1
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
2
|
Eriksson I, Öllinger K. Lysosomes in Cancer-At the Crossroad of Good and Evil. Cells 2024; 13:459. [PMID: 38474423 PMCID: PMC10930463 DOI: 10.3390/cells13050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Although it has been known for decades that lysosomes are central for degradation and recycling in the cell, their pivotal role as nutrient sensing signaling hubs has recently become of central interest. Since lysosomes are highly dynamic and in constant change regarding content and intracellular position, fusion/fission events allow communication between organelles in the cell, as well as cell-to-cell communication via exocytosis of lysosomal content and release of extracellular vesicles. Lysosomes also mediate different forms of regulated cell death by permeabilization of the lysosomal membrane and release of their content to the cytosol. In cancer cells, lysosomal biogenesis and autophagy are increased to support the increased metabolism and allow growth even under nutrient- and oxygen-poor conditions. Tumor cells also induce exocytosis of lysosomal content to the extracellular space to promote invasion and metastasis. However, due to the enhanced lysosomal function, cancer cells are often more susceptible to lysosomal membrane permeabilization, providing an alternative strategy to induce cell death. This review summarizes the current knowledge of cancer-associated alterations in lysosomal structure and function and illustrates how lysosomal exocytosis and release of extracellular vesicles affect disease progression. We focus on functional differences depending on lysosomal localization and the regulation of intracellular transport, and lastly provide insight how new therapeutic strategies can exploit the power of the lysosome and improve cancer treatment.
Collapse
Affiliation(s)
- Ida Eriksson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden;
| | | |
Collapse
|
3
|
Liliac IM, Ungureanu BS, Mărgăritescu C, Sacerdoțianu VM, Săftoiu A, Mogoantă L, Moraru E, Pirici D. E-Cadherin Modulation and Inter-Cellular Trafficking in Tubular Gastric Adenocarcinoma: A High-Resolution Microscopy Pilot Study. Biomedicines 2022; 10:biomedicines10020349. [PMID: 35203558 PMCID: PMC8961786 DOI: 10.3390/biomedicines10020349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the numerous advances in tumor molecular biology and chemotherapy options, gastric adenocarcinoma is still the most frequent form of gastric cancer. One of the core proteins that regulates inter-cellular adhesion, E-cadherin plays important roles in tumorigenesis as well as in tumor progression; however, the exact expression changes and modulation that occur in gastric cancer are not yet fully understood. In an attempt to estimate if the synthesis/degradation balance matches the final membrane expression of this adhesion molecule in cancer tissue, we assessed the proportion of E-cadherin that is found in the Golgi vesicles as well as in the lysosomal pathway We utilized archived tissue fragments from 18 patients with well and poorly differentiated intestinal types of gastric cancer and 5 samples of normal gastric mucosa, by using high-magnification multispectral microscopy and high-resolution fluorescence deconvolution microscopy. Our data showed that E-cadherin is not only expressed in the membrane, but also in the cytoplasm of normal and tumor gastric epithelia. E-cadherin colocalization with the Golgian vesicles seemed to be increasing with less differentiated tumors, while co-localization with the lysosomal system decreased in tumor tissue; however, the membrane expression of the adhesion molecule clearly dropped from well to poorly differentiated tumors. Thus E-cadherin seems to be more abundantly synthetized than eliminated via lysosomes/exosomes in less differentiated tumors, suggesting that post-translational modifications, such as cleavage, conformational inactivation, or exocytosis, are responsible for the net drop of E-cadherin at the level of the membrane in more anaplastic tumors. This behavior is in perfect accordance with the concept of partial epithelial-to-mesenchymal transition (P-EMT), when the E-cadherin expression of tumor cells is in fact not downregulated but redistributed away from the membrane in recycling vesicles. Moreover, our high-resolution deconvolution microscopy study showed for the first time, at the tissue level, the presence of Lysosome-associated membrane glycoprotein 1 (LAMP1)-positive exosomes/multivesicular bodies being trafficked across the membranes of tumor epithelial cells. Altogether, a myriad of putative modulatory pathways is available as a treatment turning point, even if we are to only consider the metabolism of membrane E-cadherin regulation. Future super-resolution microscopy studies are needed to clarify the extent of lysosome/exosome exchange between tumor cells and with the surrounding stroma, in histopathology samples or even in vivo.
Collapse
Affiliation(s)
- Ilona Mihaela Liliac
- PhD Student, Doctoral School, Department of Histology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Bogdan Silviu Ungureanu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (V.M.S.)
| | - Claudiu Mărgăritescu
- Department of Pathology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (C.M.); (D.P.)
| | - Victor Mihai Sacerdoțianu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (V.M.S.)
| | - Adrian Săftoiu
- Department of Research Methodology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Laurențiu Mogoantă
- Department of Histology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Emil Moraru
- Department of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Daniel Pirici
- Department of Histology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Correspondence: (C.M.); (D.P.)
| |
Collapse
|
4
|
Machado ER, Annunziata I, van de Vlekkert D, Grosveld GC, d’Azzo A. Lysosomes and Cancer Progression: A Malignant Liaison. Front Cell Dev Biol 2021; 9:642494. [PMID: 33718382 PMCID: PMC7952443 DOI: 10.3389/fcell.2021.642494] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 01/04/2023] Open
Abstract
During primary tumorigenesis isolated cancer cells may undergo genetic or epigenetic changes that render them responsive to additional intrinsic or extrinsic cues, so that they enter a transitional state and eventually acquire an aggressive, metastatic phenotype. Among these changes is the alteration of the cell metabolic/catabolic machinery that creates the most permissive conditions for invasion, dissemination, and survival. The lysosomal system has emerged as a crucial player in this malignant transformation, making this system a potential therapeutic target in cancer. By virtue of their ubiquitous distribution in mammalian cells, their multifaced activities that control catabolic and anabolic processes, and their interplay with other organelles and the plasma membrane (PM), lysosomes function as platforms for inter- and intracellular communication. This is due to their capacity to adapt and sense nutrient availability, to spatially segregate specific functions depending on their position, to fuse with other compartments and with the PM, and to engage in membrane contact sites (MCS) with other organelles. Here we review the latest advances in our understanding of the role of the lysosomal system in cancer progression. We focus on how changes in lysosomal nutrient sensing, as well as lysosomal positioning, exocytosis, and fusion perturb the communication between tumor cells themselves and between tumor cells and their microenvironment. Finally, we describe the potential impact of MCS between lysosomes and other organelles in propelling cancer growth and spread.
Collapse
Affiliation(s)
- Eda R. Machado
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ida Annunziata
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | | | - Gerard C. Grosveld
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
5
|
The Role of Lysosomes in the Cancer Progression: Focus on the Extracellular Matrix Degradation. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Abstract
The glycolytic phenotype of the Warburg effect is associated with acidification of the tumor microenvironment. In this review, we describe how acidification of the tumor microenvironment may increase the invasive and degradative phenotype of cancer cells. As a template of an extracellular acidic microenvironment that is linked to proteolysis, we use the resorptive pit formed between osteoclasts and bone. We describe similar changes that have been observed in cancer cells in response to an acidic microenvironment and that are associated with proteolysis and invasive and metastatic phenotypes. This includes consideration of changes observed in the intracellular trafficking of vesicles, i.e., lysosomes and exosomes, and in specialized regions of the membrane, i.e., invadopodia and caveolae. Cancer-associated cells are known to affect what is generally referred to as tumor proteolysis but little direct evidence for this being regulated by acidosis; we describe potential links that should be verified.
Collapse
|
7
|
Carrier-free nanoparticles of cathepsin B-cleavable peptide-conjugated doxorubicin prodrug for cancer targeting therapy. J Control Release 2018; 294:376-389. [PMID: 30550940 DOI: 10.1016/j.jconrel.2018.11.032] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/24/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
Cancer nanomedicine using nanoparticle-based delivery systems has shown outstanding promise in recent decades for improving anticancer treatment. However, limited targeting efficiency, low drug loading efficiency and innate toxicity of nanoparticles have caused severe problems, leaving only a few available in the clinic. Here, we newly developed carrier-free nanoparticles of cathepsin B-cleavable peptide (Phe-Arg-Arg-Gly; FRRG)-conjugated doxorubicin (DOX) prodrug (FRRG-DOX) that formed a stable nanoparticle structure with an average diameter of 213 nm in aqueous condition. The carrier-free nanoparticles of FRRG-DOX induced cytotoxicity against cathepsin B-overexpressed tumor cells whereas the toxicity was minimized in normal cells. In particular, the FRRG-DOX nanoparticles showed the successful tumor-targeting ability and enhanced therapeutic efficiency in human colon adenocarcinoma (HT-29) tumor-bearing mice via enhanced permeation and retention (EPR) effect. Furthermore, FRRG-DOX nanoparticles did not present any severe toxicity, such as non-specific cell death and cardiac toxicity, in normal tissues due to minimal expression of cathepsin B. This carrier-free nanoparticles of FRRG-DOX can solve the unavoidable problems of current nanomedicine, such as lower targeting efficiency, toxicity of nanoparticles themselves, and difficulty in mass production that are fatally caused by natural and synthetic nano-sized carriers.
Collapse
|
8
|
Maacha S, Hong J, von Lersner A, Zijlstra A, Belkhiri A. AXL Mediates Esophageal Adenocarcinoma Cell Invasion through Regulation of Extracellular Acidification and Lysosome Trafficking. Neoplasia 2018; 20:1008-1022. [PMID: 30189359 PMCID: PMC6126204 DOI: 10.1016/j.neo.2018.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/06/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022]
Abstract
Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy that is characterized by resistance to chemotherapy and a poor clinical outcome. The overexpression of the receptor tyrosine kinase AXL is frequently associated with unfavorable prognosis in EAC. Although it is well documented that AXL mediates cancer cell invasion as a downstream effector of epithelial-to-mesenchymal transition, the precise molecular mechanism underlying this process is not completely understood. Herein, we demonstrate for the first time that AXL mediates cell invasion through the regulation of lysosomes peripheral distribution and cathepsin B secretion in EAC cell lines. Furthermore, we show that AXL-dependent peripheral distribution of lysosomes and cell invasion are mediated by extracellular acidification, which is potentiated by AXL-induced secretion of lactate through AKT-NF-κB-dependent MCT-1 regulation. Our novel mechanistic findings support future clinical studies to evaluate the therapeutic potential of the AXL inhibitor R428 (BGB324) in highly invasive EAC.
