1
|
Barra C, Nilsson JB, Saksager A, Carri I, Deleuran S, Garcia Alvarez HM, Høie MH, Li Y, Clifford JN, Wan YTR, Moreta LS, Nielsen M. In Silico Tools for Predicting Novel Epitopes. Methods Mol Biol 2024; 2813:245-280. [PMID: 38888783 DOI: 10.1007/978-1-0716-3890-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Identifying antigens within a pathogen is a critical task to develop effective vaccines and diagnostic methods, as well as understanding the evolution and adaptation to host immune responses. Historically, antigenicity was studied with experiments that evaluate the immune response against selected fragments of pathogens. Using this approach, the scientific community has gathered abundant information regarding which pathogenic fragments are immunogenic. The systematic collection of this data has enabled unraveling many of the fundamental rules underlying the properties defining epitopes and immunogenicity, and has resulted in the creation of a large panel of immunologically relevant predictive (in silico) tools. The development and application of such tools have proven to accelerate the identification of novel epitopes within biomedical applications reducing experimental costs. This chapter introduces some basic concepts about MHC presentation, T cell and B cell epitopes, the experimental efforts to determine those, and focuses on state-of-the-art methods for epitope prediction, highlighting their strengths and limitations, and catering instructions for their rational use.
Collapse
Affiliation(s)
- Carolina Barra
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark.
| | | | - Astrid Saksager
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Ibel Carri
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| | - Sebastian Deleuran
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Heli M Garcia Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| | - Magnus Haraldson Høie
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Yuchen Li
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | | | - Yat-Tsai Richie Wan
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Lys Sanz Moreta
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Morten Nielsen
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| |
Collapse
|
2
|
Identification of distinct functional thymic programming of fetal and pediatric human γδ thymocytes via single-cell analysis. Nat Commun 2022; 13:5842. [PMID: 36195611 PMCID: PMC9532436 DOI: 10.1038/s41467-022-33488-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
Developmental thymic waves of innate-like and adaptive-like γδ T cells have been described, but the current understanding of γδ T cell development is mainly limited to mouse models. Here, we combine single cell (sc) RNA gene expression and sc γδ T cell receptor (TCR) sequencing on fetal and pediatric γδ thymocytes in order to understand the ontogeny of human γδ T cells. Mature fetal γδ thymocytes (both the Vγ9Vδ2 and nonVγ9Vδ2 subsets) are committed to either a type 1, a type 3 or a type 2-like effector fate displaying a wave-like pattern depending on gestation age, and are enriched for public CDR3 features upon maturation. Strikingly, these effector modules express different CDR3 sequences and follow distinct developmental trajectories. In contrast, the pediatric thymus generates only a small effector subset that is highly biased towards Vγ9Vδ2 TCR usage and shows a mixed type 1/type 3 effector profile. Thus, our combined dataset of gene expression and detailed TCR information at the single-cell level identifies distinct functional thymic programming of γδ T cell immunity in human. Knowledge about the ontogeny of T cells in the thymus relies heavily on mouse studies because of difficulty to obtain human material. Here the authors perform a single cell analysis of thymocytes from human fetal and paediatric thymic samples to characterise the development of human γδ T cells in the thymus.
Collapse
|
3
|
Population Analysis of Staphylococcus aureus Reveals a Cryptic, Highly Prevalent Superantigen SElW That Contributes to the Pathogenesis of Bacteremia. mBio 2020; 11:mBio.02082-20. [PMID: 33109757 PMCID: PMC7593966 DOI: 10.1128/mbio.02082-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is an important human and animal pathogen associated with an array of diseases, including life-threatening necrotizing pneumonia and infective endocarditis. The success of S. aureus as a pathogen has been linked in part to its ability to manipulate the host immune response through the secretion of toxins and immune evasion molecules. The staphylococcal superantigens (SAgs) have been studied for decades, but their role in S. aureus pathogenesis is not well understood, and an appreciation for how SAgs manipulate the host immune response to promote infection may be crucial for the development of novel intervention strategies. Here, we characterized a widely prevalent, previously cryptic, staphylococcal SAg, SElW, that contributes to the severity of S. aureus infections caused by an important epidemic clone of S. aureus CC398. Our findings add to the understanding of staphylococcal SAg diversity and function and provide new insights into the capacity of S. aureus to cause disease. Staphylococcal superantigens (SAgs) are a family of secreted toxins that stimulate T cell activation and are associated with an array of diseases in humans and livestock. Most SAgs produced by Staphylococcus aureus are encoded by mobile genetic elements, such as pathogenicity islands, bacteriophages, and plasmids, in a strain-dependent manner. Here, we carried out a population genomic analysis of >800 staphylococcal isolates representing the breadth of S. aureus diversity to investigate the distribution of all 26 identified SAg genes. Up to 14 SAg genes were identified per isolate with the most common gene selw (encoding a putative SAg, SElW) identified in 97% of isolates. Most isolates (62.5%) have a full-length open reading frame of selw with an alternative TTG start codon that may have precluded functional characterization of SElW to date. Here, we demonstrate that S. aureus uses the TTG start codon to translate a potent SAg SElW that induces Vβ-specific T cell proliferation, a defining feature of classical SAgs. SElW is the only SAg predicted to be expressed by isolates of the CC398 lineage, an important human and livestock epidemic clone. Deletion of selw in a representative CC398 clinical isolate, S. aureus NM001, resulted in complete loss of T cell mitogenicity in vitro, and in vivo expression of SElW by S. aureus increased the bacterial load in the liver during bloodstream infection of SAg-sensitive HLA-DR4 transgenic mice. Overall, we report the characterization of a novel, highly prevalent, and potent SAg that contributes to the pathogenesis of S. aureus infection.
Collapse
|
4
|
Human γδ TCR Repertoires in Health and Disease. Cells 2020; 9:cells9040800. [PMID: 32225004 PMCID: PMC7226320 DOI: 10.3390/cells9040800] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
The T cell receptor (TCR) repertoires of γδ T cells are very different to those of αβ T cells. While the theoretical TCR repertoire diversity of γδ T cells is estimated to exceed the diversity of αβ T cells by far, γδ T cells are still understood as more invariant T cells that only use a limited set of γδ TCRs. Most of our current knowledge of human γδ T cell receptor diversity builds on specific monoclonal antibodies that discriminate between the two major subsets, namely Vδ2+ and Vδ1+ T cells. Of those two subsets, Vδ2+ T cells seem to better fit into a role of innate T cells with semi-invariant TCR usage, as compared to an adaptive-like biology of some Vδ1+ subsets. Yet, this distinction into innate-like Vδ2+ and adaptive-like Vδ1+ γδ T cells does not quite recapitulate the full diversity of γδ T cell subsets, ligands and interaction modes. Here, we review how the recent introduction of high-throughput TCR repertoire sequencing has boosted our knowledge of γδ T cell repertoire diversity beyond Vδ2+ and Vδ1+ T cells. We discuss the current understanding of clonal composition and the dynamics of human γδ TCR repertoires in health and disease.
Collapse
|
5
|
Rampoldi F, Ullrich L, Prinz I. Revisiting the Interaction of γδ T-Cells and B-Cells. Cells 2020; 9:E743. [PMID: 32197382 PMCID: PMC7140609 DOI: 10.3390/cells9030743] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/04/2023] Open
Abstract
Right after the discovery of γδ T-cells in 1984, people started asking how γδ T-cells interact with other immune cells such as B-cells. Early reports showed that γδ T-cells are able to help B-cells to produce antibodies and to sustain the production of germinal centers. Interestingly, the presence of γδ T-cells seems to promote the generation of antibodies against "self" and less against challenging pathogens. More recently, these hypotheses were supported using γδ T-cell-deficient mouse strains, in different mouse models of systemic lupus erythematous, and after induction of epithelial cell damage. Together, these studies suggest that the link between γδ T-cells and the production of autoantibodies may be more relevant for the development of autoimmune diseases than generally acknowledged and thus targeting γδ T-cells could represent a new therapeutic strategy. In this review, we focus on what is known about the communication between γδ T-cells and B-cells, and we discuss the importance of this interaction in the context of autoimmunity.
Collapse
Affiliation(s)
- Francesca Rampoldi
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; (L.U.); (I.P.)
| | | | | |
Collapse
|
6
|
Sullivan LC, Shaw EM, Stankovic S, Snell GI, Brooks AG, Westall GP. The complex existence of γδ T cells following transplantation: the good, the bad and the simply confusing. Clin Transl Immunology 2019; 8:e1078. [PMID: 31548887 PMCID: PMC6748302 DOI: 10.1002/cti2.1078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Gamma delta (γδ) T cells are a highly heterogeneous population of lymphocytes that exhibit innate and adaptive immune properties. Despite comprising the majority of residing lymphocytes in many organs, the role of γδ T cells in transplantation outcomes is under‐researched. γδ T cells can recognise a diverse array of ligands and exert disparate effector functions. As such, they may potentially contribute to both allograft acceptance and rejection, as well as impacting on infection and post‐transplant malignancy. Here, we review the current literature on the role and function of γδ T cells following solid organ and hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Lucy C Sullivan
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia.,Lung Transplant Service The Alfred Hospital Melbourne VIC Australia
| | - Evangeline M Shaw
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Sanda Stankovic
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Gregory I Snell
- Lung Transplant Service The Alfred Hospital Melbourne VIC Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Glen P Westall
- Lung Transplant Service The Alfred Hospital Melbourne VIC Australia
| |
Collapse
|
7
|
Alopecia areata patients show deficiency of FOXP3+CD39+ T regulatory cells and clonotypic restriction of Treg TCRβ-chain, which highlights the immunopathological aspect of the disease. PLoS One 2019; 14:e0210308. [PMID: 31277078 PMCID: PMC6611701 DOI: 10.1371/journal.pone.0210308] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/28/2019] [Indexed: 12/29/2022] Open
Abstract
Alopecia areata (AA) is a hair loss disorder resulting from an autoimmune reaction against hair follicles. T-helper 1 cells are a major contributor to this disorder, but little is known about the role of T-regulatory cells (Tregs) in AA. Here, we analysed the distribution of circulating Treg subsets in twenty AA patients with active hair loss and fifteen healthy subjects by flow cytometry. The Treg suppressor HLA-DR+ subpopulation was significantly reduced in the patients (P<0.001) and there were significantly fewer cells expressing CD39 among the CD4+CD25+Foxp3+ Treg subpopulation in patients (P = 0.001). FOXP3 CD39 Treg cells were also reduced in hair follicles; by 75% in non-lesional skin and 90% in lesional skin, when compared to control healthy skin. To further characterise Treg cells in AA; Tregs (CD4+CD25+FOXP3+) were investigated for their TCRβ sequence. PCR products analysed by Next Generation Sequencing techniques, showed that all frequent public clonotypes in AA Tregs were also present in controls at relatively similar frequencies, excepting two public clonotypes: CATSRDEGGLDEKLFF (V15 D1 J1-4) and CASRDGTGPSNYGYTF (V2 D1 J1-2), which were exclusively present in controls. This suggests that these Treg clonotypes may have a protective effect and that they may be an exciting subject for future therapeutic applications.
Collapse
|
8
|
Arakawa A, Vollmer S, Tietze J, Galinski A, Heppt MV, Bürdek M, Berking C, Prinz JC. Clonality of CD4 + Blood T Cells Predicts Longer Survival With CTLA4 or PD-1 Checkpoint Inhibition in Advanced Melanoma. Front Immunol 2019; 10:1336. [PMID: 31275310 PMCID: PMC6591437 DOI: 10.3389/fimmu.2019.01336] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022] Open
Abstract
Recognition of cancer antigens drives the clonal expansion of cancer-reactive T cells, which is thought to contribute to restricted T-cell receptor (TCR) repertoires in tumor-infiltrating lymphocytes (TILs). To understand how tumors escape anti-tumor immunity, we investigated tumor-associated T-cell repertoires of patients with advanced melanoma and after blockade of the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) or programmed cell death 1 (PD-1). TCR Vβ-gene spectratyping allowed us to quantify restrictions of T-cell repertoires and, further, diversities of T-cell clones. In this study, we show that the blood TCR repertoires were variably restricted in CD4+ and extensively restricted in CD8+ T cells of patients with advanced melanoma, and contained clones in both T-cell fractions prior to the start of immunotherapy. A greater diversification especially of CD4+ blood T-cell clones before immunotherapy showed statistically significant correlations with long-term survival upon CTLA4 or PD-1 inhibition. Analysis of TILs and corresponding blood available in one patient indicated that blood clonality may at least partially be related to the clonal expansion in the tumor microenvironment. In patients who developed severe immune-related adverse events (IrAEs), CD4+ and CD8+ TCR spectratypes became more restricted during anti-CTLA4 treatment, suggesting that newly expanded oligoclonal T-cell responses may contribute to IrAEs. This study reveals diverse T-cell clones in the blood of melanoma patients prior to immunotherapy, which may reflect the extent to which T cells are able to react against melanoma and potentially control melanoma progression. Therefore, the T-cell clonality in the circulation may have predictive value for antitumor responses from checkpoint inhibition.
