OPINION Advances in screening, manufacturing and humanization technologies demonstrate that phage display derived products can play a significant role in the diagnosis and treatment of disease. The effects of this technology are inevitable in the development pipeline for bringing therapeutics into the market, and this number is expected to rise significantly in the future as new advances continue to take place in display methods. Furthermore, a widespread application of this methodology is predicted in different medical technological areas, including biosensing, monitoring, molecular imaging, gene therapy, vaccine development and nanotechnology.
Collapse
Affiliation(s)
- Kobra Omidfar
- Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Biosensor Research Center , Tehran , Iran
| | | |
Collapse
|
43
|
Gutfraind A, Meyers LA. Evaluating large-scale blood transfusion therapy for the current Ebola epidemic in Liberia. J Infect Dis 2015; 211:1262-7. [PMID: 25635118 PMCID: PMC4447839 DOI: 10.1093/infdis/jiv042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/09/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND To combat the 2014-2015 Ebola virus disease (EVD) epidemic in West Africa, the World Health Organization urged the rapid evaluation of convalescent whole blood (CWB) and plasma (CP) transfusion therapy. However, the feasibility and likely impacts of broad implementation of transfusions are yet unknown. METHODS We extended an Ebola virus transmission model published by the Centers for Disease Control and Prevention to include hospital-based convalescent donations and transfusions. Using recent epidemiological estimates for EVD in Liberia and assuming that convalescent transfusions reduce the case-fatality rate to 12.5% (range, 7.5%-17.5%), we projected the impacts of a countrywide ramp-up of transfusion therapy. RESULTS Under the 10% case-hospitalization rate estimated for Liberia in September 2014, large-scale CP therapy is expected to save 3586 lives by October 2015 (3.1% mortality reduction; 95% confidence interval [CI], .52%-4.5%). Under a higher 30% hospitalization rate, CP transfusions are expected to save 151 lives (0.9% of the total; 95% CI, .21%-11%). CONCLUSIONS Transfusion therapy for EVD is a low-cost measure that can potentially save many lives in West Africa but will not measurably influence the prevalence. Under all scenarios considered, CP transfusions are predicted to achieve greater reductions in mortality than CWB.
Collapse
Affiliation(s)
- Alexander Gutfraind
- School of Public Health, University of Illinois at Chicago
- Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - Lauren Ancel Meyers
- Department of Integrative Biology, University of Texas at Austin
- Santa Fe Institute, New Mexico
| |
Collapse
|
44
|
Brader ML, Estey T, Bai S, Alston RW, Lucas KK, Lantz S, Landsman P, Maloney KM. Examination of Thermal Unfolding and Aggregation Profiles of a Series of Developable Therapeutic Monoclonal Antibodies. Mol Pharm 2015; 12:1005-17. [DOI: 10.1021/mp400666b] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mark L. Brader
- Protein Pharmaceutical Development, Biogen Idec, 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Tia Estey
- Protein Pharmaceutical Development, Biogen Idec, 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Shujun Bai
- Protein Pharmaceutical Development, Biogen Idec, 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Roy W. Alston
- Protein Pharmaceutical Development, Biogen Idec, 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Karin K. Lucas
- Protein Pharmaceutical Development, Biogen Idec, 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Steven Lantz
- Protein Pharmaceutical Development, Biogen Idec, 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Pavel Landsman
- Protein Pharmaceutical Development, Biogen Idec, 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Kevin M. Maloney
- Protein Pharmaceutical Development, Biogen Idec, 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
45
|
Abstract
Antibody drugs have become an increasingly significant component of the therapeutic landscape. Their success has been driven by some of their unique properties, in particular their very high specificity and selectivity, in contrast to the off-target liabilities of small molecules (SMs). Antibodies can bring additional functionality to the table with their ability to interact with the immune system, and this can be further manipulated with advances in antibody engineering. This review summarizes what antibody therapeutics have achieved to date and what opportunities and challenges lie ahead. The target landscape for large molecules (LMs) versus SMs and some of the challenges for antibody drug development are discussed. Effective penetration of membrane barriers and intracellular targeting is one challenge, particularly across the highly resistant blood-brain barrier. The expanding pipeline of antibody-drug conjugates offers the potential to combine SM and LM modalities in a variety of creative ways, and antibodies also offer exciting potential to build bi- and multispecific molecules. The ability to pursue more challenging targets can also be further exploited but highlights the need for earlier screening in functional cell-based assays. I discuss how this might be addressed given the practical constraints imposed by high-throughput screening sample type and process differences in antibody primary screening.