Collapse
Affiliation(s)
- Selma Maacha
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jun Hong
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ariana von Lersner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37240, USA
| | - Andries Zijlstra
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37240, USA
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Shim MK, Yoon HY, Ryu JH, Koo H, Lee S, Park JH, Kim JH, Lee S, Pomper MG, Kwon IC, Kim K. Cathepsin B-Specific Metabolic Precursor for In Vivo Tumor-Specific Fluorescence Imaging. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Pharmacy, Graduate School; Kyung Hee University; 26, Kyungheedae-ro Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- School of Chemical Engineering; Sungkyunkwan University; 2066, Seobu-ro Jangan-gu Suwon 16419 Republic of Korea
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Science, College of Medicine; The Catholic University of Korea; 222, Banpo-daero Seocho-gu Seoul 06591 Republic of Korea
| | - Sangmin Lee
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- The Russell H. Morgan Department of Radiology and Radiological Science; Johns Hopkins University School of Medicine; 601 N. Caroline Street Baltimore MD 21287 USA
| | - Jae Hyung Park
- School of Chemical Engineering; Sungkyunkwan University; 2066, Seobu-ro Jangan-gu Suwon 16419 Republic of Korea
| | - Jong-Ho Kim
- Department of Pharmacy, Graduate School; Kyung Hee University; 26, Kyungheedae-ro Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Seulki Lee
- The Russell H. Morgan Department of Radiology and Radiological Science; Johns Hopkins University School of Medicine; 601 N. Caroline Street Baltimore MD 21287 USA
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science; Johns Hopkins University School of Medicine; 601 N. Caroline Street Baltimore MD 21287 USA
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology; Korea University; 145 Anam-ro Seongbuk-gu Seoul 02841 Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| |
Collapse
|
10
|
Shim MK, Yoon HY, Ryu JH, Koo H, Lee S, Park JH, Kim J, Lee S, Pomper MG, Kwon IC, Kim K. Cathepsin B‐Specific Metabolic Precursor for In Vivo Tumor‐Specific Fluorescence Imaging. Angew Chem Int Ed Engl 2016; 55:14698-14703. [DOI: 10.1002/anie.201608504] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute Korea Institute of Science and Technology 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Pharmacy, Graduate School Kyung Hee University 26, Kyungheedae-ro Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute Korea Institute of Science and Technology 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- School of Chemical Engineering Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon 16419 Republic of Korea
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute Korea Institute of Science and Technology 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Science, College of Medicine The Catholic University of Korea 222, Banpo-daero Seocho-gu Seoul 06591 Republic of Korea
| | - Sangmin Lee
- Center for Theragnosis, Biomedical Research Institute Korea Institute of Science and Technology 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine 601 N. Caroline Street Baltimore MD 21287 USA
| | - Jae Hyung Park
- School of Chemical Engineering Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon 16419 Republic of Korea
| | - Jong‐Ho Kim
- Department of Pharmacy, Graduate School Kyung Hee University 26, Kyungheedae-ro Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Seulki Lee
- The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine 601 N. Caroline Street Baltimore MD 21287 USA
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine 601 N. Caroline Street Baltimore MD 21287 USA
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute Korea Institute of Science and Technology 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology Korea University 145 Anam-ro Seongbuk-gu Seoul 02841 Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute Korea Institute of Science and Technology 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| |
Collapse
|
11
|
Ibrahim SA, El-Ghonaimy EA, Hassan H, Mahana N, Mahmoud MA, El-Mamlouk T, El-Shinawi M, Mohamed MM. Hormonal-receptor positive breast cancer: IL-6 augments invasion and lymph node metastasis via stimulating cathepsin B expression. J Adv Res 2016; 7:661-70. [PMID: 27482469 PMCID: PMC4957008 DOI: 10.1016/j.jare.2016.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/18/2016] [Accepted: 06/24/2016] [Indexed: 01/17/2023] Open
Abstract
Hormonal-receptor positive (HRP) breast cancer patients with positive metastatic axillary lymph nodes are characterized by poor prognosis and increased mortality rate. The mechanisms by which cancer cells invade lymph nodes have not yet been fully explored. Several studies have shown that expression of IL-6 and the proteolytic enzyme cathepsin B (CTSB) was associated with breast cancer poor prognosis. In the present study, the effect of different concentrations of recombinant human IL-6 on the invasiveness capacity of HRP breast cancer cell line MCF-7 was tested using an in vitro invasion chamber assay. The impact of IL-6 on expression and activity of CTSB was also investigated. IL-6 treatment promoted the invasiveness potential of MCF-7 cells in a dose-dependent manner. Furthermore, MCF-7 cells displayed elevated CTSB expression and activity associated with loss of E-cadherin and upregulation of vimentin protein levels upon IL-6 stimulation. To validate these results in vivo, the level of expression of IL-6 and CTSB in the carcinoma tissues of HRP-breast cancer patients with positive and negative axillary metastatic lymph nodes (pLNs and nLNs) was assessed. Western blot and immunohistochemical staining data showed that expression of IL-6 and CTSB was higher in carcinoma tissues in HRP-breast cancer with pLNs than those with nLNs patients. ELISA results showed carcinoma tissues of HRP-breast cancer with pLNs exhibited significantly elevated IL-6 protein levels by approximately 2.8-fold compared with those with nLNs patients (P < 0.05). Interestingly, a significantly positive correlation between IL-6 and CTSB expression was detected in clinical samples of HRP-breast cancer patients with pLNs (r = 0.78, P < 0.01). Collectively, this study suggests that IL-6-induced CTSB may play a role in lymph node metastasis, and that may possess future therapeutic implications for HRP-breast cancer patients with pLNs. Further studies are necessary to fully identify IL-6/CTSB axis in different molecular subtypes of breast cancer.
Collapse
Affiliation(s)
- Sherif A Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Eslam A El-Ghonaimy
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Noha Mahana
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Tahani El-Mamlouk
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Mona M Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
12
|
Qi YJ, Ward DG, Pang C, Wang QM, Wei W, Ma J, Zhang J, Lou Q, Shimwell NJ, Martin A, Wong N, Chao WX, Wang M, Ma YF, Johnson PJ. Proteomic profiling of N-linked glycoproteins identifies ConA-binding procathepsin D as a novel serum biomarker for hepatocellular carcinoma. Proteomics 2014; 14:186-95. [PMID: 24259486 DOI: 10.1002/pmic.201300226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/02/2013] [Accepted: 11/07/2013] [Indexed: 01/13/2023]
Abstract
The aim of this study was to identify novel biomarkers for the diagnosis of, and potential therapeutic targets for, hepatocellular carcinoma (HCC). Multilectin affinity chromatography was used to enrich N-linked glycoproteins from nontumorous liver and HCC tissues followed by 2DE and protein identification by MS. Twenty-eight differentially expressed proteins were identified. Western blotting validated consistently lower concentrations of human liver carboxylesterase 1 and haptoglobin, and higher concentration of procathepsin D (pCD) in HCC tissues. Knockdown of cathepsin D (CD) expression mediated by siRNA significantly inhibited the in vitro invasion of two HCC cell lines, SNU449 and SNU473, which normally secrete high-levels of CD. Prefractionation using individual lectins demonstrated an elevation in ConA-binding glycoforms of proCD and CD in HCC tissues. In the serum of HCC patients, "ConA-binding proCD" (ConA-pCD) is significantly increased in concentration and this increase is comprised of several distinct upregulated acidic isoforms (pI 4.5-5.5). Receiver operating characteristic analysis showed that the sensitivity and specificity of serum ConA-pCD for HCC diagnosis were 85% and 80%, respectively. This is the first report that serum ConA-pCD is increased significantly in HCC and is potentially useful as a serological biomarker for diagnosis of HCC.
Collapse
Affiliation(s)
- Yi-Jun Qi
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Aggarwal N, Sloane BF. Cathepsin B: multiple roles in cancer. Proteomics Clin Appl 2014; 8:427-37. [PMID: 24677670 PMCID: PMC4205946 DOI: 10.1002/prca.201300105] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
Proteases, including intracellular proteases, play roles at many different stages of malignant progression. Our focus here is cathepsin B, a lysosomal cysteine cathepsin. High levels of cathepsin B are found in a wide variety of human cancers, levels that often induce secretion and association of cathepsin B with the tumor cell membrane. In experimental models, such as transgenic models of murine pancreatic and mammary carcinomas, causal roles for cathepsin B have been demonstrated in initiation, growth/tumor cell proliferation, angiogenesis, invasion, and metastasis. Tumor growth in transgenic models is promoted by cathepsin B in tumor-associated cells, for example, tumor-associated macrophages, as well as in tumor cells. In transgenic models, the absence of cathepsin B has been associated with enhanced apoptosis, yet cathepsin B also has been shown to contribute to apoptosis. Cathepsin B is part of a proteolytic pathway identified in xenograft models of human glioma; targeting only cathepsin B in these tumors is less effective than targeting cathepsin B in combination with other proteases or protease receptors. Understanding the mechanisms responsible for increased expression of cathepsin B in tumors and association of cathepsin B with tumor cell membranes is needed to determine whether targeting cathepsin B could be of therapeutic benefit.