Collapse
Affiliation(s)
- Akiko Arakawa
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Sigrid Vollmer
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Julia Tietze
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Adrian Galinski
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Markus V Heppt
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Maja Bürdek
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Carola Berking
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Jörg C Prinz
- Department of Dermatology and Allergology, University Hospital Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| |
Collapse
|
9
|
Antonacci R, Bellini M, Linguiti G, Ciccarese S, Massari S. Comparative Analysis of the TRB Locus in the Camelus Genus. Front Genet 2019; 10:482. [PMID: 31231418 PMCID: PMC6558370 DOI: 10.3389/fgene.2019.00482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/06/2019] [Indexed: 11/26/2022] Open
Abstract
T cells can be separated into two major subsets based on the heterodimer that forms their T cell receptors. αβ T cells have receptors consisting of α and β chains, while γδ T cells are composed of γ and δ chains. αβ T cells play an essential role within the adaptive immune responses against pathogens. The recent genomic characterization of the Camelus dromedarius T cell receptor β (TRB) locus has allowed us to infer the structure of this locus from the draft genome sequences of its wild and domestic Bactrian congeners, Camelus ferus and Camelus bactrianus. The general structural organization of the wild and domestic Bactrian TRB locus is similar to that of the dromedary, with a pool of TRBV genes positioned at the 5′ end of D-J-C clusters, followed by a single TRBV gene located at the 3′ end with an inverted transcriptional orientation. Despite the fragmented nature of the assemblies, comparative genomics reveals the existence of a perfect co-linearity between the three Old World camel TRB genomic sequences, which enables the transfer of information from one sequence to another and the filling of gaps in the genomic sequences. A virtual camelid TRB locus is hypothesized with the presence of 33 TRBV genes distributed in 26 subgroups. Likewise, in the artiodactyl species, three in-tandem D-J-C clusters, each composed of one TRBD gene, six or seven TRBJ genes, and one TRBC gene, are placed at the 3′ end of the locus. As reported in the ruminant species, a group of four functional TRY genes at the 5′ end and only one gene at the 3′ end, complete the camelid TRB locus. Although the gene content is similar, differences are observed in the TRBV functional repertoire, and genes that are functional in one species are pseudogenes in the other species. Hence, variations in the functional repertoire between dromedary, wild and domestic Bactrian camels, rather than differences in the gene content, may represent the molecular basis explaining the disparity in the TRB repertoire between the Camelus species. Finally, our data contribute to the knowledge about the evolutionary history of Old World camelids.
Collapse
Affiliation(s)
| | | | | | | | - Serafina Massari
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
10
|
Bovine Staphylococcus aureus Superantigens Stimulate the Entire T Cell Repertoire of Cattle. Infect Immun 2018; 86:IAI.00505-18. [PMID: 30201699 PMCID: PMC6204692 DOI: 10.1128/iai.00505-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/29/2018] [Indexed: 11/20/2022] Open
Abstract
Superantigens (SAgs) represent a diverse family of bacterial toxins that induce Vβ-specific T cell proliferation associated with an array of important diseases in humans and animals, including mastitis of dairy cows. However, an understanding of the diversity and distribution of SAg genes among bovine Staphylococcus aureus strains and their role in the pathogenesis of mastitis is lacking. Superantigens (SAgs) represent a diverse family of bacterial toxins that induce Vβ-specific T cell proliferation associated with an array of important diseases in humans and animals, including mastitis of dairy cows. However, an understanding of the diversity and distribution of SAg genes among bovine Staphylococcus aureus strains and their role in the pathogenesis of mastitis is lacking. Population genomic analysis of 195 bovine S. aureus isolates representing 57 unique sequence types revealed that strains encode 2 to 13 distinct SAgs and that the majority of isolates contain 5 or more SAg genes. A genome-scale analysis of bovine reference strain RF122 revealed a complement of 11 predicted SAg genes, which were all expressed in vitro. Detection of specific antibodies in convalescent cows suggests expression of 7 of 11 SAgs during natural S. aureus infection. We determined the Vβ T cell activation profile for all functional SAgs encoded by RF122, revealing evidence for bovine host-specific activity among the recently identified RF122-encoded SAgs SElY and SElZ. Remarkably, we discovered that some strains have evolved the capacity to stimulate the entire T cell repertoire of cattle through an array of diverse SAgs, suggesting a key role in bovine immune evasion.
Collapse
|
11
|
Palermo B, Franzese O, Donna CD, Panetta M, Quintarelli C, Sperduti I, Gualtieri N, Foddai ML, Proietti E, Ferraresi V, Ciliberto G, Nisticò P. Antigen-specificity and DTIC before peptide-vaccination differently shape immune-checkpoint expression pattern, anti-tumor functionality and TCR repertoire in melanoma patients. Oncoimmunology 2018; 7:e1465163. [PMID: 30524882 PMCID: PMC6279427 DOI: 10.1080/2162402x.2018.1465163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 10/31/2022] Open
Abstract
We have recently described that DNA-damage inducing drug DTIC, administered before peptide (Melan-A and gp100)-vaccination, improves anti-tumor CD8+ Melan-A-specific T-cell functionality, enlarges the Melan-A+ TCR repertoire and impacts the overall survival of melanoma patients. To identify whether the two Ags employed in the vaccination differently shape the anti-tumor response, herein we have carried out a detailed analysis of phenotype, anti-tumor functionality and TCR repertoire in treatment-driven gp100-specific CD8+ T cells, in the same patients previously analyzed for Melan-A. We found that T-cell clones isolated from patients treated with vaccination alone possessed an Early/intermediate differentiated phenotype, whereas T cells isolated after DTIC plus vaccination were late-differentiated. Sequencing analysis of the TCRBV chains of 29 treatment-driven gp100-specific CD8+ T-cell clones revealed an oligoclonal TCR repertoire irrespective of the treatment schedule. The high anti-tumor activity observed in T cells isolated after chemo-immunotherapy was associated with low PD-1 expression. Differently, T-cell clones isolated after peptide-vaccination alone expressed a high level of PD-1, along with LAG-3 and TIM-3, and were neither tumor-reactive nor polyfunctional. Blockade of PD-1 reversed gp100-specific CD8+ T-cell dysfunctionality, confirming the direct role of this co-inhibitory molecule in suppressing anti-tumor activity, differently from what we have previously observed for Melan-A+CD8+ T cells, expressing PD-1 but highly functional. These findings indicate that the functional advantage induced by combined chemo-immunotherapy is determined by the tumor antigen nature, T-cell immune-checkpoints phenotype, TCR repertoire diversity and anti-tumor T-cell quality and highlights the importance of integrating these parameters to develop effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Belinda Palermo
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ornella Franzese
- Department of Systems Medicine, School of Medicine, University of Tor Vergata, Rome, Italy
| | - Cosmo Di Donna
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mariangela Panetta
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Haematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Novella Gualtieri
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Enrico Proietti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome
| | | | | | - Paola Nisticò
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
12
|
Miho E, Yermanos A, Weber CR, Berger CT, Reddy ST, Greiff V. Computational Strategies for Dissecting the High-Dimensional Complexity of Adaptive Immune Repertoires. Front Immunol 2018; 9:224. [PMID: 29515569 PMCID: PMC5826328 DOI: 10.3389/fimmu.2018.00224] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
The adaptive immune system recognizes antigens via an immense array of antigen-binding antibodies and T-cell receptors, the immune repertoire. The interrogation of immune repertoires is of high relevance for understanding the adaptive immune response in disease and infection (e.g., autoimmunity, cancer, HIV). Adaptive immune receptor repertoire sequencing (AIRR-seq) has driven the quantitative and molecular-level profiling of immune repertoires, thereby revealing the high-dimensional complexity of the immune receptor sequence landscape. Several methods for the computational and statistical analysis of large-scale AIRR-seq data have been developed to resolve immune repertoire complexity and to understand the dynamics of adaptive immunity. Here, we review the current research on (i) diversity, (ii) clustering and network, (iii) phylogenetic, and (iv) machine learning methods applied to dissect, quantify, and compare the architecture, evolution, and specificity of immune repertoires. We summarize outstanding questions in computational immunology and propose future directions for systems immunology toward coupling AIRR-seq with the computational discovery of immunotherapeutics, vaccines, and immunodiagnostics.
Collapse
Affiliation(s)
- Enkelejda Miho
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- aiNET GmbH, ETH Zürich, Basel, Switzerland
| | - Alexander Yermanos
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Cédric R. Weber
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christoph T. Berger
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Department of Internal Medicine, Clinical Immunology, University Hospital Basel, Basel, Switzerland
| | - Sai T. Reddy
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Victor Greiff
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Department of Immunology, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Ueda N, Zhang R, Tatsumi M, Liu TY, Kitayama S, Yasui Y, Sugai S, Iwama T, Senju S, Okada S, Nakatsura T, Kuzushima K, Kiyoi H, Naoe T, Kaneko S, Uemura Y. BCR-ABL-specific CD4 + T-helper cells promote the priming of antigen-specific cytotoxic T cells via dendritic cells. Cell Mol Immunol 2018; 15:15-26. [PMID: 27181332 PMCID: PMC5827172 DOI: 10.1038/cmi.2016.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 12/18/2022] Open
Abstract
The advent of tyrosine kinase inhibitor (TKI) therapy markedly improved the outcome of patients with chronic-phase chronic myeloid leukemia (CML). However, the poor prognosis of patients with advanced-phase CML and the lifelong dependency on TKIs are remaining challenges; therefore, an effective therapeutic has been sought. The BCR-ABL p210 fusion protein's junction region represents a leukemia-specific neoantigen and is thus an attractive target for antigen-specific T-cell immunotherapy. BCR-ABL p210 fusion-region-specific CD4+ T-helper (Th) cells possess antileukemic potential, but their function remains unclear. In this study, we established a BCR-ABL p210 b3a2 fusion-region-specific CD4+ Th-cell clone (b3a2-specific Th clone) and examined its dendritic cell (DC)-mediated antileukemic potential. The b3a2-specific Th clone recognized the b3a2 peptide in the context of HLA-DRB1*09:01 and exhibited a Th1 profile. Activation of this clone through T-cell antigen receptor stimulation triggered DC maturation, as indicated by upregulated production of CD86 and IL-12p70 by DCs, which depended on CD40 ligation by CD40L expressed on b3a2-specific Th cells. Moreover, in the presence of HLA-A*24:02-restricted Wilms tumor 1 (WT1)235-243 peptide, DCs conditioned by b3a2-specific Th cells efficiently stimulated the primary expansion of WTI-specific cytotoxic T lymphocytes (CTLs). The expanded CTLs were cytotoxic toward WT1235-243-peptide-loaded HLA-A*24:02-positive cell lines and exerted a potent antileukemic effect in vivo. However, the b3a2-specific Th-clone-mediated antileukemic CTL responses were strongly inhibited by both TKIs and interferon-α. Our findings indicate a crucial role of b3a2-specific Th cells in leukemia antigen-specific CTL-mediated immunity and provide an experimental basis for establishing novel CML immunotherapies.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Clone Cells
- Cross-Priming/drug effects
- Cross-Priming/immunology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Epitopes/immunology
- Fusion Proteins, bcr-abl/metabolism
- HLA-DR Serological Subtypes/metabolism
- Humans
- Interferon-alpha/pharmacology
- Interleukin-12/biosynthesis
- Leukemia/pathology
- Mice
- Mice, Inbred BALB C
- Peptides/pharmacology
- Phenotype
- Protein Kinase Inhibitors/pharmacology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- Norihiro Ueda
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
| | - Rong Zhang
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Minako Tatsumi
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
| | - Tian-Yi Liu
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuichi Kitayama
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yutaka Yasui
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Shiori Sugai
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Tatsuaki Iwama
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Kiyotaka Kuzushima
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
| | - Tomoki Naoe
- National Hospital Organization Nagoya Medical Center, Nagoya 460-0001, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yasushi Uemura
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| |
Collapse
|
14
|
Delaunay T, Violland M, Boisgerault N, Dutoit S, Vignard V, Münz C, Gannage M, Dréno B, Vaivode K, Pjanova D, Labarrière N, Wang Y, Chiocca EA, Boeuf FL, Bell JC, Erbs P, Tangy F, Grégoire M, Fonteneau JF. Oncolytic viruses sensitize human tumor cells for NY-ESO-1 tumor antigen recognition by CD4+ effector T cells. Oncoimmunology 2017; 7:e1407897. [PMID: 29399408 DOI: 10.1080/2162402x.2017.1407897] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022] Open
Abstract
Oncolytic immunotherapy using oncolytic viruses (OV) has been shown to stimulate the antitumor immune response by inducing the release of tumor-associated antigens (TAA) and danger signals from the dying infected tumor cells. In this study, we sought to determine if the lysis of tumor cells induced by different OV: measles virus, vaccinia virus, vesicular stomatitis virus, herpes simplex type I virus, adenovirus or enterovirus, has consequences on the capacity of tumor cells to present TAA, such as NY-ESO-1. We show that the co-culture of NY-ESO-1neg/HLA-DP4pos melanoma cells with NY-ESO-1pos/HLA-DP4neg melanoma cells infected and killed by different OV induces an intercellular transfer of NY-ESO-1 that allows the recognition of NY-ESO-1neg/HLA-DP4pos tumor cells by an HLA-DP4/NY-ESO-1(157-170)-specific CD4+ cytotoxic T cell clone, NY67. We then confirmed this result in a second model with an HLA-DP4+ melanoma cell line that expresses a low amount of NY-ESO-1. Recognition of this cell line by the NY67 clone is largely increased in the presence of OV productive infection. Altogether, our results show for the first time another mechanism of stimulation of the anti-tumor immune response by OV, via the loading of tumor cells with TAA that sensitizes them for direct recognition by specific effector CD4+ T cells, supporting the use of OV for cancer immunotherapy.