Collapse
Affiliation(s)
- Alison J. Smith
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| |
Collapse
|
46
|
Zhao L, Qu L, Zhou J, Sun Z, Zou H, Chen YY, Marks JD, Zhou Y. High throughput identification of monoclonal antibodies to membrane bound and secreted proteins using yeast and phage display. PLoS One 2014; 9:e111339. [PMID: 25353955 PMCID: PMC4213037 DOI: 10.1371/journal.pone.0111339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/23/2014] [Indexed: 12/29/2022] Open
Abstract
Antibodies are ubiquitous and essential reagents for biomedical research. Uses of antibodies include quantifying proteins, identifying the temporal and spatial pattern of expression in cells and tissue, and determining how proteins function under normal or pathological conditions. Specific antibodies are only available for a small portion of the proteome, limiting study of those proteins for which antibodies do not exist. The technologies to generate target-specific antibodies need to be improved to obtain high quality antibodies to the proteome at reasonable cost. Here we show that renewable, validated, and standardized monoclonal antibodies can be generated at high throughput, without the need for antigen production or animal immunizations. In this study, 60 protein domains from 24 selected secreted proteins were expressed on the surface of yeast and used for selection of phage antibodies, over 400 monoclonal antibodies were identified within 3 weeks. A subset of these antibodies was validated for binding to cancer cells that overexpress the target protein by flow cytometry or immunohistochemistry. This approach will be applicable to many of the membrane-bound and the secreted proteins, 20–40% of the proteome, accelerating the timeline for Ab generation while reducing the cost.
Collapse
Affiliation(s)
- Lequn Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Liang Qu
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Jing Zhou
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Zhengda Sun
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Hao Zou
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Yunn-Yi Chen
- Departments of Pathology & Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - James D. Marks
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
- * E-mail: (YZ); (JDM)
| | - Yu Zhou
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
- * E-mail: (YZ); (JDM)
| |
Collapse
|
47
|
Reusch D, Haberger M, Kailich T, Heidenreich AK, Kampe M, Bulau P, Wuhrer M. High-throughput glycosylation analysis of therapeutic immunoglobulin G by capillary gel electrophoresis using a DNA analyzer. MAbs 2014; 6:185-96. [PMID: 24135630 DOI: 10.4161/mabs.26712] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Fc glycosylation of therapeutic antibodies is crucial for their effector functions and their behavior in pharmacokinetics and pharmacodynamics. To monitor the Fc glycosylation in bioprocess development and characterization,high-throughput techniques for glycosylation analysis are needed. Here, we describe the development of a largely automated high-throughput glycosylation profiling method with multiplexing capillary-gel-electrophoresis (CGE) with laser induced fluorescence (LIF) detection using a DNA analyzer. After PNGaseF digestion, the released glycans were labeled with 9-aminopyrene-1,3,6-trisulfonic acid (APTS) in 96-well plates, which was followed by the simultaneous analysis of up to 48 samples. The peak assignment was conducted by HILIC-UPLC-MS/MS of the APTS-labeled glycans combined with peak fractionation and subsequent CGE-LIF analysis of the MS-characterized fractions. Quantitative data evaluation of the various IgG glycans was performed automatically using an in-house developed software solution. The excellent method accuracy and repeatability of the test system was verified by comparison with two UPLC-based methods for glycan analysis. Finally, the practical value of the developed method was demonstrated by analyzing the antibody glycosylation profiles from fermentation broths after small scale protein A purification.
Collapse
|
48
|
Mammalian cell display technology coupling with AID induced SHM in vitro: an ideal approach to the production of therapeutic antibodies. Int Immunopharmacol 2014; 23:380-6. [PMID: 25281392 DOI: 10.1016/j.intimp.2014.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 11/21/2022]
Abstract
Traditional antibody production technology within non-mammalian cell expression systems has shown many unsatisfactory properties for the development of therapeutic antibodies. Nevertheless, mammalian cell display technology reaps the benefits of producing full-length all human antibodies. Together with the developed cytidine deaminase induced in vitro somatic hypermutation technology, mammalian cell display technology provides the opportunity to produce high affinity antibodies that might be ideal for therapeutic application. This review was concentrated on the development of the mammalian cell display technology as well as the activation-induced cytidine deaminase induced in vitro somatic hypermutation technology and their applications for the production of therapeutic antibodies.