Collapse
Affiliation(s)
- Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, Detroit, Ml, USA
| | - Bonnie F. Sloane
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Ml, USA
| |
Collapse
|
14
|
Mohamed MM, El-Ghonaimy EA, Nouh MA, Schneider RJ, Sloane BF, El-Shinawi M. Cytokines secreted by macrophages isolated from tumor microenvironment of inflammatory breast cancer patients possess chemotactic properties. Int J Biochem Cell Biol 2014. [DOI: 10.1016/j.biocel.2013.11.015 s1357-2725(13)00353-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2022]
|
15
|
Mohamed MM, El-Ghonaimy EA, Nouh MA, Schneider RJ, Sloane BF, El-Shinawi M. Cytokines secreted by macrophages isolated from tumor microenvironment of inflammatory breast cancer patients possess chemotactic properties. Int J Biochem Cell Biol 2014; 46:138-147. [PMID: 24291763 PMCID: PMC3928544 DOI: 10.1016/j.biocel.2013.11.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/02/2013] [Accepted: 11/05/2013] [Indexed: 12/20/2022]
Abstract
Although there is a growing literature describing the role of macrophages in breast cancer, the role of macrophages in inflammatory breast cancer (IBC) is unclear. The aim of present study was to isolate and characterize tumor associated macrophages of IBC and non-IBC patients and define their role in IBC. Tumor infiltrating monocytes/macrophages (CD14+ and CD68+) were measured by immunohistochemistry using specific monoclonal antibodies. Blood drained from axillary vein tributaries was collected during breast cancer surgery and the percentage of CD14+ in the total isolated leukocytes was assessed by flow cytometric analysis. CD14+ cells were separated from total leukocytes by immuno-magnetic beads technique and were cultured overnight. Media conditioned by CD14+ were collected and subjected to cytokine profiling using cytokine antibody array. Wound healing and invasion assays were used to test whether cytokines highly secreted by tumor drained macrophages induce motility and invasion of breast cancer cells. We found that macrophages highly infiltrate into carcinoma tissues of IBC patients. In addition blood collected from axillary tributaries of IBC patients is highly enriched with CD14+ cells as compared to blood collected from non-IBC patients. Cytokine profiling of CD14+ cells isolated from IBC patients revealed a significant increase in secretion of tumor necrosis factor-α; monocyte chemoattractant protein-1/CC-chemokine ligand 2; interleukin-8 and interleukin-10 as compared to CD14+ cells isolated from non-IBC patients. Tumor necrosis factor-α, interleukin-8 and interleukin-10 significantly increased motility and invasion of IBC cells in vitro. In conclusion, macrophages isolated from the tumor microenvironment of IBC patients secrete chemotactic cytokines that may augment dissemination and metastasis of IBC carcinoma cells.
Collapse
Affiliation(s)
- Mona M Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Eslam A El-Ghonaimy
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Mohamed A Nouh
- Department of Pathology, National Cancer institute, Cairo University, Giza 12613, Egypt.
| | - Robert J Schneider
- Department of Microbiology, New York University, School of Medicine, 10016 New York, USA.
| | - Bonnie F Sloane
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
16
|
Gole B, Huszthy PC, Popović M, Jeruc J, Ardebili YS, Bjerkvig R, Lah TT. The regulation of cysteine cathepsins and cystatins in human gliomas. Int J Cancer 2012; 131:1779-1789. [PMID: 22287159 DOI: 10.1002/ijc.27453] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/11/2012] [Indexed: 12/20/2022]
Abstract
Cysteine cathepsins play an important role in shaping the highly infiltrative growth pattern of human gliomas. We have previously demonstrated that the activity of cysteine cathepsins is elevated in invasive glioblastoma (GBM) cells in vitro, in part due to attenuation of their endogenous inhibitors, the cystatins. To investigate this relationship in vivo, we established U87-MG xenografts in non-obese diabetic (NOD)/severe combined immunodeficiency (SCID)-enhanced green fluorescent protein (eGFP) mice. Here, tumor growth correlated with an elevated enzymatic activity of CatB both in the tumor core and at the periphery, whereas CatS and CatL levels were higher at the xenograft edge compared to the core. Reversely, StefB expression was detected in the tumor core, but it was generally absent in the tumor periphery, suggesting that down-regulation of this inhibitor correlates with in vivo invasion. In human GBM samples, all cathepsins were elevated at the tumor periphery compared to brain parenchyma. CatB was also typically associated with angiogenic endothelia and necrotic areas. StefB was mainly detected in the tumor core, whereas CysC and StefA were evenly distributed, reflecting the observations in the xenografts. However, at the mRNA level, no differences in cathepsins and cystatins were observed between the tumor center and the periphery in both human biopsies and xenografts. Interestingly, in human tumors, cathepsin and stefin transcript levels correlated with CD68 and CXCR4 levels, but not with epidermal growth factor receptor (EGFR). Moreover, we reveal for the first time that an elevated StefA mRNA level is a highly significant prognostic factor for patient survival.
Collapse
Affiliation(s)
- Boris Gole
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
17
|
The feasibility of enzyme targeted activation for amino acid/dipeptide monoester prodrugs of floxuridine; cathepsin D as a potential targeted enzyme. Molecules 2012; 17:3672-89. [PMID: 22450679 PMCID: PMC3565751 DOI: 10.3390/molecules17043672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/14/2012] [Accepted: 03/21/2012] [Indexed: 12/13/2022] Open
Abstract
The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5′-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0–105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5′-O-L--Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5′-O-L-phenylalanyl-L-tyrosylfloxuridine and 5′-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enyzmes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5′-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.
Collapse
|
18
|
Mohamed MM. Monocytes conditioned media stimulate fibronectin expression and spreading of inflammatory breast cancer cells in three-dimensional culture: A mechanism mediated by IL-8 signaling pathway. Cell Commun Signal 2012; 10:3. [PMID: 22321604 PMCID: PMC3293033 DOI: 10.1186/1478-811x-10-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 02/10/2012] [Indexed: 12/12/2022] Open
Abstract
Background Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer characterized by invasion of carcinoma cells into dermal lymphatic vessels where they form tumor emboli over expressing adhesion molecule E-cadherin. Although invasion and metastasis are dynamic processes controlled by complex interaction between tumor cells and microenvironment the mechanisms by which soluble mediators may regulate motility and invasion of IBC cells are poorly understood. The present study investigated the effect of media conditioned by human monocytes U937 secreted cytokines, chemokines and growth factors on the expression of adhesion molecules E-cadherin and fibronectin of human IBC cell line SUM149. Furthermore, cytokines signaling pathway involved were also identified. Results U937 secreted cytokines, chemokines and growth factors were characterized by cytokine antibody array. The major U937 secreted cytokines/chemokines were interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1/CCL2). When SUM149 cells were seeded in three dimensional (3D) models with media conditioned by U937 secreted cytokines, chemokines and growth factors; results showed: 1) changes in the morphology of IBC cells from epithelial to migratory spindle shape branched like structures; 2) Over-expression of adhesion molecule fibronectin and not E-cadherin. Further analysis revealed that over-expression of fibronectin may be mediated by IL-8 via PI3K/Akt signaling pathway. Conclusion The present results suggested that cytokines secreted by human monocytes may promote chemotactic migration and spreading of IBC cell lines. Results also indicated that IL-8 the major secreted cytokine by U937 cells may play essential role in fibronectin expression by SUM149 cells via interaction with IL-8 specific receptors and stimulation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Mona M Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
19
|
Kwok HF, Buick RJ, Kuehn D, Gormley JA, Doherty D, Jaquin TJ, McClurg A, Ward C, Byrne T, Jaworski J, Leung KL, Snoddy P, McAnally C, Burden RE, Gray B, Lowry J, Sermadiras I, Gruszka N, Courtenay-Luck N, Kissenpfennig A, Scott CJ, Johnston JA, Olwill SA. Antibody targeting of Cathepsin S induces antibody-dependent cellular cytotoxicity. Mol Cancer 2011; 10:147. [PMID: 22168338 PMCID: PMC3267679 DOI: 10.1186/1476-4598-10-147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/14/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Proteolytic enzymes have been implicated in driving tumor progression by means of their cancer cell microenvironment activity where they promote proliferation, differentiation, apoptosis, migration, and invasion. Therapeutic strategies have focused on attenuating their activity using small molecule inhibitors, but the association of proteases with the cell surface during cancer progression opens up the possibility of targeting these using antibody dependent cellular cytotoxicity (ADCC). Cathepsin S is a lysosomal cysteine protease that promotes the growth and invasion of tumour and endothelial cells during cancer progression. Our analysis of colorectal cancer patient biopsies shows that cathepsin S associates with the cell membrane indicating a potential for ADCC targeting. RESULTS Here we report the cell surface characterization of cathepsin S and the development of a humanized antibody (Fsn0503h) with immune effector function and a stable in vivo half-life of 274 hours. Cathepsin S is expressed on the surface of tumor cells representative of colorectal and pancreatic cancer (23%-79% positive expression). Furthermore the binding of Fsn0503h to surface associated cathepsin S results in natural killer (NK) cell targeted tumor killing. In a colorectal cancer model Fsn0503h elicits a 22% cytotoxic effect. CONCLUSIONS This data highlights the potential to target cell surface associated enzymes, such as cathepsin S, as therapeutic targets using antibodies capable of elicitingADCC in tumor cells.