Collapse
Affiliation(s)
- Tiphaine Delaunay
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Mathilde Violland
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Nicolas Boisgerault
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Soizic Dutoit
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Virginie Vignard
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Christian Münz
- Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Monique Gannage
- Institute of Experimental Immunology, University of Zürich, Switzerland.,School of Medicine, University of Geneva, Switzerland
| | - Brigitte Dréno
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France.,Dermatology Department, Nantes Hospital, Nantes, France
| | | | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Nathalie Labarrière
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Yaohe Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.,National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, China
| | - E Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Fabrice Le Boeuf
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada.,University of Ottawa, Ottawa, Canada
| | - John C Bell
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada.,University of Ottawa, Ottawa, Canada
| | | | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Marc Grégoire
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Jean-François Fonteneau
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| |
Collapse
|
15
|
Ali R, Babad J, Follenzi A, Gebe JA, Brehm MA, Nepom GT, Shultz LD, Greiner DL, DiLorenzo TP. Genetically modified human CD4(+) T cells can be evaluated in vivo without lethal graft-versus-host disease. Immunology 2017; 148:339-51. [PMID: 27124592 DOI: 10.1111/imm.12613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/21/2016] [Accepted: 04/08/2016] [Indexed: 12/17/2022] Open
Abstract
Adoptive cell immunotherapy for human diseases, including the use of T cells modified to express an anti-tumour T-cell receptor (TCR) or chimeric antigen receptor, is showing promise as an effective treatment modality. Further advances would be accelerated by the availability of a mouse model that would permit human T-cell engineering protocols and proposed genetic modifications to be evaluated in vivo. NOD-scid IL2rγ(null) (NSG) mice accept the engraftment of mature human T cells; however, long-term evaluation of transferred cells has been hampered by the xenogeneic graft-versus-host disease (GVHD) that occurs soon after cell transfer. We modified human primary CD4(+) T cells by lentiviral transduction to express a human TCR that recognizes a pancreatic beta cell-derived peptide in the context of HLA-DR4. The TCR-transduced cells were transferred to NSG mice engineered to express HLA-DR4 and to be deficient for murine class II MHC molecules. CD4(+) T-cell-depleted peripheral blood mononuclear cells were also transferred to facilitate engraftment. The transduced cells exhibited long-term survival (up to 3 months post-transfer) and lethal GVHD was not observed. This favourable outcome was dependent upon the pre-transfer T-cell transduction and culture conditions, which influenced both the kinetics of engraftment and the development of GVHD. This approach should now permit human T-cell transduction protocols and genetic modifications to be evaluated in vivo, and it should also facilitate the development of human disease models that incorporate human T cells.
Collapse
Affiliation(s)
- Riyasat Ali
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey Babad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | - John A Gebe
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Michael A Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence™, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gerald T Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | | | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence™, University of Massachusetts Medical School, Worcester, MA, USA
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
16
|
A comprehensive analysis of the germline and expressed TCR repertoire in White Peking duck. Sci Rep 2017; 7:41426. [PMID: 28134319 PMCID: PMC5278385 DOI: 10.1038/srep41426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022] Open
Abstract
Recently, many immune-related genes have been extensively studied in ducks, but relatively little is known about their TCR genes. Here, we determined the germline and expressed repertoire of TCR genes in White Peking duck. The genomic organization of the duck TCRα/δ, TCRγ and unconventional TCRδ2 loci are highly conserved with their counterparts in mammals or chickens. By contrast, the duck TCRβ locus is organized in an unusual pattern, (Vβ)n-Dβ-(Jβ)2-Cβ1-(Jβ)4-Cβ2, which differs from the tandem-aligned clusters in mammals or the translocon organization in some teleosts. Excluding the first exon encoding the immunoglobulin domain, the subsequent exons of the two Cβ show significant diversity in nucleotide sequence and exon structure. Based on the nucleotide sequence identity, 49 Vα, 30 Vδ, 13 Vβ and 15 Vγ unique gene segments are classified into 3 Vα, 5 Vδ, 4 Vβ and 6 Vγ subgroups, respectively. Phylogenetic analyses revealed that most duck V subgroups, excluding Vβ1, Vγ5 and Vγ6, have closely related orthologues in chicken. The coding joints of all cDNA clones demonstrate conserved mechanisms that are used to increase junctional diversity. Collectively, these data provide insight into the evolution of TCRs in vertebrates and improve our understanding of the avian immune system.
Collapse
|
17
|
Abstract
Selective expansion of T cells bearing specific T cell receptor Vβ segments is a hallmark of superantigens. Analyzing Vβ specificity of superantigens is important for characterizing newly discovered superantigens and understanding differential T cell responses to each toxin. Here, we describe a real-time PCR method using SYBR green I and primers specific to Cβ and Vβ genes for an absolute quantification. The established method was applied to quantify a selective expansion of T cell receptor Vβ expansion by superantigens and generated accurate, reproducible, and comparable results.
Collapse
|
18
|
Kitaura K, Shini T, Matsutani T, Suzuki R. A new high-throughput sequencing method for determining diversity and similarity of T cell receptor (TCR) α and β repertoires and identifying potential new invariant TCR α chains. BMC Immunol 2016; 17:38. [PMID: 27729009 PMCID: PMC5059964 DOI: 10.1186/s12865-016-0177-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-throughput sequencing of T cell receptor (TCR) genes is a powerful tool for analyses of antigen specificity, clonality and diversity of T lymphocytes. Here, we developed a new TCR repertoire analysis method using 454 DNA sequencing technology in combination with an adaptor-ligation mediated polymerase chain reaction (PCR). This method allows the amplification of all TCR genes without PCR bias. To compare gene usage, diversity and similarity of expressed TCR repertoires among individuals, we conducted next-generation sequencing (NGS) of TRA and TRB genes in peripheral blood mononuclear cells from 20 healthy human individuals. RESULTS From a total of 267,037 sequence reads from 20 individuals, 149,216 unique sequence reads were identified. Preferential usage of several V and J genes were observed while some recombinations of TRAV with TRAJ appeared to be restricted. The extent of TCR diversity was not significantly different between TRA and TRB, while TRA repertoires were more similar between individuals than TRB repertoires were. The interindividual similarity of TRA depended largely on the frequent presence of shared TCRs among two or more individuals. A publicly available TRA had a near-germline TCR with a shorter CDR3. Notably, shared TRA sequences, especially those shared among a large number of individuals', often contained TCRα related with invariant TCRα derived from invariant natural killer T cells and mucosal-associated invariant T cells. CONCLUSION These results suggest that retrieval of shared TCRs by NGS would be useful for the identification of potential new invariant TCRα chains. This NGS method will enable the comprehensive quantitative analysis of TCR repertoires at a clonal level.
Collapse
Affiliation(s)
- Kazutaka Kitaura
- Repertoire Genesis Incorporation, 104 Saito-Bioincubator, 7-7-15, Saito-asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Tadasu Shini
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Japan.,BITS. Co., Ltd, Tokyo, Japan
| | - Takaji Matsutani
- Repertoire Genesis Incorporation, 104 Saito-Bioincubator, 7-7-15, Saito-asagi, Ibaraki, Osaka, 567-0085, Japan.
| | - Ryuji Suzuki
- Repertoire Genesis Incorporation, 104 Saito-Bioincubator, 7-7-15, Saito-asagi, Ibaraki, Osaka, 567-0085, Japan.,Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Japan
| |
Collapse
|
19
|
Connelley TK, Li X, MacHugh N, Colau D, Graham SP, van der Bruggen P, Taracha EL, Gill A, Morrison WI. CD8 T-cell responses against the immunodominant Theileria parva peptide Tp249-59 are composed of two distinct populations specific for overlapping 11-mer and 10-mer epitopes. Immunology 2016; 149:172-85. [PMID: 27317384 PMCID: PMC5011678 DOI: 10.1111/imm.12637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023] Open
Abstract
Immunity against Theileria parva is associated with CD8 T-cell responses that exhibit immunodominance, focusing the response against limited numbers of epitopes. As candidates for inclusion in vaccines, characterization of responses against immunodominant epitopes is a key component in novel vaccine development. We have previously demonstrated that the Tp249-59 and Tp1214-224 epitopes dominate CD8 T-cell responses in BoLA-A10 and BoLA-18 MHC I homozygous animals, respectively. In this study, peptide-MHC I tetramers for these epitopes, and a subdominant BoLA-A10-restricted epitope (Tp298-106 ), were generated to facilitate accurate and rapid enumeration of epitope-specific CD8 T cells. During validation of these tetramers a substantial proportion of Tp249-59 -reactive T cells failed to bind the tetramer, suggesting that this population was heterogeneous with respect to the recognized epitope. We demonstrate that Tp250-59 represents a distinct epitope and that tetramers produced with Tp50-59 and Tp49-59 show no cross-reactivity. The Tp249-59 and Tp250-59 epitopes use different serine residues as the N-terminal anchor for binding to the presenting MHC I molecule. Molecular dynamic modelling predicts that the two peptide-MHC I complexes adopt structurally different conformations and Tcell receptor β sequence analysis showed that Tp249-59 and Tp250-59 are recognized by non-overlapping T-cell receptor repertoires. Together these data demonstrate that although differing by only a single residue, Tp249-59 and Tp250-59 epitopes form distinct ligands for T-cell receptor recognition. Tetramer analysis of T. parva-specific CD8 T-cell lines confirmed the immunodominance of Tp1214-224 in BoLA-A18 animals and showed in BoLA-A10 animals that the Tp249-59 epitope response was generally more dominant than the Tp250-59 response and confirmed that the Tp298-106 response was subdominant.
Collapse
Affiliation(s)
- Timothy K. Connelley
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - Xiaoying Li
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
- Present address: School of Life Sciences and TechnologyXinxiang Medical UniversityLaboratory Building Room 232XinxiangHenanCN 453003China
| | - Niall MacHugh
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - Didier Colau
- Ludwig Institute for Cancer Research and de Duve InstituteUniversite catholique de LouvainBrusselsBelgium
| | - Simon P. Graham
- The International Livestock Research InstituteNairobiKenya
- Present address: The Pirbright InstituteAsh RoadPirbrightGU24 0NFUK
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research and de Duve InstituteUniversite catholique de LouvainBrusselsBelgium
| | - Evans L. Taracha
- The International Livestock Research InstituteNairobiKenya
- Present address: Institute of Primate ResearchPO Box 24481‐00502KarenKenya
| | - Andy Gill
- Division of NeurobiologyThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - William Ivan Morrison
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| |
Collapse
|
20
|
Di Marco Barros R, Roberts NA, Dart RJ, Vantourout P, Jandke A, Nussbaumer O, Deban L, Cipolat S, Hart R, Iannitto ML, Laing A, Spencer-Dene B, East P, Gibbons D, Irving PM, Pereira P, Steinhoff U, Hayday A. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell 2016; 167:203-218.e17. [PMID: 27641500 PMCID: PMC5037318 DOI: 10.1016/j.cell.2016.08.030] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/06/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
Many body surfaces harbor organ-specific γδ T cell compartments that contribute to tissue integrity. Thus, murine dendritic epidermal T cells (DETCs) uniquely expressing T cell receptor (TCR)-Vγ5 chains protect from cutaneous carcinogens. The DETC repertoire is shaped by Skint1, a butyrophilin-like (Btnl) gene expressed specifically by thymic epithelial cells and suprabasal keratinocytes. However, the generality of this mechanism has remained opaque, since neither Skint1 nor DETCs are evolutionarily conserved. Here, Btnl1 expressed by murine enterocytes is shown to shape the local TCR-Vγ7(+) γδ compartment. Uninfluenced by microbial or food antigens, this activity evokes the developmental selection of TCRαβ(+) repertoires. Indeed, Btnl1 and Btnl6 jointly induce TCR-dependent responses specifically in intestinal Vγ7(+) cells. Likewise, human gut epithelial cells express BTNL3 and BTNL8 that jointly induce selective TCR-dependent responses of human colonic Vγ4(+) cells. Hence, a conserved mechanism emerges whereby epithelia use organ-specific BTNL/Btnl genes to shape local T cell compartments.
Collapse
Affiliation(s)
- Rafael Di Marco Barros
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK; MBPhD Programme, University College London, London WC1E 6BT, UK
| | | | - Robin J Dart
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK; Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London SE17EH, UK
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | - Oliver Nussbaumer
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | | | - Rosie Hart
- Francis Crick Institute, London WC2A3LY, UK
| | - Maria Luisa Iannitto
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | - Adam Laing
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | | | - Deena Gibbons
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | - Peter M Irving
- Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London SE17EH, UK
| | - Pablo Pereira
- Department of Immunology, Pasteur Institute, 75015 Paris, France
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hospital Epidemiology, University of Marburg, 35037 Marburg, Germany
| | - Adrian Hayday
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK.
| |
Collapse
|
21
|
Nakatsugawa M, Rahman MA, Yamashita Y, Ochi T, Wnuk P, Tanaka S, Chamoto K, Kagoya Y, Saso K, Guo T, Anczurowski M, Butler MO, Hirano N. CD4(+) and CD8(+) TCRβ repertoires possess different potentials to generate extraordinarily high-avidity T cells. Sci Rep 2016; 6:23821. [PMID: 27030642 PMCID: PMC4814874 DOI: 10.1038/srep23821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/15/2016] [Indexed: 12/31/2022] Open
Abstract
Recent high throughput sequencing analysis has revealed that the TCRβ repertoire is largely different between CD8(+) and CD4(+) T cells. Here, we show that the transduction of SIG35α, the public chain-centric HLA-A*02:01(A2)/MART127-35 TCRα hemichain, conferred A2/MART127-35 reactivity to a substantial subset of both CD8(+) and CD4(+) T cells regardless of their HLA-A2 positivity. T cells individually reconstituted with SIG35α and different A2/MART127-35 TCRβ genes isolated from CD4(+) or CD8(+) T cells exhibited a wide range of avidity. Surprisingly, approximately half of the A2/MART127-35 TCRs derived from CD4(+) T cells, but none from CD8(+) T cells, were stained by A2/MART127-35 monomer and possessed broader cross-reactivity. Our results suggest that the differences in the primary structure of peripheral CD4(+) and CD8(+) TCRβ repertoire indeed result in the differences in their ability to form extraordinarily high avidity T cells which would otherwise have been deleted by central tolerance.