Collapse
|
49
|
Bonavida B. Postulated mechanisms of resistance of B-cell non-Hodgkin lymphoma to rituximab treatment regimens: strategies to overcome resistance. Semin Oncol 2014; 41:667-77. [PMID: 25440611 DOI: 10.1053/j.seminoncol.2014.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antibody-mediated immunotherapy has gained significant momentum since 1997 when the US Food and Drug Administration approved the first monoclonal antibody (mAb) for the treatment of B-cell non-Hodgkin lymphoma (B-NHL), namely, rituximab (chimeric anti-CD20 mAb). Subsequently, more than 20 approved mAbs have been in use clinically for the treatment of various cancers and several non-cancer-related diseases. Further, the combination treatment of mAbs with chemotherapy, immunotherapy, proteaosome inhibitors, and other inhibitors has resulted in synergistic anti-tumor activity with significant objective clinical responses. Despite their successful clinical use, the underlying mechanisms of rituximab's in vivo activities remain elusive. Further, it is not clear why a subset of patients is initially unresponsive and many responding patients become refractory and resistant to further treatments; hence, the underlying mechanisms of resistance are not known, Attempts have been made to develop model systems to investigate resistance to mAb therapy with the hope to apply the findings in both the generation of new therapeutics and in their use as new prognostic biomarkers. This review focuses on the development of resistance to rituximab treatments and discusses possible underlying mechanisms of action, postulated mechanisms of resistance in model systems, and suggested means to overcome resistance. Several prior reviews on the subject of rituximab resistance have been published and the present review both complements as well as adds new topics of relevance.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA.
| |
Collapse
|
50
|
Correa A, Pacheco S, Mechaly AE, Obal G, Béhar G, Mouratou B, Oppezzo P, Alzari PM, Pecorari F. Potent and specific inhibition of glycosidases by small artificial binding proteins (affitins). PLoS One 2014; 9:e97438. [PMID: 24823716 PMCID: PMC4019568 DOI: 10.1371/journal.pone.0097438] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/17/2014] [Indexed: 01/05/2023] Open
Abstract
Glycosidases are associated with various human diseases. The development of efficient and specific inhibitors may provide powerful tools to modulate their activity. However, achieving high selectivity is a major challenge given that glycosidases with different functions can have similar enzymatic mechanisms and active-site architectures. As an alternative approach to small-chemical compounds, proteinaceous inhibitors might provide a better specificity by involving a larger surface area of interaction. We report here the design and characterization of proteinaceous inhibitors that specifically target endoglycosidases representative of the two major mechanistic classes; retaining and inverting glycosidases. These inhibitors consist of artificial affinity proteins, Affitins, selected against the thermophilic CelD from Clostridium thermocellum and lysozyme from hen egg. They were obtained from libraries of Sac7d variants, which involve either the randomization of a surface or the randomization of a surface and an artificially-extended loop. Glycosidase binders exhibited affinities in the nanomolar range with no cross-recognition, with efficient inhibition of lysozyme (Ki = 45 nM) and CelD (Ki = 95 and 111 nM), high expression yields in Escherichia coli, solubility, and thermal stabilities up to 81.1°C. The crystal structures of glycosidase-Affitin complexes validate our library designs. We observed that Affitins prevented substrate access by two modes of binding; covering or penetrating the catalytic site via the extended loop. In addition, Affitins formed salt-bridges with residues essential for enzymatic activity. These results lead us to propose the use of Affitins as versatile selective glycosidase inhibitors and, potentially, as enzymatic inhibitors in general.
Collapse
Affiliation(s)
- Agustín Correa
- Institut Pasteur de Montevideo, Recombinant Protein Unit, Montevideo, Uruguay
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528, Paris, France
| | - Sabino Pacheco
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528, Paris, France
- INSERM UMR 892 - CRCNA, Nantes, France
- CNRS UMR 6299, Nantes, France
- University of Nantes, Nantes, France
| | - Ariel E. Mechaly
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528, Paris, France
| | - Gonzalo Obal
- Institut Pasteur de Montevideo, Protein Biophysics Unit, Montevideo, Uruguay
| | - Ghislaine Béhar
- INSERM UMR 892 - CRCNA, Nantes, France
- CNRS UMR 6299, Nantes, France
- University of Nantes, Nantes, France
| | - Barbara Mouratou
- INSERM UMR 892 - CRCNA, Nantes, France
- CNRS UMR 6299, Nantes, France
- University of Nantes, Nantes, France
| | - Pablo Oppezzo
- Institut Pasteur de Montevideo, Recombinant Protein Unit, Montevideo, Uruguay
| | - Pedro M. Alzari
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528, Paris, France
| | - Frédéric Pecorari
- INSERM UMR 892 - CRCNA, Nantes, France
- CNRS UMR 6299, Nantes, France
- University of Nantes, Nantes, France
| |
Collapse
|