Collapse
Affiliation(s)
- Hang Fai Kwok
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Richard J Buick
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Diana Kuehn
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Julie A Gormley
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Declan Doherty
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Thomas J Jaquin
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Angela McClurg
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Claire Ward
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Teresa Byrne
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Jacob Jaworski
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Ka Lai Leung
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Philip Snoddy
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Christine McAnally
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Roberta E Burden
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, BT9 7BL, Northern Ireland
| | - Breena Gray
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Jenny Lowry
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Isabelle Sermadiras
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Natalia Gruszka
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Nigel Courtenay-Luck
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| | - Adrien Kissenpfennig
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland
| | - Christopher J Scott
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, BT9 7BL, Northern Ireland
| | - James A Johnston
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland
| | - Shane A Olwill
- Fusion Antibodies Ltd., Springbank Ind. Est. Belfast, BT17 0QL, Northern Ireland
| |
Collapse
|
20
|
Cathepsins B and L in peripheral blood mononuclear cells of pediatric acute myeloid leukemia: potential poor prognostic markers. Ann Hematol 2010; 89:1223-32. [PMID: 20567828 DOI: 10.1007/s00277-010-1012-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
Abstract
The diagnostic and prognostic significance of cathepsin B (CTSB) and L (CTSL) is well documented for solid tumors. However, their significance in acute leukemias is lacking. This study was planned to investigate expression and significance of these proteases in peripheral blood mononuclear cells (PBMCs) of patients with pediatric acute myeloid leukemia (AML). CTSL and CTSB activities were assayed in PBMCs of 24 children with AML and ten healthy controls by spectrofluorimetry. The mRNA levels of these proteases and their specific endogenous inhibitor cystatin C and transcriptional upregulator vascular endothelial growth factor (VEGF) were quantitated by real-time PCR. Correlation analysis of CTSL and CTSB activities/expression with their inhibitor/upregulator and event-free survival (EFS) was done using appropriate statistical tools. CTSL and CTSB protease activity and their mRNA expression were significantly higher in AML patients compared to controls (p ≤ 0.001). A strong positive correlation was observed between VEGF expression and CTSL (r = 0.812; p ≤ 0.001). Similarly, VEGF exhibited a strong positive correlation with CTSB (r = 0.501; p = 0.013). Cystatin expression though significantly high (p ≤ 0.001) in AML was negatively correlated with CTSL (r = -0.920; p ≤ 0.001) and CTSB (r = -0.580, p ≤ 0.001) expression. AML patients with higher CTSL and CTSB activity exhibited an inferior EFS (CTSL: p = 0.045; CTSB: p = 0.002) and overall survival (OS; CTSL: p = 0.05; CTSB: p = 0.004) compared to patients with lower levels of these proteases. This is the first report demonstrating increased expression of CTSL and CTSB in AML, mechanism of their increased expression in relation to VEGF, and their association with poor EFS and OS. These results suggest a potential utility of these proteases as prognostic markers for this malignancy.
Collapse
|
21
|
Zaidi N, Maurer A, Nieke S, Kalbacher H. Cathepsin D: a cellular roadmap. Biochem Biophys Res Commun 2008; 376:5-9. [PMID: 18762174 DOI: 10.1016/j.bbrc.2008.08.099] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 01/01/2023]
Abstract
Cathepsin D is a normal and major component of lysosomes, it is found in almost all cells and tissues of mammals. Present review describes different events in cellular life of cathepsin D mainly its biosynthesis, co-translational and posttranslational modifications, targeting to lysosomes and proteolytic processing and maturation within lysosomes.
Collapse
Affiliation(s)
- Nousheen Zaidi
- Medical and Natural Sciences Research Centre, University of Tubingen, Ob dem Himmerlreich 7, 72074 Tubingen, Germany
| | | | | | | |
Collapse
|
22
|
Victor BC, Sloane BF. Cysteine cathepsin non-inhibitory binding partners: modulating intracellular trafficking and function. Biol Chem 2008; 388:1131-40. [PMID: 17976005 DOI: 10.1515/bc.2007.150] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cysteine cathepsins play a fundamental role in tumor growth, invasion and migration, angiogenesis, and the metastatic cascade. Evidence of their overexpression in a wide array of human tumors has been well documented. Cysteine cathepsins seem to have a characteristic location-function relationship that leads to non-traditional roles such as those in development and pathology. For example, during tumor development, some cysteine cathepsins are found not just within lysosomes, but are also redistributed into presumptive exocytic vesicles at the cell periphery, resulting in their secretion. This altered localization contributes to non-lysosomal functions that have been linked to malignant progression. Mechanisms for altered localization are not well understood, but do include the interaction of cysteine cathepsins with binding partners that modulate intracellular trafficking and association with specific regions on the cell surface.
Collapse
Affiliation(s)
- Bernadette C Victor
- Department of Pharmacology and Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | |
Collapse
|
23
|
Lee WH, Jin JS, Tsai WC, Chen YT, Chang WL, Yao CW, Sheu LF, Chen A. Biological Inhibitory Effects of the Chinese Herb Danggui on Brain Astrocytoma. Pathobiology 2006; 73:141-8. [PMID: 17085958 DOI: 10.1159/000095560] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 06/28/2006] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Previous studies have demonstrated the utility of the traditional Chinese herb danggui in the treatment of chronic myelogenous leukemia. Our aim was to examine whether it might similarly be used to treat glioblastoma multiforme. METHODS The lipid-soluble active ingredients of danggui were extracted with acetone (AS-AC) or chlorophenol (AS-CH) and their antiproliferative and proapoptotic effects were studiedin vitro on cultured GBM 8401 cells and in vivoon tumors in nude mice. RESULTS After a 24-hour treatment, either AS-AC or AS-CH at a lower (50 micro g/ml) and a higher concentration (100 micro g/ml) significantly inhibited the proliferative activity of GBM 8401 cultured cells by 30-50%, as well as the expression of cathepsin B and vascular endothelial growth factor (VEGF). In nude mice, the growth of the tumor was inhibited by 30% by AS-CH or AS-AC (20 mg/kg; p < 0.05) and by 60% by AS-CH or AS-AC (60 mg/kg; p < 0.05). AS-AC and AS-CH also significantly inhibited microvessel formation in the tumors of nude mice. CONCLUSIONS Danggui may inhibit tumor growth by reducing the level of VEGF and the proapoptotic protein, cathepsin B. Thus, danggui may be useful in the treatment of high-grade astrocytomas.
Collapse
Affiliation(s)
- Wei-Hwa Lee
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Taha TA, El-Alwani M, Hannun YA, Obeid LM. Sphingosine kinase-1 is cleaved by cathepsin B in vitro: identification of the initial cleavage sites for the protease. FEBS Lett 2006; 580:6047-54. [PMID: 17064696 PMCID: PMC1732625 DOI: 10.1016/j.febslet.2006.09.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 09/21/2006] [Accepted: 09/27/2006] [Indexed: 11/29/2022]
Abstract
Previous work has identified sphingosine kinase-1 (SK1) as a substrate for the cysteine protease cathepsin B in vitro. In this study, the mechanism of SK1 cleavage by cathepsin B was investigated. We identified two initial cleavage sites for the protease, the first at histidine 122 and the second at arginine 199. Mutation analysis showed that replacement of histidine 122 with a tyrosine maintained the activity of SK1 while significantly reducing cleavage by cathepsin B at the initial cleavage site. The efficacy of cleavage of SK1 at arginine 199, however, was not affected. These studies demonstrate that SK1 is cleaved by cathepsin B in a sequential manner after basic amino acids, and that the initial cleavages at the two identified sites occur independently of each other.
Collapse
Affiliation(s)
- Tarek A. Taha
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401, and ¶ Department of Medicine and
| | - Mazen El-Alwani
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401, and ¶ Department of Medicine and
| | - Yusuf A. Hannun
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lina M. Obeid
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401, and ¶ Department of Medicine and
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
- Corresponding Author: Lina M. Obeid, M.D., Department of Medicine, Medical University of South Carolina, 114 Doughty St., P.O.Box 250779, Charleston, South Carolina 29425, USA, Tel: +1-843-876-5169, Fax: +1-843-876-5172,
| |
Collapse
|
25
|
Shaffer SA, Baker-Lee C, Kennedy J, Lai MS, de Vries P, Buhler K, Singer JW. In vitro and in vivo metabolism of paclitaxel poliglumex: identification of metabolites and active proteases. Cancer Chemother Pharmacol 2006; 59:537-48. [PMID: 16924498 DOI: 10.1007/s00280-006-0296-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND The efficacy and tolerability of paclitaxel is limited by its low solubility, high systemic exposure, and a lack of selective tumor uptake. Paclitaxel poliglumex (PPX; XYOTAX) is a macromolecular drug conjugate that was developed to overcome these limitations; the 2' hydroxyl group of paclitaxel is linked to a biodegradable polymer, poly-L: -glutamic acid, to form an inactive polymeric conjugate. PPX was previously shown to accumulate in tumor tissue, presumably by taking advantage of the hyperpermeable tumor vasculature and suppressed lymphatic clearance in tumor tissue. METHODS Because anti-tumor activity requires the release of paclitaxel from the polymer-drug conjugate, the current report characterizes PPX biodegradation and release of paclitaxel as determined by quantitative HPLC/mass spectral analysis. RESULTS The identification of monoglutamyl-paclitaxel metabolites in tumor tissue confirmed the in vivo metabolism of PPX in a panel of mouse tumor models. In vitro characterization of the metabolic pathway suggests that PPX can enter tumor cells, and is metabolized to form both mono- and diglutamyl-paclitaxel cleavage products. The intracellular formation of these intermediate metabolites is at least partially dependent on the proteolytic activity of the lysosomal enzyme cathepsin B; PPX metabolism is inhibited by a highly selective inhibitor of cathepsin B, CA-074. Reduced metabolism of PPX in livers and spleens from cathepsin B deficient mice confirms that cathepsin B is an important mediator of PPX metabolism in vivo; however, other proteolytic enzymes may contribute as well. CONCLUSIONS The cathepsin B-mediated release of paclitaxel may have therapeutic implications as cathepsin B is upregulated in malignant cells, particularly during tumor progression.