Collapse
Affiliation(s)
- Munehide Nakatsugawa
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Muhammed A. Rahman
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Yuki Yamashita
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Toshiki Ochi
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Piotr Wnuk
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shinya Tanaka
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Takara Bio, Inc., Kusatsu, Shiga 525-0058, Japan
| | - Kenji Chamoto
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Yuki Kagoya
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Kayoko Saso
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Marcus O. Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
22
|
Ruck T, Afzali AM, Lukat KF, Eveslage M, Gross CC, Pfeuffer S, Bittner S, Klotz L, Melzer N, Wiendl H, Meuth SG. ALAIN01--Alemtuzumab in autoimmune inflammatory neurodegeneration: mechanisms of action and neuroprotective potential. BMC Neurol 2016; 16:34. [PMID: 26966029 PMCID: PMC4785638 DOI: 10.1186/s12883-016-0556-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Alemtuzumab (Lemtrada®) is a newly approved therapeutic agent for relapsing-remitting multiple sclerosis (RRMS). In previous phase II and III clinical trials, alemtuzumab has proven superior efficacy to subcutaneous interferon beta-1a concerning relapse rate and disability progression with unprecedented durability and long-lasting freedom of disease activity. The humanized monoclonal antibody targets CD52, leading to a rapid and long-lasting depletion, especially of B and T cells. Arising from hematopoietic precursor cells a fundamental reprogramming of the immune system restores tolerogenic networks effectively suppressing autoimmune inflammatory responses in the central nervous system (CNS). Despite its favourable effects alemtuzumab holds a severe risk of side effects with secondary autoimmunity being the most considerable. Markers for risk stratification and treatment response improving patient selection and therapy guidance are a big unmet need for MS patients and health care providers. METHODS/DESIGN This is a mono center, single arm, explorative phase IV study including 15 patients with highly active RRMS designed for 3 years. Patients will be studied by a high-resolution analysis comprising a repertoire of various immunological assays for the detection of immune cells and their function in peripheral blood as well as the cerebrospinal fluid (CSF). These assays encompass a number of experiments investigating immune cell subset composition, activation status, cytokine secretion, migratory capacity, potential neuroprotective properties and cytolytic activity complemented by instrument-based diagnostics like MRI scans, evoked potentials and optical coherence tomography (OCT). DISCUSSION Our study represents the first in-depth and longitudinal functional analysis of key immunological parameters in the periphery and the CNS compartment underlying the fundamental effects of alemtuzumab in MS patients. By combining clinical, experimental and MRI data our study will provide a deeper understanding of alemtuzumab's mechanisms of action (MOA) potentially identifying immune signatures associated with treatment response or the development of secondary autoimmunity. After validation in larger cohorts this might help to improve efficacy and safety of alemtuzumab therapy in RRMS patients. TRIAL REGISTRATION NCT02419378 (clinicaltrials.gov), registered 31 March 2015.
Collapse
Affiliation(s)
- Tobias Ruck
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Ali Maisam Afzali
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | | | - Maria Eveslage
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Steffen Pfeuffer
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Stefan Bittner
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Luisa Klotz
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Nico Melzer
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| |
Collapse
|
23
|
Arakawa A, Siewert K, Stöhr J, Besgen P, Kim SM, Rühl G, Nickel J, Vollmer S, Thomas P, Krebs S, Pinkert S, Spannagl M, Held K, Kammerbauer C, Besch R, Dornmair K, Prinz JC. Melanocyte antigen triggers autoimmunity in human psoriasis. J Exp Med 2015; 212:2203-12. [PMID: 26621454 PMCID: PMC4689169 DOI: 10.1084/jem.20151093] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022] Open
Abstract
Psoriasis vulgaris is a common T cell-mediated inflammatory skin disease with a suspected autoimmune pathogenesis. The human leukocyte antigen (HLA) class I allele, HLA-C*06:02, is the main psoriasis risk gene. Epidermal CD8(+) T cells are essential for psoriasis development. Functional implications of HLA-C*06:02 and mechanisms of lesional T cell activation in psoriasis, however, remained elusive. Here we identify melanocytes as skin-specific target cells of an HLA-C*06:02-restricted psoriatic T cell response. We found that a Vα3S1/Vβ13S1 T cell receptor (TCR), which we had reconstituted from an epidermal CD8(+) T cell clone of an HLA-C*06:02-positive psoriasis patient specifically recognizes HLA-C*06:02-positive melanocytes. Through peptide library screening, we identified ADAMTS-like protein 5 (ADAMTSL5) as an HLA-C*06:02-presented melanocytic autoantigen of the Vα3S1/Vβ13S1 TCR. Consistent with the Vα3S1/Vβ13S1-TCR reactivity, we observed numerous CD8(+) T cells in psoriasis lesions attacking melanocytes, the only epidermal cells expressing ADAMTSL5. Furthermore, ADAMTSL5 stimulation induced the psoriasis signature cytokine, IL-17A, in CD8(+) T cells from psoriasis patients only, supporting a role as psoriatic autoantigen. This unbiased analysis of a TCR obtained directly from tissue-infiltrating CD8(+) T cells reveals that in psoriasis HLA-C*06:02 directs an autoimmune response against melanocytes through autoantigen presentation. We propose that HLA-C*06:02 may predispose to psoriasis via this newly identified autoimmune pathway.
Collapse
Affiliation(s)
- Akiko Arakawa
- Department of Dermatology, Ludwig-Maximilian-University, D-80337 Munich, Germany
| | - Katherina Siewert
- Institute of Clinical Neuroimmunology, Ludwig-Maximilian-University, D-82152 Planegg-Martinsried, Germany
| | - Julia Stöhr
- Department of Dermatology, Ludwig-Maximilian-University, D-80337 Munich, Germany
| | - Petra Besgen
- Department of Dermatology, Ludwig-Maximilian-University, D-80337 Munich, Germany
| | - Song-Min Kim
- Department of Dermatology, Ludwig-Maximilian-University, D-80337 Munich, Germany
| | - Geraldine Rühl
- Institute of Clinical Neuroimmunology, Ludwig-Maximilian-University, D-82152 Planegg-Martinsried, Germany
| | - Jens Nickel
- Department of Dermatology, Ludwig-Maximilian-University, D-80337 Munich, Germany
| | - Sigrid Vollmer
- Department of Dermatology, Ludwig-Maximilian-University, D-80337 Munich, Germany
| | - Peter Thomas
- Department of Dermatology, Ludwig-Maximilian-University, D-80337 Munich, Germany
| | - Stefan Krebs
- Gene Center Munich, Ludwig-Maximilian-University, D-81377 Munich, Germany
| | - Stefan Pinkert
- German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Michael Spannagl
- Laboratory of Immunogenetics and Molecular Diagnostics, Ludwig-Maximilian-University, D-81377 Munich, Germany
| | - Kathrin Held
- Institute of Clinical Neuroimmunology, Ludwig-Maximilian-University, D-82152 Planegg-Martinsried, Germany
| | - Claudia Kammerbauer
- Department of Dermatology, Ludwig-Maximilian-University, D-80337 Munich, Germany
| | - Robert Besch
- Department of Dermatology, Ludwig-Maximilian-University, D-80337 Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Ludwig-Maximilian-University, D-82152 Planegg-Martinsried, Germany
| | - Jörg C Prinz
- Department of Dermatology, Ludwig-Maximilian-University, D-80337 Munich, Germany
| |
Collapse
|
24
|
Held K, Bhonsle-Deeng L, Siewert K, Sato W, Beltrán E, Schmidt S, Rühl G, Ng JKM, Engerer P, Moser M, Klinkert WEF, Babbe H, Misgeld T, Wekerle H, Laplaud DA, Hohlfeld R, Dornmair K. αβ T-cell receptors from multiple sclerosis brain lesions show MAIT cell-related features. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2015; 2:e107. [PMID: 25977934 PMCID: PMC4426681 DOI: 10.1212/nxi.0000000000000107] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/23/2015] [Indexed: 12/26/2022]
Abstract
Objectives: To characterize phenotypes of T cells that accumulated in multiple sclerosis (MS) lesions, to compare the lesional T-cell receptor (TCR) repertoire of T-cell subsets to peripheral blood, and to identify paired α and β chains from single CD8+ T cells from an index patient who we followed for 18 years. Methods: We combined immunohistochemistry, laser microdissection, and single-cell multiplex PCR to characterize T-cell subtypes and identify paired TCRα and TCRβ chains from individual brain-infiltrating T cells in frozen brain sections. The lesional and peripheral TCR repertoires were analyzed by pyrosequencing. Results: We found that a TCR Vβ1+ T-cell population that was strikingly expanded in active brain lesions at clinical onset comprises several subclones expressing distinct yet closely related Vα7.2+ α chains, including a canonical Vα7.2-Jα33 chain of mucosal-associated invariant T (MAIT) cells. Three other α chains bear striking similarities in their antigen-recognizing, hypervariable complementarity determining region 3. Longitudinal repertoire studies revealed that the TCR chains that were massively expanded in brain at onset persisted for several years in blood or CSF but subsequently disappeared except for the canonical Vα7.2+ MAIT cell and a few other TCR sequences that were still detectable in blood after 18 years. Conclusions: Our observation that a massively expanded TCR Vβ1-Jβ2.3 chain paired with distinct yet closely related canonical or atypical MAIT cell–related α chains strongly points to an antigen-driven process in early active MS brain lesions.
Collapse
Affiliation(s)
- Kathrin Held
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| | - Latika Bhonsle-Deeng
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| | - Katherina Siewert
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| | - Wakiro Sato
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| | - Stephan Schmidt
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| | - Geraldine Rühl
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| | - Judy K M Ng
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| | - Peter Engerer
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| | - Markus Moser
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| | - Wolfgang E F Klinkert
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| | - Holger Babbe
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| | - Thomas Misgeld
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| | - Hartmut Wekerle
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| | - David-Axel Laplaud
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology (K.H., L.B.-D., K.S., W.S., E.B., G.R., J.K.M.N., R.H., K.D.), Ludwig-Maximilians University, Munich, Germany; Neurologische Gemeinschaftspraxis (S.S.), Gesundheitszentrum St. Johannes Hospital, Bonn, Germany; Institute of Neuronal Cell Biology (P.E., T.M.), TU Munich, Munich, Germany; Department for Molecular Medicine (M.M.), Max-Planck-Institute of Biochemistry, Martinsried, Germany; Department for Neuroimmunology (W.E.F.K., H.W.), Max-Planck-Institute of Neurobiology, Martinsried, Germany; Department of Genetics (H.B.), Harvard Medical School, Boston, MA; Munich Cluster for Systems Neurology (SyNergy) (T.M., H.W., R.H., K.D.), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) and Center for Integrated Protein Science (CIPSM) (T.M.), Munich, Germany; and INSERM, UMR 1064 (D.A.L.), Nantes, France
| |
Collapse
|
25
|
Salou M, Garcia A, Michel L, Gainche-Salmon A, Loussouarn D, Nicol B, Guillot F, Hulin P, Nedellec S, Baron D, Ramstein G, Soulillou JP, Brouard S, Nicot AB, Degauque N, Laplaud DA. Expanded CD8 T-cell sharing between periphery and CNS in multiple sclerosis. Ann Clin Transl Neurol 2015; 2:609-22. [PMID: 26125037 PMCID: PMC4479522 DOI: 10.1002/acn3.199] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 01/21/2023] Open
Abstract
Objective In multiple sclerosis (MS), central nervous system (CNS), cerebrospinal fluid (CSF), and blood display TCR clonal expansions of CD8+ T cells. These clones have been assumed – but never demonstrated – to be similar in the three compartments. Addressing this key question is essential to infer the implication of peripheral clonally expanded CD8+ T cells in the disease. Methods For the first time, TCR Vβ repertoire from paired blood (purified CD8+ and CD4+ T cells), CSF and CNS (22 lesions, various inflammatory and demyelination statuses) samples from three MS patients was studied using complementary determining region 3 (CDR3) spectratyping and high-throughput sequencing. In parallel, blood and CNS clonally expanded CD8+ T cells were characterized by fluorescent staining. Results TCR Vβ repertoire analysis revealed strong sharing of predominant T-cell clones between CNS lesions, CSF, and blood CD8+ T cells. In parallel, we showed that blood oligoclonal CD8+ T cells exhibit characteristics of pathogenic cells, as they displayed a bias toward a memory phenotype in MS patients, with increased expression of CCR5, CD11a and Granzyme B (GZM-B) compared to non oligoclonal counterparts. CNS-infiltrating T cells were mainly CD8 expressing CD11a and GZM-B. Interpretation This study highlights the predominant implication of CD8+ T cells in MS pathophysiology and demonstrates that potentially aggressive CD8+ T cells can be easily identified and characterized from blood and CSF samples.
Collapse
Affiliation(s)
- Marion Salou
- INSERM, UMR 1064 Nantes, F-44093, France ; Medicine Department, Nantes University Nantes, F-44035, France
| | - Alexandra Garcia
- INSERM, UMR 1064 Nantes, F-44093, France ; Nantes Hospital, ITUN Nantes, F-44093, France
| | - Laure Michel
- INSERM, UMR 1064 Nantes, F-44093, France ; Neurology Department, Nantes Hospital Nantes, F-44093, France
| | | | | | - Bryan Nicol
- INSERM, UMR 1064 Nantes, F-44093, France ; Medicine Department, Nantes University Nantes, F-44035, France
| | - Flora Guillot
- INSERM, UMR 1064 Nantes, F-44093, France ; Medicine Department, Nantes University Nantes, F-44035, France
| | - Philippe Hulin
- SFR François Bonamy, Cellular and Tissue Imaging Core Facility (MicroPICell) Nantes, F-44093, France
| | - Steven Nedellec
- SFR François Bonamy, Cellular and Tissue Imaging Core Facility (MicroPICell) Nantes, F-44093, France
| | - Daniel Baron
- INSERM, UMR 1064 Nantes, F-44093, France ; Medicine Department, Nantes University Nantes, F-44035, France ; Nantes Hospital, ITUN Nantes, F-44093, France
| | | | | | - Sophie Brouard
- INSERM, UMR 1064 Nantes, F-44093, France ; Nantes Hospital, ITUN Nantes, F-44093, France
| | - Arnaud B Nicot
- INSERM, UMR 1064 Nantes, F-44093, France ; Medicine Department, Nantes University Nantes, F-44035, France ; Nantes Hospital, ITUN Nantes, F-44093, France
| | - Nicolas Degauque
- INSERM, UMR 1064 Nantes, F-44093, France ; Nantes Hospital, ITUN Nantes, F-44093, France
| | - David A Laplaud
- INSERM, UMR 1064 Nantes, F-44093, France ; Neurology Department, Nantes Hospital Nantes, F-44093, France ; INSERM 004, Centre d'Investigation Clinique Nantes, F-44093, France
| |
Collapse
|
26
|
Babad J, Mukherjee G, Follenzi A, Ali R, Roep BO, Shultz LD, Santamaria P, Yang OO, Goldstein H, Greiner DL, DiLorenzo TP. Generation of β cell-specific human cytotoxic T cells by lentiviral transduction and their survival in immunodeficient human leucocyte antigen-transgenic mice. Clin Exp Immunol 2015; 179:398-413. [PMID: 25302633 DOI: 10.1111/cei.12465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2014] [Indexed: 01/23/2023] Open
Abstract
Several β cell antigens recognized by T cells in the non-obese diabetic (NOD) mouse model of type 1 diabetes (T1D) are also T cell targets in the human disease. While numerous antigen-specific therapies prevent diabetes in NOD mice, successful translation of rodent findings to patients has been difficult. A human leucocyte antigen (HLA)-transgenic mouse model incorporating human β cell-specific T cells might provide a better platform for evaluating antigen-specific therapies. The ability to study such T cells is limited by their low frequency in peripheral blood and the difficulty in obtaining islet-infiltrating T cells from patients. We have worked to overcome this limitation by using lentiviral transduction to 'reprogram' primary human CD8 T cells to express three T cell receptors (TCRs) specific for a peptide derived from the β cell antigen islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP265-273 ) and recognized in the context of the human class I major histocompatibility complex (MHC) molecule HLA-A2. The TCRs bound peptide/MHC multimers with a range of avidities, but all bound with at least 10-fold lower avidity than the anti-viral TCR used for comparison. One exhibited antigenic recognition promiscuity. The β cell-specific human CD8 T cells generated by lentiviral transduction with one of the TCRs released interferon (IFN)-γ in response to antigen and exhibited cytotoxic activity against peptide-pulsed target cells. The cells engrafted in HLA-A2-transgenic NOD-scid IL2rγ(null) mice and could be detected in the blood, spleen and pancreas up to 5 weeks post-transfer, suggesting the utility of this approach for the evaluation of T cell-modulatory therapies for T1D and other T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- J Babad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Connelley TK, Degnan K, Longhi CW, Morrison WI. Genomic analysis offers insights into the evolution of the bovine TRA/TRD locus. BMC Genomics 2014; 15:994. [PMID: 25408163 PMCID: PMC4289303 DOI: 10.1186/1471-2164-15-994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 11/04/2014] [Indexed: 01/30/2023] Open
Abstract
Background The TRA/TRD locus contains the genes for V(D)J somatic rearrangement of TRA and TRD chains expressed by αβ and γδ T cells respectively. Previous studies have demonstrated that the bovine TRA/TRD locus contains an exceptionally large number of TRAV/TRDV genes. In this study we combine genomic and transcript analysis to provide insights into the evolutionary development of the bovine TRA/TRD locus and the remarkable TRAV/TRDV gene repertoire. Results Annotation of the UMD3.1 assembly identified 371 TRAV/TRDV genes (distributed in 42 subgroups), 3 TRDJ, 6 TRDD, 62 TRAJ and single TRAC and TRDC genes, most of which were located within a 3.5 Mb region of chromosome 10. Most of the TRAV/TRDV subgroups have multiple members and several have undergone dramatic expansion, most notably TRDV1 (60 genes). Wide variation in the proportion of pseudogenes within individual subgroups, suggest that differential ‘birth’ and ‘death’ rates have been used to form a functional bovine TRAV/TRDV repertoire which is phylogenetically distinct from that of humans and mice. The expansion of the bovine TRAV/TRDV gene repertoire has predominantly been achieved through a complex series of homology unit (regions of DNA containing multiple gene) replications. Frequent co-localisation within homology units of genes from subgroups with low and high pseudogene proportions suggest that replication of homology units driven by evolutionary selection for the former may have led to a ‘collateral’ expansion of the latter. Transcript analysis was used to define the TRAV/TRDV subgroups available for recombination of TRA and TRD chains and demonstrated preferential usage of different subgroups by the expressed TRA and TRD repertoires, indicating that TRA and TRD selection have had distinct impacts on the evolution of the TRAV/TRDV repertoire. Conclusion Both TRA and TRD selection have contributed to the evolution of the bovine TRAV/TRDV repertoire. However, our data suggest that due to homology unit duplication TRD selection for TRDV1 subgroup expansion may have substantially contributed to the genomic expansion of several TRAV subgroups. Such data demonstrate how integration of genomic and transcript data can provide a more nuanced appreciation of the evolutionary dynamics that have led to the dramatically expanded bovine TRAV/TRDV repertoire. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-994) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Timothy K Connelley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK.
| | | | | | | |
Collapse
|
28
|
Dörrie J, Krug C, Hofmann C, Müller I, Wellner V, Knippertz I, Schierer S, Thomas S, Zipperer E, Printz D, Fritsch G, Schuler G, Schaft N, Geyeregger R. Human adenovirus-specific γ/δ and CD8+ T cells generated by T-cell receptor transfection to treat adenovirus infection after allogeneic stem cell transplantation. PLoS One 2014; 9:e109944. [PMID: 25289687 PMCID: PMC4188623 DOI: 10.1371/journal.pone.0109944] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/05/2014] [Indexed: 12/01/2022] Open
Abstract
Human adenovirus infection is life threatening after allogeneic haematopoietic stem cell transplantation (HSCT). Immunotherapy with donor-derived adenovirus-specific T cells is promising; however, 20% of all donors lack adenovirus-specific T cells. To overcome this, we transfected α/β T cells with mRNA encoding a T-cell receptor (TCR) specific for the HLA-A*0101-restricted peptide LTDLGQNLLY from the adenovirus hexon protein. Furthermore, since allo-reactive endogenous TCR of donor T lymphocytes would induce graft-versus-host disease (GvHD) in a mismatched patient, we transferred the TCR into γ/δ T cells, which are not allo-reactive. TCR-transfected γ/δ T cells secreted low quantities of cytokines after antigen-specific stimulation, which were increased dramatically after co-transfection of CD8α-encoding mRNA. In direct comparison with TCR-transfected α/β T cells, TCR-CD8α-co-transfected γ/δ T cells produced more tumor necrosis factor (TNF), and lysed peptide-loaded target cells as efficiently. Most importantly, TCR-transfected α/β T cells and TCR-CD8α-co-transfected γ/δ T cells efficiently lysed adenovirus-infected target cells. We show here, for the first time, that not only α/β T cells but also γ/δ T cells can be equipped with an adenovirus specificity by TCR-RNA electroporation. Thus, our strategy offers a new means for the immunotherapy of adenovirus infection after allogeneic HSCT.
Collapse
MESH Headings
- Adenoviridae Infections/etiology
- Adenoviridae Infections/immunology
- Adenoviridae Infections/prevention & control
- Adenoviruses, Human/immunology
- Amino Acid Sequence
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- CD8 Antigens/chemistry
- CD8 Antigens/genetics
- CD8 Antigens/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Cloning, Molecular
- Cytokines/biosynthesis
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Electroporation
- Gene Expression
- Hematopoietic Stem Cell Transplantation/adverse effects
- Humans
- Jurkat Cells
- Molecular Sequence Data
- Peptides/chemistry
- Peptides/genetics
- Peptides/immunology
- Peptides/pharmacology
- Primary Cell Culture
- RNA/genetics
- RNA/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Transfection
- Transplantation, Homologous
- Unrelated Donors
Collapse
Affiliation(s)
- Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Krug
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Hofmann
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ina Müller
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Verena Wellner
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ilka Knippertz
- Department of Immune Modulation at the Dept. of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stephan Schierer
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simone Thomas
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Elke Zipperer
- St. Anna Kinderkrebsforschung e.V., Children's Cancer Research Institute, Vienna, Austria
| | - Dieter Printz
- St. Anna Kinderkrebsforschung e.V., Children's Cancer Research Institute, Vienna, Austria
| | - Gerhard Fritsch
- St. Anna Kinderkrebsforschung e.V., Children's Cancer Research Institute, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gerold Schuler
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| | - Rene Geyeregger
- St. Anna Kinderkrebsforschung e.V., Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
29
|
Commandeur S, Coppola M, Dijkman K, Friggen AH, van Meijgaarden KE, van den Eeden SJF, Wilson L, van der Ploeg-van Schip JJ, Franken KLMC, Geluk A, Ottenhoff THM. Clonal analysis of the T-cell response to in vivo expressed Mycobacterium tuberculosis protein Rv2034, using a CD154 expression based T-cell cloning method. PLoS One 2014; 9:e99203. [PMID: 24905579 PMCID: PMC4048274 DOI: 10.1371/journal.pone.0099203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/12/2014] [Indexed: 01/06/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of death worldwide. A better understanding of the role of CD4+ and CD8+ T cells, which are both important to TB protection, is essential to unravel the mechanisms of protection and to identify the key antigens seen by these T cells. We have recently identified a set of in vivo expressed Mtb genes (IVE-TB) which is expressed during in vivo pulmonary infection in mice, and shown that their encoded antigens are potently recognized by polyclonal T cells from tuberculin skin test-positive, in vitro ESAT-6/CFP10-responsive individuals. Here we have cloned T cells specific for one of these newly identified in vivo expressed Mtb (IVE-TB) antigens, Rv2034. T cells were enriched based on the expression of CD154 (CD40L), which represents a new method for selecting antigen-specific (low frequency) T cells independent of their specific function. An Rv2034-specific CD4+ T-cell clone expressed the Th1 markers T-bet, IFN-γ, TNF-α, IL-2 and the cytotoxicity related markers granzyme B and CD107a as measured by flow cytometry. The clone specifically recognized Rv2034 protein, Rv2034 peptide p81-100 and Mtb lysate. Remarkably, while the recognition of the dominant p81-100 epitope was HLA-DR restricted, the T-cell clone also recognized a neighboring epitope (p88-107) in an HLA-DR- as well as HLA-DQ1-restricted fashion. Importantly, the T-cell clone was able to inhibit Mtb outgrowth from infected monocytes significantly. The characterization of the polyfunctional and Mtb inhibitory T-cell response to IVE-TB Rv2034 at the clonal level provides detailed further insights into the potential of IVE-TB antigens as new vaccine candidate antigens in TB. Our new approach allowed the identification of T-cell subsets that likely play a significant role in controlling Mtb infection, and can be applied to the analysis of T-cell responses in patient populations.
Collapse
Affiliation(s)
- Susanna Commandeur
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariateresa Coppola
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin Dijkman
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke H. Friggen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Louis Wilson
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Kees L. M. C. Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
30
|
Bowerman NA, Falta MT, Mack DG, Wehrmann F, Crawford F, Mroz MM, Maier LA, Kappler JW, Fontenot AP. Identification of multiple public TCR repertoires in chronic beryllium disease. THE JOURNAL OF IMMUNOLOGY 2014; 192:4571-80. [PMID: 24719461 DOI: 10.4049/jimmunol.1400007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic beryllium disease (CBD) is a granulomatous lung disease characterized by the accumulation of beryllium (Be)-specific CD4(+) T cells in bronchoalveolar lavage. These expanded CD4(+) T cells are composed of oligoclonal T cell subsets, suggesting their recruitment to the lung in response to conventional Ag. In the current study, we noted that all bronchoalveolar lavage-derived T cell lines from HLA-DP2-expressing CBD patients contained an expansion of Be-responsive Vβ5.1(+) CD4(+) T cells. Using Be-loaded HLA-DP2-peptide tetramers, the majority of tetramer-binding T cells also expressed Vβ5.1 with a highly conserved CDR3β motif. Interestingly, Be-specific, Vβ5.1-expressing CD4(+) T cells displayed differential HLA-DP2-peptide tetramer staining intensity, and sequence analysis of the distinct tetramer-binding subsets showed that the two populations differed by a single conserved amino acid in the CDR3β motif. TCR Vα-chain analysis of purified Vβ5.1(+) CD4(+) T cells based on differential tetramer-binding intensity showed differing TCR Vα-chain pairing requirements, with the high-affinity population having promiscuous Vα-chain pairing and the low-affinity subset requiring restricted Vα-chain usage. Importantly, disease severity, as measured by loss of lung function, was inversely correlated with the frequency of tetramer-binding CD4(+) T cells in the lung. Our findings suggest the presence of a dominant Be-specific, Vβ5.1-expressing public T cell repertoire in the lungs of HLA-DP2-expressing CBD patients using promiscuous Vα-chain pairing to recognize an identical HLA-DP2-peptide/Be complex. Importantly, the inverse relationship between expansion of CD4(+) T cells expressing these public TCRs and disease severity suggests a pathogenic role for these T cells in CBD.