Collapse
Affiliation(s)
- Scott A Shaffer
- Cell Therapeutics, Inc., 501 Elliott Avenue West, Seattle, WA 98119, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Jane DT, Morvay L, Dasilva L, Cavallo-Medved D, Sloane BF, Dufresne MJ. Cathepsin B localizes to plasma membrane caveolae of differentiating myoblasts and is secreted in an active form at physiological pH. Biol Chem 2006; 387:223-34. [PMID: 16497156 DOI: 10.1515/bc.2006.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our in vitro studies support a functional link between the induction of cathepsin B gene expression and the catabolic restructuring associated with myotube formation during myogenesis in vivo. We have tested two predictions that are basic to this hypothesis: (1) that active cathepsin B is localized to plasma membrane caveolae of fusing myoblasts; and (2) that active cathepsin B is secreted from fusing myoblasts at physiological pH. During differentiation, L6 rat myoblasts demonstrated a fusion-related increase in activity associated with the 25/26-kDa, fully processed, active form of cathepsin B. Immunocytochemical studies demonstrated a redistribution of lysosomal cathepsin B protein toward the membrane of fusing myoblasts, and a colocalization of cathepsin B with caveolin-3, the muscle-specific structural protein of membrane caveolae. Sucrose density fractionation and Western blot analysis demonstrated that an active form of cathepsin B localizes to caveolar fractions along with caveolin-3, annexin-VII, beta-dystroglycan and dystrophin. Finally, 'real-time' activity assays and Western blot analysis demonstrated that active cathepsin B is secreted from fusing myoblasts at physiological pH. Collectively, these studies support an association of active cathepsin B with plasma membrane caveolae and the secretion of active cathepsin B from differentiating myoblasts during myoblast fusion.
Collapse
Affiliation(s)
- Derek T Jane
- Biological Sciences, University of Windsor, Windsor N9B 3P4, ON, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Klose A, Wilbrand-Hennes A, Zigrino P, Weber E, Krieg T, Mauch C, Hunzelmann N. Contact of high-invasive, but not low-invasive, melanoma cells to native collagen I induces the release of mature cathepsin B. Int J Cancer 2006; 118:2735-43. [PMID: 16381007 DOI: 10.1002/ijc.21700] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Metastasis of malignant tumor cells involves cell-cell and cell-matrix interactions, which regulate the expression and localization of proteolytic enzymes. In the present study, we investigated the expression and localization of the lysosomal cysteine proteinase cathepsin B and its natural inhibitors cystatin A, B and C in high- (MV3), intermediate- (SKmel28) and low-invasive (SKmel23, WM164) human melanoma cell lines grown on plastic or in contact with monomeric or fibrillar collagen type I. Neither the transcript levels of cathepsin B nor those of the natural inhibitors, cystatin B and C, were altered by the interaction of melanoma cells with collagen type I. However, protein expression and cellular localization of cathepsin B and its inhibitors were markedly affected. In contrast to low-invasive cells, high-invasive cells constitutively released procathepsin B when cultured on plastic. In addition, contact of invasive cells with fibrillar collagen type I resulted in the release of both mature forms of the protease. Perturbation studies using inhibitory antibodies against the beta1 subunit of the integrin receptor indicated a role for the beta1 integrin receptor family in the regulation of cathepsin B release. Cystatin B protein expression was much lower in high-invasive cells in both culture conditions, when compared to low-invasive cells. Cystatin C expression was comparable in all cells, but cell contact to fibrillar collagen type I induced its expression. These results strongly implicate a pivotal role of cell-matrix interactions for the regulation of cathepsin B localization and activity in melanoma cells.
Collapse
Affiliation(s)
- Anke Klose
- Department of Dermatology, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The roles of proteases in cancer are now known to be much broader than simply degradation of extracellular matrix during tumor invasion and metastasis. Furthermore, proteases from tumor-associated cells (e.g., fibroblasts, inflammatory cells, endothelial cells) as well as tumor cells are recognized to contribute to pathways critical to neoplastic progression. Although elevated expression (transcripts and proteins) of proteases, and in some cases protease inhibitors, has been documented in many tumors, techniques to assess functional roles for proteases require that we measure protease activity and inhibition of that activity rather than levels of proteases, activators, and inhibitors. Novel techniques for functional imaging of protease activity, both in vitro and in vivo, are being developed as are imaging probes that will allow us to determine protease activity and in some cases to discriminate among protease activities. These should be useful clinically as surrogate endpoints for therapies that alter protease activities.
Collapse
Affiliation(s)
- Bonnie F Sloane
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
29
|
Chipman SD, Oldham FB, Pezzoni G, Singer JW. Biological and clinical characterization of paclitaxel poliglumex (PPX, CT-2103), a macromolecular polymer-drug conjugate. Int J Nanomedicine 2006; 1:375-83. [PMID: 17722272 PMCID: PMC2676644 DOI: 10.2147/nano.2006.1.4.375] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Paclitaxel is a widely used chemotherapeutic agent; however, its therapeutic index is limited by low tumor exposure and high systemic exposure. Paclitaxel poliglumex (PPX) is macromolecular drug conjugate that links paclitaxel with a biodegradable polymer, poly-L-glutamic acid. PPX enhances tumor exposure by taking advantage of the hyperpermeable vasculature and suppressed lymphatic clearance characteristic of tumor tissue. The release of paclitaxel from the polymeric backbone is, at least in part, dependent on the metabolism of PPX by the lysosomal protease cathepsin B, which is upregulated in many tumor types. Retrospective analysis of clinical data from two phase III trials in advanced lung cancer suggests that PPX activity may be modulated by estradiol: a trend toward improved survival in the PPX arm compared with the control arm was observed in female, but not in male patients. Estrogens are known to induce cathepsin B activity; cathepsin B-mediated proteolysis is a key enzymatic processing step in PPX metabolism. The association between estrogens and PPX activity is being further explored in ongoing preclinical studies. An additional phase III trial will enroll women with advanced NSCLC to prospectively evaluate the efficacy of PPX in relation to pre- and post-menopausal estrogen levels.
Collapse
|
30
|
Podgorski I, Linebaugh BE, Sameni M, Jedeszko C, Bhagat S, Cher ML, Sloane BF. Bone microenvironment modulates expression and activity of cathepsin B in prostate cancer. Neoplasia 2005; 7:207-23. [PMID: 15799821 PMCID: PMC1501133 DOI: 10.1593/neo.04349] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prostate cancers metastasize to bone leading to osteolysis. Here we assessed proteolysis of DQ-collagen I (a bone matrix protein) and, for comparison, DQ-collagen IV, by living human prostate carcinoma cells in vitro. Both collagens were degraded, and this degradation was reduced by inhibitors of matrix metallo, serine, and cysteine proteases. Because secretion of the cysteine protease cathepsin B is increased in human breast fibroblasts grown on collagen I gels, we analyzed cathepsin B levels and secretion in prostate cells grown on collagen I gels. Levels and secretion were increased only in DU145 cells--cells that expressed the highest baseline levels of cathepsin B. Secretion of cathepsin B was also elevated in DU145 cells grown in vitro on human bone fragments. We further investigated the effect of the bone microenvironment on cathepsin B expression and activity in vivo in a SCID-human model of prostate bone metastasis. High levels of cathepsin B protein and activity were found in DU145, PC3, and LNCaP bone tumors, although the PC3 and LNCaP cells had exhibited low cathepsin B expression in vitro. Our results suggest that tumor-stromal interactions in the context of the bone microenvironment can modulate the expression of the cysteine protease cathepsin B.
Collapse
Affiliation(s)
- Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Proteases play causal roles in the malignant progression of human tumors. This review centers on the roles in this process of cysteine cathepsins, i.e., peptidases belonging to the papain family (C1) of the CA clan of cysteine proteases. Cysteine cathepsins, most likely along with matrix metalloproteases (MMPs) and serine proteases, degrade the extracellular matrix, thereby facilitating growth and invasion into surrounding tissue and vasculature. Studies on tumor tissues and cell lines have shown changes in expression, activity and distribution of cysteine cathepsins in numerous human cancers. Molecular, immunologic and pharmacological strategies to modulate expression and activity of cysteine cathepsins have provided evidence for a causal role for these enzymes in tumor progression and invasion. Clinically, the levels, activities and localization of cysteine cathepsins and their endogenous inhibitors have been shown to be of diagnostic and prognostic value. Understanding the roles that cysteine proteases play in cancer could lead to the development of more efficacious therapies.
Collapse
|
32
|
Freitas ZFO, Rodrigues EG, Oliveira V, Carmona AK, Travassos LR. Melanoma heterogeneity: differential, invasive, metastatic properties and profiles of cathepsin B, D and L activities in subclones of the B16F10-NEX2 cell line. Melanoma Res 2005; 14:333-44. [PMID: 15457088 DOI: 10.1097/00008390-200410000-00002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tumour cell lines and in vivo growing tumours are heterogeneous, comprising different cell clones. To understand why some cells primarily invade a tissue, while others are more apt to metastasize, several clones from the established B16F10-Nex2 cell line were isolated and 10 viable cells of each clone were injected intravenously into C57Bl/6 and Balb/c mice. Two cell clones (Nex2B and Nex2D) showed contrasting metastatic abilities. Clone 2D rather than clone 2B colonized the lungs of both mice after intravenous injection. Surprisingly, clone 2B grew more rapidly than 2D after subcutaneous implantation, significantly reducing the survival of injected mice. Clearly, dissociation between subcutaneous growth and metastatic ability was observed in clones from the same tumour cell lineage. Clone Nex2B continuously released proteolytic activity, including cathepsin B, and showed a greater capacity to invade Matrigel than clone Nex2D. Clone Nex2D accumulated cathepsins B, D and L intracellularly and released a moderate proteolytic activity in vitro that was inhibited with the time of incubation. E-64-treated Nex2B cells injected subcutaneously showed a significant delay in tumour development and increased survival of challenged animals. A similar result was obtained on treatment of clone 2B with chagasin, a cysteine proteinase inhibitor from Trypanosoma cruzi, even at 2 microM. Clone Nex2D was less sensitive to pretreatment with inhibitors of cysteine proteases for tumour development in vivo. Our results suggest that, in a tumour cell population, cells dissociate into metastatic and non-metastatic subtypes, and that release or accumulation of cathepsins can be a differential trait of these cells.