Collapse
Affiliation(s)
- Natalie A Bowerman
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hedlund G, Eriksson H, Sundstedt A, Forsberg G, Jakobsen BK, Pumphrey N, Rödström K, Lindkvist-Petersson K, Björk P. The tumor targeted superantigen ABR-217620 selectively engages TRBV7-9 and exploits TCR-pMHC affinity mimicry in mediating T cell cytotoxicity. PLoS One 2013; 8:e79082. [PMID: 24194959 PMCID: PMC3806850 DOI: 10.1371/journal.pone.0079082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 09/26/2013] [Indexed: 01/20/2023] Open
Abstract
The T lymphocytes are the most important effector cells in immunotherapy of cancer. The conceptual objective for developing the tumor targeted superantigen (TTS) ABR-217620 (naptumomab estafenatox, 5T4Fab-SEA/E-120), now in phase 3 studies for advanced renal cell cancer, was to selectively coat tumor cells with cytotoxic T lymphocytes (CTL) target structures functionally similar to natural CTL pMHC target molecules. Here we present data showing that the molecular basis for the anti-tumor activity by ABR-217620 resides in the distinct interaction between the T cell receptor β variable (TRBV) 7-9 and the engineered superantigen (Sag) SEA/E-120 in the fusion protein bound to the 5T4 antigen on tumor cells. Multimeric but not monomeric ABR-217620 selectively stains TRBV7-9 expressing T lymphocytes from human peripheral blood similar to antigen specific staining of T cells with pMHC tetramers. SEA/E-120 selectively activates TRBV7-9 expressing T lymphocytes resulting in expansion of the subset. ABR-217620 selectively triggers TRBV7-9 expressing cytotoxic T lymphocytes to kill 5T4 positive tumor cells. Furthermore, ABR-217620 activates TRBV7-9 expressing T cell line cells in the presence of cell- and bead-bound 5T4 tumor antigen. Surface plasmon resonance analysis revealed that ABR-217620 binds to 5T4 with high affinity, to TRBV7-9 with low affinity and to MHC class II with very low affinity. The T lymphocyte engagement by ABR-217620 is constituted by displaying high affinity binding to the tumor cells (KD approximately 1 nM) and with the mimicry of natural productive immune TCR-pMHC contact using affinities of around 1 µM. This difference in kinetics between the two components of the ABR-217620 fusion protein will bias the binding towards the 5T4 target antigen, efficiently activating T-cells via SEA/E-120 only when presented by the tumor cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karin Rödström
- Experimental Medical Science, Lund University, Lund, Sweden
| | | | | |
Collapse
|
32
|
Karabiyik A, Peck AB, Nguyen CQ. The important role of T cells and receptor expression in Sjögren's syndrome. Scand J Immunol 2013; 78:157-66. [PMID: 23679844 DOI: 10.1111/sji.12079] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/16/2013] [Indexed: 12/17/2022]
Abstract
Sjögren's syndrome (SjS), an autoimmune disease characterized by exocrine gland dysfunction leading to dry mouth and dry eye diseases, is typified by progressive leucocyte infiltrations of the salivary and lacrimal glands. Histologically, these leucocyte infiltrations generally establish periductal aggregates, referred to as lymphocytic foci (LF), which occasionally appear as germinal centre (GC)-like structures. The formation and organization of these LF suggest an important and dynamic role for helper T cells (TH), specifically TH1, TH2 and the recently discovered TH17, in development and onset of clinical SjS, considered a B cell-mediated hypersensitivity type 2 disease. Despite an ever-increasing focus on identifying the underlying aetiology of SjS, defining factors that initiate this autoimmune disease remain a mystery. Thus, determining interactions between infiltrating TH cells and exocrine gland tissue (auto-)antigens represents a fertile research endeavour. This review discusses pathological functions of TH cells in SjS, the current status of TH cell receptor gene rearrangements associated with human and mouse models of SjS and potential future prospects for identifying receptor-autoantigen interactions.
Collapse
Affiliation(s)
- A Karabiyik
- Department of Pathology and Infectious Diseases, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
33
|
Singh SK, Tummers B, Schumacher TN, Gomez R, Franken KLMC, Verdegaal EM, Laske K, Gouttefangeas C, Ottensmeier C, Welters MJP, Britten CM, van der Burg SH. The development of standard samples with a defined number of antigen-specific T cells to harmonize T cell assays: a proof-of-principle study. Cancer Immunol Immunother 2013; 62:489-501. [PMID: 22986454 PMCID: PMC3589624 DOI: 10.1007/s00262-012-1351-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/02/2012] [Indexed: 11/05/2022]
Abstract
The validation of assays that quantify antigen-specific T cell responses is critically dependent on cell samples that contain clearly defined measurable numbers of antigen-specific T cells. An important requirement is that such cell samples are handled and analyzed in a comparable fashion to peripheral blood mononuclear cells (PBMC). We performed a proof-of-principle study to show that retrovirally TCR-transduced T cells spiked at defined numbers in autologous PBMC can be used as standard samples for HLA/peptide multimer staining. NY-ESO-1157-165-specific, TCR-transduced CD8+ T cell batches were successfully generated from PBMC of several HLA-A*0201 healthy donors, purified by magnetic cell sorting on the basis of HLA tetramer (TM) staining and expanded with specific antigen in vitro. When subsequently spiked into autologous PBMC, the detection of these CD3+CD8+TM+ T cells was highly accurate with a mean accuracy of 91.6 %. The standard cells can be preserved for a substantial period of time in liquid nitrogen. Furthermore, TM staining of fresh and cryopreserved standard samples diluted at decreasing concentrations into autologous cryopreserved unspiked PBMC revealed that the spiked CD3+CD8+TM+ T cells could be accurately detected at all dilutions in a linear fashion with a goodness-of-fit of over 0.99 at a frequency of at least 0.02 % among the CD3+CD8+ T cell population. Notably, the CD3+CD8+TM+ cells of the standard samples were located exactly within the gates used to analyze patient samples and displayed a similar scatter pattern. The performance of the cryopreserved standard samples in the hands of 5 external investigators was good with an inter-laboratory variation of 32.9 % and the doubtless identification of one outlier.
Collapse
Affiliation(s)
- Satwinder Kaur Singh
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Bart Tummers
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Ton N. Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Raquel Gomez
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kees L. M. C. Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Els M. Verdegaal
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Karoline Laske
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | | | | | - Marij J. P. Welters
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Cedrik M. Britten
- Department of the Translational Oncology, University Medical Center of the Johannes-Gutenberg-University, Mainz, Germany
| | - Sjoerd H. van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
34
|
Yin L, Scott-Browne J, Kappler JW, Gapin L, Marrack P. T cells and their eons-old obsession with MHC. Immunol Rev 2013; 250:49-60. [PMID: 23046122 PMCID: PMC3963424 DOI: 10.1111/imr.12004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
T cells bearing receptors made up of α and β chains (TCRs) usually react with peptides bound to major histocompatibility complex proteins (MHC). This bias could be imposed by positive selection, the phenomenon that selects thymocytes to mature into T cells only if the TCRs they bear react with low but appreciable affinity with MHC + peptide combinations in the thymus cortex. However, it is also possible that the polypeptides of TCRs themselves do not have random specificities but rather are biased toward reaction with MHC. Evolution would therefore have selected for a collection of TCR variable elements that are prone to react with MHC. If this were to be so, positive selection would act on thymocytes bearing a pre biased collection of TCRs to pick out those that react to some extent, but not too well, with self MHC + self-peptides. A problem with studies of this evolutionary idea is the fact that there are many TCR variable elements and that these differ considerably in the amino acids with which they contact MHC. However, recent experiments by our group and others suggest that one group of TCR variable elements, those related to the mouse Vβ8 family, has amino acids in their CDR2 regions that consistently bind a particular site on an MHC α-helix. Other groups of variable elements may use different patterns of amino acids to achieve the same goal. Mutation of these amino acids reduces the ability of T cells and thymocytes to react with MHC. These amino acids are present in the variable regions of distantly related species such as sharks and human. Overall the data indicate that TCR elements have indeed been selected by evolution to react with MHC proteins. Many mysteries about TCRs remain to be solved, including the nature of auto-recognition, the basis of MHC allele specificity, and the very nature and complexity of TCRs on mature T cells.
Collapse
Affiliation(s)
- Lei Yin
- Integrated Department of Immunology, HHMI, National Jewish Health, Denver, CO, USA
| | | | | | | | | |
Collapse
|
35
|
Bobinet M, Vignard V, Rogel A, Khammari A, Dreno B, Lang F, Labarriere N. MELOE-1 antigen contains multiple HLA class II T cell epitopes recognized by Th1 CD4+ T cells from melanoma patients. PLoS One 2012; 7:e51716. [PMID: 23284752 PMCID: PMC3527452 DOI: 10.1371/journal.pone.0051716] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/05/2012] [Indexed: 11/24/2022] Open
Abstract
MELOE-1 is an overexpressed melanoma antigen containing a HLA-A2 restricted epitope, involved in melanoma immunosurveillance of patients adoptively transferred with tumour infiltrating lymphocytes (TIL). The use of the full-length antigen (46 aa) for anti-melanoma vaccination could be considered, subject to the presence of Th epitopes all along MELOE-1 sequence. Thus, in this study we evaluated in vitro the immunoprevalence of the different regions of MELOE-1 (i.e. their ability to induce CD4 T cell responses in vitro from PBMC). Stimulation of PBMC from healthy subjects with MELOE-1 induced the amplification of CD4 T cells specific for various regions of the protein in multiple HLA contexts, for each tested donor. We confirmed these results in a panel of melanoma patients, and documented that MELOE-1 specific CD4 T cells, were mainly Th1 cells, presumably favourable to the amplification of CD8 specific T cells. Using autologous DC, we further showed that these class II epitopes could be naturally processed from MELOE-1 whole protein and identified minimal epitopes derived from each region of MELOE-1, and presented in four distinct HLA contexts. In conclusion, vaccination with MELOE-1 whole polypeptide should induce specific Th1 CD4 responses in a majority of melanoma patients, stimulating the amplification of CD8 effector cells, reactive against melanoma cells.
Collapse
Affiliation(s)
- Mathilde Bobinet
- Inserm, U892, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
| | - Virginie Vignard
- Inserm, U892, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Anne Rogel
- Inserm, U892, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
| | - Amir Khammari
- Inserm, U892, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Brigitte Dreno
- Inserm, U892, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Francois Lang
- Inserm, U892, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
| | - Nathalie Labarriere
- Inserm, U892, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
- * E-mail:
| |
Collapse
|
36
|
Structural features underlying T-cell receptor sensitivity to concealed MHC class I micropolymorphisms. Proc Natl Acad Sci U S A 2012; 109:E3483-92. [PMID: 23161907 DOI: 10.1073/pnas.1207896109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polymorphic differences distinguishing MHC class I subtypes often permit the presentation of shared epitopes in conformationally identical formats but can affect T-cell repertoire selection, differentially impacting autoimmune susceptibilities and viral clearance in vivo. The molecular mechanisms underlying this effect are not well understood. We performed structural, thermodynamic, and functional analyses of a conserved T-cell receptor (TCR) which is frequently expanded in response to a HIV-1 epitope when presented by HLA-B*5701 but is not selected by HLA-B*5703, which differs from HLA-B*5701 by two concealed polymorphisms. Our findings illustrate that although both HLA-B*57 subtypes display the epitope in structurally conserved formats, the impact of their polymorphic differences occurs directly as a consequence of TCR ligation, primarily because of peptide adjustments required for TCR binding, which involves the interplay of polymorphic residues and water molecules. These minor differences culminate in subtype-specific differential TCR-binding kinetics and cellular function. Our data demonstrate a potential mechanism whereby the most subtle MHC class I micropolymorphisms can influence TCR use and highlight their implications for disease outcomes.
Collapse
|
37
|
Winchester R, Wiesendanger M, Zhang HZ, Steshenko V, Peterson K, Geraldino-Pardilla L, Ruiz-Vazquez E, D'Agati V. Immunologic characteristics of intrarenal T cells: trafficking of expanded CD8+ T cell β-chain clonotypes in progressive lupus nephritis. ACTA ACUST UNITED AC 2012; 64:1589-600. [PMID: 22130908 DOI: 10.1002/art.33488] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To better define the immunologic character of the T cell infiltrate in lupus nephritis. METHODS We performed double immunohistochemical staining and clonotypic T cell receptor (TCR) β-chain sequencing in multiple anatomic regions isolated by laser-capture microdissection from renal biopsy samples. RESULTS Systemic lupus erythematosus (SLE) kidneys have a variably patterned and often extensive infiltrate of predominantly clonally expanded T cells of CD4 and CD8 lineages. CD4+ T cells were prominent in nearly two-thirds of SLE biopsy samples and were distributed as broad periglomerular aggregates or intermixed with CD8+ T cells forming periglomerular caps. Sequencing of the TCR from periglomerular regions showed a predominance of clonally expanded T cells. The CD8+ T cells, which were present in all biopsy samples, often adhered to Bowman's capsule and infiltrated the tubular epithelium. They exhibited features that suggest participation in an adaptive immune response: differentiation into CD28(null) memory-effector phenotype, trafficking of the same expanded clonotype to different regions of the kidney and to the peripheral blood, and clonal persistence for years in repeat biopsy samples. CD8+ T cell tubulitis was especially associated with progressive changes. CONCLUSION The immunologic characteristics of the infiltrating CD4+ and CD8+ T cells in the lupus kidney indicate that they have the potential to mediate injury, which may be relevant to development of progressive renal failure. Whereas the oligoclonality of the CD4+ T cell infiltrate is consistent with the paradigm of SLE as a class II major histocompatibility complex-associated autoimmune disease, the finding of CD8+ T cell clonality and trafficking implies participation in a distinct systemic adaptive immune response.
Collapse
Affiliation(s)
- Robert Winchester
- College of Physicians and Surgeons, Columbia University Medical Center, P&S Building, Room 10-432, 630 West 168th Street, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim SM, Bhonsle L, Besgen P, Nickel J, Backes A, Held K, Vollmer S, Dornmair K, Prinz JC. Analysis of the paired TCR α- and β-chains of single human T cells. PLoS One 2012; 7:e37338. [PMID: 22649519 PMCID: PMC3359365 DOI: 10.1371/journal.pone.0037338] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/20/2012] [Indexed: 01/06/2023] Open
Abstract
Analysis of the paired i.e. matching TCR α- and β-chain rearrangements of single human T cells is required for a precise investigation of clonal diversity, tissue distribution and specificity of protective and pathologic T-cell mediated immune responses. Here we describe a multiplex RT-PCR based technology, which for the first time allows for an unbiased analysis of the complete sequences of both α- and β-chains of TCR from single T cells. We validated our technology by the analysis of the pathologic T-cell infiltrates from tissue lesions of two T-cell mediated autoimmune diseases, psoriasis vulgaris (PV) and multiple sclerosis (MS). In both disorders we could detect various T cell clones as defined by multiple T cells with identical α- and β-chain rearrangements distributed across the tissue lesions. In PV, single cell TCR analysis of lesional T cells identified clonal CD8+ T cell expansions that predominated in the epidermis of psoriatic plaques. An MS brain lesion contained two dominant CD8+ T-cell clones that extended over the white and grey matter and meninges. In both diseases several clonally expanded T cells carried dual TCRs composed of one Vβ and two different Vα-chain rearrangements. These results show that our technology is an efficient instrument to analyse αβ-T cell responses with single cell resolution in man. It should facilitate essential new insights into the mechanisms of protective and pathologic immunity in many human T-cell mediated conditions and allow for resurrecting functional TCRs from any αβ-T cell of choice that can be used for investigating their specificity.
Collapse
Affiliation(s)
- Song-Min Kim
- Department of Dermatology, Ludwig-Maximilian-University, Munich, Germany
| | - Latika Bhonsle
- Institute of Clinical Neuroimmunology, Ludwig-Maximilian-University, Munich, Germany
- Max-Planck-Institute of Neurobiology, Martinsried, Germany
| | - Petra Besgen
- Department of Dermatology, Ludwig-Maximilian-University, Munich, Germany
| | - Jens Nickel
- Department of Dermatology, Ludwig-Maximilian-University, Munich, Germany
| | - Anna Backes
- Institute of Clinical Neuroimmunology, Ludwig-Maximilian-University, Munich, Germany
- Max-Planck-Institute of Neurobiology, Martinsried, Germany
| | - Kathrin Held
- Institute of Clinical Neuroimmunology, Ludwig-Maximilian-University, Munich, Germany
| | - Sigrid Vollmer
- Department of Dermatology, Ludwig-Maximilian-University, Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Ludwig-Maximilian-University, Munich, Germany
- Max-Planck-Institute of Neurobiology, Martinsried, Germany
| | - Joerg C. Prinz
- Department of Dermatology, Ludwig-Maximilian-University, Munich, Germany
- * E-mail:
| |
Collapse
|
39
|
Bruder J, Siewert K, Obermeier B, Malotka J, Scheinert P, Kellermann J, Ueda T, Hohlfeld R, Dornmair K. Target specificity of an autoreactive pathogenic human γδ-T cell receptor in myositis. J Biol Chem 2012; 287:20986-95. [PMID: 22549773 DOI: 10.1074/jbc.m112.356709] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In polymyositis and inclusion body myositis, muscle fibers are surrounded and invaded by CD8-positive cytotoxic T cells expressing the αβ-T cell receptor (αβ-TCR) for antigen. In a rare variant of myositis, muscle fibers are similarly attacked by CD8-negative T cells expressing the γδ-TCR (γδ-T cell-mediated myositis). We investigated the antigen specificity of a human γδ-TCR previously identified in an autoimmune tissue lesion of γδ-T cell-mediated myositis. We show that this Vγ1.3Vδ2-TCR, termed M88, recognizes various proteins from different species. Several of these proteins belong to the translational apparatus, including some bacterial and human aminoacyl-tRNA synthetases (AA-RS). Specifically, M88 recognizes histidyl-tRNA synthetase, an antigen known to be also targeted by autoantibodies called anti-Jo-1. The M88 target epitope is strictly conformational, independent of post-translational modification, and exposed on the surface of the respective antigenic protein. Extensive mutagenesis of the translation initiation factor-1 from Escherichia coli (EcIF1), which served as a paradigm antigen with known structure, showed that a short α-helical loop around amino acids 39 to 42 of EcIF1 is a major part of the M88 epitope. Mutagenesis of M88 showed that the complementarity determining regions 3 of both γδ-TCR chains contribute to antigen recognition. M88 is the only known example of a molecularly characterized γδ-TCR expressed by autoaggressive T cells in tissue. The observation that AA-RS are targeted by a γδ-T cell and by autoantibodies reveals an unexpected link between T cell and antibody responses in autoimmune myositis.
Collapse
Affiliation(s)
- Jessica Bruder
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University, D-81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 2012; 119:5697-705. [PMID: 22535661 DOI: 10.1182/blood-2012-01-405365] [Citation(s) in RCA: 402] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical-grade T cells are genetically modified ex vivo to express a chimeric antigen receptor (CAR) to redirect specificity to a tumor associated antigen (TAA) thereby conferring antitumor activity in vivo. T cells expressing a CD19-specific CAR recognize B-cell malignancies in multiple recipients independent of major histocompatibility complex (MHC) because the specificity domains are cloned from the variable chains of a CD19 monoclonal antibody. We now report a major step toward eliminating the need to generate patient-specific T cells by generating universal allogeneic TAA-specific T cells from one donor that might be administered to multiple recipients. This was achieved by genetically editing CD19-specific CAR(+) T cells to eliminate expression of the endogenous αβ T-cell receptor (TCR) to prevent a graft-versus-host response without compromising CAR-dependent effector functions. Genetically modified T cells were generated using the Sleeping Beauty system to stably introduce the CD19-specific CAR with subsequent permanent deletion of α or β TCR chains with designer zinc finger nucleases. We show that these engineered T cells display the expected property of having redirected specificity for CD19 without responding to TCR stimulation. CAR(+)TCR(neg) T cells of this type may potentially have efficacy as an off-the-shelf therapy for investigational treatment of B-lineage malignancies.
Collapse
|
41
|
Held K, Eiglmeier I, Himmelein S, Sinicina I, Brandt T, Theil D, Dornmair K, Derfuss T. Clonal expansions of CD8⁺ T cells in latently HSV-1-infected human trigeminal ganglia. J Neurovirol 2011; 18:62-8. [PMID: 22167486 DOI: 10.1007/s13365-011-0067-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/23/2011] [Accepted: 11/28/2011] [Indexed: 12/29/2022]
Abstract
Herpes simplex virus type 1 latency in trigeminal ganglia (TG) is accompanied by a chronic immune cell infiltration. The aim of this study was to analyse the T-cell receptor β-chain repertoire in latently HSV-1 infected human TG. Using complementarity-determining region 3 spectratyping, 74 expanded β-chain sequences were identified in five TG. No clone appeared in more than one subject. Similar clones were present in the right and the left TG of two subjects. This indicates that these T cells are primed in the periphery and recognise the same antigen in the TG of both sides.
Collapse
Affiliation(s)
- Kathrin Held
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wilson GJ, Seo KS, Cartwright RA, Connelley T, Chuang-Smith ON, Merriman JA, Guinane CM, Park JY, Bohach GA, Schlievert PM, Morrison WI, Fitzgerald JR. A novel core genome-encoded superantigen contributes to lethality of community-associated MRSA necrotizing pneumonia. PLoS Pathog 2011; 7:e1002271. [PMID: 22022262 PMCID: PMC3192841 DOI: 10.1371/journal.ppat.1002271] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 08/01/2011] [Indexed: 01/08/2023] Open
Abstract
Bacterial superantigens (SAg) stimulate T-cell hyper-activation resulting in immune modulation and severe systemic illnesses such as Staphylococcus aureus toxic shock syndrome. However, all known S. aureus SAgs are encoded by mobile genetic elements and are made by only a proportion of strains. Here, we report the discovery of a novel SAg staphylococcal enterotoxin-like toxin X (SElX) encoded in the core genome of 95% of phylogenetically diverse S. aureus strains from human and animal infections, including the epidemic community-associated methicillin-resistant S. aureus (CA-MRSA) USA300 clone. SElX has a unique predicted structure characterized by a truncated SAg B-domain, but exhibits the characteristic biological activities of a SAg including Vβ-specific T-cell mitogenicity, pyrogenicity and endotoxin enhancement. In addition, SElX is expressed by clinical isolates in vitro, and during human, bovine, and ovine infections, consistent with a broad role in S. aureus infections of multiple host species. Phylogenetic analysis suggests that the selx gene was acquired horizontally by a progenitor of the S. aureus species, followed by allelic diversification by point mutation and assortative recombination resulting in at least 17 different alleles among the major pathogenic clones. Of note, SElX variants made by human- or ruminant-specific S. aureus clones demonstrated overlapping but distinct Vβ activation profiles for human and bovine lymphocytes, indicating functional diversification of SElX in different host species. Importantly, SElX made by CA-MRSA USA300 contributed to lethality in a rabbit model of necrotizing pneumonia revealing a novel virulence determinant of CA-MRSA disease pathogenesis. Taken together, we report the discovery and characterization of a unique core genome-encoded superantigen, providing new insights into the evolution of pathogenic S. aureus and the molecular basis for severe infections caused by the CA-MRSA USA300 epidemic clone. Staphylococcus aureus is a global pathogen, responsible for an array of different illnesses in humans and animals. In particular, community-associated methicillin-resistant S. aureus (CA-MRSA) strains of the pandemic USA300 clone have the capacity to cause lethal human necrotizing pneumonia, but the molecular basis for the enhanced virulence remains unclear. Bacterial superantigens (SAg) stimulate T-cell hyper-activation resulting in severe systemic illnesses such as toxic shock syndrome (TSS). However, all S. aureus SAgs identified to date are encoded by mobile genetic elements found only in a proportion of clinical isolates. Here, we report the discovery of a unique core genome-encoded SAg (SElX) which was acquired by an ancestor of the S. aureus species and which has undergone genetic and functional diversification in pathogenic clones infecting humans and animals. Importantly, we report that SElX made by pandemic USA300 contributes to lethality in a rabbit model of human necrotizing pneumonia revealing a novel virulence determinant of severe CA-MRSA infection.
Collapse
Affiliation(s)
- Gillian J. Wilson
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Keun Seok Seo
- Department of Basic Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Robyn A. Cartwright
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Timothy Connelley
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Olivia N. Chuang-Smith
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Joseph A. Merriman
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Caitriona M. Guinane
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Joo Youn Park
- Department of Basic Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Gregory A. Bohach
- Department of Basic Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Patrick M. Schlievert
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - W. Ivan Morrison
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - J. Ross Fitzgerald
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Pellicci DG, Clarke AJ, Patel O, Mallevaey T, Beddoe T, Le Nours J, Uldrich AP, McCluskey J, Besra GS, Porcelli SA, Gapin L, Godfrey DI, Rossjohn J. Recognition of β-linked self glycolipids mediated by natural killer T cell antigen receptors. Nat Immunol 2011; 12:827-33. [PMID: 21804559 DOI: 10.1038/ni.2076] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/22/2011] [Indexed: 12/13/2022]
Abstract
The most potent foreign antigens for natural killer T cells (NKT cells) are α-linked glycolipids, whereas NKT cell self-reactivity involves weaker recognition of structurally distinct β-linked glycolipid antigens. Here we provide the mechanism for the autoreactivity of T cell antigen receptors (TCRs) on NKT cells to the mono- and tri-glycosylated β-linked agonists β-galactosylceramide (β-GalCer) and isoglobotrihexosylceramide (iGb3), respectively. In binding these disparate antigens, the NKT cell TCRs docked onto CD1d similarly, achieving this by flattening the conformation of the β-linked ligands regardless of the size of the glycosyl head group. Unexpectedly, the antigenicity of iGb3 was attributable to its terminal sugar group making compensatory interactions with CD1d. Thus, the NKT cell TCR molds the β-linked self ligands to resemble the conformation of foreign α-linked ligands, which shows that induced-fit molecular mimicry can underpin the self-reactivity of NKT cell TCRs to β-linked antigens.