Collapse
Affiliation(s)
- Zenilda F O Freitas
- Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | | | | | | |
Collapse
|
33
|
Journet A, Ferro M. The potentials of MS-based subproteomic approaches in medical science: the case of lysosomes and breast cancer. MASS SPECTROMETRY REVIEWS 2004; 23:393-442. [PMID: 15290709 DOI: 10.1002/mas.20001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Because of the great number of women who are diagnosed with breast cancer each year, and though this disease presents the lowest mortality rate among cancers, breast cancer remains a major public health problem. As for any cancer, the tumorigenic and metastatic processes are still hardly understood, and the biochemical markers that allow either a precise monitoring of the disease or the classification of the numerous forms of breast cancer remain too scarce. Therefore, great hopes are put on the development of high-throughput genomic and proteomic technologies. Such comprehensive techniques should help in understanding the processes and in defining steps of the disease by depicting specific genes or protein profiles. Because techniques dedicated to the current proteomic challenges are continuously improving, the probability of the discovery of new potential protein biomarkers is rapidly increasing. In addition, the identification of such markers should be eased by lowering the sample complexity; e.g., by sample fractionation, either according to specific physico-chemical properties of the proteins, or by focusing on definite subcellular compartments. In particular, proteins of the lysosomal compartment have been shown to be prone to alterations in their localization, expression, or post-translational modifications (PTMs) during the cancer process. Some of them, such as the aspartic protease cathepsin D (CatD), have even been proven as participating actively in the disease progression. The present review aims at giving an overview of the implication of the lysosome in breast cancer, and at showing how subproteomics and the constantly refining MS-based proteomic techniques may help in making breast cancer research progress, and thus, hopefully, in improving disease treatment.
Collapse
Affiliation(s)
- Agnès Journet
- Laboratoire de Chimie des Protéines, ERM-0201 Inserm, DRDC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble, France.
| | | |
Collapse
|
34
|
Kokkonen N, Rivinoja A, Kauppila A, Suokas M, Kellokumpu I, Kellokumpu S. Defective acidification of intracellular organelles results in aberrant secretion of cathepsin D in cancer cells. J Biol Chem 2004; 279:39982-8. [PMID: 15258139 DOI: 10.1074/jbc.m406698200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aberrant secretion of lysosomal hydrolases such as (pro)cathepsin D (proCD) is a common phenotypic change in many human cancers. Here we explore the underlying molecular defect(s) and find that MCF-7 breast and CaCo-2 colorectal cancer cells that are unable to acidify their endosomal compartments secreted higher amounts of proCD than did acidification-competent cancer cell types. The latter secreted equivalent amounts of proCD only after dissipation of their organellar pH gradients with NH(4)Cl. Assessing the critical steps that resulted in proCD secretion revealed that the Golgi-associated sorting receptor for CD, i.e. the cation-independent mannose-6-phosphate receptor (MPR300), was aberrantly distributed in acidification-defective MCF-7 cells. It accumulated mainly in late endosomes and/or lysosomes as a complex with its ligand (proCD or intermediate CD), as evidenced by its co-localization with both CD and LAMP-2, a late endosome/lysosome marker. Our immunoprecipitation analyses also showed that MCF-7 cells possessed 7-fold higher levels of receptor-enzyme complexes than did acidification-competent cells. NH(4)Cl induced similar receptor redistribution into LAMP-2-positive structures in acidification-competent cells but not in MCF-7 cells. The receptor also recovered its normal Golgi localization upon drug removal. Based on these observations, we conclude that defective acidification results in the aberrant secretion of proCD in certain cancer cells and interferes mainly with the normal disassembly of the receptor-enzyme complexes and efficient receptor reutilization in the Golgi.
Collapse
Affiliation(s)
- Nina Kokkonen
- Department of Biochemistry, University of Oulu, P. O. Box 3000, FIN-90014 Oulu, Finland
| | | | | | | | | | | |
Collapse
|
35
|
Tzanakakis GN, Margioris AN, Tsatsakis AM, Vezeridis MP. The metastatic potential of human pancreatic cell lines in the liver of nude mice correlates well with cathepsin B activity. ACTA ACUST UNITED AC 2004; 34:27-38. [PMID: 15235133 DOI: 10.1385/ijgc:34:1:27] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cathepsin B, a lysosomal cysteine protease, has a major role in the mechanisms of tumor metastasis. The aim of the present work was to examine the correlation between cathepsin B activity and the metastatic potential of human pancreatic cancer. METHODS The primary cell line COLO 357 and the derivative tumor cell lines FG, L3.1, L3.2, L3.3, L3.4, and L3.5, which are characterized by progressively increasing metastatic potential, were injected intrasplenically in the athymic mice. Cathepsin B activity, metastasis, and ultrastructural characteristics were assessed. RESULTS An increased number of liver tumor nodules was observed with each subsequent intrasplenic inoculation (p = 0.001), associated with lymph node, splenic, and pancreatic involvement. Cathepsin B activity progressively increased (p = 0.001) and was strongly positively correlated with the metastatic potential. However, no correlation was found between the metastatic potential and ultrastructural characteristics. CONCLUSIONS These findings further support the central role of cathepsin B in metastasis in a combined in vitro/in vivo model.
Collapse
Affiliation(s)
- George N Tzanakakis
- Department of Histology, School of Medicine, University of Crete, Heraklion, Greece.
| | | | | | | |
Collapse
|
36
|
Berdowska I. Cysteine proteases as disease markers. Clin Chim Acta 2004; 342:41-69. [PMID: 15026265 DOI: 10.1016/j.cccn.2003.12.016] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 12/17/2003] [Accepted: 12/17/2003] [Indexed: 01/19/2023]
Abstract
This review comprises issues concerning cysteine cathepsins (CCs): human peptidases belonging to papain family (C1) of clan CA of cysteine proteases: cathepsins B, L, H, S, K, F, V, X, W, O and C. The involvement of these enzymes in physiological and pathological processes is described, especially with respect to their application as diagnostic and prognostic markers. They participate in precursor protein activation (including proenzymes and prohormones), MHC-II-mediated antigen presentation, bone remodeling, keratinocytes differentiation, hair follicle cycle, reproduction and apoptosis. Cysteine cathepsins upregulation has been demonstrated in many human tumors, including breast, lung, brain, gastrointestinal, head and neck cancer, and melanoma. Besides cancer diseases, they have been implied to participate in inflammatory diseases, such as inflammatory myopathies, rheumatoid arthritis, and periodontitis. Also, certain hereditary disorders are connected with mutations in CCs genes, what is observed in pycnodysostosis resulted from catK gene mutation and Papillon-Lefevre and Haim-Munk syndrome caused by catC gene defect. The potential application of cysteine cathepsins in diagnosis and/or prognosis is discussed in cancer diseases (breast, lung, head and neck, ovarian, gastrointestinal cancers, melanoma), as well as other disorders (periodontitis, rheumatoid arthritis, osteoarthritis).
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 10 Chalubinskiego, 50-368 Wroclaw, Poland.
| |
Collapse
|
37
|
Yanamandra N, Gumidyala KV, Waldron KG, Gujrati M, Olivero WC, Dinh DH, Rao JS, Mohanam S. Blockade of cathepsin B expression in human glioblastoma cells is associated with suppression of angiogenesis. Oncogene 2004; 23:2224-30. [PMID: 14730346 DOI: 10.1038/sj.onc.1207338] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 11/06/2003] [Accepted: 11/07/2003] [Indexed: 11/09/2022]
Abstract
The cysteine proteinase cathepsin B has been implicated in tumor progression by virtue of its increased mRNA and protein levels, as well as its localization at the invading front of the tumor. In this study, we examined whether blocking cathepsin B expression in human glioblastoma SNB19 cells affects angiogenesis. Stable transfectants of human glioblastoma cells with a plasmid containing antisense cathepsin B cDNA showed decreased migration rates in wound- and spheroid-migration assays. Analysis showed a reduction in VEGF protein and MMP-9 activity in the cathepsin B antisense cDNA-transfected cells. Regarding angiogenesis in vitro, we found that the conditioned medium of glioblastoma cells with downregulated cathepsin B expression reduced cell-cell interaction of human microvascular endothelial cells, resulting in the disruption of capillary-like network formation. Furthermore, a marked reduction in microvasculature development was seen in an in vivo dorsal air sac assay of glioblastoma cells with downregulated cathepsin B expression. Taken together, these results provide evidence that inhibition of cathepsin B expression can suppress glioblastoma-induced neovascularization.
Collapse
Affiliation(s)
- Niranjan Yanamandra
- Program of Cancer Biology, University of Illinois College of Medicine at Peoria, Peoria, One Illini Drive, Box 1649, IL 61656, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Celis JE, Gromov P, Cabezón T, Moreira JMA, Ambartsumian N, Sandelin K, Rank F, Gromova I. Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: a novel resource for biomarker and therapeutic target discovery. Mol Cell Proteomics 2004; 3:327-44. [PMID: 14754989 DOI: 10.1074/mcp.m400009-mcp200] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clinical cancer proteomics aims at the identification of markers for early detection and predictive purposes, as well as to provide novel targets for drug discovery and therapeutic intervention. Proteomics-based analysis of traditional sources of biomarkers, such as serum, plasma, or tissue lyzates, has resulted in a wealth of information and the finding of several potential tumor biomarkers. However, many of these markers have shown limited usefulness in a clinical setting, underscoring the need for new clinically relevant sources. Here we present a novel and highly promising source of biomarkers, the tumor interstitial fluid (TIF) that perfuses the breast tumor microenvironment. We collected TIFs from small pieces of freshly dissected invasive breast carcinomas and analyzed them by two-dimensional polyacrylamide gel electrophoresis in combination with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Western immunoblotting, as well as by cytokine-specific antibody arrays. This approach provided for the first time a snapshot of the protein components of the TIF, which we show consists of more than one thousand proteins--either secreted, shed by membrane vesicles, or externalized due to cell death--produced by the complex network of cell types that make up the tumor microenvironment. So far, we have identified 267 primary translation products including, but not limited to, proteins involved in cell proliferation, invasion, angiogenesis, metastasis, inflammation, protein synthesis, energy metabolism, oxidative stress, the actin cytoskeleton assembly, protein folding, and transport. As expected, the TIF contained several classical serum proteins. Considering that the protein composition of the TIF reflects the physiological and pathological state of the tissue, it should provide a new and potentially rich resource for diagnostic biomarker discovery and for identifying more selective targets for therapeutic intervention.
Collapse
Affiliation(s)
- Julio E Celis
- Danish Centre for Translational Breast Cancer Research, and Department of Proteomics in Cancer, Institute of Cancer Biology, The Danish Cancer Society, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Collette J, Ulku AS, Der CJ, Jones A, Erickson AH. Enhanced cathepsin L expression is mediated by different Ras effector pathways in fibroblasts and epithelial cells. Int J Cancer 2004; 112:190-9. [PMID: 15352030 DOI: 10.1002/ijc.20398] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ras expression induces increased expression and altered targeting of lysosomal proteases in multiple cell types, but the specific downstream cytoplasmic signaling pathways mediating these changes have not been identified. In this study, we compared the involvement of 3 major Ras effectors, Raf, phosphatidylinositol 3-kinase (PI3K) and Ral guanine nucleotide exchange factor (RalGEF) in the Ras-mediated alteration of lysosomal protease protein expression and targeting in rat 208F fibroblasts and rat ovarian surface epithelial (ROSE) cells. Effector domain mutants of Ras, constitutively activated variants of Raf, PI3K and RalGEF and pharmacologic inhibitors of MEK and PI3K were utilized to determine the role of these downstream pathways in mediating fibroblast transformation and lysosomal protease regulation in the fibroblasts and epithelial cells. We found that Raf activation of the ERK mitogen-activated protein kinase pathway alone was sufficient to cause morphologic and growth transformation of the fibroblasts and was necessary and sufficient to alter cathepsin L expression and targeting. In contrast, transformation and upregulation of cathepsin L expression in the epithelial cells required the activity of all 3 Ras effectors. Increased protease secretion from the epithelial cells was not observed on ectopic expression of Ras, as it was from the fibroblasts, consistent with the utilization of different signaling pathways in the 2 cell types. In neither cell type did Ras expression increase the expression, processing or secretion of 2 other major lysosomal proteases, cathepsin B and cathepsin D. Thus, Ras utilizes different effectors to mediate transformation and to deregulate cathepsin L expression and secretion in fibroblast and epithelial cells.
Collapse
Affiliation(s)
- John Collette
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
40
|
Cavallo-Medved D, Sloane BF. Cell-surface cathepsin B: understanding its functional significance. Curr Top Dev Biol 2003; 54:313-41. [PMID: 12696754 DOI: 10.1016/s0070-2153(03)54013-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Dora Cavallo-Medved
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
41
|
Nishimura Y, Itoh K, Yoshioka K, Tokuda K, Himeno M. Overexpression of ROCK in human breast cancer cells: evidence that ROCK activity mediates intracellular membrane traffic of lysosomes. Pathol Oncol Res 2003; 9:83-95. [PMID: 12858212 DOI: 10.1007/bf03033750] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Accepted: 06/15/2003] [Indexed: 10/20/2022]
Abstract
Small GTPase Rho and its downstream effectors, ROCK family of Rho-associated serine-threonine kinases, are thought to participate in cell morphology, motility, and tumor progression through regulating the rearrangement of actin cytoskeleton. Here we present evidence that transfection of human breast cancer cells with cDNA encoding a dominant active mutant of ROCK causes dispersal of lysosomal vesicles throughout the cytoplasm without perturbing the machinery of the endocytic pathway. The intracellular distribution of lysosomes and endocytosed transferrin, an early endosomal marker, were further assessed by confocal immunofluorescence microscopy. In the active ROCK transfected cells the lysosomal proteins, cathepsin D, LIMPII, and LAMP1, were found throughout the cytoplasm in dispersed small vesicles, which were accessible to the endocytosed Texas Red-labeled transferrin. 3D-image analysis of lysosomal distribution in the active ROCK transfectants revealed abundant punctate signals in the peripheral region of the basal plasma membrane. Cells expressing vector alone did not exhibit these alterations. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, induced LIMPII-positive/ transferrin negative large vacuoles in the perinuclear region, and disappearence of the dispersed small vesicular structures. To our knowledge, this is the first evidence that increasing ROCK expression contributes to selective cellular dispersion of lysosomes in invasive breast cancer cells.
Collapse
Affiliation(s)
- Yukio Nishimura
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
42
|
Flannery T, Gibson D, Mirakhur M, McQuaid S, Greenan C, Trimble A, Walker B, McCormick D, Johnston PG. The clinical significance of cathepsin S expression in human astrocytomas. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:175-82. [PMID: 12819022 PMCID: PMC1868175 DOI: 10.1016/s0002-9440(10)63641-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Early local invasion by astrocytoma cells results in tumor recurrence even after apparent total surgical resection, leading to the poor prognosis associated with malignant astrocytomas. Proteolytic enzymes have been implicated in facilitating tumor cell invasion and the current study was designed to characterize the expression of the cysteine proteinase cathepsin S (CatS) in astrocytomas and examine its potential role in invasion. Immunohistochemical analysis of biopsies demonstrated that CatS was expressed in astrocytoma cells but absent from normal astrocytes, oligodendrocytes, neurones and endothelial cells. Microglial cells and macrophages were also positive. Assays of specific activity in 59 astrocytoma biopsies confirmed CatS expression and in addition demonstrated that the highest levels of activity were expressed in grade IV tumors. CatS activity was also present in astrocytoma cells in vitro and the extracellular levels of activity were highest in cultures derived from grade IV tumors. In vitro invasion assays were carried out using the U251MG cell line and the invasion rate was reduced by up to 61% in the presence of the selective CatS inhibitor 4-Morpholineurea-Leu-HomoPhe-vinylsulphone. We conclude that CatS expression is up-regulated in astrocytoma cells and provide evidence for a potential role for CatS in invasion.
Collapse
Affiliation(s)
- Thomas Flannery
- Oncology Department, Cancer Research Centre, Queen's University Belfast, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Levicar N, Kos J, Blejec A, Golouh R, Vrhovec I, Frkovic-Grazio S, Lah TT. Comparison of potential biological markers cathepsin B, cathepsin L, stefin A and stefin B with urokinase and plasminogen activator inhibitor-1 and clinicopathological data of breast carcinoma patients. CANCER DETECTION AND PREVENTION 2003; 26:42-9. [PMID: 12088202 DOI: 10.1016/s0361-090x(02)00015-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cysteine, serine and metalloproteinases and their respective inhibitors are involved in tumor cell invasion and may have prognostic value for the outcome of malignant disease. The aim of the study was to compare the expression of new potential biological tumor markers, the lysosomal cysteine proteinases and their endogenous inhibitors, with that of the serine proteinases and their inhibitors in breast cancinoma and to relate their levels to the clinicopathological factors of the disease. Enzyme-linked immunosorbent assays (ELISAs) were used to measure cysteine cathepsin B (CatB) and cathepsin L (CatL) and their inhibitors, stefin A (StA) and stefin B (StB), together with urokinase (u-PA) and plasminogen activator inhibitor-1 (PAI-1), in 150 cytosols of primary invasive breast carcinoma. A good correlation was found between the levels of the two cysteine proteinases but only a moderate one between those of the cysteine and serine proteinases. u-PA and PAI-1 levels correlated positively with histological grade and negatively with estrogen receptor (ER) status. PAI-1 correlated with most clinicopathological factors that indicate the progression of the disease, while cathepsins and stefins were independent of these factors. In the total group of patients, high u-PA and PAI-1 and low StB levels correlated significantly with shorter disease-free survival (DFS), while CatB, CatL and StA did not. In lymph node negative patients, high CatB and CatL were also associated with shorter DFS, while u-PA remained the most significant of all these biological markers. In conclusion, this retrospective study showed u-PA to be of better prognostic relevance than the cysteine proteinases, though CatB and CatL were relevant for prognosis in lymph node negative breast cancer patients.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/enzymology
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/enzymology
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Cathepsin B/metabolism
- Cathepsin L
- Cathepsins/metabolism
- Cystatin A
- Cystatin B
- Cystatins/metabolism
- Cysteine Endopeptidases
- Disease-Free Survival
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Lymph Nodes/pathology
- Male
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Staging
- Plasminogen Activator Inhibitor 1/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Retrospective Studies
- Survival Rate
- Urokinase-Type Plasminogen Activator/metabolism
Collapse
Affiliation(s)
- Natasa Levicar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
44
|
Lecaille F, Kaleta J, Brömme D. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 2002; 102:4459-88. [PMID: 12475197 DOI: 10.1021/cr0101656] [Citation(s) in RCA: 406] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabien Lecaille
- Mount Sinai School of Medicine, Department of Human Genetics, Fifth Avenue at 100th Street, New York, New York 10029, USA
| | | | | |
Collapse
|
45
|
Mai J, Sameni M, Mikkelsen T, Sloane BF. Degradation of extracellular matrix protein tenascin-C by cathepsin B: an interaction involved in the progression of gliomas. Biol Chem 2002; 383:1407-13. [PMID: 12437133 DOI: 10.1515/bc.2002.159] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Degradation of extracellular matrix proteins by proteases such as the cysteine protease cathepsin B is critical to malignant progression. We have established that procathepsin B presents on the surface of tumor cells through its interaction with the annexin II tetramer [Mai et al., J. Biol. Chem. 275 (2000),12806-12812]. Cathepsin B activity can also be detected on the tumor cell surface and in their culture medium. Interestingly, the annexin II tetramer also interacts with extracellular matrix proteins, such as collagen I, fibrin and tenascin-C. Both cathepsin B and tenascin-C are expressed at high levels in malignant tumors, especially at the invasive edges of tumors, and are implicated in tumor angiogenesis. In this study, we report that tenascin-C can be degraded by cathepsin B in vitro. We demonstrate by immunohistochemistry that both cathepsin B and tenascin-C are expressed highly in malignant anaplastic astrocytomas and glioblastomas as compared to normal brain tissues. Interestingly, cathepsin B and tenascin-C were also detected in association with tumor neovessels. We suggest that interactions between cathepsin B and tenascin-C are involved in the progression of gliomas including the angiogenesis that is a hallmark of anaplastic astrocytomas.