Collapse
Affiliation(s)
- Daniel G Pellicci
- Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Winchester R, Wiesendanger M, O'Brien W, Zhang HZ, Maurer MS, Gillam LD, Schwartz A, Marboe C, Stewart AS. Circulating activated and effector memory T cells are associated with calcification and clonal expansions in bicuspid and tricuspid valves of calcific aortic stenosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:1006-14. [PMID: 21677140 PMCID: PMC3131440 DOI: 10.4049/jimmunol.1003521] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We sought to delineate further the immunological significance of T lymphocytes infiltrating the valve leaflets in calcific aortic stenosis (CAS) and determine whether there were associated alterations in circulating T cells. Using clonotypic TCR β-chain length and sequence analysis we confirmed that the repertoire of tricuspid CAS valves contains numerous expanded T cell clones with varying degrees of additional polyclonality, which was greatest in cases with severe calcification. We now report a similar proportion of clonal expansions in the much younger bicuspid valve CAS cases. Peripheral blood flow cytometry revealed elevations in HLA-DR(+) activated CD8 cells and in the CD8(+)CD28(null)CD57(+) memory-effector subset that were significantly greater in both bicuspid and tricuspid CAS cases with more severe valve calcification. Lesser increases of CD4(+)CD28(null) T cells were identified, principally in cases with concurrent atherosclerotic disease. Upon immunostaining the CD8 T cells in all valves were mainly CD28(null), and CD8 T cell percentages were greatest in valves with oligoclonal repertoires. T cell clones identified by their clonotypic sequence as expanded in the valve were also found expanded in the circulating blood CD28(null)CD8(+) T cells and to a lesser degree in the CD8(+)CD28(+) subset, directly supporting the relationship between immunologic events in the blood and the valve. The results suggest that an ongoing systemic adaptive immune response is occurring in cases with bicuspid and tricuspid CAS, involving circulating CD8 T cell activation, clonal expansion, and differentiation to a memory-effector phenotype, with trafficking of T cells in expanded clones between blood and the valve.
Collapse
Affiliation(s)
- Robert Winchester
- Division of Rheumatology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Clute SC, Naumov YN, Watkin LB, Aslan N, Sullivan JL, Thorley-Lawson DA, Luzuriaga K, Welsh RM, Puzone R, Celada F, Selin LK. Broad cross-reactive TCR repertoires recognizing dissimilar Epstein-Barr and influenza A virus epitopes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6753-64. [PMID: 21048112 PMCID: PMC3738202 DOI: 10.4049/jimmunol.1000812] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Memory T cells cross-reactive with epitopes encoded by related or even unrelated viruses may alter the immune response and pathogenesis of infection by a process known as heterologous immunity. Because a challenge virus epitope may react with only a subset of the T cell repertoire in a cross-reactive epitope-specific memory pool, the vigorous cross-reactive response may be narrowly focused, or oligoclonal. We show in this article, by examining human T cell cross-reactivity between the HLA-A2-restricted influenza A virus-encoded M1(58-66) epitope (GILGFVFTL) and the dissimilar Epstein-Barr virus-encoded BMLF1(280-288) epitope (GLCTLVAML), that, under some conditions, heterologous immunity can lead to a significant broadening, rather than a narrowing, of the TCR repertoire. We suggest that dissimilar cross-reactive epitopes might generate a broad, rather than a narrow, T cell repertoire if there is a lack of dominant high-affinity clones; this hypothesis is supported by computer simulation.
Collapse
Affiliation(s)
- Shalyn C. Clute
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655
| | - Yuri N. Naumov
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655
| | - Levi B. Watkin
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655
| | - Nuray Aslan
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655
| | - John L. Sullivan
- Department of Pediatrics and Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation St, Worcester, MA 01605
| | - David A. Thorley-Lawson
- Department of Pathology, Jaharis Building, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111
| | - Katherine Luzuriaga
- Department of Pediatrics and Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation St, Worcester, MA 01605
| | - Raymond M. Welsh
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655
| | - Roberto Puzone
- Department of Clinical Epidemiology, National Institute for Cancer Research, Genoa, Italy
| | - Franco Celada
- Department of Pathology, Hospital for Joint Diseases, New York University, 301 East 17th St, New York, NY 10003
- Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy
| | - Liisa K. Selin
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655
| |
Collapse
|
46
|
Abstract
Almost all individuals diagnosed with glioblastoma multiforme (GBM) will die of their disease as no effective therapies exist. Clearly, novel approaches to this problem are needed. Unlike the adaptive alphabeta T cell-mediated immune response, which requires antigen processing and MHC-restricted peptide display by antigen-presenting cells, gammadelta T cells can broadly recognize and immediately respond to a variety of MHC-like stress-induced self antigens, many of which are expressed on human GBM cells. Until now, there has been little progress toward clinical application, although several investigators have recently published clinically approvable methods for large-scale ex vivo expansion of functional gammadelta T cells for therapeutic purposes. This review discusses the biology of gammadelta T cells with respect to innate immunotherapy of cancer with a focus on GBM, and explores graft engineering techniques in development for the therapeutic use of gammadelta T cells.
Collapse
|
47
|
Ochsenreither S, Fusi A, Wojtke S, Busse A, Nüssler NC, Thiel E, Keilholz U, Nagorsen D. Comparison of T-cell receptor repertoire restriction in blood and tumor tissue of colorectal cancer patients. J Transl Med 2010; 8:35. [PMID: 20385014 PMCID: PMC2873372 DOI: 10.1186/1479-5876-8-35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 04/12/2010] [Indexed: 01/19/2023] Open
Abstract
Several immunotherapeutic approaches rely on antigen-specific T-cells. Restrictions in the T-cell receptor (TCR) repertoire were reported as indicator of anti-tumor cytotoxic T-lymphocyte (CTL) response in various tumor entities. It is unclear yet whether a TCR restriction in peripheral blood mirrors the tumor compartment. We compared the expression of TCR Vβ-families for the quantification of TCR repertoire alterations in blood and tissue samples from patients with colorectal carcinoma. Blood samples from patients with colorectal carcinoma and healthy volunteers and tissue samples of normal colonic mucosa and colorectal carcinoma were analyzed. Relative Vβ-family quantification was performed based on quantitative reverse transcribed PCR. Standard deviation and average mean of the single families were determined. Two variables describing the degree of Vβ-repertoire restriction were defined. Forty-eight blood samples and 37 tissue samples were analyzed. TCR repertoire restriction was higher in blood of tumor patients than in blood of healthy controls (p < 0.05). No difference in the degree of TCR repertoire restriction was found between carcinoma and unaffected colon tissue. We found no corresponding elevated TCR families among the different compartments blood, normal colon, and carcinoma tissue of the same patient. In conclusion, we observed a repertoire restriction in peripheral blood as well as in tumor tissue of cancer patients. However, in tumor tissue, repertoire alterations were comparable to normal mucosa, suggesting compartment-specific TCR distribution rather than alterations due to tumor-T-cell interaction questioning the presence of highly restricted clonal T-cell expansions in colorectal cancer as they have been described in other, assumingly more immunogenic tumor entities.
Collapse
Affiliation(s)
- Sebastian Ochsenreither
- Charité, Campus Benjamin Franklin, Department of Hematology and Oncology, Hindenburgdamm 30, 12200 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Annotation and classification of the bovine T cell receptor delta genes. BMC Genomics 2010; 11:100. [PMID: 20144200 PMCID: PMC2846910 DOI: 10.1186/1471-2164-11-100] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 02/09/2010] [Indexed: 02/07/2023] Open
Abstract
Background γδ T cells differ from αβ T cells with regard to the types of antigen with which their T cell receptors interact; γδ T cell antigens are not necessarily peptides nor are they presented on MHC. Cattle are considered a "γδ T cell high" species indicating they have an increased proportion of γδ T cells in circulation relative to that in "γδ T cell low" species such as humans and mice. Prior to the onset of the studies described here, there was limited information regarding the genes that code for the T cell receptor delta chains of this γδ T cell high species. Results By annotating the bovine (Bos taurus) genome Btau_3.1 assembly the presence of 56 distinct T cell receptor delta (TRD) variable (V) genes were found, 52 of which belong to the TRDV1 subgroup and were co-mingled with the T cell receptor alpha variable (TRAV) genes. In addition, two genes belonging to the TRDV2 subgroup and single TRDV3 and TRDV4 genes were found. We confirmed the presence of five diversity (D) genes, three junctional (J) genes and a single constant (C) gene and describe the organization of the TRD locus. The TRDV4 gene is found downstream of the C gene and in an inverted orientation of transcription, consistent with its orthologs in humans and mice. cDNA evidence was assessed to validate expression of the variable genes and showed that one to five D genes could be incorporated into a single transcript. Finally, we grouped the bovine and ovine TRDV1 genes into sets based on their relatedness. Conclusions The bovine genome contains a large and diverse repertoire of TRD genes when compared to the genomes of "γδ T cell low" species. This suggests that in cattle γδ T cells play a more important role in immune function since they would be predicted to bind a greater variety of antigens.
Collapse
|
49
|
Seo KS, Park JY, Terman DS, Bohach GA. A quantitative real time PCR method to analyze T cell receptor Vbeta subgroup expansion by staphylococcal superantigens. J Transl Med 2010; 8:2. [PMID: 20070903 PMCID: PMC2841588 DOI: 10.1186/1479-5876-8-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/13/2010] [Indexed: 12/19/2022] Open
Abstract
Background Staphylococcal enterotoxins (SEs), SE-like (SEl) toxins, and toxic shock syndrome toxin-1 (TSST-1), produced by Staphylococcus aureus, belong to the subgroup of microbial superantigens (SAgs). SAgs induce clonal proliferation of T cells bearing specific variable regions of the T cell receptor β chain (Vβ). Quantitative real time PCR (qRT-PCR) has become widely accepted for rapid and reproducible mRNA quantification. Although the quantification of Vβ subgroups using qRT-PCR has been reported, qRT-PCR using both primers annealing to selected Vβ nucleotide sequences and SYBR Green I reporter has not been applied to assess Vβ-dependent expansion of T cells by SAgs. Methods Human peripheral blood mononuclear cells were stimulated with various SAgs or a monoclonal antibody specific to human CD3. Highly specific expansion of Vβ subgroups was assessed by qRT-PCR using SYBR Green I reporter and primers corresponding to selected Vβ nucleotide sequences. Results qRT-PCR specificities were confirmed by sequencing amplified PCR products and melting curve analysis. To assess qRT-PCR efficiencies, standard curves were generated for each primer set. The average slope and R2 of standard curves were -3.3764 ± 0.0245 and 0.99856 ± 0.000478, respectively, demonstrating that the qRT-PCR established in this study is highly efficient. With some exceptions, SAg Vβ specificities observed in this study were similar to those reported in previous studies. Conclusions The qRT-PCR method established in this study produced an accurate and reproducible assessment of Vβ-dependent expansion of human T cells by staphylococcal SAgs. This method could be a useful tool in the characterization T cell proliferation by newly discovered SAg and in the investigation of biological effects of SAgs linked to pathogenesis.
Collapse
Affiliation(s)
- Keun Seok Seo
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844, USA.
| | | | | | | |
Collapse
|
50
|
Sfanos KS, Bruno TC, Meeker AK, De Marzo AM, Isaacs WB, Drake CG. Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+. Prostate 2009; 69:1694-703. [PMID: 19670224 PMCID: PMC2782577 DOI: 10.1002/pros.21020] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Prostate-infiltrating CD8(+) T lymphocytes (CD8(+) PIL) are prevalent in men with prostate cancer (PCa), however, it is unclear whether the presence of such cells reflects a non-specific immune infiltrate or an oligoclonal, antigen-driven adaptive immune response. METHODS We investigated the complexity of the T-cell receptor (TCR) repertoire in the prostate gland by examining the diversity of CD8(+) TCR beta chain variable region (Vbeta) gene sequences in both the peripheral blood and prostates of cancer patients. Vbeta repertoire analysis was performed by family-specific Vbeta spectratyping and flow cytometry, as well as direct sequence analysis (5' RACE and cloning). Programmed cell death 1 (PD-1 or PDCD1) expression on peripheral blood CD8(+) T cells and CD8(+) PIL was analyzed by flow cytometry. RESULTS CD8(+) PIL isolated from cancer patients exhibited restricted TCR Vbeta gene usage, and identical clones were identified in multiple sites within the prostate. Furthermore, CD8(+) PIL express high levels of the inhibitory receptor PD-1, a cell surface protein associated with an "exhausted" CD8(+) T-cell phenotype. CONCLUSIONS CD8(+) PIL appear to have undergone clonal expansion in response to an as yet unidentified antigen; however, due to the high expression of PD-1, these cells are likely incapable of mounting an effective immune response. The results provide an important basis for further efforts aimed at the identification of specific antigens involved in prostatic inflammation, and suggest that PD-1 blockade may be useful in immunotherapy for PCa.
Collapse
MESH Headings
- Adenocarcinoma/immunology
- Adult
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/immunology
- Apoptosis Regulatory Proteins/biosynthesis
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/immunology
- Biopsy
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Clone Cells/immunology
- Clone Cells/pathology
- Flow Cytometry
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Middle Aged
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/pathology
- Programmed Cell Death 1 Receptor
- Prostatic Neoplasms/immunology
- Random Amplified Polymorphic DNA Technique
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Karen S. Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - Tullia C. Bruno
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - Alan K. Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - William B. Isaacs
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - Charles G. Drake
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| |
Collapse
|