Collapse
Affiliation(s)
- Jianxin Mai
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
46
|
Koblinski JE, Dosescu J, Sameni M, Moin K, Clark K, Sloane BF. Interaction of human breast fibroblasts with collagen I increases secretion of procathepsin B. J Biol Chem 2002; 277:32220-7. [PMID: 12072442 DOI: 10.1074/jbc.m204708200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interactions of stromal and tumor cells with the extracellular matrix may regulate expression of proteases including the lysosomal proteases cathepsins B and D. In the present study, we determined whether the expression of these two proteases in human breast fibroblasts was modulated by interactions with the extracellular matrix component, collagen I. Breast fibroblasts were isolated from non-malignant breast tissue as well as from tissue surrounding malignant human breast tumors. Growth of these fibroblasts on collagen I gels affected cell morphology, but not the intracellular localization of vesicles staining for cathepsin B or D. Cathepsins B and D levels (mRNA or intracellular protein) were not affected in fibroblasts growing on collagen I gels or plastic, nor was cathepsin D secreted from these cells. In contrast, protein expression and secretion of cathepsin B, primarily procathepsin B, was induced by growth on collagen I gels. The induced secretion appeared to be mediated by integrins binding to collagen I, as inhibitory antibodies against alpha(1), alpha(2), and beta(1) integrin subunits prevented procathepsin B secretion from fibroblasts grown on collagen. In addition, procathepsin B secretion was induced when cells were plated on beta(1) integrin antibodies. To our knowledge, this is the first examination of cathepsin B and D expression and localization in human breast fibroblasts and their regulation by a matrix protein. Secretion of the cysteine protease procathepsin B from breast fibroblasts may have physiological and pathological consequences, as proteases are required for normal development and for lactation of the mammary gland, yet can also initiate and accelerate the progression of breast cancer.
Collapse
Affiliation(s)
- Jennifer E Koblinski
- Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
47
|
Nishimura Y, Itoh K, Yoshioka K, Ikeda K, Himeno M. A role for small GTPase RhoA in regulating intracellular membrane traffic of lysosomes in invasive rat hepatoma cells. THE HISTOCHEMICAL JOURNAL 2002; 34:189-213. [PMID: 12587997 DOI: 10.1023/a:1021702812146] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Small GTPase RhoA regulates signal transduction from receptors in the membrane to a variety of cellular events related to cell morphology, motility, cytoskeletal dynamics, cytokinesis, and tumour progression, but it is unclear how RhoA regulates intracellular membrane dynamics of lysosomes. We showed previously by confocal immunofluorescence microscopy that the transfection of dominant active RhoA in MM1 cells causes the dispersal translocation of lysosomes stained for cathepsin D throughout the cytoplasm. Y-27632, a selective inhibitor of p160ROCK, impeded the cellular redistribution of lysosomes and promoted reclustering of lysosomes toward the perinuclear region. Here we have further investigated whether the acidic lysosomal vesicles dispersed throughout the cytoplasm are applied to the early endosomes in the endocytic pathway, and we demonstrate that the dispersed lysosomes were accessible to endocytosed molecule such as dextran, and their acidity was not changed, as determined by increased accumulation of the acidotropic probe LysoTracker Red. Brefeldin A did not induce the tabulation of these dispersed lysosomes, but it caused early endosomes to form an extensive tubular network. The dispersed lysosomes associated with cathepsin D and LIMPII were not colocalized with early endosomes, and these vesicles were not inaccessible to the endocytosed anti-transferrin receptor antibody. Moreover, wortmannin, an inhibitor of phosphatidylinositol 3-kinase, induced a dramatic change in LIMPII-containing structures in which LIMPII-positive swollen large vacuoles were increased and small punctate structures disappeared in the cytoplasm. These swollen vacuoles were not doubly positive for LIMPII and transferrin receptor, and were not inaccessible to the internalized anti-transferrin receptor antibody. Therefore, our novel findings presented in this paper indicate that RhoA activity causes a selective translocation of lysosomes without perturbing the machinery of endocytic pathway.
Collapse
Affiliation(s)
- Yukio Nishimura
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
48
|
Guo M, Mathieu PA, Linebaugh B, Sloane BF, Reiners JJ. Phorbol ester activation of a proteolytic cascade capable of activating latent transforming growth factor-betaL a process initiated by the exocytosis of cathepsin B. J Biol Chem 2002; 277:14829-37. [PMID: 11815600 DOI: 10.1074/jbc.m108180200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
12-O-Tetradecanoylphorbol-13-acetate (TPA) suppresses the proliferation of the human breast epithelial cell line MCF10A-Neo by initiating proteolytic processes that activate latent transforming growth factor (TGF)-beta in the serum used to supplement culture medium. Within 1 h of treatment, cultures accumulated an extracellular activity capable of cleaving a substrate for urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA). This activity was inhibited by plasminogen activator inhibitor-1 or antibodies to uPA but not tPA. Pro-uPA activation was preceded by dramatic changes in lysosome trafficking and the extracellular appearance of cathepsin B and beta-hexosaminidase but not cathepsins D or L. Co-treatment of cultures with the cathepsin B inhibitors CA-074 or Z-FA-FMK suppressed the cytostatic effects of TPA and activation of pro-uPA. In the absence of TPA, exogenously added cathepsin B activated pro-uPA and suppressed MCF10A-Neo proliferation. The cytostatic effects of both TPA and cathepsin B were suppressed in cells cultured in medium depleted of plasminogen/plasmin or supplemented with neutralizing TGF-beta antibody. Pretreatment with cycloheximide did not suppress the exocytosis of cathepsin B or the activation of pro-uPA. Hence, TPA activates signaling processes that trigger the exocytosis of a subpopulation of lysosomes/endosomes containing cathepsin B. Subsequently, extracellular cathepsin B initiates a proteolytic cascade involving uPA, plasminogen, and plasmin that activates serum-derived latent TGF-beta.
Collapse
Affiliation(s)
- Meng Guo
- Institute of Environmental Health Sciences, Wayne State University and the Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
49
|
Moin K, Demchik L, Mai J, Duessing J, Peters C, Sloane BF. Observing proteases in living cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 477:391-401. [PMID: 10849765 DOI: 10.1007/0-306-46826-3_40] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The lysosomal cysteine protease cathepsin B has been implicated in tumor progression and metastasis in part due to its altered trafficking. In order to analyze the trafficking of cathepsin B in living cells, we utilized enhanced green fluorescent protein (EGFP) fused to various cathepsin B constructs for transfecting two cell lines: an invasive human breast adenocarcinoma cell line (BT20) and a cathepsin B deficient mouse embryonic fibroblast cell line (MEF T -/-). The cells were transiently transfected with four cathepsin B-EGFP fusion constructs: full-length preprocathepsin B-EGFP, cathepsin B preregion-EGFP, cathepsin B prepro region-EGFP, and cathepsin B prepro region-EGFP with a mutation of the glycosylation site in the pro region. The full length construct showed vesicular distribution throughout the cells in both cell lines. In both BT20 and MEF T -/- cells, preregion-EGFP was localized in a ring tightly associated with the cell nucleus, suggesting distribution to the endoplasmic reticulum. The distribution of the prepro region-EGFP construct was similar except that it also included some patchy areas adjacent to the nucleus. This suggested that the cathepsin B prepro region-EGFP might have entered the Golgi. Distribution of the mutated cathepsin B prepro region-EGFP was similar to that of wild-type prepro region-EGFP in the MEF T -/-. In the invasive BT20 cells, however, the mutated prepro region-EGFP showed a vesicular distribution throughout the cytoplasm and in cell processes. This distribution is similar to that of endogenous cathepsin B in these cells. Our results suggest that: 1) tumor cells have an alternative mechanism for trafficking of cathepsin B which is independent of the mannose-6-phosphate receptor pathway, and 2) the pro region of cathepsin B may contain the sorting sequence necessary for its trafficking via this pathway.
Collapse
Affiliation(s)
- K Moin
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Malignant progression is accompanied by degradation of extracellular matrix proteins. Here we describe a novel confocal assay in which we can observe proteolysis by living human breast cancer cells (BT20 and BT549) through the use of quenched-fluorescent protein substrates. Degradation thus was imaged, by confocal optical sectioning, as an accumulation of fluorescent products. With the BT20 cells, fluorescence was localized to pericellular focal areas that coincide with pits in the underlying matrix. In contrast, fluorescence was localized to intracellular vesicles in the BT549 cells, vesicles that also label for lysosomal markers. Neither intracellular nor pericellular fluorescence was observed in the BT549 cells in the presence of cytochalasin B, suggesting that degradation occurred intracellularly and was dependent on endocytic uptake of substrate. In the presence of a cathepsin B-selective cysteine protease inhibitor, intracellular fluorescence was decreased approximately 90% and pericellular fluorescence decreased 67% to 96%, depending on the protein substrate. Matrix metallo protease inhibitors reduced pericellular fluorescence approximately 50%, i.e., comparably to a serine and a broad spectrum cysteine protease inhibitor. Our results suggest that: 1) a proteolytic cascade participates in pericellular digestion of matrix proteins by living human breast cancer cells, and 2) the cysteine protease cathepsin B participates in both pericellular and intracellular digestion of matrix proteins by living human breast cancer cells.
Collapse
Affiliation(s)
- M Sameni
- Department of Pharmacology and the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|